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ABSTRACT OF THESIS

LOW-ORDER DISCRETE DYNAMICAL SYSTEM FOR H2-AIR FINITE-RATE
COMBUSTION PROCESS

A low-order discrete dynamical system (DDS) for finite-rate chemistry of H2-air
combustion is derived in 3D. Fourier series with a single wavevector are employed
to represent dependent variables of subgrid-scale (SGS) behaviors for applications to
large-eddy simulation (LES). A Galerkin approximation is applied to the governing
equations for comprising the DDS. Regime maps are employed to aid qualitative de-
termination of useful values for bifurcation parameters of the DDS. Both isotropic and
anisotropic assumptions are employed when constructing regime maps and studying
bifurcation parameters sequences. For H2-air reactions, two reduced chemical mech-
anisms are studied via the DDS. As input to the DDS, physical quantities from
experimental turbulent flow are used. Numerical solutions consisting of time series
of velocities, species mass fractions, temperature, and the sum of mass fractions are
analyzed. Numerical solutions are compared with experimental data at selected spa-
tial locations within the experimental flame to check whether this model is suitable
for an entire flame field. The comparisons show the DDS can mimic turbulent com-
bustion behaviors in a qualitative sense, and the time-averaged computed results of
some species are quantitatively close to experimental data.

KEYWORDS: Discrete Dynamical System, Subgrid-scale Model, Diffusion flame,
Finite Rate Chemistry
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Chapter 1 Introduction and Background

1.1 Background

Current targets of combustion research include optimizing combustor operation,

monitoring the combustion process, and reducing the severe consequences of insta-

bilities. There are several aspects to improve combustion system performance, such

as reducing the levels of pollutant emissions, and smoothing the pattern factor cor-

relation parameters at the combustor exhaust. In terms of instabilities, the purpose

is to extend the stability region by reducing the level of oscillation that is caused

by combustion processes. As combustion systems pursue high performance and meet

increasingly stringent air pollution standards, combustion equipment design and op-

eration become more complex, as noted by Docqier and Candel [1]. In the past

decade, low pollutant emission has became a feature for new combustion equipments.

In addition, for a specific fuel, optimizing the performance of combustion system is

necessary for seeking a balance between low emissions and operating performance, as

discussed by Richards et al. [2]. Thus, investigation on understanding and monitoring

combustion processes and system is more and more important.

In order to optimize design of combustion devices, a long-term goal of research on

the combustion process is to develop mathematical flame models. Turbulent flames

are very complicated; thus, a stepwise approach starting with simple flame config-

urations seems to be a reasonable approach. The essential quantities for an overall

characterization of the chemical state within a flame include temperature and major

species concentrations and their fluctuations, and these variables should be diagnosed
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by detection techniques. This area of research relies strongly on the availability of

appropriate measuring techniques, which can verify the results of flame simulations

or discover shortcomings in the models applied, see Meier et al. [3].

Combustion models can be divided into two main groups according to the as-

sumptions on the reaction kinetics, namely, infinitely-fast chemistry and finite-rate

chemistry. Although hydrocarbon fuels and pure hydrogen exhibit fast chemistry, it is

clear from experiments and theoretical investigation that the assumption of infinite-

rate chemistry for them is not appropriate if highly accurate results are sought, as

noted by Neuter et al. [4]. This is because minor species in a reaction are more sensi-

tive than are major species relative to finite-rate chemistry, but may play a significant

role in the reactions path.

There are three types of combustion flames in terms of mixing type: premixed, non-

premixed and partially premixed flames. In premixed flames, the fuel and oxidizer

are mixed well prior to ignition, and these flames are not limited only to gaseous

fuels, but also to pre-vaporised fuels. Non-premixed flames represent a special class

of combustion, wherein fuel and oxidizer enter the combustion chamber separately.

Diffusion and mixing of the two flows bring the reactants together; then reaction

occurs. Mixing is the key characteristic for non-premixed flames. Partially premixed

flames have different flammability characteristics from those of non-premixed and fully

premixed flames, they are non-uniform with respect to fuel-air mixing and produce

two or more reactions. Partially premixed flames are formed when a fuel flow is mixed

with a less than stoichiometric quality of oxidizer before the reaction zone, and the

fuel and oxidizer are mixed well in the reaction zone, as described by Aggarwal [5].

The partially-premixed regions are formed by gaseous fuel leaks and in evaporating

liquids, as mentioned by Puri et al. [6].

2



1.2 Finite-rate Models

Many years of research associated with finite-rate chemistry in turbulent combus-

tion has focused on the first two of the above mentioned flame types. Neuber et al. [4]

investigated finite-rate chemistry in non-premixed turbulent flames, and they studied

turbulent N2 diluted H2 diffusion flames by means of laser spectroscopic methods

and a numerical combustion model; results shown that theoretical spatial maxima

of the mean OH mole fraction matched with experimental data well in magnitude.

Bray et al. [7] conducted research on premixed turbulent combustion with finite-rate

chemistry and presumed probability density function (PDF), and they investigated

the sensitivity of prediction of mean reaction rates in turbulent premixed flames to

presumed PDF shape. They compared three different presumed PDF shapes with

direct numerical simulation (DNS) data, and the comparison showed the beta func-

tion and twin delta function PDFs make significant mistakes, while the PDF based

on unstrained laminar flame properties agrees well with the DNS data. Dunn et

al. [8] applied numerical calculations with a particle based PDF method to study

detailed scalar structure measurements of highly sheared turbulent premixed flames

on a piloted premixed jet burner. They found that as shear rates increase, the finite-

rate chemistry effects decrease gradually in reactiveness, and a particle-based PDF

model with modified mixing frequency was able to predict the measured flames with

finite-rate chemistry effects. Lindstedt et al. [9] employed perturbation approaches

to introduce finite-rate chemistry effects and provided an assessment of uncertainties

in the formation chemistry of NOx. They pointed out that formation of nitric oxide

is kinetically controlled, and that calculation procedures are able to predict interac-

tions between turbulence and finite-rate chemistry over a wide range of Damköhler

numbers. Irannezhad [10] performed a numerical analysis of a laboratory low-swirl

stabilized flame via a large-eddy simulation model together with a finite-rate chem-
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istry combustion model. They found that computational domain and inlet boundary

conditions have significant effects on flame stabilization mechanisms in a numerical

simulation.

Chemical-kinetic mechanisms play an important role in combustion research, and

they can be used to study autoignition, deflagrations, detonations and diffusion

flames, etc. On the basis of rate parameters of elementary reaction in combustion pro-

cesses, description of the elementary reaction steps have moved forward extremely in

the last couple decades through the development of detailed chemical-kinetic mecha-

nisms. Healy et al. [11] developed a detailed chemical kinetic mechanism to study the

oxidation of mixtures of CH4/C2H6/C3H8/n-C4H10/n-C5H12 at high pressure and in-

termediate to high temperatures. Wang [12] developed an skeletal mechanism from a

detailed mechanisms for hydrogen (H2) and C1-C4 hydrocarbons. He made a system-

atical error analysis and and checked the chemical reality of the skeletal mechanism,

the numerical results showed that the skeletal mechanisms exhibited very good per-

formance in prediction of ignition for hydrogen, methane, ethylene, ethane, propene,

propane and n-butane. Westbrook et al. [13] developed detailed chemical kinetic

reaction mechanisms for the pyrolysis and oxidation of nine n-alkanes larger than n-

heptane in both low temperature and high temperature reaction pathways, and these

mechanisms have been validated by the experimental data from different sources.

Dixon-Lewis et al. [14] applied a “composite flux” method to analyze the solution of

multi-radical, premixed laminar flames, and they discussed the radical recombination

regions of hydrogen and lean hydrocarbon flames, and the full zones of both rich

and lean hydrogen flames. Gardner [15] focused on the combustion chemistry of

nitrogen, sulfur, and chlorine in gas phase. Frenklach et al. [16] utilized a method of

systematic optimization solution mapping to determine an optimal set of parameters

for a methane combustion mechanism. Dagaut et al. [17] studied the oxidation of TR0

kerosene in a jet-stirred reactor (JSR), and performed a kinetic analysis to identify

4



the dominant reaction steps of the mechanism. In the conditions of intermediate

temperature and high pressure, the solution showed HO2 radicals play an important

role as chain carriers, which lead to the formation of the branching agent H2O2.

Marinov et al. [18] performed detailed chemical kinetic modeling to analyze aromatic

and polyaromatic hydrocarbon pathways in methane and ethane premixed flames.

Curran et al. [19] developed a detailed chemical kinetic mechanism to investigate the

oxidation of n-heptane in flow reactors, shock tubes, and rapid compression machines.

The sensitivity analysis indicated that a low-temperature chemistry is very sensitive

to formation of stable olefin species. Ranzi et al. [20] discussed kinetic modeling and

application of extended kinetic schemes, and argued that extension requires only a

relatively limited set of independent elementary kinetic parameters. They combined

the low- and high- temperature mechanisms of the oxidation process into an extended

kinetic scheme to simulate oxidation of natural gas, commercial gasolines and jet fuels,

and provided several examples to demonstrate the reliability and effectiveness of these

mechanistic schemes. Simmie [21] reviewed the status of detailed chemical kinetic

models for intermediate- to high-temperature oxidation and ignition combustion of

hydrocarbons, and validated these models with experiments.

Different chemical mechanisms focus on different specific applications; and within

the uncertainties of mechanism fundamental studies, the elementary reaction rate

parameters must match fundamental rate measurement and computations. The im-

portance of elementary reaction is different in different applications, and the more

detailed the chemical mechanism, the broader the range of application. Thus, some

mechanisms for combustion processes contain thousands of elementary reaction steps

and hundreds of chemical species, as mentioned by Petrova and Williams [22]. The

disadvantages of complete mechanisms is that detailed mechanisms in combustion

applications require significant computational sources, especially for turbulent com-

bustion; and this is prohibited by limited computational facilities nowadays. For
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example, there are 38 elementary reactions in the formation of water, and the analy-

sis and solution of these elementary reaction is a difficult and time-consuming process,

as shown by Warnatz et al. [23]. It has been shown that many of elementary reactions

have minor effects on the reaction process, and these reactions can be ignored in an

approximation (see Petrova and Williams [22]). An appropriate reduced mechanism

can reveal most important information of chemical reactions and significantly reduce

computing processes. Investigating and determining appropriate reduced mechanisms

for the DDS model at the non-premixed flames is one part of task in this work.

Numerical computation of combustion processes is rapidly growing with the devel-

opment of high-performance computer power. Reasonable accuracy must be assured

before employing the numerical results, and it is a good approach to achieve the accu-

racy by basing the numerical calculation on a correct detailed chemical-kinetic mech-

anism. This thesis focuses on hydrogen-air chemical reactions; there are fewer species

and fewer elementary reactions involved than any other fuel oxidation chemical mech-

anism. Thus, it is easier to obtain reasonable accuracy in hydrogen-air combustion

mechanisms. In the well-known San Diego mechanism (Saxena and Williams) [24],

eight species and twenty one reversible elementary reactions in the hydrogen oxidation

mechanism with reasonable rate parameters for all of these steps have been applied.

However, even in this relatively simple mechanism, combustion processes in turbu-

lent flow and complex geometric configurations with a full chemical mechanism are

beyond the current computational capabilities for three space dimensions. Therefore,

developing a systematically reduced hydrogen-oxygen mechanism that has sufficient

accuracy to produce reliable numerical results is very helpful.

6



1.3 Numerical Approach

1.3.1 Effects of Turbulence

In the past several decades, numbers of reduced mechanisms for hydrogen-oxygen

chemistry have been derived from one specific combustion process, such as developed

separately for diffusion flames, premixes flames, and for autoignition. For exam-

ple, Williams [25] derived separate reductions for autoignition, similarly, Mauss [26]

and Seshadri [27] obtained separate reductions for laminar deflagration. Fernández-

Galisteo [28] [29] presented a one-step overall mechanism systematically that derived

for sufficiently lean deflagrations. Guthiel [30] and Balarkrishnan [31] provided re-

ductions for laminar diffusion flames. These reduced mechanisms can efficiently solve

one specific problem, and they are limited to only one combustion process. How-

ever, autoignition and flames may occur simultaneously in turbulent combustion, or

in the transition from deflagration to detonation; and reduced chemistry is required

due to computer limitations for numerical computation. To fill this need, Boivin et

al. [32] developed a systematically reduced chemistry that encompasses autoignition

and flames for hydrogen-air chemistry. In terms of general computational approaches,

sufficiently accurate reduced chemistry that contains all of these combustion processes

is needed because it is hard to predict, in advance, what manner combustion will de-

velop. The systematically reduced description of hydrogen-oxygen chemistry derived

in [32] can be applied to all of these combustion processes with acceptable accuracy.

The present thesis applies a small, yet detailed mechanism to simulate non-premixed

turbulent hydrogen-air co-flow from a nozzle, and the numerical results will be ver-

ified with experimental data. The chemical mechanisms presented here include two

individual ones: first is hydrogen-oxygen chemistry with N2 dilution; and second is

reacting N2 producing NOx emission. This N2 dilution mechanism contains 15 ele-

mentary reactions and 8 species as shown in [24]; and the reacting N2 mechanisms
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contains the nitrogen Zeldovich mechanism, including 21 elementary reactions and 10

species.

1.3.2 Need for Parallelization

The validation of the mechanisms in the context of a turbulent non-premixed jet

flame includes use of averaged values and fluctuations of velocity, temperature and

the major species, such as H2, O2, H2O, N2. The aim of this work is to obtain a

clear understanding of combustion chemistry scheme under the conditions mentioned

in the abstract, as well as to provide a mechanism for use by those investigators

in need of manageable and reliable chemical-kinetic descriptions for H2-fuel. This

mathematical model is coded in Fortran 77, with computational work performed on

the University of Kentucky high-performance computer (HPC). In order to obtain

solutions more quickly, parallelization is applied to the code. The goal of parallel

computing is to reduce execution time, resulting in the ability to solve problems that

would not be possible with a corresponding serial program; but this leads to a need

for more CPUs, memory resources, and many problems scale well to only a limited

number of processors. (see MPI course of Dartmouth College [33]).

A high-performance computer, or supercomputer, is a computer at the frontline of

contemporary processing capacity, particularly with respect to speed of calculation,

which can happen at speeds of nanoseconds, and available random access memory.

With increasing computationally-intensive tasks and the requirement of decreasing

run time, supercomputers play a more and more important role in computational

science fields. Supercomputers are applied in a variety of applications in scientific

research and industry design/production, including quantum mechanics, climate re-

search, weather forecasting, oil and gas exploration, molecular modeling and physical

simulation. The current thesis focuses on modeling a combustion process, which is a

specific application of physical simulation in computational fluid dynamics. The cor-
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responding parallel structure in the code is used to improve computational efficiency

with potential application in a complete LES code.

There are two types of problem decomposition in the context of parallel program-

ming: domain decomposition and functional decomposition, which can be applied

separately or together. In domain decomposition, data are divided into similar size

pieces and mapped to different processors; one process can communicate with other

processors when necessary; and the processor works only on data assigned to it. In

functional decomposition, a program is decomposed into a number of small tasks; the

pieces of data require different processing times, and the computation performance is

limited by the slowest process (see [33]).

There are two typical ways to parallelize a programming language. One is directive

based parallel programming language, with Open Multi-Processing (OpenMP) being

the most widely used. This programming language utilizes directives to tell processors

how to distribute data and work across the process, and it appears as comments

in an originally serial source code. It is usually implemented on shared memory

architectures. A second one is message passing interface (MPI), which passes messages

to send/receive data between processes, and each process has its own local variables.

It can be used on either shared or distributed memory architectures (see [33]).

The characteristics of MPI and OpenMP are established by their own structures.

The advantages of MPI include: MPI can run on either shared or distributed memory

architectures, so it can solve a wider range of problems than OpenMP; each process

has its own local variables; distributed memory computers are much cheaper than

large shared-memory computers. However, MPI needs more programming changes to

go from serial to parallel versions, and it is harder to debug than OpenMP; moreover,

its performance is limited by communication networks between the nodes. In contrast

to MPI, OpenMP is easier to program and debug, and its directives can be added

incrementally, allowing gradual parallelization. In OpenMP, a program can be run as
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a serial code and the serial code statements do not need modification; moreover the

code is easier to understood and more easily maintained; and it is mostly used for

loop parallelization, as noted by [33].

In the University of Kentucky HPC center has 16 cores per node. Thus, OpenMP

can use 16 cores at one time, at most, in this local shared memory system. In

terms of theoretical calculation of computation time, 16 cores can speed calculation

of parallelization parts to 16 times, and for a relatively small task, 16 times the

speed of the original one is fast enough. The whole execution time in OpenMP

includes computation time, idle time (waiting for data from other processors) and

communication time (time processors take to send and receive messages). The idle

time and communication time will delay the whole calculation time. Thus, minimizing

communication by reducing the number of messages, and reducing the amount of data

passed in messages, is an efficient approach to reduce communication time. In this

thesis, the computational load of each task is not large; therefore OpenMP is a good

choice for parallel computing here.

1.4 Motivation

It is not a wise choice to directly simulate a turbulent combustion process, such

as directly calculating discrete momentum equations, even with a parallelization pro-

gramming. More efforts have been spent on improving numerical analysis of the

interaction between chemistry and turbulence for combustion flames especially for

turbulent flames, in the last several decades since there is still a large amount of com-

putational work in turbulent combustion processes without a simplified turbulence

model, as mentioned by Carbonell et al. [34]. In the following several paragraphs,

this thesis will review the history of turbulence model development, and discuss both

advantages and disadvantages of each model to provide a setting and motivation for

the method studied in this thesis.
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The earliest recognition of turbulence as a physical phenomenon began at the time

of Da Vinci (circa 1500). But there was no substantial progress in understanding

turbulence until Boussinesq provided the Boussinesq hypothesis [35] in the late 19th

century. His hypothesis mentioned that “turbulent stresses are linearly proportional

to mean strain rates, with the constant of proportionality being the (non-physical)

eddy viscosity”, which is very popular in most turbulence models, at least in part due

to the analogy with Newton’s law of (physical) viscosity. The Navier–Stokes (N.–S.)

equations are a classical mathematical description of motion of fluid substances, and

it is believed that these equations properly illustrate the complexities of turbulent

behavior, see Lerner and Trigg [36]. Nevertheless, analytical solutions to the N.–S.

equations, even for the simplest turbulent flows, do not exist due to the nonlinearity

that is caused by convective acceleration. Mixtures of chaos and order, and the wide

range of length and time scales in turbulent flow, make turbulence “one of the seven

most important open problems in mathematics,” as claimed by the Clay Mathematics

Institute. This institute has offered a one-million US dollar prize to the researcher who

first proves long-time existence of high Reynolds number (hence turbulent) solutions

to the N.–S. equations [37]. Turbulence is one of the toughest problems in classical

physics; some scientists view turbulence as “chief outstanding problem of our subject,”

first stated by Lamb [38] in the second edition of Hydrodynamics; and “invention of

the Devil on the seventh day of creation,” declared by Bradshaw [39] in 1994.

The works of Reynolds, Prandtl, Taylor and others emphasized that statistical ap-

proaches were the only possibility for analyzing the randomness of turbulent flows,

and this opinion was very popular in the development of turbulence modeling pro-

cedures for simplifying the N.–S. equations, see details in McDonough [40]. The

modeled equations describe the statistical evolution of the flow containing terms that

cannot be obtained from the N.–S. equations, and therefore they require modeling.

With increasing complexity of turbulent flow, in order to get reasonable numerical
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results, improvement of turbulence models is needed.

Typically, there are three main approaches to turbulence calculation: direct numer-

ical simulation (DNS), large-eddy simulation (LES), and Reynolds-average Navier–

Stokes (RANS) modeling. In DNS, the N.–S. equations are numerically highly re-

solved to accurately simulate the flow, and its computational cost is high as all length

scales and time scales have to be resolved; this approach is limited to flow with low to

moderate Reynolds number. In LES, the equations are solved with a filtered velocity

field, which represents the larger-scale parts; the remaining parts of the smaller-scale

motions are not directly represented, which are calculated later with a sub-grid scale

(SGS) model, presented by Lesieur [41] and Kravchenko [42]. LES applies local spa-

tial filtering to all appropriate variables (spatial rather than temporal) and the LES

decomposition of u(x, t) is

u(x, t) = ũ(x, t) + u′(x, t). (1.1)

In this decomposition ũ is usually termed the large- or resolved-scale part of the

solution, and u′ is called the small-scale, or subgrid-scale, or unresolved part.

Approaches based on RANS models are the most prevalent currently, and in RANS

all scales of the solution must be modeled under a RANS formalism; but the time

mean quantities are directly computed, as showed by Speziale [43]. The Reynolds

decomposition of u(x, t) is

u(x, t) = ū(x) + u′(x, t), (1.2)

where u′(x, t)) is termed the “fluctuating part,” and ū(x) is the time averaged value

and thus, independent of time. The total arithmetic of a model affects its calculation

expense, and McDonough [40] summarized the predicted arithmetic for these three

models. DNS requires no modeling, which has a total arithmetic scaling at least
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as Re3; and the total arithmetic will scale no worse than Re2 for LES; and the total

arithmetic is at most a weak function of Re for RANS. This thesis will briefly introduce

the history and development of the three classical turbulence models.

The flow variables, velocity and pressure are a function of space and time in a

complete description of a turbulent flow, which can only be obtained exactly by

numerically solving the N.–S. equations with DNS. Moin and Mahesh [44] stressed

that DNS was a research tool, and it was not appropriate for a brute-force solution

to the N.–S. equations for engineering problems. They discussed related numerical

issues, such as boundary conditions, and spatial and temporal discretization, and

used DNS data to evaluate accuracy of experimental measurements.

Direct simulation eliminates the need for ad hoc models, and the advanced jus-

tification for completed numerical resolution is that the statistics of the large scale

can be found at low Reynolds number and vary little with Reynolds number (see

Rogallo [45]). DNS is a very useful tool for turbulence research, and it complements

the time-trusted methodology of experimental research. Fox and Lilly [46] started

the foundations research of turbulence in two dimension at the National Center for

Atmospheric Research in the year 1971. They mentioned that numerical simulation

of turbulent flow was important in practical geophysics, and it was useful as a turbu-

lence theory test. They believed that directly simulating the larger scales of motion,

and only considering the small unresolved scales for their gross statistical interactions

with larger scales, was a more useful method for practical applications. Orszag and

Patterson [47] used a 323 computation of three-dimensional homogeneous, isotropic

turbulence in incompressible fluid at a Reλ of 35 as an initial DNS application in 1972.

They presented a preliminary report of these numerical simulations, and compared

the results with predictions of turbulence theories; and the calculations demonstrated

that spectral methods could be used to perform large-scale computations of turbu-

lence in 3-D. Rogallo [45] made significant progress in direct simulation methods,
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and he extended the Orszag and Patterson algorithm from homogeneous, isotropic

turbulence to incompressible fluid subjected to uniform deformation and rotation in

1981. His study provided the results of irrotational strain, shear, rotation, and relax-

ation toward isotropy following axisymmetric strain, and he compared the numerical

results with linear theory and experimental data. Rogallo applied the computed re-

sults to assess accuracy of models that were used in the closure of the Reynolds-stress

equations, and his work set the standard for DNS of homogenous turbulence.

Due to absence of flow boundaries, homogeneous flows are easier to achieve in

numerical computation than inhomogeneous flows. The earliest computation for in-

homogeneous flows were only performed in one dimension. Coarse-grid computations

of free-shear layers without wall-bounded turbulence was performed by Riley and

Metcalfe [48] in the late 1970s. Direct numerical methods have been successful for

unbounded flows, where viscosity was used to set the scale of dissipative eddies; how-

ever, it has not been successfully for wall-bounded flows, such as a turbulent channel

flow, see Rogallo and Moin [49]. Later, in 1987, Kim et al. [50] performed a direct

simulation of a turbulent channel flow, where all essential turbulence scales of motion

were resolved on the computational grid, and no SGS model was used. Kim et al.

reported the computed results of turbulence statistics and compared them with the

existing experimental data at a comparable Reynolds number. They also investigated

the behavior of turbulence correlations near the wall, and presented a number of sta-

tistical correlations, which were complementary to the existing experimental data for

the first time. Moser and Moin [51] then simulated a low Reynolds number curved

turbulent channel flow by direct numerical solution of the N.–S. equations. The re-

sulting flow fields were used to study the effects of streamline curvature via comparing

the concave and convex sides of the channel. Since then, channel flow has became a

fundamental phenomenon for wall-bounded turbulence study.

Subsequent studies of wall-bounded turbulence in channel configurations included
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other phenomena, such as heat transfer, rotation, transverse curvature, and tran-

spiration. Kasagi et al. [52] carried out a fully-developed thermal field DNS in a

two-dimensional turbulent channel flow to investigate air heat transfer. Statistical

data such as root-mean-square temperature fluctuations, turbulent heat fluxes, tur-

bulent Prandtl number, and dissipation time scales were obtained in their research.

These researchers also calculated budget equations of temperature variance, dissipa-

tion rate, and turbulent heat fluxes. Kristoffersson and Anderson [53] performed a

DNS of fully-developed pressure-driven turbulent flow in a rotating channel. They

found that the number of vortex pairs tended to increase with rotation number.

Neves and Moin [54] identified effects of transverse curvature by comparing their sim-

ulated results with those of plane channel simulation of Kim [50], and found that as

curvature increases, skin friction increases, and the slope of the logarithmic region

decreases. Neves and Moin [55] also studied effects of convex transverse curvature on

wall pressure fluctuations through DNS. Sumitani and Kasagi [56] employed a DNS

of fully-developed turbulent channel flow to analyze heat transfer with uniform wall

injection and suction. Spalart [57] made progress on boundary-layer simulations by

developing a method to compute turbulent sink-flow boundary-layers with favorable

pressures gradient. Spalart [58] also provided numerical simulation of a turbulent

boundary layer on a flat plate with zero pressure gradient; and his boundary-layer

data have been widely used in the turbulent flat-plate boundary layer field by scholars

and engineers.

Moin and Mahesh [44] described the history of DNS development, and they stated

that DNS of compressible turbulent flows has followed the steps of incompressible

flows. Feiereisen et al. [59] accomplished the initial study of DNS of homogeneous

compressible turbulent shear flow with low Reynolds number in the early 1980s. A

decade later, a series of studies about homogeneous compressible turbulent flows was

carried out. Erlebacher et al. [60] investigated compressible turbulent flows at low
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turbulent Mach numbers, and Sarkar et al. [61] scrutinized compressibility effects on

homogeneous turbulent shear flow. Lee et al. [62] studied the existence of eddy shock-

lets in 3-D compressible turbulent flow. Blaisdell et al. [63] checked compressibility

effects within decaying isotropic turbulence and homogeneous turbulent shear flow,

and their work increased understanding of compressible turbulence and helped devel-

opment of turbulence models for compressible flows. For wall-bounded flow analysis,

Coleman et al. [64] performed a study of compressible supersonic turbulent flow with

isothermal walls in a plane channel; Rai et al. [65] first described a compressible,

turbulent, supersonic, spatially evolving boundary-layer flow by DNS.

DNS is the optimal method for flow with low to moderate Reynolds numbers;

however, the goal to simulate a turbulent flame by DNS is very difficult to achieve

due to large computational expenses and memory requirements. The ranges of scales

in turbulent flows increase rapidly with Reynolds number, and most problems in

engineering applications have too wide a range of scales to be directly computed by

DNS. There are several options for turbulent flow models with high Reynolds numbers

besides DNS, such as RANS and LES.

In terms of additional partial differential equations that one must solve beyond

those of N.–S. equations, there are zero-equation, one-equation, and two-equation

models, and half–equation models for the classification of RANS methods. The half–

equation models contain a single ordinary differential equation in their formulation,

see Wilcox [66]. The k-ε models are the most widely used two-equation models, where

k is turbulence kinetic energy and ε is turbulence kinetic energy dissipation rate. The

formula for turbulence kinetic energy is

k =
1

2

(
u′2 + v′2 + w′2

)
, (1.3)
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and ε expressed in Cartesian tensor form as,

ε = 2νs′ijs
′
ij, (1.4)

where ν is kinematic viscosity, and s′ij are components of the fluctuating strain rate

tensor given by

s′ij =
1

2

(
∂u′i
∂x′j

+
∂u′j
∂x′i

)
. (1.5)

Solutions obtained from k-ε methods are not very close to experimental results (see,

e.g. Freitas [67]), but they tend to be somewhat better than these of zero- and one-

equation models. However, k-ε methods have been widely used in predicting many

flow behaviors for industrial applications, such as engine performance. In addition,

they currently comprise the most widely used turbulence models for combustion sys-

tem optimization in industry.

Retracing the history of RANS, Boussinesq [68] first introduced turbulent eddy vis-

cosity in his hypothesis, which is the basis for a simple time-averaged turbulence

closure. In the later 19th century, a paper served as a landmark contribution to

the development of fluid mechanics was published by Osborne Reynolds [69], which

put forward the concept of Reynolds averaging. Thanks to the pioneering work of

Prandtl [70], a practical turbulent flow calculation based on RANS equations with an

eddy-viscosity model was first successfully achieved. Prandtl introduced the concept

of mixing-length theory to determine eddy viscosity, and attempted to formally derive

turbulent eddy viscosity appearing in the Boussinesq hypothesis. The closed form

solutions of mixing length models are very successful for turbulent pipe and channel

flows. Many researchers, especially von Kármán [71] [72], made further investiga-

tions on the mixing-length approach, and greatly moved forward research progress on

mixing length models before the mid-20th century. At this time, researchers realized

that the basic assumptions of mixing-length were unrealistic, because turbulent flow
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scales did not show clear-cut separation characteristics. In order to develop more gen-

eral models, eddy viscosity was applied to turbulent kinetic energy by Prandtl [73].

This was the predecessor of one-equation model of turbulence, that is the so-called

k-l models, wherein the turbulent length scale l is obtained from specified empirical

data; and the turbulent kinetic energy k comes from a modeled transport equation.

These models did not work for all eddy-viscosity models, and they were unable to

accurately mimic body forces, streamline curvature, and history effects of individual

Reynolds-stress components.

In the early 1950s, Rotta [74] introduced the important theory of a full Reynolds-

stress turbulence closure, and mentioned the correlations between fluctuations of pres-

sure and velocity derivatives. This theory was a landmark contribution to turbulence

modeling, and it changed the course of Reynolds-stress modeling permanently. The

approach in [74] was based on the Reynolds-stress transport equation, and it was

regarded as a second-order or second-moment closure. This Reynolds-stress closure

traced both history and nonlocal effects on the evolution of the Reynolds-stress tensor.

However, there were six additional transport equations in this second-order closure

for individual components of the Reynolds-stress tensor, and the computer capacity

was not sufficient to treat complex flows, especially combusting flows, based on such

a closure at that time. With the development of high-speed computers, Daly and

Harlow [75], and Donaldson [76] employed the second-order closure models again in

the 1970s. Launder et al. [77] significantly improved earlier work by Rotta [74]. Later,

a two-equation model, the so-called k-ε model, was obtained by reducing Launder’s

model and supplementing an eddy-viscosity representation for the Reynolds stress.

The two-equation model, k-ε model, is still one of the most commonly-used turbulence

models for engineering applications due to its low computational effort requirement.

Various second-order closures were proposed after the Launder et al. work. Lum-

ley [78] believed that second-order closure modeling made it possible to treat many
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practical situations, and he introduced significant contributions to modeling of the

pressure-strain correlation and buoyancy terms. Speziale [79] examined physical prop-

erties of the commonly-used second-order closure models for rotating turbulent flows,

and compared the results with solutions of the N.–S. equations of fully-developed tur-

bulent channel flow in a rapidly rotating structure. Pope [80] developed a Langevin

model appropriate to constant property turbulent flows from a general transport equa-

tion which was consistent with the second-order turbulence closure models. Haworth

and Pope [81] attempted to determine the form of a second-order tensor appearing in

the general model equation, and they evaluated this tensor by considering evolution

of Reynolds stresses in homogeneous flows. Speziale [82] considered the zero-, one-,

and two-equation models along with second-order closures, and discussed the devel-

opment of models from two approaches: the continuum mechanics approach, and the

statistical mechanical approach.

There was another two-equation model, the re-normalisation group (RNG) k-ε

model, which was developed by Yakhot et al. [83]. This model was used to account

for effects of smaller scales of motion in the N.–S equations. Unlike the standard k-ε

model, which determined the eddy viscosity from a single turbulence length scale and

calculated the turbulent diffusion at the specified scale, the RNG approach applied

a modified form of the ε equation, which accounted for different scales of motion

through changes to the production term. Wang et al. [84] proposed a generalized

RNG closure model based on dimensionality of flow strain rate to improve predic-

tions of turbulence qualities for compressible flows. The numerical turbulence energy

of internal combustion engine flows was improved significantly, and the calculated tip

penetrations matched the experimental data well, in this generalized RNG closure

model. Two years later, Wang et al. [85] applied the RNG turbulence model to sim-

ulate non-reacting flows in a single-cylinder PFI engine. They compared the velocity

fields of numerical results with experimental data from particle image velocimetry
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(PIV) measurements, and good agreement was found between them.

RANS methods have been successful in predicting some gross features of combus-

tion, such as profiles of combustor exit temperatures, whereas, these are unable to

predict transient phenomena, such as flameout, relight and combustion instabilities in

gas turbines and afterburners, cycle-to-cycle variations in IC engines, and pollutant

formation, as noted by Fedina and Fureby [86]. The time-dependent nature of such

flows can be resolved with LES, which provides a very good natural framework for

simulation of performance of combustion equipment. In contrast, the goal of RANS

modeling in such situations is just to produce averaged scalar fluxes whose overall

effect is close to a “smearing” over time of the actual physics. This is unacceptable

in many combustion studies and applications .

Typical chemical reaction rates can be expressed in the well-known form of the

Arrhenius law (see, e.g. Warnatz et al. [23]):

k(T ) = AT n exp

(
−Ea
R0T

)
, (1.6)

where Ea is activation energy; R0 is the universal gas constant; T is absolute temper-

ature; and A and n are empirical constants. This form is extremely nonlinear, and

must be averaged in the context of the RANS formalism, or filtered in the typical

LES, as noted by McDonough [40]. It is clear that

k(T ) = AT n exp

(
−Ea
R0T

)

6= AT
n

exp

(
−Ea
R0T

)
= k(T ) ,

and the lack of equality is so severe that the second formula on the right simply

cannot be used. Moreover, most chemical reactions are sensitive to concentration of

chemical species; thus, we cannot directly use time averaged species concentrations
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to replace temporal fluctuations of species concentrations.

LES is an alternative method to RANS in combustion modeling. In many com-

mercial CFD software suites, LES is now an available option for practical engineering

application, even though its arithmetic is close to Re2 which is still a challenge for

modern computing machinery, as noted by McDonough [40]. In LES, the large-scale,

energy-carrying motion is directly resolved on the grid, while the small-scale is mod-

eled. The usual LES decomposition has been mentioned earlier. It is important to

note that the resolved and unresolved scales depend on both space and time, and this

is a major distinction and advantage in comparison with the Reynolds decomposition

and resulting RANS methods.

The history of LES can be traced back to 1960s, when a meteorologist, Smagorinsky

[87], proposed what is now called the Smagorinsky model. The Smagorinsky model is

simple to implement and will stabilized a computation, but it failed in the prediction of

atmospheric and oceanic flows for which it was intended, since it dissipated the large-

scale too much. In the 1970s, the concept of spectral eddy viscosity was developed by

a physicist, Robert Kraichnan, and this concept allowed modeling to proceed beyond

the separation of scales assumption. Lesieur and Métais [41] implemented Kraichnan’s

spectral eddy viscosity in physical space to get a structure-function model, and applied

a double filtering to dynamically determine subgrid-scale model constants. They also

used scale-similarity models to replace the eddy-viscosity assumption. Moin and

Kim [88] examined flow structure and studied statistical properties of flow as well

as its time-dependent features in the vicinity of the wall of the fully-developed plane

channel flow in LES. Then, Rogallo and Moin [49] used the results to study physics of

near-wall turbulence. Meneveau and Katz [89] reviewed models that were based on

scale-invariance properties of high-Reynolds number turbulence in the inertial range

for LES, and evaluated model performance in numerical simulations.

A book which limits itself to the case of incompressible fluid, Large Eddy Sim-
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ulation for Incompressible Flows–An Introduction published in 2001 by Sagaut et

al. [90] exhaustively described all of sub-grid modeling methods for simulating the

large scales of incompressible turbulence. Branley and Jones [91] applied LES to a

calculation of a turbulent hydrogen diffusion flame with a conserved-scalar formalism;

their simulated results showed LES can produce good agreement with measurements

of variables, such as mean velocity, Reynolds stress and fluxes. Volavý et al. [92]

investigated the most-used sub-grid scale (SGS) models, such as Smagorinsky model,

dynamical Smagorinsky, sub-grid kinetic energy, dynamic sub-grid kinetic and mixed

models, and they compared results of these models with the corresponding DNS data.

Mahle et al. [93] applied an approximate deconvolution as an implicit SGS model

for LES of turbulent combusting shear layers with hydrogen chemistry, and they

studied influence of detailed diffusion mechanisms on laminar flamelets. Pitsch [94]

discussed fundamental differences between RANS and LES combustion models for

non-premixed and premixed turbulent combustion. He investigated LES modeling is-

sues, and proposed ways to improve future LES model. Fureby [95] applied different

LES models, such as the flamelet progress-variable model, the thickened flame model,

the eddy dissipation concept model, and the partially-stirred reactor model to exam-

ine the performance of a swirl-stabilized premixed flame in a laboratory gas turbine

combustor. The comparison between LES models and experimental data illustrated

that all four LES models result in reasonable predictions of flow and combustion

physics.

Mathew [96] summarized the general formulation and discussed the common mod-

eling for flows without reaction in LES, and he also made an extension to flows with

combustion in LES. The only thing typical SGS models do is to produce enough dis-

sipation to control the aliasing effects arising from under resolution on large scales.

The transfer of energy is disrupted because the smallest resolved scales of motion are

much larger than the dissipation scales. To treat this LES problem, the unresolved
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scales in LES should be the order of the grid spacing, or even smaller; thus the model

is called subgrid-scale model. A sub-grid model provides a method to calculate sub-

grid stresses which are the terms arising from the nonlinear convection terms in the

momentum equation. There are two classes of SGS model: functional models and

structural models. The function models are simpler than structural models, which

provide dissipation as a model for the transfer of energy to small-scales. The struc-

tural models provide an estimate of the full field to find the sub-grid scales, and

calculate SGS stress.

Most effort has been spent on investigating SGS modeling in LES studies, especially

in the context of finite-rate chemistry. Moussaed et al. [97] investigated the effects

of a dynamic SGS model in variational multiscale LES simulations. They used a

variational projection operator and finite-volume cell agglomeration to obtain the

separation between the largest and the smallest resolved scales. Gubba et al. [98]

derived a dynamic SGS model for LES of turbulent premixed flames of stoichiometric

propane/air mixtures in a vented combustion chamber. This model was based on

fractal theory and a flame wrinkling factor, and the simulation results showed good

agreement with experimental measurements.

With a single universal constant, the common eddy viscosity SGS stress models were

unable to correctly represent various turbulent fields in rotating or sheared flows, or

in transitional regimes, as discussed by Germano et al. [99]. These authors computed

the model’s coefficient dynamically as the calculation progresses instead of setting it a

priori. This model was based on an algebraic identification between SGS stresses and

resolved turbulent stresses. The results for LES of transitional and turbulent channel

flow using this proposed model showed good agreement with direct simulation data.

We show a typical LES-like decomposition of solution variables formalism here
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again, but with somewhat different notation:

Q(x, t) = q(x, t) + q∗(x, t), x ∈ Rd, d = 2, 3, (1.7)

where q(x, t) is the resolved large-scale part, and q∗(x, t) is the unsolved small-scale

part. Zeng et al. [100] used a basic hypothesis for SGS model, where the small-scale

variables q∗(x, t) in Eq. (1.7) are expressed as

q∗i = AiMi, i = 1, 2, . . . , Nv, (1.8)

with Nv being the total number of dependent variables; q∗i is the ith component of

the Nv small-scale dependent variables; the Ais are amplitudes derived from scaling

laws of Kolmogorov (see, e.g., Frisch [101] ); and the Mis are chaotic maps that

can exhibit bifurcations leading to a strange attractor which produces small-scale

turbulent temporal fluctuations locally in space and time [40]. McDonough and Zhang

[102] [103] proposed this method as a 2-D SGS model; we extend it to 3D for LES

in this thesis. This method includes the well-known logistic map, which was first

presented by May [104] in the 1970s. The logistic map,

m(n+1) = βm(n)(1−m(n)) , (1.9)

is a widely-used, simple model with complicated dynamics. Later, Frisch [101] dis-

cussed a simple quadratic map,

x(n+1) = 1− 2
(
x(n)
)2
, (1.10)

which can be transformed to Eq. (1.9), and called this equation the ‘poor man’s

Navier–Stokes equation’, as this equation has low calculational expense when present-

ing features including temporal behaviors of the partial differential equation. Mc-

Donough and Huang [105] derived the 2-D ‘poor man’s Navier–Stokes equation’ di-

rectly from the analytical partial differential equations via a Galerkin procedure, and
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Polly [107] investigated the corresponding 3-D case,

a(n+1) = β1a
(n)(1− a(n))− γ12a

(n)b(n) − γ13a
(n)c(n), (1.11a)

b(n+1) = β2b
(n)(1− b(n))− γ21a

(n)b(n) − γ23b
(n)c(n), (1.11b)

c(n+1) = β3c
(n)(1− c(n))− γ31c

(n)a(n) − γ32c
(n)b(n). (1.11c)

1.5 Outline of Thesis

In this work, we use an analogous approach to derive a finite-rate chemistry SGS

model in 3D, which includes the momentum and thermal energy equations similar

to earlier studies in 2D reported in [102] [103] [105]. Zeng et al. [100] presented a

preliminary exploration of behaviors of this discrete dynamical system (DDS) for a

specific reduced-kinetics mechanism of H2-air combustion at a single point. We will

investigate this SGS model at multiple points, corresponding to the experimental data

of Schneider et al. [106], and assess validity of this model based on comparisons with

these data.

In the next several chapters, we present the governing equations and assumptions for

the SGS model, derive the corresponding DDS for two different reduced mechanisms

via a single-mode Galerkin approximation, and finally present results and compare

numerical solutions with experimental data. Both isotropic and anisotropic conditions

will be applied to calculate the bifurcation parameters in the DDS model; a physical

temperature model and a scaling method for constructing small scales of motion is

applied; and the effects of NOx in high-temperature combustion will be taken into

consideration.
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Chapter 2 Discrete Dynamical System Model Analysis

Anthony et al. [108] discuss dynamical systems and briefly mention their classi-

fication. A dynamical system is a four-tuple {T,X,A, S}, which includes a time

set, T , the state-space, X, the set of initial states, A, and a family of motions, S.

When time set, T= R+= [0, ∞) the system is a continuous-time dynamical system;

and when T= N= {0, 1, 2, 3, ...}, the system is a discrete-time dynamical system.

When the state-space X is a finite-dimensional normed linear space, the system is a

finite-dimensional dynamical system; otherwise, the system is an infinite-dimensional

dynamical systems.

Discrete dynamical systems (DDS) are commonly used in many fields such as biol-

ogy, ecology, economics, engineering, physics, finance, etc. In this thesis, the variables

in a three-dimensional, first order, nonlinear system of difference equations will be

analyzed.

2.1 Governing Equations

In this section, the derivation of a general discrete dynamical system beginning with

the governing equations of combustion chemistry, which include mass conservation,

momentum balance, and energy and species transport equations is performed. They

are

ρt +∇ · (ρU) = 0, (2.1a)
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ρ
DU

Dt
= −∇p+∇ · (µ∇U) + ρg, (2.1b)

ρcp
DT

Dt
= ∇ · (λ∇T ) +

Ns∑
i=1

cpiDiWi∇

(
ρYi
Wi

)
· ∇T −

Ns∑
i=1

hiω̇i, (2.1c)

ρ
D(Yi)

Dt
= ∇ · (ρDi∇Yi) + ω̇i, i = 1, . . . Ns. (2.1d)

Here,

ω̇i = Wi

Nr∑
j=1

(ν ′′i,j − ν ′i,j)ωj , (2.2)

with

ωj = kf,j

Ns∏
l=1

(
ρYl
Wl

)υ′i,j

− kb,j
Ns∏
l=1

(
ρYl
Wl

)υ′′i,j

. (2.3)

These equations hold on a 3-D spatial domain Ω ∈ R3 during a specified time interval

t ∈ (t0, tf ), and U = (u, v, w)T ; D/Dt is the substantial derivative; ∇ is the gradient

operator; g is the body-force acceleration vector, ρ is density, and p is the pressure.

T is temperature; Yi is the mass fraction, and hi is specific enthalpy, of species i. The

transport properties include (dynamic) viscosity µ, thermal conductivity λ, and the

binary diffusion coefficientDi of species i in the ambient background gas. Here, cpi and

Wi are the specific heat capacity and relative molecular mass of species i, respectively;

ν ′i,j and ν ′′i,j are stoichiometric coefficients of reactants and products corresponding to

species i in reaction j. Ns andNr are the number of species and reactions, respectively.

Finally, kf,j and kb,j are the forward and backward reaction rate coefficients of the jth

reaction. The reaction rate expression was shown in Eq. (1.6), and the specific form

for the jth reaction is:

kj = AjT
nj exp

(
−Ej
R0T

)
.

Recall that in LES the large-scale part has been resolved directly, so we now propose

to construct corresponding DDS SGS models from the governing equations. We would
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then add the SGS solutions of the latter to the resolved solution to construct an

approximation to the complete solution. But in the present work, because the DDSs

are computed locally, and away from boundaries, in the absence of resolved-scale

information, we will not analyze boundary conditions for the chosen spatial domain.

2.2 Construction of the Dynamical Systems

In this subsection, the deviation of the DDS model will be presented thoroughly.

We begin with the mass conservation equation Eq. (2.1a) and the Navier–Stoker Eqs.

(2.1b)

ρt +∇ · (ρU) = 0, (2.4)

ρ
DU

Dt
= −∇p+∇ · (µ∇U) + ρg. (2.5)

For incompressible flow, the density is identically constant, while gas density in a

combustion flow varies with pressure, temperature and species concentration of the

combustion process. Generally, a flow is regarded as incompressible if the Mach

number is less than 0.3 (in this work, the Mach number is less than 0.1), which

means no more than ∼ 10% error will be incurred due to changes in flow density, and

the divergence-free condition is satisfied, as noted by McDonough [110]. On the other

side, the temperature is always changing during chemical reactions processes, and we

could not treat the gas density as a constant in this diffusion flames. However, the

divergence free condition is still valid when a Leray projection [110] is applied on the

conservation equation.

With the divergence-free constraint, the Eq. (2.4) will be replaced with.

∇ ·U = 0. (2.6)

We express the 3-D dimensionless form of Eqs. (2.5) and Eq. (2.6) in the absence
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of body forces in the horizontal plane, and via a typical scaling of dependent and

independent variables as,

ux + vy + wz =0, (2.7a)

ut + (u2)x + (uv)y + (uw)z =− px +
1

Re
∆u, (2.7b)

vt + (uv)x + (v2)y + (vw)z =− py +
1

Re
∆v, (2.7c)

wt + (uw)x + (vw)y + (w2)z =− pz +
1

Re
∆w − 1

Fr2
. (2.7d)

where, x, y, and z subscripts denote partial differentiation with respect to spatial

variables, and the t subscript denotes partial differentiation with respect to the time

variable. Re is the Reynolds number,

Re =
UL

ν
,

with U, L and ν denoting the appropriate velocity and length scales, and kinematic

viscosity, respectively (see McDonough [110]). The body force term ρg only remains

in the vertical direction, and the corresponding dimensionless Fr appears in Eq. (2.7d);

this is the Froude number,

Fr =
U√
gL
. (2.8)

where g is the magnitude.

For Eq. (2.7d), we can further simplify the momentum equation by setting the bulk

fluid velocity to 0 (u = 0), then we obtain

∂p

∂z
= ρ0g,

where ρo denotes the bulk fluid density. Further simplification of the momentum

equation by substituting the volume expansion coefficient, and density ρo − ρ =
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βρ(T − To), into the momentum Eq. (2.7d) leads to

wt + (uw)x + (vw)y + (w2)z =
1

Re
∆w +

Gr

Re2
T, (2.9)

where β is volume expansion coefficient with Grashof number defined as

Gr =
gβ(Ts − To)L3

ν2
.

Here, Ts denotes surface temperature, To is bulk fluid temperature, and Lc represents

a characteristic length.

We then employ a Leray projection method [111] to map u to the divergence-free

subspace of solutions, and in the case of solid-wall boundaries, where the usual no-

slip/no-flux boundary conditions imposed, this leads to elimination of the pressure

gradient terms:

〈∇p,v〉 =

∫
Ω

∇p · vdV

=

∫
∂Ω

pv · ndA−
∫

Ω

p∇ · vdV

= 0.

As a result, the pressure gradient term in Eq. (2.7b) and Eq. (2.7c) is removed.

2.2.1 Galerkin approximation to the governing equations

The pressure gradient teams have been eliminated by the Leray projection, and

the 3-D dimensionless form of N.–S. equations will be treated in the absence of body

forces here (the detailed 2-D derivation is given in [105]). The effect of body force

only remains in the vertical direction for problems considered in this thesis, and the
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set of dimensionless governing equations takes the form,

ux + vy + wz =0, (2.10a)

ut + (u2)x + (uv)y + (uw)z =
1

Re
∆u, (2.10b)

vt + (uv)x + (v2)y + (vw)z =
1

Re
∆v, (2.10c)

wt + (uw)x + (vw)y + (w2)z =
1

Re
∆w +

Gr

Re2
T, (2.10d)

ρcp

(
Tt + (uT )x + (vT )y + (wT )z

)
=λ∆T +

Ns∑
i=1

ρcpiDi∇Yi · ∇T −
Ns∑
i=1

hiω̇i, (2.10e)

(ρYi)t + (uYi)x + (vYi)y + (wYi)z =ρDi∆Yi + ω̇i. (2.10f)

Then, the Galerkin procedure is applied to the dimensionless governing equations.

The purpose of the Galerkin procedure is to convert the continuous nonlinear govern-

ing equations to a discrete system. The Galerkin procedure is totally different from

finite differencing. All approximations in finite-difference methods are local, extend-

ing over only a few grid points; in contrast, construction of a Galerkin procedure is

based on a global functional representation McDonough [112].

The global representation of dependent variables is present in the form of Fourier

series:

qi(x, t) =
∞∑
k=1

ak,i(t)ϕk(x), x ∈ Ω, ∈ [t0, tf ], (2.11)

where functions {ϕk}∞k=1 are basis functions of the Galerkin approximation for the

Fourier coefficients, ak,i, of the ith dependent variable. There are several requirements

associated with these basis functions: 1) {ϕk}∞k=1 is complete in L2(Ω); 2) it is or-

thonormal; 3) it exhibits behavior similar to complex exponentials, eik·x, with respect

to differentiation. In this thesis, the SGS model focuses on only one single point, and

the peripheral points have no effect on it.

The Fourier series for dependent variables, velocities, species and temperature are:
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u(x, y, z, t) =
∞∑
k

ak(t)ϕk(x, y, z), (2.12a)

v(x, y, z, t) =
∞∑
k

bk(t)ϕk(x, y, z), (2.12b)

w(x, y, z, t) =
∞∑
k

ck(t)ϕk(x, y, z), (2.12c)

Yi(x, y, z, t) =
∞∑
k

dik(t)ϕk(x, y, z), (2.12d)

T (x, y, z, t) =
∞∑
k

ek(t)ϕk(x, y, z), (2.12e)

with k = (k1, k2, k3)T . The lower bound for components of this wavevector is typi-

cally one of {−∞, 0,1}. Also, it is natural to employ complex exponentials as basis

functions in the form,

ϕk(x, y, z) = eik·x = ei(k1x+k2y+k3z) = eik1xeik2yeik3z. (2.13)

We substitute the Eqs. (2.12a), (2.12b), (2.12c) into the x-momentum equation

(2.10b) to get

∂

∂t

∑
l

alϕl +
∂

∂x

∑
l,m

alamϕlϕm +
∂

∂y

∑
l,m

albmϕlϕm +
∂

∂z

∑
l,m

alcmϕlϕm =

1

Re

[
∂2

∂x2

∑
l

alϕl +
∂2

∂y2

∑
l

alϕl +
∂2

∂z2

∑
l

alϕl

]
(2.14)

After commuting summation and differentiation this leads to,

∑
l

ȧlϕl + i
∑
l,m

(l1 +m1)alamϕlϕm + i
∑
l,m

(l2 +m2)albmϕlϕm
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+ i
∑
l,m

(l3 +m3)alcmϕlϕm = − 1

Re

∑
l

(l21 + l22 + l23)alϕl. (2.15)

We can use appropriate algebraic methods to remove the imaginary factors i. In

order to process formally, we use the orthonormality of ϕk and form a inner products

of each term in Eq. (2.15) to obtain,

ȧk +
∑
l,m

A
(1)
klmalam +

∑
l,m

B
(1)
klmalbm +

∑
l,m

C
(1)
klmalcm = −η

(1)|k|2

Re
ak,

∀ −∞ < k <∞. (2.16)

The coefficient η(1) denotes a normalization constant arising from the fact that

derivatives of basis functions may not possess the same normalization as the functions

themselves. The analogous coefficients η(2), η(3), η(4), η(5) hold for y-, z-momentum

equations, energy equation and species concentration equation, respectively. The

Galerkin triple products, A
(1)
klm, B

(1)
klm, C

(1)
klm are defined as,

A
(1)
klm ≡ (l1 +m1)

∫
Ω

ϕkϕlϕmdx,

B
(1)
klm ≡ (l2 +m2)

∫
Ω

ϕkϕlϕmdy,

C
(1)
klm ≡ (l3 +m3)

∫
Ω

ϕkϕlϕmdz,

where the superscript (1) denotes the x-momentum. Similarity, superscripts (2), (3)

represent the y-momentum and z-momentum.

Analogous results from the Galerkin procedure hold for y-momentum and z-momentum
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equations:

ḃk +
∑
l,m

A
(2)
klmblam +

∑
l,m

B
(2)
klmblbm +

∑
l,m

C
(2)
klmblcm = −η

(2)|k|2

Re
bk, (2.17)

ċk +
∑
l,m

A
(3)
klmclam +

∑
l,m

B
(3)
klmclbm +

∑
l,m

C
(3)
klmclcm = −η

(3)|k|2

Re
ck −

Gr

Re2
ek. (2.18)

Similarly, the Galerkin procedure is applied to the energy equation, which includes

the Fourier series of independent variables from Eqs. (2.12):

ρcp

[
∂

∂t

∑
m

emϕm +
∂

∂x

∑
l,m

alemϕlϕm +
∂

∂y

∑
l,m

blemϕlϕm +
∂

∂z

∑
l,m

clemϕlϕm

]
=

λ

[
∂2

∂x2

∑
m

emϕm +
∂2

∂y2

∑
m

emϕm +
∂2

∂z2

∑
m

emϕm

]
+

Ns∑
i=1

ρcpiDi

[( ∂
∂x

∑
j

dijϕj

)( ∂
∂x

∑
m

emϕm

)
+
( ∂
∂y

∑
j

dijϕj

)( ∂
∂y

∑
m

emϕm

)
+

( ∂
∂z

∑
j

dijϕj

)( ∂
∂z

∑
m

emϕm

)]
−

Ns∑
i=1

hiω̇i (2.19)

We can rearrange the product series on the right side in a simple way,

( ∂
∂x

∑
j

dijϕj

)( ∂
∂x

∑
m

emϕm

)
=

∂

∂x

∑
j

∑
m

dijemϕjϕm =
∂

∂x

∑
j,m

dijemϕjϕm.

With commuting summation and differentiation, and combination of like terms on

right side of Eq. (2.19) we obtain

ρcp

[∑
m

ėmϕm + i
∑
l,m

(l1 +m1)alemϕlϕm + i
∑
l,m

(l2 +m2)blemϕlϕm

+ i
∑
l,m

(l3 +m3)clemϕlϕm

]
= −λ

[∑
m

(m2
1 +m2

2 +m2
3)emϕm

]
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+
Ns∑
i=1

ρcpiDi

[
i
∑
j,m

(j1 +m1)dijemϕlϕm + i
∑
j,m

(j2 +m2)dijemϕlϕm

+ i
∑
j,m

(j3 +m3)dijemϕlϕm

]
−

Ns∑
i=1

hiω̇i. (2.20)

In the same way, we use the orthonormality of ϕk to process formally, and form an

inner product with each basis function in Eq. (2.20) to obtain,

ėk +
∑
l,m

A
(4)
klmalem +

∑
l,m

B
(4)
klmblem +

∑
l,m

C
(4)
klmclem =

[
− λη(4)|k|2ek+

Ns∑
i=1

ρcpiDi

[∑
l,m

D
(4)
klmdilem +

∑
l,m

E
(4)
klmdilem +

∑
l,m

F
(4)
klmdilem

]
−

Ns∑
i=1

hiω̇i

]
/ρcp, ∀ −∞ < k <∞. (2.21)

We can combine the Galerkin triple products on the right side of Eq. (2.21) as

∑
l,m

D
(4)
klmdilem +

∑
l,m

E
(4)
klmdilem +

∑
l,m

F
(4)
klmdilem =

∑
l,m

G
(4)
klmdilem.

Define the Galerkin triple products, A
(4)
klm, B

(4)
klm, C

(4)
klm, D

(4)
klm, E

(4)
klm, F

(4)
klm and

G
(4)
klm here as,

A
(4)
klm ≡ (l1 +m1)

∫
Ω

ϕkϕlϕmdx,

B
(4)
klm ≡ (l2 +m2)

∫
Ω

ϕkϕlϕmdy,

C
(4)
klm ≡ (l3 +m3)

∫
Ω

ϕkϕlϕmdz,
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D
(4)
klm ≡ (l4 +m4)

∫
Ω

ϕkϕlϕmdx,

E
(4)
klm ≡ (l5 + l5)

∫
Ω

ϕkϕlϕmdy,

F
(4)
klm ≡ (l6 +m6)

∫
Ω

ϕkϕlϕmdz,

G
(4)
klm = D

(4)
klm + E

(4)
klm + F

(4)
klm,

where the superscript (4) indicates these parameters belong to the energy equation.

We now deal with the species concentration equation Eq. (2.10f) again, with Fourier

series of dependent variables given in Eqs. (2.12) resulting in

ρ
[ ∂
∂t

∑
m

dimϕm

]
+

∂

∂x

∑
l,m

aldimϕlϕm +
∂

∂y

∑
l,m

bldimϕlϕm +
∂

∂z

∑
l,m

cldimϕlϕm =

ρDi

[
∂2

∂x2

∑
m

dimϕm +
∂2

∂y2

∑
m

dimϕm +
∂2

∂z2

∑
m

dimϕm

]
+ ω̇i. (2.22)

After commuting summation and differentiation leads to,

ρ
[∑

m

ḋimϕm

]
+ i
∑
l,m

(l1 +m1)aldimϕlϕm + i
∑
l,m

(l2 +m2)bldimϕlϕm

+ i
∑
l,m

(l3 +m3)cldimϕlϕm = −ρDi

[∑
m

(m2
1 +m2

2 +m2
3)dimϕm

]
+ ω̇i. (2.23)

We use the orthonormality of ϕk to process formally, and form an inner product

with each basis function in Eq. (2.23) to obtain
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ḋik +
∑
l,m

A
(5)
klmaldim +

∑
l,m

B
(5)
klmbldim +

∑
l,m

C
(5)
klmcldim = −η(5)|k|2Didik +

ω̇i
ρ
,

∀ −∞ < k <∞, (2.24)

where i denotes the number of species concentration, and the Galerkin triple products,

A
(5)
klm, B

(5)
klm, C

(5)
klm are defined as,

A
(5)
klm ≡

(l1 +m1)

ρ

∫
Ω

ϕkϕlϕmdx,

B
(5)
klm ≡

(l2 +m2)

ρ

∫
Ω

ϕkϕlϕmdy,

C
(5)
klm ≡

(l3 +m3)

ρ

∫
Ω

ϕkϕlϕmdz,

where the superscript (5) denotes triple products used for species concentration equa-

tions.

2.2.2 Euler integration and discrete dynamical systems

We will apply a simple forward Euler single-step, explicit time integration procedure

to numerically solve this dynamical system. In the momentum equations, energy

equation and species concentration equation, the initial condition (a0, b0, c0, e0, di,0)

should be taken into consideration. Then we obtain

an+1 =an − τ

[
η(1)|k|2

Re
an + A(1)(an)2 +B(1)anbn + C(1)ancn

]
, (2.25a)

bn+1 =bn − τ

[
η(2)|k|2

Re
bn + A(2)anbn +B(2)(bn)2 + C(2)bncn

]
, (2.25b)
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cn+1 =cn − τ

[
η(3)|k|2

Re
cn +

Gr

Re2
en + A(3)ancn +B(3)bncn + C(3)(cn)2

]
, (2.25c)

di
n+1 =di

n − τ

[
A(5)an+1di

n +B(5)bn+1di
n + C(5)cn+1di

n + η(5)|k|2Didi
n − ω̇i

ρ

]
+ di,0.

(2.25d)

en+1 = en + τ

[
− λη(4)|k|2en +

Ns∑
i=1

ρcpiDiG
(4)dn+1

i en − A(4)an+1en −B(4)bn+1en

− C(4)cn+1en −
Ns∑
i=1

hiω̇i

]
/ρcp + e0, (2.25e)

where τ denotes an arbitrary discrete time step parameter. Rearrange the x-momentum

equation leads to

an+1 = τA(1)an

(
1− η(1)τ |k|2/Re

τA(1)
− an

)
− τB(1)anbn − τC(1)ancn, (2.26)

and to include the logistical map Eq. (1.9), we need to require

1− η(1)τ |k|2/Re
τA(1)

= 1, (2.27)

which means

τA(1) = 1− η(1)τ |k|2

Re
. (2.28)

Substituting Eqs. (2.27) and (2.28) into Eq. (2.26) results in the form of the x-

momentum equation used in this study. In the same way, we can obtain equations in

the other two directions. The discrete dynamical system momentum equations are,

a(n+1) =

(
1− η(1)τ |k|2

Re

)
a(n)
(
1− a(n)

)
− τB(1)a(n)b(n) − τC(1)a(n)c(n), (2.29a)

b(n+1) =

(
1− η(1)τ |k|2

Re

)
b(n)
(
1− b(n)

)
− τB(2)a(n)b(n) − τC(2)b(n)c(n), (2.29b)
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c(n+1) =

(
1− η(1)τ |k|2

Re

)
c(n)
(
1− c(n)

)
− τB(3)a(n)c(n) − τC(3)b(n)c(n) − τ Gr

Re2
ek.

(2.29c)

Then, we define the bifurcation parameters related to Reynolds number as follows:

βu = 1− η(1)τ |k|2

Re
,

βv = 1− η(2)τ |k|2

Re
,

βw = 1− η(3)τ |k|2

Re
.

The range of β values usually belongs to (0, 4) due to the logistic map, see Bible [113].

Let αT and γij as,

αT = −τ Gr
Re2

ek,

γ12 = τB(1), γ13 = τC(1),

γ21 = τB(2), γ23 = τC(2),

γ31 = τB(3), γ32 = τC(3).

Rearrange Eq. (2.25e) as

e(n+1) =

[(
ρcp − τλη(4)|k|2 +

Ns∑
i=1

τρcpiDiG
(4)d

(n+1)
i

)
en − τA(4)a(n+1)e(n)

− τB(4)b(n+1)e(n) − τC(4)c(n+1)e(n) −
Ns∑
i=1

τhiω̇i

]
/ρcp + e0, (2.30)

and let ρcp = τλη(4)|k|2, Hi = τhi, and αTdi = τρcpiDiG
(4); then define the remaining

bifurcation parameters in Eq. (2.30) as

γuT = τA(4)
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γvT = τB(4),

γwT = τC(4),

βT = ρcp − 1.

The equation of heat capacity ratio is γ = CP/CV , and CP −CV = V Tα2/βT , where

α is the coefficient of thermal expansion, and βT is the isothermal compressibility.

Rearrangement of Eq. (2.25d) leads to,

di
n+1 = −

[
(τη(5)|k|2Di−1)+τA(5)an+1+τB(5)bn+1+τC(5)cn+1

]
di
n+τ

ω̇i
ρ

+di,0, (2.31)

and define the bifurcation parameters for Eq. (2.31) as follows and in order to simplify

the parameters. Let

βYi = τη(5)|k|2Di − 1,

and define

γuYi = τA(5),

γvYi = τB(5),

γwYi = τC(5).

Finally, for convenience of notation, use ω̇i to replace the original τ ω̇i/ρ.

The complete DDS takes the form,

a(n+1) =βua
(n)(1− a(n))− γuva(n)b(n) − γuwa(n)c(n), (2.32a)

b(n+1) =βvb
(n)(1− b(n))− γvua(n)b(n) − γvwb(n)c(n), (2.32b)

c(n+1) =βwc
(n)(1− c(n))− γwua(n)c(n) − γwub(n)c(n) + αT e

(n), (2.32c)
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d
(n+1)
i =− (βYi + γuYia

(n+1) + γvYib
(n+1) + γwYic

(n+1))d
(n)
i +

.
ωi +di,0 i = 1, 2, . . . , Ns,

(2.32d)

e(n+1) =

[(
Ns∑
i=1

αTdid
(n+1)
i −γuTa(n+1)−γvT b(n+1)−γwT c(n+1)

)
e(n)−

Ns∑
i=1

Hi
.
ωi

]
/(1+βT )+e0 ,

(2.32e)

with

ω̇i =
Nr∑
j=1

[
Cf,ij

Ns∏
l=1

d
ν′j,l
l − Cb,ij

Ns∏
l=1

d
ν′′j,l
l

]
. (2.33)

Here, superscripts (n) are time-step indices; a b, c, dis, and e denote Fourier coeffi-

cients of the velocity vector in three directions, species concentrations, and tempera-

ture, respectively; the subscripted αs, βs, γs are DDS bifurcation parameters, all of

which are associated with the various physical bifurcation parameters. For example,

βu, βv, and βw are functions of Reynolds number; αT is related to Grashof number;

the αTdi are related to Schmidt and Lewis numbers; and His are associated with spe-

cific enthalpies for each species i; the Cf,ij, Cb,ij can be related to Kolmogorov-scale

Damköhler numbers. The various γs correspond to velocity, temperature and species

concentration gradients. The di,0s and e0 are high-pass filtered species concentrations

and temperature, respectively, for subgrid-scale behavior as described in [103]. We

mention that for simplicity, we will set αT identically equal to zero in the present

work, as buoyancy effects are negligible.

2.2.3 Homogeneous and isotropic assumptions

For simplicity, we employ a homogeneous and isotropic assumption for bifurcation

parameters as an initial study, such as,

βu = βv = βw = β,

γuv = γuw = γvu = γ,
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γvw = γwu = γwv = γ,

γuT = γvT = γwT = γT ,

γuYi = γvYi = γuwYi = γYi .

Where, βu,βv and βw are bifurcation parameters related to Reynolds number in three

different dimension, individually; γuv, γuw, γvu, γvw, γwu, and γwv are bifurcation

parameters associated to velocities; γuT , γvT , and γwT are bifurcation parameters re-

lated to temperature; and γuYi , γvYi , and γwYi are bifurcation parameters associated to

species i. We remark that neither the fluid flow nor the chemistry can be expected to

be either homogenous or isotropic in a combusting flow, but this assumption provides

a tractable starting point by greatly decreasing the number of different bifurcation pa-

rameter values needed. Moreover, we emphasize that no such assumption is needed in

a complete LES because all bifurcation parameters can be calculated from high-pass

filtered resolved-scale results. The values of these parameters associated with species

i, e.g., βYi , αTdi etc., should be analyzed individually since every species has its own

characteristics. With this simplification, we obtain the DDS with homogeneous and

isotropic assumption,

a(n+1) =βa(n)(1− a(n))− γa(n)b(n) − γa(n)c(n), (2.34a)

b(n+1) =βb(n)(1− b(n))− γa(n)b(n) − γb(n)c(n), (2.34b)

c(n+1) =βc(n)(1− c(n))− γa(n)c(n) − γb(n)c(n) + αT e
(n), (2.34c)

d
(n+1)
i =− (βYi + γYia

(n+1) + γYib
(n+1) + γYic

(n+1))d
(n)
i +

.
ωi +di,0 i = 1, 2, . . . , Ns,

(2.34d)

e(n+1) =

[(
Ns∑
i=1

αTdid
(n+1)
i −γTa(n+1)−γT b(n+1)−γT c(n+1)

)
e(n)−

Ns∑
i=1

Hi
.
ωi

]
/(1+βT )+e0 ,

(2.34e)
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2.2.4 Inhomogeneity and anisotropy

After computing and analyzing results with the original homogeneous and isotropic

assumption, we then deal with more general prescription of these bifurcation param-

eters. That is, inhomogeneity and anisotropy conditions are employed for the DDS

model, and results are compared with the original solutions. Both sets of calcula-

tions will be compared with experimental data to assess effects of the simplifying the

homogeneous and isotropic assumption.

2.3 Finite-Rate Chemistry Reduced Mechanism

Overall (global) reactions are a consequence of collections of elementary reactions,

and resolution of these elementary reactions is a difficult and time-consuming task,

as noted by Warnatz et al. [23]. Many elementary reactions produce a negligible

contribution to the reaction process, and therefore can be ignored, leading to reduced

mechanisms.

Here, we first study the case of H2-air reactions with N2 dilution mechanism, and

then investigate the case of H2-air reactions with reacting N2 mechanism. The skeletal

mechanism of H2-O2 for this work is listed below in Eqs. (2.35) which is one part of

detailed H2-O2 reaction mechanism of Li et al. [114], and they are also investigated in

a reduced mechanism for H2-air combustion by Boivin et al. [32]. The corresponding

reaction rate data (assuming Arrhenius form) are listed in Table 2.1, wherein f means

forward reaction, and b denotes backward reaction. The coefficient k0 is a low-pressure

rate coefficient, and k∞ is a high pressure rate coefficient.
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Table 2.1: Rate Coefficients for Reduced Mechanism of H2-Air Reaction

Number F Aa n Ea B Aa n Ea

a kf 3.52×1016 −0.7 71.42 kb 7.04×1013 −0.26 0.60

b kf 5.06×104 2.67 26.32 kb 3.03×104 2.63 20.23

c kf 1.17×109 1.3 15.21 kb 1.28×1010 1.19 78.25

d k0 5.75×1019 −1.4 0.0 k∞ 4.65×1012 0.44 0.0

e 7.08×1013 0.0 1.23

f kf 1.66×1013 0.0 3.44 kb 2.69×1012 0.36 231.86

g 2.89×1013 0.0 −2.08

h kf 4.00×1022 −2.0 0.0 kb 1.03×1023 −1.75 496.14

i kf 1.30×1018 −1.0 0.0 kb 3.04×1017 −0.65 433.09

H + O2 
 OH + O (2.35a)

H2 + O 
 OH + H (2.35b)

H2 + OH 
 H2O + H (2.35c)

H + O2 + M ⇀ HO2 + M (2.35d)

HO2 + H ⇀ 2OH (2.35e)

HO2 + H 
 H2 + O2 (2.35f)

HO2 + OH ⇀ H2O + O2 (2.35g)

H + OH + M 
 H2O + M (2.35h)

2H + M 
 H2 + M (2.35i)

This reduced mechanism has been shown to be sufficient to describe premixed

and nonpremixed flames, autoignition, and detonations under conditions of practical

interest. It consists of 15 reversible elementary reactions in the reduced mechanism
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that is described by Boivin et al. [32], and we collapse them to a nine-step mechanism,

involving eight reacting species H2, O2, H2O, OH, H, O, HO2, N2. M is the third

body which involves reaction of two species, such as A and B to yield one single

product species AB, where M is used to add energy to species and stabilize the

excited products species AB* by collision. The third body M is usually regard as

any species that can remove the heat from the excited products and finally dissipate

it to heat, see Warnatz et al. [23]. In this thesis, the third body M includes all

reacting species except the reactants/products in a particular reaction. For example,

in reaction 2.35d, M includes species H2, H2O, OH, O, HO2, N2,

M = (a)[H2] + (b)[H2O] + (c)[OH] + (d)[O] + (e)[HO2] + (f)[N2]. (2.36)

Where, the chaperon efficiency is a multiplier on the corresponding specific species.

The efficiencies are equal to 1 for all of reacting species in M, which is different from

the so-called San Diego mechanism, see Saxena and Williams [24]. Detailed numerical

process of species reaction in the DDS model is displayed in Section 2.4 and Appendix

A.

2.3.1 Investigation on N2 Chemistry

It is known that understanding of pollutant formation mechanisms is important

to protecting the environment, and in the last decade many researchers made efforts

toward understanding this mechanism, especially with respect to NOx and soot for-

mation, as mentioned by Carbonell et al. [34]. In this section, the effects of species

N2 will be analyzed in two aspects. One is N2 acting as only one part of third body in

the N2 dilution mechanism. Another is that N2 involved in the chemical reaction at

the reacting N2 mechanism. In the second mechanism, it is necessary to consider NOx

effects, especially when temperature exceeds 2000 K, since NOx reaction is sensitive
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to high temperature.

Generally, formation of NOx includes three primary types: thermal NOx, fuel NOx,

and prompt NOx. Beychok [115] made an effort to investigate different formation

mechanisms of NOx. Thermal NOx is formed through high temperature oxidation

of the diatomic nitrogen. This formation rate is determined by temperature and the

residence time of nitrogen at that temperature. Fuel NOx is produced from nitrogen-

bearing fuels with excess oxygen in the air, and it is the major emission in combustion

of oil and coal. Fuel NOx can make up as much as of 50% of total emission in oil

combustion processes, and as much as 80% in coal combustion processes. Prompt

NOx occur in the earliest stage of combustion; it results from the reaction of atmo-

spheric nitrogen (N2) with radicals (viz., C, CH, and CH2) in the air. The levels

of prompt NOx are usually very low, and it is only of interest in the precise emis-

sion investigations. Pre-combustion and post-combustion technology are two primary

methodologies in reducing NOx for industrial combustors: pre-combustion prevents

NOx from forming, and it can be accomplished by either using flue gases recircula-

tion (FGR) technology in the combustion process or staging the combustion process;

post-combustion allows NOx to form, then breaks it down in the exhaust gases (for

details see, the formation of NOx URL: http://www.alentecinc.com/papers/NOx/).

We will check the effects of NOx, and modify the DDS model appropriately. The

NOx reaction, the so called “thermal NOx mechanism,” is associated with high-

temperature oxidation of the diatomic nitrogen, as already noted. The three principal

reactions (the extended Zeldovich mechanism, see Dixon-Lewis et al. [14] and Janicka

and Kollmann [116]) producing thermal NOx are given in [23]:

O + N2 
 NO + N, (2.37a)

N + O2 
 NO + O, (2.37b)

N + OH 
 NO + H. (2.37c)
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The corresponding reaction coefficients are listed in Table 2.2, wherein f means

forward reaction, and b denotes backward reaction.

Table 2.2: Rate Coefficients for Thermal NOx Mechanism

Number F Aa n Ea B Aa n Ea

a kf 1.8×108 0.0 319.00 kb 3.8×107 0.0 3.53

b kf 1.8×104 1.0 38.90 kb 3.8×103 1.0 173.10

c kf 7.1×107 0.0 3.74 kb 1.7×108 0.0 204.19

2.4 Discrete Dynamical System Model for Specific Species Reaction

In the section, a specific application of species reaction is carried out in the DDS

model in reacting N2 mechanism. In order to construct the DDS corresponding to the

reduced mechanism, an iterated map for each product appearing in every elementary

reaction is derived, as did by McDonough in [102]. Each iterated map is one of the

specific form of Eq. 2.32d, and the formula is shown in Eq. 2.33. The species notations

in the Fortran 77 code are,

d1 ∼ H2, d2 ∼ O2, d3 ∼ H2O, d4 ∼ OH, d5 ∼ H,

d6 ∼ O, d7 ∼ HO2, d8 ∼ N2, d9 ∼ N, d10 ∼ NO.

With 10 species are involved in the N2 reaction mechanism, and the analysis of

atomic hydrogen reaction processes in the DDS model is based on this mechanism.

The corresponding DDS for atomic hydrogen in reaction is

d
(n+1)
5 = −(βY5 + γuY5a

(n+1) + γvY5b
(n+1) + γwY5c

(n+1))d
(n)
5 +

.
ω5 +d5,0 (2.38)

with

ω̇5 =
21∑
j=1

[
Cf,(5,j)

10∏
l=1

d
ν′j,l
l − Cb,(5,j)

10∏
l=1

d
ν′′j,l
l

]
. (2.39)
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According to the N2 reaction mechanism, the formation rate of species H, ω̇5, is

calculated as follow,

ω̇5 = kf,1
Cf(5,1)

W2W5

d2d5 + kb,1
Cb(5,1)

W4W6

d4d6 + kf,2
Cf(5,2)

W1W6

d1d6 + kb,2
Cb(5,2)

W4W5

d4d5

+ kf,3
Cf(5,3)

W1W4

d1d4 + kb,3
Cb(5,3)

W3W5

d3d5 + k0

Cf(5,4)

W2W5

M(4)d2d5 + k5

Cf(5,5)

W7W5

d7d5

+ kf,6
Cf(5,6)

W7W5

d7d5 + kb,6
Cb(5,6)

W1W2

d1d2 + kf,8
Cf(5,8)

W5W4

M(8)d5d4 + kb,8
Cb(5,8)

W3

M(8)d3

+ kf,9
Cf(5,9)

W5W5

M(9)d2
5 + kb,9

Cb(5,9)

W1

M(9)d1 + kf,12

Cf(5,12)

W9W4

d9d4 + kb,12

Cb(5,12)

W10W5

d10d5.

(2.40)

Where,

Cf(5,1) = −W5, Cb(5,1) = W5, Cf(5,2) = W5, Cb(5,2) = −W5,

Cf(5,3) = W5, Cb(5,3) = −W5, Cf(5,4) = −W5, Cb(5,5) = −W5,

Cf(5,6) = W5, Cb(5,6) = W5, Cf(5,8) = −W5, Cb(5,8) = W5,

Cf(5,9) = − 2W5, Cb(5,9) = 2W5, Cf(5,12) = W5, Cb(5,12) = −W5,

and the third partner M are

M(4) =
d1

W1

+
d3

W3

+
d4

W4

+
d6

W6

+
d8

W8

+
d9

W9

+
d10

W10

M(8) =
d1

W1

+
d2

W2

+
d6

W6

+
d7

W7

+
d8

W8

+
d9

W9

+
d10

W10

M(9) =
d2

W2

+
d3

W3

+
d4

W4

+
d6

W6

+
d7

W7

+
d8

W8

+
d9

W9

+
d10

W10

.

The collision partner (third body) M(4), M(8), and M(9) represent the third body

in Eq. 2.35d, Eq. 2.35h and Eq. 2.35e, individually. The third body M is different in

different reactions, and in this work it is treated as

M = [H2] + [H2O] + [OH] + [O] + [N2] + [N ] + [NO],
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M = [H2] + [H2O] + [O] + [HO2] + [N2] + [N ] + [NO],

M = [O2] + [H2O] + [OH] + [O] + [HO2] + [N2] + [N ] + [NO],

where the chaperon efficiencies are set as unity rather than different multipliers.

For M(4) in Eq. 2.35d, there are two different types of rate coefficients: k0 is a low-

pressure rate coefficient, where the concentration of third body M is very small in the

low pressure range; k∞ is a high pressure rate coefficient, where the concentration of

collision partner M has a large concentration in the high pressure range. This obvious

pressure dependence of rate coefficients reactions is a sequence of reactions, and the

simplest case for the pressure dependence reaction is Lindemann model (1922) (for

details, see Warnatz et al. [23]).

In this thesis, in order to consider the effect of concentration of collision parter M,

the low pressure rate coefficient, k0, is applied. In the future study, the high pressure

rate coefficient, k∞, will be investigated, where the reaction rate is independent on

the concentrations of the collision partners.

The other species reaction application in the DDS model is similar to this atomic

hydrogen case, and the corresponding numerical simulation is performed in Fortran

code (for details, see Appendix A).

2.5 Temperature Model

A scaling method is applied in the DDS model for all of independent variables,

except for temperature. It is known that chemical reactions are sensitive to temper-

ature variations; thus a physical temperature must be calculated in the DDS model.

Temperature is updated by every time step, and the equation for the temperature

model in the computing code is

T (x, tn+1) = T (x, tn) + F ∗ T (x, tn) ∗ en+1 ∗ sgn. (2.41)
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Here T (tn+1) is temperature at the (n + 1) time step, and T (tn) is temperature at

the n time step; The symbol F is a constant factor which is related to the ratio of

large scale temperature to small temperature fluctuations; and en+1 is the scaling or

small-part of temperature at the (n + 1) time step, which is calculated directly from

Eq. 2.34e. The scaling initial value of temperature, e0, is set as 0.035 in the Fortran

code, which means the small part of temperature is regarded as 3.5% percent of total

amount in the initial calculation. The notation sgn is a simple sign: it is equal to 1

when en+1 > en; or it is equal to −1 when en+1 < en.

It is hard to obtain an appropriate value for F from a theoretical analysis, and the

optimized value must be found by performing numerical testing. The process of this

testing is the same as function of regime maps. That is, setting up all of parameters in

the DDS model but F, then keep changing this value until the best numerical result

is reached. The temporal temperature fluctuation and time averaged temperature

in the testing solution are compared with experimental data, and the value of F is

determined when the comparison exhibited minimum difference. The testing range

of F is from 1 to 4, and the optimized factor is 2.8 in the final Fortran code. Detailed

calculation process of temperature model is shown in Appendix A.

Along with the temperature model, a scaling method is applied for momentum to

obtain small scales of motion. In the numerical code, a scaling ratio 0.025 is used

which means 2.5% percent of the momentum is dissipated from large scale to small

scale. However, the scaling ratio is a preset number in this work, and we should put

more efforts into investigating this ratio to get a higher accuracy for variable variation

prediction in the DDS model.
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Chapter 3 Experimental Data

The experimental data are chosen from DLR Institute of Combustion Technol-

ogy Experimental Data Archives, H2/N2 Jet Diffusion Flame [H3] (DLR Stuttgart),

which is available at http://www.sandia.gov/TNF/simplejet.html. This flame was

selected as a “standard flame” of the International Workshop on Measurements and

Computation of Turbulent Nonpremixed Flames, Naples, July 1996. It was investi-

gated at the TU Darmstadt, Fachgebiet Energie-und Kraftwerkstechnik, and those

data sets are available in the TU Darmstadt–Flame Data Base, as provided by

Schneider et al. [106]. This is a non-premixed flame with fuel (50% H2 +50% N2,

Reynolds number =10000, nozzle diameter = 8mm, Vexit = 34.8 m/s) and co-flowing

air (Vair = 0.3 m/s). Meier et al. [3] provide a detailed description of the burner ge-

ometry and the corresponding diffusion flame structure for various fuels. The burner

geometry and diffusion flame structures are shown in Fig. 3.1(a) and Fig 3.1(b),

saperately.

Figure 3.2 shows temperature distribution in the global flame field, and there are

three different types of temperature lines in this chart. The flame center is plotted

along the center of the flame, where highest fuel concentrations are located; the

maximum temperature line is made up of locations where the maximum temperature

occurs at a specified height in the flame field; the flame boundary line means fuel

concentrations are very low (less than 0.1%) at these locations.
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(a) Burner (b) Flame Structure

Figure 3.1: Burner Structure and Diffusion Flames Structures

Figure 3.2: Global flame temperature distribution

The variation of temperature and concentration of two major species, H2 and O2

are presented at seven vertical locations: these are x/D = 2.5, x/D = 10, x/D = 20,

x/D = 30, x/D = 40, x/D = 50 and x/D = 70. These figures aid the choice of five

specific positions for further investigation. In the following figures, x is the distance

from the nozzle along the flame axis, D is the nozzle diameter, and R is the radial
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distance from the flame axis. Figure 3.3 exhibits temperature and concentrations of

H2 and O2 distribution at a specific height, and Fig. 3.3 is consistent with Fig. 3.2 in

terms of radial distance of maximum temperature at a specific height.

(a) Height: x/D = 2.5 (b) Height: x/D = 10

(c) Height: x/D = 20 (d) Height: x/D = 30
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(e) Height: x/D = 40 (f) Height: x/D = 50

(g) Height: x/D = 70

Figure 3.3: Temperature and species concentration distribution on specific heights

Figures 3.3(a) 3.3(b) 3.3(c) and 3.3(d) represent characteristic of non-premixed

flame spread which show that temperature varies with the change of fuel/air ratio

between rich limit and lean limit. Furthermore, these figures exhibit the maximum

temperature at a specific height occurs when fuel/air ratio is closed to stoichiometric

mixture. Figures 3.3 shows that the concentrations of H2 at heights x/D = 40,

x/D = 50, x/D = 70 is extremely low; thus we will not choose positions from these

heights for our further study. We will list temperature and species concentrations at
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seventeen specific points in three tables to explain the reason that we choose the final

investigated locations.

The points listed in tables include three types of locations, namely, flame center,

maximum temperature (where the temperature is maximum for the chosen x/D), and

flame boundary (where the H2 concentration is close to zero). In the following three

tables, data are listed for these types of location. Each case is labeled (i-j): the first

number, i, corresponds to the type of position; namely, 1, 2, and 3 represent flame

axis, maximum temperature and flame boundary, respectively; the second number, j,

increases with the value of x/D.

3.1 Flame Axis

The time averaged temperature, species concentration and the corresponding root

mean square (RMS) along the flame axis are listed in Table 3.1. The mean values

in the table are the ensemble mean values rather than the Favre mean values; values

of RMS are the variables’ root mean square fluctuations. The ensemble-average or

time averaging values is obtained by integration over a long time interval; the Favre

average or density-weighted averaged is calculated from the average of a variable,

and most time computed from a conservation equation (for details, see Warnatz et

al. [23]). RMS in statistics are the square root of the arithmetic mean of the squares

of a sample.

Table 3.1 shows that flame temperature along the axis first increases and then

decreases with an increase of height and reaches its peak at height around x/D = 40.

The combustion processes of non-premixed flames depend on diffusion and mixing

of fuel and oxidizer; at the nozzle exit of fuel, oxidizer concentration is much lower

than fuel concentration, and at the top height of flame, fuel concentration is much

lower than oxidizer concentration. The temperature and species concentrations data

in Table 3.1 exhibit fuel/oxidizer mixing property which is the key characteristic for
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non-premixed flames.

Table 3.1: Experimental mean values for temperature and mass fractions: flame axis

Num # x/D r [mm] Type T [K] YO2 YN2 YH2 YH2O

1-1 2.5 0 Mean 282.7 0.0001 0.9308 0.0672 0.002

RMS 5.2 0.0002 0.0007 0.0006 0.0009

1-2 10 0 Mean 469.1 0.0001 0.9146 0.0578 0.0275

RMS 95.9 0.0003 0.0103 0.0039 0.0136

1-3 20 0 Mean 1091.8 0.0026 0.8684 0.0311 0.098

RMS 230.8 0.0059 0.0174 0.0079 0.0243

1-4 30 0 Mean 1572.2 0.0078 0.8377 0.0103 0.1441

RMS 234.2 0.0213 0.0184 0.0069 0.0211

1-5 40 0 Mean 1655.1 0.0592 0.8057 0.0007 0.1343

RMS 279.2 0.0473 0.0154 0.0015 0.0332

1-6 50 0 Mean 1361.3 0.1211 0.786 0 0.0929

RMS 361.5 0.0367 0.0096 0.0001 0.0309

1-7 70 0 Mean 906.2 0.1744 0.7785 0.0001 0.0471

RMS 192.7 0.0173 0.004 0 0.0147

3.2 Maximum Temperature

The time averaged temperature, species concentration and the corresponding root

mean square (RMS) at the maximum temperature are listed in the Table 3.2. We

find that two points at the maximum temperature line are coincident with flame axis,

and these two points are located at heights x/D = 50 and x/D = 70, separately.
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Table 3.2: Experimental mean values for temperature and mass fractions: maximum
temperature

Num # x/D r [mm] Type T [K] YO2 YN2 YH2 YH2O

2-1 2.5 6.75 Mean 2030.3 0.0576 0.7846 0.0012 0.1565

RMS 85.4 0.0188 0.0081 0.0012 0.0136

2-2 10 9 Mean 1700.8 0.0386 0.8164 0.0046 0.1403

RMS 277.3 0.0468 0.0217 0.0057 0.0315

2-3 20 10.5 Mean 1639.5 0.0376 0.8198 0.0054 0.1372

RMS 288 0.05 0.022 0.0061 0.033

2-4 30 7.5 Mean 1644.7 0.0242 0.8256 0.0054 0.1448

RMS 220.1 0.0393 0.0195 0.0057 0.0251

2-5 40 5 Mean 1647.8 0.0612 0.8051 0.0007 0.133

RMS 295.4 0.0486 0.0157 0.0016 0.0345

1-6 50 0 Mean 1361.3 0.1211 0.786 0 0.0929

RMS 361.5 0.0367 0.0096 0.0001 0.0309

1-7 70 0 Mean 906.2 0.1744 0.7785 0.0001 0.0471

RMS 192.7 0.0173 0.004 0 0.0147

Table 3.2 shows the maximum temperature at a specific height, and the highest

temperature is located at x/D=2.5 and r=6.75. The radius of a position at the max-

imum temperature line first increases and then decrease with increasing of height.

Comparing Table 3.2 with Tables 3.1 and 3.3, we can tell that the maximum temper-

ature line is located between flame axis and flame boundary, which means fuel and

oxidizer mixed well in the middle of the non-premixed flame fields .

3.3 Flame Boundary

The time averaged temperature, species concentrations and the corresponding root

mean square (RMS) at the flame boundary are listed in Table 3.3.
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Table 3.3: Experimental mean values for temperature and mass fractions: flame
boundary

Num # x/D r [mm] Type T [K] YO2 YN2 YH2 YH2O

3-1 2.5 7.5 Mean 1403.6 0.1539 0.7645 0 0.0815

RMS 142.9 0.0153 0.0044 0.0001 0.0133

3-2 10 11 Mean 1252.1 0.1265 0.7903 0.0003 0.0829

RMS 455.7 0.0625 0.0169 0.0012 0.0469

3-3 20 16.5 Mean 1206.8 0.1246 0.7929 0.0005 0.082

RMS 445 0.0644 0.0181 0.0016 0.0469

3-4 30 20 Mean 1259.8 0.112 0.7946 0.0003 0.0931

RMS 380.8 0.0609 0.0185 0.0011 0.0436

3-5 40 10 Mean 1535.7 0.0809 0.7998 0.0003 0.119

RMS 338.2 0.052 0.0149 0.001 0.038

Table 3.3 shows the radius of flame boundary first increase and then decrease with

increasing of height; and the location where fuel (H2) concentration is no more than

0.05% is regarded as a boundary point.

3.4 Initial Condition

Experimental data in Tables 3.1, 3.2 and 3.3 show the time averaged temperature

and species concentration distributions in the global flame fields. This distribution

style is consistent with fuel/oxidizer diffusion features, and it represents characteris-

tics of non-premixed flame spread.

In order to reduce repetitive work, we will choose only five positions from the

database. These positions include one point from the flame axis, and four points from

the maximum temperature line. The fuel (H2) concentration at the flame boundary

is too low to be analyzed, and a small statistical errors may significantly influence

comparisons between numerical results and experimental data. Thus, the data from
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flame boundary, Table 3.3, will not be selected for further investigation. The oxidizer

concentration along the flame axis is also very low, and it is difficult to make a

fair comparison with the DDS model with such a low oxidizer concentration. Thus,

only one point at the flame axis will be selected as a testing sample. In the maximum

temperature line, the fuel/air ratio is close to that of a stoichiometric mixture, and lots

of useful information will be obtained if the location at the maximum temperature line

is studied in the DDS model. Therefore, four points from the maximum temperature

line are chosen.

The initial conditions for the chosen locations are listed in Table 3.4, including

temperature and mass fractions of four major species in H2-air combustion, namely,

H2, O2, H2O and N2. The experimental mean values for temperature and mass

fractions are listed in Table 3.5. In the next chapter, we will compare the DDS model

results with the database at the same locations.

Table 3.4: Initial conditions for temperature and mass fractions

Case # x/D r [mm] T [K] YO2 YN2 YH2 YH2O

1 2.5 0 283.3 0.0000 0.9295 0.0682 0.0023

2 2.5 6.75 2095.6 0.0531 0.7834 0.0011 0.1623

3 10 9 1970.7 0.0206 0.8184 0.0011 0.1598

4 20 10.5 1578.5 0.0111 0.8467 0.0083 0.1340

5 30 7.5 1807.6 0.0068 0.8311 0.0023 0.1598
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Table 3.5: Experimental mean values for temperature and mass fractions

Case # x/D r [mm] Type T [K] YO2 YN2 YH2 YH2O

1 2.5 0 Mean 282.7 0.0001 0.9308 0.0672 0.002

RMS 5.2 0.0002 0.0007 0.0006 0.0009

2 2.5 6.75 Mean 2030.3 0.0576 0.7846 0.0012 0.1565

RMS 85.4 0.0188 0.0081 0.0012 0.0136

3 10 9 Mean 1700.8 0.0386 0.8164 0.0046 0.1403

RMS 277.3 0.0468 0.0217 0.0057 0.0315

4 20 10.5 Mean 1639.5 0.0376 0.8198 0.0054 0.1372

RMS 288 0.05 0.022 0.0061 0.033

5 30 7.5 Mean 1644.7 0.0242 0.8256 0.0054 0.1448

RMS 220.1 0.0393 0.0195 0.0057 0.0251
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Chapter 4 Results and Discussion

4.1 Numerical Solution and Discussion

In this chapter, combustion processes at selected positions are investigated from

the database of the co-flow TU Darmstadt-Flame Data Base Schneider et al. [106],

and detailed information of experimental data are listed in Tables 3.4 and Table 3.5 of

the preceding chapter. Time series of velocities, temperature and species concentra-

tions at these positions calculated by the low-order DDS model developed in Chapter

2. Numerical solutions are compared with experimental data; discussion regarding

behaviors of the computed results are provided; and the potential factors that may

cause discrepancies between computation and experiment are analyzed. In addition,

the DDS model in different types of flame locations will be tested to check whether

the DDS model can mimic the combustion process in the whole flow field. The bi-

furcation parameters for two reduced chemical mechanisms for the DDS model are

studied, and the optimized parameters for this DDS model will be chosen.

4.2 Regime Maps

For the sake of simplicity, the bifurcation parameters in Eqs. (2.34) are initially

studied with the homogeneous and isotropic assumption. Then, regime maps with

inhomogeneity and anisotropy conditions are investigated. Recall that in Chapter 2,

bifurcation parameters with homogeneous and isotropic assumption were set as

βu = βv = βw = β,
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γuv = γuw = γvu = γ,

γvw = γwu = γwv = γ,

γuT = γvT = γwT = γT ,

γuYi = γvYi = γuwYi = γYi .

We remark that neither the fluid flow nor the chemistry can be expected to be

either homogeneous or isotropic in this case, but this assumption provides a tractable

starting point. Moreover, we again note that no such assumption is needed in a

complete LES, because all bifurcation parameters can be calculated from high-pass

filtered resolved-scale results. The values of parameters associated with species i,

e.g., βYi , αTdi etc., should be analyzed individually, because every species has its own

characteristics. We present regime maps, β vs. γ for two different mechanisms in

this section. Once the different regimes are identified by their power spectral density

(detailed analysis provided in [105]), we can choose regimes where chaotic behavior

is present, and apply the corresponding bifurcation parameters of the chaotic region

in Eqs. (2.34) to evolve the DDS.

4.2.1 β vs. γ in Homogeneous and Isotropic Assumption

In this section, regime maps for five locations are shown. The bifurcation parame-

ters used in the regime maps are β vs. γ, and power spectral density is used to check

fluid flow status. Power spectral density (PSD) is used to describe how the power of

a signal or time series is distributed over the different frequencies, and it commonly

expressed in watts per Hertz (W/Hz), but in this case its unit is (dB/Hz)). With a

homogeneous and isotropic assumption regime map, values of bifurcation parameters,

β and γ, are determined, and they are listed in Table 4.1. Since the regime maps in

the five location are the same under the current condition, only one regime map is

exhibited in Fig. 4.1.
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Table 4.1: Values of parameters with homogeneous and isotropic assumption

Case # x/D r [mm] β γ

1 2.5 0.00 3.6416 0.2360

2 2.5 6.75 3.6416 0.2360

3 10 9.00 3.6416 0.2360

4 20 10.5 3.6416 0.2360

5 30 7.50 3.6416 0.2360

Figure 4.1(a) indicates the variation of PSD status is a function of the bifurcation

parameters, and Fig. 4.1(b) is the corresponding zoom in chart including the useful

regime. The color table, Fig. 4.1(c), has 14 colors, which includes the flow behavior

states indicated. McDonough [105] observed that the basic sequence corresponding

to increasing β with γ fixed is from steady to periodic, to subharmonic, to chaotic

states. The regime map, shown in Fig. 4.1(c), is made up of 14 colors, and these colors

constitute a series of color islands which represent different flow states. In color table,

Fig. 4.1(c), colors 0 and 13 represent steady and divergent states, individually, and

they cover much of the regime map; for non-steady behavior, colors 1 and 2 indicate

periodic states; colors designated 3 through 6 denote quasiperiodic states; and colors

designated 7 through 12 express chaotic states.

In this work, chaotic noisy states are reached when β beyond 3.5 with γ is fixed

at 0.3. Recall that the Reynolds number of fuel is 10,000, and we are studying a

turbulent diffusion flames. Thus, chaotic regimes are of interest area for this studies.

In this work, the region with color 11 is chosen as an useful region for parameters

investigation. There are a couple of regions are filled with color 11 in the current

regime map, and the region where β beyond 3.5 with γ is around 0.3 is selected as

an interesting area. A grey point (β=3.6416, γ=0.2360) is marked in the interesting

area in Fig. 4.1(a), and more detailed information of this area is displayed in the
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zoom in of Fig. 4.1(b). Then, then values of β and γ that are determined by the

regime map are used in the DDS model. As we mentioned, the regime map is used

to determine an useful region for bifurcation parameters, and the specific values of

bifurcation parameters are selected randomly in this useful region. The SGS DDS

model is sensitive to the value of bifurcation parameters, and the regime map provide

a good way to approach real physical settings for these parameters.
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Figure 4.1: Regime map with Homogenous and Isotropic Assumption: (a) β vs. γ
at location x/D = 2.5, r = 0; (b) zoom at interested region; (c) color table for flow
states in regime maps
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4.2.2 β vs. γ with Reacting N2 Mechanism

With homogeneous and isotropic assumption, values of bifurcation parameters, β

and γ, in reacting N2 mechanism are the same as the values in N2 dilution mechanism,

shown in Table 4.1. Thus, regime maps and values of parameters with reacting N2

mechanism will not repeat.

4.2.3 β vs. γ in Inhomogeneous and Anisotropic Conditions

Next, bifurcation parameters β and γ are investigated in inhomogeneous and anisotropic

conditions, and they are defined as

βu = β1, βv = β2, βw = β3,

γuv = γuw = γu = γ1,

γvu = γvw = γv = γ2,

γwu = γwv = γw = γ3.

Values of β and γ in five locations are listed in Table 4.2, and the corresponding

regime maps are shown in Fig 4.2. Three regime maps are employed to determine

useful regimes for bifurcation parameters at every single location. The PSD sequence

in the regime maps is a function of β and γ, and a 2D regime map requires and only

requires a pair of bifurcation parameters for every calculation. When we construct

first regime map for βu and γu, the other bifurcation parameters should be fixed. Since

the values of bifurcation parameters under homogeneous and isotropic assumptions

are known, and we can use them for βu and γu. In the same way, the values of βu and

γu are known and it is not necessary to construct a new regime map for them again.

In constructing the regime map for βv and γv, the values of βu and γu are fixed, and

set βv = βw and γv = γw because only a pair of bifurcation parameters are needed

for a regime map. The corresponding figures are displayed in Figs. 4.2(a)(c)(e)(g)(i)
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for the five locations of Table 4.2. Similarly, when we construct regime maps for βw

and γw, the values of βu βv γu, and γv are fixed. Regime maps for βw and γw are

exhibited in Figs. 4.2(b)(d)(f)(h)(j) for the five cases. Again, a grey point is marked

at an interesting region in each regime map.

Table 4.2: Value of parameters with inhomogeneous and anisotropic conditions

Case # x/D r [mm] β1 β2 β3 γ1 γ2 γ3

1 2.5 0.00 3.6416 3.6304 3.6528 0.2360 0.2404 0.3372

2 2.5 6.75 3.6416 3.6416 3.6416 0.2360 0.2668 0.3020

3 10 9.00 3.6416 3.6416 3.6304 0.2360 0.2800 0.3284

4 20 10.5 3.6416 3.6304 3.6640 0.2360 0.2492 0.3592

5 30 7.50 3.6416 3.6416 3.6640 0.2360 0.3064 0.3460
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Figure 4.2: Regime map with inhomogeneous and anisotropic condition: (a) β2 vs. γ2

at location x/D = 2.5, r = 0; (b) β3 vs. γ3 at location x/D = 2.5, r = 0; (c) β2 vs. γ2

at location x/D = 2.5, r = 6.75; (d) β3 vs. γ3 at location x/D = 2.5, r = 6.75; (e) β2

vs. γ2 at location x/D = 10, r = 9; (f) β3 vs. γ3 at location x/D = 10, r = 9; (g) β2

vs. γ2 at location x/D = 20, r = 10.5; (h) β3 vs. γ3 at location x/D = 20, r = 10.5;
(i) β2 vs. γ2 at location x/D = 30, r = 7.5; (j) β3 vs. γ3 at location x/D = 30,
r = 7.5; (k) color table for flow states

The regime maps, Figs. 4.1 and 4.2, demonstrate that the distribution of PSD is

associate with bifurcation parameters settings, and the settings also affect flow states

layouts. It’s a truth that flow state is a function of physical settings. Figures. 4.2

exhibit that the interesting region in regime map, β3 vs. γ3, is much bigger than that

in both regime maps, β2 vs. γ2 and β1 vs. γ1 (see Figs. 4.2) .
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4.3 Temperature-Phase Portraits

In this subsection, temperature-species portraits at location x/D = 2.5, r = 6.75

with N2 reaction mechanism are presented, and simplified discussion and analysis on

the phase-portrait phenomena are presented. A phase portrait usually only contains

trajectories of solutions.
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Figure 4.3: Temperature-Species Concentration Phase Portraits

The species concentrations are determined from the reduced mechanism listed in
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Chapter 2. This includes both forward and backward reactions, where forward re-

action constants and reverse reaction constants vary among different reactions at

different temperatures. As it is discussed in Chapter 1, the typical chemical reaction

rates are expressed in the form of an Arrhenius law [23]. The temperature phase por-

traits reveal the relationship between variation of species concentrations and temper-

ature. Combustion reactions usually release a large amount of heat because they are

exothermic reactions and have negative enthalpy. This results in increasing the tem-

perature, which changes the equilibrium constant; this causes fluctuation of species

concentrations.

The reduced chemical reaction mechanism of this work includes four different types

of elementary reactions in radical chain reactions: chain initiation, chain propagation,

chain propagation and chain termination. Chain propagation involves intermediate

species, including radicals and/or atoms (in this paper they are atoms); they are

unstable and have rapid reaction rates, and typically their concentrations are quite

low. Figures 4.3 demonstrate that intermediate atoms, such as OH, H, O, HO2, N,

and NO have low concentrations.

Figures 4.3(a), 4.3(b), 4.3(c) show phase-portraits of temperature vs. H2, O2 and

H2O concentrations, respectively. In the range 1800–2100 K, species concentrations

of H2, O2 and H2O are at a relative high level; then in the range 2200–2400 K, species

concentrations decrease. The maximum temperature of the hydrogen-oxygen flame

is 3400 K, and that of the hydrogen-air flame is 2400K with an exact stoichiomet-

ric mixture. When species H2 and O2 react with other intermediate species, their

concentrations decrease, and as a result ambient temperature increases. Their con-

centrations are at the lowest level when temperature is in the range 2200–2400 K,

which is the range of maximum hydrogen-air flame temperatures .

Species concentrations N2, N, and NO shown in Figs. 4.3(h), 4.3(i), 4.3(j) are de-

scribed by the extended Zeldovich mechanism in the DDS model. The NOx produc-
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tion in this case was dominated by the thermal NOx mechanism, and this mechanism

is very sensitive to temperature. Thermal NOx is formed when temperature is above

1500 K, and it forms in a significant amount when flame temperature reaches 1800

K; the higher the flame temperature the higher the concentration of thermal NOx.

Figures 4.3(h), 4.3(i), 4.3(j) show that a rapid increase in the rate NOx formation

occurs when temperatures are above 2200K, and this phenomenon meets the charac-

teristic of thermal NOx formation. Thus, many efforts should be made to make sure

the temperature is not overestimated, since over predicted temperature will lead to

an unrealistically over predicted levels of NOx.

4.4 Numerical Results

In this section, further comparison between numerical solutions and experimental

data are performed in all five locations. In detail, time averaged values of tempera-

ture and major species concentrations are listed in tables; time series of dependent

variables, such as temperature and major species concentrations are presented in var-

ious figures that follow. The sum of mass fractions is directly calculated using all

species instead of employing it to eliminate one species. Numerical solutions of two

mechanisms with two different conditions are investigated: numerical solution of N2

dilution mechanism with homogeneous and isotropic assumption; numerical solutions

of reacting N2 mechanisms with homogeneous and isotropic assumption; numerical

solution of N2 dilution mechanism with anisotropic and inhomogeneous conditions.

The DDS model case number (i) in the tables and figures, corresponds to the type of

mechanisms with a specific condition; namely, case number 1, 2 and 3 represent the

N2 dilution mechanism with homogeneous and isotropic assumption, the reacting N2

mechanisms with homogeneous and isotropic assumption, the N2 dilution mechanism

with anisotropic and inhomogeneous conditions, respectively. The DDS model in the

reacting N2 mechanisms with anisotropic and inhomogeneous conditions is treated as
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case 4, which is calculated at location x/D = 2.5, r = 0 only. In order to test the

DDS capability in global flow fields, the numerical model is applied to multiple loca-

tions, and numerical solutions of the two mechanisms with two different conditions

are performed at the five chosen points that are mentioned in Chapter 3.

4.4.1 Validation of model

McDonough and Zhang [102] provided a 2-D DDS for combustion processes, but no

one has previously constructed a 3-D case. We will use temporal sum of mass fraction

fluctuations as a measurement to validate the DDS model. Instead of forcing the sum

to unity by calculating all but one species and then setting it to satisfy the required

unity value as others have done, we directly calculate all species concentrations and

then observe the sum of mass fractions. These results are display in Figs. 4.4.
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Figure 4.4: Sum of mass fractions in Time

Figures 4.4 show that the sum of mass fractions is close to unity for all five locations.

The time averaged of sum of mass fractions for Fig. 4.4(a) is 0.9998, for Fig. 4.4(b)

is 0.9996, for Fig. 4.4(c) is 0.9997, for Fig. 4.4(d) is 0.9997, for Fig. 4.4(e) is 0.9997,

with these values showing less than 0.1% discrepancies from the required value. These

results show that the DDS model works well in terms of conservation of species mass

fractions. In the following subsection, we will present computed results and compare

them with experimental data to verify this model.

73



4.4.2 Solution comparisons with experimental data

4.4.2.1 Location: x/D=2.5, r=0

Time-averaged numerical solutions at location x/D = 2.5, r = 0 are shown in

Table 4.3, and time series of dependent variables behaviors are presented in Figs. 4.5.

Comparison between numerical solutions and experimental data is included in Table

4.3 and Figs. 4.5.

Table 4.3: Solution and comparison at location: x/D = 2.5, r = 0

T [K] YO2 YN2 YH2 YH2O

Experiment mean 282.7 0.0001 0.9308 0.0672 0.002

DDS model #1 301.6 2.09E-10 — 0.0623 0.0022

DDS model #2 300.9 2.11E-10 0.938 0.0598 0.00229

DDS model #3 299.3 2.09E-10 — 0.0623 0.0021

Experiment RMS 5.2 0.0002 0.0007 0.0006 0.0009

DDS RMS #1 14.09 2.64E-21 — 2.37E-4 2.97E-07

DDS RMS #2 14.1 2.67E-21 5.14E-02 2.29E-4 3.09E-7

DDS RMS #3 14.09 2.66E-21 — 2.39E-4 2.98E-07

Discrepancy #1 18.86 1.0E-4 — 0.00469 0.0002

Discrepancy #2 18.22 9.99E-5 0.00707 0.00736 0.00029

Discrepancy #3 16.63 1.0E-4 — 0.0047 0.0002

Error #1 (%) 6.67 -99.99 — -7.279 10.194

Error #2 (%) 6.44 -99.99 0.759 -10.95 14.58

Error #3 (%) 5.88 -99.99 — -7.279 10.27
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4
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(e) Experiment data

Figure 4.5: Numerical solution and comparison at location: x/D = 2.5 with r = 0

Table 4.3 shows computed results of temperature, major species concentrations

for the DDS model in three different cases. The DDS model tends to over predict

temperature in all three cases. The value of temperature in case 3 is the smallest one

in the numerical results, which also holds the smallest discrepancy. All of the DDS

RMS for temperature term are larger than the corresponding experimental RMS.

Concentration of O2 is very small in the current position, since this point is located

at the center of the flame and close to fuel exit. The numerical prediction of O2

concentration is close to zero, and the experimental record is also very small. This case

is chosen from flame axis, where fuel directly exits from the nozzle. Fuel concentration

along this flame axis is very high; on the other hand air concentration is very low, and

is close to zero. Though the percentage error of O2 concentration is very large, the

absolute discrepancy is relatively small. Furthermore, the corresponding experimental

RMS of O2 concentration is 0.0002, which is much larger than any of the DDS O2

concentration RMS predictions in three cases.
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Figures 4.5 (a)(b)(c)(d) display time series of behaviors of temperature, species

concentrations of H2O, H2, N2 and O2 in four cases. The case 4 includes the N2 reac-

tion mechanism with inhomogeneous and anisotropic conditions. All variables in the

numerical solutions exhibit turbulent fluctuation behaviors as is seen in the experi-

mental data. Time series of fluctuations in case 3 and case 4 are more similar to the

experimental data than the other two cases, which proves isotropic and homogeneous

assumption is not valid in this non-premixed combustion situation.

Figures 4.5 (a)(b)(c)(d) show that fluctuations of variables do not produce large-

amplitude in all four cases, however, large-amplitude occur occasionally in the fluc-

tuations of the experimental data. Recall that the DDS model in this work is derived

for SGS, and the calculation is local and only for a single point. Numerical solutions

of the DDS model are set by initial condition only, and they will not be affected

by adjacent points. In contrast, temperature and species concentrations in the ex-

perimental data depend on both initial conditions and surrounding flow behaviors,

such as fuel flow and air flow movement. The large-amplitude occur several times in

the experimental case, and this phenomenon may be caused species concentrations

in the monitored position being disturbed by the adjacent position due to fluid flow.

However, with a small time scale (reaction times) in both the DDS model and the

experimental data, energy and species concentrations in the adjacent points should

not transport to the investigated location. Furthermore, the temperature model (see

section 2.5) and the time scale that are used in the DDS model probably do not meet

with the experimental setting. Therefore, in order to obtain high-amplitude fluctua-

tions, the temperature model and scaling method in the DDS should be validated by

the experimental data from further studies.

Figures 4.5 show fluctuations frequency in numerical solution is higher than the

experiment data. A possible reason for this difference is that the fluctuation scale

in the DDS model is more sensitive than experiment equipment, and the former can
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record smaller variation than the latter; another reason is that the computed time

scale is incompatible with the experimental data. The absolute O2 concentration in

this case is too small to be analyzed. However, the time average of temperature,

species concentrations of N2, H2 and H2O match with the experimental data fairly

well, with the largest error being less than 15%. For the largest error percentage in

H2O concentration, the experimental RMS is 0.0009 which is bigger than the corre-

sponding numerical RMSs in all three cases. It is noteworthy that discrepancies of

species concentrations of H2 and H2O are much larger than the others, and discrep-

ancy of N2 is even larger than the corresponding experimental RMS (0.0007). Case

2 has the largest discrepancies in species concentrations of H2 and H2O among the

three cases in Table 4.3, which may imply that the N2 reaction mechanism is not a

suitable scheme at low temperature condition (viz., temperature is less than 300K).

4.4.2.2 Location: x/D=2.5, r=6.75

The current investigated location is chosen from the maximum-temperature line

where temperature reaches the maximum value for a given height (x/D) as we men-

tioned in Chapter 3. Time-averaged numerical solutions at location x/D = 2.5,

r = 6.75 are shown in Table 4.4, and time series of dependent variable behaviors are

presented in Figs. 4.6. Comparison between numerical solutions and experimental

data is included in Table 4.4 and Figs. 4.6.
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Table 4.4: Solution and comparison at location: x/D = 2.5, r = 6.75

T [K] YO2 YN2 YH2 YH2O

Experiment mean 2030.3 0.0576 0.7846 0.0012 0.1565

DDS model #1 2228.0 0.00519 — 0.00101 0.156

DDS model #2 2228.7 0.00518 0.786 0.00096 0.161

DDS model #3 2216.4 0.00519 — 0.00101 0.156

Experiment RMS 85.4 0.0188 0.0081 0.0012 0.0136

DDS RMS #1 24.1 1.8E-4 — 7.36E-8 1.49E-3

DDS RMS #2 24.1 1.62E-4 3.63E-02 5.93E-8 1.53E-3

DDS RMS #3 24.1 1.8E-4 — 7.37E-8 1.49E-3

Discrepancy #1 197.75 0.00571 — 0.00019 0.0004

Discrepancy #2 198.4 0.0058 0.0017 0.00024 0.0044

Discrepancy #3 186.11 0.00573 — 0.00019 0.00047

Error #1 (%) 9.73 -9.91 — -15.94 -0.258

Error #2 (%) 9.77 -10.09 0.21 -20.01 -2.83

Error #3 (%) 9.17 -9.95 — -16.04 -0.298

(a) Case 1 (b) Case 2
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(c) Case 3 (d) Experiment data

Figure 4.6: Numerical solution and comparison at location: x/D = 2.5, r = 6.75

As can be seen from Table 4.4, temperature is over predicted by the DDS model for

all three cases; and the temperature term in case 3 is the smallest one in the numerical

solutions, which holds the smallest discrepancy from the experimental time averaged

value. There is no a huge error (recall the 99.99% discrepancy of O2 concentration

from the DDS model at location 1) in this location. The maximum percentage error

of H2 concentration occurs at case 2. Besides the concentration of H2, the maximum

percentage error of any other variables is less than 11% in all three cases. The

discrepancy and the DDS RMS of H2 concentration is far less than the corresponding

experimental RMS, which is viewed as that the numerical results of H2 concentration

is an acceptable solution for a low-order model to be used on the subgrid scale.

The discrepancy in case 2 is larger than others, but the DDS RMSs in case 2 are still

much less than the corresponding experimental RMS. Although the discrepancies of

temperature are larger than the experimental RMS in all three cases, the percentage

error are still less than 10%. Furthermore, the discrepancies of four species concen-
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trations in the DDS model for all three cases are far less than the corresponding

experimental RMS, and the largest percentage error is around 20%. Table 4.4 shows

that numerical results in the three cases considered here nearly match mean values

for species concentrations, and their discrepancies are smaller than the experimental

RMS.

Figures 4.6 (a)(b)(c) show times series of dependent variables of the DDS model in

three cases, and Fig. 4.6(d) exhibits the corresponding behaviors in the experimental

data. All variables in the DDS model for all three cases exhibit turbulent fluctuations

as in Fig. 4.6(d), which demonstrate the DDS model can mimic turbulent fluctuations

in at least a qualitative way. Time series of fluctuations in case 3 show a better

performance than the others, thus again demonstrating the DDS model with an non-

isotropic condition can reach good turbulent behaviors.

Specifically, temperature and concentrations of H2O, O2 in Fig. 4.6(c) present sim-

ilar fluctuations as Fig. 4.6(d) in both frequency and amplitude. Since the adjacent

points in flow field are unable to affect the location that is analyzed in this work,

computed solutions in the DDS model cannot repeat intermittent high-amplitude

fluctuations in Fig. 4.6(c). In further studies, a temperature model that can repro-

duce high-amplitude fluctuations should be investigated to approximate the turbulent

fluctuation behaviors seen in the experimental data. The DDS model also remains

high-pass information, and this character may cause the solutions of the DDS model

to exhibit higher frequency, especially in case 1 and case 2, than in the experimental

data. In order to remove the higher frequency issue, a correct time scale that is close

to experimental data or appropriate low-pass filtering of computed results is required.

4.4.2.3 Location: x/D=10, r=9

Time-averaged numerical solutions at location x/D = 10, r = 9 are shown in

Table 4.5, and time series of dependent variable behaviors are presented in Figs. 4.7.
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Comparison between numerical solutions and experimental data is included in Table

4.5 and Figs. 4.7.

Table 4.5: Solution and comparison at location: x/D = 10, r = 9

T [K] YO2 YN2 YH2 YH2O

Experiment mean 1700.8 0.0386 0.8164 0.0046 0.1403

DDS model #1 2095.52 0.00201 — 0.00101 0.154

DDS model #2 2096.01 0.00201 0.821 9.6E-4 0.158

DDS model #3 2081.5 0.00201 — 0.00101 0.154

Experiment RMS 277.3 0.0468 0.0217 0.0057 0.0315

DDS RMS #1 24.1 4.68E-5 — 2.82E-07 1.36E-3

DDS RMS #2 24.07 4.69E-5 3.93E-02 2.84E-7 1.31E-3

DDS RMS #3 24.04 4.70E-5 — 2.85E-07 1.32E-3

Discrepancy #1 394.72 0.0185 — 0.00359 0.0132

Discrepancy #2 395.21 0.0185 0.0042 0.0036 0.018

Discrepancy #3 380.69 0.0185 — 0.00359 0.0132

Error #1 (%) 23.2 -47.9 — -78.1 9.43

Error #2 (%) 23.24 -47.98 0.518 -79.14 12.85

Error #3 (%) 22.38 -47.91 — -78.11 9.43
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Experimental data

Figure 4.7: Numerical solution and comparison at location: x/D = 10, r = 9

Table 4.5 provides a quantitative comparison between numerical solutions of the

DDS model and the experimental data. Numerical solutions of all three cases of the
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DDS model, such as temperature, major species concentrations, and related turbulent

flames statistics, are listed in this Table. Figures 4.7 exhibit numerical solutions of

the current investigated location at a qualitative sense, and provide comparison of

temporal fluctuations between the DDS model in the three cases and the experimental

data.

The DDS model over predicts temperature in all three cases, and case 3 has a small-

est value for temperature. The least discrepancy in the DDS model for temperature

term is 380.69 K, which is larger than the corresponding experimental RMS, 277.3

K; and the least percentage error of temperature of the DDS model in all three cases

is larger than 22% (see Table 4.5). The initial condition for temperature is 1970.7

K (see, Table 3.4) which is nearly 270 K more than the experimental time averaged

temperature value. The time averaged temperature in the DDS model is closer to its

initial condition rather than the corresponding experimental mean value. In addition,

the smallest percentage error of O2 concentration is 47.9%, and for H2 concentration

this value is 78.1%, in all three cases. Both computed time averaged of concentra-

tions of O2 and H2 are closer to their initial condition (see, Table 3.4) rather than the

experimental averaged values. This kind of result shows the DDS model is probably

highly influenced by its initial condition. Though the percentage error of species con-

centrations, O2 and H2 are very big, the discrepancies for all species concentration

are still less than the corresponding experimental RMS in all three cases (for details,

see Table. 4.5).

Recall that the species concentrations relate to bifurcation parameters are set as

preset values in this work. Without appropriate bifurcation parameters that can

represent species concentration fluctuations, the DDS model will not exactly predict

physical chemical reactions, let alone obtain correct numerical solutions for species

concentrations. Therefore, more bifurcation parameters that relate to species con-

centrations should be investigated to improve the DDS model predictions of species
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reactions.

Figures 4.7(a) 4.7(b) 4.7(c) prove that the DDS model can mimic turbulent com-

bustion fluctuation behaviors at location x/D = 10, r = 9. At this location, the DDS

model has demonstrated that it works well in three points in this section. It is seen

that temperature in the numerical solutions (Figs. 4.7(a) 4.7(b) 4.7(c)) is similar to

that in the experimental data (see Fig. 4.7(d)) in both qualitative and appearance,

both them display bilateral oscillation (swing up and down in a centerline). In ad-

dition, temperature fluctuation in case 3 (see Fig. 4.7(c)) almost exactly match the

experimental data in frequency and amplitude, and this numerical term covers all of

turbulent features as shown in Fig. 4.7(d).

The major difference between the DDS model and the experimental data is that

numerical solutions hold a higher frequency oscillation, and higher frequency is a

truth for the DDS model results in this work. This discrepancy may be caused by

the apparatus for acquiring experiment data lacking sufficient sensitivity and losing

some high-pass frequency information. If Fig. 4.7(d) is constructed with a low-pass

filtering, the turbulent fluctuation behaviors of numerical solutions may be close to

experimental case in both qualitative and quantitive. The second possible reason is

that the time scale used in the DDS model does not match that in the experimental

data. Another difference between the DDS model and the experimental data is that

there are occasional high-amplitude fluctuations in Fig. 4.7(d), however this feature

is not repeated in the DDS model. The similar high-amplitude fluctuations issue has

been analyzed in the previous work, thus, it is not necessary to restate it again.
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4.4.2.4 Location: x/D=20, r=10.5

Time-averaged numerical solutions at location x/D = 20, r = 10.5 are shown in

Table 4.6, and time series of dependent variable behaviors are presented in Figs. 4.8.

Comparison between numerical solutions and the experimental data is included in

Table 4.6 and Figs. 4.8.

Table 4.6: Solution and comparison at location: x/D = 20, r = 10.5

T [K] YO2 YN2 YH2 YH2O

Experiment mean 1639.5 0.0376 0.8198 0.0054 0.1372

DDS model #1 1679.06 0.0108 — 0.0076 0.129

DDS model #2 1680.3 0.0108 0.849 0.00725 0.133

DDS model #3 1673.3 0.0108 — 0.0076 0.129

Experiment RMS 288 0.05 0.022 0.0061 0.033

DDS RMS #1 22.42 2.46E-5 — 2.5E-6 1.08E-3

DDS RMS #2 22.46 2.46E-5 0.0409 2.51E-6 1.08E-3

DDS RMS #3 22.42 2.47E-5 — 2.52E-6 1.08E-3

Discrepancy #1 39.56 0.0267 — 0.0022 0.0085

Discrepancy #2 40.8 0.0268 0.029 0.0018 0.0045

Discrepancy #3 33.85 0.0267 — 0.0022 0.0083

Error #1 (%) 2.41 -71.21 — 40.61 -6.24

Error #2 (%) 2.489 -71.23 3.59 34.19 -3.28

Error #3 (%) 2.06 -71.18 — 40.82 -6.07
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Experiment data

Figure 4.8: Numerical solution and comparison at location: x/D = 20, r = 10.5

Table 4.6 and Figs. 4.8 show the DDS model in all three case over predict tempera-

ture, and case 3 has a smallest value for temperature term. Temperature of numerical
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solutions in Table 4.6 show a striking similarity as that in the experimental data, and

the corresponding error is less than 2.5% for all three cases. In addition, time series

of temperature fluctuation of the numerical solutions in Figs. 4.8 perform very well,

and the difference between the numerical cases and the experimental data is very

small.

For species concentrations, the absolute percentage errors of O2 concentration and

H2 concentration are more than 70% and 40%, separately. As a validation testing,

such big differences are unacceptable. However, the purpose of this sub-grid scale

DDS model is not to exactly repeat the real physics in quantitative, but rather to

test capability of the DDS model in simulating turbulent behaviors. In addition,

the numerical simulation at a single fixed location is hard to predict behaviors of

the same fixed location in flow fields. Thus, it is not wise to expect the numerical

solutions can exactly repeat the variables fluctuations as them in the experimental

data. The discrepancies of species concentrations O2, H2 and H2O are less than the

corresponding experimental RMS in Table 4.6, which means numerical oscillations

are within the experimental amplitude. Though, the discrepancy of N2 concentration

in case 2 (0.029) is a bit of big, the percentage error is still very small (less than 4%).

Figures 4.8 show time series of dependent variables of the DDS model, both the

numerical results in all three cases and the experimental data exhibit turbulent fluc-

tuations. Time series of temperature, H2O concentration and H2 concentration in

Fig. 4.8(a) have similar behaviors as these in Fig. 4.8(c), both them match the ex-

perimental data well. Time series of O2 concentration in Fig. 4.8(c) displays more

high-amplitude oscillations than that in Fig. 4.8(a), which demonstrates non-isotropic

conditions are more suitable than isotropic assumption for the DDS model. Though

time series of variables in Fig. 4.8(b), case 2, show turbulent fluctuations, these

fluctuations look like periodic oscillations. Fig. 4.8(b) is dissimilar to Fig. 4.8(d),

and the possible reason is that the time scale in the case 2 is not comparable to
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the experimental data, and the inappropriate time scale produces higher frequency

fluctuations.

4.4.2.5 Location: x/D=30, r=7.5

The current investigated point is located at top of flame, where is far away from

fuel nozzle exit. This location is chosen from the maximum temperature line at

height x/D = 30; at this height, the flame boundary radius is r = 20. The initial

condition in Table 3.4 show species concentrations of O2 and H2 is 0.0068 and 0.0023,

individually, which illustrate both oxidizer and fuel concentration are relatively low.

Time-averaged of the numerical solutions at location x/D = 3, r = 10.5 are shown in

Table 4.7, and time series of dependent variable behaviors are presented in Figs. 4.9.

Comparison between the numerical solutions and the experimental data is included

in Table 4.7 and Figs. 4.9.
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Table 4.7: Solution and comparison at location: x/D = 30, r = 7.5

T [K] YO2 YN2 YH2 YH2O

Experiment mean 1644.7 0.0242 0.8256 0.0054 0.1448

DDS model #1 1922.5 0.0066 — 0.0021 0.153

DDS model #2 1924.88 0.0066 0.833 0.002 0.158

DDS model #3 1915.0 0.0066 — 0.0021 0.154

Experiment RMS 220.1 0.0393 0.0195 0.0057 0.0251

DDS RMS #1 23.67 2.66E-6 — 2.7E-7 1.44E-3

DDS RMS #2 23.71 2.66E-6 4.08E-2 2.59E-7 1.48E-3

DDS RMS #3 23.67 2.67E-6 — 2.72E-7 1.44E-3

Discrepancy #1 277.8 0.0176 — 0.0033 0.0086

Discrepancy #2 280.18 0.0176 0.0075 0.0034 0.01345

Discrepancy #3 270.3 0.0176 — 0.0033 0.0087

Error #1 (%) 16.89 -72.58 — -61.01 5.97

Error #2 (%) 17.04 -72.63 0.911 -62.88 9.29

Error #3 (%) 16.43 -72.57 — -61.02 6.04

(a) Case 1 (b) Case 2
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(c) Case 3 (d) Experiment data

Figure 4.9: Numerical solution and comparison at location: x/D = 30, r = 7.5

Table 4.7 and Figs. 4.9 show the DDS model obtain a over predicted temperature.

The time averaged temperature in the experimental data (seeTable 4.7) is 1644.7 K,

which is at least 270 K less than the numerical solutions. Case 3 has the smallest

discrepancy for temperature in three cases, and the corresponding temperature is

1915 K .

The initial condition of temperature in the current investigated location is 1807.6 K

(see Table 3.4) which is 162.9 K more than the experimental time averaged temper-

ature, and 107.4 K less than the numerical temperature in case 3. These differences

demonstrate temperature in the DDS model is hugely influenced by initial condition.

In order to improve prediction of temperature, the temperature model in this work

should be updated in the further studies. For concentrations of O2 and H2, the differ-

ences between the experimental time averaged values and the computed time averaged

values are too big to be acceptable, and the corresponding percentage error are more

than 70% and 61%, separately. In order to get better species concentrations fluctua-
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tions, an appropriate temperature model with appropriate species related bifurcation

parameters setting should be applied for further investigation.

The computed time averaged values in Table 4.7 are closer to initial conditions in

Table 3.4 rather than the corresponding experimental data, which demonstrate species

concentrations in the DDS model are also greatly affected by initial conditions. It

is difficult for the DDS model to get a numerical time averaged value that is close

to the experimental time averaged value if the latter is far away from its initial

conditions. The possible reason for this problem is that the DDS model only takes

local information into consideration, and it is unable to count global flow fields. But

this problem will be solved when the SGS DDS model is applied to LES model.

Figures 4.9 provide a comparison of time series of dependent variables between

the DDS model in three cases and the experimental data. Time series of dependent

variables exhibit turbulent fluctuations in both the numerical solutions and the ex-

perimental data. However, variables fluctuations in Fig. 4.9(b) are close to the time

averaged value. Furthermore, solutions of the DDS model in Fig. 4.9(b) do not pro-

duce high amplitudes as displayed in other three figures. In terms of time series of

variables fluctuations, case 2 does not perform well. It may caused by the N2 reaction

with homogenous and isotropic assumption is not a suitable combination for the SGS

DDS model, or the time scales in the DDS model is not in an appropriate region.

The temperature turbulent fluctuations in the DDS model (see Figs. 4.9(a) 4.9(b)

4.9(c)) show similar behaviors as them in experimental data (see Fig. 4.9(d)), all of

them have two sides oscillations and occasional high amplitude. It looks like that the

concentrations of H2 and O2 only produce one side oscillation (see Fig. 4.9(d)). The

reason for this phenomenon is that the times series of species concentrations should

be above zero, and these two species concentrations are just close to zero. If the time

averaged lines of these two species concentrations are plotted in Fig. 4.9(d), it will

be easy to recognize that these two species concentrations also have two sides oscilla-
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tions along the lines. Figure 4.9(c) produces occasional high-amplitude fluctuations

in temperature, H2, O2 and H2O concentrations, and case 3 produces very distinct

turbulent fluctuations even in low species concentrations (viz., concentrations of H2

and O2). The performance of the DDS model in case 1 (see Fig. 4.9(a)), case 2

(see Fig. 4.9(b)) and case 3 (see Fig. 4.9(c)) demonstrates that inhomogeneous and

anisotropic conditions are suitable settings (case 3) for the turbulent diffusion flames

chemical reactions processes.

Tables and Figures in this section demonstrate that the DDS model can match the

time averaged values of temperature and species concentrations with the experimental

data in a certain degree, and most of the computed RMS in tables are lower than

the corresponding experimental RMS. We note that the physical condition in the

database is not the same as them in the current model, and the purpose of the SGS

DDS model is to simulate the unresolved small part. Thus, we could not expect the

computed results in the DDS model can exactly agree with the experimental data.

Overall, the computed results can mimic the diffusion flames combustion processes,

and the 3-D DDS model works relatively well. Nevertheless, we will also discuss

potential factors that cause discrepancies in the DDS model at section 4.5.

4.5 Discrepancy Analysis

Zeng et al. [100] made a simple testing for the DDS model at a single position,

and in that paper, the buoyancy term, αT (see Eq. 2.32c) was set to zero in all

three dimensions. For a low flow velocity case, buoyancy effects cannot be ignored;

however, the velocity of fuel is 34.8 m/s and the Reynolds number is 10,000, which

means buoyancy effect only accounts for a small part in flame velocity fluctuations.

Moreover, the buoyancy term was calculated at all three dimensions in two chemical

mechanisms with different bifurcation parameter assumptions during programming

processes, and there is almost no difference in the numerical solutions whether buoy-
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ancy effect was applied or not. Thus, for simplification, the final programming only

considers buoyancy effect in the vertical direction, that is z direction in Eq. 2.32c.

In terms of reduced mechanisms for chemical reactions, Zeng et al. [100] used a

nine step reduced mechanism (including forward and backward reactions), and this

mechanism does not contain reactions for NOx. As we know NOx does exist in com-

bustion processes, especially at high temperature (viz., temperature is over 2000K),

and N2 is one part of the fuel in H2/N2 jet diffusion flame. In this work, a twelve

step reduced mechanism with N2 reactions and isotropic and homogenous assumption

is applied in the DDS model. For time-averaged values of variables, there is no big

difference between the numerical solution of the reacting N2 mechanism and the N2

dilutions mechanism. Thus, NOx will not an investigated object in further discrep-

ancy analysis. However, both the nine step and twelve step mechanisms are reduced

mechanisms, and some important information inevitably lost. In order to consider

more species and obtain a more accurate prediction of chemical reactions, a detailed

chemical mechanisms may be a good option for the DDS model in further studies.

Recall that in Chapter 2, the DDS model is derived for use as part of a SGS

model for LES, and in this context the model would be evaluated only at a single

point rather than in global flow fields. The computed solutions of the DDS model

are set by initial conditions in Table 3.4 and selected bifurcation parameter values,

and they do not consider non-local part information, let alone details in global flow

fields. In contrast, although the experimental data are measured at fixed locations,

temperature and species concentrations are affected by adjacent positions and global

air/fuel flows. Since the adjacent points in the flow fields are unable to affect the

numerical solutions in the DDS model, these is no occasional high amplitude in the

numerical figures. Furthermore, if the occasional high amplitude in the experimental

figures are removed, the experimental time series of variables fluctuations would fairly

close to the numerical solutions.
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The major difference in comparison is that the numerical solutions holds higher

frequency oscillation than that in the experimental data, and the higher frequency is

a truth for DDS model results in this work. This discrepancy is probably caused by

the time scale of the DDS model is not the same as that of the experimental data. In

this work, a model for physical temperature is studied for use in calculating species

reaction rates, and a scaling method is employed for the corresponding momentum

analysis. The temperature model is made up two parts (see Eq. 2.41), that is, the

resolved temperature from the previous time step, and a unresolved part (tempera-

ture fluctuation) which is calculated with a scaling initial value for temperature. The

initial scaling factor, e0, is a preset number, and this number plays a vital role on

temperature fluctuations. It is probably that the initial scaling factor, e0, that is used

in this work does not reveal real physical settings as them in the experimental condi-

tions, then cause the DDS model tends to over predict temperatures in the diffusion

flame. The same scaling issue exists in the momentum scaling implementation, and

the scaling initial values for velocities are preset numbers too. Both scaling values

for temperature and velocities are not verified by a numerical testing. Therefore, for

further investigation, a numerical testing for the scaling factors will be utilized.

The treatment of collision partners is listed in section 2.4, which discussed the

way for chaperon efficiencies and pressure dependence of rate coefficients selection.

For simplicity, the chaperon efficiencies are set as unity in the numerical computing,

however, these efficiencies have their own values that are validated by experiment.

For example, chaperon efficiencies of the third body M in Eq. 2.32d are 2.5 for H2,

12.0 for H2O, and 1.0 for all other species (see Boivin et al. [32]), that is

M = (2.5)[H2] + (16)[H2O] + (1.0)[OH] + (1.0)[O] + (1.0)[N2] + (1.0)[N ] + (1.0)[NO].

In addition, a low-pressure rate coefficient is selected in the pressure dependence of

rate coefficients case. Recall that a low-pressure rate coefficient is chosen only when
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the concentration of the collision partner is very small. However, in the current

physical settings, the collision parter has a large concentration since it includes con-

centration of N2. Therefore, a high-pressure rate coefficient should be selected for the

pressure dependence of rate coefficients situation.

Zeng et al. [100] applied a homogeneous and isotropic assumption in an initial

investigation, and the numerical solutions with this condition do not show a good

performance in predicting time series of variables fluctuations. In the references, Mc-

Donough [102] and [103], this assumption was not employed, and results were qualita-

tively better, even though the model was only 2D. In the current work, inhomogeneous

and anisotropic conditions are used for the DDS model, and the corresponding solu-

tions display very good turbulent fluctuations as did in the experimental data, which

demonstrates inhomogeneity and anisotropy is a precondition for turbulent diffusion

flames.

Furthermore, there are numerous bifurcation parameters in the DDS model, but

only a pair of bifurcation parameters βu and γu that are related to momentum are

studied in this work. Other bifurcation parameters that associated with species i,

(e.g, βYi , αTdi etc.,) and temperature (such as βT ) are not analyzed. The bifurcation

parameters that are related to species should be analyzed thoroughly rather than

setting them with preset values, since every species has its own characteristics and

most of them are sensitive to values of bifurcation parameters. To repeat a real

physical process, a regime map should be applied for every bifurcation parameter

in the DDS model to obtain optimal value, however, this attempt is limited by the

current computing capability.
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Chapter 5 Conclusions and Future Work

In this thesis, a 3-D discrete dynamical system for finite-rate combustion is derived

from governing PDEs, and a nine-step reduced mechanism with N2 dilution and a

twelve-step reduced mechanism with N2 reaction are utilized to mimic H2-air turbu-

lent combustion. These two reduced mechanisms are used to check effects of NOx in

the DDS model. The N2 reaction mechanisms show bad fluctuation behaviors in the

numerical solution figures, which means this mechanisms does not improve calcula-

tion accuracy for chemical reactions. Thus, though NOx exists in high temperature

(over 2000K) flames, the NOx concentration fluctuations does not play a major role

in the DDS model for the current physical condition. In addition, the discrepancy

of reacting N2 mechanism in the location x/D = 2.5, r = 0 shows this N2 reaction

mechanism is not suitable in a low temperature condition. However, there are only

10 species involved in the reacting N2 mechanism, and some potential minor species

are ignored in this reduced mechanism.

The sum of species mass fractions in all five cases are close to unity, which demon-

strates the DDS model works well in multiple locations for mass conservation in 3D.

The numerical solutions of the DDS model in all five locations indicate that the DDS

model is capable of mimicking turbulent combustion processes in multiple locations

and physical environments. Time series of dependent variables exhibit turbulent fluc-

tuations similar to those of experimental data in a qualitative sense; some variables

even display behaviors in accord with the experimental data in a quantitative sense.

Temperature phase portraits are employed to analyze variation of ten species con-
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centrations with temperature, and it is found that features in these phase portraits

exhibit strong similarity to actual chemical reaction characteristics.

The bifurcation parameters in the DDS model are studied with two conditions, that

is, an isotropic and homogenous assumption and the anisotropic and inhomogeneous

conditions, in two reduced mechanisms for turbulent combustion processes. The nu-

merical solutions illustrate that the isotropic and homogenous assumption is not valid

in this non-premixed flame, and the DDS model with the anisotropic and inhomoge-

neous conditions displays better turbulent behaviors. Actually, the coefficients in the

DDS model should be computed dynamically as the calculation progresses instead of

setting it a priors.

Turbulence statistics and fluctuation amplitude from the DDS model are qualita-

tively different from those of the experimental data; however, the computed time

averaged temperature and species concentrations from the DDS model are essentially

within experimental error at most locations for all three cases considered. The DDS

model is evaluated at fixed locations, and it is not influenced by adjacent points in

the whole flame field. This may contribute to the DDS model being unable to repro-

duce intermittent high amplitudes seen in experimental data. In addition, the DDS

model is significantly affected by initial conditions, and it did not produce numerical

time-averaged temperature and species concentrations that are approximate to the

experimental averaged values when the time averaged values in experiment are far

away from their initial conditions. The essential differences between the numerical

setting and experimental surroundings may in result in significant discrepancies in

the comparisons.

The SGS DDS model is built with a scaling method, which is used to fulfill repre-

sentative interaction with small scales. The fluctuations of variables in local locations

are regarded as small-scale values of the whole flame fields in this work. The scaling

ratios in the DDS model make the SGS model provide adequate dissipation from the
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large grid scales to the small grid scales, when the SGS is implemented in a LES.

Calculation of variables in the SGS model depend on high-pass filtering results, and

numerical solutions from the DDS model will result from local (in space and time)

construction of bifurcation parameters. In terms of energy conserving codes, the

physical temperature obtained from the resolved-scale solution rather than a scaled

temperature would be used in a SGS model.

In this thesis, a model for physical temperature is studied, and a scaling method

is employed for the corresponding momentum analysis for the DDS model. The nu-

merical solutions tends to over predict temperatures in the diffusion flames. The

purpose of constructing this DDS model is to provide a SGS simulation for a single

location only, and there is no reason to expect the numerical solution of DDS exactly

repeat the physical behavior of same location in the whole flow field. In general, we

believe the results of this study are sufficiently promising to suggest continued inves-

tigation of discrete dynamical systems for finite-rate chemistry as low-order models

on subgrid-scale for a large-eddy simulation.

In terms of future work, in order to improve accuracy of numerical simulation for

species reactions, more reduced mechanism should be investigated even a detailed

mechanisms should be an optional subject for study. In this thesis, only a pair of

bifurcation parameters βu and γu that are related to momentum are investigated.

In order to reveal real physical processes, more bifurcation parameters that associ-

ated with species i, (e.g., βYi , αTdi etc.,) and temperature (such as βT ) should be

studied by plotting their regime maps and considering their effects on, e.g., inter-

mittencies in species concentrations in future studies. A temperature model that

can reproduce high-amplitude fluctuations should be investigated to approximate the

turbulent fluctuation behaviors seen in the experimental data. In order to remove

the higher frequency issue, a correct time scale that is close to experimental data or

appropriate low-pass filtering of computed results is required. In further investiga-
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tion on locating the optimal scaling of initial conditions for temperature model and

momentum analysis, a new bifurcation parameters searching scheme for these scaling

initial values will be constructed. In order to make up the shortcomings of the current

treatment of collision partners, different multipliers that are valid from experiment

for the chaperon efficiencies of the collision parter will be applied, and a high-pressure

rate coefficient for the pressure dependence of rate coefficients case will be selected.

For the whole flow field, we need to add this SGS model to the resolved part of a LES

and thus construct an approximation to the complete solution.
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Appendices

A Reduced Chemical Mechanism Fortran Code

PROGRAM TRBCHM3

IMPLICIT REAL*8 (A-H,O-Z)

PARAMETER (imx =50001 , ivr=3)

PARAMETER (MXSPCS =10, MXRCTN =20)

PARAMETER (nu0=1001 ,nv0=1001 ,nw0=2,nvar =3)

PARAMETER (R0 =8.314D-3)

c ! Universal gas constant [kJ/(g mol K)]

DIMENSION u(0:imx),v(0:imx),w1(0:imx),q(ivr ,0:imx)

DIMENSION D(MXSPCS),D0(MXSPCS),D00(MXSPCS),DFM(MXRCTN),

1 DBM(MXRCTN),W(MXSPCS),ALFATY(MXSPCS),BETAY(MXSPCS),

1 GAMUY(MXSPCS),GAMVY(MXSPCS),GAMWY(MXSPCS),G(MXSPCS),

2 H(MXSPCS) !Add 2 terms change

DIMENSION CF(MXSPCS ,MXRCTN),CB(MXSPCS ,MXRCTN),

1 yrslvd(MXSPCS), drs(mxspcs),fvdata(nu0 ,nv0 ,nw0 ,nvar)

DIMENSION CYIYJ(MXSPCS ,MXSPCS),YBAR(MXSPCS),CUY(MXSPCS),

1 CVY(MXSPCS),CWY(MXSPCS),CTY(MXSPCS),YSQ(MXSPCS),

2 y(MXSPCS) !Add 1 terms change

DIMENSION RMLNBR(MXSPCS ,MXRCTN),PMLNBR(MXSPCS ,MXRCTN),

1 RMLWT(MXSPCS),PREXPF(MXRCTN),ALFAF(MXRCTN),

2 AEF(MXRCTN),PREXPB(MXRCTN),ALFAB(MXRCTN),AEB(MXRCTN),

3 FWDRTE(MXRCTN),BWDRTE(MXRCTN),SRMLN(MXRCTN),

4 SPMLN(MXRCTN),DA(MXRCTN)

DIMENSION MPITRS(MXRCTN),MPMOD(MXRCTN)

DATA TL0 ,PL,RHOL /2095.6D0 ,1.01D5 ,0.263 D0/

DATA RMLWT /2.01588D0 ,31.9988D0 ,18.01528D0 ,17.0074D0 ,

1 1.00794D0, 15.9994D0 ,33.d0 ,28.0134D0,
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2 14.0067d0 ,30.0061 d0/

DATA G /0.120D0 ,1.D0 ,0.743D0 ,0.462D0 ,0.044D0 ,

1 0.276D0 ,0.d0 ,3*0. D0/

DATA H /0.114D0 ,0.128D0 ,-1.D0 ,0.706D0 ,0.440D0 ,

1 0.443D0 ,0.443d0, 0.121D0 ,2*0. D0/

c DATA H /58.93D0,65.47D0,−153.38D0,0.706D0,0.440D0,
1 0.443D0 ,0.443d0, 62.27D0 ,2*0. D0/ !checking

DATA PREXPF /3.52D16 ,5.06D4 ,1.17D9 ,5.75D19 ,7.08D13 ,

1 1.66D13 , 2.89D13 ,4.00D22 ,1.30D18 ,1.8D8 ,1.8D4,

2 7.1D7 ,8*0. D0/ !2.0 D14 /3.52D16 ,

!1.5 D14 /1.7D14 ,1.00D8 /1.17D9

DATA PREXPB /7.04D13 ,3.03D4 ,1.28D10 ,0.D0 ,0.D0 ,2.69D12 ,

1 0.D0, 1.03D23 ,3.04D17 ,3.8D7 ,3.8D3 ,1.7D8 ,8*0. D0/

DATA ALFAF /-0.7D0 ,2.67D0 ,1.3D0 ,-1.4D0 ,0.D0 ,0.D0 ,0.D0 ,

& -2.0D0 ,-1.0,0.D0 ,1.D0 ,0.D0 ,8*0. D0/

DATA ALFAB /-0.26D0 ,2.63D0 ,1.19D0 ,0.D0 ,0.D0 ,0.36D0 ,0.D0 ,

& -1.75D0 , -0.65D0 ,0.D0 ,1.D0 ,0.D0 ,8*0. D0/

DATA AEF /7.142D1 ,2.632D1 ,1.521D1 ,0.D0 ,1.23D0 ,3.44D0 ,

& -2.08D0, 0.D0 ,0.D0 ,3.19D2 ,3.89D1 ,3.74D0 ,8*0. D0/

DATA AEB /0.60D0 ,2.023D1 ,7.825D1 ,0.D0 ,0.D0 ,2.3186D2 ,0.D0 ,

& 4.9614D2 ,4.3309D2 ,3.53D0 ,1.731D2 ,2.0419D2 ,8*0. D0/

200 FORMAT (1X ,18(1 PE13.6,1X))

NSTPS = 20000

DT = 0.0001

TRBTSCL = 1.D-5

tl = tl0

NSPCS = 10 !8

NFRCTN = 12 !9

NBRCTN = 12 !9

NRCTNS = NFRCTN + NBRCTN

NSTATS = NSTPS/2

c write(*,*) MXSPCS,NSTATS
fctr = 0.06d0

fctr1 = 1.d0 - fctr

FCTRT = 2.8D0 !2./2.8

cinit = 0.035 d0

ccc Testing Enthalpy
Do i=1, MXSPCS

print*,’H(’,i,’)=’, H(i)
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print*,’G(’,i,’)=’, G(i)

End Do

Stop

* initial values for species (C1100550)

******************2nd pt:(5,25)************
drs(1) =0.0139274224 D0 !0.02732832 d0 H2

drs(2) =0.0423559498 D0 !0.00147168 d0 O2

drs(3) =0.2299430254 D0 !0.11232 d0 H2O

drs(4) =1.D-10 !2.49459d-3 OH

drs(5) =1.D-10 !3.75054d-2 H

drs(6) =1.D-10 !9.36488d-10 O

drs(7) =1.D-10 !3.64748d-13 HO2

drs(8) =0.7137736025 D0 !0.3586 d0 N2

drs(9) =1.D-10 !9.36488d-10 N

drs (10)=1.D-10 !3.64748d-13 NO

avgmlwt = 0.d0

do i=1,nspcs

avgmlwt = avgmlwt + drs(i)* rmlwt(i)

end do

sum=0.d0

do i=1,nspcs

sum=sum+drs(i)

end do

ccccc!!!!! write(*,*) sum !test

summfrc = 0.d0

do i=1,nspcs

yrslvd(i) = drs(i)*rmlwt(i)/ avgmlwt

summfrc = summfrc + yrslvd(i)

end do

write (*,*) avgmlwt ,summfrc ,yrslvd (8)

h2init = drs (1)* fctr*rmlwt (1)/ avgmlwt !mass fractions

o2init = drs (2)* fctr*rmlwt (2)/ avgmlwt

h2oinit = drs (3)* fctr*rmlwt (3)/ avgmlwt

ohinit = drs (4)* fctr*rmlwt (4)/ avgmlwt

hinit = drs (5)* fctr*rmlwt (5)/ avgmlwt

oinit = drs (6)* fctr*rmlwt (6)/ avgmlwt

ho2init = drs (7)* fctr*rmlwt (7)/ avgmlwt

HN2init = drs (8)* fctr*rmlwt (8)/ avgmlwt !add one term

HNinit = drs (9)* fctr*rmlwt (9)/ avgmlwt !add one term

HNoinit = drs (10)* fctr*rmlwt (10)/ avgmlwt !add one term

103



c summ=h2init+o2init+h2oinit+ohinit+hinit+oinit+ho2init
c write(*,*) ’n2=’, HN2init ! ’testh2o’,h2oinit !test

cffctr = 1.d0

DO J=1,NFRCTN

DO I=1,NSPCS

CF(I,J) = 0.D0

RMLNBR(I,J) = 0.D0

PMLNBR(I,J) = 0.D0

END DO

END DO

DO J=1,NBRCTN

DO I=1,NSPCS

CB(I,J) = 0.D0

END DO

END DO

BETAU = 3.6416 d0! 6416d0/7536 !3.6d0

BETAV = BETAU !3.6d0

BETAW = BETAU

DO I=1,NSPCS

BETAY(I) = 0.125D0/sqrt(rmlwt(i))

c !.09 −1 ! .085 < betay < .1275
END DO

GAM12 =0.2316 d0 !0.2756!0.264 d0 2688D0

GAM13=GAM12

GAM21=GAM12

GAM23=GAM12

GAM31=GAM12

GAM32=GAM12

****Bifurcation parameters for Energy equations******
BETAT = 1.5d0 !change from 1.5

GAMUT = -4.2D0 !3.0/4.2

GAMVT = -3.0D0

GAMWT = -3.2D0 ! Add one term change

****Bifurcation parameters for chemical reaction equations***
gamuy (1) =1.2d0 !1.2/0.62

gamvy (1) = -1.2d0 !1.2/ -0.62

gamwy (1) = 0.62d0 !1.2/0.62 ! Add one term change

gamuy (2) = 0.62d0 ! -1.3/0.62
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gamvy (2) = -0.62d0 ! -1.3/ -3.35/ -0.62

gamwy (2) = 0.62d0 ! Add one term change -1.3/0.62

gamuy (3) = 0.83d0 !0.83/0.65

gamvy (3) = -0.65d0 ! -1.595/ -0.65

gamwy (3) = 0.65d0 ! -1.2/0.65 ! Add one term change

gamuy (4) = 0.65!1. d0 !1.0

gamvy (4) = -0.65!1.02 d0

gamwy (4) = 0.65! 1.0d0 ! Add one term change

gamuy (5) = 0.65d0

gamvy (5) = -.65d0 ! -0.65

gamwy (5) = 0.65d0 ! Add one term change

gamuy (6) = .65d0

gamvy (6) = -.65d0 ! -0.35/ -0.65

gamwy (6) = .65d0 ! Add one term change

gamuy (7) = .65d0

gamvy (7) = -.65d0 ! -0.65

gamwy (7) = .65d0 ! Add one term change

gamuy (8) = -0.65d0 ! -0.35

gamvy (8) =0.65d0 ! -0.65/0.35

gamwy (8) = -0.65d0 !Add three terms -0.35

gamuy (9) = -0.65d0 ! -0.35

gamvy (9) =0.65d0 ! -0.65/0.35

gamwy (9) = -0.65d0 !Add three terms -0.35

gamuy (10) = -0.65d0 ! -0.35

gamvy (10) =0.65d0 ! -0.65/0.35

gamwy (10) = -0.65d0 !Add three terms -0.35

ALFAT = 0.1D0 ! ==> No buoyancy effect if set to 0

*** Add terms to 3D
ALFATY (1) = 1.D0*g(1)*( GAMUT*gamuy (1)+ GAMVT*gamvy (1)+

1 GAMWT*gamwy (1)) ! H2

ALFATY (2) = 1.D0*g(2)*( GAMUT*gamuy (2)+ GAMVT*gamvy (2)+

1 GAMWT*gamwy (2)) ! O2

ALFATY (3) = 1.D0*g(3)*( GAMUT*gamuy (3)+ GAMVT*gamvy (3)+

1 GAMWT*gamwy (3)) ! H2O

ALFATY (4) = 1.D0*g(4)*( GAMUT*gamuy (4)+ GAMVT*gamvy (4)+

1 GAMWT*gamwy (4)) ! OH

ALFATY (5) = 1.D0*g(5)*( GAMUT*gamuy (5)+ GAMVT*gamvy (5)+

1 GAMWT*gamwy (5)) ! H

ALFATY (6) = 1.D0*g(6)*( GAMUT*gamuy (6)+ GAMVT*gamvy (6)+

1 GAMWT*gamwy (6)) ! O

ALFATY (7) = 1.D0*g(7)*( GAMUT*gamuy (7)+ GAMVT*gamvy (7)+

1 GAMWT*gamwy (7)) ! HO2

ALFATY (8) = 1.D0*g(8)*( GAMUT*gamuy (8)+ GAMVT*gamvy (8)+

1 GAMWT*gamwy (8)) ! hn2 --N2

ALFATY (9) = 1.D0*g(9)*( GAMUT*gamuy (9)+ GAMVT*gamvy (9)+
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1 GAMWT*gamwy (9)) ! hn2 --N

ALFATY (10) = 1.D0*g(10)*( GAMUT*gamuy (10)+ GAMVT*gamvy (10)+

1 GAMWT*gamwy (10)) ! hn2 --NO

DO J=1,NFRCTN

IF(J.EQ.1) THEN

RMLNBR(5,J) = 1.D0

RMLNBR(2,J) = 1.D0

PMLNBR(4,J) = 1.D0

PMLNBR(6,J) = 1.D0

CF(5,J) = -RMLWT (5)

CF(2,J) = -RMLWT (2)

CF(4,J) = RMLWT (4)

CF(6,J) = RMLWT (6)

CB(5,J) = -CF(5,J)

CB(2,J) = -CF(2,J)

CB(4,J) = -CF(4,J)

CB(6,J) = -CF(6,J)

END IF

IF(J.EQ.2) THEN

RMLNBR(1,J) = 1.D0

RMLNBR(6,J) = 1.D0

PMLNBR(4,J) = 1.D0

PMLNBR(5,J) = 1.D0

CF(1,J) = -RMLWT (1)

CF(6,J) = -RMLWT (6)

CF(4,J) = RMLWT (4)

CF(5,J) = RMLWT (5)

CB(1,J) = -CF(1,J)

CB(6,J) = -CF(6,J)

CB(4,J) = -CF(4,J)

CB(5,J) = -CF(5,J)

END IF

IF(J.EQ.3) THEN

RMLNBR(1,J) = 1.D0

RMLNBR(4,J) = 1.D0

PMLNBR(3,J) = 1.D0

PMLNBR(5,J) = 1.D0

CF(1,J) = -RMLWT (1)

CF(4,J) = -RMLWT (4)

CF(3,J) = RMLWT (3)

CF(5,J) = RMLWT (5)

CB(1,J) = -CF(1,J)

CB(4,J) = -CF(4,J)

CB(3,J) = -CF(3,J)
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CB(5,J) = -CF(5,J)

END IF

IF(J.EQ.4) THEN

RMLNBR(5,J) = 1.D0

RMLNBR(2,J) = 1.D0

PMLNBR(7,J) = 1.D0

CF(5,J) = -RMLWT (5)

CF(2,J) = -RMLWT (2)

CF(7,J) = RMLWT (7)

END IF

IF(J.EQ.5) THEN

RMLNBR(7,J) = 1.D0

RMLNBR(5,J) = 1.D0

PMLNBR(4,J) = 2.D0

CF(7,J) = -RMLWT (7)

CF(5,J) = -RMLWT (5)

CF(4,J) = 2.d0*RMLWT (4)

END IF

IF(J.EQ.6) THEN

RMLNBR(7,J) = 1.D0

RMLNBR(5,J) = 1.D0

PMLNBR(1,J) = 1.D0

PMLNBR(2,J) = 1.D0

CF(7,J) = -RMLWT (7)

CF(5,J) = -RMLWT (5)

CF(1,J) = RMLWT (1)

CF(2,J) = RMLWT (2)

CB(7,J) = -CF(7,J)

CB(5,J) = -CF(5,J)

CB(1,J) = -CF(1,J)

CB(2,J) = -CF(2,J)

END IF

IF(J.EQ.7) THEN

RMLNBR(7,J) = 1.D0

RMLNBR(4,J) = 1.D0

PMLNBR(3,J) = 1.D0

PMLNBR(2,J) = 1.D0

CF(7,J) = -RMLWT (7)

CF(4,J) = -RMLWT (4)

CF(3,J) = RMLWT (3)

CF(2,J) = RMLWT (2)

END IF

IF(J.EQ.8) THEN

RMLNBR(5,J) = 1.D0

RMLNBR(4,J) = 1.D0

PMLNBR(3,J) = 1.D0

CF(5,J) = -RMLWT (5)
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CF(4,J) = -RMLWT (4)

CF(3,J) = RMLWT (3)

CB(5,J) = -CF(5,J)

CB(4,J) = -CF(4,J)

CB(3,J) = -CF(3,J)

END IF

IF(J.EQ.9) THEN

RMLNBR(5,J) = 2.D0

PMLNBR(1,J) = 1.D0

CF(5,J) = -2.d0*RMLWT (5)

CF(1,J) = RMLWT (1)

CB(5,J) = -CF(5,J)

CB(1,J) = -CF(1,J)

END IF

IF(J.EQ.10) THEN

RMLNBR(6,J) = 1.D0

RMLNBR(8,J) = 1.D0

RMLNBR (10,J) = 1.D0

PMLNBR(9,J) = 1.D0

CF(6,J) = -RMLWT (6)

CF(8,J) = -RMLWT (8)

CF(10,J) = RMLWT (10)

CF(9,J) = RMLWT (9)

CB(6,J) = -CF(6,J)

CB(8,J) = -CF(8,J)

CB(10,J) = -CF(10,J)

CB(9,J) = -CF(9,J)

END IF

IF(J.EQ.11) THEN

RMLNBR(9,J) = 1.D0

RMLNBR(2,J) = 1.D0

PMLNBR (10,J) = 1.D0

PMLNBR(6,J) = 1.D0

CF(9,J) = -RMLWT (9)

CF(2,J) = -RMLWT (2)

CF(10,J) = RMLWT (10)

CF(6,J) = RMLWT (6)

CB(9,J) = -CF(9,J)

CB(2,J) = -CF(2,J)

CB(10,J) = -CF(10,J)

CB(6,J) = -CF(6,J)

END IF

IF(J.EQ.12) THEN

RMLNBR(9,J) = 1.D0

RMLNBR(4,J) = 1.D0

PMLNBR (10,J) = 1.D0

PMLNBR(5,J) = 1.D0
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CF(9,J) = -RMLWT (9)

CF(4,J) = -RMLWT (4)

CF(10,J) = RMLWT (10)

CF(5,J) = RMLWT (5)

CB(9,J) = -CF(9,J)

CB(4,J) = -CF(4,J)

CB(10,J) = -CF(10,J)

CB(5,J) = -CF(5,J)

END IF

SRMLN(J) = 0.D0

SPMLN(J) = 0.D0

DO I=1,NSPCS

SRMLN(J) = SRMLN(J) + RMLNBR(I,J)

SPMLN(J) = SPMLN(J) + PMLNBR(I,J)

cf(i,j) = cf(i,j)* cffctr

END DO

END DO

*** i−loop for backward reaction
C Do i=1,

a0 = 0.90D0 ! volivity of fuel

B0 = 0.05D0 ! velocity of air

e0 = 0.05D0 ! Add one term change

C0 = 0.05D0 ! c0 = 0.05/0.1

c a0 = a
c b0 = b
c e0 = e
c c0 = c

D0(1) = h2init

D0(2) = o2init

D0(3) = h2oinit

D0(4) = ohinit

D0(5) = hinit

D0(6) = oinit

D0(7) = ho2init

D0(8) = hn2init !add one term

D0(9) = hNinit !add one term

D0(10) = hNOinit !add one term

c Do i=1,8
c print*,’d0(’,i,’)=’, d0(i)
c End do
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TIME = 0.D0

summwt = 0.d0

avgmlwt = 0.d0

do i=1,nspcs

avgmlwt = avgmlwt + (d0(i)+ yrslvd(i))/ rmlwt(i)

end do

avgmlwt = 1.d0/avgmlwt

summfrc = 0.d0

do i=1,nspcs

y(i) = d0(i) + yrslvd(i)*fctr1

summfrc = summfrc + y(i)

end do

z = (8.d0*y(1)-y(2)+1. d0)/9.d0

cccccc!!! write(*,*) avgmlwt,summfrc,z

WRITE (11 ,200)TIME ,A0,B0,E0,c0 ,(D0(I),I=1,NSPCS)

WRITE (8 ,200)TIME ,A0,B0,E0,tl ,(y(I),I=1,NSPCS),

1 z,avgmlwt ,summfrc

TAUF = TRBTSCL

cccc print*, ALFAT

* iterate equations for a, b, c for npts time steps
write (*,*)’ ’

write (*,*)’Beginning time evolution loop’,k

DO N=1,nstps

t = (n-1)*dt

TIME = N*DT

a0 = a

b0 = b

e0 = e

c0 = c

DO N=1,NSTPS

TIME = N*DT

IF(N.EQ.NSTATS)THEN

UBAR = A0

VBAR = B0

WBAR = E0 !Add one term

TBAR = C0

USQ = A0**2
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VSQ = B0**2

WSQ = E0**2 !Add one term

TSQ = C0**2

CTU = A0*C0

CTV = B0*C0

CTW = E0*C0 !Add one term

CUV = A0*B0

CUW = A0*E0 !Add one term

CVW = B0*E0 !Add one term

DO J=1,NSPCS

YBAR(J) = D0(J) !!D0(j)/D0(j)

YSQ(J) = D0(J)**2

CUY(J) = A0*D0(J)

CVY(J) = B0*D0(J)

CWY(J) = E0*D0(J) !Add one term

CTY(J) = C0*D0(J)

DO I=1,NSPCS

CYIYJ(I,J) = D0(I)*D0(J)

END DO

END DO

END IF

FRTMX = 0.D0

BCTMX = 0.D0

DO J=1,NRCTNS

IF(J.LE.NFRCTN)THEN

IF(ALFAF(J).LT.0.D0)THEN

TALFA = 1.D0/TL**(-ALFAF(J))

ELSE IF(ALFAF(J).GT.0.D0)THEN

TALFA = TL**ALFAF(J)

ELSE

TALFA = 1.D0

END IF

FWDRTE(J) = PREXPF(J)* TALFA*EXP(-AEF(J)/(R0*TL))

c if (j==5) then
c co=7.2071d−5
c ch=7.2071d−5
c coh=9.9986d−1
c fwdrte(j)=fwdrte(5)*co*ch/coh ! the third body M
c end if

IF(FWDRTE(J).GT.FRTMX) FRTMX = FWDRTE(J)

SRMLN1 = 1.D0 -SRMLN(J)

IF(ABS(SRMLN1 ).LT.1.D-12) THEN

RHOI = 1.D0

ELSE

RHOI = 1.D0/RHOL**ABS(SRMLN1)
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END IF

TAUC = RHOI/FWDRTE(J)

write (*,*)j,tauc

DA(J) = TAUF/TAUC

IF(DA(J).GE.1.D0)THEN

MPMOD(J) = 0.d0

MPITRS(J) = DA(J) + 1 ! the meaning of MPITRS

ELSE

MPMOD(J) = 1.D0/DA(J) + 1

MPITRS(J) = 1.d0

END IF

print*, j,FWDRTE(j),FRTMX

print*, J,DA(J),MPMOD(J),MPITRS(J)

ELSE

NDX = J - NFRCTN

IF(ALFAB(NDX).LT.0.D0)THEN

TALFB = 1.D0/TL**(-ALFAB(NDX))

ELSE IF(ALFAB(NDX).GT.0.D0)THEN

TALFB = TL**ALFAB(NDX)

ELSE

TALFB = 1.D0

END IF

BWDRTE(NDX) =PREXPB(NDX)* TALFB*EXP(-AEB(NDX )/(R0*TL))

IF(BWDRTE(NDX).GT.BCTMX)BCTMX = BWDRTE(NDX)

SPMLN1 = 1.D0 -SPMLN(NDX)

IF(ABS(SPMLN1 ).LT.1.D-12) THEN

RHOI = 1.D0

ELSE

RHOI = 1.D0/RHOL**ABS(SPMLN1)

END IF

*****Attention DA(j) not exist when BWDRTE(NDX)=0.d0
TAUC = RHOL **(1.D0 -SPMLN(NDX ))/ BWDRTE(NDX)

DA(J) = TAUF/TAUC

IF(DA(J).GE.1.D0)THEN

MPMOD(J) = 0.d0

MPITRS(J) = DA(J) + 1 ! the meaning of MPITRS

ELSE

MPMOD(J) = 1.D0/DA(J) + 1

MPITRS(J) = 1.D0

END IF

c print*, NDX,DA(J),MPMOD(J),MPITRS(J)
END IF

END DO

c stop

DO J=1,NRCTNS
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IF(J.LE.NFRCTN)THEN

FWDRTE(J) = FWDRTE(J)/ FRTMX

MPITRS(J) = FWDRTE(J)*10. + 1

c print*, J,FWDRTE(J)
ELSE

NDX = J - NFRCTN

BWDRTE(NDX)= BWDRTE(NDX)/ BCTMX

c print*, NDX,BWDRTE(NDX)
END IF

ccc FWDRTE(J) = 0.d0
ccc if(n.eq.1)write(*,*)j,MPITRS(J)
ccc MPITRS(J) = 1
C print*, J FWDRTE(J)

END DO

c stop

if(n.eq.nstats)then

do j=1,nrctns

IF(J.LE.NFRCTN)THEN

write (10 ,201)j,mpmod(j),MPITRS(J),DA(J),FWDRTE(J)

ELSE

NDX = J - NFRCTN

write (10 ,201)NDX ,mpmod(j),MPITRS(J),DA(J),BWDRTE(NDX)

End if

end do

201 format (1x,i1 ,2(1x,i3),3x,2(1 pe10.3,1x))

end if

* Fluid flow calculations

if(n.eq.1) then

suma = 0.d0

sumb = 0.d0

sume = 0.d0 ! Add one term

do m=1,nstps

A = A0*BETAU *(1.D0-A0) - GAM12*A0*B0 - GAM13*A0*E0

1 + ALFAT*C0

B = B0*BETAV *(1.D0-B0) - GAM21*A0*B0 - GAM23*B0*E0

1 + ALFAT*C0*0.d0

E = E0*BETAW *(1.D0-E0) - GAM31*A0*E0 - GAM32*B0*E0

1 + ALFAT*C0*0.d0 !Add terms

suma = suma + a

sumb = sumb + b

sume = sume + e

if(m.eq.1) then

asve = a

bsve = b
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esve = e

end if

a0 = a

b0 = b

e0 = e

end do

abr = suma/(nstps -1)

bbr = sumb/(nstps -1)

ebr = sume/(nstps -1)

**deal with velocity a0,b0,c0
a = asve

b = bsve

e = esve

c hpc write(*,*) abr,bbr,ebr

else

A = A0*BETAU *(1.D0-A0) - GAM12*A0*B0 - GAM13*A0*E0

1 + ALFAT*C0

B = B0*BETAV *(1.D0-B0) - GAM21*A0*B0 - GAM23*B0*E0

1 + ALFAT*C0*0.d0

E = E0*BETAW *(1.D0-E0) - GAM31*A0*E0 - GAM32*B0*E0

1 + ALFAT*C0*0.d0 !Add terms

end if

A0 = A - abr

B0 = B - bbr

E0 = E - ebr ! Add one term

* Chemical kinetics
w=0.d0

Do J=1,NSPCS

IF(J.EQ.1) THEN

DFM (9) = D0(1)/ RMLWT (1)+D0(2)/ RMLWT (2)+D0(3)/ RMLWT (3)

1 + D0(4)/ RMLWT (4)+D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)

2 + D0(8)/ RMLWT (8)+D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

DBM (9) = D0(2)/ RMLWT (2)+D0(3)/ RMLWT (3)+D0(4)/ RMLWT (4)

1 + D0(5)/ RMLWT (5)+D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)

2 + D0(8)/ RMLWT (8)+D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

w(1)=CF(1 ,2)/( RMLWT (1)* RMLWT (6))* FWDRTE (2)*D0(1)*D0(6)

1 + CB(1 ,2)/( RMLWT (4)* RMLWT (5))* BWDRTE (2)*D0(4)*D0(5)

2 + CF(1 ,3)/( RMLWT (1)* RMLWT (4))* FWDRTE (3)*D0(1)*D0(4)

2 + CB(1 ,3)/( RMLWT (3)* RMLWT (5))* BWDRTE (3)*D0(3)*D0(5)

3 + CF(1 ,6)/( RMLWT (7)* RMLWT (5))* FWDRTE (6)*D0(7)*D0(5)

3 + CB(1 ,6)/( RMLWT (1)* RMLWT (2))* BWDRTE (6)*D0(1)*D0(2)

4 + CF(1 ,9)/ RMLWT (5)**2* FWDRTE (9)* DFM (9)*D0 (5)**2

4 + CB(1 ,9)/ RMLWT (1)* BWDRTE (9)* DBM (9)*D0(1)
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D00 (1)= -(BETAY (1)+ GAMUY (1)*A0+GAMVY (1)*B0+GAMWY (1)*E0)

1 *D0(1)+ w(1)

D(1) = D00(1) + h2init

END IF

IF(J.EQ.2) THEN

DFM (4) = D0(1)/ RMLWT (1)+D0(3)/ RMLWT (3)+D0(4)/ RMLWT (4)

1 + D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)+D0(8)/ RMLWT (8)

2 + D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

w(2) =CF(2 ,1)/( RMLWT (2)* RMLWT (5))* FWDRTE (1)*D0(2)*D0(5)

1 + CB(2 ,1)/( RMLWT (4)* RMLWT (6))* BWDRTE (1)*D0(4)*D0(6)

2 + CF(2 ,4)/( RMLWT (5)* RMLWT (2))* FWDRTE (4)

2 *DFM (4)*D0(2)*D0(5)

3 + CF(2 ,6)/( RMLWT (7)* RMLWT (5))* FWDRTE (6)*D0(7)*D0(5)

3 + CB(2 ,6)/( RMLWT (1)* RMLWT (2))* BWDRTE (6)*D0(1)*D0(2)

4 + CF(2 ,7)/( RMLWT (7)* RMLWT (4))* FWDRTE (7)*D0(7)*D0(4)

5 + CF(2 ,11)/( RMLWT (9)* RMLWT (2))* FWDRTE (11)* D0(9)*D0(2)

5 + CB(2 ,11)/( RMLWT (10)* RMLWT (6))* BWDRTE (11)* D0(10)* D0(6)

D00 (2)= -( BETAY (2)+ GAMUY (2)*A0+GAMVY (2)*B0+GAMWY (2)*E0)

1 *D0(2)+w(2)

d(2) = D00(2) + o2init

END IF

IF(J.EQ.3) THEN

DFM (8) = D0(1)/ RMLWT (1)+D0(2)/ RMLWT (2)+D0(3)/ RMLWT (3)

1 + D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)+D0(8)/ RMLWT (8)

2 + D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

DBM (8) = D0(1)/ RMLWT (1)+D0(2)/ RMLWT (2)+D0(4)/ RMLWT (4)

1 + D0(5)/ RMLWT (5)+D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)

2 + D0(8)/ RMLWT (8)+D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

w(3) =CF(3 ,3)/( RMLWT (1)* RMLWT (4))* FWDRTE (3)*D0(1)*D0(4)

1 + CB(3 ,3)/( RMLWT (3)* RMLWT (5))* BWDRTE (3)*D0(3)*D0(5)

2 + CF(3 ,7)/( RMLWT (7)* RMLWT (4))* FWDRTE (7)*D0(7)*D0(4)

3 + CF(3 ,8)/( RMLWT (5)* RMLWT (4))* FWDRTE (8)

3 *DFM (8)*D0(4)*D0(5)

3 + CB(3 ,8)/ RMLWT (3)* BWDRTE (8)* DBM (8)*D0(3)

D00 (3)= -(BETAY (3)+ GAMUY (3)*A0+GAMVY (3)*B0+GAMWY (3)*E0)

1 *D0(3)+w(3)

D(3) = D00(3) + h2oinit

END IF

IF(J.EQ.4) THEN

DFM (8) = D0(1)/ RMLWT (1)+D0(2)/ RMLWT (2)+D0(3)/ RMLWT (3)

1 + D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)+D0(8)/ RMLWT (8)

2 + D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

DBM (8) = D0(1)/ RMLWT (1)+D0(2)/ RMLWT (2)+D0(4)/ RMLWT (4)

1 + D0(5)/ RMLWT (5)+D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)

2 + D0(8)/ RMLWT (8)+D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

w(4) =CF(4 ,1)/( RMLWT (2)* RMLWT (5))* FWDRTE (1)*D0(2)*D0(5)
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1 + CB(4 ,1)/( RMLWT (4)* RMLWT (6))* BWDRTE (1)*D0(4)*D0(6)

2 + CF(4 ,2)/( RMLWT (1)* RMLWT (6))* FWDRTE (2)*D0(1)*D0(6)

2 + CB(4 ,2)/( RMLWT (4)* RMLWT (5))* BWDRTE (2)*D0(4)*D0(5)

3 + CF(4 ,3)/( RMLWT (1)* RMLWT (4))* FWDRTE (3)*D0(1)*D0(4)

3 + CB(4 ,3)/( RMLWT (3)* RMLWT (5))* BWDRTE (3)*D0(3)*D0(5)

4 + CF(4 ,5)/( RMLWT (7)* RMLWT (5))* FWDRTE (5)*D0(7)*D0(5)

5 + CF(4 ,7)/( RMLWT (7)* RMLWT (4))* FWDRTE (7)*D0(7)*D0(4)

6 + CF(4 ,8)/( RMLWT (5)* RMLWT (4))* FWDRTE (8)

6 *DFM (8)*D0(4)*D0(5)

6 + CB(4 ,8)/ RMLWT (3)* BWDRTE (8)* DBM (8)*D0(3)

7 + CF(4 ,12)/( RMLWT (9)* RMLWT (4))* FWDRTE (12)* D0(9)*D0(4)

7 + CB(4 ,12)/( RMLWT (10)* RMLWT (5))* BWDRTE (12)* D0(10)* D0(5)

D00 (4)= -(BETAY (4)+ GAMUY (4)*A0+GAMVY (4)*B0+GAMWY (4)*E0)

1 *D0(4)+w(4)

D(4) = D00(4) + ohinit

END IF

IF(J.EQ.5) THEN

DFM (4) = D0(1)/ RMLWT (1)+D0(3)/ RMLWT (3)+D0(4)/ RMLWT (4)

1 + D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)+D0(8)/ RMLWT (8)

2 + D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

DFM (8) = D0(1)/ RMLWT (1)+D0(2)/ RMLWT (2)+D0(3)/ RMLWT (3)

1 + D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)+D0(8)/ RMLWT (8)

2 + D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

DBM (8) = D0(1)/ RMLWT (1)+D0(2)/ RMLWT (2)+D0(4)/ RMLWT (4)

1 + D0(5)/ RMLWT (5)+D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)

2 + D0(8)/ RMLWT (8)+D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

DFM (9) = D0(1)/ RMLWT (1)+D0(2)/ RMLWT (2)+D0(3)/ RMLWT (3)

1 + D0(4)/ RMLWT (4)+D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)

2 + D0(8)/ RMLWT (8)+D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

DBM (9) = D0(2)/ RMLWT (2)+D0(3)/ RMLWT (3)+D0(4)/ RMLWT (4)

1 + D0(5)/ RMLWT (5)+D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)

2 + D0(8)/ RMLWT (8)+D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

w(5) =CF(5 ,1)/( RMLWT (2)* RMLWT (5))* FWDRTE (1)*D0(2)*D0(5)

1 + CB(5 ,1)/( RMLWT (4)* RMLWT (6))* BWDRTE (1)*D0(4)*D0(6)

2 + CF(5 ,2)/( RMLWT (1)* RMLWT (6))* FWDRTE (2)*D0(1)*D0(6)

2 + CB(5 ,2)/( RMLWT (4)* RMLWT (5))* BWDRTE (2)*D0(4)*D0(5)

3 + CF(5 ,3)/( RMLWT (1)* RMLWT (4))* FWDRTE (3)*D0(1)*D0(4)

3 + CB(5 ,3)/( RMLWT (3)* RMLWT (5))* BWDRTE (3)*D0(3)*D0(5)

4 + CF(5 ,4)/( RMLWT (5)* RMLWT (2))* FWDRTE (4)

4 *DFM (4)*D0(2)*D0(5)

5 + CF(5 ,5)/( RMLWT (7)* RMLWT (5))* FWDRTE (5)*D0(7)*D0(5)

6 + CF(5 ,6)/( RMLWT (7)* RMLWT (5))* FWDRTE (6)*D0(7)*D0(5)

6 + CB(5 ,6)/( RMLWT (1)* RMLWT (2))* BWDRTE (6)*D0(1)*D0(2)

7 + CF(5 ,8)/( RMLWT (5)* RMLWT (4))* FWDRTE (8)

7 *DFM (8)*D0(4)*D0(5)

7 + CB(5 ,8)/ RMLWT (3)* BWDRTE (8)* DBM (8)*D0(3)

8 + CF(5 ,9)/ RMLWT (5)**2* FWDRTE (9)* DFM (9)*D0 (5)**2
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8 + CB(5 ,9)/ RMLWT (1)* BWDRTE (9)* DBM (9)*D0(1)

9 + CF(5 ,12)/( RMLWT (9)* RMLWT (4))* FWDRTE (12)* D0(9)*D0(4)

9 + CB(5 ,12)/( RMLWT (10)* RMLWT (5))* BWDRTE (12)* D0(10)* D0(5)

D00 (5)= -(BETAY (5)+ GAMUY (5)*A0+GAMVY (5)*B0+GAMWY (5)*E0)

1 *D0(5) +w(5)

D(5) = D00(5) + hinit

END IF

IF(J.EQ.6) THEN

w(6) =CF(6 ,1)/( RMLWT (2)* RMLWT (5))* FWDRTE (1)*D0(2)*D0(5)

1 + CB(6 ,1)/( RMLWT (4)* RMLWT (6))* BWDRTE (1)*D0(4)*D0(6)

2 + CF(6 ,2)/( RMLWT (1)* RMLWT (6))* FWDRTE (2)*D0(1)*D0(6)

2 + CB(6 ,2)/( RMLWT (4)* RMLWT (5))* BWDRTE (2)*D0(4)*D0(5)

3 + CF(6 ,10)/( RMLWT (6)* RMLWT (8))* FWDRTE (10)* D0(6)*D0(8)

3 + CB(6 ,10)/( RMLWT (10)* RMLWT (9))* BWDRTE (10)* D0(10)* D0(9)

4 + CF(6 ,11)/( RMLWT (9)* RMLWT (2))* FWDRTE (11)* D0(9)*D0(2)

4 + CB(6 ,11)/( RMLWT (10)* RMLWT (6))* BWDRTE (11)* D0(10)* D0(6)

D00 (6)= -(BETAY (6)+ GAMUY (6)*A0+GAMVY (6)*B0+GAMWY (6)*E0)

1 *D0(6)+w(6)

D(6) = D00(6) + oinit

END IF

IF(J.EQ.7) THEN

DFM (4) = D0(1)/ RMLWT (1)+D0(3)/ RMLWT (3)+D0(4)/ RMLWT (4)

1 + D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)+D0(8)/ RMLWT (8)

2 + D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

w(7) = CF(7 ,4)/( RMLWT (5)* RMLWT (2))* FWDRTE (4)

1 *DFM (4)*D0(2)*D0(5)

2 + CF(7 ,5)/( RMLWT (7)* RMLWT (5))* FWDRTE (5)*D0(7)*D0(5)

3 + CF(7 ,6)/( RMLWT (7)* RMLWT (5))* FWDRTE (6)*D0(7)*D0(5)

3 + CB(7 ,6)/( RMLWT (1)* RMLWT (2))* BWDRTE (6)*D0(1)*D0(2)

4 + CF(7 ,7)/( RMLWT (7)* RMLWT (4))* FWDRTE (7)*D0(7)*D0(4)

D00 (7)= -(BETAY (7)+ GAMUY (7)*A0+GAMVY (7)*B0+GAMWY (7)*E0)

1 *D0(7) +w(7)

D(7) = D00(7) + ho2init

END IF

IF(J.EQ.8) THEN

w(8)=CF(8 ,10)/( RMLWT (6)* RMLWT (8))* FWDRTE (10)* D0(6)*D0(8)

1 + CB(8 ,10)/( RMLWT (10)* RMLWT (9))* BWDRTE (10)* D0(10)* D0(9)

D00 (8)= -(BETAY (8)+ GAMUY (8)*A0+GAMVY (8)*B0+GAMWY (8)*E0)

1 *D0(8)+w(8)

D(8) = D00 (8)+ hn2init

END IF

IF(J.EQ.9) THEN

w(9)=CF(9 ,10)/( RMLWT (6)* RMLWT (8))* FWDRTE (10)* D0(6)*D0(8)

1 + CB(9 ,10)/( RMLWT (10)* RMLWT (9))* BWDRTE (10)* D0(10)* D0(9)

2 + CF(9 ,11)/( RMLWT (9)* RMLWT (2))* FWDRTE (11)* D0(9)*D0(2)

2 + CB(9 ,11)/( RMLWT (10)* RMLWT (6))* BWDRTE (11)* D0(10)* D0(6)

3 + CF(9 ,12)/( RMLWT (9)* RMLWT (4))* FWDRTE (12)* D0(9)*D0(4)
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3 + CB(9 ,12)/( RMLWT (10)* RMLWT (5))* BWDRTE (12)* D0(10)* D0(5)

D00 (9)= -(BETAY (9)+ GAMUY (9)*A0+GAMVY (9)*B0+GAMWY (9)*E0)

1 *D0(9)+w(9)

D(9) = D00 (9)+ hninit

END IF

IF(J.EQ.10) THEN

w(10)= CF(10 ,10)/( RMLWT (6)* RMLWT (8))* FWDRTE (10)* D0(6)*D0(8)

1 + CB(10 ,10)/( RMLWT (10)* RMLWT (9))* BWDRTE (10)* D0(10)* D0(9)

2 + CF(10 ,11)/( RMLWT (9)* RMLWT (2))* FWDRTE (11)* D0(9)*D0(2)

2 + CB(10 ,11)/( RMLWT (10)* RMLWT (6))* BWDRTE (11)* D0(10)* D0(6)

3 + CF(10 ,12)/( RMLWT (9)* RMLWT (4))* FWDRTE (12)* D0(9)*D0(4)

3 + CB(10 ,12)/( RMLWT (10)* RMLWT (5))* BWDRTE (12)* D0(10)* D0(5)

D00 (10)= -(BETAY (10)+ GAMUY (10)*A0+GAMVY (10)*B0+GAMWY (10)

1 *E0)*D0(10)+w(10)

D(10) = D00 (10)+ hnOinit

END IF

END DO ! end J-loop for reactions

do i=1,nspcs

d0(i) = d(i)

end do

* Calculate average molecular weight

avgmlwt = 0.d0

do i=1,nspcs

avgmlwt = avgmlwt + (d(i)+ yrslvd(i))/ rmlwt(i)

end do

avgmlwt = 1.d0/avgmlwt

* Thermal energy

SUMC = 0.d0 ! C0 !maybe the key

DO I=1,NSPCS

SUMC = SUMC + C0*ALFATY(I)*D(I) !*G(I)*D(I)

c SUMFJ = 0.D0
c SUMBJ = 0.D0
c DO J=1,NFRCTN
c PRODFJ = 1.D0
c IF(CF(I,J).NE.0.D0)THEN
c DO L=1,NSPCS
c PRODFJ = PRODFJ*D(L)**RMLNBR(L,J)
c END DO
c SUMFJ = SUMFJ + CF(I,J)*PRODFJ*FWDRTE(J)
c END IF
c END DO ! end j−loop over forward reactions
c IF(NBRCTN.GT.0)THEN
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c DO J=1,NBRCTNS
c PRODBJ = 1.D0
c IF(CB(I,J).NE.0.D0)THEN
c DO L=1,NSPCS
c PRODBJ = PRODBJ*D(L)**PMLNBR(L,J)
c END DO
c SUMBJ = SUMBJ + CB(I,J)*PRODBJ*BWDRTE(J)
c END IF
c END DO ! end j−loop over backward reactions
c END IF

SUMC = SUMC -H(I)*W(I) ! (SUMFJ -SUMBJ)

END DO ! end i-loop over species equations

C = (SUMC -GAMUT*A0*C0-GAMVT*B0*C0-GAMWT*E0*C0)

1 /(1.d0+BETAT) + cinit

if (c.ge.c0) sgnc =1.d0

if (c.lt.c0) sgnc=-1.d0

! C0=C !!!!!!!

c TL = TL0 + fctr*TL0*C
TL = TL0 + fctrt*TL0*C*sgnc

c TL = TL0 + fctr*TL0*0.5d0*(C+C0)*FCTRT

summfrc = 0.d0

do i=1,nspcs

if(i.eq.4) then

fctr2 = 1.06* fctr1

else

fctr2 = fctr1

end if

y(i) = d(i) + yrslvd(i)* fctr2

summfrc = summfrc + y(i)

end do

c WRITE(*,*) summfrc

z = (8.d0*y(1)-y(2)+1. d0)/9.d0

ccc y(3) = 1.d0 − (y(1)+y(2)+y(4)+y(5)+y(6))
WRITE (11 ,200)TIME ,A0 ,B0 ,E0,c,SUMC ,(d0(I),I=1,NSPCS)

WRITE (8 ,200)TIME ,A0 ,B0 ,E0,tl ,(y(I),I=1,NSPCS),

1 z,avgmlwt ,summfrc !tl,

IF(N.GE.NSTATS)THEN

SUMMWT = SUMMWT + AVGMLWT

AVGMFRC = AVGMFRC + SUMMFRC

UBAR = UBAR + A0

VBAR = VBAR + B0

WBAR = WBAR + E0 !Add one term
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TBAR = TBAR + TL

USQ = USQ + A0**2

VSQ = VSQ + B0**2

WSQ = WSQ + E0**2 !Add one term

TSQ = TSQ + C**2

CTU = CTU + A0*C

CTV = CTV + B0*C

CTW = CTW + E0*C !Add one term

CUV = CUV + A0*B0

CUW = CUW + A0*E0 !Add one term

CVW = CVW + B0*E0 !Add one term

DO J=1,NSPCS

YBAR(J) = YBAR(J) + d(J)

YSQ(J) = YSQ(J) + d(J)*d(J)

CUY(J) = CUY(J) + A0*d(J)

CVY(J) = CVY(J) + B0*d(J)

CWY(J) = CWY(J) + E0*d(J) !Add one term

CTY(J) = CTY(J) + C*d(J)

DO I=1,NSPCS

CYIYJ(I,J) = CYIYJ(I,J) + d(I)*d(J)

END DO

END DO

END IF

A0 = A

B0 = B

E0 = E !Add one term

C0 = C

End do !end n-loop

write (*,*)’Time evolution ended.’

write (*,*)’ ’

NAVG = NSTPS - NSTATS - 1

UBAR = UBAR/NAVG

VBAR = VBAR/NAVG

WBAR = WBAR/NAVG !Add one term

TBAR = TBAR/NAVG

SUMMWT = SUMMWT/NAVG

AVGMFRC = AVGMFRC/NAVG

USQ = USQ/NAVG

VSQ = VSQ/NAVG

WSQ = WSQ/NAVG !Add one term

TSQ = TSQ/NAVG

CUV = CUV/sqrt(USQ*VSQ)/NAVG
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CUW = CUW/sqrt(USQ*WSQ)/NAVG !Add one term

CVW = CVW/sqrt(VSQ*WSQ)/NAVG !Add one term

CTU = CTU/sqrt(USQ*TSQ)/NAVG

CTV = CTV/sqrt(VSQ*TSQ)/NAVG

CTW = CTW/sqrt(WSQ*TSQ)/NAVG !Add one term

DO J=1,NSPCS

YBAR(J) = YBAR(J)/NAVG

YSQ(J) = YSQ(J)/NAVG

CUY(J) = CUY(J)/sqrt(USQ*YSQ(J))/ NAVG

CVY(J) = CVY(J)/sqrt(VSQ*YSQ(J))/ NAVG

CWY(J) = CWY(J)/sqrt(WSQ*YSQ(J))/ NAVG !Add one term

CTY(J) = CTY(J)/sqrt(TSQ*YSQ(J))/ NAVG

END DO

DO J=1,NSPCS

DO I=1,NSPCS

CYIYJ(I,J) = CYIYJ(I,J)/sqrt(YSQ(I)*YSQ(J))/ NAVG

END DO

END DO

WRITE (9,*)’ ’

WRITE (9,*)’ ’

WRITE (9,*)’ Time Averages ’

WRITE (9,*)’ ’

WRITE (9,*)’ UBAR = ’,UBAR

WRITE (9,*)’ VBAR = ’,VBAR

WRITE (9,*)’ WBAR = ’,WBAR !Add one term

WRITE (9,*)’ TBAR = ’,TBAR

WRITE (9,*)’ MLWT = ’,SUMMWT

WRITE (9,*)’ MFRC = ’,AVGMFRC

DO I=1,NSPCS

WRITE (9,*)’ YBAR(’,I,’) = ’,YBAR(I)

END DO

WRITE (9,*)’ ’

WRITE (9,*)’ Variances ’

WRITE (9,*)’ USQ = ’,USQ

WRITE (9,*)’ VSQ = ’,VSQ

WRITE (9,*)’ WSQ = ’,WSQ !Add one term

WRITE (9,*)’ TSQ = ’,TSQ

DO I=1,NSPCS

WRITE (9,*)’ YSQ(’,I,’) = ’,YSQ(I)

END DO

WRITE (9,*)’ ’

WRITE (9,*)’ Correlations ’

WRITE (9,*)’ CUV = ’,CUV

WRITE (9,*)’ CUW = ’,CUW !Add one term

WRITE (9,*)’ CVW = ’,CVW !Add one term

WRITE (9,*)’ CTU = ’,CTU

121



WRITE (9,*)’ CTV = ’,CTV

WRITE (9,*)’ CTW = ’,CTW !Add one term

WRITE (9,*)’ ’

write (9,*)’ J ’,’ ’,’ CUY(J) ’,’ ’,’ CVY(J)

’,

1 ’ ’,’ CWY(J) ’,’ ’,’ CTY(J) ’

do j=1,NSPCS

write(9,’(1x,I2 ,3(3x,1pe13 .6))’)j,

1 CUY(J),CVY(J),CWY(J),CTY(J)

end do

WRITE (9,*)’ ’

DO I=1,NSPCS

DO J=I+1,NSPCS

WRITE (9,*)’ CY(’,I,’,’,J,’) = ’,CYIYJ(I,J)

END DO

END DO

Stop

END
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B Regime Maps Parallel Computing Fortran Code

program pmnspc

implicit real*8 (a-h,p-z)

real*4 RTSEC ,RTHRS ,RTMNS ,SECNDS ,SIXTY ,ZERO

include ’omp_lib.h’ !define parallel environment

integer i,j,k,m,n

c Variables nu0, nv0, and nw0 are used for data output in
c FieldView (FV) format. To make a regime map for viewing
c in FV, the regime map will be a 2−D surface. Even though
c the 3−D PMNS equations are calculated, the surface will be of
c dimension nu0 by nv0 (i.e. a cut through the nu0 x nv0 x nw0
c volume through the nw0 plane.

parameter(imx =50001 , ivr=3,namx =1000 , npdfmx =1000 , nlmx =100)

parameter(nfftmx =16384 , nu0=1001 ,nv0=1001 ,nw0=2,nT0=146,

1 nvar =3) ! added nw0

parameter(zero =0.d0,mxspcs =10,ncore =2) !Add new term

character *7 qcc(ivr),qmx(ivr),qmn(ivr),qbar(ivr),q2(ivr),

1 qts(ivr),qacl1(ivr),qflt (5*ivr),qskw (5*ivr),

2 qsf2(ivr),qsf3(ivr),qsf4(ivr),qsf6(ivr)

dimension u(0:imx),v(0:imx),w(0:imx),d(mxspcs),

1 gamvy(mxspcs),gamwy(mxspcs),drs(mxspcs),uf(0:imx),

2 vf(0:imx),wf(0:imx),fn(nfftmx),frq(nfftmx),

3 pwr(nfftmx),dq(ivr),gamuy(mxspcs)

* Basic variables and derivatives
dimension q(ivr ,0:imx),dqdt(ivr ,imx),dqdx(ivr ,imx),

1 dqdz(ivr ,imx),dqdy(ivr ,imx)

* Classical turbulence statistics: correlations,

* autocorrelations, PDFs, means, flatness and skewness
dimension corfns(ivr ,0: namx),pdfs(ivr ,npdfmx),

1 qpsq(ivr),qmax(ivr),qmin(ivr),qavg(ivr),tintscl(ivr),

2 acl1(ivr),f(5*ivr),s(5*ivr) ,qpcor(ivr ,ivr)

* Statistical quantities arising in the Kolmogorov theories:
structure

* functions of various orders
dimension s2(5*ivr ,nlmx),s3(5*ivr ,nlmx),s4(5*ivr ,nlmx),

1 s6(5*ivr ,nlmx),sm(5*ivr),rlscl(nlmx)

* Data storage for FieldView−plottable output.
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dimension fvdata(nu0 ,nv0 ,nw0 ,nvar),var1(nu0 ,nv0 ,nw0),

1 var2(nu0 ,nv0 ,nw0),var3(nu0 ,nv0 ,nw0)

100 format(i5)

c i5 = integer value right justified in 5 columns.
101 format(d13 .6)

c d13.6 = double precision value with 13 columns and
c 2 decimal places.

200 format (1x,15(a7 ,1x))

c 1x = Single spacing; 15 repetitions of seven character
c string name
c followed by a line of spacing.

201 format (10(1 pe13.6,1x))

c Ten repetitions of 13 columns and 6+1 decimal places with a
c line of spacing.

202 format (3i5)

data qmn / ’ umin ’,’ vmin ’,’ wmin’/

data qmx / ’ umax ’,’ vmax ’,’ wmax’/

data qbar / ’ ubar ’,’ vbar ’,’ wbar’/

data q2 / ’ <u^2> ’,’ <v^2> ’,’ <w^2>’/

data qcc / ’ <uv> ’,’ <uw > ’,’ <vw > ’/

data qts / ’ t_u0 ’,’ t_v0 ’,’ u_w0’/

data qacl1 / ’L1 <u,u>’,’L1 <v,v>’,’L1 <w,w>’/

data qflt / ’ F(u) ’,’ F(v) ’, ’ F(w) ’,

1 ’F(dudt)’,’F(dvdt)’, ’F(dwdt)’,

2 ’F(dudx)’,’F(dvdx)’, ’F(dwdx)’,

3 ’F(dudy)’,’F(dvdy)’, ’F(dwdy)’,

4 ’F(dudz)’,’F(dvdz)’, ’F(dwdz)’/

data qskw / ’ S(u) ’,’ S(v) ’, ’ S(w) ’,

1 ’S(dudt)’,’S(dvdt)’, ’S(dwdt)’,

2 ’S(dudx)’,’S(dvdx)’, ’S(dwdx)’,

3 ’S(dudy)’,’S(dvdy)’, ’S(dwdy)’,

4 ’S(dudz)’,’S(dvdz)’, ’S(dwdz)’/

data qsf2 / ’ s2(u) ’,’ s2(v) ’,’ s2(w) ’/

data qsf3 / ’ s3(u) ’,’ s3(v) ’,’ s3(w) ’/

data qsf4 / ’ s4(u) ’,’ s4(v) ’,’ s4(w) ’/

data qsf6 / ’ s6(u) ’,’ s6(v) ’,’ s6(w) ’/

npts = 10000

nstat = 5000

nfft2 = 4096

iu0max = 11!1

jv0max = 11!1

kw0max = 1

ivars = 3
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u0min = 1.2d0

u0max = 4.d0

v0min = -0.6d0

v0max = 0.5d0

w0min = 0.01d0

w0max = 0.8d0

write (*,*)’ ’

write (*,*)’ ’

write (*,*)’ *** Input data have been loaded ***’

write (26,*)’input data have been read’

write (26,*)’npts =’,npts

write (26,*)’nstat =’,nstat

write (26,*)’nfft2 = ’,nfft2

write (26,*)’iu0max = ’,iu0max

write (26,*)’jv0max = ’,jv0max

write (26,*)’kw0max = ’,kw0max

write (26,*)’ivars = ’,ivars

write (26,*)’u0min =’,u0min

write (26,*)’u0max =’,u0max

write (26,*)’v0min =’,v0min

write (26,*)’v0max =’,v0max

write (26,*)’w0min =’,w0min

write (26,*)’w0max =’,w0max

nptavg = npts - nstat

nptavg1 = nptavg - 1

nauto = 100

npdf = 500

itype = 1 ! itype =0 => velocity statistics , only

! itype >0 => statistics for velocity plus

! first itype scalars

itype2 = itype + 2

pi = dacos(-1.d0)

c print*, pi
dt = 5.d0*pi/(npts -1)

c print*, ’dt=’, dt
c stop

if(iu0max.gt.1) then

da = (u0max -u0min )/( iu0max -1)

else
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u0max = u0min

da = 0.d0

end if

if(jv0max.gt.1) then

db = (v0max -v0min )/( jv0max -1)

else

v0max = v0min

db = 0.d0

end if

if(kw0max.gt.1) then

dc = (w0max -w0min )/( kw0max -1)

else

w0max = w0min

dc = 0.d0

end if

fvdata = 0.d0

RTSEC = SECNDS(ZERO)

ccc Initial conditios

****Bifurcation parameters for Momentum equations*****
alpha = 0.0d0

als = 0.d0

bls = 0.d0

cls = 0.d0 !-0.1d0

****Bifurcation parameters for Energy equations******
BETAT = 1.5d0 !change from 1.5

GAMUT = -4.2D0 !3.0/4.2

GAMVT = -3.0D0

GAMWT = -3.2D0 ! Add one term change

****Bifurcation parameters for chemical reaction equations****
gamuy =0.d0

gamvy =0.d0

gamwy =0.d0

gamuy (1) =1.2d0 !1.2/0.62

gamvy (1) = -1.2d0 !1.2/ -0.62

gamwy (1) = 0.62d0 !1.2/0.62 ! Add one term change

gamuy (2) = 0.62d0 ! -1.3/0.62

gamvy (2) = -0.62d0 ! -1.3/ -3.35/ -0.62

gamwy (2) = 0.62d0 ! Add one term change -1.3/0.62

gamuy (3) = 0.83d0 !0.83/0.65

gamvy (3) = -0.65d0 ! -1.595/ -0.65
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gamwy (3) = 0.65d0 ! -1.2/0.65 ! change 0.83

gamuy (4) = 0.65!1. d0 !1.0

gamvy (4) = -0.65!1.02 d0

gamwy (4) = 0.65! 1.0d0 ! Add one term change

gamuy (5) = 0.65d0

gamvy (5) = -.65d0 ! -0.65

gamwy (5) = 0.65d0 ! Add one term change

gamuy (6) = .65d0

gamvy (6) = -.65d0 ! -0.35/ -0.65

gamwy (6) = .65d0 ! Add one term change

gamuy (7) = .65d0

gamvy (7) = -.65d0 ! -0.65

gamwy (7) = .65d0 ! Add one term change

gamuy (8) = -0.35d0 ! -0.35

gamvy (8) =0.35d0 ! -0.65/0.35

gamwy (8) = -0.35d0 !Add three terms -0.35

ALFAT = 0.D0 ! ==> No buoyancy effects if set to zero

* initial values for species (C1100550)

******************2nd pt:(5,25)************
drs=0.d0

drs(1) =0.0139274224 D0 !0.02732832 d0

drs(2) =0.0423559498 D0 !0.00147168 d0 !0.00147168

drs(3) =0.2299430254 D0 !0.11232 d0

drs(4) =1.D-10 !2.49459d-3

drs(5) =1.D-10 !3.75054d-2

drs(6) =1.D-10 !9.36488d-10

drs(7) =1.D-10 !3.64748d-13

drs(8) =0.7137736025 D0 !0.3586 d0 !Add one term

cccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccc!$OMP PARALLEL DO DEFAULT(PRIVATE), SHARED(fvdata,var1,var2,
ccc!$OMP+ iu0max,u0min,kw0max,w0min,db,da,dc,jv0max,nfft2,itype
ccc!$OMP+ ,npts,nstat,ivars,nptavg,nptavg1,nauto,npdf ,v0min
ccc!$OMP+ itype2,pi,dt)

if(iu0max*jv0max*kw0max.gt.1) then

write (*,*)’ ’

write (*,*)’beginning bifurcation parameter value loop’

end if

* Begin to parallel computing
c call system_clock (count1, count_rate, count_max)

begin= omp_get_wtime ()
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c define how many cores used in the structure
call OMP_SET_NUM_THREADS(ncore)

ccc!$OMP PARALLEL Private(k,iu0,jv0,kw0)

!$OMP PARALLEL PRIVATE(k,iu0 ,jv0 ,kw0 ,betau ,betav ,bataw ,

!$OMP+ gamma11 ,gamma12 ,

!$OMP+ gamma13 ,gamma21 ,gamma23 ,gamma31 ,gamma32 ,itypsln ,solntyp)

!$OMP+ SHARED(fvdata ,var1 ,var2 ,var3 ,u0min ,iu0max ,v0min ,jv0max ,

!$OMP+ kw0max ,da,db,dc,nfft2 ,itype ,itype2 ,pi,dt,npts ,nstat ,

!$OMP+ nptavg ,nptavg1 ,nauto ,npdf ,alpha ,als ,bls ,cls ,BETAT ,GAMUT ,

!$OMP+ GAMWT ,gamuy ,gamvy ,gamwy ,ALFAT ,drs ,w0min ,GAMVT , ivars)

!$OMP DO

do kw0=1,kw0max

do jv0=1,jv0max

do iu0=1,iu0max

* Input DDS bifurcation parameters.

* The below four lines will allow the bifurcation parameters

* to change values in the case where more than one bifurcation

* parameter is being investigated (i.e. creating regime maps)

betau = u0min + (iu0 -1)*da

gamma12 = v0min + (jv0 -1)*db

gamma11 = w0min + (kw0 -1)*dc

c print*, betau,gamma12
c stop

var1(iu0 ,jv0 ,kw0) = betau

var2(iu0 ,jv0 ,kw0) = gamma12

var3(iu0 ,jv0 ,kw0) = gamma11

c For studying several different t6ypes of flow regimes, the
c following lines will need to be commented out. These lines
c set specific values of the bifurcation parameters for
c investigating only one set of bifurcation parameters
c (i.e generating time series data for one type of flow).

****Bifurcation parameters for Momentum equations******
c BETAU = 3.76d0 !3.6d0

BETAV = BETAU !3.74 d0 !3.6d0

BETAW = BETAU !3.74 D0 !Add 1 term change

c beta2 = 3.87d0
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c beta1 = 3.90d0 !2.4d0
c beta3 = 3.10d0 !3.0d0

c alpha = 0.0d0

c gamma12 = 0.3d0
ccc gamma12 = gamma11

gamma13 = gamma12 !-0.3d0

gamma21 = gamma12 !-0.3d0

gamma23 = gamma12 !-0.3d0

gamma31 = gamma12 !0.3d0! -0.5d0 !-0.3d0

gamma32 = gamma12 !0.3d0! -0.02d0 !-0.3d0

* initial values for a, b, c
do k=1,1

if(k.eq.1) then

a = 0.3d0

b = 0.95d0

c = 0.2d0

e = 0.05d0

else

a = 0.3d0

b = 0.95d0

c = 0.20001 d0

e = 0.05d0

end if

itypsln = 0

q(1,0) = a

q(2,0) = b

q(3,0) = c

cccc* iterate equations for a, b, c for npts time steps
write (*,*)’ ’

write (*,*)’Beginning time evolution trajectory ’,k

c do i=1,npts
c t = (i−1)*dt
c
c a0 = a
c b0 = b
c c0 = c
c e0 = e

***** Input chemical reaction *****

call chem(a,b,c,d,e,BETAU ,BETAV ,BETAW ,gamma12 ,gamma13 ,
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1 gamma21 ,gamma23 ,gamma31 ,gamma32 ,BETAT ,GAMUT ,GAMVT ,GAMWT ,

2 gamuy , gamvy ,gamwy ,ALFAT ,drs ,fvdata ,npts ,dt,u,v,w,q,t,

3 iu0 ,jv0 ,kw0 ,itypsln ,solntyp)

c if(itypsln.eq.13)go to 99
if(itypsln.eq.13) then

exit

end if

* ***** Begin statistical analyses *****
if(k.eq.1.or.( iu0max.eq.1. and.jv0max.eq.1. and.kw0max.

1 eq.1)) then

call stat1(q,dqdt ,dqdx ,dqdy ,dqdz ,corfns ,pdfs ,s2 ,s3 ,s4 ,

1 s6,f,s,sm,qpcor ,qpsq ,qmax ,qmin ,qavg ,rlscl ,tintscl ,

2 acl1 ,dt,npts ,nstat ,npdf ,nauto ,itype ,nlsf)

if(iu0max.gt.1.or.jv0max.gt.1.or.kw0max.gt.1) then

c fvdata(iu0,jv0, kw0, 2) = qpcor(1,2)
fvdata(iu0 ,jv0 ,kw0 ,2) = f(9)

fvdata(iu0 ,jv0 ,kw0 ,3) = s(9)

c fvdata(iu0,jv0, kw0, 5) = s(3)
c fvdata(iu0,jv0, kw0, 6) = f(3)

end if

end if

c if(k.eq.1)then
umin1 = qmin (1)

umax1 = qmax (1)

vmin1 = qmin (2)

vmax1 = qmax (2)

wmin1 = qmin (3)

wmax1 = qmax (3)

avgu1 = qavg (1)

avgv1 = qavg (2)

avgw1 = qavg (3)

avgdiv = 2.d0*betau *(1.d0 -avgu1 -avgv1 )/( avgu1+avgv1)

c fvdata(iu0,jv0,kw0,7) = avgdiv

c else
c umin2 = qmin(1)
c umax2 = qmax(1)
c vmin2 = qmin(2)
c vmax2 = qmax(2)
c wmin2 = qmin(3)
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c wmax2 = qmax(3)
c avgu2 = qavg(1)
c avgv2 = qavg(2)
c avgw2 = qavg(3)
c avgdiv = 2.d0*beta2*(1.d0−avgu2−avgv2)/(avgu+avgv2)
c end if

*
* Print selected scalar statistics to FieldView data file

* and to ftn04 if only one case is being considered

*
c if(iu0max.eq.1.and.jv0max.eq.1.and.kw0max.eq.1)then

*
* Output structure functions (orders 2, 3, 4 and 6) for

* variables and derivatives vs a length increment

* determined using the Taylor hypothesis; the files are

* output.sfX ,output.stX, output.sxX, output.syX.

cccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccc write(*,*)’k =’,k

if(k.eq.1) then

open(11,file=’output.sf1’,status=’unknown ’)

open(12,file=’output.st1’,status=’unknown ’)

open(13,file=’output.sx1’,status=’unknown ’)

open(14,file=’output.sy1’,status=’unknown ’)

open(15,file=’output.sz1’,status=’unknown ’)

open(16,file=’output.pwr1’,status=’unknown ’)

open(17,file=’output.vel1’,status=’unknown ’)

open(18,file=’output.ac1’,status=’unknown ’)

open(19,file=’output.pdf1’,status=’unknown ’)

write (4,*)’beta = ’,betau ,’ gamma = ’,gamma12

write (4,*)’ ’

write (4 ,200)( qmn(i),i=1,itype2)

write (4 ,200)( qmx(i),i=1,itype2)

write (4 ,200)( qbar(i),i=1,itype2)

write (4 ,200)(q2(i),i=1,itype2)

write (4 ,200)( qcc(i),i=1,itype2)

write (4 ,200)( qts(i),i=1,itype2)

write (4 ,200)( qacl1(i),i=1,itype2)

write (4 ,200)( qflt(i),i=1 ,5*( itype2 ))

write (4 ,200)( qskw(i),i=1 ,5*( itype2 ))

do i=1,itype2

write (4 ,200) qsf2(i),qsf3(i),qsf4(i),qsf6(i)

end do

write (4,*)’ ’

write (4,*)’Summary data for trajectory #1: ’,

1 ’avg div =’, avgdiv
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else

open(11,file=’output.sf2’,status=’unknown ’)

open(12,file=’output.st2’,status=’unknown ’)

open(13,file=’output.sx2’,status=’unknown ’)

open(14,file=’output.sy2’,status=’unknown ’)

open(15,file=’output.sz2’,status=’unknown ’)

open(16,file=’output.pwr2’,status=’unknown ’)

open(17,file=’output.vel2’,status=’unknown ’)

open(18,file=’output.ac2’,status=’unknown ’)

open(19,file=’output.pdf2’,status=’unknown ’)

write (4,*)’Summary data for trajectory #2: ’,’

1 avg div =’, avgdiv

end if

write (4 ,201)( qmin(i),i=1,itype2)

write (4 ,201)( qmax(i),i=1,itype2)

write (4 ,201)( qavg(i),i=1,itype2)

write (4 ,201)( qpsq(i),i=1,itype2)

write (4 ,201)(( qpcor(j,i),i=j+1,itype2),j=1,itype2 -1)

write (4 ,201)( tintscl(i),i=1,itype2)

write (4 ,201)( acl1(i),i=1,itype2)

write (4 ,201)(f(i),i=1,5* itype2)

write (4 ,201)(s(i),i=1,5* itype2)

do i=1,itype2

write (4 ,201)(sm(i+(j-1)* itype2),j=1,4)

end do

write (4,*)’ ’

do l=1,nlsf

write (11 ,201) rlscl(l),(s2(i,l),s3(i,l),s4(i,l),

1 s6(i,l ), i=1,itype2)

write (12 ,201) rlscl(l),(s2(i+itype2 ,l),s3(i+itype2 ,l),

1 s4(i+itype2 ,l),s6(i+itype2 ,l),i=1,itype2)

write (13 ,201) rlscl(l),(s2(i+2*itype2 ,l),

1 s3(i+2*itype2 ,l), s4(i+2*itype2 ,l),

2 s6(i+2*itype2 ,l),i=1,itype2)

write (14 ,201) rlscl(l),(s2(i+3*itype2 ,l),

1 s3(i+3*itype2 ,l), s4(i+3*itype2 ,l),

2 s6(i+3*itype2 ,l),i=1,itype2)

write (15 ,201) rlscl(l),(s2(i+4*itype2 ,l),

1 s3(i+4*itype2 ,l), s4(i+4*itype2 ,l),

2 s6(i+4*itype2 ,l),i=1,itype2)

end do

close (11)

close (12)

close (13)

close (14)

close (15)
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do i=1,npts

write (17 ,201)(i-1)*dt,q(1,i),q(2,i),q(3,i)

end do

close (17)

do j=0,nauto

write (18 ,201)j*dt ,( corfns(i,j),i=1,itype2)

end do

close (18)

do i=1,itype2

dq(i) = (qmax(i)-qmin(i))/ npdf

end do

do j=1,npdf

write (19 ,201)( qmin(i)+j*dq(i)-qavg(i),pdfs(i,j),

1 i=1,itype2)

end do

close (19)

c end if

icntr = 0

fn = zero

c if(k.eq.2)then
c u = uf
c umin1 = umin2
c umax1 = umax2
c end if

do i=npts -nfft2+1,npts

icntr = icntr + 1

fn(icntr) = w(i)

end do

if(abs(umax1 -umin1).lt.1.d-12.or.(abs(fn(icntr)

1 -fn(icntr -1)). lt.1.d-07. and.abs(fn(icntr -1)

2 -fn(icntr -2)). lt.1.d-07)) then

itypsln = 0

solntyp = 0.d0

fvdata(iu0 ,jv0 ,kw0 ,2) = 0.d0

fvdata(iu0 ,jv0 ,kw0 ,3) = 0.d0

else

if(k.eq.1.or.( iu0max.eq.1. and.jv0max.eq.1.

1 and.kw0max.eq.1)) then

frq = zero

pwr = zero

call psd(fn,frq ,pwr ,dt,nfft2 ,nfft)

ccc fvdata(iu0,jv0,kw0,1) = solntyp
if(iu0max.eq.1. and.jv0max.eq.1. and.

133



1 kw0max.eq.1) then

do i=1,nfft

write (16 ,201) frq(i),pwr(i)

end do

close (16)

end if

end if

call psdanlyzr(frq ,pwr ,solntyp ,nfft ,itypsln)

cc write(*,*)’solution type from psdanlyzr is’, solntyp
fvdata(iu0 ,jv0 ,kw0 ,1) = solntyp

if(itypsln.eq.1) then

fvdata(iu0 ,jv0 ,kw0 ,3) = 1.d0

fvdata(iu0 ,jv0 ,kw0 ,2) = 0.d0

end if

ccc write(*,*)’solntyp =’,solntyp
if(itypsln.gt.13) then

end if

end if

c 99 continue
ccc if(iu0max.eq.1.and.jv0max.eq.1.and.kw0max.eq.1)then
ccc write(*,*)iu0,jv0,kw0,solntyp
ccc end if

end do ! k-loop for trajectories (line ~182)

end do ![iu0]

end do ![jv0]

end do ![kw0]

!$OMP END DO

!$OMP END PARALLEL

endtime=omp_get_wtime ()

time=endtime -begin

write (*,*) ’time=’,time

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

RTSEC = SECNDS(RTSEC)

SIXTY = 60.0

RTHRS = RTSEC/SIXTY **2

RTMNS = RTSEC/SIXTY

write (26,*)

write (26,’(A,I4,A1,I2.2,A1,F5.2,6X,A,F10.2,A)’)

1 ’--> Execution time: ’,

2 int(rthrs), ’:’, int(rtmns)-int(rthrs )*60,

3 ’:’, MOD(RTSEC ,SIXTY), ’( ’, rtsec , ’ sec)’

write (26,*)
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if(iu0max.gt.1.or.jv0max.gt.1.or.kw0max.gt.1) then

open(8,file=’3Drgmmp.xyz’,status=’unknown ’)

open(9,file=’3Drgmmp.qqq’,status=’unknown ’)

write (8 ,202) iu0max ,jv0max ,kw0max

write (8 ,201)((( var1(i,j,k),i=1,iu0max),j=1,jv0max),

1 k=1,kw0max ),((( var2(i,j,k),i=1,iu0max),j=1,jv0max),

2 k=1,kw0max ),((( var3(i,j,k),i=1,iu0max),j=1,jv0max),

3 k=1,kw0max)

write (9 ,202) iu0max ,jv0max ,kw0max ,ivars

! write (9 ,201)(((( fvdata(i,j,k,l),i=1,iu0max),j=1,jv0max),

! 1 k=1,kw0max),l=1,ivars)

do l=1, ivars

do k=1, kw0max

do j=1, jv0max

do i=1, iu0max

write (9 ,201) fvdata(i,j,k,l)

end do

end do

end do

end do

end if

write (*,*)’ ’

write (*,*)’ *** Execution completed ***’

write (*,*)’ ’

write (26,*)’Execution completed ’

close (26)

stop

end

*___________________________________________________________*

subroutine chem(a,b,e,d,c,BETAU ,BETAV ,BETAW ,gam12 ,gam13 ,

1 gam21 , gam23 ,gam31 ,gam32 ,BETAT ,GAMUT ,GAMVT ,

2 GAMWT ,gamuy ,gamvy , gamwy ,ALFAT ,drs ,fvdata ,nstps ,

3 dt,u,v,w1,q,t,iu0 ,jv0 ,kw0 ,itypsln ,solntyp)

IMPLICIT REAL*8 (A-H,O-Z)

PARAMETER (imx =50001 , ivr=3)

PARAMETER (MXSPCS =10, MXRCTN =20)

PARAMETER (nu0=1001 ,nv0=1001 ,nw0=2,nvar =3)

PARAMETER (R0 =8.314D-3) ! Gas constant [kJ/(g mol K)]
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DIMENSION u(0:imx),v(0:imx),w1(0:imx),q(ivr ,0:imx)

DIMENSION D(MXSPCS),D0(MXSPCS),D00(MXSPCS),DFM(MXRCTN),

1 DBM(MXRCTN),W(MXSPCS),ALFATY(MXSPCS),BETAY(MXSPCS),

1 GAMUY(MXSPCS),GAMVY(MXSPCS),GAMWY(MXSPCS),G(MXSPCS),

2 H(MXSPCS) !Add 2 terms change

DIMENSION CF(MXSPCS ,MXRCTN),CB(MXSPCS ,MXRCTN),

1 yrslvd(MXSPCS),drs(mxspcs),fvdata(nu0 ,nv0 ,nw0 ,nvar)

DIMENSION CYIYJ(MXSPCS ,MXSPCS),YBAR(MXSPCS),CUY(MXSPCS),

1 CVY(MXSPCS),CWY(MXSPCS),CTY(MXSPCS),YSQ(MXSPCS),

2 y(MXSPCS) !Add 1 terms change

DIMENSION RMLNBR(MXSPCS ,MXRCTN),PMLNBR(MXSPCS ,MXRCTN),

1 RMLWT(MXSPCS),PREXPF(MXRCTN),ALFAF(MXRCTN),

2 AEF(MXRCTN),PREXPB(MXRCTN),ALFAB(MXRCTN),AEB(MXRCTN),

3 FWDRTE(MXRCTN),BWDRTE(MXRCTN),SRMLN(MXRCTN),

4 SPMLN(MXRCTN),DA(MXRCTN)

DIMENSION RMLNBR(MXSPCS ,MXRCTN),PMLNBR(MXSPCS ,MXRCTN),

1 RMLWT(MXSPCS),PREXPF(MXRCTN),ALFAF(MXRCTN),

2 AEF(MXRCTN),PREXPB(MXRCTN),ALFAB(MXRCTN),AEB(MXRCTN),

3 FWDRTE(MXRCTN),BWDRTE(MXRCTN),SRMLN(MXRCTN),

4 SPMLN(MXRCTN),DA(MXRCTN)

DIMENSION MPITRS(MXRCTN),MPMOD(MXRCTN)

DATA TL0 ,PL,RHOL /2095.6D0 ,1.01D5 ,0.263 D0/

DATA RMLWT /2.01588D0 ,31.9988D0 ,18.01528D0 ,17.0074D0 ,

1 1.00794D0, 15.9994D0 ,33.d0 ,28.0134D0,

2 14.0067d0 ,30.0061 d0/

DATA G /0.120D0 ,1.D0 ,0.743D0 ,0.462D0 ,0.044D0 ,

1 0.276D0 ,0.d0 ,3*0. D0/

DATA H /0.114D0 ,0.128D0 ,-1.D0 ,0.706D0 ,0.440D0 ,

1 0.443D0 ,0.443d0, 0.121D0 ,2*0. D0/

c DATA H /58.93D0,65.47D0,−153.38D0,0.706D0,0.440D0,
1 0.443D0 ,0.443d0, 62.27D0 ,2*0. D0/ !checking

DATA PREXPF /3.52D16 ,5.06D4 ,1.17D9 ,5.75D19 ,7.08D13 ,

1 1.66D13 , 2.89D13 ,4.00D22 ,1.30D18 ,1.8D8 ,1.8D4,

2 7.1D7 ,8*0. D0/ !2.0 D14 /3.52D16 ,

!1.5 D14 /1.7D14 ,1.00D8 /1.17D9

DATA PREXPB /7.04D13 ,3.03D4 ,1.28D10 ,0.D0 ,0.D0 ,2.69D12 ,

1 0.D0, 1.03D23 ,3.04D17 ,3.8D7 ,3.8D3 ,1.7D8 ,8*0. D0/

DATA ALFAF /-0.7D0 ,2.67D0 ,1.3D0 ,-1.4D0 ,0.D0 ,0.D0 ,0.D0 ,
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& -2.0D0 ,-1.0,0.D0 ,1.D0 ,0.D0 ,8*0. D0/

DATA ALFAB /-0.26D0 ,2.63D0 ,1.19D0 ,0.D0 ,0.D0 ,0.36D0 ,0.D0 ,

& -1.75D0 , -0.65D0 ,0.D0 ,1.D0 ,0.D0 ,8*0. D0/

DATA AEF /7.142D1 ,2.632D1 ,1.521D1 ,0.D0 ,1.23D0 ,3.44D0 ,

& -2.08D0, 0.D0 ,0.D0 ,3.19D2 ,3.89D1 ,3.74D0 ,8*0. D0/

DATA AEB /0.60D0 ,2.023D1 ,7.825D1 ,0.D0 ,0.D0 ,2.3186D2 ,0.D0 ,

& 4.9614D2 ,4.3309D2 ,3.53D0 ,1.731D2 ,2.0419D2 ,8*0. D0/

200 FORMAT (1X ,16(1 PE13.6,1X))

c NSTPS = 20000
c DT = 0.0001

TRBTSCL = 1.D-5

tl = tl0

NSPCS = 8

NFRCTN = 9

NBRCTN = 9

NRCTNS = NFRCTN + NBRCTN

NSTATS = NSTPS/2

c write(*,*) MXSPCS,NSTATS
fctr = 0.06d0

fctr1 = 1.d0 - fctr

FCTRT = 2.8D0 !2./2.8

cinit = 0.035 d0

******************2nd pt:(5,25)************
c drs(1) = 0.02732832d0
c drs(2) = 0.00147168d0 !0.00147168
c drs(3) = 0.11232d0
c drs(4) = 2.49459d−3
c drs(5) = 3.75054d−2
c drs(6) = 9.36488d−10
c drs(7) = 3.64748d−13
c drs(8) = 0.3586d0 !Add one term

avgmlwt = 0.d0

do i=1,nspcs

avgmlwt = avgmlwt + drs(i)* rmlwt(i)

end do

sum=0.d0

do i=1,nspcs

sum=sum+drs(i)

end do
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ccccc!!!!! write(*,*) sum !test

summfrc = 0.d0

do i=1,nspcs

yrslvd(i) = drs(i)* rmlwt(i)/ avgmlwt

summfrc = summfrc + yrslvd(i)

end do

c hpc write(*,*) avgmlwt,summfrc,yrslvd(8)

h2init = drs (1)* fctr*rmlwt (1)/ avgmlwt !mass fractions

o2init = drs (2)* fctr*rmlwt (2)/ avgmlwt

h2oinit = drs (3)* fctr*rmlwt (3)/ avgmlwt

ohinit = drs (4)* fctr*rmlwt (4)/ avgmlwt

hinit = drs (5)* fctr*rmlwt (5)/ avgmlwt

oinit = drs (6)* fctr*rmlwt (6)/ avgmlwt

ho2init = drs (7)* fctr*rmlwt (7)/ avgmlwt

HN2init = drs (8)* fctr*rmlwt (8)/ avgmlwt !add one term

c summ=h2init+o2init+h2oinit+ohinit+hinit+oinit+ho2init
c write(*,*) ’n2=’, HN2init ! ’testh2o’,h2oinit !test

cffctr = 1.d0

DO J=1,NFRCTN

DO I=1,NSPCS

CF(I,J) = 0.D0

RMLNBR(I,J) = 0.D0

PMLNBR(I,J) = 0.D0

END DO

END DO

DO J=1,NBRCTN

DO I=1,NSPCS

CB(I,J) = 0.D0

END DO

END DO

DO I=1,NSPCS

BETAY(I) = 0.125D0/sqrt(rmlwt(i)) ! .085 < betay < .1275

END DO

c ALFAT = 0.D0 ! ==> No buoyancy effects if set to 0

*** Add terms to 3D
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ALFATY (1) = 1.D0*g(1)*( GAMUT*gamuy (1)+ GAMVT*gamvy (1)+

1 GAMWT*gamwy (1)) ! H2

ALFATY (2) = 1.D0*g(2)*( GAMUT*gamuy (2)+ GAMVT*gamvy (2)+

1 GAMWT*gamwy (2)) ! O2

ALFATY (3) = 1.D0*g(3)*( GAMUT*gamuy (3)+ GAMVT*gamvy (3)+

1 GAMWT*gamwy (3)) ! H2O

ALFATY (4) = 1.D0*g(4)*( GAMUT*gamuy (4)+ GAMVT*gamvy (4)+

1 GAMWT*gamwy (4)) ! OH

ALFATY (5) = 1.D0*g(5)*( GAMUT*gamuy (5)+ GAMVT*gamvy (5)+

1 GAMWT*gamwy (5)) ! H

ALFATY (6) = 1.D0*g(6)*( GAMUT*gamuy (6)+ GAMVT*gamvy (6)+

1 GAMWT*gamwy (6)) ! O

ALFATY (7) = 1.D0*g(7)*( GAMUT*gamuy (7)+ GAMVT*gamvy (7)+

1 GAMWT*gamwy (7)) ! HO2

ALFATY (8) = 1.D0*g(8)*( GAMUT*gamuy (8)+ GAMVT*gamvy (8)+

1 GAMWT*gamwy (8)) ! hn2 --N2

DO J=1,NFRCTN

IF(J.EQ.1) THEN

RMLNBR(5,J) = 1.D0

RMLNBR(2,J) = 1.D0

PMLNBR(4,J) = 1.D0

PMLNBR(6,J) = 1.D0

CF(5,J) = -RMLWT (5)

CF(2,J) = -RMLWT (2)

CF(4,J) = RMLWT (4)

CF(6,J) = RMLWT (6)

CB(5,J) = -CF(5,J)

CB(2,J) = -CF(2,J)

CB(4,J) = -CF(4,J)

CB(6,J) = -CF(6,J)

END IF

IF(J.EQ.2) THEN

RMLNBR(1,J) = 1.D0

RMLNBR(6,J) = 1.D0

PMLNBR(4,J) = 1.D0

PMLNBR(5,J) = 1.D0

CF(1,J) = -RMLWT (1)

CF(6,J) = -RMLWT (6)

CF(4,J) = RMLWT (4)

CF(5,J) = RMLWT (5)

CB(1,J) = -CF(1,J)

CB(6,J) = -CF(6,J)

CB(4,J) = -CF(4,J)

CB(5,J) = -CF(5,J)

END IF

IF(J.EQ.3) THEN

139



RMLNBR(1,J) = 1.D0

RMLNBR(4,J) = 1.D0

PMLNBR(3,J) = 1.D0

PMLNBR(5,J) = 1.D0

CF(1,J) = -RMLWT (1)

CF(4,J) = -RMLWT (4)

CF(3,J) = RMLWT (3)

CF(5,J) = RMLWT (5)

CB(1,J) = -CF(1,J)

CB(4,J) = -CF(4,J)

CB(3,J) = -CF(3,J)

CB(5,J) = -CF(5,J)

END IF

IF(J.EQ.4) THEN

RMLNBR(5,J) = 1.D0

RMLNBR(2,J) = 1.D0

PMLNBR(7,J) = 1.D0

CF(5,J) = -RMLWT (5)

CF(2,J) = -RMLWT (2)

CF(7,J) = RMLWT (7)

END IF

IF(J.EQ.5) THEN

RMLNBR(7,J) = 1.D0

RMLNBR(5,J) = 1.D0

PMLNBR(4,J) = 2.D0

CF(7,J) = -RMLWT (7)

CF(5,J) = -RMLWT (5)

CF(4,J) = 2.d0*RMLWT (4)

END IF

IF(J.EQ.6) THEN

RMLNBR(7,J) = 1.D0

RMLNBR(5,J) = 1.D0

PMLNBR(1,J) = 1.D0

PMLNBR(2,J) = 1.D0

CF(7,J) = -RMLWT (7)

CF(5,J) = -RMLWT (5)

CF(1,J) = RMLWT (1)

CF(2,J) = RMLWT (2)

CB(7,J) = -CF(7,J)

CB(5,J) = -CF(5,J)

CB(1,J) = -CF(1,J)

CB(2,J) = -CF(2,J)

END IF

IF(J.EQ.7) THEN

RMLNBR(7,J) = 1.D0

RMLNBR(4,J) = 1.D0

PMLNBR(3,J) = 1.D0
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PMLNBR(2,J) = 1.D0

CF(7,J) = -RMLWT (7)

CF(4,J) = -RMLWT (4)

CF(3,J) = RMLWT (3)

CF(2,J) = RMLWT (2)

END IF

IF(J.EQ.8) THEN

RMLNBR(5,J) = 1.D0

RMLNBR(4,J) = 1.D0

PMLNBR(3,J) = 1.D0

CF(5,J) = -RMLWT (5)

CF(4,J) = -RMLWT (4)

CF(3,J) = RMLWT (3)

CB(5,J) = -CF(5,J)

CB(4,J) = -CF(4,J)

CB(3,J) = -CF(3,J)

END IF

IF(J.EQ.9) THEN

RMLNBR(5,J) = 2.D0

PMLNBR(1,J) = 1.D0

CF(5,J) = -2.d0*RMLWT (5)

CF(1,J) = RMLWT (1)

CB(5,J) = -CF(5,J)

CB(1,J) = -CF(1,J)

END IF

SRMLN(J) = 0.D0

SPMLN(J) = 0.D0

DO I=1,NSPCS

SRMLN(J) = SRMLN(J) + RMLNBR(I,J)

SPMLN(J) = SPMLN(J) + PMLNBR(I,J)

cf(i,j) = cf(i,j)* cffctr

END DO

END DO

*** i−loop for backward reaction
C Do i=1,

c a0 = 0.83
c B0 = 0.07
c e0 = 0.01 !Add one term change
c C0 = 0.05D0 ! c0 = 0.05/0.1

a0 = a

b0 = b

e0 = e

c0 = c
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D0(1) = h2init

D0(2) = o2init

D0(3) = h2oinit

D0(4) = ohinit

D0(5) = hinit

D0(6) = oinit

D0(7) = ho2init

D0(8) = hn2init !add one term

c Do i=1,8
c print*,’d0(’,i,’)=’, d0(i)
c End do

TIME = 0.D0

summwt = 0.d0

avgmlwt = 0.d0

do i=1,nspcs

avgmlwt = avgmlwt + (d0(i)+ yrslvd(i))/ rmlwt(i)

end do

avgmlwt = 1.d0/avgmlwt

summfrc = 0.d0

do i=1,nspcs

y(i) = d0(i) + yrslvd(i)*fctr1

summfrc = summfrc + y(i)

end do

z = (8.d0*y(1)-y(2)+1. d0)/9.d0

cccccc!!! write(*,*) avgmlwt,summfrc,z

WRITE (11 ,200)TIME ,A0,B0,E0,c0 ,(D0(I),I=1,NSPCS)

WRITE (8 ,200)TIME ,A0,B0,E0,tl ,(y(I),I=1,NSPCS),

1 z,avgmlwt ,summfrc

TAUF = TRBTSCL

cccc print*, ALFAT

* iterate equations for a, b, c for npts time steps
c write(*,*)’ ’
c write(*,*)’Beginning time evolution loop for trajectory’,k

do n=1,nstps

t = (n-1)*dt

TIME = N*DT
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c a0 = a
c b0 = b
c e0 = e
c c0 = c

c print*, ’NSTPS=’, nstps,’Time=’, TIME
c stop
c stop
c DO N=1,NSTPS
c t = (n−1)*dt

IF(N.EQ.NSTATS)THEN

UBAR = A0

VBAR = B0

WBAR = E0 !Add one term

TBAR = C0

USQ = A0**2

VSQ = B0**2

WSQ = E0**2 !Add one term

TSQ = C0**2

CTU = A0*C0

CTV = B0*C0

CTW = E0*C0 !Add one term

CUV = A0*B0

CUW = A0*E0 !Add one term

CVW = B0*E0 !Add one term

DO J=1,NSPCS

YBAR(J) = D0(J) !!D0(j)/D0(j)

YSQ(J) = D0(J)**2

CUY(J) = A0*D0(J)

CVY(J) = B0*D0(J)

CWY(J) = E0*D0(J) !Add one term

CTY(J) = C0*D0(J)

DO I=1,NSPCS

CYIYJ(I,J) = D0(I)*D0(J)

END DO

END DO

END IF

FRTMX = 0.D0

BCTMX = 0.D0

DO J=1,NRCTNS

IF(J.LE.NFRCTN)THEN

IF(ALFAF(J).LT.0.D0)THEN

TALFA = 1.D0/TL**(-ALFAF(J))

ELSE IF(ALFAF(J).GT.0.D0)THEN
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TALFA = TL**ALFAF(J)

ELSE

TALFA = 1.D0

END IF

FWDRTE(J) = PREXPF(J)* TALFA*EXP(-AEF(J)/(R0*TL))

c if (j==5) then
c co=7.2071d−5
c ch=7.2071d−5
c coh=9.9986d−1
c fwdrte(j)=fwdrte(5)*co*ch/coh ! the third body M
c end if

IF(FWDRTE(J).GT.FRTMX) FRTMX = FWDRTE(J)

SRMLN1 = 1.D0 -SRMLN(J)

IF(ABS(SRMLN1 ).LT.1.D-12) THEN

RHOI = 1.D0

ELSE

RHOI = 1.D0/RHOL**ABS(SRMLN1)

END IF

TAUC = RHOI/FWDRTE(J)

ccc write(*,*)j,tauc
DA(J) = TAUF/TAUC

IF(DA(J).GE.1.D0)THEN

MPMOD(J) = 0.d0

MPITRS(J) = DA(J) + 1 ! MPITRS

ELSE

MPMOD(J) = 1.D0/DA(J) + 1

MPITRS(J) = 1.d0

END IF

C print*, j,FWDRTE(j),FRTMX
c print*, J,DA(J),MPMOD(J),MPITRS(J)

ELSE

NDX = J - NFRCTN

IF(ALFAB(NDX).LT.0.D0)THEN

TALFB = 1.D0/TL**(-ALFAB(NDX))

ELSE IF(ALFAB(NDX).GT.0.D0)THEN

TALFB = TL**ALFAB(NDX)

ELSE

TALFB = 1.D0

END IF

BWDRTE(NDX) =PREXPB(NDX)* TALFB*EXP(-AEB(NDX )/(R0*TL))

IF(BWDRTE(NDX).GT.BCTMX)BCTMX = BWDRTE(NDX)

SPMLN1 = 1.D0 -SPMLN(NDX)

IF(ABS(SPMLN1 ).LT.1.D-12) THEN

RHOI = 1.D0

ELSE

RHOI = 1.D0/RHOL**ABS(SPMLN1)

END IF
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*****Attention DA(j) not exist when BWDRTE(NDX)=0.d0
TAUC = RHOL **(1.D0 -SPMLN(NDX ))/ BWDRTE(NDX)

DA(J) = TAUF/TAUC

IF(DA(J).GE.1.D0)THEN

MPMOD(J) = 0.d0

MPITRS(J) = DA(J) + 1 ! MPITRS

ELSE

MPMOD(J) = 1.D0/DA(J) + 1

MPITRS(J) = 1.D0

END IF

c print*, NDX,DA(J),MPMOD(J),MPITRS(J)
END IF

END DO

c stop

DO J=1,NRCTNS

IF(J.LE.NFRCTN)THEN

FWDRTE(J) = FWDRTE(J)/ FRTMX

MPITRS(J) = FWDRTE(J)*10. + 1

c print*, J,FWDRTE(J)
ELSE

NDX = J - NFRCTN

BWDRTE(NDX)= BWDRTE(NDX)/ BCTMX

c print*, NDX,BWDRTE(NDX)
END IF

ccc FWDRTE(J) = 0.d0
ccc if(n.eq.1)write(*,*)j,MPITRS(J)
ccc MPITRS(J) = 1
C print*, J FWDRTE(J)

END DO

c stop

if(n.eq.nstats)then

do j=1,nrctns

IF(J.LE.NFRCTN)THEN

write (10 ,201)j,mpmod(j),MPITRS(J),DA(J),FWDRTE(J)

ELSE

NDX = J - NFRCTN

write (10 ,201)NDX ,mpmod(j),MPITRS(J),DA(J),BWDRTE(NDX)

End if

end do

201 format (1x,i1 ,2(1x,i3),3x,2(1 pe10.3,1x))

end if

* Fluid flow calculations
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if(n.eq.1) then

suma = 0.d0

sumb = 0.d0

sume = 0.d0 ! Add one term

do m=1,nstps

A = A0*BETAU *(1.D0-A0) - GAM12*A0*B0 - GAM13*A0*E0

1 + ALFAT*C0

B = B0*BETAV *(1.D0-B0) - GAM21*A0*B0 - GAM23*B0*E0

1 + ALFAT*C0

E = E0*BETAW *(1.D0-E0) - GAM31*A0*E0 - GAM32*B0*E0

1 + ALFAT*C0 !Add terms

suma = suma + a

sumb = sumb + b

sume = sume + e

if(m.eq.1) then

asve = a

bsve = b

esve = e

end if

a0 = a

b0 = b

e0 = e

end do

abr = suma/(nstps -1)

bbr = sumb/(nstps -1)

ebr = sume/(nstps -1)

**deal with velocity a0,b0,c0
a = asve

b = bsve

e = esve

c hpc write(*,*) abr,bbr,ebr

else

A = A0*BETAU *(1.D0-A0) - GAM12*A0*B0 - GAM13*A0*E0

1 + ALFAT*C0

B = B0*BETAV *(1.D0-B0) - GAM21*A0*B0 - GAM23*B0*E0

1 + ALFAT*C0

E = E0*BETAW *(1.D0-E0) - GAM31*A0*E0 - GAM32*B0*E0

1 + ALFAT*C0 !Add terms

end if

A0 = A - abr

B0 = B - bbr

E0 = E - ebr ! Add one term

* Chemical kinetics
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w=0.d0

Do J=1,NSPCS

IF(J.EQ.1) THEN

DFM (9) = D0(1)/ RMLWT (1)+D0(2)/ RMLWT (2)+D0(3)/ RMLWT (3)

1 + D0(4)/ RMLWT (4)+D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)

2 + D0(8)/ RMLWT (8)+D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

DBM (9) = D0(2)/ RMLWT (2)+D0(3)/ RMLWT (3)+D0(4)/ RMLWT (4)

1 + D0(5)/ RMLWT (5)+D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)

2 + D0(8)/ RMLWT (8)+D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

w(1)=CF(1 ,2)/( RMLWT (1)* RMLWT (6))* FWDRTE (2)*D0(1)*D0(6)

1 + CB(1 ,2)/( RMLWT (4)* RMLWT (5))* BWDRTE (2)*D0(4)*D0(5)

2 + CF(1 ,3)/( RMLWT (1)* RMLWT (4))* FWDRTE (3)*D0(1)*D0(4)

2 + CB(1 ,3)/( RMLWT (3)* RMLWT (5))* BWDRTE (3)*D0(3)*D0(5)

3 + CF(1 ,6)/( RMLWT (7)* RMLWT (5))* FWDRTE (6)*D0(7)*D0(5)

3 + CB(1 ,6)/( RMLWT (1)* RMLWT (2))* BWDRTE (6)*D0(1)*D0(2)

4 + CF(1 ,9)/ RMLWT (5)**2* FWDRTE (9)* DFM (9)*D0 (5)**2

4 + CB(1 ,9)/ RMLWT (1)* BWDRTE (9)* DBM (9)*D0(1)

D00 (1)= -(BETAY (1)+ GAMUY (1)*A0+GAMVY (1)*B0+GAMWY (1)*E0)

1 *D0(1)+ w(1)

D(1) = D00(1) + h2init

END IF

IF(J.EQ.2) THEN

DFM (4) = D0(1)/ RMLWT (1)+D0(3)/ RMLWT (3)+D0(4)/ RMLWT (4)

1 + D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)+D0(8)/ RMLWT (8)

2 + D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

w(2) =CF(2 ,1)/( RMLWT (2)* RMLWT (5))* FWDRTE (1)*D0(2)*D0(5)

1 + CB(2 ,1)/( RMLWT (4)* RMLWT (6))* BWDRTE (1)*D0(4)*D0(6)

2 + CF(2 ,4)/( RMLWT (5)* RMLWT (2))* FWDRTE (4)

2 *DFM (4)*D0(2)*D0(5)

3 + CF(2 ,6)/( RMLWT (7)* RMLWT (5))* FWDRTE (6)*D0(7)*D0(5)

3 + CB(2 ,6)/( RMLWT (1)* RMLWT (2))* BWDRTE (6)*D0(1)*D0(2)

4 + CF(2 ,7)/( RMLWT (7)* RMLWT (4))* FWDRTE (7)*D0(7)*D0(4)

5 + CF(2 ,11)/( RMLWT (9)* RMLWT (2))* FWDRTE (11)* D0(9)*D0(2)

5 + CB(2 ,11)/( RMLWT (10)* RMLWT (6))* BWDRTE (11)* D0(10)* D0(6)

D00 (2)= -( BETAY (2)+ GAMUY (2)*A0+GAMVY (2)*B0+GAMWY (2)*E0)

1 *D0(2)+w(2)

d(2) = D00(2) + o2init

END IF

IF(J.EQ.3) THEN

DFM (8) = D0(1)/ RMLWT (1)+D0(2)/ RMLWT (2)+D0(3)/ RMLWT (3)

1 + D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)+D0(8)/ RMLWT (8)

2 + D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

DBM (8) = D0(1)/ RMLWT (1)+D0(2)/ RMLWT (2)+D0(4)/ RMLWT (4)

1 + D0(5)/ RMLWT (5)+D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)

2 + D0(8)/ RMLWT (8)+D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

w(3) =CF(3 ,3)/( RMLWT (1)* RMLWT (4))* FWDRTE (3)*D0(1)*D0(4)
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1 + CB(3 ,3)/( RMLWT (3)* RMLWT (5))* BWDRTE (3)*D0(3)*D0(5)

2 + CF(3 ,7)/( RMLWT (7)* RMLWT (4))* FWDRTE (7)*D0(7)*D0(4)

3 + CF(3 ,8)/( RMLWT (5)* RMLWT (4))* FWDRTE (8)

3 *DFM (8)*D0(4)*D0(5)

3 + CB(3 ,8)/ RMLWT (3)* BWDRTE (8)* DBM (8)*D0(3)

D00 (3)= -(BETAY (3)+ GAMUY (3)*A0+GAMVY (3)*B0+GAMWY (3)*E0)

1 *D0(3)+w(3)

D(3) = D00(3) + h2oinit

END IF

IF(J.EQ.4) THEN

DFM (8) = D0(1)/ RMLWT (1)+D0(2)/ RMLWT (2)+D0(3)/ RMLWT (3)

1 + D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)+D0(8)/ RMLWT (8)

2 + D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

DBM (8) = D0(1)/ RMLWT (1)+D0(2)/ RMLWT (2)+D0(4)/ RMLWT (4)

1 + D0(5)/ RMLWT (5)+D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)

2 + D0(8)/ RMLWT (8)+D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

w(4) =CF(4 ,1)/( RMLWT (2)* RMLWT (5))* FWDRTE (1)*D0(2)*D0(5)

1 + CB(4 ,1)/( RMLWT (4)* RMLWT (6))* BWDRTE (1)*D0(4)*D0(6)

2 + CF(4 ,2)/( RMLWT (1)* RMLWT (6))* FWDRTE (2)*D0(1)*D0(6)

2 + CB(4 ,2)/( RMLWT (4)* RMLWT (5))* BWDRTE (2)*D0(4)*D0(5)

3 + CF(4 ,3)/( RMLWT (1)* RMLWT (4))* FWDRTE (3)*D0(1)*D0(4)

3 + CB(4 ,3)/( RMLWT (3)* RMLWT (5))* BWDRTE (3)*D0(3)*D0(5)

4 + CF(4 ,5)/( RMLWT (7)* RMLWT (5))* FWDRTE (5)*D0(7)*D0(5)

5 + CF(4 ,7)/( RMLWT (7)* RMLWT (4))* FWDRTE (7)*D0(7)*D0(4)

6 + CF(4 ,8)/( RMLWT (5)* RMLWT (4))* FWDRTE (8)

6 *DFM (8)*D0(4)*D0(5)

6 + CB(4 ,8)/ RMLWT (3)* BWDRTE (8)* DBM (8)*D0(3)

7 + CF(4 ,12)/( RMLWT (9)* RMLWT (4))* FWDRTE (12)* D0(9)*D0(4)

7 + CB(4 ,12)/( RMLWT (10)* RMLWT (5))* BWDRTE (12)* D0(10)* D0(5)

D00 (4)= -(BETAY (4)+ GAMUY (4)*A0+GAMVY (4)*B0+GAMWY (4)*E0)

1 *D0(4)+w(4)

D(4) = D00(4) + ohinit

END IF

IF(J.EQ.5) THEN

DFM (4) = D0(1)/ RMLWT (1)+D0(3)/ RMLWT (3)+D0(4)/ RMLWT (4)

1 + D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)+D0(8)/ RMLWT (8)

2 + D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

DFM (8) = D0(1)/ RMLWT (1)+D0(2)/ RMLWT (2)+D0(3)/ RMLWT (3)

1 + D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)+D0(8)/ RMLWT (8)

2 + D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

DBM (8) = D0(1)/ RMLWT (1)+D0(2)/ RMLWT (2)+D0(4)/ RMLWT (4)

1 + D0(5)/ RMLWT (5)+D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)

2 + D0(8)/ RMLWT (8)+D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

DFM (9) = D0(1)/ RMLWT (1)+D0(2)/ RMLWT (2)+D0(3)/ RMLWT (3)

1 + D0(4)/ RMLWT (4)+D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)

2 + D0(8)/ RMLWT (8)+D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

DBM (9) = D0(2)/ RMLWT (2)+D0(3)/ RMLWT (3)+D0(4)/ RMLWT (4)
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1 + D0(5)/ RMLWT (5)+D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)

2 + D0(8)/ RMLWT (8)+D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

w(5) =CF(5 ,1)/( RMLWT (2)* RMLWT (5))* FWDRTE (1)*D0(2)*D0(5)

1 + CB(5 ,1)/( RMLWT (4)* RMLWT (6))* BWDRTE (1)*D0(4)*D0(6)

2 + CF(5 ,2)/( RMLWT (1)* RMLWT (6))* FWDRTE (2)*D0(1)*D0(6)

2 + CB(5 ,2)/( RMLWT (4)* RMLWT (5))* BWDRTE (2)*D0(4)*D0(5)

3 + CF(5 ,3)/( RMLWT (1)* RMLWT (4))* FWDRTE (3)*D0(1)*D0(4)

3 + CB(5 ,3)/( RMLWT (3)* RMLWT (5))* BWDRTE (3)*D0(3)*D0(5)

4 + CF(5 ,4)/( RMLWT (5)* RMLWT (2))* FWDRTE (4)

4 *DFM (4)*D0(2)*D0(5)

5 + CF(5 ,5)/( RMLWT (7)* RMLWT (5))* FWDRTE (5)*D0(7)*D0(5)

6 + CF(5 ,6)/( RMLWT (7)* RMLWT (5))* FWDRTE (6)*D0(7)*D0(5)

6 + CB(5 ,6)/( RMLWT (1)* RMLWT (2))* BWDRTE (6)*D0(1)*D0(2)

7 + CF(5 ,8)/( RMLWT (5)* RMLWT (4))* FWDRTE (8)

7 *DFM (8)*D0(4)*D0(5)

7 + CB(5 ,8)/ RMLWT (3)* BWDRTE (8)* DBM (8)*D0(3)

8 + CF(5 ,9)/ RMLWT (5)**2* FWDRTE (9)* DFM (9)*D0 (5)**2

8 + CB(5 ,9)/ RMLWT (1)* BWDRTE (9)* DBM (9)*D0(1)

9 + CF(5 ,12)/( RMLWT (9)* RMLWT (4))* FWDRTE (12)* D0(9)*D0(4)

9 + CB(5 ,12)/( RMLWT (10)* RMLWT (5))* BWDRTE (12)* D0(10)* D0(5)

D00 (5)= -(BETAY (5)+ GAMUY (5)*A0+GAMVY (5)*B0+GAMWY (5)*E0)

1 *D0(5) +w(5)

D(5) = D00(5) + hinit

END IF

IF(J.EQ.6) THEN

w(6) =CF(6 ,1)/( RMLWT (2)* RMLWT (5))* FWDRTE (1)*D0(2)*D0(5)

1 + CB(6 ,1)/( RMLWT (4)* RMLWT (6))* BWDRTE (1)*D0(4)*D0(6)

2 + CF(6 ,2)/( RMLWT (1)* RMLWT (6))* FWDRTE (2)*D0(1)*D0(6)

2 + CB(6 ,2)/( RMLWT (4)* RMLWT (5))* BWDRTE (2)*D0(4)*D0(5)

3 + CF(6 ,10)/( RMLWT (6)* RMLWT (8))* FWDRTE (10)* D0(6)*D0(8)

3 + CB(6 ,10)/( RMLWT (10)* RMLWT (9))* BWDRTE (10)* D0(10)* D0(9)

4 + CF(6 ,11)/( RMLWT (9)* RMLWT (2))* FWDRTE (11)* D0(9)*D0(2)

4 + CB(6 ,11)/( RMLWT (10)* RMLWT (6))* BWDRTE (11)* D0(10)* D0(6)

D00 (6)= -(BETAY (6)+ GAMUY (6)*A0+GAMVY (6)*B0+GAMWY (6)*E0)

1 *D0(6)+w(6)

D(6) = D00(6) + oinit

END IF

IF(J.EQ.7) THEN

DFM (4) = D0(1)/ RMLWT (1)+D0(3)/ RMLWT (3)+D0(4)/ RMLWT (4)

1 + D0(6)/ RMLWT (6)+D0(7)/ RMLWT (7)+D0(8)/ RMLWT (8)

2 + D0(9)/ RMLWT (9)+D0(10)/ RMLWT (10)

w(7) = CF(7 ,4)/( RMLWT (5)* RMLWT (2))* FWDRTE (4)

1 *DFM (4)*D0(2)*D0(5)

2 + CF(7 ,5)/( RMLWT (7)* RMLWT (5))* FWDRTE (5)*D0(7)*D0(5)

3 + CF(7 ,6)/( RMLWT (7)* RMLWT (5))* FWDRTE (6)*D0(7)*D0(5)

3 + CB(7 ,6)/( RMLWT (1)* RMLWT (2))* BWDRTE (6)*D0(1)*D0(2)

4 + CF(7 ,7)/( RMLWT (7)* RMLWT (4))* FWDRTE (7)*D0(7)*D0(4)
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D00 (7)= -(BETAY (7)+ GAMUY (7)*A0+GAMVY (7)*B0+GAMWY (7)*E0)

1 *D0(7) +w(7)

D(7) = D00(7) + ho2init

END IF

IF(J.EQ.8) THEN

w(8)=CF(8 ,10)/( RMLWT (6)* RMLWT (8))* FWDRTE (10)* D0(6)*D0(8)

1 + CB(8 ,10)/( RMLWT (10)* RMLWT (9))* BWDRTE (10)* D0(10)* D0(9)

D00 (8)= -(BETAY (8)+ GAMUY (8)*A0+GAMVY (8)*B0+GAMWY (8)*E0)

1 *D0(8)+w(8)

D(8) = D00 (8)+ hn2init

END IF

IF(J.EQ.9) THEN

w(9)=CF(9 ,10)/( RMLWT (6)* RMLWT (8))* FWDRTE (10)* D0(6)*D0(8)

1 + CB(9 ,10)/( RMLWT (10)* RMLWT (9))* BWDRTE (10)* D0(10)* D0(9)

2 + CF(9 ,11)/( RMLWT (9)* RMLWT (2))* FWDRTE (11)* D0(9)*D0(2)

2 + CB(9 ,11)/( RMLWT (10)* RMLWT (6))* BWDRTE (11)* D0(10)* D0(6)

3 + CF(9 ,12)/( RMLWT (9)* RMLWT (4))* FWDRTE (12)* D0(9)*D0(4)

3 + CB(9 ,12)/( RMLWT (10)* RMLWT (5))* BWDRTE (12)* D0(10)* D0(5)

D00 (9)= -(BETAY (9)+ GAMUY (9)*A0+GAMVY (9)*B0+GAMWY (9)*E0)

1 *D0(9)+w(9)

D(9) = D00 (9)+ hninit

END IF

IF(J.EQ.10) THEN

w(10)= CF(10 ,10)/( RMLWT (6)* RMLWT (8))* FWDRTE (10)* D0(6)*D0(8)

1 + CB(10 ,10)/( RMLWT (10)* RMLWT (9))* BWDRTE (10)* D0(10)* D0(9)

2 + CF(10 ,11)/( RMLWT (9)* RMLWT (2))* FWDRTE (11)* D0(9)*D0(2)

2 + CB(10 ,11)/( RMLWT (10)* RMLWT (6))* BWDRTE (11)* D0(10)* D0(6)

3 + CF(10 ,12)/( RMLWT (9)* RMLWT (4))* FWDRTE (12)* D0(9)*D0(4)

3 + CB(10 ,12)/( RMLWT (10)* RMLWT (5))* BWDRTE (12)* D0(10)* D0(5)

D00 (10)= -(BETAY (10)+ GAMUY (10)*A0+GAMVY (10)*B0+GAMWY (10)

1 *E0)*D0(10)+w(10)

D(10) = D00 (10)+ hnOinit

END IF

END DO ! end J-loop for reactions

do i=1,nspcs

d0(i) = d(i)

end do

* Calculate average molecular weight

avgmlwt = 0.d0

do i=1,nspcs

avgmlwt = avgmlwt + (d(i)+ yrslvd(i))/ rmlwt(i)

end do

avgmlwt = 1.d0/avgmlwt
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* Thermal energy

SUMC = 0.d0 ! C0 !maybe the key

DO I=1,NSPCS

SUMC = SUMC + C0*ALFATY(I)*D(I) !*G(I)*D(I)

c SUMFJ = 0.D0
c SUMBJ = 0.D0
c DO J=1,NFRCTN
c PRODFJ = 1.D0
c IF(CF(I,J).NE.0.D0)THEN
c DO L=1,NSPCS
c PRODFJ = PRODFJ*D(L)**RMLNBR(L,J)
c END DO
c SUMFJ = SUMFJ + CF(I,J)*PRODFJ*FWDRTE(J)
c END IF
c END DO ! end j−loop over forward reactions
c IF(NBRCTN.GT.0)THEN
c DO J=1,NBRCTNS
c PRODBJ = 1.D0
c IF(CB(I,J).NE.0.D0)THEN
c DO L=1,NSPCS
c PRODBJ = PRODBJ*D(L)**PMLNBR(L,J)
c END DO
c SUMBJ = SUMBJ + CB(I,J)*PRODBJ*BWDRTE(J)
c END IF
c END DO ! end j−loop over backward reactions
c END IF

SUMC = SUMC -H(I)*W(I) ! (SUMFJ -SUMBJ)

END DO ! end i-loop over species equations

C = (SUMC -GAMUT*A0*C0-GAMVT*B0*C0-GAMWT*E0*C0)

1 /(1.d0+BETAT) + cinit

if (c.ge.c0) sgnc =1.d0

if (c.lt.c0) sgnc=-1.d0

! C0=C !!!!!!!

c TL = TL0 + fctr*TL0*C
TL = TL0 + fctrt*TL0*C*sgnc

c TL = TL0 + fctr*TL0*0.5d0*(C+C0)*FCTRT

summfrc = 0.d0

do i=1,nspcs

if(i.eq.4) then

fctr2 = 1.06* fctr1

else

fctr2 = fctr1

end if
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y(i) = d(i) + yrslvd(i)* fctr2

summfrc = summfrc + y(i)

end do

c WRITE(*,*) summfrc

z = (8.d0*y(1)-y(2)+1. d0)/9.d0

ccc y(3) = 1.d0 − (y(1)+y(2)+y(4)+y(5)+y(6))
WRITE (11 ,200)TIME ,A0 ,B0 ,E0,c,SUMC ,(d0(I),I=1,NSPCS)

WRITE (8 ,200)TIME ,A0 ,B0 ,E0,tl ,(y(I),I=1,NSPCS)

1 z,avgmlwt ,summfrc !tl,

IF(N.GE.NSTATS)THEN

SUMMWT = SUMMWT + AVGMLWT

AVGMFRC = AVGMFRC + SUMMFRC

UBAR = UBAR + A0

VBAR = VBAR + B0

WBAR = WBAR + E0 !Add one term

TBAR = TBAR + TL

USQ = USQ + A0**2

VSQ = VSQ + B0**2

WSQ = WSQ + E0**2 !Add one term

TSQ = TSQ + C**2

CTU = CTU + A0*C

CTV = CTV + B0*C

CTW = CTW + E0*C !Add one term

CUV = CUV + A0*B0

CUW = CUW + A0*E0 !Add one term

CVW = CVW + B0*E0 !Add one term

DO J=1,NSPCS

YBAR(J) = YBAR(J) + d(J)

YSQ(J) = YSQ(J) + d(J)*d(J)

CUY(J) = CUY(J) + A0*d(J)

CVY(J) = CVY(J) + B0*d(J)

CWY(J) = CWY(J) + E0*d(J) !Add one term

CTY(J) = CTY(J) + C*d(J)

DO I=1,NSPCS

CYIYJ(I,J) = CYIYJ(I,J) + d(I)*d(J)

END DO

END DO

END IF

A0 = A

B0 = B

E0 = E !Add one term

C0 = C

if(dabs(a).gt.5.d0.or.dabs(b).gt.5.d0.or.
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1 dabs(e).gt.5.d0)then !!! change 5/50

itypsln = 13

solntyp = 13.d0

fvdata(iu0 ,jv0 ,kw0 ,1) = 13.d0

fvdata(iu0 ,jv0 ,kw0 ,2) = 0.0d0

fvdata(iu0 ,jv0 ,kw0 ,3) = 2.d0

c fvdata(iu0,jv0,kw0,4) = −1.d0
c fvdata(iu0,jv0,kw0,5) = 7.d0

c fvdata(iu0,jv0,kw0,6) = −1.d0
c fvdata(iu0,jv0,kw0,7) = 3.d0

exit

end if

if(dabs(a).lt .0.1**20 d0)then

a=0.d0

itypsln = 0.d0

solntyp = 0.d0

fvdata(iu0 ,jv0 ,kw0 ,1) = 0.d0

fvdata(iu0 ,jv0 ,kw0 ,2) = 0.d0

fvdata(iu0 ,jv0 ,kw0 ,3) = 0.d0

exit

end if

if(dabs(b).lt .0.1**20 d0)then

b=0.d0

end if

c if(k.eq.1)then
u(n) = a

v(n) = b

w1(n) = e !change

q(1,n) = a

q(2,n) = b

q(3,n) = e !change

c else
c uf(i) = a
c vf(i) = b
c wf(i) = c
c q(1,i) = a
c q(2,i) = b
c q(3,i) = c
c end if

end do !end n-loop

write (*,*)’Time evolution ended.’

write (*,*)’ ’

c END DO ! end n−loop

153



NAVG = NSTPS - NSTATS - 1

UBAR = UBAR/NAVG

VBAR = VBAR/NAVG

WBAR = WBAR/NAVG !Add one term

TBAR = TBAR/NAVG

SUMMWT = SUMMWT/NAVG

AVGMFRC = AVGMFRC/NAVG

USQ = USQ/NAVG

VSQ = VSQ/NAVG

WSQ = WSQ/NAVG !Add one term

TSQ = TSQ/NAVG

CUV = CUV/sqrt(USQ*VSQ)/NAVG

CUW = CUW/sqrt(USQ*WSQ)/NAVG !Add one term

CVW = CVW/sqrt(VSQ*WSQ)/NAVG !Add one term

CTU = CTU/sqrt(USQ*TSQ)/NAVG

CTV = CTV/sqrt(VSQ*TSQ)/NAVG

CTW = CTW/sqrt(WSQ*TSQ)/NAVG !Add one term

DO J=1,NSPCS

YBAR(J) = YBAR(J)/NAVG

YSQ(J) = YSQ(J)/NAVG

CUY(J) = CUY(J)/sqrt(USQ*YSQ(J))/ NAVG

CVY(J) = CVY(J)/sqrt(VSQ*YSQ(J))/ NAVG

CWY(J) = CWY(J)/sqrt(WSQ*YSQ(J))/ NAVG !Add one term

CTY(J) = CTY(J)/sqrt(TSQ*YSQ(J))/ NAVG

END DO

DO J=1,NSPCS

DO I=1,NSPCS

CYIYJ(I,J) = CYIYJ(I,J)/sqrt(YSQ(I)*YSQ(J))/ NAVG

END DO

END DO

WRITE (9,*)’ ’

WRITE (9,*)’ ’

WRITE (9,*)’ Time Averages ’

WRITE (9,*)’ ’

WRITE (9,*)’ UBAR = ’,UBAR

WRITE (9,*)’ VBAR = ’,VBAR

WRITE (9,*)’ WBAR = ’,WBAR !Add one term

WRITE (9,*)’ TBAR = ’,TBAR

WRITE (9,*)’ MLWT = ’,SUMMWT

WRITE (9,*)’ MFRC = ’,AVGMFRC

DO I=1,NSPCS

WRITE (9,*)’ YBAR(’,I,’) = ’,YBAR(I)

END DO

WRITE (9,*)’ ’

WRITE (9,*)’ Variances ’
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WRITE (9,*)’ USQ = ’,USQ

WRITE (9,*)’ VSQ = ’,VSQ

WRITE (9,*)’ WSQ = ’,WSQ !Add one term

WRITE (9,*)’ TSQ = ’,TSQ

DO I=1,NSPCS

WRITE (9,*)’ YSQ(’,I,’) = ’,YSQ(I)

END DO

WRITE (9,*)’ ’

WRITE (9,*)’ Correlations ’

WRITE (9,*)’ CUV = ’,CUV

WRITE (9,*)’ CUW = ’,CUW !Add one term

WRITE (9,*)’ CVW = ’,CVW !Add one term

WRITE (9,*)’ CTU = ’,CTU

WRITE (9,*)’ CTV = ’,CTV

WRITE (9,*)’ CTW = ’,CTW !Add one term

WRITE (9,*)’ ’

write (9,*)’ J ’,’ ’,’ CUY(J) ’,’ ’,’ CVY(J)

’,

1 ’ ’,’ CWY(J) ’,’ ’,’ CTY(J) ’

do j=1,NSPCS

write(9,’(1x,I2 ,3(3x,1pe13 .6))’)j,CUY(J),CVY(J),CWY(J),CTY(J)

end do

WRITE (9,*)’ ’

DO I=1,NSPCS

DO J=I+1,NSPCS

WRITE (9,*)’ CY(’,I,’,’,J,’) = ’,CYIYJ(I,J)

END DO

END DO

return

END

*_________________________________________________________*

subroutine stat1(q,dqdt ,dqdx ,dqdy ,dqdz ,corfns ,pdfs ,s2,s3,

1 s4,s6,f, s,sm,qpcor ,qpsq ,qmax ,qmin ,qavg ,rlscl ,

2 tintscl , acl1 ,dt,npts ,nstat ,npdf ,nauto ,itype ,nlsf)

implicit real*8 (a-h,o-z)

parameter(imx =50001 , ivr=3,namx =1000 , npdfmx =1000 , nlmx =100)

* Basic variables and derivatives
dimension q(ivr ,0:imx),dqdt(ivr ,imx),dqdx(ivr ,imx),

1 dqdy(ivr ,imx), dqdz(ivr ,imx)
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* Classical turbulence statistics: correlations,

* autocorrelations, PDFs, means, flatness and skewness
dimension corfns(ivr ,0: namx),pdfs(ivr ,npdfmx),

1 qpcor(ivr ,ivr), qpsq(ivr),qmax(ivr),qmin(ivr),

2 qavg(ivr),tintscl(ivr), acl1(ivr),f(5*ivr),s(5*ivr)

* Statistical quantities arising in the Kolmogorov theories:
structure

* functions of various orders
dimension s2(5*ivr ,nlmx),s3(5*ivr ,nlmx),s4(5*ivr ,nlmx),

1 s6(5*ivr ,nlmx),sm(5*ivr),rlscl(nlmx)

* Temporary arrays
dimension dq(ivr),qsq(0:ivr+1)

data sclfctr /1.d1/ ! multiplicative factor for

! application of Taylor ’s hypothesis

data mxsf /5/ ! maximum number of structure

! function evaluations as a function of "distance"

*

* 1. Initialize (zero) arrays

*

dqdt = 0.d0

dqdx = 0.d0

dqdy = 0.d0

dqdz = 0.d0

corfns = 0.d0

pdfs = 0.d0

s2 = 0.d0

s3 = 0.d0

s4 = 0.d0

s6 = 0.d0

sm = 0.d0

s = 0.d0

f = 0.d0

qpcor = 0.d0

qpsq = 0.d0

qmax = 0.d0

qmin = 1.d0

qavg = 0.d0

tintscl = 0.d0

acl1 = 0.d0

dq = 0.d0

*
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* 2. Calculate maxs , mins , avgs , etc.

*

navg = npts - nstat

navg1 = navg - 1

itype2 = itype + 2

do j=1,itype2

do i=nstat ,npts

if(q(j,i).gt.qmax(j))then

qmax(j) = q(j,i)

endif

if(q(j,i).lt.qmin(j))then

qmin(j) = q(j,i)

endif

qavg(j) = qavg(j) + q(j,i)

end do

end do

qavg = qavg/navg1

*

* 3. Calculate averages of squared fluctuations ,

* correlations , pdfs.

dq = (qmax -qmin)/npdf

do j=1,itype2

do i=nstat ,npts

difq = q(j,i) - qavg(j)

qpsq(j) = qpsq(j) + difq **2

do k=j+1,itype2

qpcor(j,k) = qpcor(j,k) + difq*(q(k,i)-qavg(k))

end do ![k]

do k=1,npdf

qlwr = qmin(j) + (k-1)*dq(j)

qupr = qmin(j) + k*dq(j)

if(k.eq.1. and.q(j,i).ge.qlwr.and.q(j,i).lt.qupr)then

pdfs(j,k) = pdfs(j,k) + 1.d0

exit

end if

if(k.gt.1. and.q(j,i).gt.qlwr.and.q(j,i).le.qupr)then

pdfs(j,k) = pdfs(j,k) + 1.d0

exit

end if

end do ![k]

end do ![i]

end do ![j]
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qpcor = qpcor/navg1

qpsq = qpsq/navg1

pdfs = pdfs/(navg +1)

do j=1,itype2

do k=j+1,itype2

qpcor(j,k) = qpcor(j,k)/dsqrt(qpsq(j)*qpsq(k))

end do ![k]

end do ![j]

*

* 4. Calculate autocorrelations , integral time scales ,

* L1 norm of autocorrelation functions.

*

do j=1,itype2

do k=0,nauto

do i=nstat ,npts -k

corfns(j,k) = corfns(j,k)+(q(j,i)-qavg(j))*

1 (q(j,i+k)-qavg(j))

end do ![i]

corfns(j,k) = corfns(j,k)/(( navg1 -k)*qpsq(j))

tintscl(j) = tintscl(j) + corfns(j,k)

acl1(j) = acl1(j) + dabs(corfns(j,k))

end do ![k]

end do ![j]

tintscl = tintscl/nauto

acl1 = acl1/nauto

*

* 5. Calculate derivative time series: use mean -squared

* fluctuations to estimate velocity scales; then apply

* the Taylor hypothesis to obtain spatial derivatives.

*

urs = sclfctr*sqrt(qpsq (1))

vrs = sclfctr*sqrt(qpsq (2))

wrs = sclfctr*sqrt(qpsq (3))

mdt = int(urs) + 1

ndt = int(vrs) + 1

ldt = int(wrs) + 1

do j=1,itype2

do i=nstat ,npts

dqdt(j,i) = q(j,i) - q(j,i-1)

dqdx(j,i) = (q(j,i)-q(j,i -1))/(q(1,i)+q(1,i-1))

dqdy(j,i) = (q(j,i)-q(j,i -1))/(q(2,i)+q(2,i-1))

dqdz(j,i) = (q(j,i)-q(j,i -1))/(q(3,i)+q(3,i-1))
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ccc dqdt(j,i) = q(j,i) - q(j,i-1)

ccc dqdx(j,i) = q(j,i) - q(j,i-mdt)

ccc dqdy(j,i) = q(j,i) - q(j,i-ndt)

ccc dqdz(j,i) = q(j,i) - q(j,i-ldt)

end do ![i]

end do ![j]

ccc dqdt = dqdt/dt

ccc dqdx = dqdx/(mdt*dt)

ccc dqdy = dqdy/(ndt*dt)

ccc dqdz = dqdz/(ldt*dt)

*

* 6. Calculate flatness and skewness of variables and

* derivatives.

do j=1,itype2

qsq = 0.d0

do i=nstat ,npts

difq = q(j,i) - qavg(j)

qsq (0) = qsq(0) + difq **2

qsq (1) = qsq(1) + dqdt(j,i)**2

qsq (2) = qsq(2) + dqdx(j,i)**2

qsq (3) = qsq(3) + dqdy(j,i)**2

qsq (4) = qsq (4) + dqdz(j,i)**2

s(j) = s(j) + difq **3

s(j+itype2) = s(j+itype2) + dqdt(j,i)**3

s(j+2* itype2) = s(j+2* itype2) + dqdx(j,i)**3

s(j+3* itype2) = s(j+3* itype2) + dqdy(j,i)**3

s(j+4* itype2) = s(j+4* itype2) + dqdz(j,i)**3

f(j) = f(j) + difq **4

f(j+itype2) = f(j+itype2) + dqdt(j,i)**4

f(j+2* itype2) = f(j+2* itype2) + dqdx(j,i)**4

f(j+3* itype2) = f(j+3* itype2) + dqdy(j,i)**4

f(j+4* itype2) = f(j+4* itype2) + dqdz(j,i)**4

end do ![i]

if(qsq (0).le.1.d-4) then

s(j) = 0.d0

f(j) = 1.d0/navg

else

s(j) = s(j)/qsq (0)**1.5 d0

f(j) = f(j)/qsq (0)**2

end if

if(qsq (1).le.1.d-4) then

s(j+itype2) = 0.d0

f(j+itype2) = 1.d0/navg

else

s(j+itype2) = -s(j+itype2 )/qsq (1)**1.5 d0

f(j+itype2) = f(j+itype2 )/qsq (1)**2
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end if

if(qsq (2).le.1.d-4) then

s(j+2* itype2) = 0.d0

f(j+2* itype2) = 1.d0/navg

else

s(j+2* itype2) = -s(j+2* itype2 )/qsq (2)**1.5 d0

f(j+2* itype2) = f(j+2* itype2 )/qsq (2)**2

end if

if(qsq (2).le.1.d-4) then

s(j+3* itype2) = 0.d0

f(j+3* itype2) = 1.d0/navg

else

s(j+3* itype2) = -s(j+3* itype2 )/qsq (3)**1.5 d0

f(j+3* itype2) = f(j+3* itype2 )/qsq (3)**2

end if

if(qsq (3).le.1.e-12) then

s(j+4* itype2) = 0.d0

f(j+4* itype2) = 1.d0/navg

else

s(j+4* itype2) = -s(j+4* itype2 )/qsq (4)**1.5 d0

f(j+4* itype2) = f(j+4* itype2 )/qsq (4)**2

endif

end do ![j]

f = navg*f

s = sqrt(dfloat(navg ))*s

*

* 7. Calculate structure functions of orders 2, 3, 4 and 6

* for variables and their derivatives. Shell model structure

* functions (as defined by Jensen et al., 1991) are calculated

* first , followed by those of the basic variables , and then

* those of the t, x and y derivatives.

*

velscl = sqrt(urs **2+ vrs **2+ wrs **2)

phi2 = datan(sqrt(qpsq (2)/ qpsq (1)))

phi3 = datan(sqrt(qpsq (3)/ qpsq (1)))

nlsf = max(min(mdt ,ndt ,ldt),mxsf)

do j=1,itype2

do i=nstat ,npts -nlsf

do k=1,nlsf

rlscl(k) = k*dt*velscl

difq1k = q(1,i+k) - q(1,i)

difq2k = q(2,i+k) - q(2,i)

difq3k = q(3,i+k) - q(3,i)

if(k.eq.1) then

sm(j) = sm(j) + q(j,i)**2
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sm(j+itype2) = sm(j+itype2) + q(j,i)**3

sm(j+2* itype2) = sm(j+2* itype2) + q(j,i)**4

sm(j+3* itype2) = sm(j+3* itype2) + q(j,i)**6

end if

if(j.eq.1) then

s2(j,k) = s2(j,k) + (difq1k*cos(phi2 )**2+

1 difq2k*sin(phi2 )**2+

1 difq3k*sin(phi3 )**2)**2

s3(j,k) = s3(j,k) + (difq1k*cos(phi2 )**2+

1 difq2k*sin(phi2 )**2+

1 difq3k*sin(phi3 )**2)**3

s4(j,k) = s4(j,k) + (difq1k*cos(phi2 )**2+

1 difq2k*sin(phi2 )**2+

1 difq3k*sin(phi3 )**2)**4

s6(j,k) = s6(j,k) + (difq1k*cos(phi2 )**2+

1 difq2k*sin(phi2 )**2+

1 difq3k*sin(phi3 )**2)**6

end if

if(j.eq.2) then

s2(j,k) = s2(j,k) + ((( difq1k+difq2k+difq3k )*

1 sin(phi2)*cos(phi2)*sin(phi3 ))**2)**2

s3(j,k) = s3(j,k) + ((( difq1k+difq2k+difq3k )*

1 sin(phi2)*cos(phi2)*sin(phi3 ))**2)**3

s4(j,k) = s4(j,k) + ((( difq1k+difq2k+difq3k )*

1 sin(phi2)*cos(phi2)*sin(phi3 ))**2)**4

s6(j,k) = s6(j,k) + ((( difq1k+difq2k+difq3k )*

1 sin(phi2)*cos(phi2)*sin(phi3 ))**2)**6

end if

if(j.gt.2) then

difqjk = q(j,i+k) - q(j,i)

s2(j,k) = s2(j,k) + difqjk **2

s3(j,k) = s3(j,k) + difqjk **3

s4(j,k) = s4(j,k) + difqjk **4

s6(j,k) = s6(j,k) + difqjk **6

end if

difdqt = dqdt(j,i+k) - dqdt(j,i)

difdqx = dqdx(j,i+k) - dqdx(j,i)

difdqy = dqdy(j,i+k) - dqdy(j,i)

difdqz = dqdz(j,i+k) - dqdz(j,i)

s2(j+ivr ,k) = s2(j+ivr ,k) + difdqt **2

s2(j+2*ivr ,k) = s2(j+2*ivr ,k) + difdqx **2

s2(j+3*ivr ,k) = s2(j+3*ivr ,k) + difdqy **2

s2(j+4*ivr ,k) = s2(j+4*ivr ,k) + difdqz **2

s3(j+ivr ,k) = s3(j+ivr ,k) + difdqt **3

s3(j+2*ivr ,k) = s3(j+2*ivr ,k) + difdqx **3

s3(j+3*ivr ,k) = s3(j+3*ivr ,k) + difdqy **3

s3(j+4*ivr ,k) = s3(j+4*ivr ,k) + difdqz **3
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s4(j+ivr ,k) = s4(j+ivr ,k) + difdqt **4

s4(j+2*ivr ,k) = s4(j+2*ivr ,k) + difdqx **4

s4(j+3*ivr ,k) = s4(j+3*ivr ,k) + difdqy **4

s4(j+4*ivr ,k) = s4(j+4*ivr ,k) + difdqz **4

s6(j+ivr ,k) = s6(j+ivr ,k) + difdqt **6

s6(j+2*ivr ,k) = s6(j+2*ivr ,k) + difdqx **6

s6(j+3*ivr ,k) = s6(j+3*ivr ,k) + difdqy **6

s6(j+4*ivr ,k) = s6(j+4*ivr ,k) + difdqz **6

end do ![k]

end do ![i]

end do ![j]

sm = sm/navg1

s2 = s2/navg1

s3 = s3/navg1

s4 = s4/navg1

s6 = s6/navg1

return

end

*_______________________________________________*

subroutine psd(f,w,p,dt,nstop ,nfft)

implicit real*8 (a-h,o-z)

parameter (imx =50001 , nfftmx =16384)

dimension f(0:imx),t(nfftmx),p(nfftmx),w(nfftmx)

iavg = 0

iwndo = 1

list = 0

nstrt = 1

nrmlzf = 0

nrmlzt = 0

nrmlzp = 0

nrmlzw = 0

tmax = 1.d0

ccc fmax = 0.001d0

do i=1,nstop

t(i) = (i-1)*dt

end do

nfft = nstop

if(nrmlzt.ge.0) tmax = t(nstop)
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if(nstrt.ne.1) then

do i=1,nfft+1

f(i) = f(i+nstrt -1)

t(i) = t(i+nstrt -1)

end do

end if

if(nrmlzf.gt.0) call nrmlze(f,fmax ,nfft)

if(nrmlzt.gt.0) call nrmlze(t,tmax ,nfft)

if(nrmlzf.lt.0.or.nrmlzt.lt.0) then

do i=1,nfft

if(nrmlzt.lt.0)t(i) = tmax*t(i)

if(nrmlzf.lt.0)f(i) = fmax*f(i)

end do

end if

if(iavg.gt.0) then

sum = 0.d0

do j=1,nfft

sum = sum + f(j)

end do

avg = sum/nfft

do j=1,nfft

f(j) = f(j) - avg

end do

end if

dt = t(2) - t(1)

call pwrspc(f,p,w,dt ,nfft ,iwndo)

if(nrmlzw.gt.0) call nrmlze(w,wmax ,nfft)

if(nrmlzp.gt.0) call nrmlze(p,pmax ,nfft)

return

end

*____________________________________________*

subroutine nrmlze(g,gmax ,n)

implicit real*8 (a-h,o-z)

dimension g(*)

if(gmax.le.1.d-12) then

gmax = dabs(g(1))

do i=2,n

if(dabs(g(i)).gt.gmax)gmax = dabs(g(i))

end do

end if

do i=1,n

g(i) = g(i)/gmax
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end do

return

end

*_____________________________________________________*

subroutine pwrspc(psdr ,smag ,sarg ,dt,nfft ,iwndo)

implicit real *8(a-h,o-z)

parameter (npt =16384)

dimension psdi(npt)

dimension psdr(*),smag(*),sarg (*)

rnfft = dfloat(nfft) + 0.1d0

iexp = dlog10(rnfft)/ dlog10 (2.d0) + 0.1d0

df = 1.d0/(nfft*dt)

do i=1,nfft

psdi(i) = 0.d0

end do

call ctfft(psdr ,psdi ,iexp)

if(iwndo.gt.0) call window(psdr ,psdi ,smag ,sarg ,nfft ,iwndo)

call mgntd(psdr ,psdi ,smag ,sarg ,df ,nfft)

return

end

*__________________________________________________*

subroutine mgntd(si,sq,smag ,sarg ,d,nfft)

implicit real *8(a-h,o-z)

dimension si(*),sq(*),smag(*),sarg (*)

nfft2 = nfft/2

bias = nfft2*d

do i=1,nfft

amp = dsqrt(si(i)**2)

amp = si(i)**2 + sq(i)**2

tmp = amp

if(amp.le.1.d-15) amp = 1.d-15

smag(i) = 1.d1*dlog10(amp)

ccc smag(i) = amp

sarg(i) = (i-1)*d-bias

end do

call normal(smag ,nfft)

do i=1,nfft2
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indx = nfft2+i

temp = smag(i)

smag(i) = smag(indx)

smag(indx) = temp

end do

do i=1,nfft2

smag(i) = smag(nfft2+i)

sarg(i) = sarg(nfft2+i)

end do

nfft = nfft2

return

end

*___________________________________________________*

subroutine ctfft(x,y,mfft)

implicit real*8 (a-h,o-z)

integer rep ,disp

dimension x(*),y(*)

pi = 4.0d0*datan (1.0d0)

n = 2** mfft

call order(x,y,n)

do i=1,mfft

rep = 2**i

disp = rep/2

arg = 2.d0*pi/rep

do j=1,disp

twf = (j-1)* arg

c = dcos(twf)

s = dsin(twf)

do k=j,n,rep

j2 = k+disp

t1 = c*x(j2) + s*y(j2)

t2 = -s*x(j2) + c*y(j2)

x(j2) = x(k) - t1

y(j2) = y(k) - t2

x(k) = x(k) + t1

y(k) = y(k) + t2

end do ![k]

end do ![j]

end do ![i]

do i=1,n

x(i) = x(i)/n

y(i) = y(i)/n
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end do

return

end

*______________________________________________*

subroutine order(x,y,n)

implicit real *8(a-h,o-z)

dimension x(*),y(*)

nd2=n/2

nm1=n-1

j=1

do 30 i=1,nm1

if(i.ge.j)go to 10

t1=x(j)

x(j)=x(i)

x(i)=t1

t2=y(j)

y(j)=y(i)

y(i)=t2

10 k=nd2

20 if(k .ge. j)go to 30

j=j-k

k=k/2

go to 20

30 j=j+k

return

end

*__________________________________________________*

subroutine normal(smag ,nfft)

implicit real*8 (a-h,o-z)

dimension smag (*)

big = 0.d0

do i=1,nfft

if(smag(i).gt.big)big = smag(i)

end do

do i=1,nfft

tmp = smag(i)

smag(i) = smag(i) - big

end do
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return

end

*____________________________________________________*

subroutine window(psdr ,psdi ,smag ,sarg ,nfft ,iwndo)

implicit real*8 (a-h,o-z)

dimension psdr(*),psdi(*),smag(*),sarg(*),a(3)

data a / -0.1817d0 , -0.1707d0 , -0.1476d0/

data ampltd /0.9245 d0/

nfft1 = nfft - 1

nfft2 = nfft - 2

do 30 n=1,nfft

if(n.eq.1) then

xm1 = psdr(nfft)

ym1 = psdi(nfft)

xm2 = psdr(nfft1)

ym2 = psdi(nfft1)

xm3 = psdr(nfft2)

ym3 = psdi(nfft2)

go to 20

else if(n.eq.2) then

xm2 = psdr(nfft)

ym2 = psdi(nfft)

xm3 = psdr(nfft1)

ym3 = psdi(nfft1)

go to 15

else if(n.eq.3) then

xm3 = psdr(nfft)

ym3 = psdi(nfft)

go to 10

else if(n.eq.nfft2)then

xp3 = psdr (1)

yp3 = psdi (1)

go to 5

else if(n.eq.nfft1)then

xp2 = psdr (1)

yp2 = psdi (1)

xp3 = psdr (2)

yp3 = psdi (2)

go to 5

else if(n.eq.nfft)then

xp1 = psdr (1)

yp1 = psdi (1)

xp2 = psdr (2)

yp2 = psdi (2)
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xp3 = psdr (3)

yp3 = psdi (3)

go to 5

end if

5 xm3 = psdr(n-3)

ym3 = psdi(n-3)

10 xm2 = psdr(n-2)

ym2 = psdi(n-2)

15 xm1 = psdr(n-1)

ym1 = psdi(n-1)

20 x0 = psdr(n)

y0 = psdi(n)

if(n.eq.nfft)go to 25

xp1 = psdr(n+1)

yp1 = psdi(n+1)

if(n.eq.nfft1)go to 25

xp2 = psdr(n+2)

yp2 = psdi(n+2)

if(n.eq.nfft2)go to 25

xp3 = psdr(n+3)

yp3 = psdi(n+3)

25 smag(n) = x0 + a(1)*( xm1+xp1) + a(2)*( xm2+xp2)

1 + a(3)*( xm3+xp3)

30 sarg(n) = y0 + a(1)*( ym1+yp1) + a(2)*( ym2+yp2)

1 + a(3)*( ym3+yp3)

do 35 n=1,nfft

psdr(n) = ampltd*smag(n)

35 psdi(n) = ampltd*sarg(n)

return

end

*__________________________________________________*

subroutine psdanlyzr(frq ,pwr ,solntyp ,nfft ,itypsln)

implicit real*8 (a-h,o-z)

parameter(nfftmx =16384)

dimension frq(nfftmx),pwr(nfftmx)

dimension isvcntr(nfftmx),jsvcntr(nfftmx)

nsyflg = 0

cutoff = -150.d0
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fctr1 = 0.001 d0

fctr2 = 0.01d0

plvl = 20.d0

rmin = cutoff

psum = 0.d0

do i=1,nfft

if(pwr(i).lt.rmin)rmin = pwr(i)

psum = psum + pwr(i)

end do

pavg = psum/nfft

ccc write (*,*)’pavg =’,pavg

if(rmin.lt.cutoff)cutoff = rmin

icntr = 0

ipcntr = 0

ispcr = 9

itypsln = 0

iexp = 0

solntyp = 0.d0

isvcntr = 0

jsvcntr = 0

* Count number of peaks , and store locations at which they

* occur , assuming "clean" power spectrum

do i=5,nfft

dpm = 0.d0

dp = 0.d0

if(pwr(i).gt.pavg)then

dpm = pwr(i) - pwr(i-1)

if(i.lt.nfft)then

dpp = pwr(i+1) - pwr(i)

dp = dpm*dpp

end if

if(dp.le.0.d0.and.dpm.gt.0.d0)then

icntr = icntr + 1 !---increment number of peaks

isvcntr(icntr) = i !---store location of peak

end if

end if

if(dabs(pwr(i)-cutoff ).lt.1.d-12) ipcntr = ipcntr + 1

ccc !---count nonpeaks

end do ! end i-loop

ccc write (*,*)’icntr =’,icntr ,’ ipcntr =’,ipcntr ,

ccc 1 ’ isvcntr(icntr) =’,isvcntr(icntr)

icntr0 = icntr
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* Begin corrections needed to account for noisy data

nsyflg = 0

if(icntr.gt.ipcntr.or.icntr.gt.nfft /4) then

nsyflg = 1 ! noisy w/ fundamental

ipwr = 0

do i=1,icntr

if(pwr(isvcntr(i)).ge.pavg+plvl)ipwr = ipwr + 1

end do

if(ipwr.eq.0) then

nsyflg = 2 ! noisy w/o fundamental

ccc write (*,*)’nsyflg =’,nsyflg

icntr = 0

go to 20

end if

ccc write (*,*)’nsyflg =’,nsyflg

jcntr = 0

dpm = 0.d0

do j=ispcr ,nfft

* !---count prominent peaks inside noisy data

dpm = 0.d0

dp = 0.d0

if(pwr(j).gt.plvl+pavg)then

dpm = pwr(j) - pwr(j-1)

if(j.lt.nfft)then

dpp = pwr(j+1) - pwr(j)

dp = dpm*dpp

end if

if(dp.le.0.d0.and.dpm.gt.0.d0)then

jcntr = jcntr + 1 !---increment noisy peak count

jsvcntr(jcntr) = j

end if

end if

if(j.eq.nfft.and.jsvcntr(jcntr).ge.

1 int (0.999 d0*nfft))then

plclavg = 0.d0

do jj=nfft -3*ispcr ,nfft -ispcr

plclavg = plclavg + pwr(jj)

end do

plclavg = plclavg /(2* ispcr)

if(pwr(nfft).gt.0.25 d0*plvl+plclavg)then

jcntr = jcntr + 1 !---increment noisy peak count

jsvcntr(jcntr) = j

end if

end if

end do ! end j-loop

ccc write (*,*)’jcntr =’,jcntr ,’
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ccc jsvcntr(jcntr) =’,jsvcntr(jcntr)

* Refine the peak count for noisy data by finding the maximum

* peak within each neighborhood of a selected peak
icntr = jcntr

isvcntr = jsvcntr

jcntr = 0

jsvcntr = 0

do i=1,icntr

if(isvcntr(i).gt.2* ispcr.and.isvcntr(i).

1 lt.nfft -ispcr)then

jstrt = isvcntr(i) - ispcr

jstop = isvcntr(i) + ispcr

else if(isvcntr(i).le.2* ispcr)then

jstrt = ispcr

jstop = isvcntr(i) + ispcr

else if(isvcntr(i).ge.nfft -ispcr)then

jstrt = isvcntr(i) - ispcr

jstop = nfft

end if

jsv = 0

pmax = pwr(jstrt)

do j=jstrt ,jstop

if(pwr(j).gt.pmax)then

pmax = pwr(j)

jsv = j

end if

end do ! end j-loop

if(jsv.gt.0) then

jcntr = jcntr + 1

jsvcntr(jcntr) = jsv

end if

end do ! end i-loop

if(jcntr.gt.0) then

icntr = jcntr

isvcntr = jsvcntr

end if

end if

if(icntr.gt.1) then !---remove spurious peaks from

do k=1,icntr0 !---non -noisy and noisy data

jcntr = 0

if(k.gt.1) jsvcntr = isvcntr

do i=1,icntr -1

idfsvcnt = isvcntr(i+1) - isvcntr(i)

if(idfsvcnt.le.ispcr)then

if(pwr(isvcntr(i)).le.pwr(isvcntr(i+1))) then

jsvcntr(i+1) = isvcntr(i+1)
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jsvcntr(i) = 0

else

if(jsvcntr(i).ne.0.or.k.eq.1) jsvcntr(i) = isvcntr(i)

jsvcntr(i+1) = 0

end if

else

if(jsvcntr(i).ne.0.or.k.eq.1) jsvcntr(i) = isvcntr(i)

if(i.eq.icntr -1) jsvcntr(i+1) = isvcntr(i+1)

end if

end do

do i=1,icntr

ccc write(*,*)’i =’,i,’ isvcntr(i) =’,isvcntr(i),
ccc 1 ’ jsvcntr(i) =’,jsvcntr(i),’ pwr(isvcntr)’,
ccc 2 pwr(isvcntr(i))

end do

jcntr = icntr

icntr = 0

do j=1,jcntr !---reload peak locations after clean up

if(jsvcntr(j).gt.0) then

icntr = icntr + 1

isvcntr(icntr) = jsvcntr(j)

end if

end do

if(icntr.eq.jcntr)exit

end do

end if

ccc write(*,*)’icntr =’,icntr,’ ipcntr =’,ipcntr

* Determine type of behavior based on icntr and nsyflg values
20 if(icntr.eq.0) then ! broadband w/o fundamental

itypsln = 12

solntyp = 12.d0

return

end if

if(icntr.eq.1) then

if(nsyflg.eq.0) then ! periodic

if(isvcntr(icntr).gt.int (0.999 d0*nfft))then

itypsln = 1

solntyp = 1.d0

else ! periodic w/ different fundamental

itypsln = 2

solntyp = 2.d0

end if
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return

else if(nsyflg.eq.1) then ! broadband w/ fundamental

if(isvcntr(icntr).gt.int (0.999 d0*nfft))then

itypsln = 10

solntyp = 10.d0

else ! broadband w/ different fundamental

itypsln = 11

solntyp = 11.d0

end if

return

end if

end if

if(icntr.gt.1) then ! check for subharmonic ,

! quasiperiodic and phase lock

* Determine whether spectral peaks are evenly spaced
idfcntr = 1

frqmx = frq(isvcntr(icntr ))

do i=1,icntr -1

frq1 = frq(isvcntr(i))

frq2 = frq(isvcntr(i+1))

if(dabs(icntr*(frq2 -frq1)/frqmx -1.d0).lt .0.01d0)

1 idfcntr = idfcntr + 1

end do

* Determine whether number of peaks is power of 2
iexp = 0

if(isvcntr(icntr).gt.int (0.999 d0*nfft).and.

1 mod(icntr ,2).eq.0)

1 then

do j=1,icntr/2

if(icntr.eq.2**j)then

iexp = j

exit

end if

end do

end if

ccc write(*,*)’idfcntr =’,idfcntr,’ iexp =’,iexp

if(iexp.gt.0. and.idfcntr.eq.icntr)then

ccc ! subharmonic or phase lock
mgtdcnt = 0

if(pwr(isvcntr (1)).lt.pwr(isvcntr (2))) mgtdcnt = 1

do i=3,icntr -1,2

if(pwr(isvcntr(i)).lt.pwr(isvcntr(i+1)). and.

1 pwr(isvcntr(i)).lt.pwr(isvcntr(i-1)))

2 mgtdcnt = mgtdcnt + 1
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end do

if(mgtdcnt.eq.icntr /2.or.icntr.eq.2) then !subharmonic

if(nsyflg.eq.0) then

itypsln = 3

solntyp = 3.d0 !+ fctr2*iexp

else if(nsyflg.eq.1) then

itypsln = 6

solntyp = 6.d0 !+ fctr2*iexp

end if

return

else if(mgtdcnt.ne.icntr /2) then ! phase locked

if(nsyflg.eq.0) then

itypsln = 4

solntyp = 4.d0 !+ fctr1*icntr

else if(nsyflg.eq.1) then

itypsln = 7

solntyp = 7.d0

end if

return

end if

else if(iexp.eq.0. and.idfcntr.eq.icntr)then

ccc ! phase locked w/
if(nsyflg.eq.0) then

ccc ! arbitrary # of frqs
itypsln = 4

solntyp = 4.d0 !+ fctr1*icntr

else if(nsyflg.eq.1) then

itypsln = 7

solntyp = 7.d0

end if

return

end if

if(idfcntr.ne.icntr)then ! quasiperiodic

if(nsyflg.eq.0) then

itypsln = 5

solntyp = 5.d0 !+ fctr1*icntr

else if(nsyflg.eq.1) then

ccc write(*,*)’isvcntr(icntr) =’,isvcntr(icntr)
if(isvcntr(icntr).gt.int (0.999 d0*nfft))then

itypsln = 8

solntyp = 8.d0

else

itypsln = 9

solntyp = 9.d0

end if
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end if

return

end if

end if

return

end

*______________________________________________________*
*______________________________________________________*
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[32] P. Boivin, C. Jiménez A. L. Sánchez, F. A. Williams, An explicit reduced mecha-

nism for H2-air combustion, Proceedings of the Combustion Institute, 30:517–523,

2010.

[33] Overview of Intro to MPI class, Dartmouth College, modified Feb 14, 2011, Re-

trieved from: http://www.dartmouth.edu/~rc/classes/intrompi/

[34] D. Carbonell, C. D. Perez-Segarra, P. J. Coelho, A. Oliva, Flamelet mathematical

models for non-premixed laminar combustion, Combustion and Flame, 156:334–

347, 2009.
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[70] Ludwig Prandtl, Bericht Über die ausgebildete Turbulenz, Z. agnew. Math.

Mech., 5:136–139, 1925.
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