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ABSTRACT OF DISSERTATION

HIGH TEMPERATURE FLOW SOLVER FOR AEROTHERMODYNAMICS

PROBLEMS

A weakly ionized hypersonic flow solver for the simulation of reentry flow is firstly

developed at the University of Kentucky. This code is the fluid dynamics module of

known as Kentucky Aerothermodynamics and Thermal Response System (KATS).

The solver uses a second-order finite volume approach to solve the laminar Navier–

Stokes equations, species mass conservation and energy balance equations for flow in

chemical and thermal non-equilibrium state, and a fully implicit first-order backward

Euler method for the time integration. The hypersonic flow solver is then extended to

account for very low Mach number flow using the preconditioning and switch of the

convective flux scheme to AUSM family. Additionally, a multi-species preconditioner

is developed.

The following part of this work involves the coupling of a free flow and a porous

medium flow. A new set of equation system for both free flows and porous media flows

is constructed, which includes a Darcy–Brinkmann equation for momentum, mass

conservation, and energy balance equation. The volume-average technique is used

to evaluate the physical properties in the governing equations. Instead of imposing

interface boundary conditions, this work aims to couple the free/porous problem

through flux balance, therefore, flow behaviors at the interface are satisfied implicitly.
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Chapter 1 Introduction

1.1 Motivation

One of the most important aspects of planetary exploration is the ability to safely

enter the atmosphere of a planet, decelerate properly and land smoothly. Returning

from outer space, entry vehicles travel at tremendous speed during this process. A

flagship example is Stardust Sample Return Capsule (SRC), whose mission was to

collect samples of interstellar dust from the tail of comet WILD-2. It entered the

earth atmosphere at a velocity of 12.6 km/s [5], and is the fastest earth reentry and

highest energy reentry of any artificial vehicle thus far. In such conditions, the vehicle

is in the hypersonic flow regime, and a strong bow shock develops in front of it. This

includes large temperature levels and gradients that can trigger chemical reactions

and rapid energy transfers. The gas compression due to the shock wave, as well as

surface friction of the atmospheric gas, generates vast aerodynamic heating. Although

most of this heating dissipates into the surrounding atmosphere and is taken away by

the flow, a fraction still reaches the vehicle through conductive heating and radiation.

For instance, Fig. 1.1 shows a simulation of a Mach 10 Argon flow over a capsule, in

which the temperature jumps to above 6500 K behind the shock. Since vehicles are

subjected to this intense aerodynamic heating, it is critical to equip them with an

appropriate Thermal Protection System (TPS) in order to protect the payload and

ensure safe landing.

Early Entry, Descent and Landing (EDL) technology development and qualifica-

tion mostly relied on ground testing [6]. Until recently relatively few new develop-

ments have been made since the technology was developed and qualified in the 1960s

and 1970s. After the final Apollo flight in the mid-1970s, NASA’s manned operation

concentrated on the space shuttle program. The development of new EDL technolo-
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Flow Field
-Strong shock wave, reacting flow, thermal non-
equilibrium, radiation, transition, etc.
-CFD, DSMC, etc.

Surface
-Roughness effects, complex surface-chemistry 
interactions, spallation, ablation (oxidation, 
sublimation)
- B’ tables, chemistry model in the flow, 
chemistry model in the material response

Thermal Protection System
-Heat conduction, internal chemical reactions 
(pyrolysis), radiative emission, gas flow through 
porous media, etc.
-Complete Material Response code, surface re-
radiation, steady-state conduction, etc.

Figure 1.1: Simulation of Mach 10 Argon flow over Stardust capsule

gies has since found a new wind with the retirement of the space shuttles and the

design of a new generation capsule as the space vehicle.

For ground tests, the extreme free stream conditions experienced by the re-entry

vehicles are still quite di�cult to reproduce, and also hard to measure in an experi-

mental facility, even under current technology. The costs of these developmental tests

are also a concern. As mankind looks toward further missions to Mars, Venus and

beyond, flight tests performed on Earth are not able to assess and evaluate actual

mission conditions. Numerical modeling o↵ers an appealing solution as the cost of

high-performance computation drops while the computation power increases. Di↵er-

ent from experimental investigation, in which the fluid properties and behaviors can

be determined through observation (i.e. direct measurement), the accurate model-

ing of phenomena in hypersonic flight regime relies on understanding every aspect

of physics, and building suitable mathematical governing equations. The physical

2



phenomena associated to re-entry problems are shown in Fig. 1.1, and listed below:

• Flow Field: strong shock wave compression, shock layer radiation, chemical

reactions, thermal non-equilibrium, transition to turbulence

• Thermal Protection System: internal chemical reactions (pyrolysis), mass mo-

mentum such as gas flow through porous media, and heat transfer such as heat

conduction and radiative emission

• Surface: surface roughness e↵ects, complex surface-chemistry interactions, ab-

lation, spallation

Each problem can be respectively modeled by

• Flow Field: Computational Fluid Dynamics (CFD), Direct Simulation Monte

Carlo (DSMC), etc.

• Thermal Protection System: complete Material Response code, surface re-

radiation, steady-state ablation, etc.

• Surface: B0 tables (surface thermo-chemistry data), chemistry model in the

flow, chemistry model in the material response

Following the brief introduction on these three main research fields related to a typical

capsule reentry, details for each of them will be discussed, with a focus on the flow

field.

1.2 Flow Field

In literature, hypersonic aerothermodynamics defines flow regions in which the asso-

ciated Mach number is greater than 5 [7]. As vehicles fly from subsonic (Mach<1)

to supersonic regime (Mach>1), dramatic physical changes take place in the flow:

a shock wave is generated by the surface of the object and physical properties are

altered sharply across the shock because of intense compressibility. Di↵erent from

3



those of subsonic and supersonic region, in a hypersonic regime, nondimensional vari-

ables such as pressure coe�cient, lift and drag coe�cients, and flow field structure

become Mach number independent. This is the essence of the Mach number indepen-

dence principle [7] for hypersonic flow. To distinguish and characterize a flow from

supersonic, the hypersonic regime can also be suitably defined by certain physical

and chemical e↵ects which are prominent. These e↵ects can be mainly summarized

as real gas e↵ects, including high-temperature e↵ects, as well as thermal and chemical

non-equilibrium, as shown in the following subsections.

Mixture of Thermally Perfect Gases

It is necessary to understand the physical behavior of a gas in a hypersonic regime.

A gas is a collection of particles: molecules, atoms, ions, and electrons etc, which

are moving randomly. By ignoring intermolecular forces, the gas behaves as a perfect

gas [7], whose equation of state can be given by

p = ⇢RT , (1.1)

where p is the pressure, ⇢ is the density (inverse of the specific volume), T is the

temperature, and R is the specific gas constant.

A further assumption of the invariant specific heat ratio � = Cp/Cv implies a

calorically perfect gas, where Cp and Cv are constants, denoting the specific heat

at constant pressure and constant volume respectively. An even further assumption,

thermally perfect gas, is defined as the one where Cp and Cv are variables and specif-

ically are functions of temperature only [7]. For both calorically perfect gas and

thermally perfect gas, however, the perfect gas law (Eq. (1.1)) is still valid.

In this work, multi-species gases are considered. As the gas temperature increases,

high-temperature e↵ects appear. See [7, 8]:

• � is no longer constant. This is due to the excitation of vibrational energy as

temperature rises to a high level. The specific heats Cp and Cv act as functions
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of temperature. As a result, � depends on temperature. The vibrational energy

excitation e↵ects play important roles for air above the temperature of 800 K.

• Chemical reactions occur. In the entire shock layer, molecules dissociate

into atoms; atoms recombine into new molecules. The gas can even be partially

ionized at a much higher temperature. The gas species’ composition change

leads to the variation in pressure and density. Meanwhile, chemical reactions

are linked to energy consumption or release, which in turn changes the temper-

ature and gradient of the flow field. Chemical reactions can also occur in the

boundary layer, changing the gas composition near the wall, shifting the onset

of turbulence, and modifying the net heat flux to the surface.

• Thermal radiation is emitted. Besides the convective aerodynamic heating,

thermal radiation emitted from the gas can become very important in a high

temperature. During the Apollo reentries, radiative heating reached more than

30% of the total heat load.

By neglecting intermolecular forces, each individual species is assumed as a thermally

perfect gas and obeys the perfect gas law. Therefore, the gas in total involved in this

work is a mixture of thermally perfect gases.

Thermal and Chemical Non-equilibrium

For vehicles flying at hypersonic velocities during entry/re-entry, a fluid element

moves through the flow field so fast that its velocity time scale may be of the same

order as the thermal and chemical equilibrium relaxation time. Vibrational excitation

and chemical reactions are not allowed enough time to take place, and thus the flow

is considered to be in a state of thermo-chemical non-equilibrium.

Since a two-temperature model [9] is used to account for thermal non-equilibrium

in this work, in which a single temperature Ttr is used to describe translational

and rotational energy modes, and a single temperature Tve is used to describe vi-
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brational, electronic and electron translational energy modes, the degree of thermal

non-equilibrium can be evaluated by di↵erent levels of Ttr and Tve.

Thermal non-equilibrium can be observed in many regions of the flow field. Sec-

tion 4.3 studies the re-entry of the Stardust vehicle, where the relaxation region can

be seen behind the shock wave. In this region, the vibrational-electronic energy mode

lags behind the translation-rotational energy mode, as is seen by the di↵erent levels of

temperatures Ttr and Tve (Fig. 4.8 (a)). Another example is shown where the flow ex-

periences a strong expansion when it goes through a hypersonic convergent-divergent

nozzle facility. In this case, the translation-rotational energy has a high degree of

non-equilibrium with the vibrational-electronic energy along the radius in the nozzle

outlet as implied by the two temperatures (Fig. 4.32).

As pointed out above, a gas mixture reacts chemically in a high temperature. A

chemical reaction in the gas mixture occurs from collisions among the gas particles

to break the molecular bond. Since the vehicle flies at high speed, the flow is allowed

little time to go through the environment surrounding the vehicle. The character-

istic time for traveling velocity is, therefore, comparable to the one of the chemical

reactions. Thus, chemical reactions are not fully relaxed, and the flow is in chemical

non-equilibrium. A finite-rate chemical kinetics model is needed to take into account

this e↵ect.

General Numerical Approach to Model the Flow Field

In the flow field, problems can be characterized by local Knudsen number Kn, which

is defined as the ratio of the mean free path to some characteristic length based on

geometry or gradients. The mean free path is defined as the average distance of a

molecule travels before colliding with another molecule in a reference frame of the

flow field. Computational Fluid Dynamics (CFD) is a powerful numerical simulation

approach that has been introduced in the past three decades and can be used as a

design tool for reentry flow problems. The equation system is constructed assuming
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of a continuum description, which corresponds to low-Kn region. For rarefied gas or

low-density flow in high-Kn region, underlying assumptions in a continuum regime

tend to break down, and CFD is not valid, and other methods have to be used [10,11].

1.3 Thermal Protection System

Thermal Protection Systems are designed to withstand the high heating environment

of planetary entry, and to protect the underlying vehicle structure and payload. Since

the temperature level varies at di↵erent parts of the vehicle, several di↵erent materials

can be chosen for the TPS, considering that each material bears specific temperature

capability, durability, and weight [12, 13].

There are two main categories of TPS materials: ablative materials, such as the

one used on the Apollo missions, and non-ablative materials, such as the ceramic tiles

of the space shuttles. The former can also be divided into two sub-categories: charring

(also known as pyrolyzing) and non-charring ablators. Next generation of NASA

missions calls for larger, heavier entry system. One key challenge is the development

of low mass TPS for higher entry speeds. Of the many TPS options, light weight

charring ablators are very promising, and are more and more used because of their

e↵ectiveness and low density. They are made of a fibrous non-pyrolyzing matrix

(usually carbon or silicon carbide) and are impregnated with pyrolyzing material

(often phenolic resin). These materials react to the flow through pyrolysis and the

so-called “surface” ablation. Pyrolysis is the process in which the phenolic polymer

gradually carbonizes at high temperatures, losing mass, generating pyrolysis gases

and leaving pores within the material. These gasses are then expelled through the

porous structure of the material and blown into the chemical reacting boundary layer.

“Surface” ablation occurs in a thin volume near the surface TPS and takes the form

of mass loss through oxidation vaporization, and other erosive processes [14].

To numerically investigate the in-depth thermo-chemical behaviors of the charring

ablator problem, a Material Response (MR) code is used [15–19]. Details of the
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modeling approach of charring ablators are beyond the scope of this document, but

can be found in Ref. [19].

1.4 The Surface

Once the resin has pyrolyzed, the surface smoothness is altered because of the porous

nature of the material. The roughness of the ablative surface must be considered:

“dimples” in the surface can trigger the transition to turbulence in regions that were

previously laminar, thus drastically increasing heat transfer [20].

Pyrolysis chemistry e↵ects must also be modeled properly, which means that the

pyrolysis gas flowing through the porous surface must be carefully accounted for.

The flow field is a↵ected by the chemical species that are expelled from the ablating

surface and injected into the near-wall flow. The presence of this ablation gas greatly

reduces the heat flux on the vehicle by (1) thickening the thermal boundary layer and

reducing the temperature gradient near the wall; (2) blowing a relatively cooler gas

into the flow field; and (3) changing the gas composition near the wall which triggers

chemical reactions.

To account for the surface chemistry, one can use thermo-chemical tables (the

so-called B0 tables) that use boundary layer theory and heat transfer coe�cient to

extract ablation rates from equilibrium chemistry calculation. Otherwise, the surface

chemistry can be assessed from the flow side or the material side, using finite-rate

kinetics models.

1.5 Coupling of the Aerothermal Free Flow and the Flow in Thermal

Protection System

To analyze an atmospheric entry trajectory, traditionally, the heat flux and pressure

at the surface of the vehicle is calculated using a CFD solver. These surface values

are then fed into an MR code which calculates surface recession rate, pyrolysis gas

blowing rate, species composition and temperature evolution. In such a way, the

8



outer free flow and TPS can be loosely coupled. Because the entry process involves

transient interactions between spacecraft and the flow field, it is of interest to develop

a coupled method where both systems are solved simultaneously.

Recent research teams [21–24] have integrated a material response code within a

flow solver, using a strongly coupled approach. They use trajectory data to converge

the flow and compute the transient material response solution between trajectory

points. Their solid-gas interface, however, are not synchronized implicitly in time.

Moreover, the two solvers are not directly merged, and even though fully integrated,

the two codes are still separated and independent. For some certain type of problems,

a fully-coupled approach that provides time-dependent solutions for both the material

and the fluid is required.

Removing those surface e↵ects, coupling of the aerothermal flow field and the TPS

can be mainly taken as the coupling of a free flow and a porous medium flow, which

requires understanding of the physics at the free/porous interface. The following sec-

tion reviews the general research development on coupling of a free flow and a porous

medium flow to date, especially the interface condition implementations between two

flow regions.

Review on Coupling of A Free Flow and A Porous Medium Flow

Fluid entering a porous medium occurs over a wide range of natural phenomena

and industrial applications. It occurs, for instance, for water seeping into the ground,

seawater interacting within corals reef [25], a flow going through oil filters, and a mul-

tiphase counter-current flow in a packed bed reactor [26]. The mathematical theory

and numerical analysis are well established for either a free flow or a porous medium

flow: the Navier–Stokes equation is considered as a full description for the free flow’s

momentum in continuum, while Darcy’s law for the porous medium flow is formulated

based on experiments. In spite of being a research topic and a classical problem for

decades, coupling of a free flow with a porous medium flow is still unresolved. Even
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the mathematical theory of the coupled problem is not completely understood [27].

It is to be noted that, strictly speaking, the Navier–Stokes and Darcy’s equations

refer only to equations of momentum. A complete description of the fluid behavior

also includes mass conservation and energy conservation. Thus, when referring to

“coupling of a free flow with a porous medium flow”, the whole system of equation

is considered, not just the momentum e↵ects.

Coupling of a free flow and a porous medium flow can be accomplished by ana-

lyzing the whole problem in a two-domain or multi-domain method. That is, distinct

equation systems that account for each side are developed respectively. Two ma-

jor mathematical di�culties arise from coupling the two systems [28, 29]. First, the

orders of corresponding di↵erential operators of momentum equations (the Navier–

Stokes and Darcy’s law) are di↵erent on both regions. Second, the nature of the

boundary conditions at the interface between two regions is not trivial. An extension

of Darcy’s law, the Brinkman model [30], can remove the first di�culty. It is for-

mulated to account for the high porosity of the porous medium or to impose no-slip

conditions on solid walls.

When it comes to an application, previous works on the topic of using the multi-

domain method mainly considered incompressible, low-temperature flow regions. Mass

conservation is thus simplified to a divergence-free flow. Temperature changes can be

neglected most of the time, implying energy equation is not considered. Therefore,

the remaining di�culty lies in defining the condition for pressure, normal velocity

and tangential velocity. One classical condition states the continuity of pressure and

normal velocity across the interface. This approach is robust and generally accepted

as interface condition for both viscous and inviscid flows. In the case of tangential

velocity, one can assume it vanishes for very low permeability or it is continuous as

well for large permeability through the porous medium [31]. Beavers & Joseph [32]

proved the inaccuracy of both of these choices in their experiments, and later they

proposed an equation that accounts for the discontinuity of the interfacial tangential
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velocity. This boundary condition was validated experimentally by Beavers & Joseph

and analytically by Sa↵man [33]. Many other types of interfacial conditions have

been proposed since then, but mainly based on the manipulation of tangential veloc-

ity and tangential shear stress [34, 35]. In addition to these, Le Bars & Worster [31]

defined a viscous transition zone close to the interface on the porous medium side,

which yields a solution that agrees well with the already known result.

It is noted that coupling a free flow with a porous medium flow can also be

accomplished by analyzing the whole problem in a single-domain. The interface

between two subdomains is now within one domain implicitly, thus avoiding a lot of

mathematical di�culties. The Navier–Stokes equation or Darcy’s law is solved on

either side of the interface as the momentum equation accordingly. Alternatively, a

single Darcy–Brinkman equation [31] that is valid for both sides can be used. The

solution for the free flow and the porous medium flow are thus fully coupled. This

requires the development of a whole new universal code for both sides from the very

beginning, which is a very limited constraint, or to extend the current CFD solver to

become a universal code, which is more promising.

The literature related to the single-domain method concentrates on the finite-

element method (FEM) [36,37], and the control-volume finite-element method (CVFEM)

[3,4]. Recently, Schrooyen [38] extended a universal Discontinuous Galerkin Method

(DGM) solver and successfully simulated a multi-species reactive flow case with the

presence of a porous medium. However, traditional CFD solvers, especially the

modern hypersonic fluid dynamics solvers, are constructed in terms of finite volume

method (FVM).

1.6 Scope of Current Work

There is still a long way to go before having a real-time, full assessment of the whole re-

entry flight integrating all of phenomena previously described. This thesis, however,

aims to push the state of the art one step further by using compressible, viscous
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flow, and investigating coupled e↵ects for further use in exploring thermo-chemical

non-equilibrium e↵ects in hypersonic flows with ablation.

For this purpose, a CFD code has been developed to solve the flow field. This flow

solver is part of the Kentucky Aerothermodynamics and Thermal Response System

(KATS) [39] for the work. KATS also includes an MR solver, which shares the

same numerical platform and framework as the CFD solver, that has been developed

independently and is not part of this work [40].

This proposed work mainly consists of two topics. First, the development of a

CFD solver, using FVM, capable of accurately and e�ciently dealing with thermo-

chemical non-equilibrium e↵ects in weakly ionized hypersonic flows, as well as very

low Mach number flows via switch of convective flux schemes and the use of a pre-

conditioner. It has been extensively coupled with the MR solver [41] and spallation

phenomenon code [42–44].

The second topic focuses on the modification or extension of the CFD solver to

couple the free flow and the porous medium flow involved in the coupling of the

aerothermal flow field and the TPS. A first attempt is made on the multiple-domain

method [41], which is carried out to couple the existing CFD solver and MR solver

through balancing the fluxes at the flow/porous interface. A series of coupling nu-

merical tests are conducted progressively. Promising results are obtained for free flow

coupled with solid material through heat and mass transfer only, both in transient

and steady state. However, the boundary condition inconsistency in the full coupling

flow tube problem is still a question for further investigation. Later, a single-domain

method is selected. Specifically, a new Darcy–Brinkman equation for the compressible

free flow and the porous medium flow is developed. The mass conservation and en-

ergy balance are also volume averaged by incorporating the porosity. The location of

the free flow region and the porous medium is known a priori. Transitions of di↵erent

regions are through controlled values of porosity and permeability. Coupling of the

free flow and the porous medium flow is thus implicitly accomplished, and solutions
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of the free flow field and the porous domain are solved simultaneously. Additionally,

instead of imposing explicit interface boundary conditions, such as Beavers & Joseph

conditions in the FEM and CVFEM, this work aims to let the flow “formulate” inter-

face conditions implicitly. This is achieved by balancing the flux across the interface,

the same as for the free flow and the porous medium flow itself.

Copyright c� Huaibao Zhang 2015.
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Chapter 2 Governing Equations of Fluid Dynamics

2.1 Introduction

The governing equations necessary to model the flow field take the form of unsteady

compressible Navier–Stokes equations, combined with mass conservation and energy

conservation equations. They can be cast in conservation form, in three-dimensional

Cartesian coordinates as

@Q

@t
+r · (FFF �FFFd) = S . (2.1)

By introducing the JacobianJJJ = @Q
@P , the primary dependent variables in the time

derivative are changed from the conservative variables Q to the primitive variables

P while preserving the conservative formulation:

JJJ @P

@t
+r · (FFF �FFFd) = S . (2.2)

The reason justifying this change of dependent variables is two-fold. First, it is closely

associated to the implementation of Jacobians. In this work, numerical flux Jacobians

are constructed based on primitive variables rather than conservative variables. Using

the primitive variables also facilitates the derivation of analytical Jacobians. Secondly,

preconditioning can be accomplished by modifying only some specific terms in the

matrix JJJ . Such modification is needed for very low Mach number flow. This pro-

cedure can rescale the system eigenvalues, overcome the disparity among them and

successfully be able to converge a steady-state solution with satisfactory convergence

rate.

In the energy equation, the flow can either be described by a single temperature

T , when in equilibrium, or by two temperatures, when in non-equilibrium. The
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latter assumes that the translational and rotational energy modes of the participating

species are described by a single temperature Ttr, while the vibrational and electronic

energy modes, as well as electron translational energy mode, are characterized by a

single temperature Tve.

Within all of the numerical context described above, the vectors of conserved

variables, primitive variables and source terms respectively take the form of:
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.

In these expressions, ⇢i denotes density for each species, and subscript ns stands

for number of species in the mixture. ⇢ is the total density, and u, v, w are the bulk

velocity components. E, as well as Eve are the total energy and vibrational-electron-

electronic per unit volume characterized by temperature Ttr, and Tve, respectively.

ẇ
1

. . . ẇns are the species mass production rates introduced by chemical reactions. ẇv

is the vibrational energy transfer rate between two di↵erent energy modes.

The flux matrices FFF = F î+G ĵ+H k̂, and FFFd = Fd î+Gd ĵ+Hd k̂ are given

by
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0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�Jx,1 �Jy,1 �Jz,1

· · · · · · · · ·
�Jx,ns �Jy,ns �Jz,ns

⌧xx ⌧yx ⌧zx

⌧xy ⌧yy ⌧zy

⌧zx ⌧zy ⌧zz

⌧⌧⌧u� (qtr + qve)�
Pns

i=1

(Jihi)

�qve,x �
Pns

i=1

(Jx,seve,s) �qve,y �
Pns

i=1

(Jy,seve,s) �qve,z �
Pns

i=1

(Jz,seve,s)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

where p is the total pressure, ⌧ij is each component of the viscous tensor ⌧⌧⌧ , Ji,s the

di↵usion flux of species s in i-th direction. qtr,i and qve,i are the directional heat fluxes.

qtr, qve, and J are in vector form to maintain consistent representations.

Perfect Gas Law

As noted in Section 1.2, each species of the gas mixture can be assumed as a thermally

perfect gas, and obey the perfect gas law.

ps =

8

>

>

<

>

>

:

⇢sRsTtr for molecules and atoms,

⇢eReTve for electrons.

(2.3)
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As can be observed, the partial pressure of electrons is characterized by Tve rather

than Ttr. The specific gas constant is given by

Rs =
Ru

Ms
. (2.4)

where Ru is the universal gas constant, given by 8.31441 J/(mol K), and Ms is the

molar mass for species s, with detailed values found in Ref. [45].

Dalton’s law of partial pressure states that the total pressure of a gas mixture

is the summation of the partial pressures of the individual components of the gas

mixture.

p =
ns
X

s

ps . (2.5)

Similarly, the total density of a gas mixture is given by

⇢ =
ns
X

s

⇢s . (2.6)

Thermodynamic Relations: Energy, Enthalpy, and Specific Heat

The total energy per unit volume, E, and the total enthalpy per unit volume, H, are

respectively given by [46]

E =
ns
X

s

⇢ses +
1

2
⇢(u2 + v2 + w2) , (2.7)

and

H = E + p . (2.8)

From Eq. (2.7), the total energy is the summation of the energy of all of the

species. A molecule, for instance, has four energy modes [7]: translational energy,

which is the translational kinetic energy of the molecule; rotational energy, which

arises from the energy of rotating about three orthogonal axes in space; vibrational

energy, which is due to the vibration of atoms of the molecule with respect to the

equilibrium location within the molecule; electronic energy, which is due to the motion
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of electrons about the nucleus. Each energy mode can be expressed as a reference

level energy plus a zero-point energy, where the reference level energy is generally

computed (or measured) easily. Then the total energy of a molecule, es, is thus

represented as the sum of its translational, rotational, vibrational, electronic, and

total zero-point energy, i.e. et,s, er,s, ev,s, eel,s and ho
s respectively.

es = et,s + er,s + ev,s + eel,s + ho
s , (2.9)

where ho
s can also be called the energy of formation.

The translational and rotational energy per unit mass of the species (except for

electrons) are linear functions of temperature Ttr, such that

et,s = Cvt,sTtr , (2.10)

and

er,s = Cvr,sTtr . (2.11)

The vibrational and electronic energy for molecules and atoms, and electron trans-

lational energy per unit mass are taken together, given by

eve,s =

8

>

>

<

>

>

:

ev,s + eel,s for molecules and atoms,

Cvt,eTve for electrons.

(2.12)

where it can be noticed that electrons’ single energy mode, the electron translational

energy mode, is characterized by Tve in this work. The species vibrational energy per

unit mass, ev,s, is expressed as

ev,s =

8

>

>

<

>

>

:

Ru

Ms

✓v,s
exp(✓v,s/Tv,e)� 1

for molecules,

0 for atoms and electrons.

(2.13)

where ✓v,s is the species characteristic vibrational temperature. The electronic energy

per unit mass, eel,s, shows

eel,s =

8

>

>

<

>

>

:

Ru

Ms

P1
i=1

gi,s✓el,sexp(�✓el,i,s/Tv,e)
P1

i=0

gi,sexp(�✓el,i,s/Tv,e)
for molecules and atoms,

0 for electrons.

(2.14)
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where ✓el,s, and gi,s are the species characteristic electronic temperature and the

degeneracy of the energy level i, respectively. Note that the index of summation

starts from 0 in the denominator, while from 1 in the numerator.

To sum up, the total energy, es, and enthalpy, hs, per unit mass for each species

is given by

es =

8

>

>

<

>

>

:

Cvtr,sTtr + eve,s + ho
s for molecules and atoms,

eve,e for electrons.

(2.15)

and

hs =
ps
⇢s

+ es . (2.16)

The total energy, shown in Eq. (2.7), becomes

E =
X

s 6=e

⇢sCvtr,sTtr +
X

s

⇢seve,s +
X

s 6=e

⇢sh
o
s +

1

2
⇢(u2 + v2 + w2) , (2.17)

and the total vibrational-electron-electronic energy is give by

Eve =
X

s

⇢seve,s . (2.18)

The computation of energy modes above involves the expression of associated

specific heat. A generic form of the total specific heat for a species can be summarized

as

Cv = Cvt,s + Cvr,s + Cvv,s + Cve,s , (2.19)

where the translational specific heat Cvt,s, as well as rotational specific heat Cvr,s at

constant volume are constants for each species which can be added up to be

Cvtr = Cvt,s + Cvr,s . (2.20)

Similarly, combining the vibrational and electronic specific heat yields a vibrational-

electronic specific heat at constant volume,

Cvve,s = Cvv,s + Cve,s . (2.21)
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Each specific heat is detailed as

Cvt,s =
3

2

Ru

Ms
for all species , (2.22)

and

Cvr,s =

8

>

>

<

>

>

:

Ru

Ms
for molecules,

0 for atoms and electrons.

(2.23)

The vibrational energy specific heat at constant volume, Cvv,s, is calculated through

the derivative of ev,s with respect to temperature Tve:

Cvv,s =

8

>

>

<

>

>

:

@ev,s
@Tve

for molecules,

0 for atoms and electrons.

(2.24)

where
@ev,s
@Tve

=
Ru

Ms

(✓v,s/Tve)2exp(✓v,s/Tve)

[exp(✓v,s/Tve)� 1]2
. (2.25)

In a similar way, the electronic energy specific heat at constant volume, Cvel,s, is

given by

Cvel,s =

8

>

>

<

>

>

:

@eel,s
@Tve

for molecules and atoms,

0 for electrons.

(2.26)

where

@eel,s
@Tve

=
Ru

Ms

n

P1
i=1

gi,s(✓el,i,s/Tve)2exp(�✓el,i,s/Tve)
P1

i=0

gi,sexp(�✓el,i,s/Tve)

� [
P1

i=1

gi,s✓el,i,sexp(�✓el,i,s/Tve)][
P1

i=0

gi,s(✓el,i,s/Tve)2exp(�✓el,i,s/Tve)]

[
P1

i=0

gi,sexp(�✓el,i,s/Tve)]2

o

.

(2.27)

Again, attention must be paid on the index of summation in this equation.

At last, the translational specific heat for electrons, Cvt,e, has essentially already

been considered in the above definitions, i.e.

Cvt,e =
3

2

Ru

Me
. (2.28)

20



Transport Terms

Mass di↵usion fluxes for each species are assumed to be modeled by Fick’s first law.

Is = �⇢DsrYs , (2.29)

where Ds is the species di↵usion coe�cient, determined in the following subsection.

Ys is the species mass fraction given by

Ys =
⇢s
⇢

, (2.30)

A modified version of the mass di↵usion fluxes is used in this work, which ensures

that the summation of mass di↵usion fluxes is zero. It proves a significantly more

accurate result than the original form [47].

Js 6=e = Is � Ys

ns
X

r 6=e

Ir , (2.31)

The di↵usive flux of electrons is modeled di↵erently from that of the molecules and

atoms. It is constructed assuming ambipolar di↵usion [48], which states the positive

and negative species have the same charges in mass di↵usion, thus charge neutrality

of the flowfield can be maintained.

Je = Me

ns
X

s 6=e

JsGs

Ms
, (2.32)

where Gs is the species charge.

The viscous shear stresses are modeled assuming a Newtonian fluid: they are

related to the strain rate by the bulk viscosity, µ, from Stokes’ hypothesis.

⌧ij = µ

✓

@uj

@xi
+

@ui

@xj

◆

+ �
@uk

@xk
�ij , � = �2

3
µ . (2.33)

Fourier’s law is used to account for the heat fluxes:

qtr = �trrTtr , (2.34a)
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and

qve = �verTve , (2.34b)

where tr and ve is the mixture thermal conductivity for each energy mode, deter-

mined in the following section as well.

Transport Properties

The viscosity is either calculated using Sutherland viscosity model [49] or a viscosity

model for reacting flow developed by Blottner [50], which calculates species viscosity

using a curve fit

µs = 0.1 exp[(AslnT +Bs)lnT + Cs] , (2.35)

where As, Bs and Cs are constants determined for each species.

By relating to species viscosity, Euken’s relations [51] are used to account for

species thermal conductivity,

ktr,s =
5

2
µsCvt,s + µsCvr,s and kve,s = µsCvve,s . (2.36)

Finally, the mixture transport properties viscosity µ and thermal conductivities

tr and ve are approximated by using Wilke’s semi-empirical mixing rule [52],

µ =
ns
X

s

Xsµs

�s
and  =

ns
X

s

Xss

�s
, (2.37)

where Xs refers to species molar fraction, and coe�cient �s is detailed as

�s =
ns
X

r

Xr



1 +
q

µ
s

µ
r

⇣

M
r

M
s

⌘

1/4
�

2

q

8 (1 + M
s

M
r

)
. (2.38)

The species mass di↵usion coe�cient Ds may not be the same for di↵erent species,

however, it can be approximated by a single binary coe�cient D when the typical
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velocity is below 10 km/s. The value of D is calculated by assuming a constant Lewis

number, Le,

D =
Le tr

⇢Cp
tr

, (2.39)

Cp
tr

is the mixture translational-rotational specific heat at constant pressure.

The widely used Wilke’s mixing rule, along with Blottner curve fit and Eucken’s

relation is simple to solve for the bulk viscosity and thermal conductivity only when

the flow velocity is relatively slow and the maximum temperature is no more than

10,000 K [53,54]. For weakly ionized gas mixtures, however, Gupta’s mixing rule [55]

using integration method is able to provide more accurate descriptions of transport

properties [53], and should be used.

2.2 Source Terms

The source terms involve two main e↵ects: the mass production due to chemical

reactions for each species, ẇs, and the vibrational energy transfer between di↵erent

di↵erent energy modes, ẇv.

Chemical Kinetic Model

For a reacting flow, the classical reactions can be classified as dissociation, exchange,

recombination, ionization, charge exchange and impact ionization. All these, however,

can be represented in a generic way as

ns
X

i=1

⌫ 0
irAi ⌦

ns
X

i=1

⌫ 00
irAi , (2.40)

where Ai denotes any one of the species in reaction r. The species on the left-

hand side are the reactants, and the ones on the right-hand side are products. In

the equations, ⌫ 0 and ⌫ 00 represent the stoichiometric coe�cients for reactants and

products respectively.
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Following Eq. (2.40), the chemical production rate of species Ai in reaction r is

given by

ẇir = (⌫ 00
ir � ⌫ 0

ir)

"

103kfr

ns
Y

j=1

(10�3

⇢j
Mj

)⌫
0
jr � 103kbr

ns
Y

j=1

(10�3

⇢j
Mj

)⌫
00
jr

#

, (2.41)

where subscript j represents the jth species in this reaction. kfr and kbr denote the

forward and backward reaction rate coe�cients respectively.

It should be noted that the centimetre-gram-second unit system (abbreviated

CGS or cgs) is generally used in the calculation of chemical reactions. Therefore, the

factor 10�3 converts the concentration from kmol/m3, the units of ⇢j/Mj, to mol/cm3

in the reaction calculation, and the factor 103 recovers kmol/m3 from mol/cm3.

The net mass rate of production of species Ai is given by

ẇi = Mi

X

r

ẇir , (2.42)

which has the unit of kg/(m3·s). Mi denotes the molar mass of species Ai.

Coe�cients kfr and kbr take account of levels of the non-equilibrium in the flow,

as they are functions of fluid temperatures. Di↵erent temperatures can influence dif-

ferent chemical reactions mechanism. Although there are many temperature models

in the literature [56], Park’s two-temperature model [57] is used in current work,

which assumes that the dissociation reactions are controlled by a combination of the

translational-rotational temperature Ttr and the vibrational-electron-electronic tem-

perature Tve. The dissociation temperature within Park’s two-temperature model is

given by

TP2

= T
a
f

tr T
b
f

ve . (2.43)

The typical values for coe�cients a and b are usually: af = bf = 0.5 or af = 0.7

and bf = 0.3. In this work, the first set of values is used. Park’s modification to

temperature expresses the fact that it is easier for the vibrationally exited molecules

to dissociate.
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The forward reaction rate is temperature dependent and can be calculated using

an empirical formula, the Arrhenius curve fit, which is given by

kfr = AfrT
⌘
r

c exp(�Tar/Tc) , (2.44)

where coe�cients Afr, ⌘r and Tar are all independent of temperature Tc, and can be

determined from experiments [58, 59]. It is noted that the characteristic activation

temperature is defined by

Tar =
Ear

Ru
, (2.45)

where Ear is the activation energy. Tc represents the temperature for each specific

reactions scheme, for example, Park’s temperature. The backward reaction rate is

not directly computed. Instead, it is obtained as the ratio of the forward reaction

rate over the associated equilibrium rate.

kbr(Tbc) =
kfbr(Tbc)

Kcr(Tbc)
, (2.46)

where Tbc might not be the same as the Tc used for the forward reaction. Park’s

temperature model suggests

Tbc = T a
b

tr T
b
b

ve . (2.47)

It can be found from Appendix A that the backward controlling temperature for

dissociative recombination, impact ionization and impact dissociation is Tve.

The equilibrium constant Kcr can be calculated by using Gibb’s free energy as [7]

log Kcr = �
ns
X

i=1

(⌫ 00
ir � ⌫ 0

ir)ĝi(Tbc)

RuTbc
� log (RuTbc)

ns
X

i=1

(⌫ 00
ir � ⌫ 0

ir) , (2.48)

where ĝi is the Gibbs energy per unit mole of ith species and it is given by

ĝi = ĥi � Tbcŝi , (2.49)

where ĥi and ŝi are the enthalpy and entropy of species i per unit mole, respectively.

Manipulation of the Eq. (2.48) yields

Kcr = (
p
0

RuTbc
)⌫r exp

(

�
X

i

"

(⌫ 00
i,r � ⌫ 0

i,r)

 

bhi

RuTbc
� bsi

Ru

!#)

, (2.50)
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where pressure p
0

is a reference pressure set to 1 bar, while in the computation

framework its value p
0

=0.1 and Ru = 8.31441, which are both in CGS unit system.

Also, ⌫r is given by

⌫r =
ns
X

i

(⌫ 00
ir � ⌫ 0

ir) . (2.51)

The specific heat for each species, cCpi/Ru , is a function of temperature, repre-

sented in NASA format using 7 least-squares coe�cients [60]

cCpi

Ru
=

8

X

i=1

aiT
q
i

bc , (2.52)

which implies a
8

= 0. The normalized enthalpy and entropy are then obtained

through relations to specific heat

bhi

RuTbc
=

R

cCpidTbc

RuTbc
, (2.53)

and

bSi

Ru
=

Z

cCpidTbc

RuTbc
. (2.54)

Two new integration constants a
9i and a

10i will be generated in this process, in

detail

bhi

RuTbc
= �a

1i
1

T 2

bc

+a
2i
ln(Tbc)

Tbc
+a

3i+a
4i
Tbc

2
+a

5i
T 2

bc

3
+a

6i
T 3

bc

4
+a

7i
T 4

bc

5
+a

8i+a
9i

1

Tbc
,

(2.55)

and

bsi
Ru

= �a
1i

1

2T 2

bc

�a
2i

1

Tbc
+a

3i ln(Tbc)+a
4iTbc+a

5i
T 2

bc

2
+a

6i
T 3

bc

3
+a

7i
T 4

bc

4
+a

8i ln(Tbc)+a
10i .

(2.56)

All of the coe�cients can be found in the data table in Appendix A.
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Relaxation Model

Multiple energy exchange mechanisms contribute to the vibrational energy term. All

of them occur in a molecular level, and there are no definitive models. Simplifications

of physical and complicated energy exchange processes have to be made based on

related assumption. The total vibrational energy source term is given by

ẇv = Sepg + Sc2v + St2v + Sh2e � Se2i . (2.57)

Each relaxation term is described in the following subsections.

Work on Electrons

When there exists electron pressure gradient in the electric field, it does work on

electrons [46, 61]. The approximation to this e↵ect is given by

Sepg = �per · u . (2.58)

It is, however, not switched on in the following simulations.

Energy Exchange due to Chemical Reactions

Two typical models can be used to account for the vibrational-electron-electronic

energy, Sc2v, created or removed at chemical reactions rate ẇs: the preferential model

and the non-preferential model. The preferential model is given by

Sc2v =
X

s=mol.

ẇs(D
0
s + eel,s) , (2.59)

which assumes the dissociation and recombination of molecules are more likely to

occur in a higher vibrational states. That indicates the dissociation potential Ds is

greater than the average vibrational energy ev,s. Usually, a fraction of Ds is taken

and Sharma, Huo, and Park suggest [62]

D0
s = ↵Ds , (2.60)
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with the typical value of ↵ being 0.3. The dissociation potential of the molecule Ds

can be found in Appendix A for the 11-species air model.

In this work, however, the non-preferential model is used, which assumes that

molecules are created or consumed at the average vibrational energy – in a relative

low vibrational energy level, i.e.

D0
s = ev,s . (2.61)

Translational-Vibrational Energy Exchange

The energy exchange between the translational-rotational and vibrational-electronic

energy modes for molecules, St2v, accounts for most of the total energy exchange.

The model generally used was proposed by Landau-Teller [51], which assumes a single

energy exchange rate given by

St2v =
X

s=mol.

⇢s
e⇤vs � evs

⌧s
, (2.62)

where the single vibrational relaxation time is

⌧s = h⌧si+ ⌧ps , (2.63)

in which the molar averaged Landau-Teller relaxation time, h⌧si, is given by

h⌧si =
P

r Xr
P

r Xr/⌧sr
, (2.64)

where Xr is the molar mass fraction of non-electronic species r, and ⌧sr, the Landau-

Teller inter-species relaxation time, can be modeled using curve fits method. Millikan

and White [63] formulated a semiempirical correlation between ⌧sr and temperature

range of 300 to 8000 K,

⌧sr =
po
p
exp

⇥

Asr

�

T�1/3 � Bsr

�� 18.42
⇤

. (2.65)
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The reference pressure po = 101325 Pa. And the coe�cients Asr and Bsr are given

respectively by

Asr = 1.16⇥ 10�3µ1/2
sr ✓4/3vs , (2.66)

Bsr = 0.015µ1/4
sr , (2.67)

where µsr is the reduced molecular weight of the colliding species s and r,

µsr =
MsMr

Ms +Mr
, (2.68)

and ✓vs can be found in the Appendix A chemistry data table for each species involved

in 11-species air model. Instead of computing values of Asr and Bsr, the tabulated

data for them are used in this work as shown in Appendix A. For temperature above

8000 K, Park [57] found the e↵ective cross section given previously highly overpre-

dicted at high temperatures, thus Millikan and White’s curve fits relaxation time

has to be corrected. He suggests a modification by adding an additional vibrational

relaxation time ⌧ps to h⌧si in Eqn. (2.64)

⌧ps =
1

�scsNs
, (2.69)

where �s is the limiting cross section (unit length squared) expressed by

�s = 10�21 (50, 000/T )2 m2 . (2.70)

cs is the average molecular velocity of the species s, given by

cs =

r

8RuT

⇡Ms
, (2.71)

and Ns is the number density of the species.

Electronic-Vibrational Energy Exchange

The energy exchange between heavy particles and electrons, Sh2e, is given by

Sh2e = 3Ru⇢e(T � Tv)

r

8RuTv

⇡Me

X

r 6=e

⇢rNa

M2

r

�er . (2.72)
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For the collisions between electrons and neutrals

�er = 1⇥ 10�19 m2 . (2.73)

While for the collisions between electrons and ions

�er =
8⇡

27

✓

e2

kTe

◆

2

10�4 ln

"

1 +
9

4⇡

✓

kTe

e2

◆

3 1

N⇤
e

#

, (2.74)

where

N⇤
e = max(1, Ne) , (2.75)

and

Ne = 10�6Na
⇢e
Me

. (2.76)

Ne and e in Eqn. (2.74) are both in centimetre-gram-second unit system

(abbreviated CGS or cgs), while the others are in SI. Te equals to Tve in this work

and it has the unit of K. The associated constants are listed in Table. 2.1.

Table 2.1: Constants

Constant Symbol Value Unit

Avogadro constant Na 6.022045⇥ 1023 mol�1

Pi ⇡ 3.14159265359
Boltzmann constant k 1.380662⇥ 10�23 J/K
Charge of electron e 4.8032⇥ 10�10 statcoulomb

The average molecular speed of the gas species, ci, is given by

ci =

r

8RuT

⇡Mi
, (2.77)

where Ru is the gas constant, its value given by Ru = 8314.41 J/(kmol·K), T equals

Ttr, and Mi is molar mass in kg/kmol.

Energy Exchange During Impact Ionization Reactions

In an impact ionization reaction, such as shown in Eqn. (2.78), a free electron strikes

a neutral atom, and another electron is freed.

N + e� ↵ N+ + e� + e� . (2.78)
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In this model, the energy used to ionize the neutral, represented by Se2i, is removed

from the electron translational energy, thus is a negative contributor to vibrational-

electron-electronic energy, Eve. For the 11-species air model, only neutral N and O

are involved in impact ionization reactions. In total, the energy are accounted by

Se2i = MN+ẇN+ ÎN +MO+ẇO+ ÎO , (2.79)

where MN+ , and MO+ is the molar mass, ẇN+ , and ẇO+ is the mass production rate

for ionized species N+ and O+, respectively. ÎN , and ÎO is the energy required to

ionize the species N and O, respectively. It can be taken from the ground state, i.e.

the first energy of ionization, which assumes all of ionization energy comes from the

electron. This overestimates the amount of energy necessary for this reaction and

probably lead to a negative Eve in simulations. In this work, they are set to be 1/3 of

the first energy of ionization. Compared to other source terms, the contribution from

impact ionization reactions are small to the overall energy balance [46]. Associated

values are listed in Appendix A.

Copyright c� Huaibao Zhang 2015.
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Chapter 3 Numerical Framework for Flow

Dynamics

3.1 Introduction

In this chapter, the numerical solution algorithms that have been developed and used

through the years in e↵orts to solve the di↵erential governing equations for hypersonic

flows are derived and discussed. To begin, the set of di↵erential equations described

in the previous chapter is integrated over a computation grid (often called “weak

form”), which allows discontinuous solution and non-di↵erential solution such as the

presence of shocks and expansion fans.

The conservation laws are applied to each generic cell – the control volume (or

“finite volume”) – which refers to the small volume of each cell on a mesh after

discretization technique is used for the fluid domain under consideration.

Starting from the governing equation derived in the previous chapter,

JJJ @P

@t
+r · (FFF �FFFd) = S , (3.1)

the weak form of the governing equation can be obtained by integrating over a finite

volume V for an arbitrary mesh cell.

ZZZ

V

JJJ @P

@t
dV =

ZZZ

V

r · (FFFd �FFF) dV +

ZZZ

V

S dV , (3.2)

where FFF = F î + G ĵ + H k̂ denotes the convective flux across the surface, and

FFFd = Fd î +Gd ĵ +Hd k̂ is the di↵usive flux at the surface, and S is the chemistry

and non-equilibrium source term. Applying Gauss theorem, the following is obtained:

ZZZ

V

JJJ @P

@t
dV =

ZZ

A

(FFFd �FFF) · n dA+

ZZZ

V

S dV . (3.3)
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It is assumed that within the control volume the physical properties are uniform

everywhere (although not at the faces) and can be represented by the ones at the cell

center. The time derivative on the left-hand side can be taken out of the integration.

The integration of the fluxes across each surface can be accounted as their summation.

This gives rise to:

Vcell JJJ @P

@t
=
X

j2cell

(FFFd �FFF) · nj Aj + Vcell S ⌘ R , (3.4)

where Vcell is the volume enclosed by the surfaces Aj.

For hypersonic chemically reacting viscous flow, because of the wide variety of time

scales involved and the exponential dependence of reaction rates on temperature, the

equation system may be very sti↵ to solve. To maintain stability and avoid strict

time step size restrictions, a backward Euler approach is used. Most current work

considers a steady state solution, therefore only first order accuracy is maintained.

Eq. (3.4) therefore becomes:

Vcell JJJ n Pn+1 �Pn

�t
= Rn+1 = Rn +

✓

@R

@P

◆n

(Pn+1 �Pn), (3.5)

where the right hand side (or residual) vector R at time level n+ 1 is linearized as a

function at time level n.

Finally, the linear system is cast in the following form, allowing the direct update

of the physical variables instead of the conserved quantities:



Vcell

�t
JJJ n �

✓

@R

@P

◆n�

�P = Rn . (3.6)

The new solution variables are given by

Pn+1 = Pn +�P . (3.7)

The time dependent solution variables are therefore advanced by a physical time step

size �t. The computation starts from an initial guess, and a steady state solution

will be finally achieved in this process.
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The decomposition of Eq. (3.6) for a generic cell, l, leads to



Vcell

�t
JJJ n +AAA+

l �BBB+

l � CCCl �DDDl

�

�Pl +
X

r

⇥AAA�
r �BBB�

r

⇤

�Pr = Rn
l , (3.8)

where the subscript r indicates its neighbors, real cell or boundary ghost cell. The

Jacobian matrices are listed as

AAA+

l =
@Fn

@Pl
and AAA�

r =
@Fn

@Pr
, (3.9)

BBB+

l =
@Fdn

@Pl
and BBB�

r =
@Fdn

@Pr
, (3.10)

CCCl +DDDl =
@Sl

@Pl
. (3.11)

3.2 Calculation of Flux Vector

Convective Flux Vector

Multiple Riemann solvers are implemented in KATS, such as Roe flux di↵erence

scheme, AUSM+-up, and Steger-Warming flux splitting scheme. Among these, Steger-

Warming flux works reasonably well for hypersonic flow and internal nozzle flow. Roe

scheme is also adequate for hypersonic flow and supersonic flow. AUSM+-up is de-

signed to be uniformly valid for flows of all speed regimes. For flow at very low

Mach number, it generates more accurate results especially when combined with a

low-speed preconditioning.

In the proposed work, only modified Steger-Warming flux splitting scheme, how-

ever, is discussed in detail. For more details of implementation and modification of

Roe flux di↵erence scheme and AUSM+-up, one can read Ref. [64] and [65].

The homogeneity property of the inviscid flux vector [66] at a generic face is given

by

FFF · n = FFFn =AAAQ , (3.12)
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where the Jacobian matrix

AAA =
@Fn

@Q
. (3.13)

A splitting of inviscid flux vector Fn is then accomplished by an appropriate

splitting of the Jacobian matrix AAA, i.e.

Fn = F+

n + F�
n =AAA+

l Ql +AAA�
r Qr , (3.14)

where positive flux vector F+

n accounts for the e↵ects of the left cell (indicated by l)

and F�
n for the e↵ects of the right cell (indicated by r) with the direction vector n

pointing from the left to the right. The Jacobian matrices AAA+

l and AAA�
r are evaluated

at the left cell and the right cell separately.

The time dependent conservation equations system assumes the features of hyper-

bolicity [66–68]. The Jacobian matrix AAA is diagonalizable, namely

AAA = LLL⇤RRR , (3.15)

where ⇤ is the diagonal matrix composed of the real eigenvalues �i of Jacobian matrix

AAA, LLL is the non-singular matrix whose columns are the right eigenvectors of matrix

AAA, and RRR is the inverse of LLL, which implies

LRLRLR = III . (3.16)

Accordingly, the splitting of the Jacobian matrix AAA is performed by decomposing the

diagonal matrix ⇤ = ⇤+ +⇤�:

AAA+ = LLL⇤+RRR and AAA� = LLL⇤�RRR . (3.17)

Steger and Warming [69] proposed an approach constructing the two diagonal matri-

ces ⇤+ and ⇤� with the eigenvalues �i given by

�+

i =
1

2
(�i +

q

�2

i + ✏2) and ��
i =

1

2
(�i �

q

�2

i + ✏2) . (3.18)
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The numerical dissipation added to the scheme due to the small number ✏ was

originally designed to remove the sonic glitch problem [70], however, it is now used

to improve the overall stability of the scheme through added numerical dissipation.

The original Steger-Warming scheme exhibits features of high dissipation com-

pared to the others, which is expected in the region of the strong shockwave. How-

ever, the excessive numerical dissipation has to be limited in the boundary layer to

avoid deterioration of the boundary layer profile [71]. A modified Steger-Warming

scheme [71], is therefore used in the boundary layers:

Fn = F+

n + F�
n =AAA+

a Ql +AAA�
a Qr , (3.19)

In this equation, the JacobiansAAA+

a andAAA�
a are now evaluated using the average states

Qa instead of the properties at the left and right cell. Qa is given by

Qa =
Ql +Qr

2
. (3.20)

To summarize, numerical dissipation is desirable close to the shock which can

prevent solution oscillations. In this region, the original Steger-Warming scheme is

more appropriate. For boundary layers, the amount of dissipation has to be reduced

to maintain accuracy, and the modified Steger-Warming scheme is preferred.

In order to automatically switch between schemes, a pressure switch based on the

evaluation of pressure di↵erence between two adjacent cells sharing a face, is used [72].

Eq. (3.20) can, therefore, be rewritten as

Q+

a = (1� w)Ql + wQr and Q�
a = wQl + (1� w)Qr , (3.21)

where the weight factor is

w =
1

2

1

(↵rp)2 + 1
and rp =

|pl � pr|
min(pl, pr)

. (3.22)

As can be seen above, the value of rp determines the weight factor value, which in

turn, influences the state properties, and, therefore, a↵ects the two Jacobian matrixes
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which depend on Q+

a and Q�
a respectively. More specifically, in the vicinity of the

shock region, where rp is large, w is close to 0, and the original Steger-Warming

scheme is used. Close to the boundary the pressure di↵erence is trivial, and the weight

factor w approaches 0.5, which results in the modified Steger-Warming scheme.

In the boundary layer, the excessive artificial dissipation due to ✏ is controlled by

the following approach [48]:

✏ =

8

>

>

<

>

>

:

0.3(a+ |un|) for d > do ,

0.3(1� |n ·w|)(a+ |un|) for d  do .

(3.23)

Note that a is the speed of sound and |un| refers to the absolute value of normal

velocity, and are both determined from the state property. d is the distance from the

face to the nearest wall and do is a user-specified value that arbitrarily lies between

the boundary layer thickness and the shock stand-o↵ distance. n is the face normal

vector, and w denotes the normal vector of the nearest wall boundary to the face.

The term (1 � |n · w|) restricts the dissipation contribution to the faces parallel to

the wall. This correction is widely used for hypersonic reentry flow case.

3.3 Higher-order Extension of Convective Flux

KATS reads all grids as if they were unstructured. Therefore, the ordering of cell

index, typical of structured grids is not accounted for. Instead, for each generic

cell, the surrounding neighbors are identified when loading the mesh. Since the

computation of convective fluxes are carried out by looping through all of the faces,

which is considerably faster than a cell-based loop routine, the grid connectivity

information has to be mapped. The higher-order accurate convective flux is therefore

computed using the extrapolated properties from the left and the right side of each

generic face.
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Quadrilateral Unstructured Grid

Fig. 3.1 shows the connected neighbors associated to cell i, highlighted by the glowing

boundaries. Two cells sharing a generic face are easily found and defined to be so-

called a “parent” cell (or left cell), and a “neighbor” cell (or right cell), with the face

normal always being defined pointing from the left cell to the right one. Using the

cell-centered properties from those neighboring cells, the convective fluxes through

the sharing surface can be evaluated by a Riemann solver, recovering a first-order

accuracy. Figure 3.1 shows the details of this evaluation at face i + 1

2

where a local

index is induced, however, just for the purpose of explanation. Associated properties

are given by

Figure 3.1: Cell’s neighbor cloud

8

>

>

<

>

>

:

ul = ui

ur = ui+1

(3.24)

Higher-order of spatial accuracy extension can be obtained from MUSCL (mono-

tone upwind schemes for conservation laws) variable extrapolation [40], which shows

e↵ectiveness for a wide range of hypersonic flows [73], however, it requires the in-

formation of two more cells (Fig. 3.1). These additional cells can be found through

searching within the mesh, and a four-cell stencil list is required for a generic face.
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The extrapolation scheme is now given by

8

>

>

<

>

>

:

ul = ui +
1

2

(ui � ui�1

)

ur = ui+1

� 1

2

(ui+2

� ui+1

)

(3.25)

The main issue associated with this higher-order accuracy is the appearance of

oscillation. This comes from the MUSCL procedure itself, specifically the unappro-

priated reconstructed values at the interface i + 1

2

. Any overshoot or undershoot of

some properties at this interface may cause it to lie outside the property interval

[ui, ui+1

], and the oscillation is passed to the following time step. Fortunately, this

can be avoided by introducing a limiter function. The idea behind limiters is that it

prevents oscillations by switching to lower order scheme in the region of discontinuity

while in the smooth region, it recovers second order accuracy. The price of using

limiters is a loss of local accuracy. The newly constructed variable after applying the

limiter function is given by

8

>

>

<

>

>

:

ul = ui +
1

2

lim (ui+1

� ui, ui � ui�1

)

ur = ui+1

� 1

2

lim (ui+2

� ui+1

, ui+1

� ui)

(3.26)

where lim is the limiter function.

An even more detailed criteria for the definition of the limiting function is given by

the Total Variation Diminishing (TVD) approach [66]. Considering the time evolution

value, un
i , which is the numerical solution at time level n at cell i. The Total Variation

is given by:

TV (un) =
1
X

i=�1

|un
i+1

� un
i | . (3.27)

With that, a numerical scheme for the initial value problem (IVP) is said to be total

variation diminishing if TV (un+1)  TV (un). The fundamental properties of its

solutions in TVD constraint are listed as following:

1. No new local extrema may be created in the set of solution ui
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2. The value of a local minimum is non-decreasing, and the value of a local maxi-

mum non-increasing.

The second-order, TVD limiters at least satisfy the following criteria:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

�(r) = 0, (r < 0)

r  �(r)  2r, (0  r < 1)

�(r) = 1, (r = 1)

1  �(r)  min(2, r), (r > 1)

. (3.28)

where r = u
i+1�u

i

u
i

�u
i�1

for the left side and r = u
i+2�u

i+1

u
i+1�u

i

for the right. These constraints

can be interpreted as properties:

1. Limiter function is non-negative. �(r) � 0, 8r

2. Limiter function is switched o↵ when r < 0. The sign change means a local

extreme is found in the solution

3. Limiter function is second order accurate in smooth regions: �(1)=1

Di↵erently, most of the traditional hypersonic solvers use conserved variables as

the dependent variables. Each conserved variable is therefore extrapolated and slope-

limited for a higher-order scheme. In the proposed work, however, MUSCL extrapola-

tion is applied directly to primitive variables (p
1

, ..., pns, u, v, w, Ttr, Tve)T . The main

reason for this selection is to ensure zero pressure gradient at the stagnation region,

and to gain more stability other than using primitive variables (⇢
1

, ..., ⇢ns, u, v, w,

Ttr, Tve)T . Tests on selections of some other primitive variables such as ev and p

for robustness and accuracy are needed [73]. Two typical limiter functions are cho-
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sen, which are minmod and Van Albada’s limiter. The widely used minmod limiter

function [74] is given by

8

>

>

>

>

>

<

>

>

>

>

>

:

mimod(a, b) = 0 ab < 0

minmod(a, b) = min(a, b) a > 0

minmod(a, b) = max(a, b) a < 0

. (3.29)

Van Albada’s limiter function [75] is more di↵erentiable and accurate, but less stable,

given by

VanAlbada(a, b) =
(a2 + ✏)b+ (b2 + ✏)a

a2 + b2 + 2✏
, (3.30)

where ✏ is a small number added preventing zero denominator.

Non-quadrilateral Unstructured Grid

In the case of non-quadrilateral grid, such as those composed of triangles, it is common

that some cells do not have a four-cell stencil for extrapolation. A more general form

combining gradient terms, however, can be used for higher-order accuracy, given by

Figure 3.2: Triangular grid
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8

>

>

<

>

>

:

ul = ui +rui · dsi

ur = ui+1

+rui+1

· dsi+1

(3.31)

where s is the location vector pointing from the cell centroid to the face centroid, and

the gradient is evaluated at the cell centroid.

Similarly, a limiter function � can be added to limit the slope, such as
8

>

>

<

>

>

:

ul = ui + �irui · dsi

ur = ui+1

+ �i+1

rui+1

· dsi+1

. (3.32)

Barth and Jespersen [76] introduced the first limiter for unstructured grids. More

developed procedures were later found in Ref. [77]. To avoid the non-di↵erentiability

in some steps of the Barth-Jesperson procedure, Venkatakrishnan introduced a new

smooth function [78]. It should be mentioned that for hypersonic problems, rectan-

gular or prism cells are necessary to use [79]. The application of Venkatakrishnan

limiter only shows in relatively low-speed flow where the non-regular grid can pro-

duce a valid solution. Motivated readers are also welcome to read Ref. [79], which

proposes an approach valid for a wide range of problems, even with shock, and is

more straightforward to implement.

3.4 Di↵usive Flux Vector

Approximation of the di↵usive flux terms involves the evaluation of gradient at the

shared face, which is computed using the weighted least-square method [80]. This

method behaves similarly to other methods, such as Green-Gauss method, for regu-

lar meshes, but is more tolerant to mesh distortions than others. However, it loses

accuracy for highly stretched meshes in the presence of curvature. A deferred cor-

rection scheme using the central-di↵erencing approach is introduced to calibrate this
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gradient. Consequently, the new gradient is given by

fr� = r�� ((r�) · n)n+
�r � �l

l
n . (3.33)

In this equation, r� is the gradient for a property � evaluated using weighted least-

square method. Instead of using the normal of the face, a new normal, n, is defined

using the left and right cell centroid, with l representing the distance between them.

The purpose of this correction is to calibrate the gradient contribution in the new

normal direction.

Other than the gradient, the treatment of transportation properties has been

discussed in Section 2.1.

3.5 Jacobian

Numerical Flux Jacobian

Implicit discretizations of the governing equation require forming Jacobian matrices,

which is accomplished by using analytical or numerical derivatives of the systems of

flux equations with respect to the primitive variables Pi.

Although analytical Jacobians are accurate, it requires a lot of e↵ort to obtain

one. In the context of a research code, where physical models are consistently changed

and updated, this can be extremely tedious. Moreover, for a convective flux scheme

like AUSM+-up which lacks an analytical form, an analytical Jacobian is impossible

to derive. A solution to this is to use the Steger-Warming flux Jacobians while still

using the Roe or the AUSM flux scheme. The underlying issue for this combination

arises from the lack of consistency between the numerical flux and the flux Jacobian.

To avoid complicated derivation of the analytical Jacobian because of complexity

of the discretized flux equations system, and to maintain the consistency between the

numerical flux and the flux Jacobian, a more flexible numerical Jacobian can be used.
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In its general form, the numerical flux Jacobian is given by

Jij =
@Fi

@Pj
=

Fi(Pj + ✏ej)� Fi(Pj)

✏
, (3.34)

for flux Fi and primitive Pj, where ej is a unit base vector.

Eq. (3.34) is simply the forward-di↵erence method. i.e. a first-order Taylor series

expansion approximation to the analytical Jacobian. The accuracy of the numerical

Jacobian is strongly a↵ected by the perturbation ✏: small values of ✏ can be contam-

inated by floating-point roundo↵ error. However, if too big, the derivative becomes

a poor approximation: since the truncation error due to neglected terms in the Tay-

lor expansion is ⇠ O(✏). Unfortunately, the selection of optimistic perturbation ✏ is

not trivial. The Complex Step Method [31] could be used to remove the uncertainty

caused by ✏, and achieve high order accuracy through the simple forward di↵erencing.

The referred literature lists many di↵erent ways to select optimized ✏opt [81]. In

this work, the selection mechanism is given by

✏opt =

8

>

>

>

>

>

<

>

>

>

>

>

:

max(✏small, 0.001�Pj) if �Pj > ✏small

min(�✏small, 0.001�Pj) if �Pj < �✏small

✏small

(3.35)

where ✏small = 10 ✏double. And ✏double is the numerical limits of double precision for a

computer. The updated history of primitive variable �Pj is kept as reference also to

scale the selection of the magnitude of ✏.

To obtain every numerical Jacobian component for the primitive variables, each of

them has to be perturbed. After the perturbation, the state properties are adjusted.

For example, the perturbed density will also alter pressure and total energy, and new

convective and di↵usive fluxes have to be computed. This process repeats for each

primitive variable. The computation expense comes from the update of the new state

properties after the perturbation, the resulting new fluxes, and the final numerical

di↵erencing. Since the number of equations and primitive variables may not be trivial,

this approach is more computational expensive than an analytical Jacobian.
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It is to be noted that Eq. (3.34) is a first-order approximation. An extension to

second-order approximation is straightforward:

Jij =
Fi(Pj + ✏ej)� Fi(P � ✏ej)

2✏
. (3.36)

However, in this case, the computation time almost doubles since both Fi(P + ✏ej)

and Fi(P + ✏ej) have to be computed.

Analytical Flux Jacobian

The arithmetic operation of the numerical flux Jacobian rises more than O(N2),

(where N is the dimensions of the system equations), which makes it prohibitively

expensive to solve with increasing number of species, such as for 11-species air model.

For the purpose of stability and accuracy, analytical flux Jacobian is always optimal.

Analytical Convective Flux Jacobian

Instead of using the Jacobian matrices AAA+

l and AAA�
r for convective flux vector in the

Steger-Warming scheme, a di↵erent inviscid Jacobians, the “true inviscid Jacobians”

are used for the implicit operation. Details of the derivation are shown in Appendix

B.

Analytical Di↵usive Flux Jacobian

The computation of viscous Jacobians is di↵erent from that of inviscid Jacobians. It

involves thin-layer approximation and a new set of primitive variablesV = (Ys, u, v, w,

Ttr, Tve)T . Therefore, a map to primitive variable vector P is necessary. Also, it is

a lot easier to perform the derivation under face-based reference frame. The viscous

flux vector can be approximated as

Fd =RRR�1MMMnRRR (Vr �Vl) =RRR�1MMMnRRRNNN (Pr �Pl) , (3.37)

where

NNN =
@V

@P
. (3.38)
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The viscous Jacobian is finally given by

@Fd

@Pr
=RRR�1MMMnRRRNNN and

@Fd

@Pl
= �RRR�1MMMnRRRNNN . (3.39)

Details of the procedure are also shown in Appendix B.

Analytical Jacobian for the Source Term

The source term Jacobian takes the form of

Jij =
@Si

@Pj
. (3.40)

Appendix B provides more details.

3.6 Boundary Conditions

Explicit Boundary Conditions

The solution of the set of partial di↵erential equations on a finite computational

domain requires specification of dependent variables along every boundary of it. Ap-

propriate boundary conditions must be enforced to compute the flux contribution to

the solution of the system. Imposition of the explicit boundary conditions in this

work uses ghost cells, which can be envisioned as an extra layer of cells added out of

each boundary of the computational grid. The values in the ghost cell are updated

according to the fixed boundary conditions and the state properties of its neighboring

real cell. Since KATS intends to solve both subsonic and supersonic flow, di↵erent

treatments are discussed in the following subsections. Note that, in the following

notations, suscribt r denotes the ghost cell values, and l denotes the real cell values.
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Supersonic Boundary Conditions

Inlet

The inlet boundary conditions are completely specified by just using free-steam con-

ditions. The properties in the ghost cells are given by

Pr = P1 . (3.41)

Outlet

Outflow boundary conditions are straightforward since this work only focuses on

supersonic flows at the outlet. The properties in the ghost cell are simply extrapolated

from its interior neighbor

Pr = Pl . (3.42)

Symmetry

The symmetry boundary condition zeros the normal component of the velocity, such

that V ·n = 0, while maintains the tangent components at the boundary. In terms of

implementation, the velocity vector in the ghost cell in Cartesian coordinate is given

by

Vr = Vl � 2 (Vl · n)n . (3.43)

Other independent variables are copied directly to the ghost cells by ensuring zero

mass and energy fluxes. The momentum flux is thus given by pressure only, in detail

⇢r,s = ⇢l,s (3.44)

Ttr,r = Ttr,l (3.45)

Tve,r = Tve,l (3.46)
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Wall

The inviscid no-slip wall condition enforces a zero velocity condition at the boundary.

This involves simply reflecting the normal and tangential component of the velocity

in the interior cell and placing them in the adjacent ghost cell. The other properties

act such as those for symmetry boundary conditions. The mass flux through the wall

is zero. The energy flux and the momentum flux are given by the pressure only.

⇢r,s = ⇢l,s

Vr = �Vl

Ttr,r = Ttr,l

Tve,r = Tve,l

. (3.47)

Viscous Boundary Conditions

Inlet and outlet

A zero-gradient condition is assumed for these boundaries by setting

Prc = Plc . (3.48)

where the subscript c denotes the values stored at the centers, which accounts for the

computation of gradients.

Symmetry

All of the dependent variables are set to enforce zero-gradient except the velocity

vector. The symmetry boundary zeros the normal component of the velocity while

maintains the tangent components, given by

Vrc = Vlc � 2 (Vlc · n)n . (3.49)
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However, other independent variables are copied directly to the ghost cells yielding

zero gradient, in detail

⇢rc,s = ⇢lc,s (3.50)

Ttr,rc = Ttr,lc (3.51)

Tve,rc = Tve,lc (3.52)

Wall

The wall boundary conditions are specified by assuming no-slip velocity condition,

and fixed-wall temperature, Tw. In most of the cases, Park’s two temperatures use the

same values at the wall boundary. The total pressure is assumed constant within the

boundary layer which results in zero gradient for it. The mass fraction for each species

is also continuous in the boundary layer based on the assumption of non-catalytic wall

condition. In detail

prc = plc

Yrc = Ylc

Vrc = �Vlc

Ttr,rc = 2Tw � Ttr,lc

Tve,rc = 2Tw � Tve,lc

(3.53)

In the case of adiabatic wall, two temperatures are simply extrapolated

Ttr,rc = Ttr,lc

Tve,rc = Tve,lc

(3.54)

Subsonic Boundary Conditions

When dealing with subsonic flow, the dependent primitive variable set in KATS

is modified to pressure-based, which tends to be more accurate [82], given by P =

(p
1

, ..., pns, u, v, w, T )T . Additionally only the thermal equilibrium state is considered,

depicted by one temperature, T .
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Inlet

It has been found when a wall boundary connects to the inlet, it is not appropriate to

impose velocity at the inlet [83] for a compressible flow solver. Rather the velocity is

extrapolated, and the total pressure and total temperature are specified. The static

pressure and static temperature are calculated from isentropic relations.

pr = p
total

(1 +
� � 1

2
M2

l )
�

��1 , (3.55)

and

Tr = T
total

(
pr

p
total

)
�

��1 . (3.56)

Outlet

Static pressure is fixed at the boundary, while others are directly extrapolated from

the interior cell.

Symmetry

The symmetry boundary zeros the normal component of the velocity, such that

V · n = 0, while maintains the tangent components at the boundary. In terms

of implementation, the velocity vector in the ghost cell in Cartesian coordinate is

given by

Vr = Vl � 2 (Vl · n)n . (3.57)

Other independent variables are copied directly to the ghost cells by ensuring zero

mass and energy fluxes, in detail

pr,s = pl,s (3.58)

Tr = Tl (3.59)
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Wall

The no-slip and adiabatic boundary yields

pr,s = pl,s

Vr = �Vl

Tr = Tl

(3.60)

and for a fixed temperature wall is defined by

Tr = Tw . (3.61)

Viscous Boundary Conditions

For subsonic flow problems, the ghost cell centered values are simply extrapolated

using central di↵erencing, given by

Prc = 2Pw �Plc . (3.62)

Implicit Boundary Conditions

The main di↵erence of implicit boundary conditions arises from the Jacobian contri-

bution of the boundary ghost cell to the implicit operator. Recall Eqn. (3.8), after

the decomposition of the equation system for a generic cell, it yields



Vcell

�t
JJJ n +AAA+

l �BBB+

l � CCCl �DDDl

�

�Pl +
X

r

⇥AAA�
r �BBB�

r

⇤

�Pr = Rn
l (3.63)

Its neighbor cells, donated by subscript r, can be a real cell or a ghost cell. The

ghost cell value update, although unknown, can be approximated by relating to cell

l through the introduction of “folding” matrices. To accomplish this, the relation is

given by

�Pr =
@Pr

@Pl
�Pl . (3.64)
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The folding matrices EEEf =
@Pr

@Pl
can be determined from the implementation

of boundaries conditions, and the inviscid and viscous folding matrices may not be

identical. Since source terms are piecewise. The resulting source term Jacobians

vanish for boundary ghosts.

Inviscid Folding Matrices

Looking at the boundary condition implementations for the supersonic cases in Sec-

tion 3.6, the resulting folding matrices are given by

Inlet

EEEf = 0 . (3.65)

Outlet

EEEf = III . (3.66)

Symmetry

Instead of imposing the symmetry boundary in the way shown in Eqn. (3.43), it is

more straightforward to deal with it in face-based reference frame, such as

Prn = ⇤Pln . (3.67)

where the eigenvalues �i are equal to 1 except for the normal velocity component,

which equals -1. In detail,Dia(⇤) = (1,�1, 1, 1, 1, 1). After that, the Cartesian frame

based properties are mapped back. During this procedure, a rotation matrix RRR is

needed to map the properties from the Cartesian frame to the face-based reference

frame, and RRR�1 to do backward. The whole mapping process is given by

Pr =RRR�1⇤(RRRPl) . (3.68)
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In the case of folding matrix, the same form is maintained, such as

�Pr =RRR�1⇤(RRR�Pl) . (3.69)

which indicates

EEEf =RRR�1⇤RRR . (3.70)

Wall

For no-slip wall, it is given by

EEEf = ⇤ , (3.71)

where the eigenvalues �i are equal to 1 except for the three velocity components, in

detail, Dia(⇤) = (1,�1,�1,�1, 1, 1).

Viscous Implicit Boundary Conditions

As mentioned previously, it is a lot easier to perform the calculation of viscous Jaco-

bians under a face-based reference frame, and using a new set of primitive variables

V = (Ys, u, v, w, Ttr, Tve)T . The viscous flux vector is given by

Fd =RRR�1MMMnRRR (Vr �Vl) . (3.72)

When at the boundary, boundary conditions are imposed, which indicates Vrn =

⇤Vln under face-based reference frame. The flux vector now becomes

Fd =RRR�1MMMn(⇤� III)RRRVl =RRR�1MMMn(⇤� III)RRRNNNPl , (3.73)

where

NNN =
@V

@P
. (3.74)

Note that ⇤ is computed using the new set of primitive variables Vn. It also

implies there is no need to take account of @F
d

@P
r

separately. Instead, the e↵ect of

the boundary ghost cell can be included its neighboring real cell without repeatble

computation.
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Wall

For a no-slip and fixed-temperature wall, Dia(⇤) = (1,�1,�1,�1,�1,�1).

Symmetry

Only the normal velocity component is zeroed at the symmetry boundary, which

indicates Dia(⇤) = (1,�1, 1, 1, 1, 1).

Inlet

⇤ = III . (3.75)

Outlet

⇤ = III . (3.76)

3.7 Linear Solver

Time integration and space discretization of the system of equations end up with a

large sparse linear system indicated by Eqn. (3.6) which is in the form of AAAx = b.

For such problems, iterative methods are more suitable to apply than directly solving

the system through an inverse of the matrix. Considerable work has been devoted to

solving the linear system with high e�ciency and accuracy of the iterative solution.

The LU-SGS implicit algorithm was used in Ref. [84,85], and the point or line implicit

method has been successfully used in DPLR [86], LeMANS [48] and US3D [87].

In KATS, the PETSc package [88–90] which provides flexible combinations of

solvers and preconditioning matrices is used. Among those solvers, the Conjugate

Gradient method [91] is assumed to have the best performance by reproducing the

exact solution for the linear system for N unknowns in N steps, but only if matrix

AAA is positive definite and a symmetric system [92]. The matrix of the current sys-

tem, however, does not guarantee either of these conditions. A GMRES [93] method

54



extended for nonsymmetric systems provides more flexibility. It can be used for ar-

bitrary, nonsingular square matrices. It starts from an initial guess solution vector

such as the one from the previous step or by an explicit step and generates a se-

quence of orthogonal vectors. The solution vector is constructed from the sequence

by adding changes at each step and the minimized linear system residuals are even-

tually achieved. Theoretically, this method converges at the N th step, but its cost

of the iterations grows as O(N2). A restarted GMRES method can prevent the it-

eration from being too expensive for large N by introducing a restart parameter k.

This modification works in a way that the method is forced to restart after kth itera-

tion, and the kth result will be taken as an initial guess for the next iteration period.

Suitable restarting parameters can save the expense required to construct and store

the orthogonal basis. However, a too small restart parameter diverges the iteration.

k = 30 is considered appropriate for the proposed work.

Another aspect of the linear solution procedure is the preconditioning matrix.

The general idea of a preconditioning procedure involves the selection of a matrix

QQQ, such that the new linear system is better conditioned than the original system,

AAAx = b [94]. The preconditioners are by nature problem-dependent. The choice of

the optimal one relies on the suitable preconditioning of the linear operator. Careful

selection of a solver and its preconditioner can improve the e�ciency and the stability,

which is even more important, since stability has always been an issue for hypersonic

reacting flow, especially when the gas mixture involves the presence of electron.

In this work, the Flexible Generalized Minimal Residual (FGMRES) method is

selected as the solver, and SOR and block Jacobi preconditioning, which demon-

strated the best performance in convergence rate and stability among the available

preconditioners.

Copyright c� Huaibao Zhang 2015.
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Chapter 4 Hypersonic Solver: Verification and

Validation

4.1 Mach 10 Argon Flow over a Cylinder

As a first test-case, a 2-D Mach 10 Argon flow over a 1 meter radius cylinder is

presented. Argon, a noble gas, only consists of single atom. Therefore, there is is no

need to take account vibrational and electronic energy, and the flow is in thermal-

equilibrium state. The free stream conditions for this problem are listed in Table 4.1,

and Fig. 4.1 shows the computational grid. As can be seen, grid clustering at the

surface and shock alignment is used to capture important e↵ects.

Table 4.1: Free stream conditions for the flow field

Mach Number Velocity Density Temperature Pressure

10 2624.0 m/s 1.408 ⇥10�4 kg/m3 200.0 K 5.8572 Pa

The pressure distribution obtained from the fluid dynamic solver is shown in

Fig. 4.2(a). A strong bow shock in front of the body forms and the isocontours are

smooth, as expected. Fig. 4.2(b) depicts the corresponding temperature field for the

present analysis.

The pressure and temperature obtained along the stagnation stream line are also

presented in Fig. 4.3(a) and 4.3(b). A comparison with the results obtained from

the CFD code LeMANS [48] indicates that the results are in very good agreement.

Small deviations near the shock regions are observed, which are most likely due to a

di↵erence in the mesh refinement in this region. Finally, the heat flux profile at the

cylinder surface is presented in Fig. 4.4, where peak value occurs at the stagnation

point, around 3.5 W/cm2.
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Figure 4.1: Computational grid for simulation of Mach 10 Argon flow over cylinder.

4.2 Mars Entry Spacecraft Model

This section replicates an experimental test on a Mars entry spacecraft experimen-

tal model in the HYPULSE expansion hypersonic wind tunnel [95]. In this facility,

both air and carbon dioxide flow over this model have been tested, providing an

aerothermodynamic database for validation of numerical codes in the development of

Mars entry spacecraft. Together with the investigation of the aerothermodynamics of

several related parametric configurations, the experimental study concentrates on the

heat-transfer data along the model obtained at hypersonic test conditions. Compared

to other conventional hypersonic wind tunnels at NASA Langley, the HYPULSE wind

tunnel provides chemical and thermal non-equilibrium testing conditions to approxi-

mate those of actual planetary entry, making comparisons between experimental and

numerical results more practical.

The baseline geometry model in the experimental study is a 70 degree blunted
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(a) Pressure (b) Temperature

(c) Density (d) Mach

Figure 4.2: Isocontours for the Mach 10 Argon flow over the cylinder.
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(a) Pressure (b) Temperature

(c) Density (d) Mach

Figure 4.3: Stagnation line results for the Mach 10 Argon flow over a cylinder.
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Figure 4.4: Surface heat flux for the Mach 10 Argon flow over a cylinder.

cone, the same configuration of the Mars-Pathfinder spacecraft. Figure 4.5 presents

the geometry of the experimental model, and Table 4.2 lists the geometric parameters.

The main objective of this simulation is to test the capability of the developed

Table 4.2: Mars entry spacecraft model geometry

Rn 12.7 mm
Rb 25.4 mm
Rc 1.27 mm
Rf 15.24 mm
Rs 10.32 mm
↵n 70 degree
↵f 40 degree

hypersonic CFD solver in state of chemical and thermal non-equilibrium. In the

current work, only air flow is considered. Specifically, a 5-species air model is used for

the air mixture and chemical reaction (See Appendix A for details). To simplify the

simulation, a zero angle-of-attack case is studied and compared to the experimental

data. Therefore, the computation can be conducted using a 2D-axisymmetric mesh.

The freestream conditions for the air flow are presented in Table 4.3, where the

Knudsen number is Kn = 2.8 ⇥ 10�4, indicating a flow in continuum regime. The
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Rb
αn

Rc

α f

Rf
Rn Rs

Figure 4.5: Mars entry spacecraft model geometry

mesh used in this simulation only consists of quadrilaterals as shown in Fig 4.6 and

consists of 250 cells in the axial direction and 168 in the radial direction. A grid

refinement study is performed close to the wall boundary with the first cell clustered

at 1⇥10�7 m. The boundary layer thickness is set as 5⇥10�4 m as an input parameter

for the modified Steger-Warming scheme.

Table 4.3: Free stream conditions for the flow field

⇢1 [kg/m3] u1 [m/s] Ttr [K] Tve [K] Tw [K] YN2 YO2 YNO YN YO M1
5.71⇥ 10�3 5162.0 1113.0 1113.0 300.0 0.767 0.233 0 0 0 7.9

The flow field solution is presented in Fig. 4.7 (a). A detached shock forms in front

of the model with a stand-o↵ distance of 2 mm. The velocity magnitude decreases

61



Figure 4.6: Meshed used in this simulation

from free-stream velocity to zero close to the wall. The level of nonequilibrium shown

in Fig. 4.7 (b) is evaluated by computing the ratio of Ttr over Tve. Overall, the shock

layer presents a ratio above one. The peak value reaches as high as 4 in the shock wave

and is decreased below 0.6 close to the shoulder, indicating strong non-equilibrium.

Since vibrational temperature lags compared to the translational-rotational temper-

ature, they do not have the time to equilibrate. The two temperatures are compared

along the stagnation line in Fig. 4.8 (a), where the peak translational temperature is

around 12000K. The vibrational temperature, however, does not reach as high as the

translational temperature with the maximum value of around 7500 K. The two tem-

peratures equilibrate to the same values after the shock and to the wall, indicating

regions relaxed back to the equilibrium state.

The air dissociation can be observed in Fig. 4.8 (b), where the mass fractions for
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each species are highlighted. Both N
2

and O
2

start to dissociate as approaching the

shock layer, and O
2

is more sensitive to temperature. It starts to dissociate earlier

than N
2

, and it fully dissociates after the shock. N
2

is relatively inertial compared

to O
2

, and only a fraction of it is consumed. The maximum of NO mass fraction

is located immediately after the shock, then then decreases. A closer look at the

boundary indicates N and O rapidly decrease due to cold-wall boundary conditions,

and N
2

, O
2

, and NO are formed again.

(a) Velocity (b) Non-equilibirum level

Figure 4.7: Solution contours

Heat transfer rate is an important factor considered in the reentry vehicle design.

It is also the most di�cult one to capture. Several numerical solutions for the forebody

are compared against the experimentally measured data of Hollis [95] in Fig. 4.9.

First, a study on order of accuracy is conducted using a grid with dimensions of

251⇥ 161. When using the second-order scheme, the overall agreement is good, and

most of the numerical solutions are within the experimental uncertainty. The first-
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(a) T-Tv (b) Mass fraction

Figure 4.8: Properties along the stagnation line

oder accurate scheme, however, over-predicts the experimental value at the stagnation

point. Away from the stagnation point, very little discrepancy with each other can be

found. Therefore, the major error comes from the stagnation region, where a more

refined mesh must be used close to the wall for the first-order accurate scheme to

obtain high-resolution solutions.

Second, a grid independence study is performed, where the refined mesh consists

251 cells in the direction normal to the wall. Its solution is very close to that of the

201 cell mesh, and grid independence is achieved. The stagnation region has a little

dip for the result when using the first-order scheme, and for the finer mesh using the

second-order scheme. The surface heat flux rate curve, however, is expected to be flat

near the stagnation point. Further numerical studies are carried out on more refined

mesh with careful alignment of the grid with the shock wave. However, it can be

shown in Fig. 4.10 that mesh refinement and alignment do not eliminate the error.

This phenomenon is known as a “carbuncle” and it is e↵ectively ubiquitous in the

aerothemodynamics community, especially when using Steger-Warming scheme [72,

73]. The reason of this issue is mainly the misalignment of the grid with the shock

wave. If the grid does not align with the shock wave perfectly (within one mesh-cell),
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numerical errors are generated by the shock, which are then trapped in the stagnation

region. It is also noted that these are 3D solutions computed on a pie-wedge of cells.

The 3D mesh used for the simulation is made by rotating a 2D mesh with an axis

by an angle of five degrees. The degenerated axis, and the degenerated face at the

stagnation point make this issue even worse. Therefore, it is extremely di�cult to

get good heat transfer at the stagnation point. Except for the modification of Steger-

Warming scheme at the stagnation region discussed in Section 3.2, careful alignment

of the grid with the shock wave using an automatic feature is the only useful way to

alleviate this problem. Mesh refinement, however, is not e↵ective. The problem even

worsens with grid refinement.

Figure 4.9: Heat transfer rate on the Mars Entry Lab model forebody
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Figure 4.10: Numerical study on the numerical error near the stagnation point

4.3 Numerical Investigation on Stardust Capsule

The Stardust Sample Return capsule (Fig. 4.11) was designed by NASA to collect

dust samples from the tail of comet WILD-2, and return them to Earth. Upon its

return, it entered the earth atmosphere at a velocity of 12.6 km/s [5], and is the fastest

earth reentry and highest energy reentry of any artificial object thus far. Modeling

Stardust is challenging and is therefore an excellent test of the hypersonic thermo-

chemical non-equilibrium models of the code. Two air models, a 5-species air model

and an 11-species air model [48, 57] are used for computation and comparison. The

chemical and thermal non-equilibrium modes, as well as the weak ionization e↵ects,

are evaluated.

In the present simulation, the trajectory point 36 second after Stardust’s re-entry
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(a) Geometry [96] (b) After reentry [97]

Figure 4.11: Stardust capsule

are studied. Free stream conditions are listed in Table 4.4. As the main species in the

air mixture, N
2

and O
2

have initial mass fractions of 76.7%, and 23.3% respectively.

All the other species, such as NO, N and O for 5-species air model, and NO, N, O,

N+

2

, O+

2

, NO+, N+, O+ and e for 11-species air model, have initial mass fractions of

0.

Table 4.4: Free stream conditions for the flow field

Time from Altitude, Velocity, Density, Temperature,
entry, sec km m/sec kg/m3 K

36 78.46 12,336.86 1.871⇥10�5 218.09

Full Geometry Simulation of 5-species Air over Stardust Capsule

Simulation of the whole geometry tends to be more challenged than just the forebody

since the afterbody pressure can be extreme low and causes numerical di�culties for

the simulations. To simplify the simulation, a 2D-axisymmetric mesh is used, shown

in Fig. 4.12. It consists of 151 cells in the axial direction, and 700 cells along the

capsule geometry. The mesh refinement is performed at the stagnation point and in

the shoulder region.
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Figure 4.12: Mesh

The main features of the flow field are presented in Fig. 4.13, where a strong

compression occurs in front of the capsule and forms a shock. The flow then expands

around the shoulder and recirculates after the trailing edge. In the recirculation

region, often referred to as the near-wake, the boundary layer separates from the

surface, and forms two symmetric vortexes indicated by the streamlines. A closer

look at the pressure in this region, one can find a rather low value, indicating it could

possibly lie in the rarefied region. A more convincing examination, however, is done

by evaluating the Knudsen number, shown in Fig. 4.14, where the mean free path is

calculated as in Ref. [98]

� =
2µ

⇢c̄
=

µ

⇢

r

⇡

2RwT
=

µ

⇢

r

⇡⇢

2p
. (4.1)

and the characteristic length of the Stardust capsule uses 0.499 m (Fig. 4.11 (a)).

Among those variables in Eqn. (4.1), µ is the viscosity, ⇢ is the total density, p is the

total pressure, Rw is the mixture gas constant, T is the temperature, and c̄ is the

mean molecular speed.
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In Fig. 4.14, the free stream has a low value of Kn number, while large value of Kn

number is found after the forebody, especially after the trailing edge. It is generally

assumed that continuum breaks down when Kn is more than 0.05. The near-wake

does lie in the rarefied region and the CFD may not be capable to solve the flow in

it correctly.

Temperature contours can be found in Fig. 4.13 (c)-(d). The translational-rotational

temperature, Ttr, and the vibrational-electron-electronic temperature, Tve, have very

di↵erent contours. The majority of the flow is in thermal non-equilibrium. For in-

stance, Ttr after the shock can reach up to 50000 K, while Tve always lags, and can

only go up to 18000 K.

Simulation of 5-species Air over Stardust Capsule Forebody

To achieve higher resolution and faster run time, scaling of the problem is necessary.

The following numerical study, therefore, only focuses on the forebody. A mesh

independence test is first performed, in which the coarse grids consists 201 (axial)⇥331

(radial) cells while the refined mesh consists 401 (axial)⇥331 (radial) cells. The

surface heat transfer rate is taken as the reference parameter and is shown in Fig. 4.15.

Very few discrepancies can be found for two results and the maximum relative error

close to the shoulder is 1.8%. The solution is considered to be accurate enough

with the 201⇥331 grid. Related results of this grid are presented for analysis and

comparisons in the section.

The species mass fraction is illustrated in Fig. 4.16, which shows the shock layer

thickness is around 40 mm, where the air mixture starts to dissociate. O
2

dissociates

much faster than N
2

and becomes fully dissociated close to the wall. They are mainly

converted into atomic species N and O. N has a larger mass fraction than O. NO

is formed after the shock, however, it is in a relative lower level than all the other

species. Close to the stagnation point, where the axial location equals zero, the non-

catalytic cold-wall boundary forces recombination of O
2

. The mass fraction of NO is
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(a) Pressure (b) Velocity

(c) Translational-rotational temperature (d) Vibrational-electron-electronic temperature

Figure 4.13: Solution contour
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Figure 4.14: Kn number

decreased. However, not too much di↵erence is observed for the other species.

Simulation of 11-species Air over Stardust Capsule

The 11-species air model contains ions and electron, more reactions, and more energy

source modes. It is assumed more accurate in the simulation of real air for high

temperatures. The simulation in this section is performed on the same 201⇥331 grid.

The solution contours are compared to those using 5-species air model in Fig. 4.17.

The two temperatures are higher using the 5-species air model and a larger value of

shock layer thickness is found.

The two temperatures along the stagnation line are extracted and compared

against those from 5-species model in Fig. 4.18. It can be seen that 11-species model
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Figure 4.15: Mesh refinement study

predicts a lower values for both temperatures. This model also yields a thinner shock

layer. It is mainly because ionizations are accounted and it consumes more energy,

therefore, reducing the temperatures. Figure. 4.19 shows the species mass fraction

along the stagnation line. Each of the O
2

, N
2

, NO, N, and O species has a similar

behavior to that shown in Fig. 4.16 for the 5-species model. However, the presence

of ionized species a↵ects the flow field. N+ and O+ are observed with a large mass

fraction after the shock and is more dominant in the boundary layer. N+

2

, NO+,

and O+

2

are mainly formed after the shock. Their mass fractions are reduced in the

boundary layer. Again, it is due to the cold-wall boundary.

The heat transfer rate calculated using the 11-species air model is compared to

that calculated using the 5-species air model shown in Fig. 4.20. In Fig. 4.20, at the
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Figure 4.16: Mass fraction for 5-species air model

nose, the 11-species air model yields a lower value of heat transfer rate than using 5-

species air model. Apart from the nose region, however, the 11-species air model yields

a higher values of heat transfer rate. It is explained as that the high-temperature

level at the nose region triggers ionizations, thus more energies are consumed. But

once the gas is moving away from the nose, ionization reacts backward due to low-

temperature level, thus generates energy. The resulting heat transfer to the surface

increases.

4.4 Numerical Investigation of Low-Density Nozzle Flow of Nitrogen

Hypersonic flow solvers are usually developed for external flow and there is no guar-

antee that they could be used to solve internal flows. For instance, a convergent-

divergent nozzle involves flow velocity ranging from subsonic to supersonic/hypersonic

and has density near the rarefied regime. This test case investigates the capability of

the KATS to do so. Using the reference problem [1], the solution is compared against
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(a) Translational-rotational temperature (b) Vibrational-electron-electronic tempera-
ture

Figure 4.17: Solution contour comparisons. The upper is 5sp model, and the lower is
11sp model

other CFD result as well as DSMC and experiment results. The nozzle geometry

is shown in Fig. 4.21, the configuration is listed in Table 4.5, and the free stream

conditions are shown in Table 4.6.

For this type of simulation, if the initial ambient condition is taken as the same as

that of inlet boundary condition, the solution may fail to converge. The same issue

was found in other hypersonic codes [99]. The main di�culty comes from the initial

conditions that cause insu�cient pressure gradient at the throat. If the transient

numerical solution is wrong, it will not converge to a solution (Fig. 4.22). A remedy

for this is to initialize the whole domain into two separated zones (Fig. 4.23). Zone
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Figure 4.18: Temperatures along stagnations

Figure 4.19: Mass fraction for 11-species air model
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Figure 4.20: Heat transfer rate comparisons

Figure 4.21: Nozzle geometry [1]
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Table 4.5: Nozzle geometry

Inlet diameter Di 22.1 mm
Throat diameter Dt 3.18 mm
Exit diameter De 31.8 mm
Longitudinal radius RL 3.18 mm
Wall thickness tw 1.65 mm
Lip thickness tl 0.25 mm
Inlet half-angle ✓i 45 deg
Exit half-angle ✓e 20 deg
Area ration (De/Dt)

2 100

Table 4.6: Nozzle flow condition for the experimental configurations

Total pressure Po 6400 Pa
Total temperature To 699 K
Mass flow rate ṁ 6.8 ⇥ 10�5 kg/s
Reynolds number Rea 850
Wall temperature Tw1

551 K
Wall temperature Tw2

539 K

Rea = 4ṁ/µoDt,where µo is the gas viscosity at To.

1 includes the region from the inlet down to the point a little downstream of the

throat, and zone 2 the remaining region. Zone 1 can still be specified with the inlet

boundary conditions while for zone 2, a factor 1⇥ 10�4 is multiplied to both pressure

and density, while the temperature remains unchanged.

Numerical Investigation

The numerical simulation involves four boundaries: inlet, outlet, symmetry, and wall.

Physical parameters were computed from the given testing conditions in Table 2 then

used to feed inlet and wall boundary conditions. The outlet and symmetry properties

are set as zero gradient, and zero normal velocity respectively.
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Figure 4.22: An incorrect solution unable to converge due to uniform initialization

Figure 4.23: Initialization configuration for pressure

Incoming Flow Properties

Free stream properties are required to be given completely at the inlet in hypersonic

simulation. Free stream velocity, static pressure and density can be computed using

isentropic relations.

Isentropic flow implies reversible and adiabatic processes, which results stagnation

conditions To, po and ⇢o being constant at every point across the flow field. In the cur-

rent work, a real flow is involved, which is not isentropic due to viscous e↵ect and heat

transfer. To take advantage of the isentropic relations, an imaginary isentropic ex-
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periment can be conducted – the flow goes through a whole new convergent-divergent

nozzle isentropically. The gas expands from subsonic to supersonic speeds. Exactly

at the “throat”, the sonic point occurs. Physical properties at the sonic point can

be used to calculate the inlet velocity. To achieve this, the throat area has to be

computed. Recall the mass flow rate is given from the reference problem, then it can

be written as [100]

ṁ = ⇢⇤aA⇤ = ⇢⇤
p

�RT ⇤A⇤ , (4.2)

where

⇢⇤ = ⇢o(
2

� + 1
)

1
��1 , (4.3)

and

T ⇤ = To(
2

� + 1
) . (4.4)

In this work, associated constants � and R for Nitrogen are assumed as 1.4 and

296.943 J/kg respectively. It can be found that A⇤ is not the same as the real throat

area ⇡r2t in the experiments.

Substitution A⇤ into area Mach number relation,

(
A

A⇤ )
2 =

1

M2



2

� + 1
(1 +

� � 1

2
M2)

�

�+1
��1

(4.5)

will yield the inlet Mach number M , which can be solved using trial and error method

or iteration method. With the Mach number, the inlet static temperature and density

are determined by

T = To(1 +
� � 1

2
M2)�1 , (4.6)

and

⇢ = ⇢o(1 +
� � 1

2
M2)�

1
��1 . (4.7)

Finally the inlet velocity is given by

u = Ma = M
p

�RT . (4.8)

This completes the determination of all parameters required at the inlet.
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Wall Properties

It is only necessary to specify the temperature at the wall. The no-slip wall boundary

condition forces wall velocity to zero, and the density and pressure are extrapolated

for the boundary ghost cell.

It is examined that either of the given temperatures from the reference problem

(Table 4.6) is the input wall temperature. This temperature, however, is determined

from Fig. 4.32 to make comparisons against the reference data. On this plot, T/To is

0.835 at the wall, which indicates the specified value was 583.7 K.

Mesh Configuration

Fig. 4.24 shows the details of grid line dimensions. Mesh clusters at the throat, wall

and at the outlet.

Figure 4.24: Sketch of mesh in 2-D
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Results and Discussion

Iso-contours

Iso-contours of flow properties are shown in Fig. 4.25 to Fig. 4.29 . A much higher level

of pressure and density can be noticed at the converging section, and both of them

decrease along the streamwise direction. Ttr and Tve have di↵erent contour patterns

since the flow in this nozzle is in thermal non-equilibrium, and Tve lags behind of Ttr.

The flow accelerates out of the nozzle through the converging section which is shown

from the Mach number contour. Downstream of the physical throat, but quite close

to it, a Mach 1 line is shown, which indicates the actual throat location.

The nozzle flow lies in variant flow regimes, which are characterized by di↵erent

Kn numbers. Mean free path is calculated according to Eqn. (4.1). The Kn number is

then evaluated based on this mean free path and the nozzle outlet diameter De (Table

4.6) as the characteristic length. The Kn number contours are shown in Fig. 4.30,

in which a large value of Kn number is found at the outlet and the maximum value

occurs in the corner close to the wall boundary. The order of the magnitude of the

Kn number indicates that the flow is in rarefied regime, and the possible breakdown

of the continuum in the boundary layer. Therefore, CFD may fail to capture the flow

behaviors in this region.

Properties Profile at Exit

The velocity in Fig. 4.31 is normalized by the thermal speed Uo in equilibrium and

the radial distance R is normalized by the nozzle exit diameter De. Uo is defined by

Uo =
p

2RTo , (4.9)

When compared to another CFD solution [1], small discrepancy is found. KATS

predicts a relative lower value of velocity magnitude than the reference CFD data.

The mass flow rate, however, is conserved in this work. The mass flow rates at
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Figure 4.25: Pressure iso-contour for the convergent-divergent nozzle flow

Figure 4.26: Density iso-contour for the convergent-divergent nozzle flow
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Figure 4.27: Ttr iso-contour for the convergent-divergent nozzle flow

Figure 4.28: Tve iso-contour for the convergent-divergent nozzle flow
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Figure 4.29: Mach iso-contour for the convergent-divergent nozzle flow

Figure 4.30: Kn iso-contour for the convergent-divergent nozzle flow
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the inlet and the outlet only di↵er by a relative error of 0.39%. A more significant

di↵erence of velocity profile, however, occurs when compared to the DSMC result.

It is to be noted that the DSMC solution is believed to be more accurate, which

shows the velocity at the nozzle wall is nonzero. It also predicts a higher velocity

than the CFD solution. The significant discrepancy indicates that the slip e↵ect in

rarefied flows has important e↵ects on the boundary layer. The no-slip boundary

conditions normally employed for continuum CFD code are not su�cient to capture

this phenomenon. Instead, a slip wall boundary account for the rarefied e↵ects must

be used [1].

Figure 4.31: U/U
o

results from KATS compared to Ref. [1]
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Fig. 4.32 shows the translational-rotational temperature Ttr and the vibrational-

electronic-electron temperature Tve from KATS normalized using the stagnation tem-

perature To and compared against the reference data. It is noted that the reference

CFD temperature is predicted using thermal equilibrium. However, it agrees well

with Ttr from KATS. But these two continuum temperatures are very di↵erent than

the DSMC results, over-predicting the values.

The two DSMC temperatures indicate a small degree of thermal nonequilibrium

between translational and rotational energy modes. But the two CFD temperatures

from KATS shows strong nonequilibrium between translational-rotational mode and

the vibrational-electronic-electron mode. It has been shown that the over-prediction

of temperatures is due to the inability of the continuum approach to capture thermal-

nonequilibrium e↵ects and due to the use of no-slip nozzle wall boundary for the

rarefied flow [1].

The experimental pressure can be compared using reference [1]. The experiment

used a Pitot tube to measure the local total pressure. The outlet axial static pressure

from the numerical solution (Fig. 4.33) is not Pitot pressure and has to be converted.

However, this conversion is not straightforward. Flow at the exit goes from subsonic

close to the wall to supersonic and rarefied at the centerline (Fig. 4.33). A Pitot tube

in a supersonic stream forms a bow shock. The measured value by the Pitot tube

has to be recovered from the static pressure in the numerical simulation using normal

shock relations. The Pitot pressure in the subsonic region is thus given by

po = p(1 +
� � 1

2
M2)

�

��1 , (4.10)

while if the flow region is supersonic, the Mach number behind the normal shock

wave is always subsonic,

M2

2

=
1 + [(� � 1)/2]M2

1

�M2

1

� (� � 1)/2
, (4.11)

and static pressure behind the shock indicates

p
2

= p
1



1 +
2�

� + 1
(M2

1

� 1)

�

. (4.12)
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Figure 4.32: T/T
o

results from KATS compared to Ref. [1]

The Pitot pressure and Mach number immediately behind the shock are related by

po2 = p
2

(1 +
� � 1

2
M2

2

)
�

��1 . (4.13)

One can also get Rayleigh Pitot tube formula combining the above equations.

After some manipulation, it implies

po2 =
po2
p
2

p
2

p
1

p
1

= p
1

✓

(� + 1)2M2

1

4�M2

1

� 2(� � 1)

◆

�

��1 1� � + 2�M2

1

� + 1
. (4.14)

To account for rarefaction e↵ects, the ideal pressure po2 is corrected by

pom =
100.089

Re0.12
po2 , for Re  5.6 , (4.15)
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Figure 4.33: Static pressure and Mach number results from KATs at the exit

where the probe Reynolds number is defined by

Re =
⇢1U1D

µ
. (4.16)

The diameter of the Pitot tube on the experimental apparatus is 1 mm. Since the

reference values of ⇢1U1 from the DSMC results are unknown, an estimated value

0.065 is used for the following computation. The resulting Re is shown in Fig. 4.34.

In addition, the viscosity µ has to be calculated. The static temperature T
2

behind

the shock is first computed by relating the static pressure in front of the shock.

T
2

= T
1



1 +
2�

� + 1
(M2

1

� 1)

� 

2 + (� � 1)M2

1

(� + 1)M2

1

�

. (4.17)
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Figure 4.34: Reynolds number from KATS at the exit for Mach>1

It should be noted that in this simulation Sutherland power-law for the viscosity

of gas is taken from the reference to mach the condition for comparisons, which is

given by

µ = µref (
T

Tref
)! , (4.18)

where µref , the viscosity of N
2

, is taken as 2.58 ⇥ 10�5 N · s/m2 at the reference

temperature Tref of 500 K, and ! is 0.75. Comparisons of the Pitot pressure are

shown in Fig. 4.35. The two CFD solutions agree well with each other, but di↵erence

appears when compared to the experimental data. CFD solutions over-predict the
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Pitot pressure in the center flow, and under-predict in the boundary layer.

Figure 4.35: Normalized Pitot pressure from KATS compared to Ref. [1]

Conclusion

In this section, investigation of KATS flow solver on a hypersonic nozzle is performed.

Associated numerical solutions are found in good agreement with other CFD results.

However, comparisons against DSMC and experiments indicates some significant dis-

crepancies, which are mainly due to the failure of the traditional continuum fluid

dynamics solver when used for rarefied gas, where the DSMC technique can give a

better solution. Also, the low-density, slip e↵ects along the nozzle wall can not be
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captured using the traditional no-slip wall boundary conditions in CFD and makes

the comparison di�cult.

Copyright c� Huaibao Zhang 2015.
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Chapter 5 Subsonic Solver: Verification and

Validation

5.1 Preconditioning and Low Mach Number Flow

In this section, the CFD code is extended so that it can model low-speed flow. This is

mainly accomplished by switching the convective fluxes to the AUSM scheme family,

and using preconditioning techniques. Specifically, a novel preconditioning method

is addressed: the Weiss-Smith preconditioner is modified for greater robustness and

extended to account for multi-species problems.

Computational Fluid Dynamic (CFD) schemes can be broken into two families:

pressure-based and density-based methods [82]. They were originally formulated to

deal with flows mainly for variant Mach numbers. Pressure-based methods were de-

veloped for incompressible and low Reynolds number flow while density-based meth-

ods have been mainly used for compressible flow in context of high Mach number

condition. To avoid being limited in their traditional domains, the extension of

their application into wider regimes has been a topic of great e↵ort for decades.

Traditional density-based physical time-marching algorithms have been used success-

fully for compressible flow simulations, and are widely used in the computation of

transonic, supersonic and hypersonic flows. However, they encounter di�culty in

simulating compressible flow with very low Mach number (Mach<<0.3). In the in-

compressible region, since density is constant, pressure cannot be updated correctly

from an equation of state. The velocity and pressure in the momentum governing

equations are therefore loosely coupled [101].

Mathematically, time-marching schemes are hyperbolic, therefore, they are more

suitable to solve compressible flows. However, the incompressible system does not
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behave hyperbolicly. Moreover, the system of equations becomes very sti↵ since the

propagation of the acoustic wave is significantly greater than the particle convective

speed. A degraded convergence rate is found and the traditional density-based time-

marching method becomes insu�cient.

Preconditioning techniques have been well developed to solve these issues since

the 1970s [102–104]. It is able to overcome the di�culty of disparity among eigen-

values, and the equations are thus strongly coupled. Precondtioning is accomplished

by altering the time-derivatives through the multiplication of a preconditioning ma-

trix, in such a way that an artificial pressure time derivative is introduced, and the

eigenvalues are modified in the same order. Preconditioning does not only rescale

the eigenvalues of the system, thus eliminating the sti↵ness and gaining better con-

vergence; it also improves the solution accuracy. Weiss and Smith [105] presented

a time derivative preconditioning of the Navier–Stokes equations, and it has widely

been accepted as a solution for the finite volume discretization and time-marching

schemes. The preconditioner does not influence the accuracy of the steady-state so-

lution, however it removes the physical time accuracy. Choi and Merkle [106] added

the pseudo-time derivatives to the original physical time derivatives to be able to

solve unsteady flow with physical time accuracy. This procedure carries out an inner

loop and marches to a “steady state” at a given physical time level.

The objective of the present work is to develop a new preconditioning system

which can expand existing time marching solvers to allow calculations for low-speed

reacting flow, and e↵ective application over a wide range of flow Mach numbers and

physical time scales. The first modification of Weiss-Smith preconditioner involves

the evaluation of pressure di↵erences of the current cell and its neighboring cells.The

following modification is therefore an extension of the Weiss-Smith preconditioner for

multi-species.
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The Jacobian of conservative variables to primitive variables is given by
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For low Mach number flow, the Jacobian matrix is preconditioned by replacing the

term d⇢
i

dp
i

by ⇥i, while the other terms remain the same.

According to the Weiss-Smith preconditioner, a reference velocity for an incom-

pressible flow is given by

Ur = max(|u|, ✏a) , (5.1)

where a small number ✏a is used as the limit to avoid singularities in Eqn. (5.4) at the

stagnation point. a is the speed of sound, and the small number ✏ is set to 1⇥ 10�5.

For viscous flow, a further modification is added by introducing the dynamic

viscosity µi and density ⇢i for each species

Ur,i = max(Ur,
µi

⇢i�x
) (5.2)

For some cases, where the Mach number approaches zero close to a stagnation

point, the preconditioning system lacks robustness. Darmofal and Siu [107] suggested

modifying Ur locally by adding the evaluation of pressure di↵erence.

Ur,i = max(Ur,i, ✏

s

|�pi|
⇢i

) , (5.3)

where |�pi| is the maximum of pressure di↵erence between the current cell and all of

its neighbors.
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The term, ⇥i, is given by

⇥i = (
1

U2

r,i

� d⇢i/dT

⇢icp,i
) . (5.4)

5.2 Free Flow Test Case

N
2

flow through a Pipe

In order to validate the preconditioned flow dynamics solver, a first test case is pre-

sented, based on the experimental setup. A pure N
2

flow going through a 22 mm

diameter pipe is simulated. The free stream conditions are: T = 898 K, Vave = 0.379

m/s, and p = 12801 Pa. The associated Mach number is 6.29⇥10�4, and the Reynolds

number is 21.31 based on the average velocity Vave as the velocity scale and the pipe

diameter as the length scale. The condition indicates that the flow is incompressible

and laminar.

The computational grid and velocity iso-contours are shown in Fig. 5.1 (a) and (b)

respectively. When the flow is fully developed, the outlet velocity shows the expected

laminar pipe-flow profile. The outlet velocity solution along the radius is compared

to an analytical solution in Fig. 5.1 (c). The numerical solution is found in good

agreement with the analytical solution with maximum relative error 0.4%, where the

analytical solution for a pipe flow is given by

u(r) =
�p

4µl
(R2 � r2) , (5.5)

where �p is the di↵erence of static pressure, µ is the viscosity, and l is the length.

Two N
2

flow through a pipe

To investigate the ability to solve multi-species flow at low Mach number, a specific

test case is designed: two N
2

flows with same free stream conditions through a pipe

are simulated. The idea behind this design is that the analytical velocity solution in

this case can be computed by taking the two N
2

species as one. For this simulation,
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(a) Computational grid (b) Velocity iso-contour

(c) Centerline velocity

Figure 5.1: N
2

flow through a pipe
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the same mesh as the previous case is used. Once converged, the fully developed flow

velocity of the pipe is shown and compared to an analytical solution in Fig. 5.2, in

which good agreement can be found. The maximum relative error is below 0.3%.

(a) Centerline velocity

Figure 5.2: Two N
2

flow through a pipe

In summary, a preliminary numerical investigation is performed for the develop-

ment of a multi-species preconditioner. A carefully designed test case of a pipe flow

is used to evaluate the performance of this preconditioner. The numerical solution of

KATS is found in a good agreement with the analytical solution.

5.3 Lid-driven Cavity Problem

The research on lid-driven cavity problem can date back to the early work of Burggraf

[108], and is considered a classical test problem for validation of numerical Navier–

Stokes codes, both in laminar flow and turbulence. This problem was numerically

investigated using incompressible approach by Ghia [2], who provided a detailed
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database of di↵erent Reynolds numbers. The following test involves a 2-D laminar

flow in a square cavity, with the top lid driven by a uniform tangential velocity. The

simulation in this work was made under a low Mach number condition. Specifically,

the case of Re = 100 is considered, where the inlet velocity is used as the velocity

scale and the cavity length as the length scale. The preconditioning technique and

AUSM+-up convective flux scheme are used for the computation.

Numerical setup involves free stream density ⇢ = 1 kg/m3, lid velocity u = 1

m/s, 2-D cavity length L = 1 ⇥ 10�3 m, viscosity µ = 1 ⇥ 10�5 kg/(m · s) and

T = 300 K. Inlet Mach number is ⇠ O(10�3), indicating incompressible flow. A grid

of dimensions 161⇥161 is used as shown in Fig. 5.3 (a), where mesh refinement was

performed close to the wall boundaries.

It should be mentioned that it is not appropriate to impose a uniform velocity at

the inlet considering the inconsistency of velocity boundary condition with a com-

pressible solver. As a remedy, a boundary layer thickness is set to 5% of the length

L, and the velocity is linearly scaled from the free flow velocity to zero at the bound-

ary [109]. The Mach number for this test case is low and its contours are shown in

Fig. 5.3 (b). The Mach number contours with streamlines are shown in Fig. 5.3 (c),

in which the flow pattern reveals a primary vortex in the center zone and two minor

ones on the left and right bottom corner.

The velocity distribution through the geometric center of the cavity is compared

to the reference numerical solution in Fig. 5.4 (a)-(b). The overall profiles agree

well with the benchmark results. Only a small discrepancy is observed at the top and

bottom peak for velocity v with a maximum relative error 0.1%. The good agreement

demonstrates the feasibility and capability of the current compressible flow solver and

preconditioning technique to deal with low Mach number viscous flow. More tests,

however, are needed for higher Reynolds number and 3D cases.

In summary, by using an all-velocity, low dissipation, convective flux scheme,

AUSM+-up, together with the preconditioning technique for low-speed flow, the
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(a) Mesh (b) Mach number

(c) Streamline

Figure 5.3: Simulation of a lid-driven cavity problem
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(a) v-velocity along horizontal line through ge-
ometric center of cavity

(b) u-velocity along vertical line through geo-
metric center of cavity

Figure 5.4: Numerical solutions of KATS compared to reference numerical solu-
tions [2]

KATS subsonic solver successfully simulates a pipe flow and a laminar lid-driven

cavity problem. For the pipe flow case, excellent agreement with the analytical so-

lution is found. A carefully designed numerical test is then conducted, which is able

to verify the validity of a new multi-species preconditioner. The result is in good

agreement with the analytical solution. In the study of the lid-driven cavity problem,

besides the use of preconditioner and AUSM+-up scheme, the velocity inlet boundary

condition is also modified by setting a boundary layer to make it more compatible

with the compressible solver. This allows KATS to yield results in good agreement

with the benchmark solution in the Ref. [2].

Copyright c� Huaibao Zhang 2015.
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Chapter 6 Coupling of A Free Flow and A Porous

Medium Flow

In this chapter, KATS is used to solve problems which involve both a “free flow”

and a porous medium flow. Previous work on coupling combines two independent

solvers: one CFD solver and one material response solver, each solving di↵erent sets

of governing equations. The coupling is performed through a surface flux balance

method, which results in boundary condition inconsistency. In the proposed model, a

new Darcy–Brinkman equation for a compressible free flow and a porous medium flow

is developed. This governing equation must be constructed to be able to solve for the

individual region of free flows and porous media flows, and the conjugate free/porous

interaction. The set of governing equation system combines mass conservation, the

modified Darcy–Brinkman equation for momentum, and energy equation.

Mass Conservation

@(�⇢)

@t
+r · (�⇢v) = 0 (6.1)

or in Cartesian coordinates,

@(�⇢)

@t
+

@(�⇢u)

@x
+

@(�⇢v)

@y
+

@(�⇢w)

@z
= 0 (6.2)

Momentum Balance

@(�⇢v)

@t
+r · (�⇢vvT) = �rp� �µ

v

K
+r ·

h

µerv + µe(rv)T
i

+r(�er · v)
(6.3)
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where µe = µ and �e = � in the proposed model. In 3D Cartesian coordinates, the

momentum equations become
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Energy Balance

@(�⇢E)

@t
+r · (�(⇢E + p)v) = r · (�Tv)�r · q̇� �2µ

v · v
K

(6.7)

or in Cartesian coordinates,
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One can easily find that this Darcy–Brinkman equation reverts back to the Navier–

Stokes equation (See Chapter 2) by setting porosity � = 1, and permeability K = 1.

Therefore, it works for free flow.

It is known that Darcy’s law governs the momentum of a porous medium flow.

The observations of Henry Darcy in 1856 of water supply and his experiments on

steady state unidirectional flow within the porous medium composed of sand sug-

gested Darcy’s law [110], given by

@p

@x
= ��

µ

K
u , (6.9)
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where the intrinsic velocity, u, denotes the velocity averaged over the pore space.

It is related to the Darcy velocity, V , the velocity averaged over the medium, by a

porosity �, given by

V = �u . (6.10)

For the Darcy–Brinkman equation in this work, the conditions of its applicability

on porous media flows cannot be readily determined. However, Darcy’s law can be

recovered from it using some rough assumptions. First, the time terms vanish for

steady state solutions. Moreover the momentum induced by mass transfer and the

viscous stress can be assumed minimal compared to the pressure gradient term for

low-speed flow field. This is typical for most porous media flows, since the permeabil-

ity of a porous medium is of the order of ⇠ O(10�7) m2 [111], and the gas viscosity is

around ⇠ O(10�5) kg/(m · s). Therefore, the Darcy source term tends to be amplified

by a factor of 100 of the velocity magnitude. The pressure gradient term and the

Darcy term are thus balanced and dominate all other terms.

Using the governing equations and preliminary quantitative analysis above, most

of the work is dedicated to formulate a method to accurately capture the fluxes

across the free/porous interface, which can be decomposed into two components: the

convective fluxes and viscous fluxes.

6.1 Convective flux

AUSM+-up scheme has been used extensively in previous work to account for low-

speed viscous flow, for its consistent stability and accuracy, even sometimes without

the use of a preconditioning matrix. Other schemes can not achieve this easily. Its

main drawback arises from the determination of the reference Mach number. This

reference Mach number essentially works as a truncation number, and becomes the

only dependent variable of the scaling factor fa, and directly scales the contribution

of the di↵usion term. In the development of the convective scheme, numerical tests

conducted using this scheme were found to be able to solve the free channel flow, and
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the Darcy problem in Section 6.3. However, for the later free/porous coupling case,

it was found extremely dependent of the reference Mach number. The main reason is

that big changes of pressure and velocity at the free/porous interface are sensed and

treated as a shock by the AUSM+-up scheme, where they should not be. Although

accurate results can be achieved by carefully tuning the reference Mach number, it is

not convenient. Fig. 6.1 presents the solutions using di↵erent reference Mach numbers

for the 2-D porous plug flow case in Section 6.3. The normalized streamwise velocities

along the centerline vary noticeably for di↵erent reference Mach numbers.

Multiple attempts have been made to modify the averaged pressure and Mach

number in the AUSM+-up scheme, especially at the interface (since the main error

comes from the interface), in order to remove the hard specification of reference Mach

number. None were successful.

Another scheme, an all-speed AUSM-family scheme [112], called “the simple low-

dissipation AUSM”, which provides a way removing the dependence of the cuto↵

Mach number for low-speed flow, is referenced instead. To simplify the nomenclature,

it is renamed AUSM-s in this work. This scheme demonstrates good performance in

convergence rate for some cases, but it shows loss of accuracy for the low-Mach number

case indicated in Fig. 6.5. Its main ability is to control the numerical dissipation

contained in the pressure by introducing a non-dimensional function in the current

Mach number.

The new proposed scheme in this work can be seen as a hybrid of AUSM+-up and

AUSM-s scheme, and is named AUSM-h. In its basic implementation, the normal

velocity is set by multiplying a � to the intrinsic normal velocity. That is, the Darcy

velocity is used. One of the variables, the averaged Mach number, is then scaled

accordingly. It is constructed as

M 1
2
= M+

(4)

(ML) +M�
(4)

(MR) , (6.11)

which is modified by removing the pressure dependence from the AUSM+-up scheme.

This modification yields more accurate interface mass fluxes as demonstrated later.
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Figure 6.1: Normalized streamwise velocity along the centerline of the coupling case
in Section 6.3 using di↵erent reference Mach numbers for AUSM+-up scheme. The
reference velocity V is the analytical free flow mean velocity in Section 6.3.

The pressure in the governing equations is original and maintained without any

average. The justification suggests that pressure is assumed acting on the whole

control surface and is not a↵ected by the porosity. Additionally, pressure continuity

across the free/porous interface is validated in experiments, and is proved by the

Beaver and Joseph boundary condition theoretically [32].

The interface pressure in the AUSM-h scheme is constructed as

p 1
2
=

pL + pR
2

+
P+

(5)

(ML)� P�
(5)

(MR)

2
(pL�pR)+(1��)

⇣

P+

(5)

(ML) + P�
(5)

(MR)� 1
⌘ pL + pR

2
,

(6.12)

where

� = (1�Mo)
2 . (6.13)
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The reference Mach number is calculated by

Mo = min(1.0, |M̄ |) , (6.14)

where

M̄2 =
�2

L(u
2

L + v2L + w2

L) + �2

R(u
2

R + v2R + w2

R)

2a2
1/2

. (6.15)

It is important to note that the user specified (or free stream) Mach number has

been removed from the reference Mach evaluation. Di↵erent from the original form

of AUSM-s scheme, it can be found that � functions are now replaced by 5th degree

polynomials P
(5)

in AUSM+-up scheme. More details of the AUSM-h scheme can be

found in the following subsection.

AUSM-h scheme

First of all, a
1/2 is evaluated as

a
1/2 = min(âL, âR) , (6.16)

where

âL = a⇤La
⇤
L/max(a⇤L,�LVnL) , âR = a⇤Ra

⇤
R/max(a⇤R,��RVnR) . (6.17)

The reference Mach number is calculated by

Mo = min(1.0, |M̄ |) , (6.18)

where

M̄2 =
�2

L(u
2

L + v2L + w2

L) + �2

R(u
2

R + v2R + w2

R)

2a2
1/2

. (6.19)

The scaling function fa is given by

fa(Mo) =

8

>

>

<

>

>

:

1 for Mo � 1

Mo(2�Mo) otherwise

(6.20)
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The working Mach number is readily given by

M 1
2
= M+

(4)

(ML) +M�
(4)

(MR) , (6.21)

where

ML = �L
VnL

a
1/2

, MR = �R
VnR

a
1/2

. (6.22)

The mass fluxes are defined as

ṁ 1
2
= a

1/2M1/2

8

>

>

<

>

>

:

⇢L if M
1/2 > 0 ,

⇢R otherwise

(6.23)

and the pressure fluxes are given by

p 1
2
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pL + pR
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(6.24)

where

� = (1�Mo)
2 , (6.25)

The 5th degree polynomials use the parameters

↵ =
3

16
(�4 + 5f 2

a ) , (6.26)

and

� =
1

8
. (6.27)

Finally, the whole convective fluxes are given by

F
1/2 = ṁ 1

2

8

>

>

<

>

>

:

�L if M
1/2 > 0

�R otherwise

+ p
1/2 . (6.28)

where � = (1, u, w, w, h)T and p
1/2 = p(0, nx, ny, nz, 0)T .
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6.2 Viscous flux

In the treatment of viscous fluxes, the shear stress is computed using intrinsic velocity

gradient other than the gradient evaluated from Darcy velocity shown in Eqn. (6.29).

The argument for this is that the gradient evaluation is better performed on the

fluid since it is a local property. Also, this treatment tends to eliminate unphysical

oscillations and produce smooth result especially for velocity across the free/porous

interface. Velocity averaging taken over the whole control volume loses the velocity

gradient information.

⌧ij = µe

✓

@uj

@xi
+

@ui

@xj

◆

+ �e
@uk

@xk
�ij , �e = �2

3
µe . (6.29)

Determination of µe, �e and their relations in porous media are not trivial. Some

further investigation is required. For now, they are considered to be the same as the

ones in the free flow.

The delimitation of the free flow and the porous medium domain is achieved

through spatial properties such as porosity and permeability. This varies from the

multi-domain coupling approach where a boundary condition is specified. The poros-

ity, defined as volume fraction of pores over the cell space, varies from 0 to 1 in space

such that a free flow has � = 1, while for porous medium domain, it lies between 0

and 1. An example, for instance, is shown in Fig. 6.2, where the porous medium in

the center regions has � = 0.7, while the free flow regions on both ends have � = 1.

Additionally, a filter is applied to smooth the interface region where sharp changes

of porosity and permeability can occur. For a generic cell, c, the smooth function of

� is constructed as follows:

�̃c =

P

6

n=1

�n + ��c

6 + �
. (6.30)

where �̃c is the smoothed porosity and subscript n denotes the adjacent neighbor cell

index of cell c. The coe�cient � governs the sensitivity of the smooth function, and
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it is set to 6 as default in current work. The application of the filter to the porosity

field can also be a↵ected by the number of filtering times, N . One-time filtering the

region does not produce too much di↵erence, while considerable smoothings yield a

smooth profile of porosity, but ends up with poor numerical solution accuracy for the

coupling system. Figure 6.2 shows the e↵ects of the number of filtering times. In

this work N = 10 is picked for the computation. It should be noted that the same

procedure is also applied to permeability.

Figure 6.2: E↵ects of number of filtering times

6.3 Verification of the Governing Equation System on Channel Flows

The following tests were performed using an argon flow with free stream conditions

⇢ = 0.2 kg/m3 and viscosity µ = 1 ⇥ 10�4 kg/(m·s). The inlet average velocity is

carefully adjusted to be 0.1 m/s, resulting in Re=1, where the length scale is the

channel height, H = 5 ⇥ 10�3 m, indicating a laminar flow. The associated Mach
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number is 4.5⇥ 10�4, indicative of incompressible flow. In addition, the free stream

temperature is set to T = 288.73 K, and an adiabatic wall boundary is used.

Verification of the Coupling Equations for Free Flow

In order to verify that the code solves free flow problems, a 2-D channel flow, as a

first test case, is presented. However, KATS solves it using a 3-D mesh because it

is coded in this way. The geometry is shown in Fig. 6.3. The height of the channel

is given by H = 5 ⇥ 10�3 m. The inlet boundary conditions are pt = 12000.144 Pa

and Tt = 288.73 K. Outlet boundary condition is p = 12000 Pa. When the flow

is fully developed, pressure contours, presented in Fig. 6.4 (a), show the expected

linear distribution through the channel. The velocity along the diameter of the tube

also shows a nice laminar tunnel-flow profile, as depicted in Fig. 6.4 (b). Finally, in

Fig. 6.5, the numerical velocity across the channel height using AUSM-h scheme is

compared to the analytical solution and exhibits excellent agreement between each

other. Numerical solution using AUSM-s is also presented. Its maximum relative

error to the analytical solution, however, is 2.1%. The new scheme, AUMS-h, yields

a higher level of accuracy than AUSM-s.

Figure 6.3: Geometry configuration for a free channel flow
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(a) Relative pressure to 12000 Pa

(b) Velocity

Figure 6.4: Pressure and velocity contour
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Figure 6.5: Numerical velocity verification for the free flow

Verification of the Coupling Equations for Porous Media Flows

The proposed Darcy–Brinkman model is expected to behave according to Darcy’s law

(Eq. (6.9)) for porous medium. The following tests verify the ability of the scheme

to do so.

A Darcy Problem

This first test replicates a Darcy’s problem. Two static pressures are specified at both

the inlet and the outlet of a 2-D channel (Fig. 6.6). The resulting pressure drop forces

a flow through the porous medium. The height of the channel is set to H = 5⇥ 10�3

m.

Analytical solution of the Darcy velocity V computed using Darcy’s law is given
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Figure 6.6: Geometry configuration for a Darcy problem

Table 6.1: Fluid properties

Variable Value Unit

pin 12004 Pa
pout 12000 Pa
⇢ 0.2 kg/m3

µ 1⇥ 10�4 kg/(m·s)
K 2.5⇥ 10�8 m2

� 0.7

by

V =
pin � pout

2H

K

µ
= 0.1 m/s . (6.31)

Numerical simulation of this case only specifies constant static pressure at the two

ends of the channel, and symmetry conditions are used for the other boundaries. Fig-

ure 6.7 (a) shows the static pressure contour, and Figure 6.7 (b) shows the relative

error percentage of the numerical Darcy velocity to the analytical solution V , where

the maxmimum error 0.015% is found. Uniform velocity profile at every stream-

wise cross plane shows no stickiness to the wall, and therefore, no boundary layer is

generated. Associated streamwise properties are shown in Fig 6.8. Specifically, the

pressure is almost linearly decreased in the streamwise direction. An analytical pres-

sure for compressible flow computed according to Ref. [113] is plotted to verify the
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numerical pressure solution. The Darcy velocity is predicted as expected with only

slight numerical di↵erence in the streamwise direction. Density and temperature also

vary a little. However, the mass flow rates at the inlet and the outlet di↵er by a rela-

tive error of 4.5⇥ 10�6, indicating conserved mass flow rate. Numerical di↵erences of

velocity, density and temperature can be attributed as the compressible e↵ects when

using a compressible solver.

No-slip Wall Boundary E↵ects

For this case, the parameters from the last case are kept, except that two no-slip

walls are added to the 2-D channel sample (Fig. 6.9). Di↵erent from the last case,

a boundary layer forms close to the wall because of no-slip conditions and di↵usive

terms. However, the boundary layer is very thin, and the velocity reaches its plateau

not far from the wall relative to the height of the channel. The pressure, however, is

still almost linear in the streamwise direction. Properties such as pressure, velocity,

density and temperature along the centerline are shown in Fig. 6.11. Pressure can

be found the same as that in the previous case, and very little di↵erence occurs for

velocity, density and pressure. It implies that e↵ects of the boundary layer barely

changes the flow properties along the centerline. Compressible e↵ects on velocity,

density and temperature can also be found in this case.

Verification of the Coupling Equations on Free/Porous Flow

2-D porous plug flow

As a numerical verification case, a 2-D channel with a porous plug placed in the

center is considered (Fig. 6.12). Free flow enters the porous region under the force of

the pressure at the inlet and reverts back to free flow before exiting the channel.

Two dimensionless numbers govern the free flow and the porous medium flow in

this coupling problem. The Reynolds number, given by Re = ⇢V H/µ, can determine

the free flow. It is defined by using the free flow mean velocity, V , and the height
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(a) Pressure

(b) Relative error percentage of Darcy velocity to the analytical
solution

Figure 6.7: Pressure and Darcy velocity error contour for a Darcy problem
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(a) (b)

Figure 6.8: Streamwise properties along the centerline for a Darcy problem

Figure 6.9: Geometry configuration for a Darcy problem with no-slip wall boundaries

116



(a) Pressure

(b) Darcy velocity

Figure 6.10: Pressure and darcy velocity contour for a Darcy problem with no-slip
wall
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(a) (b)

Figure 6.11: Streamwise properties along the centerline for a Darcy problem with
no-slip wall

of the channel, H. The Darcy number charactering the porous domain is given by

Da = K/H2, where K represents the permeability. Among others, the porosity of the

material, � = 0.7, and the viscosity ratio, defined by ↵ = µB/µ, is set as 1 in order to

generate results comparable to those of Ref. [4]. Associated variables used in the ver-

ification case are shown in Table 6.2, which yield Re = 1 and Da = 10�3. To perform

the numerical simulation, the velocity inlet boundary condition is not consistent with

the use of a compressible flow solver for solving subsonic flow problems [83]. Instead,

the total pressure and total temperature boundary conditions are applied at the inlet

while at the outlet, the static pressure is used. Approximation of the pressure drop

allows specification of suitable pressure conditions without spending excessive time

on trial and error. By using Darcy’ law, the pressure drop through the porous plug

can be approximated as

�p =
µ

K
V (2H) = 4.0 Pa , (6.32)
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and the estimated total pressure drop of two sections free flow is

�p =
12µV

H2

(6H) = 0.144 Pa . (6.33)

Figure 6.12: Geometry configuration for free/porous domain [3]

Table 6.2: Fluid properties

Variable Value Unit

⇢ 0.2 kg/m3

V 0.1 m/s
H 5⇥ 10�3 m
µ 1⇥ 10�4 kg/(m s)
K 2.5⇥ 10�8 m2

� 0.7

However, the pressure loss through the free/porous interface is not easy to de-

termine and some tests are necessary to match the mean velocity to the expected

values by adjusting the inlet pressure. The verification case in this work takes the

following boundary conditions. The inlet boundary conditions are: pt = 12004.544

Pa and Tt = 288.73 K. Outlet boundary condition: p = 12000 Pa. The wall boundary

condition is no-slip and iso-thermal.

The intrinsic velocity and the Darcy velocity contours are shown in Fig. 6.13,

where the intrinsic velocity u is averaged over the pore space, and the Darcy velocity,

V , denotes the velocity averaged over the medium. The free flow clearly forms on

either end of the channel. Once the free flow approaches the porous medium, the
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velocity magnitude becomes more uniform. Non-dimensioned centerline velocity and

pressure from the numerical solutions are compared to numerical solutions in Ref. [4],

and shown in Fig. 6.14. It is noted that the above pressure drop does not yield the

exact Darcy centerline velocity of 0.1m/s, and the actual velocity solution yields a rel-

ative error of 0.36%. Related comparisons are scaled by using this numerical velocity.

A high level of agreement can be noticed for the velocity. The pressure also agrees

well except at the entrance. This is due to the development region of the flow caused

by the inlet boundary condition. It could be also due to the compressible e↵ects

since a compressible solver is used for this case. Di↵erent from the incompressible

fluid case in Ref. [4], the change of density in this work may cause di↵erent behaviors

of pressure and velocity.

In summary, a new governing equations system is constructed using volume aver-

age technique, allowing evaluation of mass, momentum and energy in 3D. To account

for the convective flux, a new scheme for the compressible free flow, the porous

medium flow, and the conjugate free/porous flow, named “AUSM-h”, is developed.

To verify the whole model, a numerical study was performed on a 2-D channel flow.

Specifically, a free flow was first simulated, and the result agrees exactly with the

analytical solution. A compressible porous medium flow was then simulated, and the

results were compared against to analytical solutions, showing excellent agreements.

Boundary e↵ects for the porous medium flow were also analyzed. Expected velocity

drop due to no-slip wall e↵ect was found. The study of the Darcy–Brinkman solver

on coupling was also conducted. A remarkable agreement with reference data was

found through the comparisons of centerline pressure and velocity, demonstrating

the feasibility of flux balancing to implicitly couple the conjugate free/porous flow

problem.

Copyright c� Huaibao Zhang 2015.
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Figure 6.13: Intrinsic and Darcy velocity contour
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(a) Normalized streamwise velocity along the centerline

(b) Normalized streamwise pressure along the centerline

Figure 6.14: Static pressure and velocity along the stagnation line compared to nu-
merical solutions in Ref. [4]
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Chapter 7 Summary and Conclusions

7.1 Summary

This work consists of two parts. The first part presents a three-dimensional Com-

putational Fluid Dynamics (CFD) code to simulate weakly ionized hypersonic flow

during reentry in thermal and chemical non-equilibrium states. Using the continuum

hypothesis, the flow field is modeled using laminar Navier–Stokes equations, mass

conservations and energy balance equations for the governing equation system. The

convective flux is computed using a shock-capturing scheme. Specifically, a modified

Steger-Warming Flux Vector Splitting scheme is employed. In terms of viscous fluxes,

the mass di↵usion for each species is modeled using Fick’s law. The viscous shear

stresses are modeled in relation to strain rate by the bulk viscosity based on the as-

sumption of a Newtonian fluid, and Stoke’s hypothesis. The heat fluxes are computed

using Fourier’s law, where the mixture thermal conductivity is used. For each species,

the viscosity is approximated using Blottner’s curve fit, and the thermal conductivity

is related to viscosity based on Euken’s relation. The mixture bulk viscosity and

thermal conductivity are evaluated by applying Wilke’s semi-empirical mixing rule

to species viscosity and thermal conductivity. A standard finite-rate chemistry model

is used to account for the chemistry reactions, and thus for the chemistry source

terms in the species mass conservation equation. A two temperature model is used

for the thermal non-equilibrium, which assumes that the translational and rotational

energy modes of the participating species are described by a single temperature Ttr,

while the vibrational and electronic energy modes, as well as electron translational

energy mode, are characterized by a single temperature Tve. The energy transfer be-

tween the translational-rotational mode and the vibrational-electron-electronic mode

is modeled using relaxation rate, thus an energy source term is generated.
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To apply the set of governing equations to solve a flow problem, the flow field

must be discretized into many small cells using structured or unstructured mesh gen-

eration technique. The set of partial di↵erential equations is then integrated over the

small volume of each cell on the domain. Finite Volume Method (FVM) is applied to

convert the resulting di↵erential equations to di↵erence equations, which can be nu-

merically solved by modern computers. Specifically, the time terms and source terms

are evaluated at the cell center. However, the computation of fluxes are not piece-

wise. Gauss theorem is applied to transfer the integration of flux over the volume to

the one at each cell surface. The fluxes across the face are evaluated using the prop-

erties from the cells neighboring it. For inviscid fluxes, the use of the cell-centered

values can only generate first-order accuracy. The higher-order extension involves

property reconstruction using more cells, and yields high-order accuracy. However, it

causes numerical oscillations which deteriorate the solution in the presence of a dis-

continuity. A limiter function which can suppress the spurious oscillations near larger

gradient, while preserve higher-order accuracy in the smooth region has to be used.

Compared to inviscid fluxes, viscous fluxes are relatively straightforward to evaluate.

The gradient at the face are computed using weighted least-squares approach and

later calibrated by a deferred correction based on center di↵erence scheme.

The integration over time uses first-order backward Euler method. This procedure

results in the linearization of the inviscid and viscous fluxes, as well as source terms.

Consequently, the Jacobian terms have to be computed for the implicit operator.

The convective flux and di↵usive flux Jacobian matrices, as well as source term Jaco-

bians, are originally implemented numerically via small number perturbation to the

original state property. They are later constructed to be fully analytical to maintain

accuracy and stability. The set of numerical discretized equations over all the cells

can be finally casted into a sparse linear system, Ax = b. Among the available linear

solvers, the PETSc library is linked, which provides flexible linear solvers and various

preconditioner approach for e�cient computation.
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The hypersonic flow solver is then extended to account for very low Mach number

flow using preconditioning technique and switch of the convective flux scheme to

AUSM+-up scheme. Preconditioning does not only rescale the eigenvalues of the

system and thus eliminate the sti↵ness to gain better convergence; it also improves

the solution accuracy. A modified Weiss and Smith is developed. The preconditioner

is then extended for a multi-species formulation.

The second part of this work involves the coupling of a free flow and a porous

medium flow. Using the volume average technique, a Darcy–Brinkmann equation for

both the compressible free flow and the porous medium flow is constructed. Mass con-

servation and energy balance equations are also volume-averaged and constructed ac-

cordingly. When dealing with conjugate free/porous problem, this solver couples the

free/porous problem through flux balance, therefore, flow behaviors at the interface

are satisfied automatically and implicitly. There is no need to impose explicit inter-

face boundary conditions. A new convective flux function of AUSM-family, AUSM-h,

is developed as the Riemann solver to account for the inviscid flux over the whole

domain. The viscous fluxes are computed using the original velocity gradient, while

the face velocity is averaged. A filtering technique is used to smooth the porosity and

permeability in the vicinity of the free/porous interface.

Using the above models, most of the cases only focus on steady state solution. A

general simulation starts from an initial state. A update of the solution is obtained

by solving the linear system using the current state. The time-dependent solution

variables are therefore advanced by a physical time step size. Time marching pro-

ceeds and a steady state solution is finally achieved. Time accurate solution can also

be obtained by controlling the physical time step size.

The numerical code package, including the hypersonic flow solver, the subsonic

flow solver, and the Darcy–Brinkmann solver, is the fluid dynamic core of known as

Kentucky Aerothermodynamics and Thermal Response System (KATS). It is writ-
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ten in C++, object-oriented and template featured, to facilitate the development of

the whole system at the University of Kentucky. KATS reads the CGNS format of

the computational grid and takes advantage of parallel computing through domain

decomposition (ParMETIS [114]) and OpenMPI [115]. It is configured and compiled

to run parallelly on the Lipscomb High Performance Computing Cluster (DLX) at

the University of Kentucky [116].

This CFD module has been proven a valuable contribution to the aerospace field.

It is extensively coupled with the Material Response (MR) module [41] and the spal-

lation phenomenon code [43] developed. For the first coupling case, each module

solves its governing equation on a given mesh, i.e. the CFD solver solves the equa-

tions on the fluid mesh and the MR solver on another. The only requirement is that

the meshes are aligned at their interfaces so that the area of the faces is identical on

both grids. At each time step, a surface module solves the flux balance equations

to obtain the primitive values at the interface. Thus, two modules are implicitly

coupled through surface balance equations. For the second coupling case, a loose

coupling (or one-way coupling) is achieved by running a particle-tracking code using

a converged CFD solution. More than that, it is also necessary and important to

take account of the impact of spallation on the flow field. The source terms from the

particle-tracking code are then added to the CFD solver and solved time accurately.

This is the two-way coupling. Motivated readers are welcome to read the references

for more information.

In this work, KATS is employed to simulate several reentry flow over space capsule

cases. It is also used to simulate a convergent-divergent nozzle flow to investigate

the validity of current CFD technique to deal with low-density hypersonic nozzle

flow. In terms of subsonic cases, simulations of low Mach number flows are also

performed to test the precondition system. The performance of the coupling solver is

investigated through a series of numerical tests, such as the pure free flow, the pure

porous medium flow, and the conjugate free/porous flow problem. Related solutions
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are carefully compared against the analytical solutions and the available benchmark

solutions from other sources.

7.2 Conclusions

KATS successfully simulated Mach 10 Argon flow over a cylinder. Comparisons with

the results obtained from the CFD code LeMANS indicates remarkable agreement

between each other.

KATS successfully captured the heat transfer rate over a Mars entry spacecraft

experimental model in the HYPULSE expansion hypersonic wind tunnel for airflow.

Improvement of second-order scheme is shown for the heat transfer rate by comparing

to the first-order scheme. First-order scheme over-predicts the value at the stagnation

lines, therefore, mesh refinement is required to achieve higher resolution. Second-

order scheme can obtain more accurate values, is thus more favorable to employ.

KATS successfully conducted a full simulation of the air flow over Stardust cap-

sule, followed by a study focused on the forebody of the capsule, where mesh refine-

ment tests are performed to guarantee a grid-independent solution. Two simulations

using a 5-species air model and 11-species air model were performed to assess the

di↵erence between them. It can be noticed that stagnation temperatures are reduced

for the 11-species air model, which explains as the e↵ect of ionizations. However,

away from the nose region, the heat transfer rate is increased. The explanation is

that the high-temperature level at the nose region triggers ionizations, thus more

energies are consumed. But once the gas is moving away from the nose, ionization

reacts backward due to low temperature level, thus generates energy. The resulting

heat transfer to the surface increases.

KATS successfully simulated a low-density hypersonic nozzle flow. Associated

numerical solutions are found in excellent agreement with another CFD results. How-

ever, comparisons against DSMC and experiments indicates some significant discrep-

ancies, which are mainly due to the failure of the traditional continuum fluid dynamics
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solver on rarefied gas. The DSMC approach gives a better solution. More specifi-

cally, the low-density, slip e↵ects along the nozzle wall can not be captured using the

traditional no-slip wall boundary conditions in CFD, which makes the comparisons

di�cult. A slip-wall boundary condition must be employed to solve this di�culty.

KATS was successfully extended to deal with a low-speed flow. By using an

all-velocity low dissipation convective flux scheme, AUSM+-up, together with the

preconditioning technique for low-speed flow, KATS subsonic solver successfully sim-

ulated a pipe flow and an excellent agreement with an analytical solution is found.

A carefully designed numerical test was also conducted, which is able to verify the

validity of a new multi-species preconditioner. The result is, again, in good agreement

with the analytical solution. In the study of lid-driven cavity problem, besides the

use of preconditioner and AUSM+-up scheme, the velocity inlet was modified to gen-

erate a a boundary layer and make the solution consistent for solving subsonic flow

using a compressible flow approach. This allows KATS to yield results in excellent

agreement with the benchmark solution in the reference [2].

The new Darcy–Brinkman solver successfully simulated a compressible free flow

and a porous medium flow through a 2-D channel, respectively. The numerical result

shows excellent agreement with analytical solutions. Boundary e↵ects for the porous

medium flow were also analyzed. Expected velocity drop due to no-slip wall e↵ect

was found. Study of the Darcy–Brinkman solver on free/porous coupling was also

conducted on a 2-D coupling channel flow. A remarkable agreement with reference

data was found through the comparisons of centerline pressure and velocity.

7.3 Original Contributions

1. A weakly ionized hypersonic flow solver KATS-CFD for reentry ap-

plication

Although the physical models and mathematical formulations for hypersonic

flow in this work are not new, the solver itself was developed independently
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from other research institutes and universities. This solver is able to solve a

flow in a both thermal equilibrium and non-equilibrium, as well as chemical

non-equilibrium state. The main di↵erence is that a set of density-based primi-

tive variables is used for dependent variables, which is simple in derivation and

e�cient in computation, especially for the calculation of temperatures. Numer-

ical and analytical Jacobians for convective, di↵usive and source terms were

both implemented.

2. A subsonic solver for low Mach number flow

KATS-CFD was extended to account for low Mach number flow via switch of

the convective flux scheme to AUSM+-up scheme [65], and use of a modified

Weiss and Smith preconditioner [105]. It was modified further to account for

multi-species flow in low Mach regime.

3. A Darcy–Brinkman solver for the compressible free flow and the

porous medium flow

A new set of governing equation system consisting of Darcy–Brinkman equa-

tion, mass conservation, and energy equation was developed. To account for

the inviscid flux, an AUSM family scheme, AUSM-h, was developed, which re-

moves the dependence of reference Mach number in AUSM+-up. It is seen as

a hybrid of AUSM+-up the “simple low-dissipation AUSM” [112]. The viscous

fluxes are evaluated using original velocity gradient, but the velocity at the face

is averaged. Instead of imposing the boundary conditions at the free/porous

interface, this solver couples the domains implicitly through flux balance.

4. Study on a channel free flow, a porous medium flow using the new

Darcy–Brinkman solver

The performance of the Darcy–Brinkman solver was demonstrated on a 2-D

channel flow. The numerical result shows excellent agreement with analytical
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solutions. Boundary e↵ects for the porous medium flow were also analyzed.

Expected velocity drop due to no-slip wall e↵ect was found.

5. Study on coupling channel flow using the new Darcy–Brinkman solver

Study of the Darcy–Brinkman solver on coupling was conducted on a 2-D cou-

pling channel flow. A remarkable agreement with reference data was found

through the comparisons of centerline pressure and velocity.

Copyright c� Huaibao Zhang 2015.
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Appendix A. Chemistry and Physics Data Source Table

Species data

Table 1 shows the basic chemistry data for each species used in the 5-species air

model and the 11-species air model, where in the 5-species air model, species N
2

,

O
2

, NO, N and O are involved, and in the 11-species air model, N
2

, O
2

, NO, N, O,

N+

2

, O+

2

, NO+, N+, O+, and e are involved. Specifically, Ms is the molar mass, ho
s is

the energy of formation assuming the base temperature at 0 K, As, Bs, and Cs are

constants for the Blottner viscosity model, ✓v,s is the species characteristic vibrational

temperature, Ds is the dissociation potential of a molecule used to account for the

energy change due to chemical reactions, Gs the species charge, and finally Îs is the

first ionization energy.

Table 1: Basic species chemistry data

Species M
s

[g/mol] ho

s

[J/kg] A
s

B
s

C
s

✓
v,s

[K] D
s

[J/kg] G
s

Î
s

[J/kg]
N2 28 0 2.68142E-2 3.177838E-1 -1.13155513E1 3395 3.363E7 0 0
O2 32 0 4.49290E-2 -8.261580E-2 -9.20194750E0 2239 1.542E7 0 0
NO 30 2.996123E6 4.36378E-2 -3.355110E-2 -9.57674300E0 2817 2.090E7 0 0
N 14 3.362161E7 1.15572E-2 6.031679E-1 -1.24327495E1 0 0 0 0
O 16 1.543119E7 2.03144E-2 4.294404E-1 -1.16031403E1 0 0 0 0
N+

2 27.9994514 5.425897E7 2.68142E-2 3.177838E-1 -1.13155513E1 3395 3.003E7 1 0
O+

2 31.9994514 3.658450E7 4.49290E-2 -8.261580E-2 -9.20194750E0 2239 2.009E7 1 0
NO+ 29.9994514 3.283480E7 3.02014E-1 -3.5039791 -3.73551570E0 2817 3.490E7 1 0
N+ 13.9994514 1.340460E8 1.15572E-2 6.031679E-1 -1.24327495E1 0 0 1 2.89E7
O+ 15.9994514 9.770599E7 2.03144E-2 4.294404E-1 -1.16031403E1 0 0 1 2.69E7
e 0.0005486 0 0 0 -1.20000000E1 0 0 -1 0

Electronic energy data

Species electronic modes at di↵erence levels are shown in Table 2 and Table 3. Not

just those species for the 5-species air model and the 11-species air model are listed,
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but some gases once used in the development of this work, and some collaborated

works, such as Ar and CO
2

.

NASA 9 Polynomial Data

Table 4 and 5 present polynomial constants for the specific enthalpy and entropy,

which are then used for the computation of equilibrium constant Kcr. The valid

temperature interval for each set of coe�cients is bounded by Tl and Tu. It also

includes the energy of formation at the base temperature of 298.15 K.
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Table 2: Electronic energy modes

Species level i ✓el,i,s [K] gi,s
Ar 0 0.000000000000000E+00 1
Ar 1 1.611135736988230E+05 9
Ar 2 1.625833076870950E+05 21
Ar 3 1.636126382960720E+05 7
Ar 4 1.642329518358000E+05 3
Ar 5 1.649426852542080E+05 5
Ar 6 1.653517702884570E+05 15
O 0 0.000000000000000E+00 5
O 1 2.277077570280000E+02 3
O 2 3.265688785704000E+02 1
O 3 2.283028632262240E+04 5
O 4 4.861993036434160E+04 1
O+ 0 0.000000000000000E+00 4
O+ 1 3.858334678336000E+04 10
O+ 2 5.822349152848000E+04 6
O2 0 0.000000000000000E+00 3
O2 1 1.139156019700800E+04 2
O2 2 1.898473947826400E+04 1
O2 3 4.755973576639200E+04 1
O2 4 4.991242097343200E+04 6
O2 5 5.092268575561600E+04 3
O2 6 7.189863255967200E+04 3
O+

2 0 0.000000000000000E+00 4
O+

2 1 4.735440815760000E+04 8
O+

2 2 5.837398741440000E+04 4
O+

2 3 5.841427312000000E+04 6
O+

2 4 6.229896616000000E+04 4
O+

2 5 6.733467936000000E+04 2
O+

2 6 7.121937240000000E+04 4
O+

2 7 7.654284064000000E+04 4
O+

2 8 8.819691976000000E+04 4
O+

2 9 8.891630736000000E+04 4
O+

2 10 9.423977560000000E+04 8
O+

2 11 9.495916320000000E+04 4
O+

2 12 9.592026503360000E+04 2
O+

2 13 9.985099888000000E+04 2
O+

2 14 1.035918144000000E+05 4
N 0 0.000000000000000E+00 4
N 1 2.766469645581980E+04 10
N 2 4.149309313560210E+04 6
N+ 0 0.000000000000000E+00 1
N+ 1 7.006835224000000E+01 3
N+ 2 1.881917961600000E+02 5
N+ 3 2.203656871824000E+04 5
N+ 4 4.703183475776000E+04 1
N+ 5 6.731252222192000E+04 5
N+ 6 1.327190797527310E+05 15
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Table 3: Electronic energy modes – continued

Species level i ✓
el,i,s

[K] g
i,s

N2 0 0.000000000000000E+00 1
N2 1 7.223156514095200E+04 3
N2 2 8.577862640384000E+04 6
N2 3 8.605026716160000E+04 6
N2 4 9.535118627874400E+04 3
N2 5 9.805635702203200E+04 1
N2 6 9.968267656935200E+04 2
N2 7 1.048976467715200E+05 2
N2 8 1.116489555200000E+05 5
N2 9 1.225836470400000E+05 1
N2 10 1.248856873600000E+05 6
N2 11 1.282476158188320E+05 6
N2 12 1.338060936000000E+05 10
N2 13 1.404296391107200E+05 6
N2 14 1.504958859200000E+05 6
N+

2 0 0.000000000000000E+00 2
N+

2 1 1.318997164600000E+04 4
N+

2 2 3.663323087728000E+04 2
N+

2 3 3.668876760000000E+04 4
N+

2 4 5.985304832000000E+04 8
N+

2 5 6.618365920000000E+04 8
N+

2 6 7.598991933064000E+04 4
N+

2 7 7.625508560000000E+04 4
N+

2 8 8.201018640000000E+04 4
N+

2 9 8.416834920000000E+04 4
N+

2 10 8.632651200000000E+04 8
N+

2 11 8.920406240000000E+04 8
N+

2 12 9.208161280000000E+04 4
N+

2 13 9.222549032000000E+04 4
N+

2 14 9.293768404400000E+04 2
N+

2 15 9.639793840000000E+04 2
N+

2 16 1.035918144000000E+05 4
NO 0 0.000000000000000E+00 4
NO 1 5.467345760000000E+04 8
NO 2 6.317139627802400E+04 2
NO 3 6.599450342445600E+04 4
NO 4 6.906120960000000E+04 4
NO 5 7.049998480000000E+04 4
NO 6 7.491055017560000E+04 4
NO 7 7.628875293968000E+04 2
NO 8 8.676188537552000E+04 4
NO 9 8.714431182368000E+04 2
NO 10 8.886077063728000E+04 4
NO 11 8.981755614528000E+04 4
NO 12 8.988445919208000E+04 2
NO 13 9.042702132000000E+04 2
NO 14 9.064283760000000E+04 2
NO 15 9.111763341600000E+04 4
NO+ 0 0.000000000000000E+00 1
NO+ 1 7.508967768800000E+04 3
NO+ 2 8.525462447600000E+04 6
NO+ 3 8.903572570160000E+04 6
NO+ 4 9.746982592400000E+04 3
NO+ 5 1.000553049584000E+05 1
NO+ 6 1.028033655904000E+05 2
NO+ 7 1.057138639424800E+05 2
CO2 0 0.000000000000000E+00 1
e 0 0.000000000000000E+00 1
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Table 4: NASA 9 polynomial constants

species ho

s

[J/kg] T
l

T
u

a1 a2 a3 a4 a5

e 0.000000000E+00 2.000000000E+02 1.000000000E+03 0.000000000E+00 0.000000000E+00 2.500000000E+00 0.000000000E+00 0.000000000E+00
e 0.000000000E+00 1.000000000E+03 6.000000000E+03 0.000000000E+00 0.000000000E+00 2.500000000E+00 0.000000000E+00 0.000000000E+00
e 0.000000000E+00 6.000000000E+03 2.000000000E+04 0.000000000E+00 0.000000000E+00 2.500000000E+00 0.000000000E+00 0.000000000E+00
N 4.726800000E+05 2.000000000E+02 1.000000000E+03 0.000000000E+00 0.000000000E+00 2.500000000E+00 0.000000000E+00 0.000000000E+00
N 4.726800000E+05 1.000000000E+03 6.000000000E+03 8.876501380E+04 -1.071231500E+02 2.362188290E+00 2.916720080E-04 -1.729515100E-07
N 4.726800000E+05 6.000000000E+03 2.000000000E+04 5.475181050E+08 -3.107574980E+05 6.916782740E+01 -6.847988130E-03 3.827572400E-07
N+ 1.882127624E+06 2.000000000E+02 1.000000000E+03 5.237079210E+03 2.299958320E+00 2.487488820E+00 2.737490750E-05 -3.134447580E-08
N+ 1.882127624E+06 1.000000000E+03 6.000000000E+03 2.904970370E+05 -8.557908610E+02 3.477389290E+00 -5.288267190E-04 1.352350310E-07
N+ 1.882127624E+06 6.000000000E+03 2.000000000E+04 1.646092150E+07 -1.113165220E+04 4.976986640E+00 -2.005393580E-04 1.022481360E-08
N2 0.000000000E+00 2.000000000E+02 1.000000000E+03 2.210371220E+04 -3.818461450E+02 6.082738150E+00 -8.530913810E-03 1.384646100E-05
N2 0.000000000E+00 1.000000000E+03 6.000000000E+03 5.877099080E+05 -2.239242550E+03 6.066942670E+00 -6.139652960E-04 1.491798190E-07
N2 0.000000000E+00 6.000000000E+03 2.000000000E+04 8.309712000E+08 -6.420481870E+05 2.020205070E+02 -3.065019610E-02 2.486855580E-06
N+

2 1.509508424E+06 2.000000000E+02 1.000000000E+03 -3.474041040E+04 2.696215430E+02 3.164919700E+00 -2.132247600E-03 6.730486360E-06
N+

2 1.509508424E+06 1.000000000E+03 6.000000000E+03 -2.845597470E+06 7.058889150E+03 -2.884882650E+00 3.068675270E-03 -4.361647800E-07
N+

2 1.509508424E+06 6.000000000E+03 2.000000000E+04 -3.712830950E+08 3.139288000E+05 -9.603519860E+01 1.571193500E-02 -1.175065670E-06
NO 9.126911000E+04 2.000000000E+02 1.000000000E+03 -1.143916580E+04 1.536467740E+02 3.431468650E+00 -2.668592130E-03 8.481398770E-06
NO 9.126911000E+04 1.000000000E+03 6.000000000E+03 2.239037080E+05 -1.289656240E+03 5.433940390E+00 -3.656055460E-04 9.881017630E-08
NO 9.126911000E+04 6.000000000E+03 2.000000000E+04 -9.575307640E+08 5.912436710E+05 -1.384567330E+02 1.694339980E-02 -1.007351460E-06
NO+ 9.908071040E+05 2.000000000E+02 1.000000000E+03 1.398526590E+03 -1.590494940E+02 5.122917320E+00 -6.394440050E-03 1.123924890E-05
NO+ 9.908071040E+05 1.000000000E+03 6.000000000E+03 6.069848430E+05 -2.278388310E+03 6.080317940E+00 -6.066815840E-04 1.431994710E-07
NO+ 9.908071040E+05 6.000000000E+03 2.000000000E+04 2.676400910E+09 -1.832949050E+06 5.099250210E+02 -7.113820250E-02 5.317660500E-06
O 2.491750030E+05 2.000000000E+02 1.000000000E+03 -7.953611300E+03 1.607177790E+02 1.966226440E+00 1.013670310E-03 -1.110415420E-06
O 2.491750030E+05 1.000000000E+03 6.000000000E+03 2.619020260E+05 -7.298722030E+02 3.317177270E+00 -4.281334360E-04 1.036104590E-07
O 2.491750030E+05 6.000000000E+03 2.000000000E+04 1.779004260E+08 -1.082328260E+05 2.810778370E+01 -2.975232260E-03 1.854997530E-07
O+ 1.568787228E+06 2.000000000E+02 1.000000000E+03 0.000000000E+00 0.000000000E+00 2.500000000E+00 0.000000000E+00 0.000000000E+00
O+ 1.568787228E+06 1.000000000E+03 6.000000000E+03 -2.166513210E+05 6.665456150E+02 1.702064360E+00 4.714992810E-04 -1.427131820E-07
O+ 1.568787228E+06 6.000000000E+03 2.000000000E+04 -2.143835380E+08 1.469518520E+05 -3.680864540E+01 5.036164540E-03 -3.087873850E-07
O2 0.000000000E+00 2.000000000E+02 1.000000000E+03 -3.425562690E+04 4.846999860E+02 1.119011590E+00 4.293887430E-03 -6.836273130E-07
O2 0.000000000E+00 1.000000000E+03 6.000000000E+03 -1.037939940E+06 2.344832750E+03 1.819729490E+00 1.267848870E-03 -2.188071420E-07
O2 0.000000000E+00 6.000000000E+03 2.000000000E+04 4.975152610E+08 -2.866023390E+05 6.690154640E+01 -6.169718690E-03 3.016237570E-07
O+

2 1.171828436E+06 2.000000000E+02 1.000000000E+03 -8.177460710E+04 1.004762320E+03 -3.365400540E-01 6.105378490E-03 -2.704143960E-06
O+

2 1.171828436E+06 1.000000000E+03 6.000000000E+03 7.366130500E+04 -8.458583620E+02 4.985419980E+00 -1.613281910E-04 6.434455480E-08
O+

2 1.171828436E+06 6.000000000E+03 2.000000000E+04 -1.562258830E+09 1.161480870E+06 -3.302670370E+02 4.711128320E-02 -3.354580850E-06
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Table 5: NASA 9 polynomial constants – continued

species ho

s

[J/kg] T
l

T
u

a6 a7 a8 a9 a10

e 0.000000000E+00 2.000000000E+02 1.000000000E+03 0.000000000E+00 0.000000000E+00 0.000000000E+00 -7.453750000E+02 -1.172081270E+01
e 0.000000000E+00 1.000000000E+03 6.000000000E+03 0.000000000E+00 0.000000000E+00 0.000000000E+00 -7.453750000E+02 -1.172081270E+01
e 0.000000000E+00 6.000000000E+03 2.000000000E+04 0.000000000E+00 0.000000000E+00 0.000000000E+00 -7.453750000E+02 -1.172081270E+01
N 4.726800000E+05 2.000000000E+02 1.000000000E+03 0.000000000E+00 0.000000000E+00 0.000000000E+00 5.610463780E+04 4.193909320E+00
N 4.726800000E+05 1.000000000E+03 6.000000000E+03 4.012657880E-11 -2.677227570E-15 0.000000000E+00 5.697351330E+04 4.865235790E+00
N 4.726800000E+05 6.000000000E+03 2.000000000E+04 -1.098367710E-11 1.277986020E-16 0.000000000E+00 2.550585620E+06 -5.848769710E+02
N+ 1.882127624E+06 2.000000000E+02 1.000000000E+03 1.850111330E-11 -4.447350980E-15 0.000000000E+00 2.256284740E+05 5.076835070E+00
N+ 1.882127624E+06 1.000000000E+03 6.000000000E+03 -1.389834120E-11 5.046166280E-16 0.000000000E+00 2.310809980E+05 -1.994142260E+00
N+ 1.882127624E+06 6.000000000E+03 2.000000000E+04 -2.691430860E-13 3.539931590E-18 0.000000000E+00 3.136284700E+05 -1.706645950E+01
N2 0.000000000E+00 2.000000000E+02 1.000000000E+03 -9.625792930E-09 2.519705600E-12 0.000000000E+00 7.108459110E+02 -1.076003200E+01
N2 0.000000000E+00 1.000000000E+03 6.000000000E+03 -1.923094420E-11 1.061948710E-15 0.000000000E+00 1.283206180E+04 -1.586634840E+01
N2 0.000000000E+00 6.000000000E+03 2.000000000E+04 -9.705792080E-11 1.437516730E-15 0.000000000E+00 4.938506630E+06 -1.672047910E+03
N+

2 1.509508424E+06 2.000000000E+02 1.000000000E+03 -5.637311510E-09 1.621757730E-12 0.000000000E+00 1.790004460E+05 6.832959350E+00
N+

2 1.509508424E+06 1.000000000E+03 6.000000000E+03 2.102508820E-11 5.412025190E-16 0.000000000E+00 1.340388740E+05 5.090894720E+01
N+

2 1.509508424E+06 6.000000000E+03 2.000000000E+04 4.144441720E-11 -5.621893770E-16 0.000000000E+00 -2.217362480E+06 8.436272570E+02
NO 9.126911000E+04 2.000000000E+02 1.000000000E+03 -7.685110790E-09 2.386797580E-12 0.000000000E+00 9.097949740E+03 6.728727950E+00
NO 9.126911000E+04 1.000000000E+03 6.000000000E+03 -1.416083270E-11 9.380216420E-16 0.000000000E+00 1.750294220E+04 -8.501699080E+00
NO 9.126911000E+04 6.000000000E+03 2.000000000E+04 2.912585260E-11 -3.295110910E-16 0.000000000E+00 -4.677503290E+06 1.242081660E+03
NO+ 9.908071040E+05 2.000000000E+02 1.000000000E+03 -7.988624190E-09 2.107395040E-12 0.000000000E+00 1.187492240E+05 -4.398557680E+00
NO+ 9.908071040E+05 1.000000000E+03 6.000000000E+03 -1.747980630E-11 8.934965000E-16 0.000000000E+00 1.322706020E+05 -1.519874900E+01
NO+ 9.908071040E+05 6.000000000E+03 2.000000000E+04 -1.963208420E-10 2.805268500E-15 0.000000000E+00 1.443309200E+07 -4.324045180E+03
O 2.491750030E+05 2.000000000E+02 1.000000000E+03 6.517507500E-10 -1.584779250E-13 0.000000000E+00 2.840362440E+04 8.404241820E+00
O 2.491750030E+05 1.000000000E+03 6.000000000E+03 -9.438304330E-12 2.725038300E-16 0.000000000E+00 3.392428060E+04 -6.679585350E-01
O 2.491750030E+05 6.000000000E+03 2.000000000E+04 -5.796231540E-12 7.191720160E-17 0.000000000E+00 8.890942630E+05 -2.181728150E+02
O+ 1.568787228E+06 2.000000000E+02 1.000000000E+03 0.000000000E+00 0.000000000E+00 0.000000000E+00 1.879352840E+05 4.393376760E+00
O+ 1.568787228E+06 1.000000000E+03 6.000000000E+03 2.016595900E-11 -9.107157760E-16 0.000000000E+00 1.837191970E+05 1.005690380E+01
O+ 1.568787228E+06 6.000000000E+03 2.000000000E+04 9.186834870E-12 -1.074163270E-16 0.000000000E+00 -9.614208960E+05 3.426193080E+02
O2 0.000000000E+00 2.000000000E+02 1.000000000E+03 -2.023374780E-09 1.039040640E-12 0.000000000E+00 -3.391454340E+03 1.849699120E+01
O2 0.000000000E+00 1.000000000E+03 6.000000000E+03 2.053724110E-11 -8.193490620E-16 0.000000000E+00 -1.689012530E+04 1.738718350E+01
O2 0.000000000E+00 6.000000000E+03 2.000000000E+04 -7.420878880E-12 7.277440630E-17 0.000000000E+00 2.293487550E+06 -5.530449680E+02
O+

2 1.171828436E+06 2.000000000E+02 1.000000000E+03 -3.011962020E-10 4.162722550E-13 0.000000000E+00 1.347920230E+05 2.783215910E+01
O+

2 1.171828436E+06 1.000000000E+03 6.000000000E+03 -1.506008230E-11 1.579044210E-15 0.000000000E+00 1.446310620E+05 -5.812784070E+00
O+

2 1.171828436E+06 6.000000000E+03 2.000000000E+04 1.168007220E-10 -1.589805270E-15 0.000000000E+00 -8.858460550E+06 2.852180690E+03
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Reaction data

Table 6 and 7 present the reaction data used by DPLR, LeMANS and KATS in this

work, where A, ⌘, and Ta are for the Arrhenius curve fit equation, and af , bf , ab, and

bb are constants used in the Park’s two temperature model for forward and backward

reaction temperatures.

Table 6: Reaction Data

Reaction A (cm3/mole) ⌘ Ta [K] af bf ab bb T
min

[K]

Base Dissociation
N

2

+M ↵2N+M 7.0E21 -1.6 1.132E5 0.5 0.5 1 0 800
O

2

+M ↵2O+M 2.0E21 -1.5 5.95E4 0.5 0.5 1 0 800
NO+M ↵N+O+M 5.0E15 0 7.55E4 0.5 0.5 1 0 800

Exchange
N

2

+O↵NO+N 6.4E17 -1 3.84E4 1 0 1 0 800
NO+O↵O

2

+N 8.4E12 0 1.945E4 1 0 1 0 800

Charge Exchange
N

2

+O+

2

↵ N+

2

+O
2

9.9E12 0 4.070E4 1 0 1 0 800
NO++N ↵ O++N

2

3.4E13 -1.08 1.280E4 1 0 1 0 800
NO++O↵N++O

2

1.0E12 0.5 7.720E4 1 0 1 0 800
NO++O

2

↵ O+

2

+NO 2.4E13 0.41 3.260E4 1 0 1 0 800
NO++N ↵ N+

2

+O 7.2E13 0 3.550E4 1 0 1 0 800
O+

2

+N↵ N++O
2

8.7E13 0.14 2.860E4 1 0 1 0 800
O++NO↵N++O

2

1.4E5 1.9 1.530E4 1 0 1 0 800
NO++O↵O+

2

+N 7.2E12 0.29 4.860E4 1 0 1 0 800
O++N

2

↵ N+

2

+O 9.1E11 0.36 2.280E4 1 0 1 0 800

Dissociative Recombination
N+O↵NO++e 5.3E12 0 3.190E4 1 0 0 1 800
N+N↵N+

2

+e 2.0E13 0 6.750E4 1 0 0 1 800
O+O↵O+

2

+e 1.1E13 0 8.060E4 1 0 0 1 800

Electron Impact Ionization
N+e=N++e+e 2.5E34 -3.82 1.686E5 0 1 0 1 800
O+e=O++e+e 3.9E33 -3.78 1.585E5 0 1 0 1 800

Electron Impact Dissociation
N

2

+e↵2N+e 3.0E24 -1.6 1.132E5 0 1 0 1 800

In the three-body dissociation reaction, the collision particle M represents any of

the species in the mixture. For each of them, the reaction only di↵ers in constant A.
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A coe�cient ' can be multiplied to the A of the base dissociation, then recovers for

each species, as shown in Table 7.

Table 7: Coe�cient ' for dissociation reaction

N2, O2, NO N, O N+
2 , O

+
2 , NO+ N+ , O+ e

N2+M=2N+M
'

s

1.0 4.28571428571429 1.0 4.28571428571429 0.0
O2+M=2O+M
'

s

1.0 5.0 1.0 5.0 0.0
NO+M=N+O+M
'

s

1.0 22.0 1.0 22.0 0.0

Modified Millikan and White coe�cients

The tabulated values for the modified coe�cients Asr and Bsr in Millikan and White

model are shown in Table 8 and 9.
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Table 8: Modified Millikan and White Coe�cients

Vibrator Partner Asr Bsr

N2 N2 221.53 0.029
N2 O2 228.76 0.0295
N2 N 180.88 0.0262
N2 O 72.4 0.015
N2 NO 225.3 0.0293
N2 N+

2 221.53 0.029
N2 O+

2 228.76 0.0295
N2 N+ 180.88 0.0262
N2 O+ 188.89 0.0268
N2 NO+ 225.3 0.0293
N2 e 1.39 0.0023
O2 N2 131.32 0.0295
O2 O2 135.91 0.03
O2 N 72.4 0.015
O2 O 47.7 0.059
O2 NO 133.71 0.0298
O2 N+

2 131.32 0.0295
O2 O+

2 135.91 0.03
O2 N+ 106.06 0.0265
O2 O+ 110.97 0.0271
O2 NO+ 133.71 0.0298
O2 e 0.8 0.0023
NO N2 49.5 0.042
NO O2 49.5 0.042
NO N 49.5 0.042
NO O 49.5 0.042
NO NO 49.5 0.042
NO N+

2 175.67 0.0293
NO O+

2 181.6 0.0298
NO N+ 142.62 0.0264
NO O+ 149.08 0.027
NO NO+ 178.76 0.0295
NO e 1.08 0.0023
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Table 9: Modified Millikan and White Coe�cients – continued

Vibrator Partner Asr Bsr

N+
2 N2 221.53 0.029

N+
2 O2 228.76 0.0295

N+
2 N 180.88 0.0262

N+
2 O 188.89 0.0268

N+
2 NO 225.3 0.0293

N+
2 N+

2 221.53 0.029
N+

2 O+
2 228.75 0.0295

N+
2 N+ 180.88 0.0262

N+
2 O+ 188.88 0.0268

N+
2 NO+ 225.3 0.0293

N+
2 e 1.39 0.0023

O+
2 N2 131.32 0.0295

O+
2 O2 135.91 0.03

O+
2 N 106.06 0.0265

O+
2 O 110.97 0.0271

O+
2 NO 133.71 0.0298

O+
2 N+

2 131.32 0.0295
O+

2 O+
2 135.9 0.03

O+
2 N+ 106.05 0.0265

O+
2 O+ 110.97 0.0271

O+
2 NO+ 133.7 0.0298

O+
2 e 0.8 0.0023

NO+ N2 175.67 0.0293
NO+ O2 181.61 0.0298
NO+ N 142.62 0.0264
NO+ O 149.09 0.027
NO+ NO 178.76 0.0295
NO+ N+

2 175.67 0.0293
NO+ O+

2 181.6 0.0298
NO+ N+ 142.62 0.0264
NO+ O+ 149.08 0.027
NO+ NO+ 178.76 0.0295
NO+ e 1.08 0.0023
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Appendix B: Detailed Derivations: Hypersonic Solver

Jacobian of the inviscid flux vector

The homogeneity property of the inviscid flux vector [66] at a generic face yields

FFF · n = Fn =AAAQ , (7.1)

where the Jacobian matrix is given by

AAA =
@Fn

@Q
. (7.2)

The Jacobian matrix AAA is diagonalizable according to the assumption of hyper-

bolicity [66–68], namely

AAA = LLL⇤RRR , (7.3)

where ⇤ is the diagonal matrix composed of the real eigenvalues �i of Jacobian matrix

AAA, LLL is a non-singular matrix whose columns are the right eigenvectors of matrix AAA,

and RRR is the inverse of LLL, which implies

LRLRLR = III . (7.4)

Thermal Non-equilibrium

For flow in thermal non-equilibrium, matrix LLL, and RRR is respectively defined as [117]

LLL =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�sr/a2 0 0 cs/(2a2) cs/(2a2) 0

u/a2 lx mx (u+ anx)/(2a2) (u� anx)/(2a2) 0

v/a2 ly my (v + any)/(2a2) (v � any)/(2a2) 0

w/a2 lz mz (w + anz)/(2a2) (w � anz)/(2a2) 0

[�(u2 + v2 + w2)� �̃r]/(�a2) V W (H + aU)/(2a2) (H � aU)/(2a2) ��/(�a2)

0 0 0 eve/(2a2) eve/(2a2) 1/a2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A
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and

RRR =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

a2�sr � cs�̃r �ucs �vcs �wcs ��cs ��cs

�V lx ly lz 0 0

�W mx my mz 0 0

�̃r � Ua anx � �u any � �v anz � �w � �

�̃r + Ua �anx � �u �any � �v �anz � �w � �

�eve�̃r �ueve �veve �weve ��eve a2 � �eve

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

in which, nx, ny and nz denotes x, y and z component of the unit normal vector to the

generic face respectively. The two unit tangential vectors are denoted by (lx, ly, lz)

and (mx,my,mz). The normal component of velocity through the face is given by

U = unx + vny + wnz . (7.5)

The tangential velocity components corresponding to l and m are given by

V = ulx + vly + wlz , (7.6)

and

W = umx + vmy + wmz . (7.7)

The variables �, � and �̃r are related to the partial derivatives of total pressure

with respect to Q, given by

� =
@p

@E
=

Ru

⇢Cvtr

X

s 6=e

⇢s
Ms

(7.8)

� =
@p

@Eve
=

Ru

⇢Cvve

⇢e
Me

� � (7.9)

�̃r =
@p

@⇢r
=

RuTr

Mr
+ �

u2 + v2 + w2

2
� �er � �eve,r (7.10)

It is noted that Tr = Ttr for all species except for electron, Tr = Tve. And s denotes

species s in row and r denotes species r in column when looking at the matrix LLL and
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RRR. The total energy, E, and total vibrational-electron-electronic energy, Eve, per

unit volume.

Attention should be paid here that the enthalpy, H, is defined per unit mass,

given by

H =
E + p

⇢
. (7.11)

The frozen speed of sound a is evaluated by

a2 =
ns
X

s=1

cs�̃s + �[H � (u2 + v2 + w2)] + �eve = (1 + �)
p

⇢
. (7.12)

Finally, the diagonal matrix of eigenvalues of AAA is given by

⇤ =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

U 0 0 0 0 0

0 U 0 0 0 0

0 0 U 0 0 0

0 0 0 U + a 0 0

0 0 0 0 U � a 0

0 0 0 0 0 U

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Thermal equilibrium

KATS can solve flow in thermal equilibrium state by using just one energy equation.

In this case, matrices LLL and RRR are defined as

LLL =

0

B

B

B

B

B

B

B

B

B

B

@

�sr/a2 0 0 cs/(2a2) cs/(2a2)

u/a2 lx mx (u+ anx)/(2a2) (u� anx)/(2a2)

v/a2 ly my (v + any)/(2a2) (v � any)/(2a2)

w/a2 lz mz (w + anz)/(2a2) (w � anz)/(2a2)

[�(u2 + v2 + w2)� �̃r]/(�a2) V W (H + aU)/(2a2) (H � aU)/(2a2)

1

C

C

C

C

C

C

C

C

C

C

A
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and

RRR =

0

B

B

B

B

B

B

B

B

B

B

@

a2�sr � cs�̃sr �ucs �vcs �wcs ��cs

�V lx ly lz 0

�W mx my mz 0

�̃r � Ua anx � �u any � �v anz � �w �

�̃r + Ua �anx � �u �any � �v �anz � �w �

1

C

C

C

C

C

C

C

C

C

C

A

The diagonal matrix of eigenvalues of AAA is given by

⇤ =

0

B

B

B

B

B

B

B

B

B

B

@

U 0 0 0 0

0 U 0 0 0

0 0 U 0 0

0 0 0 U + a 0

0 0 0 0 U � a

1

C

C

C

C

C

C

C

C

C

C

A

Derivation of Derivatives of Total Pressure with Respect to Conservative

Variables for Non-equilibrium State

Details can be found in Gno↵o’s technical report [46].

Derivation of Derivatives of Total Pressure with Respect to Conservative

Variables for Equilibrium State

The total pressure of the mixture is written as

p =
X ⇢sRuT

Ms
. (7.13)

Its di↵erential expression can be written as

dp = RuT
X d⇢s

Ms
+
X ⇢sRu

Ms
dT . (7.14)

Since

de =
X

dcs es +
X

cs des =
X

dcs es +
X

csCv,s dT . (7.15)
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It yields

dT =
de�P dcs es

Cv
(7.16)

Recall

de =
d⇢E � E d⇢� (ud⇢u+ vd⇢v + wd⇢w) + (u2 + v2 + w2)d⇢

⇢
(7.17)

dcs =
d⇢s � csd⇢

⇢
(7.18)

Eqn. (7.16) can be written as

dT =
de�P dcs es

Cv

=
d⇢E � E d⇢� (ud⇢u+ vd⇢v + wd⇢w) + (u2 + v2 + w2)d⇢�P(d⇢s � csd⇢)es

⇢Cv

(7.19)

Substitution of Eqn. (7.19) into Eqn.(7.14) ends up with

dp = R
u

T
X d⇢

s

M
s

+

X ⇢
s

R
u

M
s

dT

= R
u

T
X d⇢

s

M
s

+

X ⇢
s

R
u

M
s

d⇢E � E d⇢� (ud⇢u+ vd⇢v + wd⇢w) + (u2
+ v2 + w2

)d⇢�
P

(d⇢
s

� c
s

d⇢)e
s

⇢Cv

(7.20)

Set

� =
Ru

⇢Cv

X ⇢s
Ms

(7.21)

dp = R
u

T
X d⇢

s

M
s

+ �
h
d⇢E � E d⇢� (ud⇢u+ vd⇢v + wd⇢w) + (u2

+ v2 + w2
)d⇢�

X
(d⇢

s

� c
s

d⇢)e
s

i

= R
u

T
X d⇢

s

M
s

+ � [d⇢E � (ud⇢u+ vd⇢v + wd⇢w)] + �
h
�E d⇢+ (u2

+ v2 + w2
)d⇢�

X
e
s

d⇢
s

�
X

c
s

e
s

d⇢
i

= R
u

T
X d⇢

s

M
s

+ � [d⇢E � (ud⇢u+ vd⇢v + wd⇢w)] + �


1

2

(u2
+ v2 + w2

)d⇢�
X

e
s

d⇢
s

�

= � [d⇢E � (ud⇢u+ vd⇢v + wd⇢w)] +R
u

T
X d⇢

s

M
s

+ �


1

2

(u2
+ v2 + w2

)d⇢�
X

e
s

d⇢
s

�

(7.22)

where

E =
X

cses +
1

2
(u2 + v2 + w2) (7.23)
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Finally

� =
@p

@⇢E
=

Ru

⇢Cv

X ⇢s
Ms

(7.24)

�̃s =
@p

@⇢s
=

RuT

Ms
+ �

u2 + v2 + w2

2
� �es (7.25)

Inviscid Jacobians

Recall that the homogeneity property of the inviscid flux vector at a generic face

suggests

FFF · n = Fn =AAAQ , (7.26)

and the Jacobian matrix

AAA =
@Fn

@Q
. (7.27)

The computation of inviscid flux vector Fn can be accomplished by a flux vector

splitting method, for instance, Steger-Warming method, which in a generic way is

given by

Fn = F+

n + F�
n =AAA+

l Ql +AAA�
r Qr . (7.28)

The inviscid flux Jacobians for implicit method, however, are not the same as

those used for inviscid fluxes. The reason is that the homogeneity property feature

is lost for the two split fluxes. That is to say, although the split flux obtained from

F±
n =AAA±Q (7.29)

is still valid,
@F±

n

@Q
6=AAA± . (7.30)

Therefore, it is more appropriate to use the true inviscid Jacobians @F±
n

@Q in the

implicit operator instead of AAA±. For that purpose, the flux vector has to be found

first of all, which can be formulated analytically by

F±
n =AAA±Q = LLL⇤±RRRQ (7.31)
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Inviscid Jacobians for Non-Equilibrium State

With the details of LLL, ⇤, and RRR, and by using Eqn. (7.31), the inviscid fluxes for

thermal non-equilibrium state are finally expressed as

F±
n =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

p
⇢a2

@p
@⇢E⇢s�

±
1

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢s�
±
2

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢s�
±
3

p
⇢a2

@p
@⇢E⇢u�

±
1

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢(u+ anx)�
±
2

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢(u� anx)�
±
3

p
⇢a2

@p
@⇢E⇢v�

±
1

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢(v + any)�
±
2

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢(v � any)�
±
3

p
⇢a2

@p
@⇢E⇢w�

±
1

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢(w + anz)�
±
2

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢(w � anz)�
±
3

⇣

⇢E � H
a2

⇣

⇢a2 � p @p
@⇢E

⌘⌘

�±
1

+ H+aU
2a2

⇣

⇢a2 � p @p
@⇢E

⌘

+ H�aU
2a2

⇣

⇢a2 � p @p
@⇢E

⌘

�±
3

p
⇢a2

@p
@⇢E⇢Eve�

±
1

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢Eve�
±
2

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢Eve�
±
3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

It can also be simplified as

F±
n =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

��1

� ⇢s�
±
1

+ 1

2�⇢s�
±
2

+ 1

2�⇢s�
±
3

��1

� ⇢u�±
1

+ 1

2�⇢(u+ anx)�
±
2

+ 1

2�⇢(u� anx)�
±
3

��1

� ⇢v�±
1

+ 1

2�⇢(v + any)�
±
2

+ 1

2�⇢(v � any)�
±
3

��1

� ⇢w�±
1

+ 1

2�⇢(w + anz)�
±
2

+ 1

2�⇢(w � anz)�
±
3

��1

� ⇢✏
1

�±
1

+ 1

2�⇢✏2�
±
2

+ 1

2�⇢✏3�
±
3

��1

� ⇢Eve�
±
1

+ 1

2�⇢Eve�
±
2

+ 1

2�⇢Eve�
±
3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

where

✏
1

=
1

2
(u2 + v2 + w2) + eve + ho

✏
2

=
(3� �)

2(� � 1)
a2 +

1

2

�

(u+ anx)
2 + (v + any)

2 + (w + anz)
2

�

+ eve + ho

✏
3

=
(3� �)

2(� � 1)
a2 +

1

2

�

(u� anx)
2 + (v � any)

2 + (w � anz)
2

�

+ eve + ho

(7.32)

and

eve =
X ⇢s

⇢
eve,s (7.33)

ho =
X ⇢s

⇢
ho
s (7.34)
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The primary dependent variables in this work are primitive variables P. The

Jacobians of inviscid flux vector are thus computed with respect to them. It is a lot

easier to use the chain rule to obtain the Jacobian, which is given by

@F±
n

@P
=

@F±
n

@W

@W

@P
(7.35)

where the introduced set of variables are

W =

0

B

B

B

B
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B
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B

B
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C
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C

C

C

A

.

The Jacobian @F±
n

@W is given by

@F±
n
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=
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Details for each term are listed as
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(7.36)
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The Jacobian @W
@P is given by
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The True Inviscid Jacobians for Equilibrium State

The inviscid fluxes for thermal equilibrium state is given by

153



F±
n =

0

B

B

B

B

B

B

B

B

B

B

@

p
⇢a2

@p
@⇢E⇢s�

±
1

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢s�
±
2

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢s�
±
3

p
⇢a2

@p
@⇢E⇢u�

±
1

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢(u+ anx)�
±
2

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢(u� anx)�
±
3

p
⇢a2

@p
@⇢E⇢v�

±
1

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢(v + any)�
±
2

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢(v � any)�
±
3

p
⇢a2

@p
@⇢E⇢w�

±
1

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢(w + anz)�
±
2

+ 1

2a2

⇣

a2 � p
⇢

@p
@⇢E

⌘

⇢(w � anz)�
±
3

⇣

⇢E � H
a2

⇣

⇢a2 � p @p
@⇢E

⌘⌘

�±
1

+ H+aU
2a2

⇣

⇢a2 � p @p
@⇢E

⌘

+ H�aU
2a2

⇣

⇢a2 � p @p
@⇢E

⌘

�±
3

1

C

C

C

C

C

C

C

C

C

C

A

.

It can also be simplified as

F±
n =

0

B

B

B

B

B

B

B

B

B

B

@

��1

� ⇢s�
±
1

+ 1

2�⇢s�
±
2

+ 1

2�⇢s�
±
3

��1

� ⇢u�±
1

+ 1

2�⇢(u+ anx)�
±
2

+ 1

2�⇢(u� anx)�
±
3

��1

� ⇢v�±
1

+ 1

2�⇢(v + any)�
±
2

+ 1

2�⇢(v � any)�
±
3

��1

� ⇢w�±
1

+ 1

2�⇢(w + anz)�
±
2

+ 1

2�⇢(w � anz)�
±
3

��1

� ⇢✏
1

�±
1

+ 1

2�⇢✏2�
±
2

+ 1

2�⇢✏3�
±
3

1

C

C

C

C

C

C

C

C

C

C

A

.

where

✏
1

=
1

2
(u2 + v2 + w2) + eve + ho

✏
2

=
(3� �)

2(� � 1)
a2 +

1

2

�

(u+ anx)
2 + (v + any)

2 + (w + anz)
2

�

+ eve + ho

✏
3

=
(3� �)

2(� � 1)
a2 +

1

2

�

(u� anx)
2 + (v � any)

2 + (w � anz)
2

�

+ eve + ho

(7.51)

and

eve =
X ⇢s

⇢
eve,s (7.52)

ho =
X ⇢s

⇢
ho
s (7.53)

The Jacobians of inviscid flux vector with respect to P can be directly computed
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The Jacobian @F±
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where
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Viscous Jacobians

It is more convenient to deal with viscous Jacobians using face-based reference frame

rather than the usual Cartesian frame. Take a generic face for analysis, and let n, l and

m denote the unit normal vector, and two unit tangential vectors to it respectively.
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Only the fluxes normal to the face are under consideration since they are the only one

e↵ectively going across the face. The fluxes in two tangential directions are no need

to taken into account. The normal viscous fluxes across a generic face in Cartesian

frame is given by

Fdn = FFFd · n (7.64)

are given by
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A rotation matrix RRR is needed to map the fluxes from the Cartesian frame to the

face based reference frame, and RRR�1 to do backwards. They are given receptively by
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And the mapping procedure is given by

Fdn =RRRFd and Fd =RRR�1Fdn . (7.65)
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Thin-layer approximation assumes the derivatives @/@l and @/@m can be ne-

glected leaving only derivative in normal directions. This simplifies the formulation

of shear stresses. The viscous fluxes Fdn can be expressed as
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Further assumption states that viscous fluxes can be linearized by introducing a

matrix MMM and a property vector Vn, i.e.

Fdn =MMM@Vn

@n
, (7.66)

All of the identities in MMM are constants in terms of transport properties, and they

do not involve any derivatives. The derivatives, however, are completely taken into

account by @V
n

@n , which are approximated by

@Vn

@n
⇡ VnR �VnL

�n
, (7.67)

where VnR and VnL are the property vectors on either side of the generic face. If

define MMMn =MMM/�n, the viscous flux vectors are written as

Fdn =MMMn(VnR �VVVnL) , (7.68)
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After substituting those rotation matrices, the viscous flux vectors, Fv and the

property vectors, V, both in Cartesian coordinate frame can be related by

Fd =RRR�1MMMnRRR (VR �VL) =RRR�1MMMnRRRNNN (PR �PL) , (7.69)

where

NNN =
@V

@P
(7.70)

The viscous Jacobian is finally given by

@Fd

@PR
=RRR�1MMMnRRRN and

@Fd

@PL
= �RRR�1MMMnRRRN . (7.71)

Details of these vectors and matrices mentioned above are listed as
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For k <= ns, and for electron
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For normal species, only diagonal term exits, which is given by

Ms,s =
⇢Ds
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(7.73)

And for the rest terms
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Time terms in thermal non-equilibrium

The vectors of conserved variables and primitive variables take the form of
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The Jacobian of conservative variables Q with respect to primitive variables P, is

given by
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A few of the identities are obviously zero, therefore
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The total energy per unit volume, E, is given by
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Its derivatives are calculated as

@E

@⇢s
= es +

1

2
(u2 + v2 + w2)

@E

@T
=
X

s 6=e

⇢sCvtr,s

@E

@Tve
=
X

s

⇢sCvve,s

(7.79)

The mixture vibrational-electron-electronic energy per unit volume, Eve, is given

by
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Its derivatives are given by
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Time terms for thermal equilibrium

The vectors of conserved variables and primitive variables now take the form of
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Then the Jacobian of conservative variables Q with respect to primitive variables

P, is given by
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It yields
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Chemistry Jacobians

The chemistry Jacobians take the form of
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Recall the chemical production rate of species Ai in reaction r is given by

ẇir = (⌫ 00
ir � ⌫ 0
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And the net mass production of species Ai is given by
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where nr is the number of reaction, and
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The Jacobians of ẇi with respect to primitive variables are given by
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The forward reaction rate coe�cient is given by

kfr = AfrT
⌘
r

c exp(�Tar/Tc) (7.89)

Its derivatives, @k
fr

@P , are given by
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c

dTc
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(7.92)

The backward reaction rate coe�cient is given by

kbr(Tbc) =
kfbr(Tbc)

Kcr(Tbc)
(7.93)
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Its derivatives, @k
br

@P , are given by
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The derivatives of the forward reaction rate divided by the forward reaction rate

coe�cient, @
@P
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R
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k
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In detail
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The derivatives of the translational-rotational temperature, Ttr, are given by
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The derivatives of the vibrational-electron-electronic temperature, Tve, are given

by
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The backward reaction rate divided by the backward reaction rate coe�cient, R
br

k
br

,

is given by
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Its derivatives are similar to those of forward.
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Non-Equilibrium Jacobians

The non-equilibrium Jacbians take the form of
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@ẇ
v

@u
@ẇ
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The total vibrational energy is composed of

ẇv = Sc2v + St2v + Sh2e � Se2i . (7.102)

Its Jacobians are given by
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The derivatives of chemistry terms are given by
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The derivatives of translational-vibrational energy relaxation term are given by
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where the relaxation time, ⌧s, is assumed to be constant.
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The derivatives of electron-vibrational energy relaxation terms, @S
h2e

@P are quite

straightforward, whose derivation is neglected here.

Finally,the derivatives of electron impact ionization energy relaxation term are

given by

@Se2i

@P
= M+

N ÎN
@ẇN+,eii

@P
+M+

O ÎO
@ẇO+,eii

@P
(7.107)

where the subscript, eii, denotes the electron impact ionization reaction.

Three-body dissociation reaction

A speedup approach can be used for a dissociation reaction where one reactant de-

noted by AB, is going to be dissociated into atoms A and B. The collision partner

involved can be any of the species (AB, A or B) in the gas mixture. It is denoted by

M in the following reaction.

AB +M ⌦ A+B +M (7.108)

Dealing with reaction in terms of each collision partner M separately would be

time consuming. An e�cient way which can take account of them all together pro-

posed by Alexandre Martin is used in this work. The associated computations are

then immensely speeded up.

In the dissociation of AB coming about by collision with a particle M , there is no

production change for M in this reaction, leaving only AB, A and B to be considered.

The chemical production rate of AB can be given by
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Forward and backward reaction rate coe�cients, kf and kb may not the same for

variant collision particles. However, by setting reference reaction rate coe�cients,

denoted by k⇤
f and k⇤

b , and introducing a ratio coe�cient ' which can account for the

variation of them, it ends up with a form of more consistency.
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(7.109)

Similarly, the production rate of species A is calculated by
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(7.110)

Note that the variation of kf or kb for each collision particle M only comes from

the coe�cient of Afr in Arrhenius curve fit equation. By using this trick, the chemical

production rate of the species due to all dissociation reactions can be taken account

of together without doing repeatable work. This can greatly save computation time.
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