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ABSTRACT OF THE DISSERTATION 

 

 

SHAPE MEMORY BEHAVIOR OF SINGLE CRYSTAL AND 

POLYCRYSTALLINE Ni-RICH NiTiHf HIGH TEMPERATURE SHAPE 

MEMORY ALLOYS 

  

NiTiHf shape memory alloys have been receiving considerable attention for high 

temperature and high strength applications since they could have transformation 

temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and 

superelasticity at high temperatures. Moreover, their shape memory properties can be 

tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks 

such as low ductility and high work hardening in stress induced martensite transformation 

region. In order to overcome these limitations, studies have been focused on 

microstructural engineering by aging, alloying and processing.  

 

Shape memory properties and microstructure of four Ni-rich NiTiHf alloys 

(Ni50.3Ti29.7Hf20, Ni50.7Ti29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at. %)) were 

systematically characterized in the furnace cooled condition. H-phase precipitates were 

formed during furnace cooling in compositions with greater than 50.3Ni and the driving 

force for nucleation increased with Ni content. Alloy strength increased while recoverable 

strain decreased with increasing Ni content due to changes in precipitate characteristics.  

 

The effects of the heat treatments on the transformation characteristics and 

microstructure of the Ni-rich NiTiHf shape memory alloys have been investigated. 

Transformation temperatures are found to be highly annealing temperature dependent. 

Generation of nanosize precipitates (~20 nm in size) after three hours aging at 450 °C and 

550 °C improved the strength of  the material, resulting in a near perfect dimensional 

stability under high stress levels (> 1500 MPa) with a work output of 20–30 J cm– 3. 

Superelastic behavior with 4% recoverable strain was demonstrated at low and high 

temperatures where stress could reach to a maximum value of more than 2 GPa after three 

hours aging at 450 and 550 °C for alloys with Ni great than 50.3 at. %. 

 

Shape memory properties of polycrystalline Ni50.3Ti29.7Hf20 alloys were studied via 

thermal cycling under stress and isothermal stress cycling experiments in tension. 

Recoverable strain of ~5% was observed for the as-extruded samples while it was 

decreased to ~4% after aging due to the formation of precipitates. The aged alloys 

demonstrated near perfect shape memory effect under high tensile stress level of 700 MPa 



and perfect superelasticity at high temperatures up to 230 °C. Finally, the tension-

compression asymmetry observed in NiTiHf where recoverable tensile strain was higher 

than compressive strain. 

 

The shape memory properties of solutionized and aged Ni-rich Ni50.3Ti29.7Hf20 

single crystals were investigated along the [001], [011], and [111] orientations in 

compression.  [001]-oriented single crystals showed high dimensional stability under stress 

levels as high as 1500 MPa in both the solutionized and aged conditions, but with 

transformation strains of less than 2%. Perfect superelasticity with recoverable strain of 

more than 4% was observed for solutionized and 550 °C-3h aged single crystals along the 

[011] and [111] orientations, and general superelastic behavior was observed over a wide 

temperature range. The calculated transformation strains were higher than the 

experimentally observed strains since the calculated strains could not capture the formation 

of martensite plates with (001) compound twins.   

 
KEYWORDS: NiTiHf, High Temperature Shape memory alloys, Mechanical 

Characterization, High Strength Shape Memory Alloy,  

Orientation Dependence of NiTiHf 
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1 Introduction 

1.1 Motivation and Statement of Problem  

For centuries, metals have played a significant role as structural materials. With 

advancement in science and a better understanding of the effects of microstructure and 

processing techniques on the material behavior, the field of material science has 

fundamentally improved through the past decades. Active materials are specialized 

subgroups of a new branch of materials called multifunctional materials, which in general 

exhibit a mechanical response when subjected to non-mechanical field (i.e. thermal, 

electrical, magnetic, optical, etc.). Some example of active materials includes shape 

memory alloys (coupling of thermal with mechanical field), piezoelectric and 

piezomagnetic (coupling of mechanical with electrical and magnetic fields). An ideal 

active material would have high actuation energy density. Figure 1.1 shows typical ranges 

of actuation stress, actuation strain, and actuation energy densities of some common active 

materials. The actuation energy density is denoted by dotted lines and is calculated by 

product of the actuation stress with the actuation strain, assuming here that the active 

material is operating under constant stress [1]. Shape memory alloys (SMAs) have the 

ability to recover their shape when the temperature is increased and they show shape 

recovery under high stress levels therefore resulting in high actuation energy densities as 

shown in Figure 1.1. Magnetic SMAs and shape memory polymers have higher actuation 

energy density and larger actuation strain in contrast with other type of active materials. In 

addition, under specific conditions, SMAs can absorb and dissipate mechanical energy by 

undergoing a reversible hysteretic shape change when subjected to apply mechanical cyclic 

loading. These unique characteristics of SMAs have made them a good candidate for 
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actuation, sensing, vibration damping and impact absorption applications. The application 

of SMAs have permeated into the mainstream of many industries, particularly in the 

biomedical, transportation, energy, and aerospace fields [1, 2]. One important application 

is in the field of actuators. Repeated cyclic motions are achieved by heating and cooling 

these alloys providing thermal actuators. SMA actuators exist in a variety of forms such as 

ribbons, wires and thin films. Among the various forms of SMA, solid state actuation 

systems for use in the aerospace, automotive and  energy industries is currently driving 

research in “high temperature shape memory alloys” (HTSMAs) [3]. 

 

Figure 1.1: Actuation energy density diagram of different active materials [1]. 

 

NiTi is the most explored and also the most widely utilized SMA due to its good 

dimensional stability, superior shape memory properties, corrosion resistance, 

biocompatibility, ductility, and high work output capability. However, it can only operate 

below 100 °C due to its low martensitic transformation temperature [4]. This limitation in 

conventional NiTi alloys has resulted in the development of HTSMAs that can operate at 

temperatures above 100 °C.  Recently, the aerospace, automotive, oil and many other 

industries have become interested in compact, lightweight, high force and high strain 
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HTSMAs since SMAs intrinsically possess higher energy density than most conventional 

actuators. Furthermore, they are robust, frictionless, do not require extraneous systems such 

as hydraulic or pneumatic lines, and are easier to inspect and maintain [4, 5]. HTSMAs can 

be used in several practical application such as; clearance control in the compressor and 

turbine sections of aircraft engines, variable geometry inlets and nozzles for subsonic and 

supersonic  aircraft, flow control devices, shape changing or articulating blades, safety 

switches, self-damping components in fuel line clamps, flutter control, and  damping of 

fan blades [3, 6]. 

Ternary elements are added to Ni-Ti alloys to increase their transformation 

temperatures (TTs) with the hope to maintain its superior shape memory and mechanical 

properties. It has been founded that the additions of Hf, Zr, Pd, Pt, and Au elements result 

in an increase in the TTs but also a decrease in the ductility. Among those elements Pd, Pt, 

and Au are very expensive and Zr is associated with high oxygen affinity [3, 4, 7].  Among 

the potential HTSMAs, due to its low cost, medium ductility and high work output NiTiHf 

seems to be the most promising HTSMA for a wide range of applications in the critical 

100-300 °C temperature range [5]. Most HTSMA research was focused on (Ti+Hf)-rich 

NiTiHf alloys due to the low TTs of Ni-rich materials. However, Ti-rich NiTiHf alloys 

exhibit poor mechanical and functional properties including a large temperature hysteresis 

(>50 °C), low strength, low transformation strain (when compared to NiTi), lack of cyclic 

stability due to the high stresses required for reorientation of martensite and detwinning, 

and low resistance to slip leading to plastic deformation of both the martensite and austenite 

phases at relatively low stresses [5, 8].  
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For practical applications, some of the most important issues with SMAs are the 

large plastic deformations observed at high temperatures and stress levels, unstable cyclic 

performance, and a strong orientation/texture-dependent behavior [3, 9]. In addition, 

several other factors (e.g. creep and oxidation) can uniquely affect the shape memory 

behavior in the high temperature regime [5, 10]. The most important problem in HTSMAs 

is the low strength for dislocation generation and motion which result in large irrecoverable 

strain and cyclic instability [3, 4, 8]. Among the most common methods employed to 

improve the shape memory and mechanical properties of SMAs are thermomechanical 

processing, precipitate hardening, solid solution hardening, and grain refinement of 

polycrystalline alloys [2, 5, 8, 11-16]. Unfortunately, the majority of prospective HTSMAs 

systems are ordered intermetallic with limited ductility at low and intermediate 

temperatures, making it difficult and expensive to apply thermomechanical processing 

techniques to increase the material’s strength.  Thus, to increase the strength of the material, 

precipitation and solid solution hardening are the most practical and cost-effective method 

amongst the others. It has been shown that by employing nanoscale particles, the strength 

of the matrix can be increased by raising the critical shear stress for slip, which in turn 

improves shape memory properties and fatigue life [17-20].The introduction of nanoscale 

particles to serve as barriers to dislocation motion would also improve the fatigue life and 

cyclic stability [17-19]. The strengthening ability of the precipitates depends on the size, 

volume fraction, interparticle spacing, and coherency of the second phase [21]. In addition 

to aging time and temperature, lattice mismatch between the matrix and precipitates 

introduce local stress files which alter the strengthening behavior, martensite nucleation 

and shape memory and material properties. 
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It is a reasonable assumption that through alloying and thermal treatments, 

precipitation properties can be controlled and precipitation could be utilized to design 

NiTiHf alloys with high TTs, high strength, stable response that can be employed for SMA 

applications above 100 °C. This statement is based on the former knowledge on Ni-rich 

NiTi alloys where formation of coherent nanosize precipitates (e.g, Ni4Ti3, Ni3Ti2) 

significantly improves the shape memory behavior due to their strong pinning effect on 

dislocation movement [17, 19]. 

1.2 Technical Approach and Objectives 

In order to understand the effects of chemical composition on precipitation 

characteristics, four alloys systems Ni50.3Ti29.7Hf20, Ni50.7Ti29.3Hf20, Ni51.2Ti28.8Hf20, and 

Ni52Ti287Hf20 will be studied. Their TTs and thermal hysteresis will be determined using 

Differential Scanning Calorimeter (DSC). For selected cases, Scanning Electron 

Microscopy (SEM) with Energy dispersive spectroscopy (EDS) capabilities will be used 

to determine the composition of matrix and second phases. Also, the structure of 

transforming phases will be determined using X-ray Diffraction (XRD). If alloys are in two 

phase condition, homogenization at high temperatures for a long time will be done at 

temperatures determined by high temperature DSC. Heat treatments will be applied to four 

alloys systems to form precipitates. In selected cases, cyclic DSC tests will be employed 

to determine the stability of the material response. Microhardness tests will be employed 

to determine the strength of the alloys as function of aging time and temperature. 

Transmission Electron Microscopy (TEM) investigation will be employed to determine the 

precipitation size, volume, distribution and structure as functions of composition and 

thermal treatments. 
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For practical applications, we must determine the shape memory and mechanical 

behavior of HTSMAs. Through the composition and aging study, optimum heat treatments 

for the alloys systems will be determined. According to this knowledge, compression and 

tension samples will be aged at predetermined temperatures for certain periods of time. 

Then two main experiments will be conducted; i) Thermal cycling under stress: to 

determine the, thermal hysteresis, transformation strain, dimensional stability and work 

output of material, which are the main factors for actuator applications, as a function of 

applied stress ii) Isothermal stress-strain experiment : to investigate the critical stress for 

phase transformation (or variant reorientation), transformation strain, stress hysteresis, 

Young’s modulus of transforming phases as functions of temperature. The results from 

thermal and stress cycling will be used to determine the phase diagram with Clausius- 

Clapeyron (CC) slope of both compression and tension samples.  

To develop, process and characterize shape memory and material properties of Ni-

rich NiTiHf, the following objectives are proposed: 

1. Investigate the effects of chemical composition on shape memory and 

material properties of NiTiHf high temperature shape memory alloys. 

2. Reveal the influences of heat treatment time and temperature on the 

martensite morphology, transformation temperatures and strain, thermal 

and mechanical hysteresis and work output of polycrystalline and single 

crystalline NiTiHf alloys. 

3. Study the tension-compression asymmetry in NiTiHf alloys. 

4. Investigate the orientation dependence of shape memory properties of 

NiTiHf alloys. 
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5. Study the microstructural dependence of the shape memory behavior and 

stored elastic energy in NiTiHf alloys 

6. Calculate the theoretical transformation strain of single crystals and 

compare with the experimental results. 

The most important result of this study will be to understand the precipitation 

characteristics of NiTiHf alloys to gain the fundamental understanding on composition-

microstructure-property relationship in HTSMAs. By utilizing that knowledge, 

inexpensive NiTiHf based HTSMAs with stable shape memory and material properties that 

can operate reliably at temperatures higher than 100 °C can be fabricated. By understanding 

and controlling the structure of these materials, we should be able to develop next 

generation shape memory alloys fully capable of enabling the development of adaptive 

aero-structures such as lightweight, durable high temperature engine materials, airframes 

for aircrafts such as engine chevrons, torque actuators. The developed alloys can be used 

where conventional actuators cannot be used because of weight or size limitations. Aircraft 

with adaptive SMA structures will have improved performance, reduced fuel consumption, 

and will have minimal environmental impact because of reduced emissions and noise.  

1.3 Brief Background on Shape Memory Alloys 

Shape memory alloys are a class of metal alloys that show thermomechanical 

memory and are capable of converting thermal energy into mechanical work. In other word, 

SMAs are an extraordinary group of material that undergoes a solid to solid diffusionless 

phase transformation and as consequences can produce very high recoverable shape 

changes (up to 20% uniaxial strain), stresses (~100-500 MPa) and work output (~10 

MJ/m3) [1, 9].  The phase transformation involve the coordinate motion of the atoms over 



 
 

8 

very short distances  in the crystal as the material structure transforms from one lattice type 

to another. The SMAs have two stable phases, the high temperature phase, called 

“austenite”, and the low temperature phase, called “martensite”. Austenite phase is a high 

symmetry structure and low temperature structure has a lower symmetry. In addition, the 

martensite phase can be in one of two forms: twinned (self-accommodated) and detwinned 

(Deform martensite). A phase transformation which occurs between these two phases by 

thermal cycling and/or stress-strain cycling upon are the basis for the unique properties of 

the SMAs which will discuss in detail in next section. 

Adolf Martens revealed the martensite in steels in the 1980s and his discovery was 

a major step toward the eventual discovery of SMAs. However, the martensitic 

transformation observed in the Fe-C system was an irreversible process. The martensitic 

transformation in SMAs is found to be reversible in the sense that as material cool down 

from austenite to martensite phase the “forward” transformation takes place and a 

subsequent increase in temperature results in “reverse” transformation (martensite to 

austenite).  In 1932, Olander observed that the deformation after applied stress to gold-

cadmium (Au-Cd) can fully recover by heating. For the first time, the concept of 

thermoelastic martensitic transformation, which explained the reversible transformation of 

martensite upon heating, was experimentally observed in CuZn and CuAl by Kurdjumove 

and Kandros in 1949 [22].  In 1951, Chang and Read [23] reported the shape memory 

properties of Au-Cd by studying the boundary motion between austenite and martensite 

phases during phase transformation using electrical resistivity measurement and X-ray 

analysis. 
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The discovery of shape memory effect in nearly equiatomic NiTi alloy by the group 

of William Buehler [24], while trying to develop lightweight high temperature aerospace 

alloys at Noval Ordinance Laboratory (NOL) in 1963, brought a breakthrough for the 

engineering application. They demonstrated that the system possessing shape memory 

effect, which is the ability of material to return to a undeform shape upon finishing the 

phase transformation, could perform work. During their research at NOL, Buehler showed 

that the NiTi alloy revealed good mechanical properties and confirmed the occurrence of 

the shape memory effect in this type of material. Significant research carried out by Wang 

[25], displays that the addition of a third alloying element such as Fe or Co to the existing 

NiTi system had a strong influence on the TTs. The new alloys was used for pipe couplings 

in F14 fighter aircraft as the first commercial SMA application, known as Cryofit [26, 27]. 

Continued research led to development of NiTiNb [26] alloy with the comparably higher 

TTs and found widespread applications in battle damage repair and in repairs for nuclear 

reactors [28]. However, Melton and Mercier [29], while studying the fatigue properties of 

NiTi in 1978, showed that the addition of Cu to NiTi doesn’t change the TTs considerably, 

but narrowed the stress hysteresis. Later in 1999, Miyazaki [30] showed that the addition 

of Cu to NiTi improved the fatigue properties of this material system. The improved fatigue 

life and the low cost associated with this material system made it promising candidate for 

a wide variety of engineering applications. 

Shape memory alloys can display the distinctive properties of shape memory effect 

and superelasticity due to reversible martensitic transformations and therefore have been 

employed in many industrial applications [2, 3, 7, 9, 31]. Shape memory and superelastic 

behaviors are functions of a large number of factors that include microstructural features 
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(e.g. martensite morphology, grain size, dislocation density and precipitate characteristics) 

as well as external influences such as applied stress and temperature [5] and will discussed 

in the following sections. 

1.3.1 Thermodynamics of Martensitic Transformations in SMAs 

Unique behavior of SMAs is due to the reversible shape changes corresponded to 

martensitic phase transformations. A martensitic transformation is an example of a 

displacive (diffusionless shear transformation) transition, in which there is cooperative 

motion of a relatively large number of atoms, each being displaced by only a small distance 

and they move in an organized manner relative to their neighbors.  This homogeneous 

shearing of the parent phase creates a new crystal structure, without any compositional 

change (no diffusion). A simple thermodynamic analysis of the phase transformations is 

given here. The Gibbs free energy general form is given by;  

∆𝐺 =  ∆𝐻 − 𝑇∆𝑆         (1.1)  

where ∆𝐻 is the enthalpy change, ∆𝑆 is the entropy change and T is temperature. For 

simplicity, the Gibbs free energies of martensite and austenite can be assumed to be 

decreasing linearly with temperature. At the intersection of their Gibbs free energy curves, 

the transforming phases have the same free energy and are in equilibrium at the equilibrium 

temperature (T0). Below T0, martensite is favored thermodynamically since it has lower 

free energy while austenite is stable above T0. The schematic of energy curves for austenite 

to martensite phase transformation are illustrated in Figure 1.2. 𝐺𝐶ℎ 
𝐴 and 𝐺𝐶ℎ 

𝑀 are the 

chemical energies of austenite and martensite, respectively.  
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Figure 1.2: Schematic Gibbs free energy versus temperature curves for martensite and 

austenite. 

 

∆𝐺𝐶ℎ
𝐴→𝑀 is the chemical driving force for phase transformation from austenite to 

martensite and ∆𝐺𝐶ℎ
𝑀→𝐴is the driving force for reverse transformation. Martensitic 

transformations are considered thermoelastic if the martensite reverts to the austenite in its 

original orientation upon heating. Thermoelastic equilibrium at a transforming interface 

requires a local balance between chemical and non-chemical contributions of the total 

Gibbs free energy of the system. The chemical constituent is a result of the chemical energy 

different between the austenitic and martensitic phases due to the nature of bonding in the 

crystalline phases. Without non-chemical energy, the transformation would take place 

when the 𝐺𝐶ℎ 
𝑀 and 𝐺𝐶ℎ 

𝐴  are equal to each other (∆Gch=0) at T0. However, the forward and 

reverse transformation starts temperatures, Ms and As, respectively, are shifted respect to 

T0 as illustrated in Figure 1.2, which provides the finite driving force necessary to balance 

non-chemical energy. The non-chemical components are reversible (elastic) and 

irreversible energies and the general thermodynamical equilibrium equation for the 

forward transformation can be written of the forms [32];  

∆𝐺𝑡𝑜𝑡𝑎𝑙
𝐴→𝑀 = ∆𝐺𝐶ℎ

𝐴→𝑀 + ∆𝐺𝑛𝑐
𝐴→𝑀 = ∆𝐺𝐶ℎ

𝐴→𝑀 + ∆𝐺𝑒𝑙
𝐴→𝑀 + ∆𝐺𝑖𝑟𝑟

𝐴→𝑀   (1.2)  



 
 

12 

where ∆𝐺𝑡𝑜𝑡𝑎𝑙
𝐴→𝑀 is the total Gibbs free energy difference to initiate the martensitic 

transformation, ∆𝐺𝐶ℎ
𝐴→𝑀 is

 
the change in chemical energy, ∆𝐺𝑛𝑐

𝐴→𝑀 is the change in non-

chemical energy. The non-chemical energy can be expressed as a combination of the 

change in elastic energy, ∆𝐺𝑒𝑙
𝐴→𝑀, and the irreversible energy, ∆𝐺𝑖𝑟𝑟

𝐴→𝑀, during the phase 

transformation from austenite to martensite [33].  ∆𝐺𝑡𝑜𝑡𝑎𝑙
𝐴→𝑀 term should be smaller than zero 

in order to initiate the martensitic transformation. At T0, since there is no driving force to 

trigger the martensitic transformation, an additional energy should be supplied (by cooling 

or heating) to initiate the transformation.  

Additional cooling (T0–Ms) below T0 is necessary for austenite to martensite 

transformation and additional heating (As-T0) beyond T0 is required for martensite to 

austenite transformation assuming negligible elastic energy storage. Shape memory effect 

and superelasticity originate from the thermoelastic martensitic transformation [34]. 

∆𝐺𝑒𝑙
𝐴→𝑀 is the stored elastic energy during the forward transformation and it is released 

completely upon back transformation from martensite to austenite. Hence, the elastic 

energy storage is a reversible process [32]. The amount of the stored elastic energy should 

be equal to the released energy upon reverse transformation if there is no plastic relaxation 

due to dislocation generation/plastic deformation after a full transformation cycle [35, 36]. 

The irreversible energy ∆𝐺𝑖𝑟𝑟
𝐴→𝑀 can be assumed as a combination of mainly 

frictional energy that is required to move phase front (between transforming phases), 

friction between martensite variants and internal twins in variants in addition to plastic 

relaxation energy due to dislocation generation. Both of the abovementioned mechanisms 

result in dissipation of energy and consequently, hysteresis in SMAs [37] 
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1.3.2 Thermal Induced Martensitic Transformation 

Phase transformation in SMAS can be controlled by temperature or stress. 

Temperature induced martensitic transformation can take place under applied stress or in 

a stress free condition. Figure 1.3 illustrates the temperature induced phase transformation 

in the absence and presence of applied mechanical loading. In Figure 1.3a, phase 

transformations are represented as peaks and the areas under those peaks indicate the 

enthalpies of transformations. Upon cooling the material from the high temperature 

austenite phase transforms into self-accommodated (twin) martensite. As a result of this 

phase transformation no observable macroscopic shape change occurs. Upon heating, a 

reverse phase transformation takes place and as a result, the material in the martensitic 

phase transforms to austenite. It is known that the forward transformation (austenite to 

martensite) is exothermic and the reverse transformation is endothermic reactions. There 

are specific temperatures at which the transformation from austenite to martensite and its 

reverse transformation begins and end. These temperature are commonly referred to as the 

martensite start temperature (Ms) which is the temperature that the material starts 

transforming from austenite to martensite; martensite finish temperature (Mf), at which the 

forward transformation (martensite to austenite) is complete and the material is fully in the 

martensite phase; austenite start temperature (As) at which the reverse transformation 

(austenite to martensite) initiates; and austenite finish temperature (Af) at which the reverse 

phase transformation is completed and the material is fully in austenite phase. It is 

important to know TTs so that the alloy can be effectively used for a specific application. 

The enthalpy change (∆H) of the phase transition can be found by integrating the area 

between to selected temperatures as shown in the Figure 1.3a. It is also possible that 
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thermal induce a martensitic phase transformation which lead directly to (partially or fully) 

detwinned (or oriented) martensite and it is shown in Figure 1.3b. If stress isothermally 

applied in austenitic phase and then the material is cooled, the phase transformation will 

result in detwinned martensite and a net shape change will be observed. Reheating the 

material to a temperature above Af will result in complete shape recovery if the applied 

stress in not sufficient enough to introduce defects, i.e. plastic deformation, in the material. 

The TTs strongly depend on applied stress. Usually, the TTs have a linear relationship with 

applied load and TTs elevate with applied stress. Figure 1.3b illustrates the critical point 

for the transformation determined by using graphical method. Total strain, εtotal, was 

determined by measuring the distance between the cooling and heating portions at Ms and 

TTs were determined by tangent method. Thermal hysteresis, ∆T, was calculated as a 

temperature difference at the middle point of total cooling and heating curves. 

Irrecoverable strain, εir, is the amount deformation that is not recover at the end of thermal 

cycle and it is the key parameter to determine the dimensional stability of the material for 

actuation application. 

 

Figure 1.3: Thermal induce phase transformation in the absence (a) and presence (b) of 

applied stress. 
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1.3.3 Shape Memory Properties 

There are unique properties exhibited by SMAs depending on TTs of the alloy and 

the operating temperature. If a mechanical load is applied to the SMA at temperature below 

Mf, it is possible to detwin the twinned martensite by reorienting a certain number of 

variants as shown in Figure 1.4. This deformation is therefore different from deformation 

induced by dislocation motion or deformation twins. The detwinning process results in a 

macroscopic shape change, where the materials remains in the deformed configuration 

upon releasing of the load. A subsequent heating of the SMA to a temperature above Af 

will result in reverse phase transformation and will lead to complete shape recovery. This 

process is referred to as the shape memory effect (SME) or one way shape memory effect 

as illustrated in Figure 1.4a. It is worth to note that cooling back to a temperature below Mf 

leads to the formation of twinned martensite again with no associated shape change 

observed. The reason behind the phenomenon of SME is the formation of self-

accommodating martensite structure in order to minimize energy upon cooling under no 

load. When a force applied in martensite, some favorable martensite variants grow at the 

expense of others and remain in detwin structure while the load is removed. Furthermore, 

the detwinned martensite variants transform to austenite phase during heating since it has 

a higher order of symmetry than martensite, while the self-accommodating martensite 

structure formed upon cooling in stress free condition, hence, there is no observed shape 

change. It is worth to mention that the remained strain might not fully recover by heating 

up above Af if the stress is sufficient to introduce plastic deformation and irrecoverable 

strain (ɛir) would present after heating cycle. The total recoverable strain is the combination 

of elastic (ɛel) and shape memory effect (ɛsme) strains.  
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Figure 1.4: Schematic of shape memory effect and superelasticity behavior of SMAs. 

 

In contrast to one way shape memory effect where the material only memorize the 

structure of parent phase, it is possible that the alloy remember the shape of both low and 

high temperatures phase. This phenomena is called as two way shape memory effect 

(TWSME) where material has the ability to generate strain by only thermal cycling in the 

absence of applied stress. This could be attributed to the development of local stress fields 

due to presence of defects, such as dislocations, that disrupt self-accommodating structure 

and favors formation of selective martensite variants upon cooling. It is important to note 

that the dislocations do not disappear during reverse transformation and they are present in 

the austenite phase. Thus, the stress fields around the dislocations induce particular 

martensite variants during cooling and hence a shape change observed during thermal 

cycling under stress free condition.  
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In addition to temperature induced martensitic transformation, SMAs also exhibit 

stress induced phase transformation. During loading at temperatures slightly above Af, 

stress induced transformation leads to formation of detwinned martensite at sufficiently 

high stress levels and a complete shape recovery is observed upon unloading due to reverse 

transformation from martensite to austenite phase. This phenomenon is called 

superelasticity which is schematically shown in Figure 1.4. Superelasticity is represented 

in the stress-strain curve as shown in Figure 1.4b. After elastic deformation of austenite, 

the stress induced martensite transformation initiated at a critical stress level of σMs and the 

martensitic transformation end at σMf, followed by elastic deformation of martensite phase. 

Upon unloading, the martensite transforms back to austenite and deformation is ideally 

recovered. The total amount of superelasticity strain that is recovered upon unloading is 

symbolized by εse in Figure 1.4b and the stress hysteresis mentioned in the plot depicts the 

difference in critical stresses for forward and reverse transformation. Young Modulus of 

elasticity for austenite and martensite phase are represent by EA and EM, respectively. 

 It can be realized that the SME is a consequence of thermal cycling between Af and 

Mf temperatures and superelasticity occurs due to stress induced martensitic transformation 

at temperatures above Af. The Clausius-Clapeyron relationship (CC) is a best equation to 

describe the stress-temperature dependence of martensitic transformation in SMAs. The 

relationship for uniaxial stress can be written as follows: 

𝑑𝜎

𝑑𝑇
= −

∆𝑆

𝜀𝑡𝑟
= −

∆𝐻

𝜀𝑡𝑟𝑇0
          (1.3) 

where σ is the uniaxial stress, ɛtr is the transformation strain, ∆S is the entropy of 

transformation per unit volume, ∆H is the enthalpy of transformation per unit volume, and 
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T0 is the equilibrium temperature of transformation which is determined from the enthalpy 

and entropy changes of the transformation. Since ∆S, ∆H and T0 are constant for a given 

system, hence the relation between stress and strain is linear. The equilibrium temperature 

of thermoelastic martensitic transformation can be calculated by the following equation 

[38, 39]: 

𝑇0 =
𝑀𝑠+𝐴𝑓

2
             (1.4) 

The enthalpy changes of the forward and reverse martensitic transformation can be 

obtained by measuring the area of cooling and heating curves of thermal induce 

transformation in the absence of stress results. The entropy of martensitic transformation 

can be express as follows: 

∆𝑆 =
∆𝐻𝑎𝑣𝑔

𝑇0
            (1.5) 

Critical stresses for martensite reorientation, martensitic transformation and 

dislocation slip are strongly testing temperature dependent and are schematized in Figure 

1.5. It is noted from Figure 1.5 that SME occurs at temperatures below As and critical stress 

for the martensite reorientation decreases with temperature due to increased mobility of 

internal twins and martensite plates boundaries. The green line in the Figure 1.5 illustrates 

the critical stress required to induce martensitic transformation which follows the CC 

relation (Eq. 1.3) and increases with temperature.  If the material is in austenite and 

deformed between Ms and Af, stress induced martensitic transformation during loading and 

shape recovery cannot be obtained upon unloading, however, full recovery occurs when 

the temperature is increased above Af temperature if no plastic deformation formed in the 

material. Superelasticity is observed when the sample deformed between Af and martensite 
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desist temperature (Md) where the critical for slip is higher than the stress needed to induce 

martensitic transformation. Stress induced martensite cannot be observed above Md and 

alloys deform like conventional materials [40].  The intersection of critical stresses of 

martensitic transformation and dislocation slip can be considered as Md and it is shown in 

Figure 1.5. In general, the critical stress for slip (yield stress of austenite) decreases with 

increasing temperature. If the material is not strong enough or temperature is close to Md, 

partial recovery can be observed since martensitic transformation and plastic deformation 

occur simultaneously. Also, plastic deformation of austenite takes place above Md where 

stress induced martensitic transformation is no longer possible and shape recovery cannot 

be observed during unloading. Thus, superelasticity can only be observed between Af and 

Md where the difference between these temperatures is called superelastic window and 

shown as a shaded portion in Figure 1.5. 

 

Figure 1.5: Schematic for the critical stresses of various deformation modes as a function 

of temperature in SMAs. 
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1.4 Literature Review on Binary NiTi and NiTi-based HTSMAs 

1.4.1 Binary NiTi  

Among the various shape memory alloy systems, NiTi alloys have good 

dimensional stability, shape memory properties, ductility and workability. Currently, NiTi 

alloys are the most commercially viable SMAs and practically being used in various 

medical and engineering applications where the operating temperature is below 100 °C [4]. 

Binary NiTi are ordered intermetallic compound that undergoes reversible martensitic 

transformation. From the phase diagram, this compound exist as the stable phase down to 

room temperature and the order-disorder of transition of equiatomic NiTi marked at 1090 

°C [34]. The structure of high temperature austenite phase for NiTi is cubic (B2) and the 

low temperature martensite phase can be either monoclinic (B19’) or orthorhombic (B19). 

The B19 crystal structure is created by (110)[11̅0]𝐵2 shear of the B2 structure while B19’ 

crystal structure is created by the same shear as B19 with an additional (001)[11̅0]𝐵2 shear 

[41, 42]. It should be noted that crystal structures and lattice parameters are composition, 

alloying and thermomechanical treatment dependent [17, 34, 43, 44]. In fully annealed near 

stoichiometric NiTi, the high temperature B2 austenite phase transforms directly to 

monoclinic B19’ upon cooling through martensitic transformation [34]. In some cases in 

NiTi alloys, B2 austenite could transform to R-phase first followed by  R to B19’ phase 

transformation upon cooling while the single step B19’ to B2 phase transformation occurs 

during revers transformation [45]. R-phase is a transition structure that has commonly 

rhombohedral structure, low transformation strain and temperature hysteresis [34]. R-

Phase can  be formed in NiTi alloys subsequent to cold working, aging of Ni-rich alloys 

and alloying with a third element such as iron [46]. Several factors have been proposed to 
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explain multistage transformation in NiTi alloys such as stress fields around the 

precipitates, inhomogeneous distribution of precipitates and the inhomogeneity of the 

microstructure [47-50]. 

It has been demonstrated that the TTs of binary NiTi can be controlled through the 

Ni concentration of the alloy [51, 52]. Figure 1.6 illustrates the dependence of TTs on 

composition of NiTi. It is clear from Figure 1.6a that the Ms is less sensitive to 

compositional changes in the Ti-rich side of stoichiometry due to formation of Ti-rich 

precipitates (Ti2Ni), leaving a near stoichiometric (Ti-50 at. % Ni) matrix composition [34]. 

As Ni content increases above 50 at.% in Ni-rich side of the stoichiometry, TTs decrease 

drastically to lower temperatures [17, 51]. This can be due to the fact that the elastic 

constant that dictate the shearing involve in the martensitic transformation are change to 

resists the austenite to martensite phase transformation, hence, undercooling is required. 

However, it can be seen from Figure 1.6b that aging can lead to a dramatic increase in TTs 

of Ni-rich NiTi alloys, whereas there is very little difference between the quenched and 

aged conditions of Ti-rich alloys. Thus, formation of metastable Ni4Ti3 precipitates after 

appropriate heat treatments in Ni-rich NiTi alloys greatly increase the TTs (Figure 1.6b) 

and improve the shape memory properties [17, 53, 54]. Consequently, Ni-rich NiTi shape 

memory alloys are coming into prominence due to their distinct superelasticity and shape 

memory properties as compared to near equiatomic NiTi SMAs. In addition, Ni-rich NiTi 

SMAs demonstrate unique properties such as good corrosion resistance, smooth surface 

finish, high toughness and lower density than steel makes them an excellent candidate for 

different applications in biomedical and energy industries [55]. 
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Figure 1.6: The dependence of TTs on (a) composition [56] and (b) aging [57]. 

As described above, TTs of Ni-rich NiTi alloys are very sensitive to the Ni content 

of the matrix where they decrease about 93 °C/ at % [58] and they increase with aging. In 

Ni-rich NiTi SMAs, aging introduces metastable and stable second phases which alters the 

composition of the matrix. Nishida et al. reported [59] that the complete sequence of 

precipitation from metastable to stable phase is to be 𝑇𝑖3𝑁𝑖4 → 𝑇𝑖2𝑁𝑖3 → 𝑇𝑖𝑁𝑖3 after 

aging of a Ni-rich NiTi alloy. At low aging temperatures or short aging time, the 

precipitates are metastable Ni4Ti3 while the stable Ni3Ti phase introduced into matrix at 

high temperature or long duration heat treatments. The transmission electron microscopy 

(TEM) micrograph and diffraction pattern from Ni4Ti3 precipitates after aging at 500 °C 

are shown in Figure 1.7. The morphology of the precipitates are lenticular and diffraction 

pattern shows the characteristic 
1

7
〈321〉 diffraction spots denoted by the arrows. It is worth 

to mention that the size of precipitates, interparticle distances and volume fraction of 

precipitates are function of aging time and temperatures. Although, the change in 

precipitates characteristics could lead to series changes in shape memory and mechanical 

properties.  
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Figure 1.7: TEM micrograph and diffraction pattern from Ni4Ti3 precipitates [17]. 

There are several competing mechanism that affect the TTs and strength of NiTi 

which are related to size of precipitates and space between them. The general mechanism 

is the chemical effect of precipitation where the Ni-rich precipitates that are formed remove 

Ni content from the matrix, therefore, TTs are shifted to higher temperatures [48]. The Ni 

concentration in the NiTi matrix between two growing precipitates with large interparticle 

distance could be different which results in broadening the transformation peaks due to 

inhomogeneity of the composition between the large particles [48]. Another mechanism is 

related to the local stress fields around the precipitates. The TTs will increase when the 

stress fields are oriented correctly to nucleate the martensite and enough space is provided 

between particles for nucleation of martensite. However, the stress fields around the fine 

precipitates with small interparticle distance generates obstacles and resists the martensitic 

transformation, therefore, undercooling is required to creates high enough driving force for 

nucleation and propagation of martensite [60, 61].   

In addition to TTs, hardness, an indicative parameter of material strength, has a 

complex dependence on the size and distance between the precipitates [5, 13]. The critical 

stress for plastic deformation increases by forming densely distributed fine precipitates 
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which acts as an obstacle against dislocation motion. In other word, the stress field created 

by the precipitates interact with stress fields of dislocation, resisting plastic deformation 

and increase the strength of material. Fine precipitates are sheared by dislocation cutting 

through them which new interface between precipitates and matrix is produced and 

increased the interfacial energy, hence, the strength of material improved. In the case of 

bigger precipitates with longer interparticle distances, dislocations could bypass the 

precipitates by looping around them instead of cutting through them which diminish the 

strength of the alloy [62]. It has been also demonstrated that the strength of NiTi SMAs 

improves with increasing Ni content where the austenitic yield stress at room temperature 

is almost twice higher in in NiTi with 50.4 at. % Ni in compared to the one containing only 

49.4 at. % Ni [57]. 

Repeatable superelastic behavior during cyclic load/unloading in NiTi was first 

reported in early 1980s where complete recoverable superelastic strain up to 5-8% was 

achieved [63, 64]. Mechanical behavior of NiTi SMAs is highly test temperature, 

composition and heat treatment dependent. The effects of deformation temperature on 

stress-strain curves of Ni50.6Ti49.4 (at. %) is shown in Figure 1.8. It is clear that the 

deformation at lower temperatures is accomplished by reorientation of self-accommodated 

twins and the growth of some martensite variant at the expense of others which as described 

before this process known as detwinning. This deformation is different from deformation 

induced by dislocation or twins and corresponds to Figure 1.8 (a)-(i). At temperatures 

above Af, the alloy exhibit complete recoverable superelastic strain up to 4% as 

demonstrated in Figure 1.8 (j)-(l). As expected from the CC relation (Equation 1.3), the 

critical stress required to induce martensitic transformation in this temperature range 
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showed in curves (m)-(p) became so large that the plastic deformation by the movement of 

dislocations occurs simultaneously with the formation of stress induced martensite. 

 

Figure 1.8: Stress-strain curves of Ni50.6Ti49.4 as a function of temperature [64]. 

 Figure 1.9 depicts the tensile behavior of NiTi as function of composition and 

aging. The reverse transformation temperatures are shown in the parentheses and they 

decrease with Ni content while increase with aging. The samples with different Ni 

concentration were heat treated at 400 °C and tensile tested at 37 °C. It is obvious from 

Figure 1.9a that the critical stress to induce martensitic transformation increases with Ni 

content due to decrease of TTs with Ni concentration. As mention previously, the 

deformation behavior of SMAs depend on TTs and test temperature where SME was 

observed for the NiTi alloy containing 50 at. % Ni while almost perfect superelasticity was 

obtained as Ni content increased to 50.9 at. %. In other hand, TTs increase with aging 
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temperature and perfect superelasticity was observed for Ni50.9Ti49.1 alloy as shown in 

Figure 1.9b. It is worth to mention that the decrease in critical stress to induce martensitic 

transformation with aging is correlated to TTs and test temperature (37 °C) where more 

stress needed to initiate martensitic transformation as the difference between Af and test 

temperature get larger since the austenite phase become more stable at higher temperatures.  

 

Figure 1.9: Stress vs. strain behavior of NiTi as function of (a) Ni content and (b) aging 

[65]. 

 

Mechanical behavior of NiTi SMAs depend not only on the composition and aging, 

but also on direction of applied stress. It means that the shape memory behavior can be 

different in tension, compression and torsion. Tension testing methods and parameters of 

SMAs are identified in ASTM-E8-”Standart test methods for tension testing of metallic 

materials”. Figure 1.10 shows the tension, shear and compression behavior of NiTi. It is 

clear that the flat stress-plateau, (Lüders-like deformation) is observed in tension and 

torsion but not in compression. Also, the maximum achievable stress after 6% deformation 

is ~800 MPa under compression while is lower than 200 MPa for tension and torsion. The 

asymmetry in the mechanical behavior of SMAs is related to the difference in deformation 

mechanisms during phase transformation and the martensite morphology. As an example, 
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it is known that variant-variant interaction is more pronounced and detwinning is more 

difficult under compression, resulting in higher stress-strain slope during transformation 

and lower transformation strain. Furthermore, observed twinning types can also be 

different. It is important to note that the most common twinning type observe in NiTi alloys 

is <011> type II [66]. It has been observed that the twinning type can be mixture of type I 

and type II while a combination of type I and <001> compound twins were also observed 

after proper cold rolling [67]. 

 

Figure 1.10: Deformation behavior of NiTi shape memory alloys under tensile, 

compressive and shear stress [68]. 

 

It is known that shape memory (transformation strain, hysteresis, CC slope) and 

material properties (critical stress for slip, ductility) of NiTi SMAs are highly orientation 

and heat treatment dependent [19, 69, 70]. Figure 1.11a demonstrates the stress-strain 

responses of aged Ni50.8Ti49.2 alloys as a function of crystallographic orientation in 

compression. The highest recoverable compressive strain, about 9%, was observed along 

the [148] orientation while recoverable compressive strains were 8%, 4.8% and 3% along 
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the [001], [112], and [111] orientations, respectively. It is clear that [111] and [112]-

oriented single crystals exhibit high stress-strain slope during the martensitic 

transformation due to the formation of multiple correspondent variant pairs (CVPs) while 

[001] and [148]-oriented single crystals exhibit plateau-like behavior. The orientations 

with high stress-strain slope in plateau region quickly reached the critical stress for plastic 

deformation, therefore, their transformation strain and superelastic temperature window is 

limited [19, 70]. In addition, the CC slopes of  aged Ni51.5Ti48.5 are 9.3 and 7.5 MPa/  ºC 

for [111] and [110] orientations [70] , respectively, while for equiatomic NiTi 

polycrystalline alloys are approximately 12 MPa/ °C in compression [71] and 5–8 MPa/ 

°C in tension [72]. 

 

Figure 1.11: (a) Superelastic behavior of NiTi SMA as a function of crystal orientation as 

a function of the crystallographic orientation [5] and (b, c) crystal orientation dependence 

of maximum theoretical transformation strain under tension and compression [73]. 
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In single crystal, it is possible to calculate the resolved shear stress factor (RSSF) 

for each variants based on the orientation relationship between the direction of the applied 

stress and a particular habit plane, which described by its unique habit plane normal and 

transformation shear direction. The more likely variants that will be activated/favored are 

the ones with the greatest RSSF value. It is also known that the stress induce martensitic 

transformation (σSIM) at lower stress level and transformation strain is higher for orientation 

with larger RSSF. For instance in NiTi, the [001] has lower σSIM and larger recoverable 

strain than [111] direction under compression (Figure 1.11) where the RSSF values are 

about 0.4 and 0.27 for [001] and [111] orientations under compression, respectively [70]. 

Similarly, it is possible to calculate the maximum transformation strain along the 

certain crystallographic orientation. General approaches for such calculations are the 

Energy Minimization Theory [74]  and the Lattice Deformation Theory [75]. The energy 

minimization theory considers the existence of the invariant plane (habit plane) between 

austenite and martensite phases while the lattice deformation theory assumes that the 

austenite transforms into a single crystal of martensite without twins and does not consider 

the existence of habit planes. Transformation strain has a theoretical limit, which is 

dependent on the lattice parameters of transforming phases, type of twinning systems and 

crystal orientation or texture [76]. These calculation can be performed for all orientation 

under different applied stress-states and plotted as transformation strain contours as long 

as the lattice parameter and crystal structure of transforming phases are known. Theoretical 

transformation strain contours under tension and compression are shown in Figure 1.11b 

and c, respectively. Also, the maximum transformation strain calculated by using energy 

minimization theory, RSSF and experimental recoverable strain for the <011>B19′ type II 
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twin, which is the dominant twinning mode observed in martensite plates [77], are 

summarized in Table 1.1. It is clear that single crystal orientations along which external 

stress is applied have a significant on maximum RSSF and transformation strains. It has 

been reported in Ref. [69, 78, 79] that the [111]-oriented NiTi alloys are characterized as 

soft under tension since it demonstrated large transformation strain and low critical 

transformation stress levels. Conversely, the [001]-oriented NiTi revealed small 

transformation strain and stress induced transformation at a significantly higher stress 

under tension which is categorized as hard orientation. However, [111] orientation is hard 

and the [001] orientation is soft under compression. Thus, tension and compression loading 

favor different martensite variants and degree of detwinning, and consequently, lead to 

remarkably different transformation strains.    

Table 1.1: Maximum theoretical strain, RSSF and experimental strain of NiTi under 

tension and compression. 

  NiTi <011> type II  

  Compression  Tension 

  RSSF CVP strain  ɛexperimental  

 

RSSF CVP strain  ɛexperimental  

[001] 0.40 5.20% > 5% 0.21 2.70% > 2% 

[011] 0.37 4.80% > 4% 0.41 5.30%   ≥ 6.5% 

[111] 0.27 3.50% ≥ 3% 0.39 5.10%    > 7.5% 

polycrystalline      > 3%       ≥ 5.5% 

 

It is reasonable to expect that the shape memory and superelastic behavior of SMAs 

depend on the orientation distribution of the grains in the material which know as texture. 

Texture can be introduced by thermomechanical processing, such as cold rolling or equal 

channel extrusion, and the specimen can be cut at certain angles to achieve strong texture 



 
 

31 

close to the orientation exhibiting the best sets of shape memory and material properties. 

Polycrystalline SMAs with strong texture in a particular orientation would be expected to 

have similar behavior as a single crystal of that orientation. Thus, investigation of the shape 

memory properties of SMA single crystals is important since the shape memory properties 

could be optimize by texturing in a polycrystalline materials. It has been reported that the 

major texture in cold rolled NiTi is along the {110} orientation [78, 80]. 

NiTi has many properties desirable for low temperature actuator and superelastic 

components such as small hysteresis, high work output, stable microstructure and excellent 

corrosion resistance [57]. Although, the TTs can be adjusted by changing the stoichiometry 

of NiTi binary alloys or formation of precipitates but the temperature does not increase 

enough in order to be considered as a candidate for high temperature (above 100 °C) 

applications. The development of a shape memory material with properties similar to those 

of near equiatomic NiTi, but with higher strength and higher transformation temperatures, 

especially above 100 C, is direly needed for a broad range of applications in the aerospace, 

automotive and oil & gas industries. The main interest is to use HTSMAs as solid state 

actuator since have many advantage, such as being more energy efficient, light weight and 

frictionless, as compared to hydraulic, pneumatic and any other mechanical driven systems 

[3]. Ternary element addition to NiTi alloys is the most promising method to obtain 

commercially available HTSMAs in the near future [5]. Ternary element addition should 

not only increase the TTs, but also help maintain the good mechanical properties of NiTi 

alloys. It has been found that the addition of Hf, Zr, Pd, Pt and Au elements to NiTi 

increases its TTs [3, 4]. It is worth to mention that Pd and Pt both substitute for Ni in the 

NiTi systems since they belong to the same family as Ni in the periodic table and for the 
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same reason, Hf and Zr substitute for Ti in the NiTi alloys. Figure 1.12 shows the influence 

of the third element on TTs where the Ms or martensite peak temperature (Mp) linearly 

increase as the alloying element is above 10 at. %. Detailed investigation on shape memory 

properties other than increase of TTs with addition of Au has not been completed [81-84], 

therefore, a larger focus will be placed on the addition of Pd, Pt, Zr and Hf to NiTi. 

 

Figure 1.12: Dependence of transformation temperature on the content of third element 

[3]. 

 

1.4.2 NiTi (Pt, Pd, Zr) Systems  

As mentioned before, Pd and Pt preferentially substitute for Ni in NiTi and change 

the transformation behavior. The benefits of NiTiPt alloys include increasing TTs up to 

1000 °C (Figure 1.12), high work output and the ability to recover 3-4% strain [57, 85]. 

These properties, along with high yield strength [3] outweigh the high cost of Pt. In NiTiPt 

system, the alloy transform into the B19’ martensite upon cooling from high temperature 

phase while two stage transformation of 𝐵19′ → 𝑅 → 𝐵2 occurs during reverse 
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transformation when the concentration of Pt is lower than 10 at. %. However, for higher 

concentration of Pt (greater than 16 at. %), single step transformation of B2↔B19 takes 

place during cooling and heating [5, 85]. Furthermore, NiTiPt systems with Pt 

concentration greater than 30 at. % have drawbacks such as large thermal hysteresis and 

poor tensile ductility [86], thus, Pt is constrained to be less than 30 at. % for optimal balance 

of functional and structural properties. 

NiTiPd has been studied as a promising SMAs for high temperature application 

since it has lower cost than Pt and Au, and also the Ms can be increased to above 500 °C 

for 50 at. % (Figure 1.12) [81]. At lower concentrations of the Pd (less than 10 at. %), two 

stage transformation of B2→R→B19’ observe upon cooling while single step 

transformation of B19’→B2 occurs during heating. However, martensite structure change 

to B19 as Pd concentration becomes greater than 10 at. %.  Similar to NiTi, the TTs drop 

rapidly with increasing the (Ni+Pd) concentration to more than 50 at. % while the shape 

memory properties improve due to presence of precipitates [87].  

Goldberg et al. [15, 16] reported that the shape memory properties of Ti50Ni20Pd30 

HTSMAs improved remarkably after thermomechanical processing, which consisted of 

cold rolling up to 25% reduction in thickness and subsequent annealing at 400 °C for 1h. 

This treatment increased the yield strength of the martensite phase from ~200 to 400 MPa 

at 170 °C. Also, recoverable strain significantly improved, as 5.3% applied strain was fully 

recovered (under stress free conditions) when the samples were heated above the Af in 

comparison to the mere 2.5% strain recovered for the solution treated alloy after tensile 

deformation at 170 °C. In addition, a type of linear superelastic behavior was reported for 
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the first time in a NiTiPd alloy due to the thermomechanical treatment (cold working 

followed by annealing).   

In studies on precipitation process showed that NiTiPt systems have precipitates 

similar to those of binary NiTi where the Ti2(Ni,Pt)3 phase was found on the (Ni+Pt) rich 

side of stoichiometry and Ti2(Ni,Pt) phase was found on the Ti-rich side of the 

stoichiometry [5]. However the alloy with composition close to stoichiometric illustrated 

a different precipitate phase than NiTi during aging which referred to as P-phase 

(Ti11Ni9Pt4). The TEM micrographs and SAD pattern of P-phase is shown in Figure 1.13. 

The characteristic 
1

7
〈321〉𝐵2 diffraction spot of Ni4Ti3 are not present in the SAD pattern 

of the [111]B2 zone in Figure 1.13b.  The precipitates in NiTiPd have a structure similar to 

the P-phase found in the NiTiPt system.  

 

Figure 1.13: (a) TEM micrograph of precipitates after 500 °C-4h aging of Ni20Ti50Pt30 and 

(b) SAD pattern of the P-phase precipitates [88]. 

 

 Alloying Zr to NiTi was investigated due to its lower cost in compared to Pd and 

Pt. Similar to previously discussed HTSMAs, the concentration of Zr in NiTiZr alloys 

change the transformation process. When concentration of Zr is lower than 20 at. %, B2 
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transforms to B19’ during cooling, whereas at higher concentration of Zr (greater than 20 

at. %) the martensite structure changes to B19 [5, 89]. The main issue of NiTiZr alloy is 

their low stability during cycles of transformation where TTs do not stabilize after 100 

thermal cycles while as other SMAs would stabilize after a few cycles [89]. Although, there 

are not that many studies on mechanical behavior of NiTiZr but they can still be useful for 

microstructural analysis since the precipitates phases are similar to NiTiHf alloys which 

will be discussed in next section. 

1.4.3 NiTiHf Systems 

It is known that the elements Pd, Pt, and Au are very expensive and will limit the 

use of their respective ternary alloys to some critical applications only (i.e., aerospace) 

where performance is much more important than the cost, while Zr is associated with high 

oxygen affinity [3, 4]. Among the potential HTSMAs, NiTiHf seems to be the most 

promising HTSMA for a wide range of applications in the critical 100-300 °C temperature 

range due to its low cost, excellent shape memory properties and high work output [5]. It 

was also reported that Hf had a greater influence on TTs than Pd and Au for an equivalent 

concentration [4, 8, 90]. 

As mentioned previously that the TTs of NiTi based SMAs are highly composition 

dependent [5, 91], including the NiTiHf alloys [11, 92]. The transformation temperatures 

of NiTiHf alloys do not increase much up to 10 at. % Hf content, however, at chemical 

concentrations higher than 10 at. %, they tend to increase linearly up to 525 C for 30 at. 

% Hf when Hf is added at the expense of Ti [11, 92]. Figure 1.14a shows the change in Mp 

(martensite peak temperature) as a function of Hf [11, 92, 93]. It is clear that Mp does not 

change up to 3 at. % addition of Hf and then increases after 5 at. %. Up to 10 at. % Hf, the 
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increase of Mp is about 5 °C/at. % Hf. As the Hf increases beyond 10 at. %, there is an 

abrupt increase of Mp by almost 20 °C/at. % Hf in NiTiHf alloys and Mp reaches up to 

400oC for 25 % Hf. Figure 1.14b shows the effect of Ni content on the Mp in NiTiHf alloys 

containing 10 at. % Hf. It is clear that Mp is not sensitive to Ni concentration up to 50 at. % 

and then drastically decreases to below 0 °C with Ni content. 

 

Figure 1.14: Dependence of Mp temperature on (a) Hf and (b) Ni concentration of NiTiHf 

[5]. 

 

In general, the crystal structures of austenite and martensite phases in NiTiHf alloys 

are cubic B2 and monoclinic B19′, respectively, which are similar to those in NiTi binary 

alloys. Zarinejad et al. [94] investigated the effect of Hf on the lattice parameters of the 

B19’ martensite in NiTiHf alloys. The lattice parameters a, b, c and  angle of the 

martensite are plotted in Figure 1.15 as a function of Hf content for Ni(100-x)/2Ti(100-x)/2Hfx, 

Ni50-xTi50Hfx and Ni50Ti50-xHfx (x = 5-20 at.%) alloys. The addition of Hf increased all the 

lattice parameters for the Ni(100-x)/2Ti(100-x)/2Hfx and Ni50-xTi50Hfx alloys. On the other hand, 

when Ni is constant, the increase of Hf in the Ni50Ti50-xHfx alloy increased a, c and  but 

decreased b. Potapov et al. [95] also observed a similar dependence of lattice parameters 
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on the Hf content for Ni49.8Ti50.2-xHfx (x = 8-25 at.%) alloys where the increase of Hf while 

Ni was kept constant to 49.8% slightly decreased the lattice parameter b, while it increased 

a, c and  of B19’ martensite. It was also reported that the addition of Hf increased the 

lattice parameter of B2 austenite [95]. The volume change during transformation was 

smaller than 0.5% which was similar to that in NiTi binary alloys (~0.3% or less) [96, 97]. 

It should be noted that in some studies, NiTiHf alloys with more than 15 at. % Hf in 

Ni48.5(Ti51.5-xHfx) [98] and between 20 and 30 at. % Hf of Ni50(Ti50-xHfx) [99] were reported 

to have orthorhombic B19 martensite.  

 

Figure 1.15: Lattice parameters (a) a, (b) b, (c) c and (d)  of B19′ martensite as a function 

of Hf in NiTiHf alloys [94] (Chemical compositions are in at. %). 
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Most HTSMA research was focused on (Ti+Hf)-rich NiTiHf alloys due to the low 

TTs of Ni-rich materials. However, the main disadvantages of (Ti+Hf)-rich NiTiHf alloys 

are their large hysteresis (> 50 C), poor ductility at room temperature, lack of cyclic 

stability due to the high stress for the reorientation of martensite and detwinning, the low 

strength for slip and poor formability [3, 8]. Previously, Meng et al. [12] examined the 

tensile properties of (Ti+Hf)-rich NiTiHf alloys and did not observe a stress plateau at 

room temperature but rather observed continuous yielding with high work hardening, 

which can be attributed to the high resistance to martensite reorientation and the low stress 

needed for plastic deformation. To increase the resistance to dislocation slip, Kockar et al. 

[8] employed severe plastic deformation of (Ti+Hf)-rich NiTiHf alloys and reported an 

increase in the recoverable strain and a decrease in the irrecoverable strain levels under 

isobaric thermal cycling experiments. They also found that thermal cyclic stability 

improved and thermal hysteresis decreased. However, the large thermal hysteresis 

prevented the observation of a reversible superelastic response [8]. 

Unfortunately, the majority of prospective HTSMA systems are ordered 

intermetallic with limited ductility at low and intermediate temperatures, making it difficult 

and expensive to apply thermomechanical processing techniques to increase the material’s 

strength. Thus, precipitate hardening becomes a more viable method for increasing the 

strength of difficult-to-work alloys. The precipitates act as obstacles in the path of 

dislocations, which must then either cut through the precipitate or bypass it to proceed.  Of 

course, the strengthening ability of the precipitates depends on the size, volume fraction, 

interparticle spacing, and coherency of the second phase.  
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König et al. [100] fabricated NiTiHf thin films with a wide composition range by  

magnetron sputtering method and investigated their TTs, precipitate structure and thermal 

cycling properties. Multilayer thin films (individual layers ~15 nm thick) were sputtered 

from elemental targets and annealed at 550 °C for 1h in order to transform their multilayer 

structure into alloys. Figure 1.16 depicts the composition regions in which different 

precipitates are formed [100]. The relative intensity of one characteristic XRD peak 

belonging to the phase of interest was plotted color-coded within a section of the NiTiHf 

ternary phase diagram. Four different precipitates, i.e. HfNi(Ti), Ti2Ni(Hf), Hf2Ni(Ti) and 

Laves phase, were confirmed in (Ti+Hf)-rich composition regions. They concluded that 

the observation of reversible phase transformation was limited by the formation of 

Ti2Ni(Hf), HfNi(Ti) and/or Hf2Ni(Ti) precipitates. These precipitates restricted the 

transforming region to compositions with Ni contents above ~40 at. % and Hf contents 

below ~30 at. %. 

 

Figure 1.16: Composition regions in which different precipitate phases exist. The relative 

intensity of an X-ray diffraction peak for each phase is plotted color-coded within a section 

of the ternary Ni-Ti-Hf diagram for (a) HfNi(Ti), (b) Ti2Ni(Hf), (c) Hf2Ni(Ti), (d) Laves 

phase (Color code: red = high; green = medium; blue = low intensity.) [100]. 
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The Ti2Ni(Hf) precipitates have also been observed by many other researchers in 

Ni-lean NiTiHf alloys [12, 101-104]. It has been reported that the volume fraction of the 

Ti2Ni(Hf) precipitates decreased with increasing the Ni content, although the Ti2Ni(Hf) 

precipitates were still observed in slightly Ni-rich compositions [91, 101]. Fine Ti2Ni(Hf) 

precipitates strengthen the matrix and improve shape memory and superelastic properties 

of NiTiHf-based alloys [12, 102]. It is important to note that the size of the Ti2Ni(Hf) 

precipitates are very effective to control the martensite morphology. It was found that 

(001)B19′ compound twins were dominant when the material contained homogeneously 

distributed Ti2Ni(Hf) precipitates with 20–40 nm in diameter (Figure 1.16a). Similar 

martensite morphology has been observed in a Ti-rich NiTi thin film with a homogeneous 

distribution of fine Ti2Ni precipitates [105]. Martensite domains with (001)B19′ compound 

twins were also observed around the coarse Ti2Ni(Hf) precipitates. The spear-like and 

mosaic-like morphologies have been reported as typical morphologies of the martensite in 

Hf-added NiTi alloys [106, 107]. 

Meng et. al. [91] revealed that it was possible to form (Ti,Hf)3Ni4 precipitates in 

Ni-rich NiTiHf alloys and in the process restore TTs to a higher temperature. They also 

reported that these coherent precipitates increased the matrix strength and enhanced the 

thermal stability of the alloy [91, 108]. However, recently, it has been reported that a new 

precipitate which has a more complicated structure than that of Ni4(Ti,Hf)3 forms in Ni-

rich NiTiHf alloys [109-111] and improves their shape memory and superelastic properties 

due to precipitation strengthening [112-114]. Initially, Han et al. [115] reported a 

precipitate with a  face-centered orthorhombic lattice with a space group of F 2/d 2/d 2/d 

in an aged Ni48.5Ti36.5Hf15 alloy. There are six different variants in this orthorhombic 
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precipitate with habit planes of (100)P//{001}B2 and long axes of [001]P//<110>B2. 

However, they did not provide an atomic structure model for the observed precipitate. 

Recently, Yang et al. [111] proposed an atomic structure model which contains of 

192 atoms in an orthorhombic unit cell for the observed precipitate in Ni-rich NiTiHf 

alloys. The orthorhombic precipitate phase was named as “H-phase” and Figure 1.17a 

shows the unit cell of this precipitate [111]. In order to refine the structure model, ab initio 

density functional theory (DFT) calculations have also been performed to relax the 

structure model [110, 111]. SAD patterns obtained from a single large H-phase precipitate 

in a Ni52Ti28Hf20 alloy are shown in Figures 1.17b-d [111]. All the SAD patterns revealed 

the orientation dependence between the precipitate and austenite B2 phase (the diffraction 

spots are indexed according to the austenite phase). There were additional reflections at 

1/3 positions along <110>B2
* in reciprocal space as shown by arrows, which was a 

characteristic of the H-phase. The composition of the proposed H-phase was 

Ni50Ti16.7Hf33.3, whereas it has been indicated by EDS analysis that the Ni content of the 

H-phase precipitate was always slightly richer than that of the nominal composition of Ni-

rich NiTiHf alloys in contrast to the proposed Ni content of 50 at. % [110, 111, 116]. 

Therefore the formation of H-phase precipitates depleted Ni from the matrix and increased 

TTs. Yang et al. [111] observed anti-site defects within the precipitate which may slightly 

change the composition of the precipitate, and proposed that the H-phase did not have a 

unique composition. The effects of the alloy composition on the H-phase precipitation was 

investigated by Santamarta et al. [110]. They concluded that the H-phase precipitates grew 

faster in alloys with higher Ni content since the precipitates were richer in Ni content 
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compared to the nominal composition of the alloys. Similarly, for a fixed Ni content, the 

growth of the H-phase became faster when the Hf content was increased. 

 

Figure 1.17: (a) Unit cell of unrelaxed orthorhombic model of the H-phase [111]. SAD 

patterns of the (b) [001]B2, (c) [111]B2, (d) [110]B2 and (e) [110]B2 zone axes obtained from 

a single large particle in a Ni52Ti28Hf20 alloy [110]. The small arrows and circles mark the 

additional reflections arising from the precipitate. 

 

 The control of the size and interparticle distance of H-phase precipitates is 

important to obtain good shape memory and superelastic responses. It has been reported 

that the aging temperature and time significantly affected the size and interparticle distance 

of the precipitates formed in Ni-rich NiTiHf-based alloys [91, 110, 112]. Figures 1.18a-c 

illustrates the representative microstructure of Ni50.3Ti29.7Hf20 alloys in as-extruded and 

aged conditions [114]. The bright-field image of the as-extruded Ni50.3Ti29.7Hf20 alloy is 

shown in Figure 1.18a. Precipitate formation was not confirmed in the as-extruded 

condition. Figures 1.18b and c show TEM micrographs of the extruded Ni50.3Ti29.7Hf20 

alloy aged at 550 °C and 650 °C for three hours, respectively. Fine and coherent H-phase 

precipitates were formed in the 550 °C aged specimen. When the aging temperature 
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increased from 550 to 650 °C, the precipitate size increased from about 20 nm to 40–60 

nm. The interparticle distance also increased after three hours aging at 650 °C compared 

with the 550 °C-3h case. 

 The martensite morphology in Ni-rich NiTiHf alloys is affected by the size and 

interparticle distance of H-phase precipitates. The martensite variants in the as-extruded 

Ni50.3Ti29.7Hf20 alloy show spear-like morphology and high density of twins can be seen 

inside the martensite plates (Figure 1.18a). Han et al. [106, 107] have reported two types 

of martensite morphologies; spear-like and mosaic-like in NiTiHf alloys and they also 

revealed that each martensite lath is consisted of (001)B19′ compound twins. If the 

precipitates were small and interparticle distance was short, the growing martensite plates 

can absorb all the precipitates during growth as it can be seen in the 550 °C-3h aged 

Ni50.3Ti29.7Hf20 alloys (Figure 1.18b). The large martensite plates were related by the 

{011}B19′ type I twinning mode, which was confirmed by the SAD pattern shown in Figure 

1.18d taken at the interface of the plates. It should be noted that no internal twins were 

observed in the large martensite plates in the 550 °C-3h aged specimen. On the other hand, 

when the precipitates were big and interparticle distance was large, martensite plates can 

be formed between the precipitates and the thickness of the plates was controlled by the 

interparticle distance of the precipitates (Figure 1.18c). However, Santamarta et al. [110] 

have also noted that {011} type I twinning was dominant in similar alloys with very fine 

precipitates and  the (001)-compound and {011} type I twinning are more or less equally 

observed as the precipitates coarsened and martensite was constrained to form between 

larger particles. 
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Figure 1.18: Bright-field images of the Ni50.3Ti29.7Hf20 alloy (a) extruded at 900 °C, (b) 

aged at 550 °C for 3h (c) aged at 650 °C for 3h and (d) electron diffraction pattern taken 

from the martensite variants in (b) [112]. 

 

Dalle et al. [117] investigated the interface mobility of the martensite variants in 

Ni49.8Ti42.2Hf8  after annealing at 800 °C for 1h. They suggested that the interface mobility 

was low due to distorted habit planes and the high density of fine (001)B19′ compound twins 

inside the martensite. TEM observation was conducted for Ni49.8Ti42.2Hf8 after 10% tensile 

deformation to investigate the morphology of reoriented martensite. They observed finer 

(001)B19′ compound twins in the deformed material compared to the as-annealed material 

with self-accommodated martensite. They suggested that the detwinning of the (001)B19′ 

compound twins is difficult and proposed that, instead of the detwinning, a supplementary 

(001)B19′ mechanical twinning could take place during deformation by a mechanism of the 

repetition of the dislocation slip on the (001)B19′ plane. In addition, Meng et al. [118, 119] 

investigated the morphologies of the stress-induced martensite (SIM) in Ni49Ti36Hf15 which 

were solution-treated at 1000 °C for 1h and deformed in tension at 250 °C.  Figure 1.19a 

shows the typical morphology of the preferentially oriented SIM variants and the SAD 

pattern taken from the area II for the 8% deformed Ni49Ti36Hf15 [119]. (001)B19′ compound 

twins were mainly observed in the SIM plates. The SAD pattern revealed that the SIM 

plates were twin-related with {011}B19′ type I mode, which was similar to the thermally 
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transformed martensite [106, 107]. The preferentially oriented SIM variants were 

disappeared and several martensite variants were intersected into each other after 

deformation. Figure 1.19b shows the variant-crashed/variant-intersected morphology of 

the after deformation of 16%. The interfaces of the martensite variants are blurred in the 

variant-crashed/variant-intersected morphology. They noted that the stress-induced 

martensitic transformation and dislocation slip occurred simultaneously during loading and 

suggested that the introduction of dislocations increases the martensite variants with the 

variant-crashed/variant-intersected morphology.  

 

Figure 1.19: Bright-field image of Ni49Ti36Hf15 (a) deformed to 8% at 250 °C and (b) 

deformed to 16% at 250 °C [119]. The SAD pattern shown in (c) was taken from area II. 

 

Initially, properties of Ni-lean NiTiHf alloys were mainly investigated due to low 

TTs of Ni-rich NiTiHf alloys [91, 108]. SME with 3% recoverable strain or 80% recovery 

of 6% applied strain is observed in compression and bending [7, 120] while 80% recovery 

of 2.5% applied tensile strain is observed in Ni50Ti38Hf12 produced by powder metallurgy. 

The poor SME is attributed to high stress (~500 MPa) for martensite reorientation and high 

work hardening rate (no plateau region observed) confirmed by tensile experiments [120, 

121]. Although no superelasticity is observed in Ni-lean NiTiHf alloys [91, 119], 0.88% 

strain for TWSME has been observed [122]. Unstable cyclic behavior is a major problem 
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in Ni-lean NiTiHf alloys where it has been demonstrated  that TTs were decreased by 40 

C during stress free thermal cycling of Ni49Ti41Hf10 after 20 cycles [123].   

Effects of aging on the SME and superelastic behavior of Ni-rich NiTiHf alloys are 

shown in Figure 1.20. It is evident from Figure 1.20a that transformation strain was 

increased above 3% after aging at 550 °C-3h which can be attributed to absorption of 

precipitates by martensite plates during forward transformation as shown in Figure 1.18b. 

However, precipitates became larger in size after aging at 650 °C-3 h and growth of 

martensite variants was limited in the space between precipitates. It is clear that TTs, 

thermal hysteresis and transformation strain can be tailored by aging. Figure 1.20b shows 

the superelasticity responses of as extruded and aged Ni50.3Ti29.7Hf20 alloys [114]. Perfect 

superelastic behavior with 4% recoverable strain was revealed at 240 ºC after aging at 550 

°C for three hours in Ni50.3Ti29.7Hf20. The improvement in superelastic behavior with aging 

can be attributed to the presence of coherent and fine H-phase precipitates which strengthen 

the matrix. Poor superelastic response after aging at 650 ºC-3h can be attributed to loss of 

the coherency of the coarsened precipitates.  It is worth to note that beside the fully 

recoverable strain, Ni-rich NiTiHf exhibited high yield strength at high temperatures and 

the CC slopes were between 7-13 MPa/ ºC. 

Quaternary alloying and precipitation strengthening have also been used to improve 

the overall behavior of NiTiHf polycrystalline and single crystal alloys. The shape memory 

properties of heat treated Ni45.3Ti29.7Hf20Pd5 (at. %) alloys in single crystalline and 

polycrystalline forms have been recently reported [112, 124-127]. The replacement of 5 % 

Pd with Ni in Ni50.3Ti29.7Hf20 alloy resulted in a very high strength alloy that has high 

damping capacity of 35 J/cm3 in polycrystalline form [112] and 44 J/cm3 along [111] 
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oriented single crystals [127]. Transformation strain of 2% was observed in aged [111] 

oriented Ni45.3Ti29.7Hf20Pd5 single crystals under a compressive biasing stress of 1500 MPa 

[126]. Moreover, perfect superelastic behavior with recoverable strain of 4.2%  was 

observed in the solutionized condition even when compressive stress levels as high as 2.5 

GPa were applied [127]. However, it is also known that Ni45.3Ti29.7Hf20Pd5 alloys are 

brittle, since they generally fail after limited plastic deformation in compression and during 

phase transformation in tension in superelasticity experiments [128].  

 

Figure 1.20: Aging effect on shape memory effect (a) and superelastic behavior (b) in 

Ni50.3Ti29.7Hf20 SMAs. 

 

It has been considered that low workability is one of the main problems with 

NiTiHf alloys for practical use. Kim et al. [129] reported that an addition of Nb to NiTiHf 

alloys caused the formation of a soft Nb-rich  phase and improved the cold workability, 

although the TTs and plastic strain in thermal cycling experiments under stress were 

decreased. Cu has been another alloying element to NiTiHf systems where, in general, it 

improved the glass forming ability and thermal stability of NiTiHf alloys while decreasing 
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their TTs [102, 130]. NiTiHfCu alloys have also demonstrated TWSME [131]. It has 

recently reported that Ni45.3Ti29.7Hf20Cu5 alloys have the capability to recover compressive 

strains of 2 % above 100 °C and two-way shape memory strain of 0.8 % above 80 °C [132]. 

As part of the maturation process for Ni-rich NiTiHf alloys a more comprehensive 

and systematic study is needed to better understand the effects of chemical composition, 

aging time and temperatures, applied stress states and crystallographic orientation on shape 

memory properties. Amongst the common strengthening mechanisms precipitate 

strengthening through a simple aging treatment is the most practical and cost effective 

method to increase the strength of the material and as an added benefit can be used to tailor 

the TTs. Thus, in the present study, the effects of Ni content, aging time and temperatures 

on the microstructure and shape memory behavior of single crystal and polycrystalline Ni-

rich NiTi-20Hf were investigated.  
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2 Experimental Procedure  

The aim of this chapter is to describe details on the fabrication and processing of 

the materials as well as the experimental methods used in characterization of NiTiHf 

polycrystalline and single crystal alloys. The details of material preparation, calorimetric 

measurements, mechanical testing and microstructural analysis will be presented 

throughout the chapter.  Most of the experiments of this research were performed at the 

Smart Material’s Laboratory (RGAN 019) at the Mechanical Engineering Department of 

University of Kentucky. 

2.1 Materials Fabrication 

All of the polycrystalline alloys were produce by induction melting or arc melting 

of high purity elemental constituents (99.98 wt. % Ni, 99.95 Ti, 99.5 Hf). The NiTiHf 

alloys were arc melted as 100g buttons using high purity elemental constituents. The 

nominal compositions of the alloys were (in at. %) Ni50.3Ti29.7Hf20 (50.3Ni), Ni50.7Ti29.3Hf20 

(50.7Ni), Ni51.2Ti28.8Hf20 (51.2Ni), Ni52Ti28Hf20 (52.0Ni). The buttons were homogenized 

at 1000 °C for 48h in a vacuum furnace followed by furnace cooling. The average cooling 

rate between 950 C and 800 C was 10 C /s falling to half that rate by 600 C. This 

condition is referred to as “furnace cooled” throughout the text.  The nominal composition 

of the alloys and ingot weight after melting are listed in Table 2.1. It is clear that very little 

loss in material was observed. In addition, a Ni50.3Ti29.7Hf20 (at. %) alloy was induction 

melted using a graphite crucible and cast into a 1˝ diameter copper chill mold. The ingot 

was homogenized at 1050 °C for 72 hours and then extruded at 900 °C with a 7:1 reduction 

in area. This condition is referred to as “as-extruded” throughout the text. 
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The single crystal samples were grown by the Bridgman technique in He 

atmosphere by using a prealloyed starting material with nominal composition of 

Ni50.3Ti29.7Hf20 (at. %), which was fabricated by vacuum induction melting. The 

composition of the as-grown single crystals were determined by inductively coupled 

plasma atomic emission spectroscopy to be Ni50.4Ti29.9Hf19.3 with 0.4 at. % Zr. The single 

crystal ingots were oriented along [001], [011] and [111] to study the orientations 

dependence of NiTiHf alloys. 

Table 2.1: The nominal composition of the NiTiHf alloys. 

Alloy 

Designation 
Alloy Composition (at. %) Ingot weight (g) 

50.3Ni Ni50.3Ti29.7Hf20  100 

50.7Ni  Ni50.7Ti29.3Hf20 99.99 

51.2Ni  Ni51.2Ti28.8Hf20 100 

52.0Ni  Ni52Ti28Hf20 99.98 

2.2 Materials Preparation 

The extruded rods and ingots for each alloy were cut by electrical discharge 

machining (EDM) in various shape for different purpose. EDM is a manufacturing process 

whereby a desired shape is obtained using electrical sparks and is shown in Figure 2.1a. 

Compression samples (4 mm× 4mm× 8 mm) and dog bone shaped tensile samples were 

cut for mechanical testing which the geometries are illustrated in Figure 2.1b. The thickness 

of dog bone shape tensile sample was 1.5 mm. Also small pieces were cut to determine the 

TTs of the material, microstructure analysis, and hardness test by using EDM. 

Lindberg/Blue M BF514541 Box furnace used to carry out all heat treatments on 

the alloys. The size of chamber is 38.1×38.1×38.1 Cm with the maximum temperature 

reaches to 1200 °C. The furnace came with factory installed air/atmosphere port with a 
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capability of running most gases such as nitrogen, argon, and helium however the furnace 

was not designed to be gas-tight atmosphere. The furnace was also equipped with a vent at 

the top to help remove contaminants from the furnace chamber. The furnace was set to the 

desired temperature and allowed to reach the set temperature before the sample was put in 

the furnace. After putting the sample in the furnace, the time was noted once the 

temperature reached the set temperature again. The heat treatments were followed by 

quenching the sample into water at room temperature. It is important to mention that for 

heat treatments above 500 °C, the samples were encapsulated under vacuum in a quartz 

tube for each aging cycle to avoid the oxidation process and then quartz tube was broken 

and quenched in water bath. 

 

Figure 2.1: (a) Electrical discharge machining and (b) geometries of compression and 

tensile samples. 

 

2.3 Calorimetry Measurements 

Stress-free phase transformation temperatures (martensite finish, Mf; martensite 

start, Ms; austenite start, As; and austenite finish, Af) were measured using a Perkin-Elmer 

Pyris 1 differential scanning calorimeter (DSC) as shown in Figure 2.2. Typical 
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temperature range is from -150 to 600 °C and the heating/cooling rate was kept at 10 

°C/min in nitrogen atmosphere. The temperature scale is calibrated by using two-point (or 

more) calibration method where the onset temperatures for the melting points of high purity 

Indium and Zinc standard provided by Perkin Elmer were measured. In addition, the 

furnace was calibrated by using the furnace calibration feature in Pyris software.  

Sample preparation greatly affects the measured TTs due to residual stresses that 

can develop in sample during preparation process. Sample must be polished to establish 

good thermal contact with the bottom of the pan and its weight should be in the range of 

20-40 milligrams. Both the sample weight and heating rate affect the DSC response since 

increasing the sample weight and/or heating rate increase the temperature gradients in the 

sample, resulting in decreased signal quality and resolution.  

 

Figure 2.2: Pyris I DSC to measure the stress free phase transformation temperatures. 

 

The basic principle of the operation of the DSC is the measurement of the rate at 

which heat energy is supplied to the specimen in comparison to a reference material to 

maintain a constant temperature rate [133]. Sample is thermally cycled and the difference 
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of the supplied heat power is recorded as showed in Figure 1.3a. The net amount of heat 

released (ΔH) during phase transformation was calculated form the area under the 

transformation peaks. The TTs measured as the intersection of the base line and the 

maximum gradient line of a transformation peak. The martensite peak (Mp) and austenite 

peak (Ap) were measured as the points in the transformation for which the slope of the 

curve is equal to zero. In addition, thermal hysteresis was determined as the difference 

between the Ap and Mp (∆H=Ap–Mp).  

2.4 Hardness Test 

Hardness is the property of a material that measures its resistance to plastic 

deformation by penetration. Figure 2.3 shows that an indenter is pressed into the surface 

of the metal to be tested under a specific load for a definite time interval, and a 

measurement is made of the size or depth of the indentation. There are three principal 

standard test methods for expressing the relationship between hardness and the size of the 

impression; Brinell, Rockwell and Vickers. In the Vickers hardness test, accurate readings 

can be taken, and just one type of indenter is used for all types of metals and surface 

treatments. 

 

Figure 2.3: Schematic of Vickers hardness measurement. 
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In this project, hardness measurements were obtained using Sun-tec model FM-7 

Vickers microhardness testing setup. Samples mounted in epoxy were polished to mirror 

finish prior to measurements. Pyramidal indenter of 136º tip was used with a 100 gram 

force and 15 seconds dwell time. Ten reading were taken for each sample, the highest and 

the lowest reading were omitted and the average of the remaining 8 readings were reported. 

The Vickers hardness (HV) was calculated by the ratio of applied force over the area of 

indentation by using following equations: 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑑𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (𝐴) =
𝑑2

2 sin
136

2

≈
𝑑2

1.854
      (2.1) 

𝐻𝑉 =
𝐹

𝐴
= 1.854

𝐹

𝑑2          (2.2) 

where d is the mean of d1 and d2 (Figure 2.3) and F is load in kgf. In shape memory alloys, 

hardness depends on the testing temperature and could be different for martensite and 

austenite phases. 

2.5 Mechanical Testing  

The thermo-mechanical experiments were conducted using an MTS Landmark 

servohydraulic test frame with custom compression/tension grips which is shown in Figure 

2.4. The applied force was measured by a 100 kN capable load cell and the axial strain was 

measured by an MTS high temperature extensometer with a gauge length of 12 mm. 

Heating of the sample was achieved by conduction through the compression/tension plates 

at a rate of 10 °C/min and liquid nitrogen fellow through copper coils wrapped around the 

grips to cool the system at a rate of 5 °C/min. A PID driven Omega CN8200 series 

temperature controller ensured stable heating/cooling rates with K-type thermocouples 
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attached to both the specimen and grips. A cryogenic grade, on/off solenoid valve 

commanded by the temperature controller was used to control the flow of liquid nitrogen. 

The experimental setup allowed testing of sample in compression or tension at temperature 

range between -100 to 600 °C. This enabled mechanical characterization of the sample in 

austenite and martensite phases (stress-strain test) as well as testing over a range of 

temperatures during thermal cycling under applied stress. 

The compression/tension sample was polished mechanical with a 600 grit paper to 

remove the surface residue left after being cut by EDM.  A K-type thermocouple was 

attached to the sample and the specimen was placed between the test setup in proper 

position. Unless indicated, otherwise the rate of 8x10-4 mm/sec for loading and 100 N/sec 

for unloading was used in mechanical tests.  

 

Figure 2.4: MTS Landmark system. 
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2.6 Microstructural Analysis 

Microstructural analysis of the sample was conducted by transmission electron 

microscope (TEM) using a JEOL 2010F instrument operated at 200 kV. Samples for TEM 

investigation consisted of 3mm discs were cut by EDM from selected samples and 

subsequently ground to ~ 0.1 mm thickness and electro-polished in a solution of 30 % nitric 

acid in methanol at -30 ºC and 13 V.  In collaboration with Universitat De les Illes Balears, 

Conventional and high resolution TEM observations were performed in a Hitachi H600 

100 kV and a Jeol 2010 200 kV (0.19 nm point to point resolution) microscopes, 

respectively. 
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3 Effects of Chemical Composition  

3.1 Introduction 

One of the major areas of the thrust of this project was in the field of design of new 

SMAs based on the atomic bonding when new element are added to the alloys system. It 

is known that in metallic materials the delocalized valence electrons hold the non-valence 

electrons which nuclei of atoms together and form metallic bonds. This concept has been 

utilized to find possible combination of metal which can be added to get the desire 

properties from the SMAs. Two methods have been employed to design the alloys. First 

method is the number of valance electron per atom of the alloy (ev/a) and the second one 

is valance electron concentration (Cv). 

Zarinejad et al. revealed a practical relationship between the chemical composition 

and TTs by considering the number and concentration of valence electrons in NiTi-based 

alloys [134]. The number of d and s electrons is accepted as the number of valence electrons 

for an atom in transition metals while the number of valence electrons is considered to be 

p and s electrons for an atom in non-transition metals [135]. The number and average 

concentration of valence electrons of alloys can be calculated with the following equation 

[135]; 

𝑒𝑣

𝑎
= 𝑓𝐴𝑒𝑣

𝐴 + 𝑓𝐵𝑒𝑣
𝐵 + 𝑓𝐶𝑒𝑣

𝐶 + ⋯        (3.1) 

𝐶𝑣 =
𝑒𝑣

𝑒𝑡
=

𝑓𝐴𝑒𝑣
𝐴+𝑓𝐵𝑒𝑣

𝐵+𝑓𝑐𝑒𝑣
𝐶+⋯

𝑓𝐴𝑍𝐴+𝑓𝐵𝑍𝐵+𝑓𝐶𝑍𝐶+⋯
         (3.2) 

where fA, fB and,fc  and are atomic fractions of A, B and C elements, ZA, ZB and ZC are the 

atomic numbers of elements A, B and C, respectively and 𝑒𝑣
𝐴, 𝑒𝑣

𝐵, 𝑒𝑣
𝐶  are the related valence 
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electrons for the elements in an alloy system. It has been shown that the TTs do not have a 

clear trend with ev/a while they generally decrease with increasing cv [94, 135].  Based on 

the study conducted from the literature available, following compositions listed in Table 

3.1 were found to be promising in the direction of this research. 

Table 3.1: Composition of Ni-rich NiTiHf alloys. 

 

 

 

 

In addition, changing in composition of an alloy could be resulted in solid solution 

strengthening which is a technique to increase overall mechanical strength of the material. 

The reason behind this phenomenon is that when an impurity is added to metal, the impurity 

imposes a lattice strain on the surrounding atoms. These lattice strain interact with the 

dislocations and as a result the dislocation movement is inhibited. 

In this chapter, a systematic investigation is conducted to reveal the changes in 

microstructure (martensite morphology and precipitation characteristics) and shape 

memory properties (transformation strain and temperature, hysteresis, superelastic 

behavior) of four selected Ni-rich NiTiHf alloys in the furnace cooled condition. In this 

series of alloys, Hf content was fixed at 20 at. % and Ni was increased form 50.3 at% to 

52 at%. Hereafter, the four alloys studied in this investigation will be generally referred to 

as NiTi-20Hf, but specific alloys will be designated by their Ni content (i.e., 50.3Ni, etc.). 

Ni-rich NiTiHf (at. %) 
Alloy Designation Ni Ti Hf ev/a Cv 

50.3Ni 50.3 29.7 20 7.018 0.200 

50.7Ni 50.7 29.3 20 7.042 0.201 

51.2Ni 51.2 28.8 20 7.072 0.202 

52.0Ni 52.0 28.0 20 7.120 0.203 
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3.2 Experimental Results 

3.2.1 Stress-free Phase Transformation Temperatures 

The DSC responses of the Ni-rich NiTiHf alloys in the furnace cooled condition 

are shown in Figure 3.1a and the TTs, which were extracted from DSC responses, are 

summarized in Table 3.2. It is clear that TTs are composition dependent and the 

transformation peaks became broader as the Ni content increased. The sample with lowest 

Ni content (50.3Ni) had an Mp of 142 °C and Ap of 174 °C. As the Nickel content was 

increased to 50.7 at. %, Mp decreased to 105 °C. Thermal hysteresis in both the 50.3Ni and 

50.7Ni samples, which was defined as the difference between AP and Mp (ΔT = Ap–Mp), 

was as low as ~30 °C. When the Nickel content was increased to 51.2 at. %, the Mp and Ap 

were determined to be 122 °C and 182 °C, respectively. But the reverse transformation 

(martensite to austenite) in the 51.2Ni alloy was not very well defined and occurred over a 

broad temperature range. In 52.0Ni, both transformation peaks were very broad and 

difficult to detect, but careful examination of the curves revealed that Mp and Ap were about 

93 °C and 106 °C, respectively. It is interesting to note that as the Nickel content increased, 

the difference between Af and As was became much larger than the difference between Ms 

and Mf, which means that the reverse transformation was much more difficult to complete 

than the forward transformation as the Ni content increased. 

Figure 3.1b demonstrates the hardness of the NiTiHf alloys and transformation 

peak temperatures as a function of the Ni content. The hardness values were determined at 

room temperature, with all alloys consisting of a martensitic matrix phase. As summarized 

in Figure 3.1b, hardness increased from 420 HV to the maximum value of 650 HV with 

increasing Nickel content. On the other hand, the transformation peak temperatures were 
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not a consistent function of Ni content, although it is clear that 50.3Ni had the highest and 

52.0Ni had the lowest Mp, while 51.2 Ni had the highest value for Ap and an intermediate 

value for Mp.   

 

Figure 3.1: (a) DSC responses of the furnace cooled NiTi-20Hf alloys and (b) Vickers 

microhardness and transformation peak temperatures of the Ni-rich NiTi-20Hf alloys as a 

function of Ni content. 

 

Table 3.2: Transformation temperatures for the Ni-rich NiTi-20Hf alloys in the furnace 

cooled condition.  

Alloy 

designation 

Alloy 

composition 
Ms(°C) Mf(°C) Mp(°C) As(°C) Af(°C) Ap(°C) 

50.3Ni Ni50.3Ti29.7Hf20 156 128 142 160 189 174 

50.7Ni Ni50.7Ti29.3Hf20 111 91 105 113 137 133 

51.2Ni Ni51.2Ti29.8Hf20 131 115 122 157 197 182 

52.0Ni Ni52.0Ti28.0Hf20 107 79 93 84 160 106 

 

3.2.2 Microstructure 

Figure 3.2 illustrates the representative microstructures of the furnace cooled Ni-

rich NiTiHf alloys at room temperature. Conventional TEM images of 50.3Ni revealed the 

formation of relatively large martensite plates (~0.5 µm in width), with arrays of 

dislocations localized in several areas, as shown in Figure 3.2a. The selected area 
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diffraction patterns (SADP) confirmed that 50.3Ni has B19’ martensitic structure (Figure 

3.2b), as well as the rest of the alloys in this work.  No precipitates were observed in this 

alloy in spite of the furnace cooled condition, which was confirmed by the SADP.   

 

Figure 3.2: TEM images of (a) furnace cooled Ni50.3Ti29.7Hf20, (b) SADP of 

Ni50.3Ti29.7Hf20, (c,d) TEM images of furnace cooled Ni50.7Ti29.3Hf20, (e) Ni51.2Ti28.8Hf20, 

and (f) Ni52Ti28Hf20.Some of the precipitates present in the micrographs are labelled with 

a “P”. 

 

The 50.7Ni alloy exhibits notably thinner martensite plates (Figure 3.2c) than 

50.3Ni and a blurred contrast in the two-beam condition images recorded at low 

magnification. Figure 3.2d shows a TEM micrograph of 50.7Ni at higher magnification, 

where nanometric precipitates with lenticular shape of 5–15 nm in width and 15–35 nm in 

length can be observed. These nanometric particles were responsible for the blurred 

contrast at low magnifications (Figure 3.2c). The same precipitates were present in 51.2Ni 
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and 52.0Ni, except that they were notably larger in size (~75–250 nm in width and ~200–

750 nm in length), as shown in Figures 3.2e and 2f, respectively. The martensitic 

morphology is also notably different in the 51.2Ni and 52.0Ni samples as compared to 

50.3Ni and 50.7Ni alloys. In the former samples, the size of the precipitates hinders the 

growth of large martensite plates, like those observed in 50.3Ni and 50.7Ni alloys. Instead, 

the formation of the martensite is constrained to those areas between the H-Phase particles 

promoting smaller martensite plates.     

The SADPs and high resolution TEM (HRTEM) images obtained from the 

precipitated phase show the characteristic features of the H-phase [110, 111]. For instance, 

Figure 3.3a shows a SADP obtained from an individual precipitate of 52.0Ni (together with 

a small portion of surrounding matrix) containing the characteristic n/3<110> satellite 

spots of H-phase, located at 1/3 and 2/3 of the distance of the fundamental spots along a 

crystallographic direction corresponding to the <110>B2 direction of cubic austenite (the 

satellites are marked by triangles in Figure 3.3a). In addition, other zone axes show the 

n/4<210>B2 superlattice spots, which are also typical of the H-phase [110].  Concomitantly, 

the HRTEM images of individual precipitates exhibited an enhanced contrast every three 

{110}B2 planes when observed along zone axes perpendicular to these plane, as revealed 

in Figure 3.3b, which was obtained along the [111]B2 zone axis. Table 3.3 presents the 

results of energy dispersive spectroscopy (EDS) microanalysis performed on 51.2Ni and 

52.0Ni alloys from the large particles and matrix. The precipitates are found to have 

compositions richer in Ni and Hf and poorer in Ti compared to the surrounding matrix, in 

agreement with the compositions previously reported for the H-phase [110, 111].  

 

(a) 
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Figure 3.3: (a) Selected area diffraction pattern and (b) high resolution TEM image of an 

individual H-Phase precipitate in Ni52Ti28Hf20. 

 

Table 3.3: Composition of matrix and H-Phase as determined by EDS microanalysis 

(average of 5 different measurements in each phase). 

Sample – phase Ni (at. %) Ti (at. %) Hf (at. %) 

51.2Ni – matrix 49.5 27.9 22.6 

51.2Ni –  precipitates 52.1 20.0 27.9 

52.0Ni – matrix 50.5 29.1 20.3 

52.0Ni –  precipitates 52.9 18.6 28.5 

 

3.2.3 Shape Memory Behavior 

Figure 3.4 represents the shape memory responses of the Ni-rich NiTi-20Hf alloys 

determined by thermal cycling under constant compressive stress. Specimens were loaded 

to selected stress levels at a temperature above Af, the stress was then held constant  and 

the sample was thermally cycled through the transformation regime.  Once the upper cycle 

temperature was reached, the stress level was increased and the process was repeated. For 

50.3Ni, Ms was raised from 160 to 180 °C and the thermal hysteresis widened from 19 to 
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50 °C when the stress was increased from 100 to 1000 MPa. Recoverable strain of 1% with 

no irrecoverable strain was observed under 500 MPa, while irrecoverable strain reached 

the maximum value of 0.6% at 1000 MPa. As Ni content increased to 50.7 at. %, Ms 

decreased to 120 °C under 100 MPa and perfect dimensional stability with recoverable 

strain of 2.1% was obtained at 700 MPa. Irrecoverable strain was 0.3% at 1000 MPa, 

whereas further loading to 1500 MPa produced a large irrecoverable strain of 2.4%. In 

addition, the thermal hysteresis of 50.7Ni was increased from 21 to 40 °C as stress 

increased from 100 to 1000 MPa. Thus in the furnace cooled condition, thermal hysteresis 

and dimensional stability improved while the TTs decreased as Ni content increased from 

50.3 to 50.7 at. %. 

 

Figure 3.4: Shape memory response of the furnace cooled NiTi-20Hf alloys determined 

by thermal cycling under constant stress. 
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The strength of the material was further improved and almost fully recoverable 

shape memory effect with recoverable strain of 1% at 1500 MPa was achieved as Ni 

content increased to 51.2 at. %. In this alloy, thermal hysteresis only increased from 33 to 

45 °C as the applied stress increased from 100 to 1500 MPa. It should be also noted that 

the reverse transformation for 51.2Ni occurred over a wide temperature range, which is in 

a good agreement with the DSC results shown in Figure 3.1a. In the 52.0Ni alloy, a low 

recoverable strain of 0.8% was observed as the sample was thermally cycled at 1500 MPa. 

This behavior can be attributed to the fact that it was difficult to select and/or grow 

martensite variants when the precipitates were present in such a high volume fraction. 

However, the 52.0Ni alloy did exhibit near perfect dimensional stability with a total strain 

of 1.1% and small irrecoverable strain of 0.2% under a very high stress level of 2000 MPa. 

Also, temperature hysteresis only increased from 20 to 36 °C with stress increasing from 

300 to 2000 MPa.  

In summary, as Nickel content of the NiTi-20Hf alloys increased, the volume 

fraction of precipitate phase and strength increased, resulting in a decrease in recoverable 

strain, but an increase in the stress carrying capability of the alloy.  The high-stress 

properties of these alloys make them promising candidates for high strength thermal 

actuator applications where stress capability may be more critical than strain. 

The stress cycling responses of the Ni-rich NiTiHf alloys at selected temperatures 

are shown in Figure 3.5. It should be noted that before running each test, the samples were 

heated above Af+50 °C and then cooled to the testing temperature. Before loading, 50.3Ni 

is partially martensite at 140 °C while it is fully austenite at 160 °C and 180 °C. However, 

it is important to note that for the 50.3Ni alloy, all three testing temperatures are below Af 
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due to the hysteresis. Therefore, the residual strains observed at the end of each mechanical 

cycle at each of the selected temperatures can be attributed to residual martensite.  This 

was confirmed by thermally recovering all the residual strain in each case.  

 

Figure 3.5: Stress-strain responses of the furnace cooled Ni-rich NiTi-20Hf alloys. 

In 50.7Ni, all the tests were performed above Af, where full recovery of 4% strain 

was accomplished between 180–200 °C.  However, the stress-strain curves exhibited very 

high slopes in the superelastic regime during the phase transformation. As Ni content 

increased above 51 at. %, no superelasticity was observed due to fact that the critical stress 

for the phase transformation was higher than the stress for plastic deformation. The 52.0Ni 

sample failed in compression at 200 °C at a strain of 4% as the stress level exceeded 2000 

MPa. It is clear from Figure 3.5 that the high stresses required to induce the martensitic 
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transformation in the 51.2Ni and 52.0Ni alloys result in plastic deformation before 

superelastic behavior can occur. 

3.3 Discussion 

The formation of H-phase precipitates, which was observed in the furnace cooled 

50.7Ni, 51.2NIi and 52.0Ni alloys, can be attributed to the moderate cooling rate from 1000 

°C and the high driving force for precipitation in these more Ni-rich alloys. Since the H-

phase is richer in Ni [110], the precipitation process was enhanced by an increased Ni 

content, resulting in larger precipitate size and volume fraction.  

The H-phase precipitates are fully coherent with the austenitic matrix. However, 

when the matrix transforms to martensite, this perfect coherency is lost due to the 

transformation strain associated to the martensitic transformation [110]. Therefore, in 

presence of H-phase precipitates, the martensitic matrix has to accommodate the non-

transforming particles. When precipitates are small, the strain due to the mismatch between 

martensite and a full precipitate can still be accommodated, and relatively large martensite 

plates can form and absorb the precipitates during its growth. However, stress and strain 

fields are developed at the precipitate/matrix interface as the transformation proceeds, 

which restricts the plate growth in relation to the precipitate-free material (compare Figures 

3.2a and 3.2c). When precipitates are large, as in the 51.2Ni and 52.0Ni alloys, the 

transformation strain around a large particle can no longer be accommodated and the 

martensite plates form between the particles, which become impenetrable obstacles to 

further martensite plate growth. The furnace cooled 50.7Ni sample seemed to result in a 

precipitate size between these two limiting cases. Note that in Figure 3.2e, the martensite 
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plates are stopped by the largest particles, but for slightly smaller precipitates, an individual 

martensite plate can absorb many particles. 

The compositional change due to precipitation results in depletion of Ni and Hf, 

and enrichment of Ti in the matrix. If only the nominal alloy composition is considered, it 

is well known that increasing the Ni content decreases the TTs. However, as Ni-rich 

precipitates form, they tend to increase the TTs by depleting the matrix of Ni. Comparing 

the TTs of all the furnace cooled alloys as a function of Ni content (Figure 3.1b), there is 

no clear trend due to the fact that the furnace cooled alloys already contain varying levels 

and sizes of precipitates making any direct comparison meaningless. The broad 

transformation peaks observed in the DSC response of 52.0Ni can be attributed to 

compositional inhomogeneity of the matrix due to large H-phase precipitates.  

Figure 3.6a illustrates the recoverable and irrecoverable strains as a function of 

applied compressive stress obtained from the thermal cycling results shown in Figure 3.4.  

The presence of H-phase precipitates strongly modifies the shape memory response of the 

Ni-rich NiTiHf alloys as demonstrated in Figure 3.4. Formation of small precipitates (tens 

of nm in length) in 50.7Ni results in the largest recoverable strain of 2.1% since the 

martensite plates readily absorb the precipitates during the martensitic transformation. 

However, the recoverable strain decreases and irrecoverable strain increases at stresses 

above 800 MPa due to plastic deformation. The lower recoverable strain of 50.3Ni 

compared to 50.7Ni is attributed to the formation of relatively larger martensite plates with 

internal twins, together with higher plastic deformation in the 50.3Ni alloy.  

As the non-transformable precipitates account for a larger volume fraction of the 

alloy, as in  the 51.2Ni and 52.0Ni alloys, the recoverable strain is reduced to less than 1% 
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(Figure 3.6a), while strength of the material is improved (Figure 3.1b) resulting in smaller 

irrecoverable strains (less than 0.3%) under stress levels as high 1500-2000 MPa.  It has 

been illustrated that the (001) compound twinning as lattice invariant shear and (011) type 

I twinning modes are the most frequently observed in NiTiHf alloys [110, 136]. In the 

samples where the martensite plates are constrained between large precipitates, i.e. 51.2Ni 

and 52.0Ni, both types of twinning are observed more or less equally and in some regions 

(001) compound twins are the predominant twinning mode in relation to (011) type I twins 

[110]. However, the most frequently observed twinning mode in the samples containing 

nano-size precipitates is (011) type I twins [110, 136]. In turn, the well-known precipitation 

hardening effect is typical for small and coherent precipitates but large particles are usually 

indicative of over-aging and a decrease in strengthening. Consequently, the improvement 

in strength observed in 51.2Ni and 52.0Ni alloys in presence of large particles could be 

related to the change in martensite plate size and twinning mode observed in these samples. 

 

Figure 3.6: (a) Recoverable (solid line) and irrecoverable (dashed line) strains and (b) 

thermal hysteresis of Ni-rich NiTiHf alloys as a function of applied compressive stress. 

 

 Thermal hysteresis of Ni-rich NiTiHf alloys as a function of compressive stress is 

summarized in Figure 3.6b. It is clear that thermal hysteresis is highly composition and 
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applied stress dependent. Thermal hysteresis is initially less than 25 °C in 50.3Ni and 

50.7Ni alloys but it increases to more than 40 °C for applied stresses above 800 MPa, which 

correlates with the change in irrecoverable strain with stress as shown in Figure 3.6a. The 

generation of defects during phase transformation increased with stress, in turn leading to 

increased energy dissipation and wider hysteresis. As Ni content increased to 51.2 at. %, 

the morphology of the martensite changed, with growth of martensite plates limited to the 

space between large precipitates. Thus, additional energy would be dissipated due to the 

interaction between the interphases of martensite and H-phase precipitates, resulting in an 

increased thermal hysteresis (30–45 °C) in the 51.2Ni alloy. Similar effects of the 

microstructure on thermal hysteresis under stress have been observed in NiTiHf/Zr alloys 

[137, 138]. The decrease in thermal hysteresis as Ni content reached 52 at. % can be 

attributed to the high strength of the alloy where small irrecoverable strain (less than 0.2%) 

was obtained even at a stress level of 2 GPa. In this case, dissipation of energy due to defect 

generation during phase transformation can mostly be neglected.  

The high strength of the alloys can be attributed to a combination of solid-solution 

and precipitation hardening. The 50.3Ni alloy has no precipitates and has lower strength 

compared with the other alloys, but is still considerably stronger than single phase Nitinol 

compositions. However, it has been previously reported that the strength of 50.3Ni can be 

increased substantially by nano precipitation after aging and perfect shape memory and 

superelastic behavior can be obtained [113, 114, 139, 140]. The furnace cooled 50.7Ni was 

already precipitation hardened and almost full shape recovery is observed under 1000 MPa. 

The 51.2Ni and 52.0Ni alloys had an even higher volume fraction of precipitate phase in 

the furnace cooled condition and they were capable of exhibiting shape memory effect 
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under 1500 and 2000 MPa, respectively. Since the precipitates in these two alloys are very 

large, high strength can be attributed to a number factors including the contribution from 

solid solution hardening, constraints due to the large interfacial area and a change in 

martensite morphology and type of twinning.  

Figure 3.7a illustrates the Ms temperature of the Ni-rich NiTiHf alloys as a function 

of applied stress, extracted from the results shown in Figure 3.4. The extrapolation of the 

data to zero stress provides the Ms in the stress-free conditions, which is in a good 

agreement with the Ms determined from the DSC results shown as hollow markers in Figure 

3.7a. It is worth to mention that the Ms for 52.0Ni in stress free condition is between 80–

100 °C. The linear behavior shown in Figure 3.7a is consistent with CC (Equation 1.3) 

Nevertheless, the experimental slopes of the curves in Figure 7a, vary significantly across 

the various samples, which is difficult to explain with the CC equation alone.  

The CC relationship is obtained from Equilibrium Thermodynamics as applied to 

first order phase transformations. In the case of martensitic transformations, the strict 

applicability is restricted to “clean” experiments, i.e. single phase and single crystal 

microstructure and stress-induced transformation to obtain a single martensite variant [32]. 

For the present study, only the 50.3Ni alloy even approaches these requirements, as it 

represents a single phase microstructure.  In the case of 50.7Ni, 51.2Ni and 52.0Ni, the 

internal stress fields created by the precipitates introduce local variables that are not 

accounted for by Equilibrium Thermodynamics, which restricts the quantitative accuracy 

of the CC equation. In ref. [141] a thermodynamical analysis including elastic and 

dissipative energy terms is presented, which can explain the lower CC slopes exhibited by 

samples containing precipitates in spite of their lower transformation strain. The very 
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different slopes exhibited by the stress vs. Ms lines for the 50.3Ni and 50.7Ni alloys results 

in an intersection of the lines at about 170 °C (Figure 3.7a). Thus for higher temperatures, 

the stress needed to stay in martensitic phase is lower in the 50.7Ni alloy than in 50.3Ni, 

in spite of the fact that the Ms (at zero stress) for the 50.7Ni alloy is notably lower.  

It is clear from Figure 3.7a that Ms does not change significantly with applied stress, 

resulting in a large CC slope of 42.5 MPa/ °C in the 50.3Ni alloy, while the CC slope is 

~12 MPa/ °C in 50.7Ni. In fact, the 50.7Ni alloy has the lowest CC slope and the highest 

recoverable strain (Figure 3.6a) of the NiTi-20Hf alloys investigated. Also, the CC slope 

is in the range of 22–25 MPa/ °C for the 51.2Ni and 52.0Ni alloys.  

The lack of superelasticity in the present Ni-rich NiTi-20Hf alloys is likely due to 

the high CC slopes and high stress-strain slope during transformation (transformation 

hardening), allowing plastic deformation to occur before significant transformation 

behavior can be induced.  Since the CC slopes are relatively high, the required stress to 

induce martensitic transformation increases quickly with temperature and as a consequence 

shrinks the temperature window over which superelastic behavior can occur. In addition, 

the stress-strain slope in the transformation region increases with Ni concentration, 

requiring higher stress levels to complete the transformation, increasing the chance for 

plasticity to occur instead. Thus the likelihood of exhibiting superelasticity is extremely 

diminished, particularly in the more Ni-rich compositions. The difficulty for detwinning 

can stem from the strong internal stress fields developed around the big precipitates, and 

difficulty to move (001)B19’ compound twins. When the stress fields around the precipitates 

are not along the direction of the external stress, the effective bias stress acting in the 

transformable regions (located in between the large precipitates) is diminished, and larger 
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applied external stresses are needed to reorient martensite variants. This is evidenced in 

Figure 3.6a, which shows that the recoverable strain is saturated and starts to decrease at 

about 700-800 MPa in 50.3Ni and 50.7Ni, but for 51.2Ni and 52.0Ni the recoverable strain 

increases continuously with the external stress.  

 

Figure 3.7: Stress vs. Ms temperature (a) and Ms–Mf (b) of Ni-rich NiTi-20Hf. 

 

The difference between Ms and Mf at different stress levels for the furnace cooled 

Ni-rich NiTi-20Hf alloys are plotted in Figure 3.7b. It is clear from thermal cycling 

responses (Figure 3.4) that the martensitic transformation behavior is highly dependent on 

Ni content and the resulting characteristics of the microstructure. The Ms is lower than As 

for 50.3Ni while Ms becomes greater than As as Ni content was increased above 50.7 at. 

%. This change in transformation behavior can be attributed to the effects of precipitates 

to store elastic energy during the forward transformation. It is also evident from Figures 

3.4 and 3.7b that the difference between Ms and Mf increases more rapidly with stress in 

50.7Ni. This indicates a low strain-temperature slope during cooling in thermal cycling 

responses (Figure 3.4) that result in an increased elastic energy storage during forward 

transformation. Stored elastic energy helps the martensite to austenite transformation and 

less overheating is needed to initiate the reverse transformation, resulting in a shift of As 
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to lower temperatures. It is clear from Figure 3.7b that the difference between Ms and Mf 

is not linear in the 52.0Ni alloy and is instead related to the applied stress in a more 

complicated fashion, having little dependence on stress between 500 and 1000 MPa, but 

much more sensitive to stress at lower and higher levels. At low stress levels (<300 MPa), 

the martensitic transformation is not detected in the load-biased thermal cycling response, 

since the applied stress is not sufficient to reorient martensite variants as shown in Figure 

3.4, leading to a self-accommodated structure. However, similar to 50.7Ni, the difference 

between Ms and Mf becomes greater at high stress levels resulting in more elastic energy 

stored in the matrix during the forward transformation, which then helps promotes the 

reverse transformation. 

3.4 Conclusion 

In this chapter the effects of stoichiometry (Ni content) on the shape memory properties 

and microstructure of furnace cooled Ni-rich NiTi-20Hf alloys were investigated. The 

findings can be summarized as follows: 

1. H-phase precipitates were formed in the Ni50.7Ti29.3Hf20, Ni51.2Ti28.8Hf20 and 

Ni52Ti28Hf20 alloys during furnace cooling after homogenization. The 

Ni50.3Ti29.7Hf20 alloy was precipitate free under the same condition.  The size and 

volume fraction of H-phase precipitates increased with Ni content. The 

composition of the H-phase was richer in Hf, poorer in Ti, and slightly richer in Ni 

as compared to the nominal composition of the matrix.  

2. The Nickel content of the NiTi-20Hf alloys and the volume fraction of H-phase 

precipitates are the two main factors that affect transformation temperatures. 
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However, there is no clear trend for the TTs of the furnace cooled Ni-rich NiTi-

20Hf with composition due to the fact that the furnace cooled alloys have different 

starting compositions and amounts of precipitate phase. 

3. Martensite morphology varied with Ni content of the Ni-rich furnace cooled NiTi-

20Hf alloys, as a consequence of the different microstructures. Nanometer size 

precipitates are readily absorbed by martensite plates in Ni50.7Ti29.3Hf20. In contrast, 

the nucleation and propagation of martensite variants is limited in the space 

between larger H-phase precipitates for the 51.2Ni and 52.0Ni alloys. In addition, 

(011) type I twins was the dominant twinning mode in the alloys with nanosize 

precipitates while (001) compound and (011) type I twins were observed in the 

alloys where the martensite plates were constrained between precipitates.  

4. The strength and shape memory properties of NiTi-20Hf alloys are highly 

composition dependent. As Ni content increased, the recoverable strain decreased 

while the strength of the material increased. Considerable plastic deformation took 

place at a stress level of 700 MPa in precipitation free Ni50.3Ti29.7Hf20, while near 

perfect dimensional stability with less than 1% recoverable strain was observed at 

stress levels greater than 1500 MPa in the Ni52Ti28Hf20 alloy. The decrease in 

recoverable strain with Nickel content in furnace cooled NiTi-20Hf alloys can be 

attributed to the increased volume fraction of non-transformable H-phase 

precipitates. The higher strength of NiTiHf compared to NiTi can be attributed to 

solid solution hardening, precipitation hardening, and changes in martensite 

twinning behavior.   
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5. Poor superelastic behavior of the furnace cooled Ni-rich NiTi-20Hf alloys is due 

to high CC slopes and a high stress-strain slope during transformation, which 

increases with Ni content.  Both factors favor plastic deformation instead of 

transformation behavior. 
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4 Effects of Heat Treatments 

4.1 Introduction 

The most efficient method for increasing material strength and tailor the shape 

memory properties is precipitation hardening. Heat treatments could result in precipitation 

formation in SMAs that could be utilized to control TTs and increase material strength. 

The strengthening ability of the precipitates depends on the size, composition and 

interparticle distance. The precipitates act as an obstacle in the path of dislocation which 

dislocation must cut through the precipitate or must loop around it.  

In the early stage of precipitation formation in the alloy, precipitates are small in 

size and are dispersed finely within the alloy which are expected to be coherent with matrix. 

In this stage, the dislocation has to shear across the precipitates (cut through them) to 

propagate that requires additional stresses, hence, inhibits the slip motion. In case of larger 

precipitates with larger interparticle distance, dislocation could bypass the precipitates by 

looping around them which is related to Orowan looping mechanism. As dislocation passes 

through, it leaves behind a dislocation ring around the particle while stress fields further 

inhibit the next passing dislocation motion. The change in mechanical strength as a 

function of volume fraction of precipitates is mathematically represented by the following 

equation; 

∆𝜏 = 𝛼𝜀𝐺𝜀3/2 (
𝜌

𝑏
)

1

2
               (4.1) 

where b is the magnitude of burger vectors, ρ is the volume fraction of precipitates, ɛ is the 

constrained lattice mismatch and αɛ. Also, the change in strength due to Orowan looping is 

represented by; 



 
 

78 

∆𝜏 = 𝐾
1

(𝐿−2𝑟)

𝐺𝑏

2𝜋√1−𝑣
ln (

2𝑟

𝑟0
)               (4.2) 

where v is the matrix Poisson’s ration, L is the interparticle distance, r is the mean particle 

radius, G is the matrix shear modulus, r0 is the dislocation core radius and b is the burgers 

vector. 

 As part of the maturation process for Ni-rich NiTiHf alloys a more comprehensive 

and systematic study is needed to better understand the effects of aging temperature and 

time on precipitate growth and the subsequent impact on shape memory properties. 

Amongst the common strengthening mechanisms, precipitate strengthening through a 

simple aging treatment is the most practical and cost effective method to increase the 

strength of the material and as an added benefit can be used to tailor the TTs. The effect of 

aging on the microstructure and properties of the Ni50.3Ti29.7Hf20 alloy have been previously 

investigated in some detail [109, 113, 114]. In this chapter, the effects of heat treatments 

on the precipitation characteristics and the corresponding shape memory behavior of a Ni-

rich Ni50.7Ti29.3Hf20, Ni51.2Ti28.8Hf20 and Ni52Ti28Hf20 alloys are investigated. In the previous 

chapter, it was shown that the furnace cooled Ni-rich NiTiHf alloys contain H-phase 

precipitates. In order to investigate the effects of thermal treatments on these alloys, they 

were solution treated at 900 °C for three hours followed by water quenching to avoid 

formation of precipitates in the solutionized condition.   

4.2 Result and Discussion: Ni50.7Ti29.3Hf20 

4.2.1 Transformation Temperatures and Hardness 

The TTs for Ni50.7Ti29.3Hf20 alloy after various thermal treatments were determined 

via DSC using the tangent line method. All samples were thermally cycled three times in 
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the DSC to determine the stability of the peaks. The DSC responses of the Ni50.7Ti29.3Hf20 

alloy as functions of aging temperatures and times are shown in Figure 4.1. The furnace 

cooled samples were aged at temperatures ranging from 300  to 700 °C for a fixed time of 

three hours (Figure 4.1a) and at 500 °C for times between 3 to 24 hours (Figures 4.1b).  It 

is immediately obvious that for furnace cooled conditions, martensite transforms to 

austenite above 100 °C but the stability of the transformation peaks was highly heat 

treatment dependent. 

Figure 4.1a shows an initial decrease in the TTs when the alloys were aged for three 

hours at 300 °C. After the initial drop, TTs increased with aging temperature up to 600 °C 

and then decreased with further increase in aging temperature. After aging at 500 °C, the 

alloy had Mf of 130 °C, which qualifies it as a HTSMA. The peaks were very distinct and 

stable, which can be attributed to the increased strength of the matrix due to the 

precipitation hardening. Transformation peak temperatures were reached to their maximum 

values of 155 ºC and 190 ºC for Mp and Ap, respectively, after 600 °C-3h aging.  Thermal 

hysteresis increased from 23 to 48 °C as aging temperature raised from 300 to 700 °C. 

Figure 4.1b illustrates the effects of aging time (from 3 to 24 hours) at 500 °C. When the 

samples were aged at 500 ºC, TTs slightly increased with aging time up to 1 hour while 

they increased for longer durations. 

In order to broaden our knowledge of the effects of aging on shape memory 

properties of Ni50.7Ti29.3Hf20 alloy, the alloy was solution treated at 900 °C for three hours 

followed by aging at selected temperatures from 400 to 700 °C for three hours. The 

resulting DSC responses over three cycles are illustrated in Figure 4.1c. After an initial 

decrease in TTs from the solutionized condition, TTs increased with aging temperature up 
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to 650 °C and then decreased slightly with aging at 700 ºC. In particular, the transformation 

peaks were very sharp and stable after 550 °C-3h aging where thermal hysteresis had its 

lowest value of 33 °C. Forward transformation peak was below 100 °C for aging up to 450 

°C-3h while it reached the maximum of ~160 °C after 650°C-3h aging. 

 

Figure 4.1: DSC curves for Ni50.7Ti29.3Hf20 (a) aged for three hours at different 

temperatures after furnace cooled, (b) heat treated at 500 °C for various time  and (c) three 

hours aging after solution treated. 

 

Figure 4.2 represents the hardness measurements and transformation peak 

temperatures obtained from Figure 4.1  for the Ni50.7Ti29.3Hf20  alloys aged after furnace 

cooled (Figure 4.2a) and solution treated (Figure 4.2b). Hardness increased from 506 HV 

in the furnace cooled condition to a maximum value of 580 HV after 500 °C-3 h aging, and 

then decreased with further increase in aging temperature. In solution treated condition, 

hardness increased from 337 HV to a maximum value of 560 HV for the sample aged at 

600 °C-3h. It is clear from Figure 4.2 that the hardness and peak transformations in 

solutionized case is lower than the ones in furnace cooled samples which can be attributed 

to the size and volume fraction of precipitates. It has been shown in Chapter 3 that nanosize 

precipitates already existed in the furnace cooled 50.7Ni and further aging could alter the 
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volume fraction of the precipitates which could be the reason for higher TTs in contrast 

with solutionized case.   

 

Figure 4.2: Vickers hardness measurements and transformation peak temperatures of 

Ni50.7Ti29.3Hf20 as a function of three hours aging temperatures for (a) furnace cooled and 

(b) solutionized conditions. 

 

Hardness, an indicative parameter of material strength, has a complex dependence 

on the size and distance between the precipitates [5, 13]. The material strength, as observed 

from the hardness results, reaches to its maximum value after three hours aging at 500-600 

°C, which can be attributed to the formation of fine, densely spaced and coherent 

precipitates. The size of the precipitates and also the interparticle distance are a function of 

aging temperature. Moreover, the precipitates would tend to become semicoherent or 

incoherent as their size become large. At higher temperatures, the precipitates become 

larger in sized and consequently the interparticle distance increases, therefore, the strength 

of the alloy decreases. 

The initial drop in TTs at low aging temperatures, compared to the furnace cooled 

or solutionized condition, is likely due to the formation of very small (a few nanometers in 

size) and finely spaced precipitates in the material.   In this case there are two competing 
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effects to be considered: the need for additional strain energy for nucleation and 

propagation where the matrix can transform to martensite and envelope the fine precipitates 

(which requires additional undercooling and thus lowers the TTs) and the depletion of Ni 

from the matrix, which would result in an increase in TTs [110, 116].  In the case of the 

low aging temperatures and times, the precipitates are small and strain energy dominates 

compositional affects resulting in an initial decrease in TTs, as previously demonstrated 

for similar NiTiHf and NiTiZr alloys [110, 116].  It has also been recently observed [142] 

that a precursor precipitate phase, H’, to the typically observed H-phase [110, 111] occurs 

at low aging times and temperatures in this alloy under the same conditions where this drop 

in TTs is generally observed.   

The eventual increase in the TTs with an increase in aging temperature is attributed 

to the growth of the precipitates, which further diminishes the Ni content in the matrix, 

such that compositional effects dominate and TTs increase. The final decrease in the TTs 

for aging temperatures beyond 600 °C is subsequently attributed to a reduced volume 

fraction of precipitate phase as the solvus temperature is approached resulting in less Ni-

depletion of the matrix compared to intermediate aging conditions.  

4.2.2 Microstructural Analysis 

Figure 4.3a presents a high magnification micrograph of the Ni50.7Ti29.3Hf20 alloy 

after 500 ºC-3h aging. Nanometric precipitates similar to those present in the furnace 

cooled 50.7Ni can be distinguished. By comparing Figures 3.2d and 4.3a, it is found that 

aging of the furnace cooled material results in an increased number of precipitates, but their 

size decreased after aging, being about 4–10 nm in width and 10–25 nm in length. Thus, 

the aging treatment modified the microstructure in the furnace cooled sample by decreasing 
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the precipitate size and increasing the precipitate density. The smaller precipitate size in 

the aged Ni50.7Ti29.3Hf20 alloy facilitated their absorption by the growing martensite plates, 

resulting in notably larger martensite plates in the aged samples (Figure 4.3b), compared 

to the furnace cooled  condition (Figure 3.2c). Interestingly, 500 °C-3h aging of the furnace 

cooled 50.7Ni resulted in an increased density of precipitates and decreased precipitate 

size, relative to the original furnace cooled material. This would indicate that the nucleation 

rate of the precipitation reaction was significantly higher at 500 °C than at more elevated 

temperatures, while the growth rate was slower (in furnace cooled 50.7Ni the precipitates 

start to grow at temperatures above 500 °C during the furnace cooling treatment ). TTs of 

Ni50.7Ti29.3Hf20 were increased after aging for three hours at various temperatures due H-

phase precipitation and resulting Ni depletion of the matrix. 

Figure 4.3c is representative of TEM micrograph of the solution treated specimen 

at 900 °C for three hours. Similar to furnace cooled sample, the martensite observed in the 

solutionized case was identified as monoclinic B19’.  In addition, The large martensite 

plate is related to the (001)B19’ compound twinning mode, which is confirmed by the 

selected area diffraction pattern inserted in  Figure 4.3c. 

 

Figure 4.3: (a) High magnification, (b) lower magnification micrographs of Ni50.7Ti29.3Hf20 

aged at 500 ºC for 3h and (c) TEM micrograph of solutionized at 900 °C-3h. 
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4.2.3 Thermal Cycling and Isothermal Stress-Strain Behavior 

Figure 4.4 illustrates the thermal cycling response of solution treated, 450 °C-3h 

aged and 550 °C-3h aged Ni50.7Ti29.3Hf20 under applied constant compressive stress levels. 

It is good to notice that the heat treatments was done after material was solutionized at 900 

°C. The stress was isothermally applied above the Af temperature and then the sample was 

thermally cycled between a temperature below the Mf and a temperature above the Af at a 

constant stress. After thermal cycle was completed, the stress was increased to the next 

level and the thermal cycling was repeated. 

In agreement with the DSC results shown in Figure 4.1c, the TTs at 100 MPa were 

lower for 450 °C-3h aged condition and were higher for sample aged for three hours at 550 

°C compared to the solutionized case.  There was also the typical stress effect on TTs where 

the Ms for the solution treated material increased from 110 to 118 °C when stress raised 

from 100 to 500 MPa. Similarly the Ms was 85 °C at 100 MPa and increased linearly to 

108 °C at 500 MPa for the 450 °C-3h aged sample. Also, the Ms had its maximum value 

of 148 °C when stress reached to 1000 MPa in 450 °C-3h aged samples. Furthermore, the 

Ms was shifted to the higher temperatures after 550 °C-3h aging where it increased from 

143 °C at 100 MPa to 172 °C at 500 MPa and the Ms was more than 200 °C for applied 

stress of 1000 MPa.  
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Figure 4.4: The strain vs. temperature response of Ni50.7Ti29.3 Hf20 in the solution treated, 

450 °C-3h, and 550 °C-3h aged conditions. 

 

At low stress levels, only a small shape change was observed due to the high stress 

required to reorient and/or detwin the martensite variants; however, at elevated levels of 

stress, a greater fraction of favorable martensite variants can form resulting in a greater net 

shape change. The total strain, increased from 0.6 to 1.9% and the thermal hysteresis 

increased from 27 to 49 °C when applied stress was increased from 100 to 500 MPa for the 

solution treated sample. A fully recoverable strain of 0.4% at 100 MPa and 1.4% at 500 

MPa was observed in the 450 °C-3h aged sample. No irrecoverable strain was observed in 

the 450 °C-3h aged sample for an applied stress of 500 MPa and the thermal hysteresis was 

found to be below 30 °C for all stress levels except for 1000 MPa,  where the hysteresis 

increased to 59 °C and irrecoverable strain of 0.6% was achieved. The recoverable strain 

was 0.4% at 100 MPa and 1.6% at 500 MPa for the alloy aged three hours at 650 °C. No 

irrecoverable strain was observed under 500 MPa while increasing stress to 1000 MPa 

resulted in total strain of 2.2% with corresponded irrecoverable strain of 0.5%. The thermal 

hysteresis for this sample was 22 °C at 500 MPa and reached to a maximum of 53 °C as 

stress increased to 1000 MPa. 
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The isothermal compression (superelastic cycling) result for the solution treated 

material is shown in Figure 4.5a. The alloy is not in fully austenite at temperatures below 

130 °C, therefore, when the sample was loaded to a total strain of 4%, a residual strain was 

observed upon unloading. This residual strain was completely recovered after heating the 

unstressed sample above Af. Almost fully recoverable cycle with 3% stain was observed at 

temperatures 130 °C and 150 °C where the critical stress for the forward martensite 

transformation (σSIM) was as high as 660 and 790 MPa, respectively. As the test 

temperature increases, σSIM increases accordingly, but the level of stress required for plastic 

deformation (σp) decreases [109]. Thus, the high σSIM and lower σp could result in some 

plastic deformation concurrent with the phase transformation, resulting in the irrecoverable 

strain observed after superelastic cycling at higher temperatures. For example, in the 

solution treated sample, a poor superelastic behavior with 0.8% residual strain was 

observed when the sample was loaded to 4% at 150 °C. 

The stress-strain behavior of the 450 °C-3h aged sample is shown in Figure 4.5b. 

In contrast to the solutionized material, near perfect superelastic response with recoverable 

strain of 4% was observed at 110 °C. However, a further increase in test temperature with 

a concomitant increase in σSIM led to an irrecoverable strain after loading to 4% at 

temperatures above 130 °C. The σSIM achieved a high stress level of ~1000 MPa where the 

irrecoverable strain was 0.6% after 4% deformation at 170 °C.    

The superelastic behavior of the 550 °C-3h aged sample is shown in Figure 4.5c. 

Loading to ~1000 MPa at 150 °C resulted in 0.5% residual strain. Upon heating the residual 

strain was fully recovered. When the same test was conducted at 170 °C, perfect 

superelastic behavior with 4% recoverable strain was observed.  Full recovery of 3% strain 
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was also experimented at 190 °C and 210 °C while the plastic strain increased as the sample 

was loaded to higher strain levels at this temperatures.  

Nevertheless, the improvement of the superelastic behavior with aging can be 

attributed to the presence of coherent and fine precipitates, which strengthens the matrix. 

However, the superelastic window is very narrow since the material is not strong enough 

and plastic formation instantaneously was occurred with stress induced martensitic 

transformation as temperature increased. For instance, the superelastic behavior was just 

limited to one temperature for aged alloys.  

 

Figure 4.5: Stress-strain behavior in compression for the of Ni50.7Ti29.3Hf20 alloy as a 

function of temperature for the (a)  solution treated, (b) 450 °C-3h and (c)  650 °C-3h aged 

conditions. 

 

4.2.4 Shape Memory Properties 

Figure 4.6a illustrates the recoverable and irrecoverable strains of the solutionized 

and aged samples as functions of compressive stress extracted from the thermal cycling 

experiments shown in Figure 4.4. The recoverable strain (ɛrec) was minimum at the lowest 

applied stress level (100 MPa) for all specimen conditions. This is not surprising as ɛrec 

usually reaches a maximum at some intermediate stress level for all SMAs, as the amount 

of oriented martensite for maximum strain capability saturates.  Therefore, for the 
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Ni50.7Ti29.3Hf20 at 100 MPa, the microstructure would be expected to be a combination of 

oriented and some self-accommodated variants. The ɛrec increased steeply until 700 MPa 

and then saturated for most cases, as the ability to form oriented martensite variants 

saturated.  

 

Figure 4.6: (a) Recoverable (solid line) and irrecoverable (dashed line) strains and (b) 

thermal hysteresis of Ni50.7Ti29.3Hf20 as a function of applied compressive stress. 

 

In the case of the solutionized sample, the ɛrec increased from 0.5% at 100 MPa to 

1.7% at 500 MPa, where the value was nearly saturated, increasing further to only 1.8% by 

700 MPa. What is noteworthy for the solutionized case is the existent irrecoverable strain 

(ɛir) even at 100 MPa and increased to 0.6% when applied stress was 700 MPa due to low 

strength of the material. In contrast, the thermal cycling response of the aged samples 

exhibited a lower εrec since volume fraction of transforming regions decreased due to 

formation of non-transformable precipitates. A εrec of 0.4% was observed at 100 MPa and 

it increased to a maximum of 1.6% at 700 MPa, and upon further loading the strain was 

observed to decrease slightly while the ɛir reached its highest amount of 0.6%. The thermal 

cycling response for the specimen aged at 550 °C for three hours shows that the εre 

increased slightly in comparison to the 450 °C-3h aged specimen, with only 1% εre 
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observed at 100 MPa. Almost Fully stable shape recovery was experienced only up to 700 

MPa, while further loading to 1000 MPa resulted in εir of 0.5%.  

In martensitic transformations, there are two key energy dissipative processes that 

govern the hysteresis. The first process is the energy dissipated in the form of frictional 

work and the second one is the dissipation of energy due to plastic deformation. The 

magnitude of the total energy dissipation is reflected in the thermal or stress hysteresis. It 

should be kept in mind, in actuator type applications, energy dissipation negatively impacts 

the efficiency of SMA devices.  

Figure 4.6b shows the effects of aging and stress on the thermal hysteresis of the 

Ni-rich Ni50.7Ti29.3Hf20 alloys. The thermal hysteresis was generally observed to increase 

with stress for the solutionized case while remained nearly constant with stress up to 500 

MPa and then increased for the aged conditions. The maximum thermal hysteresis observed 

was for the solutionized condition, which increased from 27 °C at 100 MPa to 72 °C at 700 

MPa. This increase in thermal hysteresis with stress is consistent with the greater plastic 

deformation observed in solution treated sample. In contrast, it is clear that aging results in 

a much stronger matrix as demonstrated by the increased hardness values (Figure 4.2b) and 

little or no irrecoverable strains during thermal cycling up to 700 MPa, which in turn results 

in a small thermal hysteresis. 

Figure 4.7 shows the stress dependence of the Ms temperature, determined from the 

thermal cycling results shown in Figure 4.4. The results indicate that the critical stress for 

initiating the forward transformation has a linear relationship with temperature which 

satisfies the CC relation. Based on this relationship, the CC slope is 23.7 MPa/°C, 13.8 

MPa/°C and 13.7 MPa/°C for the solutionized, 450 °C-3h and 650 °C-3h aged conditions, 
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respectively. The results are in the good agreement with DSC responses where the TTs 

decreased with aging at 450 °C-3h and then increased for 550 °C-3h aged sample. In 

contrast with furnace cooled Ni50.7Ti29.3Hf20, higher CC slopes and lower strength of the 

material (Figure 4.2) could be the reasons for poor superelastic behavior in solutionized 

condition. 

 

Figure 4.7: Applied stress vs. Ms for the Ni50.7Ti29.3Hf20 alloy 

 

4.2.5 Ni50.7Ti29.3Hf20 Conclusions 

The effects of various heat treatments on the shape memory properties of a polycrystalline 

Ni50.7Ti29.3Hf20 alloy were investigated and the main findings can be summarized as 

follows: 

(1) TTs of Ni50.7Ti29.3Hf20 were raised after three hours aging due to Ni depletion of the 

matrix due to formation of Ni-rich precipitates. Aging for three hours at 600 °C 

increased the martensite peak temperature from 104 °C in the furnace cooled condition 

to 155 °C. After solution treated, TTs decreased and the strength of the material 

diminished. TTs were particularly stable during repeated thermal cycling after three 

hours aging at temperatures 500 °C and 550 °C. 
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(2) Thermal treatments can be used to alter the size and coherency of the precipitates, 

which in turn can affect the morphology of the resulting martensite phase, and both 

factors directly influence the shape memory and mechanical properties of the Ni-rich 

Ni50.7Ti29.3Hf20.  In particular, it was found that 500 °C-3h aging resulted in notably 

larger martensitic plates since the volume fraction of precipitates increase while the 

size of them decreased in compared with furnace cooled sample. Also (001)B19’ 

compound internal twins was observed in solutionized condition.  

(3) Aging improved the shape memory and mechanical properties of the solutionized 

Ni50.7Ti29Hf20 alloy. In aged conditions, the alloy exhibits good shape memory behavior 

with less 2% recoverable strain at stress levels up to 700 MPa without training. Perfect 

superelastic behavior at temperatures as high as 170 °C with 3% recoverable strain was 

observed for 550 °C-3h aged sample while the superelastic window was very narrow. 

4.3 Experimental Results: Ni51.2Ti28.8Hf20 

4.3.1 Transformation Temperatures 

 The DSC responses of three hours heat treated Ni51.2Ti28.8Hf20 alloys are shown in 

Figure 4.8a. The DSC curves for solution-treated and samples heat treated up to 500 °C 

have not been shown in Figure 4.8a since no martensitic transformation was observed even 

when they were cooled down to –100 °C. Transformation peak temperatures were shifted 

to above room temperature as heat treatment temperature was elevated above 550 °C. Also, 

transformation peaks show excellent thermal stability after three hour aging at 550–650 

°C, while aging at higher temperatures deteriorated the thermal stability of transformation 

peaks, as clearly illustrated in Figure 4.8a.   
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 Figure 4.8b presents Vickers microhardness, Mp and Ap of aged samples as a function 

of heat treatment temperature. Hardness, which measures the resistance of the material to 

deform plastically, reached its maximum value of 678 after 550 ºC-3h aging and then 

drastically decreased to 528 as aging temperature was increased to 750 ºC. It is worth to 

mention that the alloy is austenite at room temperature after aging at low temperatures, 

while it is martensite as heat treatment temperature was increased above 550 °C. Figure 

4.8b clearly shows that Mp was increased from 14 °C to the maximum value of 89 °C with 

increasing aging temperature from 550 to 650 °C. It is obvious that Ap followed the same 

trend as Mp and it was increased from 73 to 147 °C as the aging temperature was increased 

from 550 to 650 °C.  

 
Figure 4.8: (a) DSC responses of Ni51.2Ti28.8Hf20 after three hours aging at various 

temperature of 550 to 750 °C and (b) Vickers microhardness and transformation peak 

temperatures as a function of three hours aging. 

 

 The higher hardness value after three hours aging at 450 °C can be attributed to the 

fact that the material is austenite at room temperature. Whereas, martensitic transformation 

took place at around room temperature for 550 °C-3h and TTs reached its maximum values 

after aging at 650 °C-3h. The increase of TTs is attributed to formation of precipitates 

which alters the composition of the matrix where more Ni content was depleted from the 

matrix. However, three hours aging above 650 °C decreased the TTs, which indicates that 
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the volume fraction of precipitates decrease at higher temperatures.  Thus, three heat 

treatment temperatures of 450 °C, 550 °C and 650 °C were selected to study the effects of 

precipitates characteristics on shape memory behavior of Ni-rich Ni51.2Ti28.8Hf20. 

4.3.2 Microstructural Analysis 

TEM observations were conducted to investigate the effects of aging on the 

microstructure of Ni51.2Ti28.8Hf20. Figure 4.9 shows a bright-field image and the 

corresponding SAD pattern obtained from the sample solution-treated at 900 °C for three 

hours. Precipitate formation is not confirmed in Figure 4.9a and there are no other 

diffraction spots except for those of B2 austenite phase in Figure 4.9b. It is worth noting 

that diffuse streaks can be seen around the austenite reflections in the SAD pattern. Similar 

diffuse streaks have been reported in Ni52Ti42Zr6 [143] and Ni45.3Ti39.7Hf10Pd5 [125] alloys, 

suggesting the formation of extremely fine precipitates (H or H’ phase) that are difficult to 

be observed by conventional TEM observation. High resolution TEM observations are now 

in progress to determine the size and the crystal structure of the fine precipitates. 

 

Figure 4.9:  (a) Bright-field TEM image and (b) the corresponding SAD pattern of 

Ni51.2Ti28.8Hf20 solution-treated at 900 °C for three hours. 

The microstructure of the 450 °C-3h aged condition is shown in Figure 4.10a and 

its higher magnification image is shown in Figure 4.10b. Aging at 450 °C for three hours 
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produced very fine precipitates with less than 15 nm in size. The high hardness of the 

450 °C-3h aged sample (Figure 4.8b) could be attributed to the formation of the 

homogeneously distributed fine and coherent precipitates. In the SAD pattern shown in 

Figure 4.10c, in contrast to the solution-treated condition, a lot of small diffraction spots 

of precipitates are clearly observed in addition to strong austenite reflections. The fine 

precipitates formed after 450 °C-3h aging were identified as H-phase according to the 

diffraction pattern. The representative reflections of H-phase are at 1/3 positions along 

<110>B2
* in reciprocal space. 

 

Figure 4.10:  (a and b) Bright-field TEM images and (b) the corresponding SAD pattern 

of Ni51.2Ti28.8Hf20 aged at 450 °C for three hours. 

 

Figures 4.11a and b show the low and high magnification bright-field images 

obtained from the 550 °C-3h aged condition, respectively. Aging at 550 °C for three hours 

resulted in the formation of larger precipitates (~15–20 nm) with lower density when 

compared to 450 °C-3h aging. Figure 4.11c is a bright-field image showing almost the 

same area in Figure 4.11b but taken under a condition that the sample was tilted to make 

martensite satisfy Bragg’s law so that martensite plates are visible. Thin martensite plates 

are formed between fine precipitates. Figure 4.11d and e show the corresponding SAD 

pattern and the key diagram, respectively. The SAD pattern consists of diffraction spots of 
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H-phase precipitates and twinned B19′ martensite. According to the diffraction pattern, the 

martensite plates shown in Figure 4.11c are related to (011)B19′ type I twinning. 

 

Figure 4.11:  Bright-field TEM images showing (a and b) H-phase precipitates and (c) 

martensite in Ni51.2Ti28.8Hf20 aged at 550 °C for three hours. (c) SAD pattern and (d) the 

corresponding key diagram where subscripts M and T indicate matrix and twin, 

respectively. 

 

Figure 4.12 shows a TEM micrograph of the 650 °C-3h aged condition. Comparing 

Figure 4.12a to Figures 4.10a and 4.11a, it is clear that high temperature aging increases 

precipitation size and decreases the volume fraction of precipitates. H-phase precipitates 

with ~40–70 nm in size were observed after aging at 650 °C for three hours. Figure 4.12b 

is a higher magnification image showing martensite plates formed between precipitates. 

The martensite plates in the 650 °C-3h aged condition are thicker than those of the 550 °C-

3h aged condition (Figure 4.11c), which is due to larger interparticle distance after aging 
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at higher temperature. {011}B19′ type I twinning is observed at the intervariant boundaries 

of martensite in Figure 4.12b. Figure 4.12c is the corresponding SAD pattern showing 

reflections of H-phase precipitates and {011}B19′ type I twins.  

 

Figure 4.12:  (a and b) Bright-field TEM images of Ni51.2Ti28.8Hf20 aged at 650 °C for three 

hours. (c) SAD pattern and (d and e) the corresponding key diagrams where subscripts M 

and T indicate matrix and twin, respectively. 

 

Figures 4.12d and e represent the key diagrams of the SAD pattern, where Figure 

4.12d shows the reflections of H-phase and (011)B19′ type I twinning and Figure 4.12e 

shows those of (011)B19′ type I twinning. As a result, it is concluded that the thickness of 

martensite plates depends on interparticle distance and intervariant boundaries are related 

to {011}B19′ type I twinning in Ni51.2Ti28.8Hf20. 
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4.3.3 Shape Memory Effect under Stress 

Thermal cycling under compressive stress responses of Ni51.2Ti28.8Hf20 after three 

hours aging at 450 °C, 550 °C and 650 °C are illustrated in Figure 4.13. The shape memory 

effect behavior of solution-treated cannot be observed due to low TTs. Shape memory 

behavior was not clearly experimented under low stresses below 700 MPa for 450 °C-3h 

aged sample as shown in Figure 4.13a. This could be attributed to the fact that the applied 

stress level was not sufficient to form favorable martensite variants and also low TTs. The 

Ms was raised from –20 to 76 °C as stress was increased from 700 to 1700 MPa and almost 

perfect dimensional stability with recoverable strain of ~1.3% was observed under high 

stress level of 1500 MPa. The total strain was 1.4% with a corresponding irrecoverable 

strain of 0.1% as the applied stress was increased to 1700 MPa. In addition, thermal 

hysteresis decreased from 28 to 22 °C when stress was elevated from 700 to 1700 MPa. 

 

Figure 4.13: Thermal cycling under compressive stress of Ni51.2Ti28.8Hf20 in (a) 450 °C-

3h, (b) 550 °C-3h and (c) 650 °C-3h aged conditions. 

 

It is clear from Figure 4.13b that the shape memory behavior can even be observed 

at low stress levels after 550 °C-3h aging. The Ms was 55 °C under 100 MPa and increased 

to 172 °C under 1500 MPa. Total strain was increased from 0.3% to its maximum value of 
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2.1% when applied stress was raised from 100 to 1500 MPa. Whereas, irrecoverable strains 

of 0.03% at 700 MPa and maximum of 0.3% at 1500 MPa were observed. Thermal 

hysteresis was decreased from 40 to 36 °C when the stress was increased from 100 to 700 

MPa and it reached to its maximum value of 45 °C at 1500 MPa. In contrast, only 0.05% 

irrecoverable strain was observed at 1500 MPa and thermal hysteresis was lower when the 

sample was aged at 450 °C-3h. 

Figure 4.13c shows the SME under compressive stress of Ni51.2Ti28.8Hf20 after 650 

°C-3h aging. It is clear that the TTs were increased to the temperatures above 100 °C which 

qualifies the material as HTSMAs. The Ms was raised from 125 to 176 °C with increasing 

stress from 100 to 1000 MPa. On the other hand, material exhibited a poor dimensional 

stability under 1000 MPa where the total strain of 1.8% and a corresponding irrecoverable 

strain of 0.5% were observed. Thermal hysteresis were raised from 34 to 80 °C as stress 

level was increased from 100 to 1000 MPa, which is higher than the values observed for 

the other two aged conditions.  

4.3.4 Superelastic Behavior 

Isothermal stress vs. strain responses of solutionized and aged Ni51.2Ti28.8Hf20 alloys 

at the selected temperatures are shown in Figure 4.14. It is clear that mechanical responses 

of Ni51.2Ti28.8Hf20 alloys are highly test and aging temperature dependent. In solutionized 

samples, almost full recovery with a negligible irrecoverable strain was observed up to 4% 

deformation in the temperature range of –20 to 20 °C. The σSIM was increased from 780 to 

880 MPa as the test temperature was elevated from –20 to 20 °C. Alternatively, aging at 

450 °C-3h was resulted in full recovery of 4% deformation for the temperature window 

from –40 to 40 °C. The σSIM was increased from 890 to 1250 MPa when the test temperature 
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was amplified from –40 to 40 °C. Full recovery was even observed when a high stress level 

of 2 GPa was achieved and the dissipation of energy during the phase transformation was 

lower than the solution-treated condition.  

 

Figure 4.14: Isothermal stress vs. strain behavior of Ni51.2Ti28.8Hf20 for solutionized, 450 

°C-3h, 550 °C-3h and 650 °C-3h aged conditions at the selected temperatures. 

 

Perfect superelastic behavior was observed at high temperatures from 120 to 160 

°C with full recovery of 4% strain after 550 °C-3h aging. At 180 °C, total strain of 3% was 

fully recovered while further deformation to 4% produced a small irrecoverable strain of 

0.15% upon unloading while the material was loaded to 2 GPa. The critical stress to initiate 

the martensitic transformation was increased from 525 to 1415 MPa as test temperature 
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was elevated from 120 to 180 °C. It is clear that the stress-strain cycles were very stable 

after 450 °C-3h and 550 °C-3h aging while the mechanical hysteresis was increased with 

strain in solutionized condition.  Further aging at 650 °C-3h was resulted in poor 

superelastic behavior as shown in Figure 4.14. Remained strains were 0.8% and 0.6% after 

loading to 1000 MPa at 120 and 140 °C, respectively, and fully recovered upon heating 

above Af. The stresses required for austenite to transform to martensite phase were 365 

MPa and raised to 990 MPa as temperature was increased from 120 to 180 °C, while 

irrecoverable strain of 0.4% was observed after 4% deformation at 180 °C. 

4.4 Discussion of Results: Ni51.2Ti28.8Hf20 

4.4.1 Transformation Characteristics 

Martensitic transformation of Ni51.2Ti28.8Hf20 highly depends on the precipitation 

characteristics. At low aging temperatures, very fine H or H’ phase precipitates with short 

interparticle distances were homogenously distributed throughout the structure and 

suppress the nucleation of martensite. It has been also shown that stress was not sufficient 

to initiate the nucleation of martensite and select the favorable martensite variants at low 

stress levels after 450 °C-3h aging. Above 500 MPa the volume fraction of favorably 

oriented martensite variants increased gradually with stress but still the transformation 

strain was low. On the other hand, TTs were shifted to the higher temperatures as 

precipitates became larger in size after 650 °C-3h aging where martensite plates could form 

in the space between the precipitates. As mentioned in the introduction of this chapter, the 

strength of material strongly depends on the precipitate size and the space between them. 

Fine coherent precipitates with short interparticle distances formed in the material after 

aging at low temperatures which they act as obstacles against dislocation motion and 
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improve the strength of the alloy. The size and space between the precipitates increase after 

aging at high temperatures (> 550 °C) and the strengthening effect diminishes. The high 

strength can also be attributed to twinning morphology in this material. In addition, It has 

been reported [62] that small precipitates are sheared by dislocation cutting through them 

which new interface between precipitates and matrix is produced and increased the 

interfacial energy, hence, the strength of material improved. In the case of bigger 

precipitates with longer interparticle distances, dislocations could bypass the precipitates 

by looping around them instead of cutting through them. 

Recoverable strains were determined as the difference between the total and 

irrecoverable strains which were extracted from the thermal cycling under stress results 

shown in Figure 4.13 and they are plotted in Figure 4.15a. The recoverable strains were 

increased with stress and reached its maximum value of 1.3% and 1.8% at 1500 MPa for 

450 °C-3h and 550 °C-3h aged conditions, respectively, and they were saturated above 

1200 MPa for both conditions. Whereas, recoverable strain reached to its peak value of 

1.4% at 700 MPa and then decreased instantaneously with stress for the 650 °C-3h aged 

sample, which has the lowest strength. Initial increase of recoverable strain with applied 

stress is attributed to the increase in the volume fraction of favorable martensite variants 

with stress. The decrease of recoverable strain at high stress levels can be ascribed to 

formation of plastic deformation during the martensitic transformation, hence, increased 

amount of irrecoverable strain.  

It is known that the transformation strain depends on the size and volume fraction 

of the precipitates in NiTiHf alloys [114, 137]. For Ni51.2Ti28.8Hf20, very fine precipitates 

with small interparticle spacing are formed after low temperatures aging as shown by the 
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TEM images in Figure 4.10. It should be noted that when the precipitate size and 

interparticle distance is small, large martensite plates form to absorb the particles [110, 

136-138].  At high aging temperatures, the precipitates became larger in size with longer 

interparticle distances and martensite plates could nucleate and propagate in the space 

between the precipitates (Figure 4.12). The recoverable strain slightly increased with aging 

temperature, which can be attributed to a slight decrease in volume fraction of non-

transformable precipitates with aging temperature which was previously observed in NiTi 

alloys [34, 61, 144]. As mentioned before, the strength of material diminishes with increase 

in precipitate size and interparticle distance. Irrecoverable strains were negligible at low 

stress levels and then increased as transformation strain saturates at stress levels above 

1200 MPa for 450 °C-3h and 550 °C-3h aged conditions. However, irrecoverable strain 

was drastically increased when stress was raised above 700 MPa and reached to 0.5% under 

1000 MPa after 650 °C-3h aging.  

 

Figure 4.15: (a) Recoverable (solid line) and Irrecoverable (dashed line) strains and (b) 

Thermal hysteresis of Ni51.2Ti28.8Hf20 in 450 °C-3h, 550 °C-3h, and 650 °C-3h aged 

conditions. 

 

Figure 4.15b illustrates the thermal hysteresis of aged Ni51.2Ti28.8Hf20 which was 

determined as the difference between the midpoints of cooling and heating curves of 
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thermal cycling under stress results shown in Figure 4.13. Thermal hysteresis was below 

30 °C for the 450 °C-3h aged sample where the maximum irrecoverable strain was 0.1% 

at the high stress of 1700 MPa. However, thermal hysteresis was increased above 30 °C 

and large irrecoverable strains of 0.3% and 0.5% were obtained at the stress levels of 1500 

and 1000 MPa, after 550 °C-3h and 650 °C-3h aging, respectively. The low thermal 

hysteresis and irrecoverable strain after 450 °C-3h aging can be attributed to the high 

strength of the material due to formation of fine precipitates which act as pinning sites 

against dislocation movement. It is clear that the decrease in thermal hysteresis with stress 

is due to the increase of volume fraction of favorable martensite variants, which results in 

decreased of dissipation energy due to less interaction between martensite variant 

interfaces. On the other hand, thermal hysteresis was increased with stress in 650 °C-3h 

aged samples, which linked to the lack of precipitation hardening due to the formation of 

large particles that leads to increase of plastic deformation with stress. It is worth to 

mention that the mechanical and thermal hysteresis are in a good correlation with each 

other where the mechanical hysteresis has the lowest value for 450 °C-3h aged condition 

and high stress hysteresis was observed after 650 °C-3h aging. 

4.4.2 Martensitic Transformation Behavior 

Transformation temperatures were determined from thermal cycling responses by 

using the tangent line method and phase diagrams of aged samples are illustrated in Figure 

4.16. The TTs were shifted to the higher temperatures with stress and aging temperature. 

It is significant to mention that the As was lower than the Ms for all the aged samples which 

can be attributed to the high elastic strain stored during martensitic transformation [124, 

145, 146]. Although, the difference between the Ms and Mf is greater after 450 °C-3h aging 
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in contrast to 650 °C-3h aged condition. This indicates that larger undercooling is needed 

to complete the forward transformation after 450 °C-3h aging and the low strain-

temperature slope during the forward transformation designates the high elastic energy 

storage during austenite to martensite transformation. During heating, stored elastic energy 

helps the back transformation that results in decreased As. The high stored elastic energy 

can be due to i) the variation in lattice parameters of the transformation phases, ii) alteration 

in martensite morphology (e.g. twining types) and iii) strong internal stresses due to 

precipitation.  It is clear from Figure 4.16 that, Ms and As are close to each other at low 

stress levels while the difference between them (Ms–As) increases with stress. Thus, two 

types of transformations that are classified as type I (As > Ms) and type II  (As < Ms) 

transformations [39] are observed in this alloy system. Similar behavior was observed in 

furnace cooled 50.7Ni and 52.0Ni (Figure 3.4) where Ms was greater than As at stress levels 

above 500 MPa. This behavior can be explained by thermodynamical analysis where Ms 

and As are conveyed by the following equations [33]: 

Ms = T0 −
∆Gel

i

|∆S|
−

∆Gdis

|∆S|
             (4.3) 

As = T0 −
∆Gel

f

|∆S|
+

∆Gdis

|∆S|
             (4.4) 

In the equations 4.3 and 4.4, T0 is the chemical equilibrium temperature, ∆S is the change 

in the chemical entropy, ∆Gdis is the dissipation energy, ∆Gel
i  is the initial elastic energy 

during nucleation of martensite variants and ∆Gel
f  is the total elastic energy when 

martensitic transformation fully completed. It is evident form Figure 4.16 that the 

transformation behavior in the aged Ni51.2Ti28.8Hf20 alloys can be categorized as type II (As 
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< Ms) transformation at high stress levels above 300 MPa. The temperature different 

between Ms and As, ∆T(Ms-As), can be expressed as : 

∆𝑇(𝑀𝑠−𝐴𝑠) = (∆𝐺𝑒𝑙
𝑓

− ∆𝐺𝑒𝑙
𝑖 ) − 2∆𝐺𝑑𝑖𝑠          (4.5) 

Equation 4.5 clearly shows that the difference between Ms and As is related to stored elastic 

strain and dissipation energies of the system. Type I transformation is associated with the 

negative ∆T(Ms-As) which indicates that the amount of dissipation energy is larger than 

stored elastic energy. Alternatively, for positive ∆T(Ms-As), the stored elastic energy is 

greater than twice of dissipation energy.    

 

Figure 4.16: Phase diagrams of Ni51.2Ti28.8Hf20 in 450 °C-3h, 550 °C-3h, and 650 °C-3h 

aged conditions. 

 

The experimental values of ∆T(Ms-As) as functions of applied stress and aging 

conditions are summarized in Table 4.1. Mostly, type II transformation is observed except 

in the 550 °C-3h aged alloys where Ms is less than As under 100 MPa (type I 

transformation). The ∆T(Ms-As) parameter increases with stress as shown in Table 4.1. Based 

on equation 4.5, the difference between the total stored elastic energy and the dissipation 

energy increases with stress since the difference between Ms and As is greater at higher 

stress level as shown in Table 4.1. Meanwhile, ∆T(Ms-As)  is decreased from 38 to 25 °C at 
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1000 MPa as the aging temperature increased from 450 to 650 °C. This could be attributed 

to the effects of precipitates on the morphology of martensite, compatibility of 

transforming phases and strength of material. The strength of material was improved due 

to formation of nanosize precipitates with short interparticle distances after 450 °C-3h 

aging, as a consequence, no plastic deformation was produced during thermal cycling 

under 1000 MPa and low thermal hysteresis (< 30 °C) was observed in this case in contrast 

to other aged conditions as illustrated in Figure 4.15. Thus, improvement of the strength of 

the matrix after 450 °C-3h aging increased the elastic energy storage and decrease the 

dissipation of energy during forward transformation. However, the strength of the alloy 

diminished as the size of precipitates and distance between them increased after 650 °C-h 

aging, hence, large plastic deformation of 0.3% and high thermal hysteresis of 80 °C was 

observed at 1000 MPa. In contrast to low aging temperatures, high applied stress increased 

the stored elastic energy and also dissipation energy where the difference between Ms and 

As decreased. In addition, formation of H-phase precipitates may alter the lattice 

parameters of transforming phases, martensite morphology (i.e. twinning type and density) 

and compatibility of the transforming phases, which in turn affect the amount of stored 

elastic energy and dissipation energy. 

Table 4.1: Transformation temperatures (Ms and As) and ∆T(Ms-As)  at different stress levels. 

 450 °C-3h 550 °C-3h 650 °C-3h 

Stress Ms As ∆T(Ms-As) Ms As ∆T(Ms-As) Ms As ∆T(Ms-As) 

100 ͟  ͟  ͟ 56 59 –3 125 125 0 

300 ͟  ͟  ͟ 86 77 9 131 128 3 

500 –24 –37 13 101 85 16 146 137 9 

700 –20 –42 22 117 89 28 161 142 19 

1000 6 –33 39 139 104 35 176 151 25 

1500 59 5 54 172 126 46 ͟ ͟ ͟ 

1700 77 16 61 ͟  ͟  ͟  ͟ ͟ ͟ 
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Figure 4.16 shows that the Ms was linearly increased with stress and CC slopes 

increased from 11.1 to 16.3 MPa/ ºC as aging temperature was elevated from 450 to 650 

°C. It should also be noted that Af is both aging temperature and stress dependent. The Af 

increases almost linearly for all aged conditions while it increases more rapidly with stress 

for the low strength 650 °C-3h aged samples due to plastic deformation. The superelasticity 

can only be observed above Af and the σSIM depends on the difference between Af and Ms 

and CC slope. The poor superelastic behavior of the 650 °C-3h aged sample could be 

attributed to the high CC slope, large difference between Ms and Af and the low strength 

of matrix due to the formation of large particles. However, formation of fine precipitates 

and relatively low CC slope and Af–Ms after 450 °C-3h and 550 °C-3h aging  resulted in  

perfect superelasticity at low (–20 to 40 °C) and high (120 to 160 °C) temperatures, 

respectively. 

4.5 Ni51.2Ti28.8Hf20 conclusions 

Important finding of the effects of thermal treatments on the microstructure and shape 

memory properties of Ni-rich Ni51.2Ti28.8Hf20 can be summarized as follows: 

1. They have the ability to show shape memory behavior under ultra-high stress levels 

at room and high temperatures. The high strength of the alloy is due to presence of 

fine precipitates with small interparticle distance after three hours aging at 450 and 

550 °C which make them unique candidates for various applications in medical, 

aerospace, automotive and energy industries. 

2. Thermal treatments can be used to tailor the precipitation characteristics and shape 

memory properties.  Homogeneous distribution of fine H-phase precipitates (< 15 

nm) with small interparticle distance was observed after aging at 450 °C-3h which 
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improved the strength of the matrix and suppress the martensitic transformation. 

These nanosize precipitates were absorbed by martensite plates during 

propagation. However, size of precipitates increased to ~40-70 nm and propagation 

of martensite variants was limited in the space between the precipitates. Also, (011) 

B19’ Type I twining mode was observed at the intervariant boundaries. 

3. Near perfect dimensional stability with negligible irrecoverable strain and low 

thermal hysteresis (< 30 °C) was demonstrated during thermal cycling at high 

compressive stress level of 1700 MPa after aging at 450 °C-3h. Further three hours 

aging at 550 °C result in almost full recoverable strain under 1500 MPa with 

thermal hysteresis in range of 30–40 °C. The Ms increased above 100 °C while 

poor dimensional stability with noticeable irrecoverable strain and high thermal 

hysteresis was observed during thermal cycling after aging at 650 °C-3h 

4.  The CC slope increased from 11.1 to 16.3 MPa/ ºC when three hours aging 

temperature raised from 450 to 650 °C. Although, perfect superelastic behavior 

with 4% fully recoverable strain was experimented at temperature ranges of   –40 

to 40 °C and 120 to160 °C as material aged at 450 °C-3h and 550 °C-3h, 

respectively. 

5. In all aged conditions, As was lower than Ms during thermal cycling experiment 

resulting in high stored elastic strain during forward transformation which simply 

helped the reverse transformation.  
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4.6 Results and discussion: Ni52Ti28Hf20 

4.6.1 Transformation Temperature and Microstructure 

DSC response of solution treated Ni52Ti28Hf20 samples were conducted after three 

hours aging at various temperatures ranging from 400 to 750 °C to clarify the effects of 

aging temperature on the TTs and strength of the material. The sample solutionized at 900 

°C for three hours to achieve a single phase microstructure since it has been shown that the 

furnace cooled sample had very large precipitates (Figure 3.2f).  Figure 4.17a shows the 

DSC responses of solutionized Ni52Ti28Hf20 heat treated for three hours at different 

temperatures from 500 to 750 °C. DSC samples were cycled three times in order to reveal 

the thermal stability of transformation peaks. No martensitic transformation was observed 

for solutionized and aged samples up to 450 °C even when they were cooled down to -100 

°C and their DSC results have not been shown in Figure 4.17a. It is clear that the TTs have 

a complex relationship with aging temperature and the transformation peaks are broad.  

Figure 4.17b illustrates the Vickers hardness and transformation peak temperatures 

as a function of aging temperature. It is clear that solutionized and samples aged up to 450 

°C for three hours are in austenite while aged samples above 500 °C are in martensite at 

room temperature. This could be a possible reason for high hardness value of solutionized 

and samples aged up to 450 °C which is in the range of 720-730. The hardness was below 

700 for aging temperature above 450 °C where the material is in martensite. In addition, 

Mp and Ap reached to the maximum temperatures of 53 °C and 106 °C after 500 °C-3h 

aging, respectively. Mp was decreased to –10 °C for 550 °C-3h aged condition while it 

increased to 32 °C after 650 °C-3h aging. Further aging above 650 °C resulted a decreased 

in transformation peak temperatures.  
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Figure 4.17: (a) DSC responses of Ni52Ti28Hf20 after three hours aging at various 

temperature from 500 to 750 °C and (b) Vickers microhardness and transformation peak 

temperatures as a function of three hours aging. 

 

 TEM micrograph and corresponding SAD pattern obtained from solution treated 

Ni52Ti28Hf20 are presented in Figure 4.18. It is clear that the large second phases are existed 

in the alloy even after solutionized at 900 °C. The diffraction pattern from matrix region 

confirmed the B2 austenite for solution treated sample at room temperature. Furthermore, 

the SAD pattern from the second phase along [100] zone axis was not evidence of an H-

phase precipitate. EDS analysis revealed that the average composition of a second phase 

was 58.5 at. % Ni, 29.1 at. % Hf and 12.3 at. % Ti. It is possible that new precipitate phase 

of Ni10(Hf,Ti)7 type is presented in solution treated Ni52Ti28Hf20. Thus, the complex 

behavior of TTs with aging temperatures (Figure 4.17b) could be attributed to presence of 

different phases in solution treated material and detail microstructural analysis is needed.     
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Figure 4.18: TEM micrograph and corresponding SAD pattern of matrix and second phase 

of solutionized Ni52Ti28Hf20. 

 

4.6.2 Shape Memory Effect and Superelasticity  

Thermal cycling under stress responses of the Ni52Ti28Hf20 SMAs in solutionized 

and aged conditions are shown in Figure 4.19. The specimens were strained at temperatures 

above Af followed by thermal cycling between temperatures below Mf and above Af under 

the selected compressive stress. It is clear that TTs and shape memory strains increase with 

the externally applied stress in the all tested Ni52Ti28Hf20 samples as shown in Figure 4.19. 

No martensitic transformation was observed under 100 MPa for solution treated sample 

while the Ms was increase from 72 °C at 100 MPa to 142 °C at 1500 MPa as shown in 

Figure 4.19a. Full recovery of strain was illustrated up to 1000 MPa, however, 

irrecoverable strain of 0.27% was experimented at high stress level of 1500 MPa for 

solution treated condition. The total strain was less than 1% and temperature hysteresis 

increased from 13 °C at 500 MPa to 43 at 1500 MPa.  

It is obvious from Figure 4.19b that shape memory effect was not clearly 

experimented at low stress levels up to 300 MPa after 450 °C-3h aging. As described 

before, this could be attributed to that the stress was not sufficient to select favorable 

martensite variants and also low TTs. The Ms was raised from –8 to 80 °C with increasing 
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stress from 500 to 2000 MPa. The strength of material was improved after 450 °C-3h where 

almost perfect dimensional stability with recoverable strain of less than 1% was observed 

at ultra-high stress level of 2000 MPa. In addition, the thermal hysteresis was below 20 °C 

which made this material an excellent candidate for high strength actuator.   

 

Figure 4.19: Shape memory effect under compressive stress for (a) solutionized, (b) 450 

°C-3h, (c) 550 °C-3h and (d) 650 °C-3h aged Ni52Ti28Hf20. 

 

Shape memory behavior can even be observed at low compressive stress levels for 

550 °C-3h aged sample as clearly shown in Figure 4.19c. The Ms was below room 

temperature for stresses below 700 MPa while it was greater than 100 °C as stress increased 

above 1500 MPa. Total strain was increased from 0.3% at 100 MPa to a maximum of 1.2% 
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at 2000 MPa. Perfect dimensional stability was observed up to 1700 MPa while 

irrecoverable strain of 0.17% was obtained as stress was increased to 2000 MPa. It is worth 

to mention that thermal hysteresis was decreased from 52 to 23 °C with increasing stress 

from 100 to 2000 MPa.  

Figure 4.19d illustrates the thermal cycling under compressive stress of 650 °C-3h 

aged sample where TTs shifted to higher temperatures in contrast to other conditions. The 

Ms was 53 °C at 100 MPa and increased to 139 °C under 1500 MPa. It is clear the strength 

of the material diminished where large irrecoverable strain of 0.4% was obtained at 1500 

MPa. Total strain was raised from 0.2 to 2.4% while thermal hysteresis was increased from 

40 to 53 °C as stress increased from 100 to 1500 MPa.  

 Isothermal stress-strain responses of Ni52Ti28Hf20 for solution treated and aged 

conditions are shown in Figure 4.20. It is clear that the deformation behavior of the alloy 

is dependent on test and aging temperatures. Solutionized sample was fully in martensite 

at –25 °C and the deformation resulted in reorientation of martensite variants. The remain 

strain after unloading at –25 °C and 80 °C was fully recovered by heating up the sample to 

200 °C. Almost prefect superelastic behavior was observed after 3% deformation at 100 

°C while further loading to 4% strain caused failure where the stress was reached to ~2100 

MPa in solutionized condition.  

 Perfect superelastic with 4% recoverable strain behavior was experimented at 

temperature range between –60 to 0 °C after 450 °C-3h aging. The stress level for the onset 

of martensitic transformation was increased from 930 to 1250 MPa with temperature 

raising from –60 to 0 °C. The strength of solution treated material was improved after 450 

°C-3h aging where maximum achievable stress for all selected temperatures was ~ 2200. 
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It is clear that the stress-strain slope in transformation region is high as ~495 MPa/1% while 

the dissipation of energy during loading/unloading cycle, i.e. mechanical hysteresis, is low 

which it is in a good correlation with thermal hysteresis for 450 °C-3h aged sample. 

 

Figure 4.20: Stress vs. strain responses of Ni52Ti28Hf20 for solutionized and aged 

conditions. 

 

The 550 °C-3h aged Ni52Ti28Hf20 was not fully above Af  at temperatures –60 °C 

and –20 °C and the remain strains upon unloading were fully recovered by heating up the 

sample to 200 °C. Almost full recovery was observed after 3% deformation at 20 °C where 

the required stress to induced martensitic transformation was ~700 MPa. Perfect 

superelastic with 3% recoverable strain was experimented at 60 °C while further 
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deformation to 4% was resulted in failure of the sample where the stress level reached to 

~2000 MPa.  

Similar to 550 °C-3h, the material was not in austenite at temperature 60 °C and 80 

°C and the remain strains were fully recovered by heating up the samples above Af for 650 

°C-3h aged condition. Near perfect superelasticity with small irrecoverable strain of 0.1% 

was observed at 100 °C where the σSIM was 1130 MPa. In addition, perfect superelastic 

with 3% recoverable strain and corresponding σSIM of 1370 MPa was experimented at high 

temperature of 120 °C after 650 °C-3h aging.  

4.6.3 Shape Memory Properties 

Recoverable and irrecoverable strains of solutionized and aged samples are 

extracted from the load-biased thermal cycling experiments (Figure 4.19) and are presented 

in Figure 4.21a. It is evident that the recoverable strains increase with applied compressive 

stress due to the fact that applied stress favors certain variants pairs along its loading 

direction. Consequently, with increasing applied stress, the amount of shearing in the lattice 

structures of the transforming phases also increases leading to more transformation strains. 

The increase in the transformation strains is followed by a tendency to saturate as in the 

aged materials. In the solutionized condition, recoverable strain was reached a maximum 

of 0.8% at 1200 MPa and then suddenly dropped as stress increased to 1500 MPa due to 

formation of plastic deformation in the material. 

Maximum recoverable and irrecoverable strains decrease with three hours aging at 

450 °C as shown in Figure 4.21a. The decrease can be derived from the increased volume 

fraction of the precipitates aging temperature. Since the precipitates cannot transform, the 

increase of the volume fraction yields less transformable material in the matrix and thus, 
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smaller recoverable strains are observed with increasing volume of precipitates. Other 

possible reason could be attributed to the difficulty of nucleation of martensite where no 

shape memory behavior was observed at stress levels below 500 MPa (Figure 4.19b) since 

the stress was not sufficient to select favorable martensite variants. It could be predicted 

that fine precipitates with small interparticle distance formed after 450 °C-3h aging that 

created strong local stress fields, thus, more energy need to be provided to overcome the 

internal stress fields and nucleate martensite plates. In addition, the low irrecoverable strain 

links to high strength of the material due to precipitation strengthening.  

 

Figure 4.21: (a) Recoverable (solid lines) and irrecoverable (dashed lines) strains and (b) 

thermal hysteresis of Ni52Ti28Hf20 as a function of compressive stress. 

 

The specimen aged at 550 °C and 650 °C for three hours show slightly higher 

transformation strains as compared to the solutionized and 450 °C-3h aged conditions. This 

case is also similar to what was observed in high strength Ni45.3Ti29.7Hf20Pd5 (at. %) 

polycrystalline SMAs [112] and Ni50.3Ti29.3Hf20 (at. %) HTSMAs [114]. A slight change 

in the lattice parameters of the transforming phases or internal stress fields around the 

precipitates could be responsible for the change (e.g. increase) in the transformation strain 

[34]. It has been reported in 550 °C-3h aged Ni50.3Ti29.3Hf20 that the small precipitates (less 
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than 20nm in size) could absorbed by martensite plates during transformation which 

resulted in an increase in transformation strain.    

The thermal hysteresis was measured graphically as a temperature difference at the 

midpoint of heating and cooling curves (Figure 4.19) and is shown in Figure 4.21b. The 

thermal hysteresis was found to be decreased with stress up to 700 MPa and then increased 

at high stress levels for solutionized Ni52Ti28Hf20. The decrease in thermal hysteresis with 

stress can be attributed to that the more favorable variants were selected at higher stress 

level and the dissipation energy due to interaction between martensite variants was 

decreased and the alloys has high strength to suppress plastic deformation. Therefore,  the 

thermal hysteresis were decreased from 52 °C at 100 MPa to 23 °C at 2000 MPa for the 

550 °C-3h aged condition. The thermal hysteresis was below 20 °C for 450 °C-3h aged 

sample where the material exhibited high strength and low irrecoverable strain. The 

increase in the temperature hysteresis in the 650 °C-3h aged material can be ascribed to 

defect generation upon applied stress due to low strength of alloys (as evidenced from the 

irrecoverable strain increase with stress as shown in Figure 4.21a). It is a well-known fact 

that defect generation dissipates energy and increase hysteresis in shape memory alloys 

[37, 147].  

Figure 4.22 shows the dependence of Ms as a function of applied stress from the 

shape memory curves in Figure 4.19. As expected, Ms increases linearly with stress 

following the CC relationship which was expressed in equation 1.3.  It is clear that the Ms 

are lower for aged conditions in contrast with solutionized sample which indicates that 

there were second phases existed in the matrix after solution treated at 900 °C-3h as shown 

in Figure 4.18. Furthermore, Ms was raised with increasing aging temperature which can 
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be attributed to increase volume fraction of precipitates with aging temperature and more 

depletion of Ni content from matrix, thus the TTs were shifted to higher temperatures. It 

was found that CC slopes were 17.4 MPa/ °C, 16.4 MPa/ °C, 11.3 MPa/ °C and 15.5 MPa/ 

°C for solutionized, 450 °C-3h, 550 °C-3h and 650 °C-3h aged condition, respectively.  

The lack of superelasticity in solution treated can be due to high CC slope and low 

strength of the matrix. However, the CC slope only decreased by 1 MPa/ °C after 450 °C-

3h aging but perfect superelasticity was observed at low temperature window of –60 to 

0°C.  First reason can be related to lower TTs in 450 °C-3h sample as compared to 

solutionized case. Lower TTs allow the superelasticity test conduct at lower temperatures 

where the material has higher strength since the critical stress for slip decreased with 

temperature. In addition, the extreme high strength of the aged sample allows the material 

to show excellent dimensional stability at high stress levels (Figure 4.19b) and perfect 

superelastic behavior (4.20) after 450 °C-3h aging. 

In contrast to 450 °C-3h aged condition, it is clear for Figure 4.22 that the 550 °C-

3h aged sample had a highest recoverable strain and lowest CC slope while the superelastic 

window was very narrow. This could attributed to that the strength of the material was 

diminished while the TTs where increased to higher temperature after 550 °C-3h aging. 

Thus, stress induced martensitic transformation and plastic deformation simultaneously 

were occurred in the matrix which linked to failure of material while it was loading to 4% 

deformation at 60 °C (Figure 4.20). In addition, lack of precipitation strengthening, high 

CC slop and TTs could be the reasons for poor shape memory properties of 650 °C-3h aged 

sample. 
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Figure 4.22: Applied stress vs. Ms for solutionized and aged Ni52Ti28Hf20 alloys. 

4.7 Conclusions: Ni52Ti28Hf20 

Effects of aging on the shape memory properties of Ni52Ti28Hf20 polycrystalline 

SMAs were documented by means of various experimental techniques such as DSC, 

thermal cycling under stress and superelastic tests at constant temperatures. The findings 

can be summarized as following: 

1. The TEM micrograph show the existence of second phases in the solution treated 

sample. In contrast to solution treated case, the TTs shifted to lower temperature 

after three hours aging, while, TTs increase with aging temperature. 

2. Almost perfect dimensional stability with negligible irrecoverable strain observe at 

ultra-high stress level of 2 GPa for 450 °C-3h aged sample. Also, full recovery of 

4% strain illustrates at low temperature range (–60 to 0 °C) with maximum 

achievable stress level of 2.2 GPa and CC slope of 16.4 MPa/ °C after 450 °C-3h 
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aging. The material shows low mechanical and thermal hysteresis due to high 

strength and storage elastic energy during martensitic transformation.  

3. Aging at 550 °C-3h results in near perfect dimensional stability with recoverable 

strain of less than 1.2% at stress levels as high as 2 GPa. The superelastic window 

is narrow since the strength of the alloy reduces while the TTs increase after 550 

°C-3h aging which result  

4. The strength of material diminishes where large irrecoverable strain of 0.4% 

experiments under 1500 MPa after 650 °C-3h aging.  Poor shape memory 

properties of 650 °C-3h sample is due to lack of precipitation strengthening. 
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5 Effect of Stress States  

5.1 Introduction 

It is known that the martensitic transformation in SMAs can be induced not only 

by thermal cycling, but also by applied stress. The deformation modes of SMAs highly 

depend on the structure of transforming phases, martensite morphology, precipitation 

characteristics and crystallographic orientation [5]. Furthermore, it was also illustrated that 

the deformation behavior of SMAs can be altered by the stress states [79, 148-151]. The 

tension-compression asymmetry of SMAs is well established experimentally which can be 

attributed to the difference in deformation mechanisms (e.g twinning types, detwinning) 

with applied stress direction and unidirectional nature of twin deformation [78, 79, 149]. 

The stress-strain curves of NiTi demonstrated considerable asymmetry with stress 

state [71, 78, 79, 148, 149]. It has been concluded that the polycrystalline NiTi 

demonstrates smaller recoverable strain, higher critical stress to induce martensitic 

transformation (σSIM) and steeper transformation stress-strain slopes in compression than 

in tension [71, 148, 152, 153]. For instance, the σSIM was ~200 MPa under compression 

while it was greater than 300 MPa under tension for Ni50.8Ti49.2 after  400 °C-1.5h aging 

[79]. In textured Ni50.8Ti49.2 after 500 °C-15h aging [69], it was revealed that the 

recoverable strain was two times higher in tension than in compression. The critical stress 

for transformation is found to be higher in tension as compared to torsion during the 

deformation of equiatomic NiTi [57]. 

Recently, NiTiHf SMAs are becoming a promising candidate to use in variety of 

applications mainly in aerospace, automotive and energy industries where they will be 
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subjected to bending and/or multiaxial loads. Thus, it is important to study the shape 

memory behavior of NiTiHf under different stress states. In this chapter, shape memory 

properties and superelastic behavior of Ni50.3Ti29.7Hf20 were investigated in tension. 

Ni50.3Ti29.7Hf20 was induction melted and then casted into a 1 inch diameter copper chill 

mold.  The ingot was homogenized at 1050 °C for 72h in vacuum, then extruded at 900 °C 

with 7:1 reduction followed by air cooling. This condition referred to “as-extruded” 

throughout the chapter. The alloys were aged at selected temperatures for three hours to 

study the effects of precipitation on their tensile behavior and the results were compared to 

the previous shape memory characteristics reported under compression. 

5.2 Experimental Results 

DSC responses of Ni50.3Ti29.7Hf20 alloys that are heat treated at selected 

temperatures from 300 to 800 °C for three hours are shown in Figure 5.1a. Each sample 

was thermally cycled for three times to reveal the stability of the transformation peaks. 

Figure 5.1b illustrates the transformation peak temperatures (Mp and Ap) and thermal 

hysteresis of aged samples. The Mp was about or below 100 °C after aging at low 

temperatures region (< 500 °C). After the initial dropped at 400 °C, TTs increased with 

aging temperature and Mp reached the maximum temperature of 189 °C after 700 °C-3h 

aging. Lastly, TTs started to decrease as aging temperature was elevated above 700 °C. 

Thermal hysteresis decreased from 38 to 30 °C with aging temperature raised from 300 to 

500 °C and reached to the maximum value of 48 °C for 700 °C-3h aged sample. It is clear 

from Figure 5.1 that the TTs were increased and stability of transformation peaks were 

improved after three hours aging at 500 and 550 °C. Thus, these two aged conditions are 



 
 

123 

selected to capture the influences of aging on shape memory properties of Ni50.3Ti29.7Hf20 

under tensile stress. 

 

Figure 5.1: (a) DSC responses and (b) transformation peak temperatures (Mp and Ap) and 

thermal hysteresis of Ni50.3Ti29.7Hf20 as a function of aging temperature. 

 

Figure 5.2 represents the thermal cycling behavior of Ni50.3Ti29.7Hf20 in tension for 

the as-extruded, 500 °C-3h and 550 °C-3h aged conditions. The thermal cycling under 

compressive stress [114, 128] was added to Figure 5.2 for comparison. It is clear that TTs 

were increased with stress and aging temperatures for both tension and compression 

conditions. 

Figure 5.2a shows the thermal cyclic behavior of as-extruded alloy.  The Ms was 

increased from 75 to 165 °C as applied tensile stress was elevated from 100 to 600 MPa. 

Total tensile strain was 1.9 % at 100 MPa and increased to 4.9 % at 500 MPa. Near perfect 

shape memory effect with small irrecoverable strain of 0.2 % was observed at 500 MPa. 

However, total tensile strain of 5.5% with corresponding irrecoverable strain of 0.7% was 

detected during thermal cycling under 600 MPa. Furthermore, thermal hysteresis was 

increased with tensile stress and raised from 33 °C under 100 MPa to 63 °C under 500 

MPa. 
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Shape memory behavior of Ni50.3Ti29.7Hf20 after 500 °C-3h aging is shown in Figure 

5.2b. The strength of the material was improved after aging at 500 °C-3h where near prefect 

dimensional stability with negligible irrecoverable strain was demonstrated under tensile 

stress of 500 MPa and only small residual strain of 0.1% was obtained at 700 MPa. Also, 

Ms was shifted to the temperatures above 100 °C and make these alloys a good candidate 

for high temperature applications. Total tensile strains of 1.4%, 3.5% and 4% were 

achieved during thermal cycling under 100 MPa, 500 MPa and 700 MPa, respectively.  The 

thermal hysteresis was lower than 25 °C for the tensile stress levels between 100 to 600 

MPa.  

 

Figure 5.2: Thermal Cycling behavior of (a) as-extruded, (b) 500 °C-3h aged, and (c) 550 

°C-3h aged Ni50.3Ti29.7Hf20 alloys under applied tensile and compressive stress. 

 

Figure 5.2c illustrates the shape memory behavior of 550 °C-3h aged 

Ni50.3Ti29.7Hf20 alloy. The TTs were reached to their highest value amongst all other 

conditions where Ms was 157 °C at 100 MPa and raised to 200 °C at 500 MPa. Furthermore, 

perfect dimensional stability with maximum recoverable strain of 3.6% was exhibited at 

500 MPa. Thermal hysteresis was about 25–30 °C for the stress levels up to 500 MPa.   
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Isothermal tensile stress-strain responses of as-extruded, 500 °C-3h and 550 °C-3h 

aged Ni50.3Ti29.7Hf20 at selected temperatures above Af are illustrated in Figure 5.3. Full 

recovery was not exhibited in as-extruded condition after 5% deformation unloading, 

however, the residual strains were fully recovered upon heating the sample to 300 °C. It is 

noticeable that the σSIM was increased with test temperature for all cases. In as-extruded 

condition, the σSIM was increased from 500 MPa at 160 °C to 680 MPa at 200 °C and it 

decreased after each stress cycle. This could be attributed to the fact that retained martensite 

and plastic deformation assisted the formation stress induced martensite transformation in 

the next stress cycle. 

 

Figure 5.3: Stress-Strain relationship of as-extruded, 500 °C-3h, and 550 °C-3h of 

Ni50.3Ti29.7Hf20 alloy. 

 

Perfect superelasticity with 4% tensile recoverable strain at high temperatures of 

190–210 °C was observed in the 500 °C-3h aged alloy. The σSIM was increased from 530 

MPa at 190 °C to 730 MPa at 230 °C and the alloy reached to 1000 MPa after 4% 

deformation. Negligible irrecoverable strain of 0.05% was experimented after 3% 

deformation at 230 °C. Aging at 550 °C-3h resulted in perfect superelastic behavior 

between temperatures 180 °C and 220 °C. Also, the σSIM was 400 MPa at 180 °C and was 
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increased to 640 MPa when the test temperature raised to 220 °C for 550 °C-3h aged 

condition. 

The stress-strain curves are more stable and the dissipation of energy is lower after 

aging in contrast to the as-extruded condition. The mechanical hysteresis was determined 

as the stress difference between loading/unloading curves in transformation regions at the 

middle of stress-strain curves. The mechanical hysteresis was strain dependent and 

increased from  ~280 MPa after 3% deformation to ~380 MPa after 5% strain at 180 °C 

for the as-extruded condition. The mechanical hysteresis is in the range of 160-220 MPa 

and 200-280 MPa for 500 °C-3h and 550 °C-3h aged conditions, respectively. It is worth 

to mention that the dissipation energy during thermal and stress induce transformation are 

in a good correlation with each other where the as-extruded samples demonstrated high 

thermal and mechanical hysteresis, whereas, low temperatures and stress hysteresis were 

observed after 500 °C-3h aging. 

5.3 Discussion 

Figure 5.4a represents the recoverable and irrecoverable strains of Ni50.3Ti29.7Hf20 

alloys observed in tension from the current results and compression from literature [114, 

128] that extracted from thermal cycling under stress. It is clear that recoverable strain 

increases initially with applied stress which is attributed to the increase in the volume 

fraction of favorable martensite variants with stress. Then, recoverable strain saturates and 

decreases with further increase in stress due to plastic deformation. For instance, the 

recoverable strain of as-extruded sample increased from 1.9% under 100 MPa to maximum 

of 4.7% under 500 MPa and it saturated while 0.2% irrecoverable strain was observed at 

500 MPa and it increases to 0.7% as tensile stress elevated to 600 MPa.     
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It is noticeable from Figure 5.4a that the recoverable strain at low tensile stress level 

of 100 MPa is low for all conditions due to the fact that the stress was not sufficient to 

select favorable martensite variants and mostly self-accommodated martensite plates 

formed during martensitic transformation. Tensile strains after three hours aging at 500 °C 

and 550 °C were almost identical for both aging conditions but lower than the strains of 

as-extruded sample. Formation of non-transformable particles after aging decreased the 

volume fraction of transforming regions in the matrix and hence the tensile strain.  The 

recoverable strains in tension are higher than the ones in compression which can be 

attributed the change in martensite morphology and activation of different martensite 

corresponding variant pairs in tension. 

 

Figure 5.4: (a) recoverable (solid markers) and irrecoverable (hollow markers) strains and 

(b) thermal hysteresis of Ni50.3Ti29.7Hf20 as function of tensile (solid lines) and compressive 

(dashed lines) stresses. 

 

Thermal hysteresis of Ni50.3Ti29.7Hf20 alloys under tension are illustrated in Figure 

5.4b where the thermal hysteresis under compression [114, 128] are also added for 

comparison. Temperature hysteresis highly depends on the dissipation energy through 

friction, defects generation during transformation, interaction between the interphases, 

lattice compatibility between phases and strength of the material. It is clear from Figure 
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5.4b that thermal hysteresis decreases after aging in both tension and compression due to 

precipitation strengthening. Thermal hysteresis increases rapidly with applied stress in as-

extruded condition due to lower strength of the alloy where applied stress is sufficient to 

generate defects during the phase transformation. It is noticeable that the thermal hysteresis 

is almost identical in tension and compression which means that the dissipation energy is 

stress state independent in Ni50.3Ti29.7Hf20 alloys.    

 The tension-compression asymmetry in NiTiHf can be attributed to the 

unidirectional nature of shear strain across the martensite habit planes and martensite 

ordering. It is known that during martensitic transformation, only one specific martensite 

variant group is selected that provides the largest possible strain along the loading 

direction. The martensite corresponding variant pair (CVPs) with the largest RSSF are 

activated and then oriented along the shear direction with transformation. If the same 

material loaded in the opposite direction, it is possible that the RSSF of those CVPs are not 

the largest ones along the transformation direction, hence, they are not energetically 

favored where other CVPs can be activated. Another possible reason for the different 

transformation strains in tension and compression can be the change in the mobility of 

martensite variant interfaces.  

It has been reported that the martensite variants boundaries are twin related and can 

be moved easily as transformation proceeds under tension in NiTi [149, 150]. However, 

the junction between the twin related martensite variants is not mobile under compression, 

resulting in generation of lattice defect during transformation and difficulty in phase 

transformation and detwinning. Microstructural investigations on the deformed equiatomic 

NiTi alloys confirmed that the deformation mechanism is different in tension and 
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compression [149, 150]. After tensile deformation, <011> type II twinning is more 

frequently observed and two neighboring martensite variants become (001) twin related to 

each other. This (001) twin boundary is highly mobile under tension and as a result, two 

self-accommodated variants change into one variant favorable to applied stress by 

movement of boundaries between variants. In addition, no significant plastic deformation 

is observed inside the twin bands while dislocations are illustrated along the variants 

interfaces. On the other hand, high density of dislocations inside twin bands and variants 

accommodated area is observed after compressive deformation. Boundaries between two 

martensite plates containing <011> type II twins are not twin related to each other, resulting 

in no interfacial movement in compression. Thus, deformation proceeds by continuously 

increased compressive load and results in high stress-strain slope in the transformation 

region where plateau type deformation was observed under tensile. 

Figure 5.5a shows the relationship between Ms and applied tensile and compressive 

[114, 128] stresses in Ni50.3Ti29.7Hf20 alloys which are extracted from the thermal cycling 

under stress experiments. The Ms linearly increases with stress, following the CC relation 

where the slope of the lines are proportionally related to enthalpy of transformation and 

inversely correlated to transformation strain and equilibrium temperature. The difference 

in Ms values under no applied stress in tension and compression results could be attributed 

to the slight composition variation of the alloys during the fabrication process and rate of 

cooling after extrusion. 

The CC slopes were 5.4 MPa/ °C in tension and 12.5 MPa/ °C in compression for 

the as-extruded sample. After 550 °C-3h aging, Ms was shifted to the higher temperature 

and the CC slope in compression was decreased to 7.5 MPa/ °C while it was increased to 
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8.5 MPa/ °C in tension. The change in CC slope could simply be explained by the 

asymmetry of transformation strain for tension and compression. The as-extruded material 

have maximum tensile strain of 5.5% while the maximum compressive strain was 2.4%, 

resulting in higher CC slope in compression as compared to tension.  In contrast to as-

extruded samples, the maximum transformation strain decreased under tensile loading 

while it increased under compression stress after three hours aging at 550 °C. 

Consequently, the CC slope of aged samples increased in tension and decreased in 

compression.  

 

Figure 5.5: (a) Ms as function of tensile and compressive stresses and (b) stress-strain 

curve of 550 °C-3h aged Ni50.3Ti29.7Hf20 after 4% deformation. 

 

It is clear that after aging at 550 °C-3h the transformation strain and CC slopes 

under compression and tension are very identical. It should be noted that the recoverable 

strains and thermal hysteresis are also very similar in tension and compression after 550 

°C-3h aging.  Thus, the asymmetric behavior depends on the precipitation characteristics 

and after 550 °C-3h aging, Ni50.3Ti29.7Hf20 act as an isotropic material where shape memory 

properties weakly depend on the direction of applied stress. This fact can be attributed to 

precipitation characteristics where strong stress fields around the precipitates can alter the 
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selection of martensite variants and martensite morphology could change with precipitation 

size and interparticle distance.     

It is worth to mention that perfect superelastic behavior with 4% recoverable strain 

is demonstrated at high temperatures under tension and compression [114] after three hours 

aging at 550 °C as shown in Figure 5.5b. The phase transformation can be considered 

completed in compression while it was not fully accomplished in tension due to higher 

transformation strain in tension. Similar to the NiTi [79], the tensile stress-strain curve 

demonstrated non-linearity upon unloading while the compressive curves were nearly 

perfectly elastic. It has been explained that strong local stress fields exist in the matrix due 

to the lattice mismatch between precipitates and martensite phase which try to inhibit the 

detwinning process. However, detwinning progress in opposition to the internal stress 

fields and developed strong back stress on the internal twin interfaces. The internal twins 

still exist upon unloading since the detwinning process is not completed and the strong 

back stresses help the reverse martensite detwinning process. In summary, the non-linearity 

behavior is attributed to the reverse movement of internal twins that strong back stress had 

formed on their interfaces during detwinning process. Detailed microstructural analysis is 

needed to explain the deformation mechanisms in NiTiHf under tension and compression. 

5.4 Conclusion 

It has been shown that the shape memory properties of Ni50.3Ti29.7Hf20 alloys can 

be tailored by aging. Transformation peak temperatures were stable after 500 °C-3h aging 

and Ms reached the maximum value of 150 °C after 600 °C-3 aging. The polycrystalline 

Ni50.3Ti29.7Hf20 alloys demonstrated superior shape memory effect and superelasticity in 

tension. The high recoverable strain of ~5% was achieved by thermal cycling under 600 
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MPa of the as-extruded alloy. Near perfect dimensional stability with negligible 

irrecoverable strain and recoverable strain of 4% was experimented under 700 MPa after 

500 °C-3h aging. Further aging at 550 °C-3h resulted in a perfect dimensional stability with 

recoverable strain of 3.7% under 500 MPa. In addition, the CC slopes were in the order of 

5-9 MPa/ °C under tensile stress and perfect superelastic with 4% recoverable strain was 

demonstrated at high temperature window of 180–230 °C for 500 °C-3h and 550 °C-3h 

aged conditions.   

Experimental recoverable strains were found to be higher in tension than 

compression. The asymmetry in recoverable strain under tension and compression can be 

attributed to ordering of martensitic transformation, the unidirectional nature of habit plane 

and activation of different number of CVPs. In addition, the NiTiHf is anisotropic material 

and the shape memory properties of this HTSMAs is highly depend on the direction of 

applied stress and orientation of stress axis. However, after aging at 550 °C, the tension 

compression asymmetry is weak where the transformation strain and hysteresis are almost 

identical under tension and compression which can be attributed to the effects of 

precipitates. 

 

 

 

 

 

 

Copyright © Sayed M. Saghaian 2015 



 
 

133 

6 Orientation Dependence of NiTiHf 

6.1 Introduction 

The shape memory (e.g. transformation strain, hysteresis, CC slope) and 

mechanical (critical stress for slip, ductility) properties of Ni-rich NiTi alloys are highly 

orientation and thermal treatment dependent [19, 37, 70, 154, 155]. Recent compression 

studies on as-grown Ni50.3Ti29.7Hf20 single crystals showed a  small transformation strain 

of 1% for [001] crystals, which did not change significantly with applied compressive 

stress up to ~1500 MPa [156]. In contrast, transformation strain was a function of stress 

approaching 3% and 4% at 700 MPa along the [111] and [011] orientations, respectively 

[156, 157].  In addition, [111]-oriented Ni50.3Ti29.7Hf20 single crystals exhibited reasonable 

superelastic behavior but with a small residual strain in the temperature range of 180-200 

°C [157]. However, it should be noted that these previous studies on single crystals [156, 

157] were conducted in the as-grown condition with H-phase precipitates were already 

present in the microstructure due to the thermal conditions encountered during directional 

solidification.  Therefore, no attempt was made to optimize the size or volume fraction of 

precipitate phase. Moreover, the orientation dependence of superelasticity was not 

previously investigated. 

In this chapter, the shape memory and superelastic responses of solutionized (900 

°C-3h) and solutionized plus aged (550 °C-3h and 650 °C-3h) Ni-rich Ni50.3Ti29.7Hf20 single 

crystals were characterized along the three selected crystallographic orientations of [001], 

[011], and [111]. The effects of stress, temperature and precipitate characteristics on TTs, 

transformation strain and hysteresis were investigated in compression. The aging 
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conditions were selected by considering the findings of previous studies on Ni50.3Ti29.7Hf20 

polycrystalline [109, 114] where 550 °C-3h aging introduced nano-size (≈ 20 nm) coherent 

precipitates in the matrix, which substantially improved the shape memory and mechanical 

properties of the alloy while aging at 650 °C for 3h produced an overaged condition, with 

the precipitates coarsened in size to 40–60 nm, but with transformation temperatures 

further increased [114].  

6.2 Experimental Results 

6.2.1 Martensite Transformation and Morphology 

Figure 6.1 shows the DSC curves of the Ni50.3Ti29.7Hf20 single crystals in the 

solutionized and aged conditions. The Ms of the solutionized sample is –25 °C and 

increases to 73 °C and 123 °C after three hours aging at 550 °C and 650 °C, respectively. 

The thermal hysteresis, defined as the difference between austenite and martensite peak 

temperatures, is 50–60 °C for all three conditions. 

 

Figure 6.1: DSC Response of the Ni50.3Ti29.7Hf20 alloy in the solutionized and aged 

conditions. 
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Figure 6.2 shows the TEM micrographs obtained at room temperature for the 

solutionized, 550 °C-3h and 650 °C-3h aged specimens. The solutionized specimen, shown 

in Figure 6.2a, has no precipitates and consists of a single B2 austenite phase, consistent 

with the DSC analysis shown in Figure 6.1. This is confirmed by the SAD diffraction 

pattern (inset to Figure 6.2a), which does not show evidence of any additional spots or 

streaking that could be due to a second phase.  

 

Figure 6.2: Bright field TEM micrographs and corresponding SAD patterns (insets) of the 

(a) solutionized specimen and (b) 550 °C-3h aged specimen. (c) Bright field image of the 

650 °C-3h aged specimen and (d-f) SAD patterns obtained from (c). Subscripts A, H, M 

and T indicate B2 austenite, H-phase, B19′ martensite matrix, and twin, respectively. 
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Aging at 550 °C for three hours resulted in the formation of fine oblate spheroid-

shaped precipitates with a major axis on the order ~15–20 nm as shown in Figure 6.2b. The 

crystal structure of the precipitates was determined by the SAD patterns as the H-phase 

which has been reported in Ni-rich NiTiHf alloys [110, 111]. 

Figure 6.2c shows the bright field image of the 650 °C-3h aged specimen. The 

precipitates maintain the same oblate-spheroid shape but have coarsened considerably with 

a long axis of 45–75 nm. Figures 6.2d and e represent the SAD patterns of the B19′ 

martensite taken along the [211]B19′ zone axis and of the H-phase precipitate taken along 

the [010]H zone axis, respectively. Figure 6.2f shows the SAD pattern taken along the [11

1]B19′ zone axis which reveals that the martensite plates in Figure 6.2c are twin-related with 

{011}B19’ type I mode. It is noted that many streaks can be seen inside the martensite plates. 

The trace of the streaks was coincident with that of (001)B19′ planes in martensite, implying 

that the martensite plates contain (001)B19′ compound twins, which are considered the 

lattice invariant shear (LIS) of the martensitic transformation in NiTiHf alloys [106]. 

6.2.2 Thermal Cycling under Compressive Stress 

During the thermal cycling experiments, the stress was isothermally applied above 

Af when the material was in the austenite condition and then the sample was thermally 

cycled between a temperature below the Mf and back to a temperature above the Af under 

constant stress. After the cycle was completed, the stress was incremented and the thermal 

cycling was repeated. 

Figure 6.3 illustrates the strain-temperature responses of the solutionized NiTi-

20Hf single crystals.  The [001] and [111] orientations exhibited high dimensional stability, 
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where only a small irrecoverable strain was observed under stress levels as high as 1000 

MPa. Interestingly, the [011] orientation, did not exhibit shape memory behavior at lower 

stress levels (< 300 MPa) as apparently the stress is not sufficient to alter the self-

accommodated structure and form more favorable martensite variants. The solutionized 

samples achieved recoverable strains of  3.1% and  3.7% at 700 MPa with corresponding 

irrecoverable strains of 0.5% and 0.1% along the [011] and [111] orientations, respectively.  

In contrast, the maximum recoverable strain along the [001] direction was only 1.1 % at 

1500 MPa with a corresponding irrecoverable strain of 0.9% at this stress level. 

It is clear from Figure 6.3 that the total strain (εtotal) and Ms increase with stress. For 

instance, the total strain for solutionized [111] orientation  increased from 0.9 to 3.4% while 

Ms rises from –67 to 98 °C when the applied stress was increased from 100 MPa to 1000 

MPa. Under stress, favorable martensite variants form and grow at the expense of self-

accommodated variants resulting in a net shape change. The increasing external stress 

increases the volume fraction of favorable martensite variants over other variants and as a 

result, εtotal increases.   

 

Figure 6.3: Strain vs. temperature responses for the solutionized Ni50.3Ti29.7Hf20 single 

crystals along the [001], [011], and [111] orientations. 
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Figure 6.4 shows the thermal cycling responses of the 550 °C-3h aged single 

crystals. Compared to the solutionized condition, the 550 °C-3h aged material has even 

greater ability to demonstrate shape memory behavior at very high stresses, i.e., 1500 MPa 

along the [001] orientation and 1000 MPa along the [011] and [111] orientations, with very 

low irrecoverable strains. This benefit in dimensional stability is unfortunately 

accompanied by a general loss in total strain.  For example, the 550 °C-3h aged [001] single 

crystals exhibit a maximum εtotal of ~0.7% (compared to about 1.1% for the solution treated 

condition). Total strains were 3% and 2.5% at 700 MPa along [011] and [111] directions, 

respectively, compared to the corresponding values for the solution treated condition of 

3.1% and 3.7%.  In this case, [111] appeared to be the orientation most impacted by aging 

in terms of a loss in transformation strain.  But near perfect shape memory responses with 

irrecoverable strains of only 0.2% and 0.1% were observed for the [011] and [111] 

orientations, respectively, at 1000 MPa. In addition, the temperature hysteresis decreased 

in all aged conditions with a minimum value of 23 °C at 700 MPa along the [011] 

orientation, while it was still only 29 °C for the other orientations at this stress level.  

 

Figure 6.4: Strain vs. temperature responses for the 550 ºC-3h aged Ni50.3Ti29.7Hf20 single 

crystals along the [001], [011], and [111] orientations. 
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Because the strength of the alloy improved after three hours aging at 550 °C due to 

the formation of fine and coherent precipitates, the irrecoverable strain along the [011] 

orientation decreased from 0.5 to 0.05% at 700 MPa. In the [111] orientation, irrecoverable 

strain also decreased from 0.12% for the solutionized case to 0.07% for the 550 ºC-3h aged 

sample under 700 MPa. 

Figure 6.5 shows the strain-temperature responses for the 650 °C-3h aged single 

crystals as a function of orientation. Aging at 650 °C-3h resulted in reduced total strains 

and dimensional stability along the [011] and [111] directions compared to the 550 °C-3h 

samples. The total strains of 2.5% was observed for both orientations and they exhibited 

irrecoverable strains of 0.8% and 0.3% at 700 MPa along the [011] and [111] orientations, 

respectively. In contrast, the shape memory behavior was very stable along the [001] 

orientation and no irrecoverable strain was observed even at 1500 MPa. However in this 

orientation, the thermal hysteresis increased from 28 to 40 °C while Ms was increased from 

120 to 137 °C at 700 MPa when the aging temperature was increased from 550 to 650 °C.  

 

Figure 6.5: Strain vs. temperature responses for the 650 ºC-3h aged Ni50.3Ti29.7Hf20 single 

crystals along the [001], [011], and [111] orientations. 
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Thermal hysteresis of solutionized [001]-oriented single crystals decreased from 84 

to 28 °C and 42 °C under 1000 MPa after three hours aging at 550 °C and 650 °C, 

respectively. In [111] orientation, the temperature hysteresis under 700 MPa was 64 °C, 30 

°C and 47 °C for the solutionized, 550 °C-3h aged and 650 °C-3h aged samples, 

respectively. Although, thermal hysteresis for [011] orientation under 700 MPa was 

initially decreased from 60 to 23 °C after 550 °C-3h aging and it was increased to 68 °C 

for 650 °C-3h aging. It’s clear that thermal hysteresis is always lowest and constant for all 

the stress levels after 550 ºC-3h aging in all orientations. 

Summarizing the general observations concerning shape memory behavior of 

solutionized and aged NiTi-20Hf single crystals: i.) the εtotal along the [001] orientation was 

much smaller than the other two orientations, but the [001] orientation exhibited very stable 

behavior under stress with fully recoverable strain capability at stress levels as high as 1500 

MPa. ii.) 550 °C-3h aging introduced fine precipitates in the material while 650 °C-3h 

aging resulted in a significantly coarsened precipitates. Consequently, precipitation 

strengthening was more pronounced after 550 °C-3h aging resulting in the best dimensional 

stability, lowest thermal hysteresis, and comparable or better transformation strains, while 

TTs were increased after 650 °C-3h aging. 

6.2.3 Stress-strain Responses 

As mentioned before, mechanical responses of SMAs are highly temperature 

dependent. If the temperature is above Af (but below Md), the stress-induced austenite to 

martensite transformation occurs after elastic deformation of the austenite phase. This 

process is followed by elastic deformation/detwinning and plastic deformation of the 

stress-induced martensite. The slope of the stress-strain curve during the stress-induced 
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transformation mainly depends on the number of activated CVPs, plastic deformation, and 

storage of elastic energy [19, 70].  

Stress-strain results of solutionized NiTi-20Hf single crystals as a function of 

temperature are shown in Figure 6.6. The σSIM increased with temperature and reached an 

approximate maximum value of 1700 MPa at 100 °C, 1000 MPa at 180 °C and 1200 MPa 

at 140 °C along the [001], [011] and [111] orientations, respectively. When samples were 

loaded to 4% total strain, near perfect superelasticity was observed from 40 to 100 °C along 

the [001] direction. Perfect superelasticity was observed over the temperature range of 40–

180 °C for the [011] orientation and 40–120 °C along the [111] direction when loaded to a 

total strain of 5%. It should be noted that the total strain is composed of contributions of 

phase transformation and elastic strain. The observed superelastic windows were at least 

140 °C and 80 °C along the [011] and [111] orientations, respectively. In addition, the 

mechanical hysteresis, which is the difference in stress values between the reverse and 

forward transformations, after 4% deformation are in the range of 900–1100 MPa, 400–

500 MPa, and 500–600 MPa along the [001], [011], and [111] orientations, respectively. 

 

Figure 6.6: The isothermal compressive stress-strain responses of solutionized 

Ni50.3Ti29.7Hf20 single crystals as a function of temperature and orientation. 
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Figure 6.7 illustrates the superelastic behavior of the 550 °C-3h aged NiTi-20Hf 

single crystals. In [001] orientation, stress cycling at 25 °C (when the alloy is martensite) 

resulted in 0.65% residual strain after unloading, which was fully recovered upon heating 

above Af. However, no superelasticity was observed above Af at test temperatures between 

90 °C and 130 °C. In contrast, perfect superelasticity with a total strain of 5% was achieved 

over a temperature range of 140–200 °C for [011]-oriented samples. A further increase in 

test temperature to 220 °C led to an irrecoverable strain of 0.23% and increased stress 

hysteresis in this orientation. The critical stress to induce martensite formation was 

increased from 500 to 1100 MPa as temperature increased from 140 to 220 °C along the 

[011] direction. Similar to [011] orientation, perfect superelasticity was observed over a 

temperature range of 120–200 °C along the [111] orientation. The stress required for 

martensitic transformation increased from 600 to 1200 MPa as temperature increased from 

120 to 180 °C for the [111] orientation.  

 

Figure 6.7: The isothermal compressive stress-strain responses of 550 °C-3h aged 

Ni50.3Ti29.7Hf20 single crystals as a function of temperature and  orientation. 

 

Also, the slope during phase transformation was higher along the [111] direction 

than the [011] orientation after 550 °C-3h aging. The high slope during phase 

transformation can possibly be related to the activation and interaction of more CVPs or 
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increased difficulty in dewtinning in [111] compared to the [011] orientation. It has been 

reported that CVPs may interact with each other and precipitates during transformation and 

consequently may result in a higher slope in the transformation region [19]. In addition, 

the stress hysteresis was 200–300 MPa and 300–400 MPa along the [011] and [111] 

orientations, respectively, which are lower than the values observed in the solutionized 

single crystals. 

Figure 6.8 shows the compressive stress-strain responses of the 650 °C-3h aged 

NiTi-20Hf single crystals. Loading along the [001] direction at 40 °C and 140 °C (below 

Af) resulted in residual strains upon unloading, however the strains were fully recovered 

after heating the samples above Af. As the test temperature was increased above Af, near 

perfect superelasticity with 4% strain was observed at 170 °C. The σSIM was as high as 

1700 MPa at 170 °C and consequently the sample failed on loading at about 2 GPa. Near 

perfect superelasticity with negligible irrecoverable strain was experienced after 3% 

deformation in a narrow temperature range of 160 to 180 °C for the [011] and [111] 

orientations. As the test temperature increased to 200 °C, the stresses required for 

martensitic transformation reached 745 MPa and 1000 MPa for [011] and [111] directions, 

respectively, and irrecoverable strain was observed after loading to 4% total strain. It is 

worth  noting that the temperature window for superelasticity was very narrow after 650 

ºC-3h aging and the stress hysteresis was in the range of 500-600 MPa, 300-400 MPa, and 

400-500 MPa along the [001], [011] and [111] orientations, respectively. 
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Figure 6.8: The isothermal compressive stress-strain responses of 650 °C-3h aged 

Ni50.3Ti29.7Hf20 single crystals as a function of temperature and orientation. 

 

6.3 Calculation of Theoretical Transformation Strains 

Actuation strain is one of the main characteristics of SMA actuators. The phase 

transformation strain is highly orientation dependent in all SMAs due to the selection of 

particular martensite variants under external stress. The Ni50.3Ti29.7Hf20 alloy undergoes a 

thermoelastic martensitic transformation from cubic B2 austenite phase with a lattice 

parameter of a0 = 0.3092 nm to monoclinic B19′ martensite phase with lattice parameters 

of a = 0.3062 nm, b = 0.4091 nm, c = 0.4872 nm and  = 103.3° upon cooling [114]. There 

are twelve lattice correspondence variants (CVs) in the B19′ martensite as listed in Table 

6.1 [158]. In the present paper, transformation strains are theoretically estimated for the 

NiTi-20Hf alloy based on two different theories, i.e., the Energy Minimization Theory [74]  

and the Lattice Deformation Theory [75]. 

The energy minimization theory considers the existence of the invariant plane 

(habit plane) between austenite and martensite phases. The martensite plates with a certain 

pair of twin-related CVs can form habit planes. There are four possible twin relationships 

among the CV pairs (CVPs) in the martensite plate: {011}B19′ type I, {1 11}B19′ type I, 

<011>B19′ type II and < 2 11>B19′ type II. It is noted that the {011}B19′ type I and {1 11}B19′ 
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type I twins are conjugates of the <011>B19′ type II and < 2 11>B19′ type II twins, 

respectively. In the energy minimization theory, active CVPs are selected depending on 

the resolved shear stress on the most favorable CVPs under stress. The details of the 

calculation procedure of the B2-B19′ transformation strains can be found in work done by 

Sehitoglu et al. [19]. 

Table 6.1: The twelve lattice correspondence variants (CVs) for B19’ monoclinic 

martensite [158]. 

variant 1 1′ 2 2′ 3 3′ 4 4′ 5 5′ 6 6′ 

 [100]B19’ [100]B2 [1̅00]B2 [100]B2 [1̅00]B2 [010]B2 [01̅0]B2 [010]B2 [01̅0]B2 [001]B2 [001̅]B2 [001]B2 [001̅]B2 

[010]B19’ [011]B2 [01̅1̅]B2 [01̅1]B2 [011̅]B2 [101]B2 [1̅01̅]B2 [101̅]B2 [1̅01]B2 [110]B2 [1̅1̅0]B2 [1̅10]B2 [11̅0]B2 

[001]B19’ [01̅1]B2 [01̅1]B2 [01̅1̅]B2 [01̅1̅]B2 [101̅]B2 [101̅]B2 [1̅01̅]B2 [1̅01̅]B2 [1̅10]B2 [1̅10]B2 [1̅1̅0]B2 [1̅1̅0]B2 

 

The 12 transformation matrices (U) with each one a function of the lattice parameter 

of cubic and monoclinic phases were determined in the cubic reference frame by using the 

12 independent lattice correspondences in Table 6.1. For instance, the first transformation 

matrix can be defined as follows [19, 159, 160]; 

𝑈1 = [
𝛥1 𝛷 𝛷
𝛹 Δ2 𝛹
𝛷 𝛷 Δ2

]              (6.1) 

𝛥1 =
𝛼2+𝛼𝛾 sin 𝜃

√𝛼2+𝛾2+2𝛼𝛾 sin 𝜃
             (6.2) 

𝛥2 =
1

2
(

𝛾2+𝛼𝛾 sin 𝜃

√𝛼2+𝛾2+2𝛼𝛾 sin 𝜃
+ 𝛽)             (6.3) 

𝛷 =
𝛼𝛾 cos 𝜃

√2(𝛼2+𝛾2+2𝛼𝛾 sin 𝜃)
              (6.4) 

𝛹 =
1

2
(

𝛾2+𝛼𝛾 sin 𝜃

√𝛼2+𝛾2+2𝛼𝛾 sin 𝜃
− 𝛽)             (6.5) 
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Where α=
𝑎

a0
, β=

𝑏

√2a0
, and γ=

𝑐

√2a0
 . a0, a, b, and c are lattice parameters and θ is the 

monoclinic angle between b and c.  

There are two kinds of invariant plane in the twinned martensite. One is the twin 

plane (interface between the two lattice correspondence variants), the other is the habit 

plane (interphase between the twin martensite and parent phase). In order to calculate the 

habit plane parameters, first we need to form the symmetry matrix C as follows [19]; 

𝐶 = 𝑈𝑖
−1. 𝑈𝑗

2. 𝑈𝑖
−1               (6.6) 

The symmetry matrix C has ordered eigenvalues λ1< λ2=1< λ3. By calculating the 

eigenvalues, the twinning shear vector (a) and twin plane normal (n) are going to be 

determined using the following equations [19]: 

𝑎 = 𝜌(√
𝜆3(λ2−λ1)

λ3−λ1
𝑒1 + 𝑘√

𝜆1(λ3−λ2)

λ3−λ1
𝑒3)           (6.7) 

𝑛 = 𝑈𝑖
−1. [𝜌−1 (

√λ3−√λ1

√λ3−λ1
) (−√λ2 − λ1𝑒1 + 𝑘√λ3 − λ2𝑒3)]          (6.8) 

where e1, e2 and e3 are the eigenvectors of matrix C corresponding to λ1, λ2 and λ3, 

respectively. The constant ρ represents an invariant scaling of the solution. The constant k 

will take the values of ±1. 

In near-equiatomic NiTi alloys, the <011>B19′ type II twin is the dominant twinning 

observed in martensite plates [77] while {011}B19′ type I twins have been frequently 

observed in Ni rich NiTiHf alloys [114, 136]. In the case of Ni50.3Ti29.7Hf20, the twinning 

elements of the {011}B19′ type I twin are K1 (twinning plane) = {011}B19′ ({100}B2), K2 

(conjugate twinning plane) = {0.9805, 1, 1}B19′ ({0, 0.9805, 1}B2), 1 (twinning direction) 
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= <2.1331, 1, 1>B19′ (<0, 1.0665, 1>B2), 2 (conjugate twinning direction) = <011>B19′ 

(<100>B2) and s (twinning shear) = 0.4676. The volume fraction of the minor CV in the 

{011}B19′ type I twins was determined to be f = 0.4423. 

The corresponding solution of habit plane normal (m) and shear direction (b) can be 

calculated as follows; 

𝑏 = 𝜌(√
𝜆3(λ2−λ1)

λ3−λ1
𝑒1 + 𝑘√

𝜆1(λ3−λ2)

λ3−λ1
𝑒3)            (6.9) 

𝑚 = 𝜌−1 (
√λ3−√λ1

√λ3−λ1
) (−√λ2 − λ1𝑒1 + 𝑘√λ3 − λ2𝑒3)       (6.10) 

Two sets of the habit plane normal and the shape strain direction were calculated to be m 

= {0.9827, 0.1583, 0.0957} B2 and b = < 0266.0 , 0.1815, 0.0204> B2 or m = {0.9915, 

0.1186, 0.0529}B2 and b = <0.0125, 0.0158, 1835.0 > B2. It is noted that {011}B19′ type I 

twin related martensite plates in NiTiHf alloys contain (001)B19′ compound twins [106, 

112], which would affect the habit plane and the amount of transformation strain. However, 

since the internal (001)B19′ compound twins cannot be calculated by the energy 

minimization theory, the effects of the compound twin on theoretical strain calculations 

cannot be considered in this section. 

By calculating the habit plane parameters we can evaluate the average deformation 

gradient using the following equation [19]; 

𝐹𝑀 − 𝐼 = 𝑏⨂𝑚            (6.11) 

where FM represents the deformation gradient and I is the identity tensor. If the twins are 

fine enough then FM will satisfy the following equation [19]; 
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𝐹𝑀 =  𝑅ℎ[𝑓𝑅𝑖𝑗𝑈𝑖 + (1 − 𝑓)𝑈𝑖]          (6.12) 

where Rh is the relative rotation between austenite and twinned martensite phases, f is the 

martensitic volume fraction and Ui and Uj are correspondence variants. The strain will be 

determined by using the following equation [19]; 

𝜀 =
1

2
(𝐹𝑀

𝑇 . 𝐹𝑀 − 𝐼) =
1

2
[𝑏⨂𝑚 + 𝑚⨂𝑏 + (𝑏. 𝑏)𝑚⨂𝑚]       (6.13) 

Once the orientation of the loading axis is selected, the resolved shear stress factor (RSSF) 

can be calculated from the habit plane normal (m) and the shape strain direction (b) as 

follows [19]; 

𝑅𝑆𝑆𝐹 = (𝑏. 𝑒)(𝑚. 𝑒)/|𝑏|          (6.14) 

where e denotes the single crystal loading direction. The active CVPs are determined 

according to the maximum RSSF and the transformation strain can be calculated from the 

active CVPs. The transformation strain produced by the active CVPs is denoted as CVP 

strain hereafter. The application of further stress to active CVPs causes the detwinning of 

the CVPs. The single variant (detwinned CVP) strain can be calculated when the volume 

fraction of the minor CV is set as zero. In this section, the CVP strain and the single variant 

(detwinned CVP) strain for NiTi-20Hf were calculated. 

On the other hand, the lattice deformation theory does not consider the existence of 

habit planes. The theory assumes that the austenite transforms into a single crystal of 

martensite without twins. First, the transformation strains along the loading axis are 

calculated for all the twelve CVs from the lattice parameters of the austenite and martensite 

phases and the lattice correspondence shown in Table 6.1. The active CVs are considered 
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the CVs that produce the maximum transformation strain along the loading axis. The 

details of the calculation procedure of the transformation strains are described in Ref. [75]. 

Figure 6.9 shows the calculated RSSFs, CVP strains and single variant (detwinned 

CVP) strains from the energy minimization theory expressed by contour lines for each 

orientation in a standard stereographic triangle for type I twinning. The orientation 

dependence of the RSSFs and transformation strains is shown for both {011}B19′ type I and 

{1 11}B19′ type I twinning modes. High RSSFs and large CVP strains are obtained for 

orientations close to <011>B2 for the two twinning modes. The single variant (detwinned 

CVP) strain shows the maximum value at an orientation close to <112>B2. 

The transformation strains calculated using the energy minimization theory and the 

lattice deformation theory are summarized in Table 6.2 for compression axes of [001]B2, 

[011]B2 and [111]B2. The possible four twinning modes in the energy minimization theory, 

volume fractions of the minor CVs, active CVPs, RSSFs, CVP strains and single variant 

(detwinned CVP) strains are included in the table. A CVP is represented as (i,j) in Table 

6.2 where i is the major CV and j is the minor CV in the CVP. The transformation strains 

with active CVs obtained from the lattice deformation theory are also listed in Table 6.2. 

The activity of dislocation slip systems is also dependent on the crystal orientation. The 

Schmid factors of two slip systems in B2 austenite, {011}B2<100>B2 and {001}B2<100>B2 

[161, 162], were calculated and  listed in Table 6.2. 
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Figure 6.9: (a) RSSF, (b) CVP strain, and (c) single variant (detwinned CVP) strain 

contours under compression for NiTi-20Hf for {011}B19′ type I and {1 11}B19′ type I 

twinning. 

 

In all the three orientations of [001]B2, [011]B2 and [111]B2, the single variant 

(detwinned CVP) strains are almost the same as the CVP stains. Both energy minimization 

and lattice deformation theories give almost the same single variant strains since the major 

CVs obtained from the two theories are the same in most of the cases. In the [011]B2 

orientation, RSSFs have high values of about 0.5 for the four twinning modes. 

Correspondingly, the Schmid factors of the {011}B2<100>B2 and {001}B2<100>B2 slip 

systems are 0.354 and the maximum value of 0.5, respectively. RSSFs are around 0.3 for 
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the [111]B2 orientation for the four twinning modes. The Schmid factor of the 

{001}B2<100>B2 slip system is also around 0.3 while that of the {011}B2<100>B2 system 

has a higher value of 0.471. In the [001]B2 orientation, almost zero RSSFs are obtained for 

the four twinning modes, while Schmid factors are zero for the two slip systems.  

Table 6.2: Calculated active martensite variants, volume fractions of the minor variants, 

RSSF, CVP strains, and single variant (detwinned CVP) strains for compression along the 

[001]B2, [011]B2 and [111]B2 based on the energy minimization theory and the lattice 

deformation theory. 

  {011}B19′ 

type I 
{ 1 1 1}B19′ 

type I 

<011>B19′ 

type II 
< 2 1

1>B19′ type 
II 

Lattice 

deformation 

{011}B2<100>B2 

slip 

{001}B2<100>B2 

slip 

 Volume 

fraction 

0.4423 0.3213 0.3152 0.4415    

[001]B2 Active 

variants 

(5,6) 

(5,6′) 
(5′,6) 

(5′,6′) 
(6,5) 

(6,5′) 

(6′,5) 
(6′,5′) 

(5,2) 

(5,3′) 
(5′,1) 

(5′,4) 
(6,1′) 

(6,3) 

(6′,2′) 
(6′,4′) 

(5,6) 

(5,6′) 
(5′,6) 

(5′,6′) 
(6,5) 

(6,5′) 

(6′,5) 
(6′,5′) 

(5,2) 

(5,3′) 
(5′,1) 

(5′,4) 
(6,1′) 

(6,3) 

(6′,2′) 
(6′,4′) 

(5) 

(5′) 
(6) 

(6′) 

  

RSSF 0.141 0.138 0.203 0.050  0 0 

CVP strain 
(%) 

-0.97 -1.11 -2.28 0.72    

Single 

variant 

(detwinned 
CVP) strain 

(%) 

-0.97 -0.97 -0.97 -0.97 -0.97   

[011]B2 Active 

variants 

(3′,4′) 

(4′,3′) 
(5,6′) 

(6′,5) 

(3′,5) 

(4′,6′) 
(5,3′) 

(6′,4′) 

(3′,4′) 

(4′,3′) 
(5,6′) 

(6′,5) 

(3′,5) 

(4′,6′) 
(5,3′) 

(6′,4′) 

(3′) 

(4′) 
(5) 

(6′) 

  

RSSF 0.484 0.487 0.478 0.485  0.354 0.500 

CVP strain 
(%) 

-8.00 -8.00 -8.00 -8.06    

Single 

variant 

(detwinned 
CVP) strain 

(%) 

-8.00 -8.00 -8.00 -8.00 -8.35   

[111]B2 Active 

variants 

(2′,1) 

(2′,1′) 
(4′,3) 

(4′,3′) 

(6′,5) 
(6′,5′) 

(1,5′) 

(1′,3) 
(3,1′) 

(3′,5) 

(5,3′) 
(5′,1) 

(2′,1) 

(2′,1′) 
(4′,3) 

(4′,3′) 

(6′,5) 
(6′,5′) 

(2′,4′) 

(2′,6′) 
(4′,2′) 

(4′,6′) 

(6′,2′) 
(6′,4′) 

(1) 

(1′) 
(3) 

(3′) 

(5) 
(5′) 

  

RSSF 0.326 0.299 0.298 0.343  0.471 0.333 

CVP strain 

(%) 

-5.25 -4.48 -4.32 -5.57    

Single 

variant 
(detwinned 

CVP) strain 

(%) 

-4.24 -4.48 -4.24 -4.24 -4.58   
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The [011]B2 orientation has the largest CVP strains of the three orientations, of 

around –8%. The [111]B2 orientation exhibits CVP strains from –4.3 to –5.6% depending 

on the twinning modes. On the other hand, small CVP strains with a maximum of –2.3% 

are obtained in the [001]B2 orientation. For the case of the < 2 11>B19′ type II twinning, the 

[001]B2 orientation shows a tensile CVP strain of 0.72%, It should be noted that observation 

of tensile strain under compressive stress is not expected.  

6.4 Discussion 

6.4.1 Transformation Strain 

Figure 6.10 summarizes the effect of compressive stress on the recoverable strain 

(εrec), extracted from the thermal cycling experiments shown in Figures 6.3, 6.4 and 6.5. 

Recoverable strain increases initially and then saturates with stress for all orientations. 

Such progression in εrec is the consequence of the evolution of martensite variants as a 

function of external stress. As mentioned before, a small εrec at low stresses can be 

attributed to the fact that applied stress is not sufficient to completely bias the formation of 

self-accommodating martensitic structures. The volume fraction of preferred variants 

increases with stress and therefore, so does the εrec. Eventually the increase in εrec saturates 

as the fraction of preferred variants approaches 100%.  

The decrease in εrec after aging can be attributed to the presence of precipitates. 

Since the precipitates do not undergo phase transformation, the volume fraction of the alloy 

that transforms to martensite decreases. Recoverable strain reached to maximum values of 

3.2%, 3% and 2.9% at 500 MPa for solutionized, 550 °C-3h, and 650 °C-3h aged 
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conditions, respectively, along the [011] orientation. The absolute highest εrec among all 

conditions was observed for the solutionized [111] orientation, which was 3.7% at 500 

MPa. The maximum εrec along the [111] orientation for 550 °C-3h and 650 °C-3h aged 

samples was 2.5% at 700 MPa. Finally, for the [001] orientation, the εrec reached a 

maximum value of 1.1% in the solutionized condition and decreased to 0.7% after aging. 

Although the values of theoretically calculated transformation strains (Table 6.2 

and Figure 6.9) do not match well with the experimentally observed transformation strains, 

but they capture some trends.  Furthermore, the effects of aging are not considered in 

theoretical strain calculations. Therefore it is better to compare the theoretical results with 

the strains measured in the solutionized samples. The maximum transformation strains 

observed experimentally were  1.1%,  3.1% and  3.7% compared to theoretical strains for 

Type-I twinning which are  2.4%, 8% and 5.6% along the [001], [011], and [111] 

orientations, respectively. It is clear that in both cases the lowest strain is observed along 

the [001] orientation. The largest difference between the theoretical and experimental 

results is observed along the [011] orientation. However, due to high stress levels and the 

high RSSF for slip in this orientation (Table 6.2), it is difficult to determine the maximum 

transformation strain that might be possible because plastic deformation may have 

interrupted the transformation process. In addition, the main difference between the 

experimental and theoretical strains can be attributed to the formation multiple interacting 

Type-I twins in the actual material, whereas the calculations assume transformation to a 

single variant of martensite.  Finally, the effect of compound twins inside the martensite 

variants, cannot be captured in the theoretical calculations. 



 
 

154 

 

Figure 6.10: Recoverable strain of solutionized and aged Ni50.3Ti29.7Hf20 single crystal as 

function of applied compressive stress along the [001], [011], and [111] orientations. 

 

It is worth noting the stability of the εrec with stress in the [001] orientation, even at 

applied stresses as high as 1500 MPa. This is a consequence of the zero RSSF for the two 

<100> type slip systems in B2 alloys along the [001] orientation, which results in the 

absence of plastic deformation and thus leads to stable and fully reversible shape memory 

behavior at very high stresses.  Unfortunately, the recoverable strains in this orientation are 

also very small, as confirmed theoretically.   

6.4.2 Thermal Hysteresis 

Aging is a fundamental method to improve the shape memory and mechanical 

properties of Ni50.3Ti29.7Hf20 alloys. It can be seen that while the solutionized 

Ni50.3Ti29.7Hf20 alloy has low TTs, aging can improve the situation making the alloy a viable 

candidate for HTSMA applications. When the solutionized material was aged at 550 °C 

for three hours, fine H-phase precipitates with the size of ~15–20 nm were formed and Ms 

was increased from –23 to 73 °C. In addition,  the aged material exhibited good 

dimensional stability up to 1500 MPa along the [001] and 1000 MPa along [011] and [111] 

orientations, with negligible irrecoverable strains. Moreover, perfect superelasticity with 

5% recoverable strain was observed at temperatures in the range of 120–200 °C along [011] 
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and [111] orientations. Aging at 650 °C-3h resulted in much larger precipitates. This led to 

a further increase in Ms to 125 °C, but resulted in lower strength, a much smaller 

superelastic window, higher irrecoverable strains, and a much wider thermal hysteresis.  

Thermal hysteresis stems from structural defect (e.g. dislocation) formation and 

dissipated frictional energy due to resistance to the movement of phase boundaries. Figure 

6.11 summarizes the temperature hysteresis of the solutionized and aged Ni50.3Ti29.7Hf20 

single crystals as functions of stress and orientation. It is clear that thermal hysteresis is 

wider in solutionized samples compared to the aged condition. This can be attributed to the 

increased stored elastic strain energy and frictional dissipation [37, 163]. When the strength 

of the material was improved by the formation of precipitates the dissipated energy 

decreased due to reduced contributions from plastic deformation. The wide hysteresis for 

650 °C-3h aged crystals can be attributed to lack of precipitation hardening leading to 

increased plasticity when the particles are large and incoherent. 

 

Figure 6.11: Thermal hysteresis of solutionized and aged Ni50.3Ti29.7Hf20 single crystals as 

functions of applied compressive stress along the [001], [011], and [111] orientations. 

 

For solutionized and 550 °C-3h aged [110] and [111] crystals, the thermal 

hysteresis initially decreased with stress and then increased at higher stress levels. The 

decrease can be attributed to the increased volume fraction of favored martensite variants 
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with stress, which decreases the interaction between variant interfaces. At high stress 

levels, plastic deformation was introduced into the material increasing the thermal 

hysteresis. 

6.4.3 Transformation Behavior in [011] Crystal 

The thermal cycling responses under low (100 MPa) and moderate to high (≥300 

MPa) stress levels are very different along the [011] orientation, especially for the 550 °C-

3h aged sample. A symmetric strain-temperature curve was observed at 100 MPa, where 

the strain changes nearly linearly with temperature on heating and cooling.  However, the 

strain-temperature curve is asymmetric at stresses ≥300 MPa.   At the higher stresses, the 

cooling portion of the strain-temperature curve exhibits a two stage behavior. Initially 

strain decreases rapidly at first (Figure 6.4, stage I) and then a significant change in slope 

occurs with the strain changing much more gradually but linearly over a wide temperature 

range to completion of the martensite formation (Figure 6.4, stage II). During heating the 

response is single stage and the transformation occurs over a narrow temperature range As 

to Af. The first stage of rapid decrease in strain during cooling is due to the formation of 

preferred martensite variants (CVPs).  The second stage is apparently formation of 

additional martensite variants that are propagation limited or detwinning, requiring 

significant undercooling to complete.  It is likely that multiple type-I and type-II variants 

are formed on initial cooling (Stage 1), since the RSSF for all four variant types in Table 

6.2 are essentially the same.  As the primary variants grow and interact, there will be 

regions between these initial variants that need to form a more accommodative martensite 

to allow the transformation to continue to completion. This behavior would also explain 
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the low transformation strains in this orientation and the large discrepancy between 

theoretical and experimental strains.        

In addition, the slope of strain-temperature response provides information on the 

elastic energy storage. When multivariants of martensite are formed, the stored energy is 

large due to variant-variant interaction and it helps the martensite to austenite back 

transformation. During the formation of single variant of martensite the stored elastic 

energy is very small, resulting in a very steep slope of strain-temperature, but during 

detwinning process the stored elastic energy increases resulting in overcooling to 

accomplish the transformation. During heating, the stored elastic energy helps the 

formation of twinned martensite from detwinned martensite at first, and then single variant 

of martensite transforms back to austenite. Similar behavior can also be seen in 

superelasticity test of 550 °C-aged [011] orientation at 160 °C where during loading, 

initially a plateau is observed due to the formation of a single variant of twinned martensite 

and then hardening occurs due to detwinning.  

6.4.4 Transformation Temperatures 

Figure 6.12 illustrates the Ms of single crystals as a function of applied stress and 

orientation, determined from the strain-temperature curves from Figures 6.3, 6.4 and 6.5. 

The results indicate that Ms increases linearly with stress which satisfies the CC relation. 

The T0 and ΔH are independent of crystal orientation, while εtr is strongly orientation 

dependent.  It is clear that the CC slope is inversely proportional to εtr, with [001] samples 

exhibiting the highest CC slopes for each condition.  



 
 

158 

For the solutionized condition, [001] had the highest CC slope of 9.66 MPa/ ºC, 

while [011] and [111] orientations had CC slopes of 5.52 MPa/ °C and 5.29 MPa/ °C, 

respectively, consistent with the [001] orientation having the lowest transformation strain 

among all orientations. The transformation strain was lowest in [001] after aging, which 

resulted in the highest CC slopes, in the range of 30-40 MPa/ °C. The CC slopes along the 

[011] and [111] orientations were independent of aging treatment and were about 9 MPa/ 

°C and 11 MPa/ °C after aging at 550 °C-3h and 650 °C-3h, respectively.  

 

Figure 6.12: Stress vs. temperature relationship of solutionized and aged Ni50.3Ti29.7Hf20 

single crystal along the [001], [111], and [011] orientations. 

 

 

It is worth to note that the stress do not have linear relationship with temperature at 

low stress levels as shown in solutionized [001] orientation. The behavior could be 

attributed to the fact that mechanical stress is functions of strain, chemical, elastic and 

dissipation energies where 𝜎𝑚𝑒𝑐ℎ =
1

𝜀
(∆𝐺𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 + ∆𝐺𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + ∆𝐺𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑜𝑖𝑛). 

Dissipation energy is a function of applied stress during thermal cycles for solutionized 

condition and thermal hysteresis was varied with stress. In contrast to aged conditions, the 

difference between the thermal hysteresis at low and high stress levels is larger for 

solutionized case, hence, the mechanical stress is not linear function of temperature at low 

stresses. For instance, the thermal hysteresis does not change that much with stress level 
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for 650 °C-3h condition and as a result the lines intersect each other at a same point at low 

stress levels, while for solutionized case the dissipation energy is function of stress and 

there is no linear relation between stress and temperature at low stress levels. 

6.4.5 Superelastic Temperature Window 

The temperature window over which superelastic behavior occurs is narrow for the 

[001] orientation and 650 °C-3h aged samples. This is because the superelastic temperature 

window highly depends on the CC slope, thermal hysteresis, and yield strength.  According 

to Liu and Galvin [164], the criteria for superelasticity can be written as 

 𝜎𝑦 > 2𝜎0 + (𝐴𝑓 − 𝑀𝑠)
∆𝜎

∆𝑇
                                                                                           (6.15) 

where 𝜎𝑦 is the austenite yield strength, 𝜎0 is the minimum stress level required for stress-

induced martensitic transformation, and 𝐴𝑓 − 𝑀𝑠 is the thermal hysteresis. From this 

relationship, the superelastic temperature window can be calculated as  

𝑇𝑆𝐸 = 𝜎𝑦  / 
∆𝜎

∆𝑇
− (𝐴𝑓 − 𝑀𝑠)                                                                                                                      (6.16) 

It is clear from Equation 6.16 that TSE increases with yield strength. Thus, precipitation 

hardening is expected to increase the superelastic window. However, a high volume 

fraction of precipitate phase will result in a decrease in transformation strain, which 

increases the CC slope. If we assume that yield strength is constant, a steep CC slope 

diminishes the temperature window for superelasticity since the critical stress for phase 

transformation reaches the yield strength over a smaller temperature range. Also, yield 

strength in general decreases with increasing temperature so that materials with high TTs 

may exhibit lower TSE. 
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  Thus, lack of superelasticity in aged [001] samples can be attributed to the fact that 

stress required to induce the martensite transformation is higher than the stress required for 

slip due to a large CC slope. In contrast, perfect superelasticity was observed for 

solutionized and 550 °C-3h aged conditions along the [011] and [111] orientations, but the 

superelastic temperature window decreased after aging for [011] orientation. The 

superelastic window was the same for the [111] crystals in both the solutionized and 550 

°C-3h aged conditions, i.e., 80 °C, though the temperature range was higher in the case of 

the aged sample. Along the [011] orientation, the decrease in superelastic window for the 

aged material compared to the solution treated was due to a decreasing yield strength with 

increasing temperature and the very high stress needed to initiate the stress-induced 

transformation at temperatures above 200 °C.  

After aging at 650 °C-3h, the TTs and thermal hysteresis increased and the strength 

of material decreased compared to the 550 °C-3h aged samples. Since both 550 °C-3h and 

650 °C-3h aged samples have similar CC slopes along [011] and [111] directions, poor 

superelasticity in the 650 °C-3h condition can be attributed to the large hysteresis and lower 

yield strength of the material.  

6.4.6 Comparison to NiTi and NiTiHf-based Alloys 

It is worth comparing the results of the Ni50.3Ti29.7Hf20 single crystals with those 

reported previously on NiTi shape memory single crystals. Single crystal Ni51.5Ti48.5 (at. 

%) has Ms temperatures below –196 °C and –37 °C in the solutionized (1000 °C-2h) and 

overaged (550 °C-1.5h) conditions, respectively [70]. Superelasticity with recoverable 

compressive strains of 3.9%, 4.2% , and 1.2% for solutionized and 3.3% , 3.7% , and 3% 

for overaged single crystals was reported along [001], [110], and [111] orientations, 
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respectively. In addition, the experimentally recoverable strains under compression in 

Ni50.8Ti49.2 were 3.5%, 3.2%, and 2.3% for samples aged at 400 °C-1.5h and 4.3%, 3.6% , 

and 3% after aging at 500 °C-1.5h along [100], [110], and [111] directions, respectively 

[79].  

These studies [70, 124] indicate that the transformation strain was minimum along 

the [111] orientation in binary NiTi, but current results indicate that the minimum in 

transformation strain occurs along [001] for Ni50.3Ti29.7Hf20. The maximum transformation 

strain was observed along the [111] orientation for Ni50.3Ti29.7Hf20 compared to the [100] 

and [110] orientations in Ni51.5Ti48.5 and Ni50.8Ti49.2, respectively. Even though the NiTi 

and NiTiHf alloys have the same crystal structures for the austenite (B2) and martensite 

(B19’) phases, their maximum and minimum transformation strains are observed along 

different orientations under compression. This can be attributed to differences in the active 

twining types of martensite, where the <011>B19′ type II twin is the dominant twinning 

mode in NiTi, while the {011}B19′ type I twin is the dominant twinning observed in 

martensite plates of NiTiHf. 

Studies have also been conducted on the orientation dependence of shape memory 

properties of a similar alloy, Ni45.3Ti29.7Hf20Pd5 [124, 126, 127, 165]. Perfect superelasticity 

with 4.2% recoverable strain was attained between –30 °C and 70 °C and the alloy 

exhibited yield strength greater than 2500 MPa along the [111] orientation in the solution 

treated condition [127]. After three hours aging at 550 °C, shape memory  behavior with 

maximum reversible strains of 2.2%, 2.7% and 0.7%  at 1000 MPa and fully recoverable 

superelastic responses were observed along [111], [011] and [-117] orientations, 

respectively [165]. This study also demonstrated that the CC relation was a strong function 
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of orientation and aging condition, where the CC slopes for 550 °C-3h aged samples 

increased from 11.1 MPa/ °C, 8.2 MPa/ °C, and 27.6 MPa/ °C to 12.5 MPa/ °C, 9.3 MPa/ 

°C, and 42.2 MPa/ °C after aging at 600 °C for 48h along [111], [011], and [-117] 

orientations, respectively [165].  Thus, we can conclude that the Ni50.3Ti29.7Hf20 alloy 

shows similar behavior to Ni45.3Ti29.7Hf20Pd5, but can exhibit higher transformation 

temperatures and strains upon aging.  

It can be suggested that the shape memory properties of the polycrystalline 

Ni50.3Ti29.7Hf20 alloy can be improved by texturing along [001], [011], or [111] for a desired 

set of properties. [100] texture can be used for stable shape memory behavior under high 

stress, while [111] and [011] can be chosen for large transformation strains and wide 

superelastic window. In addition, aging can be used to tailor the microstructure and thus 

shape memory properties by introducing nano-size precipitates in the matrix.  

6.5 Conclusion 

In this chapter, the orientation dependence of shape memory properties of solutionized 

and aged Ni50.3Ti29.7Hf20 single crystals were investigated. The following conclusions were 

drawn from the present work: 

1. Transformation temperatures and shape memory properties of Ni50.3Ti29.7Hf20 

alloys can be tailored by aging. Aging at 550 °C-3h introduced nano-size coherent 

precipitates in the matrix and thus improved the strength and shape memory 

behavior of the single crystals. Aging at 650 °C-3h can be used to increase the 

martensitic transformation temperatures, however, precipitation hardening was 

diminished due to the formation of large precipitates. 
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2. Among the three orientations, [001]-oriented single crystals have the highest 

strength and exhibit limited plastic strain during thermal cycling even at 1500 MPa. 

The transformation strain and thermal hysteresis are low along the [001] orientation 

and no superelastic behavior has been observed due to the higher critical stress for 

martensitic transformation. The [001] orientation exhibits a dramatic increase in 

critical stress with temperature with a CC slope of about 30 MPa/ °C. 

3. Shape memory behavior with 3.7% and 2.5% recoverable strain  at a 1000 MPa can 

be observed in solutionized and 550 °C-3h aged conditions of [111]–oriented single 

crystals, respectively. Perfect superelasticity with 5% recoverable strain is observed 

for temperature ranges of 40–120 °C and 120–180 °C for the solutionized and 550 

°C-3h aged crystals, respectively. The [111] orientation has the CC slope in the 

range of 5–11 MPa/ °C. 

4. Transformation strains of 3.6% and 3.1% was obtained by thermal cycling under 

700 MPa for the solutionized and 550 °C-3h aged conditions along the [011] 

orientation, respectively. The [011] orientation exhibited  perfect superelasticity 

with 5% recoverable strain for over a temperature range of 40–180 °C and 140–200 

°C for solutionized and 550 °C-3h aged samples, respectively. The CC slope of 

[011]-oriented single crystals is in the range of 5–9 MPa/ °C. 
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7 Summary and Future Works 

7.1 Summary and Conclusion 

Development of HTSMAs for a wide range of applications in aerospace, energy 

and automotive industries connecting the gap of the astonishing properties of this class of 

materials. The requirements of the industries for the commercial applications, specifically 

the requirement of TTs to be higher than 100 °C, as well as other number of properties 

including ductility, thermal and dimensional stability, fatigue life and high work output 

that can be derived out from the material. Among all the NiTi-based HTSMAs, NiTiHf 

alloys have relatively lower cost comparing to NiTi(Pd, Pt, Au) alloys that makes them 

suitable nominee for large scale of applications. In addition, Ni-rich NiTiHf alloys have 

the abilities to show superelasticity at high temperatures and shape memory effect under 

high stress levels [5, 136]. 

In this study, a detailed investigation on shape memory properties and 

transformation behavior of single crystal and polycrystalline Ni-rich NiTiHf alloys was 

carried out. The alloys contained 20 at. % Hf and the Ni content was varied from 50.3 to 

52 at. %. The alloys were precipitation hardenable, have excellent dimensional stability at 

high stress levels with narrow hysteresis which made them a promising candidates for high 

force actuator applications at wide temperature ranges. 

It was shown that small changes in chemical composition are very effective to tailor 

the shape memory and material properties of Ni-rich NiTiHf alloys. It has been shown that 

H-phase precipitates were formed in furnace cooled NiTiHf alloy due to furnace cooling 

after homogenization and their size and volume fraction increased with Ni content. The 
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TTs decreased as the Ni content were increased from 50.3 to 52 at. %. Furthermore, the 

strength of furnace cooled NiTiHf alloys was increased with Ni content due to the change 

in precipitation characteristic and solid solution hardening. The increase in critical strength 

has shown to improve the dimensional stability of NiTiHf alloys during thermal cycling 

under stress where almost full recovery was demonstrated at ultra-high stress level of 2 

GPa for furnace cooled Ni52Ti28Hf20. 

In addition to compositional effects, the aging effects were investigated. In order to 

study the effects of thermal treatments on Ni-rich NiTiHf, the material were solution treated 

at 900 °C for three hours followed by water quenching to avoid formation of precipitates 

in the solutionized condition. It was shown that shape memory behavior and martensite 

morphology in Ni-rich NiTiHf alloys were mainly related to precipitates size and the 

distance between them. For summary, a schematic representation of effects of precipitates 

on strength and martensite morphology is shown in Figure 7.1.  The TTs of Ni-rich NiTiHf 

were increased after aging at appropriate temperatures due to formation of Ni-rich 

precipitates that resulted in depletion of Ni from matrix and made the matrix relatively Ti-

rich in contrast with nominal compassion which would result in an increase in TTs.  

The strength of material highly depends on the size and interparticle distance of 

precipitates which could acts as obstacles against dislocation motion. Formation of fine 

precipitates with small interparticle distance increase the strength of material since they 

produced resistance to slip of dislocation. In other word, Small precipitates are sheared by 

dislocation cutting through them which new interface between precipitates and matrix is 

produced and increased the interfacial energy, hence, the strength of material improved. In 

the case of bigger precipitates with longer interparticle distances, dislocations could bypass 
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the precipitates by looping around them instead of cutting through them as schematized in 

Figure 7.1. It is worth to mention that the high strength of furnace cooled Ni52Ti28Hf20 with 

large precipitates can be linked to the intrinsic strength of the alloy compositions due to 

solid solution. In addition, the high strength can also be attributed to different martensite 

morphology and type of twinning in this material. 

 

Figure 7.1: Schematic representation of effects of precipitate on strength and martensite 

morphology. 

 

It was found that the martensite morphology and twinning type is function of 

precipitates characteristics. At low aging temperatures (450 °C-3h and 550 °C-3h), the 

strain field around the precipitates can still be accommodated during martensitic 

transformation. Therefore, the martensite plates were able to absorb numerous nanosize 

(less than 20 nm) precipitates once they started to grow. However, large precipitates 

(greater than 50 nm) formed after aging at high temperature (650 °C-3h) which act as 
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obstacles to martensite variants growth and could not be absorbed. Thus, the nucleation 

and propagation of martensite variants was limited within the space between the particles 

as shown in Figure 7.1. In addition, (011) type I twins was the dominant twinning mode in 

the alloys with small precipitates while (001) compound and (011) type I twins were mostly 

observed with large precipitates. 

Shape memory behavior of Ni-rich NiTiHf alloys are also related to precipitation 

characteristic. Formation of nanosize precipitates after 450 °C-3h aging suppress the 

nucleation of martensite where no martensitic transformation was observed under low 

stress levels for Ni51.2Ti28.8Hf20 and Ni52Ti28Hf20 alloys. It has been shown that additional 

undercooling is needed to complete the forward transformation after 450 °C-3h aging 

(Figures 4.13a and 4.19b) and the low strain-temperature slope during the forward 

transformation designates the high elastic energy storage during austenite to martensite 

transformation. The stored elastic energy is affected by martensite morphology and 

precipitation characteristics and will increase as the resistance to the progression of the 

phase transformation increases [37, 145, 147]. In the 450 °C-3h aged condition, the 

increased resistance can be attributed to the additional fine precipitates against interface 

motion. Therefore, the process of trying to bypass and absorb precipitates during forward 

transformation make the nucleation and propagations of martensite difficult. Thus, the 

slope of the transformation strain-temperature decreases as the stored elastic energy 

increases in the material due to increased constraints in the microstructures. However, the 

stored elastic energy may be relaxed as precipitates become larger due to formation of 

dislocation. In such case, the slop of transformation strain-temperature slope will become 
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steeper due to easier nucleation and propagation of martensite plates, resulting in lower 

elastic energy storage. 

Shape memory properties of Ni-rich NiTiHf alloys are highly composition, aging 

and orientation dependent. The recoverable strains in Ni52Ti28Hf20 alloys are lower 

compared to the Ni50.7Ti29.3Hf20 and Ni51.2Ti28.8Hf20 in furnace cooled and aged conditions. 

The reason for the difference in recoverable strains of Ni-rich NiTiHf alloys can be 

attributed to the change in the twinning properties with composition. It should also be noted 

that transformation strain can be decreased due to increase in non-transformable 

precipitates which result in decreased volume fraction of matrix that undergo 

transformation. A detailed comparison between the twinning properties, precipitation 

characteristics and volume fractions of the forming precipitates would be useful to relate 

the microstructure to the shape memory properties. 

Thermal hysteresis become narrow after three hours aging at 450 °C and 550 °C 

which can stem from hindering dislocation generation due to precipitation strengthening 

that may result to less energy dissipation. Another possible reason for the lower thermal 

hysteresis after aging can be a slight change of the lattice parameters of Ni-rich NiTiHf 

SMAs. It is known that when the compatibility between the transforming phases is better, 

less dissipation is expected [166]. Since the compatibility strongly depends on the lattice 

parameters of the transforming phases, which are subsequently dependent on matrix 

composition and temperature. Thus, it is possible that aging may modify the lattice 

parameters in a manner that could result in improved compability and subsequently smaller 

thermal hysteresis in aged Ni-rich NiTiHf alloys. In addtion, the increase in the thermal 

hysteresis with applied stress was observed in some conditions which was attributed to low 
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strength of the material and subsequently easy dislocation generation at high stress levels. 

The decrease in thermal hysteresis with stress can also be due to the increase of volume 

fraction of favorable martensite variants, which results in decreased of dissipation energy 

due to less interaction between martensite variant interfaces. Low thermal hysteresis is a 

desire of the alloys that well be used in actuator applications.  

In actuator type applications, work output is an essential parameter for making 

comparisons between various SMA families and for comparing the capability of SMAs to 

conventional actuators. In this case, work output can simply be defined as the product of 

applied stress and recoverable strain and was determined from the thermal cycling 

experiments. A summary of actuation strains and work outputs of selected NiTi-based 

SMAs are illustrated in Figure 7.2. Work output was less 20 J cm-3 with maximum 

actuation strain of ~4% for slightly Ni-rich Ni50.3Ti29.7Hf20 under compression while the 

maximum work output of 29 J cm–3 was achieved under tension where the actuation strain 

was ~5%. The low work output under compression is due to the fact that the actuation 

strain in compression is lower than the tension. Slight increase of Ni content to 50.7 at. % 

resulted in a maximum work output of 22 J cm-3 while the actuation strain was decreased 

to 3%. The high work output of Ni50.7Ti29.3Hf20 can be due to ability of the alloy to show 

near perfect dimensional stability at higher stress levels in contrast with Ni50.3Ti29.7Hf20. As 

Ni concentration increased the maximum actuation strains decreased to below 2% while 

the high work outputs of 27 J cm-3 and 25 J cm-3 were achieved by Ni51.2Ti28.8Hf20 and 

Ni52Ti28Hf20 alloys, respectively. The high work output with low actuation strain is due to 

high strength of material and as a result perfect dimensional stability was observed at high 

stress levels of greater than 1500 MPa. In addition, NiTiHf single crystal reached to the 
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highest work output of ~35 J cm –3 due to the perfect dimensional stability under high stress 

levels and a reasonable actuation strain of 4%. In contrast to Ni-rich NiTiHf alloys,  NiTi 

can reach a maximum actuation strain of 8% with a work output in the range of below 20 

J cm –3 [167] but they can only operate at temperatures below 100 °C. Addition of ternary 

alloys such as Pd, Pt, and Hf decrease the actuation strain but improve the strength of the 

material in some cases [5, 136] and increase the TTs.  Work output for NiTiPd and NiTiPt 

HTSMAs is below 15 J cm-3. On the other hand, Ni45.3Ti29.7Hf20Cu5  alloys can generate 

work outputs of around 14–15 J cm-3 [132] while NiTiHfNb alloys have work output levels 

of 17–18 J cm-3
 above 100 °C [129] and 150 °C, respectively. Furthermore, 

Ni45.3Ti29.7Hf20Pd5  alloys can generate higher work outputs of 32–35 J/cm3 [112] (up to 

120 °C) while upper temperature capability is somewhat limited compared to the above 

mentioned NiTiHf-based alloys. 

 

Figure 7.2: Comparison of work output and actuation strain of for typical NiTi-based 

SMAs. 
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The exceptional property of Ni-rich NiTiHf alloys is the high strength of these 

alloys where almost full recovery was observed at ultra-high stress levels as result of 

thermal and stress induced martensitic transformation. Ultra strength behavior has been 

mostly observed in nanoscale materials such as;  nanowires, nanopillars, nanolayers, 

nanocrystals and nanoparticles materials [168]. Ultra strength phenomena in nanoscale 

materials can be characterized by the overall stress levels of sample reaching to a 

significant fraction of its ideal strength, defined as the highest stress a perfect crystal can 

sustain without any plastic deformation [168, 169]. The ideal strength of alloys are defined 

as the one tenth of their elastic modulus (E) [169-171]. Alternatively, alloys can be 

considered to have ultra-strength if their strength is in GPa levels [171]. The deformation 

mechanisms of ultra-strength materials are related to the nucleation and movement of 

dislocations, dislocation-interface interactions and deformation twinning [168, 171]. In the 

current research, Ni51.2Ti28.8Hf20 and Ni52Ti28Hf20 alloys demonstrated ultra-strength where 

near perfect dimensional stability was experimented during thermal cycling above 1500 

MPa. Moreover, full superelastic recovery with about 4% total strain at low and high 

temperatures was observed at stress levels of about 2 GPa after three hours of aging at 450 

°C and 550 °C. 

Ultimate strength of different class of materials [172, 173] are summarized in 

Figure 7.3. The elastic modulus of austenite is determined from stress-strain curves to be 

~80 GPa for aged Ni-rich NiTiHf alloys. Since the alloy can work under 2 GPa, the ratio 

of actual strength to ideal strength can be calculated as 25%, which is quite high for 

conventional materials since the ratio of actual to ideal strength of conventional steels are 

less 20 %. It is clear from Figure 7.3 that the strength of Ni-rich NiTiHf material is higher 
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than conventional steels and shape memory alloys. In addition, conventional strength of 

most metals decreases with increasing temperature while it has been demonstrated that Ni-

rich Ni51.2Ti28.8Hf20 are capable to reach a ultra-strength at room temperature and also high 

temperatures after appropriates heat treatments. Other than the presence of fine precipitates 

with small interparticle distance, it has been reported that the strengthening of this material 

is the result of point defects clusters or additional ordering on austenite phase and also 

antisite defects that expected to be present in Ni-rich NiTiHf alloys [Coughlin 2015]. The 

ability to show full recovery after loading to 2 GPa at room and high temperatures make 

Ni-rich NiTiHf alloys suitable for biomedical and high temperature applications.  

 

Figure 7.3: Comparison of the strength of common materials. 

 

7.2 Future Works 

This project has shown that slight changes in chemical composition create 

significant changes in martensite morphology and consequently material properties. In 
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addition, it was discovered that three hours aging at 450 °C and 550 °C improve HTSMAs 

properties of the Ni-rich NiTiHf alloys and orientation dependence of Ni50.3Ti29.7Hf20 was 

investigated. The thermal cycling under stress and isothermal compression experiments 

were used were used to aid modeling efforts that will help material behavior predictions 

for future applications. 

In addition of observed results, possible future studies on these types of alloy 

systems could be to: 

1. Detailed microstructural analysis to investigate the reasons of decrease in TTs after 

aging at low temperatures (below 400 °C). 

2. Study the effects of aging under stress on the shape memory properties in NiTiHf 

alloy systems. 

3. Characterize the fatigue properties of NiTiHf alloys  

4. Investigate stress generation capabilities of single crystals and polycrystalline 

NiTiHf alloys and compare them to NiTi alloys. 

5. Detailed microstructural analysis to find out the difference in deformation 

mechanism under tension and compression. 

6. Investigate the damping and dynamic behavior of NiTiHf alloys. 
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