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ABSTRACT OF DISSERTATION

A SUBSYSTEM IDENTIFICATION APPROACH TO
MODELING HUMAN CONTROL BEHAVIOR AND

STUDYING HUMAN LEARNING

Humans learn to interact with many complex dynamic systems such as helicopters,
bicycles, and automobiles. This dissertation develops a subsystem identification
method to model the control strategies that human subjects use in experiments where
they interact with dynamic systems. This work provides new results on the control
strategies that humans learn.

We present a novel subsystem identification algorithm, which can identify unknown
linear time-invariant feedback and feedforward subsystems interconnected with a
known linear time-invariant subsystem. These subsystem identification algorithms
are analyzed in the cases of noiseless and noisy data.

We present results from human-in-the-loop experiments, where human subjects in-
teract with a dynamic system multiple times over several days. Each subject’s control
behavior is assumed to have feedforward (or anticipatory) and feedback (or reactive)
components, and is modeled using experimental data and the new subsystem identifi-
cation algorithms. The best-fit models of the subjects’ behavior suggest that humans
learn to control dynamic systems by approximating the inverse of the dynamic system
in feedforward. This observation supports the internal model hypothesis in neuro-
science. We also examine the impact of system zeros on a human’s ability to control
a dynamic system, and on the control strategies that humans employ.

KEYWORDS: Human Motor Control, Human Learning, Human-In-The-Loop,
Subsystem Identification
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sponse ŷ(s) = G̃yr(s)r̂(s) from the command r to the position y. Fig-

ures (a), (b), and (c) show the Bode plots of the identified controllers

Gff and Gfb, and the closed-loop transfer function G̃yr for the first

and last (i.e., 40th) trials of one subject. Figure (a) shows that the

identified Gff for the first trial does not approximate G−1, whereas the

identified Gff for the last trial does approximate G−1. Figure (b) shows

that the identified Gfb for the first trial has higher gain (i.e., magni-

tude) than the identified Gfb for the last trial. Figure (c) shows that

the closed-loop transfer function G̃yr is approximately 1 (i.e., 0 decibels

magnitude and 0 degrees phase) for the last trial, which implies that y

approximates r across the frequency range of r. . . . . . . . . . . . . 56

3.6 Figure (a) shows ‖Gfb‖ and ‖Gff − G−1‖ for the subjects’ identified

controllers for each of the 40 trials. The × indicates the mean of the

10 subjects and the vertical lines show one standard deviation. The

difference between Gff and G−1 decreases over the 40 trials, whereas

‖Gfb‖ does not changes significantly over the trials. Figure (b) com-

pares ‖e‖ to how closely the identified Gff approximatesG−1. The trials

with the smaller command-following errors yield identified feedforward

controllers that are better approximations of G−1. Figure (c) shows

the Bode plot of the average identified feedforward controller for all 10

subjects on the last trial. The shaded region shows one standard de-

viation above and below the average identified feedforward controller.

The average feedforward controller approximates G−1. . . . . . . . . 57

x



4.1 The unknown feedback and feedforward subsystems are to be identified

using the measured data r and y. The internal signals u and v are

inaccessible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 The input r and output y are measured, but all internal signals (e.g.,

u and v) and the noises γr, γe, γu, and γy are unmeasured. . . . . . . . 63

4.3 Noisy data and φ∗ ∈ Φ. For i = 1, . . . , 15, Algorithm 4.1 is used with

the candidate pool Λ0 and data {Hi(θk)}Nk=1 to obtain β+
i and φ+

i . For

i ≥ 7, φ+
i = φ∗, and for sufficiently large i, ‖β+

i − β∗‖F is arbitrarily

small. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Noisy data and φ∗ 6∈ Φ. For i = 2, 4, 15, and j = 1, . . . , 18, Algorithm

4.1 is used with the candidate pool Λj and data {Hi(θk)}Nk=1 to obtain

β+
j,i and φ+

j,i. For sufficient large j and i, ‖β+
j,i − β∗‖F and ‖φ+

j,i − φ∗‖F

are arbitrarily small. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Computation complexity. For nff = 14, . . . , 17, Algorithm 4.1 yields

errors Efb and Eff smaller than those obtained from Algorithm 2.1. For

nff = 1, 2, . . . , 17, R < 0.32. . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Subjects use a joystick to affect the motion of an object on a computer

screen. The object’s position y represents the output of a dynamic

system and the joystick position u represents the input to the dynamic

system. A reference object is also displayed on the screen, and its

position r is an 60s chirp signal. . . . . . . . . . . . . . . . . . . . . 84

5.2 The single-degree-of-freedom mass-spring-damper system. . . . . . . . 86

5.3 Bode plots of Gm, Gm, and Gsn. . . . . . . . . . . . . . . . . . . . . 89

5.4 For a bounded input u(t) = e2.2t, the output of Gm is unbounded, but

the output of Gn is bounded and converges to 0. . . . . . . . . . . . 90

5.5 Step responses of Gm, Gm, and Gsn. . . . . . . . . . . . . . . . . . . 91

xi



5.6 The reference r, output y, and command-following error e for the first

and last trials of the subject from each group who has the median time-

averaged error among the 11 subjects in the group. The command-

following error e for the subject in the group with Gm is smaller than

that in the group with Gn, which is smaller than that in the group

with Gsn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 For each group, the time-averaged error ‖e‖ of the 11 subjects for each

of the 40 trials. The × indicates the mean of the 11 subjects and the

vertical lines show one standard deviation. The mean ‖e‖ improves

over trials. The mean ‖e‖ with Gm is smaller than that with Gn, and

the mean ‖e‖ with Gn is smaller than that with Gsn. . . . . . . . . . 94

5.8 The total number of divergent trials for the groups with Gm, Gn, and

Gsn are 1, 10, and 61, respectively. . . . . . . . . . . . . . . . . . . . 95

5.9 Each subject’s control strategy is modeled using a feedback controller

Gfb and a feedforward controller Gff . . . . . . . . . . . . . . . . . . . 96

5.10 Two control strategies for Gm that make the magnitude of the error

e small are high gain in feedback and approximate inverse dynamics

in feedforward. Figure (a) shows the high-gain control strategy with

the proportional feedback controller Gfb = 30 and with no feedfor-

ward control (i.e., Gff = 0). Figure (b) shows the control strategy of

approximating the inverse dynamics in feedforward. The feedforward

controller is Gff(s) = 50G−1
m (s)/(s + 50), which is a proper approxi-

mation of G−1
n across the 0-to-0.5 Hz frequency range. There is no

feedback controller (i.e., Gfb = 0). In both cases, the magnitude of the

error e is small. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xii



5.11 Two control strategies for Gn. Figure (a) shows the proportional feed-

back controller Gfb = −0.0535 with no feedforward controller (i.e.,

Gff = 0). Figure (b) shows the second-order feedforward controller

Gff(s) = 742.8s2+1025.9s+1597.4
s2+2s+2500

with no feedback controller (i.e., Gfb = 0).

In both cases, the magnitude of the error e is larger than that shown

in Figure 5.10 for Gm with high-gain feedback or dynamic-inversion

feedforward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.12 Two control strategies for Gn that make the magnitude of the error e

small are high gain in feedback and approximate inverse dynamics in

feedforward. Figure (a) shows the high-gain control strategy with the

feedback controller Gfb(s) = 1.99×108(s+2.03)(s2+4.47s+15.42)
(s2+0.73s+5.2)(s2+607.1s+2.98×108)

and with no

feedforward controller (i.e., Gff = 0). Figure (b) shows the control

strategy of approximating the inverse dynamics in feedforward. The

feedforward controller isGff(s) = 4.69×104(s2+2.91s+2.88)(s2+3.37s+13.21)
(s+40)4 , which

is a proper approximation of G−1
n across the 0-to-0.5 Hz frequency

range. There is no feedback controller (i.e., Gfb = 0). In both cases,

the magnitude of the error e is small. . . . . . . . . . . . . . . . . . 101

xiii



5.13 The subject’s control strategy is modeled by a feedback controller Gfb

and a feedforward controller Gff , which results in the closed-loop re-
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Chapter 1 Introduction

1.1 Motivation

In 1997, the IBM supercomputer Deep Blue beat the world chess champion. In

2011, the newer supercomputer Watson beat human opponents on the quiz show

Jeopardy and answered questions using natural conversational language. Both of

these supercomputers are able to mimic certain human behavior. However, neither

playing chess nor answering questions involves performing physical tasks or interacting

with complex dynamic systems.

Robots have been designed to perform some common physical tasks such as pour-

ing water from a bottle into a cup [1], running and kicking a ball [2], and separating

a Oreo [3]. However, robots currently cannot compete against humans and win the

World Cup Championship in soccer. In contrast to robots, humans learn to per-

form complex motions with their bodies and learn to interact with complex external

dynamic systems.

Humans possess two primary advantages over current automatic control technol-

ogy. First, humans have an enormous array of sensors and more than 600 actuators.

Second, the human brain contains an effective control architecture, which adapts to

uncertainty and learns from previous experiences. A human’s sensor-and-actuator ad-

vantage diminishes when interacting with simple systems or performing simple tasks.

In fact, humans’ sensors and actuators have poor precision and low bandwidth in

comparison to components used in control systems. Thus, tasks that require preci-

sion and speed are generally performed by machines. However, humans maintain one
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advantage over control systems, namely, the ability to learn and adapt to uncertainty.

Consider a child learning to ride a bicycle. At first, a child has no idea how to

ride a bicycle. Yet, after practicing, the child learns to ride. This leads to several

questions: (Q1) How do humans control dynamic systems? (Q2) How do humans

learn to interact with unknown dynamic systems? (Q3) What characteristics make

systems difficult for a human to control. Questions (Q1)—(Q3) inspire us to study

human motor control and human learning.

An improved understanding of human motor control and human learning has the

potential to advance a variety of technologies:

(1) Control Systems. No existing control technique can match a human’s ability to

learn to interact with a wide variety of uncertain dynamic systems. Studying hu-

man learning could help us identify human learning mechanisms that are superior

to automatic control methods.

(2) Robotics. A human’s ability to learn to interact with a wide variety of uncertain

dynamic systems cannot currently be emulated by robots. Studying human learn-

ing offers a chance to improve our understanding of human learning mechanisms

and to adopt those mechanisms for robotics.

(3) Assistive System. Significant training is necessary for humans to learn to control

many dynamic systems such as medical devices, prostheses, aircraft, and auto-

mobiles. Studying human learning could lead to techniques that accelerate the

learning process.

(4) Motor Rehabilitation. Studying human motor control could advance robotic-

therapy devices, thus helping people with impaired motor control.
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1.2 Human Motor Control and Human Learning

Human motor control and human learning has been a subject of interest in neuro-

science for over 30 years. The fundamental question is to determine how the central

nervous system (CNS) directs motion. A predominant theory in neuroscience is called

the internal model hypothesis (IMH), which proposes that the CNS constructs mod-

els of the body and its interactions with the physical world, and these models are

continuously updated and used for control. Internal models were first suggested in

the 1970s [4, 5]. Subsequent studies provide evidence that support internal models

within the cerebellum [6,7].

Different approaches are used to explore the IMH, including reaching experiments

[8–13], grip-force experiments [14–24], sensory-time-delay studies [6, 7, 25–38], and

comparisons of experimental data with proposed mathematical models [8, 38–52].

In the reaching experiment [10], a human subject grasps a robot manipulator and

moves it to a specified target position. There is a position-and-velocity-dependent

external force acting on the robot manipulator, which can be regarded as a change

to the subject’s arm dynamics. When the external force is zero, subjects tend to

move the manipulator in a straight line with a bell-shaped velocity profile [8]. If the

position-and-velocity-dependent force is present, then the subjects initially deviate

from the straight-line path. However, after a sufficient number of attempts, subjects

tend to recover the zero-force straight-line path. If the external force is subsequently

removed, then the subjects deviate from the straight-line path in a manner that mir-

rors the initial deviations. The results of reaching experiments are often interpreted

with internal models.

In the grip-force experiments [15, 16], human subjects are asked to hold an object

using their thumb and index finger, and lift the object vertically. The grip force is

normal to the surface, where the tips of the fingers contact the object, and the load
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force is tangential to that surface. When lifting the object, a subjects’ grip force is

adjusted in concert with the load force such that the grip force is slightly larger than

the minimum required force to prevent slipping. One explanation for the relationship

between grip force and load force is that the subjects construct internal models of the

object and the lifting process [22].

The CNS relies primarily on feedback from the cutaneous mechanoreceptors in the

fingertips to regulate grip pressure [16–21]. In [23,24], a subject was initially trained

on griping an object with their fingers and moving the object up and down vertically.

Then, the subject’s hands were anesthetized to remove sensory feedback and the

grip-force experiment was repeated. The subject’s grip force with anesthesia was

larger than their grip force without anesthesia. Moreover, the subject’s grip forces

with and without anesthesia are modulated in concert with load force. One possible

explanation for the relationship between grip force and load force is that an internal

model enables the anesthetized subject to alter the grip force as required despite the

lack of sensory feedback.

From the viewpoint of sensory time delays, it is argued that time delays (30–50

ms) in sensory feedback are too large to allow for rapid control of muscles based

solely on feedback [6,7]. In [30–32], healthy subjects perform a grip-force experiment

during rapid arm movement. The subjects’ grip force was modulated in concert with

fluctuations in load force, which is acceleration dependent [30–32]. The relationship

between grip force and load force, that is, the absence of lag between grip force and

load force, can be explained by the existence of internal models [22].

The human optical system is another example where sensory delay is used as ev-

idence of internal models. There is approximately 100 ms of delay between retinal

stimulus and perception in the human optical system [33–35]. This has led to the

study of saccades, which are rapid eye movements used to track a target. There

is an initial delay in eye movement of 90–120 ms when tracking a moving target.
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Thus, continuous eye movement cannot immediately catch the target, and a saccade

is initiated to catch up [48]. Due to the slow response of the optical system, it is

believed that saccades do not rely solely on feedback, and thus, an internal model is

required [36–38].

In [8,38–52], the IMH is explored by comparing the results of human control exper-

iments with proposed mathematical models constructed using the IMH. The math-

ematical models include predictor models, state estimators, forward models, and

inverse models. For example, in [44], healthy subjects performed in-the-dark arm

movements both with and without constant forcing. The crucial finding from this

study is that the position errors are larger with constant external forcing. Assuming

proprioception (i.e., sensory feedback from the muscles, limbs, and joints) is not af-

fected by external forcing, this indicates that the CNS alters sensory feedback. The

errors between a subject’s estimated position and the actual position agreed quali-

tatively with the behavior of a Kalman filter. The authors of [44] conclude that the

experiment supports the existence of an observer, which implies the existence of an

internal model.

Although evidence has been given in support of the IMH, other possibilities ex-

ist. Many of the results discussed thus far have other interpretations [53–59]. The

equilibrium point hypothesis, also called the λ−model, is another theory. The equilib-

rium point hypothesis proposes that voluntary movements arise from changes in the

CNS’s equilibrium state, resulting from motor apparatus, external force, and sensory

interactions.

1.3 Human-In-The-Loop Control Experiments

In this dissertation, we design and conduct human-in-the-loop (HITL) experiments,

where human subjects learn to interact with unknown dynamic systems, which are

simulated by a computer. A subject’s dominant hand is used to manipulate a single-
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degree-of-freedom joystick, which affects the motion of an object displayed on a com-

puter screen as shown in Figure 1.1(a). The controlled objects position and the

joystick position are functions of time and are related to each other by a dynamic

system. A reference object also moves on the computer screen. The subject’s objec-

tive is to manipulate the joystick in a manner that makes the controlled object and

the reference object have the same position at each instant of time. Thus, these ex-

periments examine a human’s approach to command following. Figure 1.1(b) shows

a subject performing the experiment.

r

y

u

(a)

u

r
y

(b)

Figure 1.1: Figure (a) shows a human subject using a joystick to affect the motion
of an object on a computer screen. The object’s position y represents the output
of a dynamic system that is simulated by a computer, and the joystick position u
represents the input to the system. A reference object is also displayed on the screen
and its position is r. Figure (b) shows a subject performing the experiment.

The human subject’s joystick position u is the input to a dynamic system, which

is programed into the computer. The controlled object’s position y is the output of

this dynamic system, and the reference object’s position r is an exogenous signal.

Together, the human and the computer-simulated dynamic system comprise a closed-

loop HITL dynamic system as shown in Figure 1.2.

We record the time-domain data r, u, and y, where u and y contain information

of the human subject’s behavior. Our objective is to construct a model of a human
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Figure 1.2: Modeling a human’s control strategy can be viewed as an SSID problem,
where r and y are measured and the dynamic system with which the human interacts
is assumed to be known.

subject’s behavior using the experimental data—this is a subsystem identification

problem.

1.4 Modeling Human Control Behavior Using Subsystem Identification

System identification is the process of building empirical models of an unknown dy-

namic system by using measured input and output data [60–62]. In contrast, subsys-

tem identification (SSID) is the process of building empirical models of unknown dy-

namic subsystems, which are interconnected with known dynamic subsystems. These

connections can be series, parallel, or feedback. SSID relies on measured data to

identify the unknown subsystems. However, not all input and output signals to the

unknown subsystems are necessarily accessible, that is, available for measurement.

Consider the HITL experiment in Figure 1.1, where a human interacts with a

dynamic system by using feedback y and external information r (e.g., a command)

to generate a control u as shown in Figure 1.2. In this scenario, the human is an

unknown subsystem, which can include both feedback and feedforward. The feedback-

feedforward architecture is a general structure to model human’s behavior. See [6]

for a physiological interpretation of this architecture.

Modeling the human’s control strategy can be viewed as a closed-loop SSID prob-
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lem, where r and y are measured and the dynamic system with which the human

interacts is assumed to be known. Note that the control u may also be measured.

However, u is the sum of feedback and feedforward terms, but each individual term

is inaccessible.

Closed-loop SSID is distinct from the well-studied problem of system identifica-

tion in closed loop [62–65]. A distinguishing feature of closed-loop SSID is that the

unknown subsystems have inputs and outputs that are inaccessible.

There is interest in modeling HITL behavior for applications such as aircraft [66–69]

and automobiles [70–72]. In addition, SSID methods can be used to model human

behavior in motor control experiments [73–76].

SSID also has applications in biology and physics. For example, many biologi-

cal systems are modeled by the interconnection of subsystems [77], which may be

unknown and have inaccessible inputs and outputs. Similarly, physical systems are

often modeled by a composition of subsystems, which are based on either physical

laws or empirical information. For example, in [78], a large-scale physics-based model

of the global ionosphere-thermosphere is improved by using measured data to estimate

thermal conductivity, which can be regarded as an unknown feedback subsystem. In

this application, the output of the unknown subsystem is inaccessible.

Existing methods for SSID are given in [78–90]. Specifically, [79–81] present meth-

ods for static subsystems, while [78,82–90] present methods for dynamic subsystems.

In the dynamic SSID literature, the approaches in [82–86] are restricted to open-

loop SSID, that is, identification of subsystems interconnected without feedback. We

note that [85, 86] use open-loop SSID to model the dynamics of human subsystems.

Specifically, [85] identifies a transfer function that models a human’s precision grip

force dynamics, whereas [86] identifies two transfer functions that together model a

human’s oculomotor subsystem.

In contrast to [79–86], the work in this dissertation focuses on dynamic closed-loop
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SSID, that is, identification of dynamic subsystems with feedback. Existing dynamic

closed-loop SSID methods include [78, 87–90]. In particular, [87] identifies a transfer

function that models the behavior of a human subject interacting in feedback with

a mechanical system. However, the method in [87] applies to systems with feedback

only, that is, systems without feedforward. Note that the methods in [78, 87–90]

are time-domain techniques and yield identified models that may not result in an

asymptotically stable closed-loop system.

In this dissertation, we present closed-loop SSID techniques that: i) identify feed-

back and feedforward subsystems, and ii) ensure asymptotic stability of the identified

closed-loop transfer function. Characteristics i) and ii) of the SSID algorithm are

motivated by the application to modeling human control behavior. First, humans

generally use both anticipatory (feedforward) and reactive (feedback) control [6, 7],

which motivates i). Second, if a HITL system has a bounded output, then it is

desirable to identify subsystems that result in an asymptotically stable closed-loop

transfer function, thus motivating ii). In addition, human control behavior is band

limited; specifically, humans cannot produce motion with arbitrarily high frequency.

Thus, models over a limited frequency range are to be identified, which motivates the

development of new SSID techniques in the frequency domain.

1.5 Overview of Dissertation

Chapter 2. We present a frequency-domain SSID algorithm, which identifies un-

known feedback and feedforward subsystems that are interconnected with a known

subsystem. This method requires only accessible input and output measurements, ap-

plies to linear time-invariant (LTI) subsystems, and uses a candidate-pool approach

to ensure asymptotic stability of the identified closed-loop transfer function. The

algorithm is analyzed in the cases of noiseless and noisy data. The main analytic

result of this chapter shows that the coefficients of the identified feedback and feed-
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forward transfer functions are arbitrarily close to the true coefficients if the data noise

is sufficiently small and the candidate pool is sufficiently dense.

The new contributions of this chapter are: i) an SSID method that identifies both

feedback and feedforward controllers and guarantees the stability of the identified

closed-loop transfer function; and ii) an analysis of the SSID algorithm in the cases

of noiseless and noisy data.

Chapter 3. We present results from a HITL experiment in which human subjects

learn to control an unknown dynamic system over 40 trials. For each trial, the

SSID algorithm in Chapter 2 is used to estimate each subject’s feedforward control

and feedback control. Over the 40 trials, the magnitudes of the identified feedback

controllers do not change significantly, whereas the identified feedforward controllers

do change significantly. By the last trial, the average identified feedforward controller

approximates the inverse of the dynamic system. This observation provides evidence

that a fundamental component of human learning is updating the anticipatory control

until it models the inverse dynamics, which supports the IMH.

The new contribution of this chapter is the use of SSID to model human control

behavior in a HITL experiment. The identified models of the human behavior provide

evidence in support of the IMH.

Chapter 4. The SSID algorithm from Chapter 2 is extended to address multi-

variable feedback and feedforward subsystems that are interconnected with a known

subsystem, where the feedback does not have to be measured. This method requires

only accessible input and output measurements, applies to multivariable discrete-time

LTI subsystems, and uses a candidate-pool approach to ensure asymptotic stability of

the identified closed-loop transfer function. The algorithm is analyzed in the cases of

noiseless and noisy data. The main analytic result shows that the coefficients of the

identified feedback and feedforward transfer functions are arbitrarily close to the true

coefficients if the data noise is sufficiently small and the candidate pool is sufficiently
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dense.

The new contributions of this chapter are: i) an SSID method that identifies multi-

variable LTI feedback and feedforward controllers and guarantees the stability of the

identified closed-loop transfer function; and ii) an analysis of the multivariable SSID

algorithm in the cases of noiseless and noisy data.

Chapter 5. We present results from a HITL experiment in which human subjects

learn to control 3 different unknown dynamic systems over 40 trials. One of the

dynamic systems has a minimum-phase zero, one has a nonminimum-phase zero, and

one has a slower (i.e., closer to the imaginary axis) nonminimum-phase zero. For each

dynamic system, the command-following error tends to decrease over 40 trials. The

average command-following error for the minimum-phase system is smaller than that

for the nonminimum-phase system, which is smaller than that for the system with

the slower nonminimum-phase zero. Thus, the systems with a nonminimum-phase

zeros are harder to control than the minimum-phase system.

For the minimum-phase and nonminimum-phase system, we use the SSID algo-

rithm in Chapter 4 to model each subject’s feedback and feedforward control on each

trial. For both systems, the average identified feedforward controllers approximate

the inverse of the dynamic system. This observation supports the IMH. However, the

average identified feedforward controller for the minimum-phase system is closer to

the inverse dynamics than the one for the nonminimum-phase system. We discuss

why this result as well as other factors may help explain why nonminimum-phase

zeros make systems difficult for humans to control.

The new contribution of this chapter is the use of SSID to model human control

behavior when interacting with a nonminimum-phase system. The identified models

of the human behavior provide evidence in support of the IMH. Another new contri-

bution is the exploration on the impact of system zeros on human motor control and

human learning.
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In this dissertation, the notation is defined and valid within each chapter.
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Chapter 2 Subsystem Identification for Single-Input Single-Output Sub-

systems

In this chapter, we present a frequency-domain subsystem identification algorithm

that identifies unknown feedback and feedforward subsystems that are interconnected

with a known subsystem. This method requires only accessible input and output

measurements, applies to linear time-invariant subsystems, and uses a candidate-

pool approach to ensure asymptotic stability of the identified closed-loop transfer

function. The algorithm is analyzed in the cases of noiseless and noisy data. The main

analytic result of this chapter shows that the coefficients of the identified feedback and

feedforward transfer functions are arbitrarily close to the true coefficients if the data

noise is sufficiently small and the candidate pool is sufficiently dense. This subsystem

identification approach has application to modeling the control behavior of humans

interacting with and receiving feedback from a dynamic system. The methods and

results of this chapter are published in [91,92].

2.1 Introduction

Consider a scenario where a human interacts with a dynamic system by using

feedback y and external information r (e.g., a command) to generate a control u as

shown in Figure 2.1. In this scenario, the human is an unknown subsystem, which

can include both feedback and feedforward. Modeling the human’s control strategy

can be viewed as a subsystem identification (SSID) problem, where r and y are

measured and the dynamic system with which the human interacts is assumed to be
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Figure 2.1: Modeling a human’s control strategy can be viewed as an SSID problem,
where r and y are measured and the dynamic system with which the human interacts
is assumed to be known.

known. The internal signals that the human uses to construct u are inaccessible (i.e.,

unmeasurable). For example, if u is the sum of feedback and feedforward terms, then

these individual terms are inaccessible.

Existing methods for SSID are given in [78–90]. Specifically, [79–81] present meth-

ods for static subsystems, while [78,82–90] present methods for dynamic subsystems.

In the dynamic SSID literature, the approaches in [82–86] are restricted to open-loop

SSID, that is, identification of subsystems interconnected without feedback.

In contrast to [79–86], the work in this dissertation focuses on dynamic closed-loop

SSID, that is, identification of dynamic subsystems with feedback. Existing dynamic

closed-loop SSID methods include [78, 87–90]. In particular, [87] identifies a transfer

function that models the behavior of a human subject interacting in feedback with

a mechanical system. However, the method in [87] applies to systems with feedback

only, that is, systems without feedforward. Note that the methods in [78, 87–90]

are time-domain techniques and yield identified models that may not result in an

asymptotically stable closed-loop system.

This chapter presents a new closed-loop SSID technique that: i) identifies feedback

and feedforward subsystems, and ii) ensures asymptotic stability of the identified

closed-loop transfer function. A closed-loop SSID method that addresses both i) and

ii) is a new contribution of this chapter. The method relies on a candidate-pool

approach to accomplish ii). Another contribution of this chapter is an analysis of the

properties of the SSID algorithm in the cases of noiseless and noisy data. Our main
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analytic result shows that the coefficients of the identified feedback and feedforward

transfer functions are arbitrarily close to the true coefficients if the data noise is

sufficiently small and the candidate pool is sufficiently dense.

Characteristics i) and ii) of the SSID algorithm are motivated by the application

to modeling human control behavior. First, humans generally use both anticipatory

(feedforward) and reactive (feedback) control [6, 7], which motivates i). Second, if

a human-in-the-loop system has a bounded output, then it is desirable to identify

subsystems that result in an asymptotically stable closed-loop transfer function, thus

motivating ii). In addition, human control behavior is band limited; specifically,

humans cannot produce motion with arbitrarily high frequency. Thus, models over

a limited frequency range are to be identified, which motivates the development of a

new SSID technique in the frequency domain.

2.2 Problem Formulation

Consider the linear time-invariant system shown in Figure 2.2, where r, y, σr, and

σy are the Laplace transforms of the input, output, input noise, and output noise,

respectively, and for Gff , Gfb, Gp : C→ C is a real rational transfer function. If σr = 0

Gfb
- k - Gp

- k?
σy

-
y

6

--
r

- k?
σr - Gff

?k

Figure 2.2: The input r and output y of this linear time-invariant system are mea-
sured, but all internal signals are inaccessible.

and σy = 0, then the closed-loop transfer function from r to y is given by

G̃(s) ,
Gp(s)Gff(s) +Gp(s)Gfb(s)

1 +Gp(s)Gfb(s)
. (2.1)
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Next, let N be a positive integer, and define N , {1, 2, . . . , N}. For all k ∈ N, let

ωk ∈ (0,∞), where ω1 < · · · < ωN . Furthermore, for all k ∈ N, define the closed-loop

frequency response data

H(ωk) ,
y(ωk)

r(ωk)
= G̃(ωk) + σ(ωk), (2.2)

where σ(s) , [G̃(s)σr(s) + σy(s)]/r(s). If σ(ωk) ≡ 0, then {H(ωk)}Nk=1 is noiseless.

In contrast, if σ(ωk) 6≡ 0, then {H(ωk)}Nk=1 is noisy.

We present a method to identify Gff and Gfb, provided that Gp and {H(ωk)}Nk=1 are

known and Gp 6= 0. In this case, the closed-loop frequency response data {H(ωk)}Nk=1

can be obtained from the accessible signals r and y and does not depend on the

internal signals, which are not assumed to be measured.

Note that Gff , Gfb, Gp can be expressed as

Gff(s) =
Nff(s)

Dff(s)
, Gfb(s) =

Nfb(s)

Dfb(s)
, Gp(s) =

Np(s)

Dp(s)
,

where Nff and Dff , Nfb and Dfb, and Np and Dp are coprime, and Dff , Dfb, Dp are

monic. Define

nff , degNff , dff , degDff , nfb , degNfb, dfb , degDfb, np , degNp, dp , degDp.

Thus, (2.1) can be expressed as

G̃(s) =
Np(s) [Dfb(s)Nff(s) +Dff(s)Nfb(s)]

Dff(s) [Dp(s)Dfb(s) +Np(s)Nfb(s)]
.

We make the following assumptions:

(A2.1) dff , dfb, nff , and nfb are known.

(A2.2) dp + dfb > np + nfb.
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(A2.3) N > dp + dff + dfb + np + max{nff + dfb, nfb + dff}.

(A2.4) If λ ∈ C and Dff(λ) [Dp(λ)Dfb(λ) +Np(λ)Nfb(λ)] = 0, then Re λ < 0.

Assumption (A2.1) can be replaced by the assumption that upper bounds on dff ,

dfb, nff , and nfb are known. However, (A2.1) is invoked for clarity of the presentation.

Assumption (A2.2) states that the loop transfer function GpGfb is strictly proper.

Assumption (A2.3) implies that the number N of frequency response data points is

sufficiently large. This assumption ensures that the minimization problem solved in

the SSID has a unique solution. Assumption (A2.4) implies that G̃ is asymptotically

stable, that is, the poles of G̃ are in the open-left-half complex plane.

Define d , dff +dfb +nfb +1, and for all nonnegative integers j, let Γj : C→ Cj+1 be

given by Γj(s) , [ sj sj−1 · · · s 1 ]T. Consider the functions Nff : C×Rnff+1 → C

and Dff ,Nfb,Dfb : C× Rd → C given by

Nff(s, β) , ΓT
nff

(s)β, Dff(s, φ) , sdff + ΓT
dff−1(s)E1φ,

Nfb(s, φ) , ΓT
nfb

(s)E2φ, Dfb(s, φ) , sdfb + ΓT
dfb−1(s)E3φ,

where β ∈ Rnff+1, φ ∈ Rd, and

E1 , [ Idff
0dff×(dfb+nfb+1) ] ∈ Rdff×d,

E2 , [ 0(nfb+1)×dff
Infb+1 0(nfb+1)×dfb

] ∈ R(nfb+1)×d,

E3 , [ 0dfb×(dff+nfb+1) Idfb
] ∈ Rdfb×d.

Next, consider the functions Gff : C×Rnff+1×Rd → C and Gfb : C×Rd → C given by

Gff(s, β, φ) ,
Nff(s, β)

Dff(s, φ)
, Gfb(s, φ) ,

Nfb(s, φ)

Dfb(s, φ)
,

which, for each β ∈ Rnff+1 and φ ∈ Rd, are real rational transfer functions.
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Our objective is to determine β and φ such that Gff and Gfb approximate Gff and

Gfb, respectively. To achieve this objective, consider the cost function

J(β, φ) ,
N∑
k=1

∣∣∣∣Np(ωk) [Dfb(ωk, φ)Nff(ωk, β) + Dff(ωk, φ)Nfb(ωk, φ)]

Dff(ωk, φ) [Dp(ωk)Dfb(ωk, φ) +Np(ωk)Nfb(ωk, φ)]
−H(ωk)

∣∣∣∣2 ,
(2.3)

which is a measure of the difference between the frequency response data {H(ωk)}Nk=1

and the closed-loop transfer function obtained from the estimates Gff and Gfb. Note

that J is nonlinear and nonconvex in (β, φ).

Let β∗ ∈ Rnff+1 and φ∗ ∈ Rd be such that, for all s ∈ C, Nff(s) = Nff(s, β∗),

Dff(s) = Dff(s, φ∗), Nfb(s) = Nfb(s, φ∗), and Dfb(s) = Dfb(s, φ∗).

If σ(ωk) ≡ 0, then J(β∗, φ∗) = 0, which implies that the true parameters β∗

and φ∗ minimize the cost function (2.3) if the closed-loop frequency response data

{H(ωk)}Nk=1 is noiseless.

2.3 Subsystem Identification

We now develop an SSID algorithm to obtain estimates of β∗ and φ∗, and thus

estimates of Gff and Gfb. Consider the function G̃ : C× Rnff+1 × Rd → C defined by

G̃(s, β, φ) ,
Ñ1(s, φ)β + Ñ2(s, φ)

D̃(s, φ)
, (2.4)

where

D̃(s, φ) , Dff(s, φ) [Dp(s)Dfb(s, φ) +Np(s)Nfb(s, φ)] , (2.5)

Ñ1(s, φ) , Np(s)Dfb(s, φ)ΓT
nff

(s), (2.6)

Ñ2(s, φ) , Np(s)Dff(s, φ)Nfb(s, φ). (2.7)
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Note that G̃(s, β, φ) is the closed-loop transfer function obtained using β and φ. It

follows from (2.3)–(2.7) that

J(β, φ) =
N∑
k=1

|G̃(ωk, β, φ)−H(ωk)|2. (2.8)

Next, define

Ω0(φ) ,
N∑
k=1

∣∣∣∣Ñ2(ωk, φ)

D̃(ωk, φ)
−H(ωk)

∣∣∣∣2 ∈ R, (2.9)

Ω1(φ) , 2Re
N∑
k=1

[
Ñ1(ωk, φ)

D̃(ωk, φ)

]∗ [
Ñ2(ωk, φ)

D̃(ωk, φ)
−H(ωk)

]
∈ Rnff+1, (2.10)

Ω2(φ) , Re
N∑
k=1

[
Ñ1(ωk, φ)

D̃(ωk, φ)

]∗ [
Ñ1(ωk, φ)

D̃(ωk, φ)

]
∈ R(nff+1)×(nff+1), (2.11)

where [ · ]∗ denotes the complex conjugate transpose. Thus, (2.8) can be expressed as

J(β, φ) = βTΩ2(φ)β + ΩT
1 (φ)β + Ω0(φ), (2.12)

which is convex in β, because, for each φ ∈ Rd, Ω2(φ) is positive semidefinite.

Define the set of φ ∈ Rd such that G̃(s, β, φ) is asymptotically stable, which is given

by S , {φ ∈ Rd : D̃(s, φ) is Hurwitz}.

The following result provides sufficient conditions such that Ω2(φ) is positive defi-

nite.

Proposition 2.1. Consider Ω2 given by (2.11), and assume (A2.1)–(A2.3) are

satisfied. Let φ ∈ S. Then, Ω2(φ) is positive definite.

Proof. Let φ ∈ S. It follows from (2.11) that Ω2(φ) is well defined and positive

semidefinite. Next, assume for contradiction that Ω2(φ) is not positive definite. Thus,

there exists a nonzero x ∈ Rnff+1 such that xTΩ2(φ)x = 0, and it follows from (2.11)

19



that

0 = xTΩ2(φ)x =
N∑
k=1

∣∣∣∣∣Ñ1(ωk, φ)x

D̃(ωk, φ)

∣∣∣∣∣
2

.

Thus, for all k ∈ N, Ñ1(ωk, φ)x = 0. Next, it follows from (A2.3) that N > dp +

dff + dfb + np + max{nff + dfb, nfb + dff} ≥ dfb + np + nff . Since, Ñ1(ω1, φ)x =

· · · = Ñ1(ωN , φ)x = 0, Ñ1(s, φ)x is a degree dfb + np + nff polynomial, and N >

dfb +np +nff , it follows that Ñ1(s, φ)x ≡ 0. Moreover, since Ñ1(s, φ)x ≡ 0, Np(s) 6≡ 0

and sdfb + ΓT
dfb−1(s)E3φ 6≡ 0, it follows from (2.6) that ΓT

nff
(s)x ≡ 0. Thus, x = 0,

which is a contradiction. Therefore, Ω2(φ) is positive definite.

For each φ ∈ S, the following result provides the global minimizer of J(β, φ).

Proposition 2.2. Consider J given by (2.12), and assume (A2.1)–(A2.3) are sat-

isfied. Let φ ∈ S, and let β ∈ Rnff+1\{−1
2
Ω−1

2 (φ)Ω1(φ)}. Then,

J

(
−1

2
Ω−1

2 (φ)Ω1(φ), φ

)
= Ω0(φ)− 1

4
ΩT

1 (φ)Ω−1
2 (φ)Ω1(φ) < J(β, φ).

Proof. Let φ ∈ S, and Proposition 2.1 implies that Ω2(φ) is positive definite. Define

x , −1
2
Ω−1

2 (φ)Ω1(φ) ∈ Rnff+1, and let β ∈ Rnff+1 be such that β 6= x. Thus, (2.12)

implies that

J(β, φ) = βTΩ2(φ)β + ΩT
1 (φ)β + Ω0(φ) = [β − x]T Ω2(φ) [β − x] + J(x, φ). (2.13)

Since Ω2(φ) is positive definite, it follows that [β − x]TΩ2(φ)[β − x] > 0, and (2.13)

confirms the result.

Next, let M be a positive integer, and let Φ ⊆ S be a set with M elements. We call

Φ the candidate pool. Define M , {1, 2, . . . ,M}. Now, create a candidate sequence

using the M elements in the candidate pool Φ. For i, j ∈ M, let φi, φj ∈ Φ be such
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that if i 6= j, then φi 6= φj. The sequence {φi}Mi=1 is not unique; however, the order

of the sequence is selected arbitrarily.

Now, for all i ∈M, define the quadratic cost function

Ji(β) , J(β, φ)

∣∣∣∣
φ=φi

= βTΩ2(φi)β + ΩT
1 (φi)β + Ω0(φi). (2.14)

Since φ1, . . . , φM ∈ Φ ⊆ S, Proposition 2.1 implies that Ω2(φ1), . . . ,Ω2(φM) are pos-

itive definite. The following result is a consequence of Proposition 2.2 and provides

the unique global minimizer of Ji for each i ∈M.

Proposition 2.3. Consider Ji given by (2.14), assume (A2.1)–(A2.3) are satisfied,

and assume Φ ⊆ S. Let i ∈M, and let β ∈ Rnff+1\{−1
2
Ω−1

2 (φi)Ω1(φi)}. Then,

Ji

(
−1

2
Ω−1

2 (φi)Ω1(φi)

)
= Ω0(φi)−

1

4
ΩT

1 (φi)Ω
−1
2 (φi)Ω1(φi) < Ji(β).

Proposition 2.3 implies that for each i ∈ M, βi , −1
2
Ω−1

2 (φi)Ω1(φi) is the global

minimizer of Ji. Next, let ` ∈M be the smallest integer such that

J`(β`) = min
i∈M

Ji(βi).

Then, the identified parameters are β+ , β` and φ+ , φ`, and the identified transfer

functions are

G+
ff (s) , Gff(s, β+, φ+) G+

fb(s) , Gfb(s, φ+).

Note that arg mini∈M Ji(βi) is not necessarily unique. In this case, ` ∈M is the small-

est integer such that J`(β`) = mini∈M Ji(βi). However, in practice, arg mini∈M Ji(βi)

is generally unique. This SSID method is summarized by the following algorithm.

Algorithm 2.1. Consider the closed-loop transfer function (2.1), where Gp is
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known. Assume {H(ωk)}Nk=1 is known, and (A2.1)–(A2.4) are satisfied. Then, the

subsystem identification algorithm is as follows:

Step 1. Generate the candidate pool Φ ⊆ S and candidate sequence {φi}Mi=1.

Step 2. For each i ∈ M, find βi , −1
2
Ω−1

2 (φi)Ω1(φi), which is the unique global

minimizer of Ji.

Step 3. Find the smallest integer ` ∈M such that J`(β`) = mini∈M Ji(βi).

Step 4. The identification results are β+ = β`, φ
+ = φ`, G

+
ff (s) = Gff(s, β+, φ+), and

G+
fb(s) = Gfb(s, φ+).

In the next two sections, Algorithm 2.1 is analyzed. Specifically, we analyze how

the identified parameters β+ and φ+ relate to the true parameters β∗ and φ∗.

2.4 Analysis with Noiseless Frequency Response Data

In this section, Algorithm 2.1 is analyzed under the assumption of noiseless fre-

quency response data. We assume that for all k ∈ N, σ(ωk) = 0, which implies that

for all k ∈ N, H(ωk) = G̃(ωk). The following result relates β∗ and φ∗ if σ(ωk) ≡ 0.

Proposition 2.4. Assume (A2.1)–(A2.4) are satisfied, and assume for all k ∈ N,

σ(ωk) = 0. Then, β∗ = −1
2
Ω−1

2 (φ∗)Ω1(φ∗) and J(β∗, φ∗) = 0.

Proof. Since for all k ∈ N, σ(ωk) = 0, it follows that H(ωk) = G̃(ωk) =

G̃(ωk, β∗, φ∗). Thus, it follows from (2.4) that for all k ∈ N,

Ñ2(ωk, φ∗)

D̃(ωk, φ∗)
−H(ωk) =

Ñ2(ωk, φ∗)

D̃(ωk, φ∗)
− G̃(ωk, β∗, φ∗) = −Ñ1(ωk, φ∗)β∗

D̃(ωk, φ∗)
. (2.15)

Next, substituting (2.15) into (2.10), and using (2.11) yields Ω1(φ∗) = −2Ω2(φ∗)β∗.

Since φ∗ ∈ S, Proposition 2.1 implies that Ω2(φ∗) is positive definite, and thus, β∗ =

−1
2
Ω−1

2 (φ∗)Ω1(φ∗). Moreover, (2.8) implies that J(β∗, φ∗) =
∑N

k=1 |G̃(ωk, β∗, φ∗) −

H(ωk)|2 = 0.

22



The following result provides sufficient conditions on β ∈ Rnff+1 and φ ∈ S such

that G̃(s, β, φ) ≡ G̃(s).

Proposition 2.5. Let β ∈ Rnff+1 and φ ∈ Rd. Assume (A2.3) is satisfied, and

assume
∑N

k=1 |G̃(ωk, β, φ)− G̃(ωk)| = 0. Then, for all s ∈ C, G̃(s, β, φ) = G̃(s).

Proof. Let β ∈ Rnff+1 and φ ∈ S. Since
∑N

k=1 |G̃(ωk, β, φ)− G̃(ωk)| = 0, it follows

that for all k ∈ N, G̃(ωk, β, φ) = G̃(ωk). Define Ñ(s) , Ñ1(s, φ)β + Ñ2(s, φ),

Ñ∗(s) , Ñ1(s, φ∗)β∗ + Ñ2(s, φ∗), and ψ(s) , D̃(s, φ∗)Ñ(s) − D̃(s, φ)Ñ∗(s). Since

deg Ñ ≤ np + max{nff + dfb, nfb + dff}, deg Ñ∗ ≤ np + max{nff + dfb, nfb + dff}, and

deg D̃(s, φ) = deg D̃(s, φ∗) = dp + dff + dfb, it follows that degψ ≤ dp + dff + dfb +

np + max{nff + dfb, nfb + dff}. Since for all k ∈ N, G̃(ωk, β, φ) = G̃(ωk), it follows

that for all k ∈ N, ψ(ωk) = 0. Next, it follows from (A2.3) that degψ < N . Since

for all k ∈ N, ψ(ωk) = 0, and degψ < N , it follows that ψ(s) ≡ 0, which implies

that D̃(s, φ∗)Ñ(s) ≡ D̃(s, φ)Ñ∗(s). Thus, G̃(s, β, φ) ≡ G̃(s, β∗, φ∗) ≡ G̃(s).

Proposition 2.5 provides sufficient conditions such that G̃(s, β, φ) ≡ G̃(s) ≡ G̃(s, β∗, φ∗);

however, these conditions are not sufficient to conclude that [ βT φT ] equals [ βT
∗ φT

∗ ].

The following example demonstrates this case.

Example 2.1. Consider the closed-loop transfer function (2.1), where

Gp(s) =
1

s+ 2
, Gff(s) =

s+ 3

s+ 1
, Gfb(s) = 1.

Note that β∗ = [ 1 3 ]T, φ∗ = [ 1 1 ]T, and G̃(s) = (2s + 4)/(s2 + 4s + 3). Let

β = [ 3 7 ]T 6= β∗ and φ = [ 3 −1 ]T 6= φ∗, and it follows that G̃(s, β, φ) ≡ G̃(s) ≡

G̃(s, β∗, φ∗). 4

Example 2.1 shows that there can exist β ∈ Rnff+1 and φ ∈ S such that [ βT φT ] 6=

[ βT
∗ φT

∗ ] and G̃(s, β, φ) ≡ G̃(s, β∗, φ∗). In this case, the SSID problem is not well
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posed, because J does not have a unique minimizer, and (β∗, φ∗) cannot be determined

uniquely from the noiseless closed-loop frequency response data {H(ωk)}Nk=1.

Now, we impose an additional assumption to ensure that if G̃(s, β, φ) ≡ G̃(s), then

β = β∗ and φ = φ∗. First, let Ψ ⊆ Rd be a compact and perfect (i.e., closed with

no isolated point) set containing φ∗. Note that Ψ can be selected sufficiently large to

ensure φ∗ ∈ Ψ. Assume Ψ is known. In practice, Ψ is used to generate the candidate

pool. For the remainder of this chapter, we impose the following assumption:

(A2.5) If β ∈ Rnff+1, φ ∈ Ψ ∩ S, and G̃(s, β, φ) ≡ G̃(s), then β = β∗ and φ = φ∗.

Assumption (A2.5) implies that [ βT
∗ φT

∗ ]T is the only element in Rnff+1× (Ψ∩S)

that yields the closed-loop transfer function G̃.

2.4.1 φ∗ in the candidate pool Φ

The following result provides sufficient conditions such that the identified transfer

functions G+
ff and G+

fb are equal to Gff and Gfb, respectively.

Theorem 2.1. Consider the closed-loop transfer function (2.1), where Gp is known.

Assume {H(ωk)}Nk=1 is known, (A2.1)–(A2.5) are satisfied, and for all k ∈ N, σ(ωk) =

0. Furthermore, consider Algorithm 2.1 with the candidate pool Φ ⊆ (Ψ ∩ S), and

assume φ∗ ∈ Φ. Let β+ and φ+ denote the identified parameters obtained from

Algorithm 2.1. Then, β+ = β∗ and φ+ = φ∗.

Proof. Since φ∗ ∈ Φ, it follows that there exists m ∈ M such that φm = φ∗. Next,

since for all k ∈ N, σ(ωk) = 0, it follows from Proposition 2.3 and Proposition 2.4 that

βm = −1
2
Ω−1

2 (φm)Ω1(φm) = −1
2
Ω−1

2 (φ∗)Ω1(φ∗) = β∗. Thus, (2.14) and Proposition

2.4 imply that Jm(βm) = J(βm, φm) = J(β∗, φ∗) = 0.

Since for all i ∈ M, Ji(βi) ≥ 0 and Jm(βm) = 0, it follows that J(β+, φ+) =

mini∈M Ji(βi) = Jm(βm) = 0. Since for all k ∈ N, H(ωk) = G̃(ωk), it follows from

(2.8) that 0 = J(β+, φ+) =
∑N

k=1 |G̃(ωk, β
+, φ+) − G̃(ωk)|2. Thus, Proposition 2.5
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implies that G̃(s, β+, φ+) ≡ G̃(s). Since, in addition, φ+ ∈ Φ ⊆ (Ψ∩S), (A2.5) implies

that β+ = β∗ and φ+ = φ∗.

2.4.2 φ∗ not necessarily in the candidate pool Φ

Now, the analysis in the previous section is extended to address the case where φ∗

is not necessarily in the candidate pool. It follows from Proposition 2.1 that for all

φ ∈ S, Ω2(φ) is positive definite, which implies that θ : S→ Rnff+1 given by

θ(φ) , −1

2
Ω−1

2 (φ)Ω1(φ) (2.16)

is well defined on S. Define Q : S→ [0,∞) by

Q(φ) , J(θ(φ), φ). (2.17)

The following result addresses continuity of θ and Q.

Proposition 2.6. Assume (A2.1)–(A2.3) are satisfied. Then, θ and Q are contin-

uous on S.

Proof. Let φ ∈ S, and it follows that D̃(s, φ) is Hurwitz. Thus, for all k ∈ N,

D̃(ωk, φ) 6= 0, and it follows from (2.9)–(2.11) that Ω0, Ω1, and Ω2 are well defined

and continuous on S.

Next, it follows from Proposition 2.1 that Ω2(φ) is positive definite. Since Ω2 is

continuous on S, it follows that each element of Ω2 is continuous on S, which implies

that the adjugate of Ω2, denoted by adj Ω2, and the determinant of Ω2, denoted by

det Ω2, are continuous on S. Since Ω2 is invertible on S and Ω−1
2 = 1

det Ω2
adj Ω2, it

follows that Ω−1
2 is continuous on S.

Since Ω−1
2 and Ω1 are continuous on S, it follows from (2.16) that θ is continuous

on S. Moreover, it follows from (2.12) that J is continuous on Rnff+1 × S. Since, in
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addition, θ is continuous on S, it follows from (2.17) that Q is continuous on S.

It follows from (A2.4) that D̃(s, φ∗) is Hurwitz. Thus, there exists ρ < 0 such

that if λ ∈ C and D̃(λ, φ∗) = 0, then Re λ < ρ. Assume ρ is known. Note that

ρ < 0 can be selected such that |ρ| is arbitrarily small, which ensures that Sρ ,

{φ ∈ Rd : D̃(s+ ρ, φ) is Hurwitz} contains φ∗. In practice, Sρ is used to generate the

candidate pool.

The following propositions are needed for the main result of this section. The proofs

are in Appendix A. Note that Ψ ∩ Sρ denotes the closure of Ψ ∩ Sρ.

Proposition 2.7. Ψ ∩ Sρ is bounded and contains no isolated points.

Proposition 2.8. Ψ ∩ Sρ ⊆ S is compact.

Let Z+ denote the set of positive integers, let n ∈ Z+, and define the open ball of

radius ε > 0 centered at c ∈ Rn by Bε(c) , {x ∈ Rn : ‖x− c‖ < ε}. We now define a

convergent sequence of finite sets.

Definition 2.1. Let n ∈ Z+, and let ∆ ⊆ Rn be bounded and contain no isolated

points. For all j ∈ Z+, let ∆j ⊆ ∆ be a finite set. Then, {∆j}∞j=1 converges to ∆ if

for each x ∈ ∆, there exists a sequence {xj : xj ∈ ∆j}∞j=1 such that for all ε > 0, there

exists L ∈ Z+ such that for j > L, xj ∈ Bε(x).

The following result considers Algorithm 2.1 with a sequence of candidate pools

that converges to Ψ∩Sρ. This result demonstrates that a sufficiently dense candidate

pool yields identified parameters β+ and φ+ that are arbitrarily close to β∗ and φ∗.

Theorem 2.2. Consider the closed-loop transfer function (2.1), where Gp is known.

Assume {H(ωk)}Nk=1 is known, (A2.1)–(A2.5) are satisfied, and for all k ∈ N, σ(ωk) =

0. For all j ∈ Z+, let Λj ⊆ (Ψ ∩ Sρ) be a finite set such that {Λj}∞j=1 converges to

Ψ ∩ Sρ. For each j ∈ Z+, let β+
j and φ+

j denote the identified parameters obtained

from Algorithm 2.1 with the candidate pool Φ = Λj. Then, for all ε > 0, there exists

L ∈ Z+ such that if j > L, then β+
j ∈ Bε(β∗) and φ+

j ∈ Bε(φ∗).
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Proof. Let ε > 0. Since θ is continuous on S and φ∗ ∈ S, it follows that there exists

δ > 0 such that for all x ∈ Bδ(φ∗), θ(x) ∈ Bε(θ(φ∗)).

Define ε1 , min{ε, δ}, Λc , Ψ ∩ Sρ, and

Λε1 , Λc\Bε1(φ∗) = Λc ∩ {x ∈ Rd : ‖x− φ∗‖ ≥ ε1}. (2.18)

It follows from Proposition 2.8 that Λc ⊆ S is compact. Since Λc is compact, and

{x ∈ Rd : ‖x− φ∗‖ ≥ ε1} is closed, it follows from (2.18) that Λε1 is compact.

Proposition 2.6 implies that Q is continuous on Λε1 ⊆ Λc ⊆ S. Next, define

Qε1 , minx∈Λε1
Q(x), which exists because Q is continuous on the compact set Λε1 [93,

Theorem 7.7]. Assume for contradiction that Qε1 = 0. Thus, there exists φ ∈ Λε1 such

that Q(φ) = 0. Since for all k ∈ N, H(ωk) = G̃(ωk), it follows from (2.8) and (2.17)

that 0 = Q(φ) = J(θ(φ), φ) =
∑N

k=1 |G̃(ωk, θ(φ), φ) − G̃(ωk)|2. Thus, Proposition

2.5 implies that G̃(s, θ(φ), φ) ≡ G̃(s), and it follows from (A2.5) that φ = φ∗ 6∈ Λε1 ,

which is a contradiction. Thus, Qε1 > 0.

Next, since for all k ∈ N, σ(ωk) = 0, it follows from Proposition 2.4, (2.16),

and (2.17) that β∗ = θ(φ∗) and Q(φ∗) = J(β∗, φ∗) = 0. Furthermore, since Q is

continuous on Λc, it follows that there exists δ1 > 0 such that for all x ∈ Λc∩Bδ1(φ∗),

Q(x) < Qε1 . Since {Λj}∞j=1 converges to (Ψ ∩ Sρ) ⊆ Λc, it follows from Definition 2.1

that there exists a sequence {φj : φj ∈ Λj}∞j=1 and L ∈ Z+ such that for all j > L,

φj ∈ Bmin{ε1,δ1}(φ∗) ⊆ Bδ1(φ∗). Thus, for all j > L, Q(φj) < Qε1 .

Let j ∈ Z+ be such that j > L. It follows from Algorithm 2.1, (2.16), and (2.17)

that Q(φ+
j ) ≤ Q(φj) < Qε1 . Assume for contradiction that φ+

j 6∈ Bε1(φ∗). Therefore,

φ+
j ∈ Λε1 , which implies that Qε1 ≤ Q(φ+

j ), which is a contradiction. Thus, φ+
j ∈

Bε1(φ∗) ⊆ Bε(φ∗). Since φ+
j ∈ Bε1(φ∗) ⊆ Bδ(φ∗), it follows that β+

j = θ(φ+
j ) ∈

Bε(θ(φ∗)) = Bε(β∗).
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2.5 Analysis with Noisy Frequency Response Data

In this section, Algorithm 2.1 is analyzed under the assumption of noisy frequency

response data. Define Ω̂0 : S× CN → R and Ω̂1 : S× CN → Rnff+1 by

Ω̂0(φ, η) ,
N∑
k=1

∣∣∣∣∣Ñ2(ωk, φ)

D̃(ωk, φ)
− G̃(ωk)− ηk

∣∣∣∣∣
2

, (2.19)

Ω̂1(φ, η) , 2Re
N∑
k=1

[
Ñ1(ωk, φ)

D̃(ωk, φ)

]∗ [
Ñ2(ωk, φ)

D̃(ωk, φ)
− G̃(ωk)− ηk

]
, (2.20)

where η1, . . . , ηN ∈ C and η , [ η1 . . . ηN ]T. Define σ∗ , [ σ(ω1) · · · σ(ωN) ]T

∈ CN , and note that Ω̂0(φ, σ∗) = Ω0(φ) and Ω̂1(φ, σ∗) = Ω1(φ). Thus, Ω̂0 and Ω̂1

are extensions of Ω0 and Ω1. Specifically, Ω̂0 and Ω̂1 are functions not only of the

parameter φ but also the noise η.

Define Ĵ : Rnff+1× S×CN → [0,∞), θ̂ : S×CN → Rnff+1, and Q̂ : S×CN → [0,∞)

by

Ĵ(β, φ, η) ,
N∑
k=1

∣∣∣G̃(ωk, β, φ)− G̃(ωk)− ηk
∣∣∣2 , (2.21)

θ̂(φ, η) , −1

2
Ω−1

2 (φ)Ω̂1(φ, η), (2.22)

Q̂(φ, η) , Ĵ(θ̂(φ, η), φ, η). (2.23)

Note that Ĵ(β, φ, σ∗) = J(β, φ), θ̂(φ, σ∗) = θ(φ), and Q̂(φ, σ∗) = Q(φ). Thus, Ĵ , θ̂,

and Q̂ are extensions of J , θ, and Q. Specifically, Ĵ , θ̂, and Q̂ are functions not only

of the parameters β and φ but also of the noise η.

It follows from (2.4), (2.11), and (2.19)–(2.21) that

Ĵ(β, φ, η) = βTΩ2(φ)β + Ω̂T
1 (φ, η)β + Ω̂0(φ, η). (2.24)
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Furthermore, it follows from (2.16), (2.17), (2.21)–(2.23), and Proposition 2.4 that

θ̂(φ∗, 0) = −1

2
Ω−1

2 (φ∗)Ω̂1(φ∗, 0) = β∗, (2.25)

Q̂(φ∗, 0) = Ĵ(β∗, φ∗, 0) = 0. (2.26)

The following result is an extension of Proposition 2.6.

Proposition 2.9. Assume (A2.1)–(A2.3) are satisfied. Then, θ̂ and Q̂ are contin-

uous on S× CN .

Proof. It follows (2.19) and (2.20) that Ω̂0 and Ω̂1 are continuous on S×CN . Also,

it follows from (2.11) that Ω2 is continuous on S.

Next, it follows from Proposition 2.1 that Ω2(φ) is positive definite. Since Ω2 is

continuous on S, it follows that each element of Ω2 is continuous on S, which implies

that the adjugate of Ω2, denoted by adj Ω2, and the determinant of Ω2, denoted by

det Ω2, are continuous on S. Since Ω2 is invertible on S and Ω−1
2 = 1

det Ω2
adj Ω2, it

follows that Ω−1
2 is continuous on S.

Therefore, it follows from (2.22) and (2.24) that Ĵ is continuous on Rnff+1×S×CN

and θ̂ is continuous on S× CN . Thus, it follows from (2.23) that Q̂ is continuous on

S× CN .

2.5.1 φ∗ in the candidate pool Φ

The following result provides sufficient conditions such that the identified parameter

φ+ equals φ∗. This result also shows that if the norm of the noise σ∗ is sufficiently

small, then the identified parameter β+ is arbitrarily close to β∗.

Theorem 2.3. Consider the closed-loop transfer function (2.1), where Gp is known.

Assume {H(ωk)}Nk=1 is known and (A2.1)–(A2.5) are satisfied. Furthermore, consider

Algorithm 2.1 with the candidate pool Φ ⊆ (Ψ∩ S), and assume φ∗ ∈ Φ. Let β+ and
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φ+ denote the identified parameters obtained from Algorithm 2.1. Then, there exists

δ0 > 0 such that if ‖σ∗‖ < δ0, then φ+ = φ∗. Furthermore, for all ε > 0, there exists

δ ∈ (0, δ0) such that if ‖σ∗‖ < δ, then β+ ∈ Bε(β∗).

Proof. Let φ ∈ Φ\{φ∗}, and assume for contradiction that Q̂(φ, 0) = 0. It follows

from (2.21) and (2.23) that

0 = Q̂(φ, 0) = Ĵ(θ̂(φ, 0), φ, 0) =
N∑
k=1

|G̃(ωk, θ̂(φ, 0), φ)− G̃(ωk)|2.

Thus, Proposition 2.5 implies that G̃(s, θ̂(φ, 0), φ) ≡ G̃(s), and it follows from (A2.5)

that φ = φ∗, which is a contradiction. Therefore, Q̂(φ, 0) > 0.

Define U , minx∈Φ\{φ∗} Q̂(x, 0) > 0. Since Q̂ is continuous on S × CN , it follows

that for each i ∈M, Q̂(φi, ·) is continuous on CN . Thus, for each i ∈M, there exists

δi > 0 such that for all η ∈ {x ∈ CN : ‖x‖ < δi},

|Q̂(φi, η)− Q̂(φi, 0)| < U/2. (2.27)

Define δ0 , mini∈M δi > 0, and assume that ‖σ∗‖ < δ0. Since φ∗ ∈ Φ, it follows

that there exists m ∈M such that φm = φ∗. Since Q̂(φm, 0) = Q̂(φ∗, 0) = 0, it follows

from (2.27) that Q̂(φm, σ∗) = |Q̂(φm, σ∗) − Q̂(φm, 0)| < U/2. Let j ∈ M\{m}. It

follows from (2.27) that −U/2 < Q̂(φj, σ∗)− Q̂(φj, 0), which implies that Q̂(φj, σ∗) >

Q̂(φj, 0) − U/2. Since, in addition, Q̂(φj, 0) ≥ U , it follows that Q̂(φj, σ∗) > U/2.

Therefore, Q̂(φm, σ∗) < Q̂(φj, σ∗), which implies that Q(φm) < Q(φj). Thus, (2.14),

(2.16), (2.17), and Proposition 2.3 imply that Jm(βm) < Jj(βj). Therefore, it follows

from Algorithm 2.1 that φ+ = φm = φ∗ and

β+ = βm = θ(φ∗) = θ̂(φ∗, σ∗). (2.28)

Let ε > 0. Since θ̂ is continuous on S × CN , it follows that θ̂(φ∗, ·) is continuous

30



on CN . Therefore, there exists δ ∈ (0, δ0) such that for all η ∈ {x ∈ CN : ‖x‖ < δ},

θ̂(φ∗, η) ∈ Bε(θ̂(φ∗, 0)). Finally, assume ‖σ∗‖ < δ, and (2.25) and (2.28) imply that

β+ ∈ Bε(β∗).

2.5.2 φ∗ not necessarily in the candidate pool Φ

Now, the analysis in the previous section is extended to address the case where φ∗

is not necessarily in the candidate pool. The following result considers Algorithm 2.1

with a sequence of candidate pools that converges to Ψ∩Sρ. This result demonstrates

that a sufficiently dense candidate pool and sufficiently small noise σ∗ yield identified

parameters β+ and φ+ that are arbitrarily close to β∗ and φ∗.

Theorem 2.4. Consider the closed-loop transfer function (2.1), where Gp is known.

Assume {H(ωk)}Nk=1 is known and (A2.1)–(A2.5) are satisfied. For all j ∈ Z+, let

Λj ⊆ (Ψ∩ Sρ) be a finite set such that {Λj}∞j=1 converges to Ψ∩ Sρ. For each j ∈ Z+,

let β+
j and φ+

j denote the identified parameters obtained from Algorithm 2.1 with the

candidate pool Φ = Λj. Then, for all ε > 0, there exist δ > 0 and L ∈ Z+ such that

if ‖σ∗‖ < δ and j > L, then β+
j ∈ Bε(β∗) and φ+

j ∈ Bε(φ∗).

Proof. Let ε > 0. Since θ̂ is continuous on S×CN and φ∗ ∈ S, it follows that there

exists δ0 > 0 such that for all φ ∈ Bδ0(φ∗) and all η ∈ {x ∈ CN : ‖x‖ < δ0},

θ̂(φ, η) ∈ Bε(θ̂(φ∗, 0)). (2.29)

Define ε1 , min{ε, δ0}, Λc , Ψ ∩ Sρ, and

Λε1 , Λc\Bε1(φ∗) = Λc ∩ {x ∈ Rd : ‖x− φ∗‖ ≥ ε1}. (2.30)

It follows from Proposition 2.8 that Λc ⊆ S is compact. Since Λc is compact, and

{x ∈ Rd : ‖x− φ∗‖ ≥ ε1} is closed, it follows from (2.30) that Λε1 is compact.
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Let v > δ0, and define V , {x ∈ CN : ‖x‖ ≤ v}. Since Λε1 ⊆ Λc ⊆ S and

V ⊆ CN , it follows from Proposition 2.9 that Q̂ is continuous on Λε1×V . Next, define

Θ: V → [0,∞) by Θ(η) , minφ∈Λε1
Q̂(φ, η), which exist because Λε1 is compact and

Q̂ is continuous on Λε1 × V [93, Theorem 7.7].

Assume for contradiction that Θ(0) = 0. Thus, there exists z ∈ Λε1 such that

Q̂(z, 0) = 0, and it follows from (2.21) and (2.23) that

0 = Ĵ(θ̂(z, 0), z, 0) =
N∑
k=1

|G̃(ωk, θ̂(z, 0), z)− G̃(ωk)|2.

Thus, Proposition 2.5 implies that G̃(s, θ̂(z, 0), z) ≡ G̃(s), and it follows from (A2.5)

that z = φ∗ 6∈ Λε1 , which is a contradiction. Thus, Θ(0) > 0.

Since Q̂ is continuous on Λε1 × V , and Λε1 and V are compact, it follows from [94,

Theorem 9.14] that Θ is continuous on V . Furthermore, since Q̂ is continuous on

S × CN , it follows that Q̂(φ∗, ·) is continuous on V . Thus, W : V → R defined by

W (η) , Θ(η) − Q̂(φ∗, η) is continuous on V . It follows from (2.26) that W (0) =

Θ(0)− Q̂(φ∗, 0) = Θ(0) > 0. Since, in addition, W is continuous on V , it follows that

there exists δ1 ∈ (0, v) such that for all η ∈ {x ∈ CN : ‖x‖ < δ1}, W (η) > 0. Define

δ , min{δ0, δ1} > 0 and assume ‖σ∗‖ < δ.

Since W (σ∗) > 0 and Proposition 2.9 implies that Q̂(·, σ∗) is continuous on Λc,

it follows from the continuity of Q̂(·, σ∗) that there exists δ2 > 0 such that for all

φ ∈ (Λc ∩ Bδ2(φ∗)), |Q̂(φ, σ∗)− Q̂(φ∗, σ∗)| < W (σ∗). Thus, for all φ ∈ (Λc ∩ Bδ2(φ∗)),

Q̂(φ, σ∗) − Q̂(φ∗, σ∗) ≤ |Q̂(φ, σ∗) − Q̂(φ∗, σ∗)| < W (σ∗) = Θ(σ∗) − Q̂(φ∗, σ∗), which

implies that

Q̂(φ, σ∗) < Θ(σ∗). (2.31)

Since {Λj}∞j=1 converges to (Ψ ∩ Sρ) ⊆ Λc, it follows from Definition 2.1 that there

exists a sequence {φj : φj ∈ Λj}∞j=1 and L ∈ Z+ such that for all j > L, φj ∈
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Bmin{ε1,δ2}(φ∗). Thus, it follows from (2.31) that for all j > L, Q̂(φj, σ∗) < Θ(σ∗).

Let j ∈ Z+ be such that j > L. It follows from Algorithm 2.1, (2.16), and (2.17)

that Q(φ+
j ) ≤ Q(φj). Therefore, (2.31) implies that Q̂(φ+

j , σ∗) ≤ Q̂(φj, σ∗) < Θ(σ∗).

Assume for contradiction that φ+
j 6∈ Bε1(φ∗). Therefore, φ+

j ∈ Λε1 , which implies

that Θ(σ∗) = minφ∈Λε1
Q̂(φ, σ∗) ≤ Q̂(φ+

j , σ∗), which is a contradiction. Thus, φ+
j ∈

Bε1(φ∗) ⊆ Bε(φ∗). Since φ+
j ∈ Bε1(φ∗) ⊆ Bδ0(φ∗), it follows from (2.25) and (2.29)

that β+
j = θ̂(φ+

j , σ∗) ∈ Bε(θ̂(φ∗, 0)) = Bε(β∗).

2.6 Numerical Examples

For all examples in this section, let

Gp(s) =
4

s+ 2
, Gff(s) =

2.1s+ 3

s+ 6.5
, Gfb(s) =

5.4

s+ 7.1
,

which implies that β∗ = [ 2.1 3 ]T and φ∗ = [ 6.5 5.4 7.1 ]T. Let Ψ = [−8, 8] ×

[−8, 8]×[−8, 8], which is a compact and perfect set containing φ∗. It can be shown that

this example satisfies (A2.5). Let β = [ u1 u2 ]T ∈ R2 and φ = [ v1 v2 v3 ]T ∈ R3,

and assume G̃(s, β, φ) ≡ G̃(s), where G̃ is given by (2.1). It follows that

G̃(s, β, φ) =
4 [(u1s+ u2)(s+ v3) + v2(s+ v1)]

(s+ v1) [(s+ 2)(s+ v3) + 4v2]
=

4(2.1s2 + 23.31s+ 56.4)

(s+ 6.5)(s2 + 9.1s+ 35.8)
. (2.32)

Since the roots of s2 + 9.1s + 35.8 are complex, (2.32) implies that v1 = 6.5 and

(s+2)(s+v3)+4v2 = s2+9.1s+35.8, or equivalently, v3 = 7.1 and v2 = 5.4. Moreover,

the numerator of (2.32) implies that (u1s+u2)(s+v3)+v2(s+v1) = 2.1s2+23.31s+56.4,

or equivalently, u1 = 2.1 and u2 = 3. Thus, β = β∗ and φ = φ∗.

For all examples in this chapter, let N = 20 and ωk = 0.2πk, where k ∈ N.
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Example 2.2. Noiseless data and φ∗ ∈ Φ. Assume σ(ωk) ≡ 0. Consider

Π0 ,
{
φ ∈ R3 : E1φ,E2φ,E3φ ∈ {−8 + 0.1k}160

k=0

}
⊆ Ψ,

define Λ0 , Π0 ∩ S, and note that φ∗ ∈ Λ0. Algorithm 2.1 is used with the candidate

pool Φ = Λ0 to obtain β+ and φ+. The identified parameters are β+ = β∗ =

[ 2.1 3 ]T and φ+ = φ∗ = [ 6.5 5.4 7.1 ]T, which agrees with Theorem 2.1. 4

Example 2.3. Noiseless data and φ∗ 6∈ Φ. Assume σ(ωk) ≡ 0. For j = 1, . . . , 25,

consider

Πj ,

{
φ ∈ R3 : E1φ,E2φ,E3φ ∈

{
−8 +

16

5 + 10(j − 1)
k

}5+10(j−1)

k=0

}
⊆ Ψ,

define Λj , Πj ∩ Sρ, where ρ = −0.001, and note that for j = 1, . . . , 25, φ∗ 6∈ Λj.

For j = 1, . . . , 25, Algorithm 2.1 is used with the candidate pool Φ = Λj to obtain

the identified parameters β+
j and φ+

j . Figure 2.3 demonstrates that ‖β+
j − β∗‖2 and

‖φ+
j − φ∗‖2 are arbitrarily small for sufficient large j, which agrees with Theorem

2.2. Note that ‖β+
j − β∗‖2 and ‖φ+

j − φ∗‖2 do not decrease monotonically. The Bode

plots of G+
ff and G+

fb with Φ = Λ1,Φ = Λ2, and Φ = Λ25 are shown in Figure 2.4.

The identified transfer functions G+
ff and G+

fb with Φ = Λ25 approximate Gff and Gfb

better than those with Φ = Λ1 and Φ = Λ2. 4

34



10
−2

10
−1

10
0

‖β
+ j
−

β
∗‖

2

5 10 15 20 25

10
−2

10
−1

10
0

j

‖φ
+ j
−

φ
∗‖

2

Figure 2.3: Noiseless data and φ∗ 6∈ Φ. For j = 1, . . . , 25, Algorithm 2.1 is used
with the candidate pool Λj to obtain the identified parameters β+

j and φ+
j . Note that

‖β+
j − β∗‖2 and ‖φ+

j − φ∗‖2 can be made arbitrarily small if the candidate pool is
sufficiently dense.

Example 2.4. Noisy data and φ∗ ∈ Φ. For i = 1, . . . , 20, let nr,i(t) and ny,i(t)

be zero-mean Gaussian white-noise realizations with variance of 4−i. Moreover, for

i = 1, . . . , 20, let σr,i(ω) and σy,i(ω) be the Fourier transforms of nr,i and ny,i,

respectively. For i = 1, . . . , 20, the noisy closed-loop frequency response data is

Hi(ωk) , G̃(ωk) + σi(ωk), where σi(ωk) , [G̃(ωk)σr,i(ωk) + σy,i(ωk)]/r(ωk). For

i = 1, . . . , 20, define

Ri ,
1

N

N∑
k=1

∣∣∣∣σi(ωk)G̃(ωk)

∣∣∣∣ ,
which is the frequency-averaged noise-to-signal ratio. In this example, for i = 1, . . . , 20,

Ri ∈ (0, 24). Specifically, R1 = 23.8, R5 = 1.39, R10 = 4.49×10−2, R12 = 9.53×10−3,

and R20 = 4.36× 10−5.

For i = 1, . . . , 20, Algorithm 2.1 is used with the candidate pool Φ = Λ0 and data
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Figure 2.4: Noiseless data and φ∗ 6∈ Φ. For j = 1, 2, 25, Algorithm 2.1 is used with
the candidate pool Λj to obtain G+

ff and G+
fb. Note that G+

ff and G+
fb with candidate

pool Λ25 approximate Gff and Gfb better than those with candidate pools Λ1 and Λ2.

{Hi(ωk)}Nk=1 to obtain the identified parameters β+
i and φ+

i . Figure 2.5 demonstrates

that for i ≥ 14, φ+
i = φ∗ and for sufficiently large i, ‖β+

i − β∗‖2 is arbitrarily small,

which agrees with Theorem 2.3. The Bode plots ofG+
ff andG+

fb with data {H5(ωk)}Nk=1,

{H10(ωk)}Nk=1, and {H20(ωk)}Nk=1 are shown in Figure 2.6. The identified transfer

functions G+
ff and G+

fb with data {H20(ωk)}Nk=1 approximate Gff and Gfb better than

those with data {H5(ωk)}Nk=1 and {H10(ωk)}Nk=1. The identified transfer function G+
fb

with data {H20(ωk)}Nk=1 is G+
fb = Gfb. 4
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Figure 2.5: Noisy data and φ∗ ∈ Φ. For i = 1, . . . , 20, Algorithm 2.1 is used with the
candidate pool Λ0 and data {Hi(ωk)}Nk=1 to obtain the identified parameters β+

i and
φ+
i . For i ≥ 14, φ+

i = φ∗. Note that ‖β+
i − β∗‖2 can be made arbitrarily small if the

norm of the noise σ∗ is sufficiently small.

Example 2.5. Noisy data and φ∗ 6∈ Φ. Consider the noisy closed-loop frequency re-

sponse data {H5(ωk)}Nk=1, {H10(ωk)}Nk=1, {H12(ωk)}Nk=1, and {H20(ωk)}Nk=1 given in Ex-

ample 2.4. Moreover, consider Λ1, . . . ,Λ25 given in Example 2.3. For i = 5, 10, 12, 20,

and j = 1, . . . , 25, Algorithm 2.1 is used with the candidate pool Φ = Λj and data

{Hi(ωk)}Nk=1 to obtain β+
j,i and φ+

j,i. Figure 2.7 demonstrates that ‖β+
j,i − β∗‖2 and

‖φ+
j,i−φ∗‖2 are arbitrarily small for sufficient large j and i, which agrees with Theorem

2.4. 4

2.7 Conclusions

In this chapter, we present a frequency-domain SSID algorithm for identifying un-

known feedback and feedforward subsystems interconnected with a known subsystem.

This SSID method ensures asymptotic stability of the identified closed-loop transfer
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Figure 2.6: Noisy data and φ∗ ∈ Φ. For i = 5, 10, 20, Algorithm 2.1 is used with the
candidate pool Λ0 and data {Hi(ωk)}Nk=1 to obtain G+

ff and G+
fb. Note that G+

ff and
G+

fb with {H20(ωk)}Nk=1 approximate Gff and Gfb better than those with {H5(ωk)}Nk=1

and {H10(ωk)}Nk=1.

function. The method has application to modeling human control behavior (both

feedback and feedforward). The main analytic results of the chapter are Theorems

2.1–2.4, which describe the properties of the SSID algorithm. In particular, Theorem

2.4 shows that the coefficients of the identified feedback and feedforward transfer func-

tions are arbitrarily close to the true coefficients if the candidate pool is sufficiently

dense and the data noise is sufficiently small.

In the next chapter, the SSID Algorithm 2.1 is used to model human control be-

havior in a human-in-the-loop experiment.
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Figure 2.7: Noisy data and φ∗ 6∈ Φ. For i = 5, 10, 12, 20, and j = 1, . . . , 25, Algorithm
2.1 is used with the candidate pool Λj and data {Hi(ωk)}Nk=1 to obtain β+

j,i and φ+
j,i.

Note that ‖β+
j,i − β∗‖2 and ‖φ+

j,i − φ∗‖2 are small for large j and i.
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Chapter 3 The Roles of Feedback and Feedforward in Human Learning

We present results from a human-in-the-loop (HITL) experiment in which human

subjects learn to control an unknown dynamic system over 40 trials. For each trial, the

subsystem identification (SSID) algorithm in Chapter 2 is used to estimate each sub-

ject’s feedforward (or anticipatory) control and feedback (or reactive) control. Over

the 40 trials, the magnitudes of the identified feedback controllers do not change sig-

nificantly, whereas the identified feedforward controllers do change significantly. By

the last trial, the average identified feedforward controller approximates the inverse

of the dynamic system. This observation provides evidence that a fundamental com-

ponent of human learning is updating the anticipatory control until it models the

inverse dynamics. The results in this chapter have been submitted for publication

in [95].

3.1 Introduction

Humans learn to control a wide range of complex dynamic systems, including bicy-

cles, kites, and hula hoops. The strategies used by humans to control these systems

are unclear [96]. The internal model hypothesis proposes that the brain constructs

models of the body’s interactions with the physical world and that those models are

used for control [6, 7, 97]. Suggested uses of internal models include prediction, state

estimation, model-based control, and feedforward model inversion [10,98–104].

The internal model hypothesis has been explored by comparing the results of hu-

man control experiments with mathematical models of proposed human control ar-
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chitectures [8, 38–50, 52, 105]. These models reproduce certain qualitative features

observed in the experiments. However, vastly different control strategies can yield

similar dynamic behavior. Thus, a model that reproduces qualitative features of an

experiment does not necessarily provide an accurate representation of the human’s

control strategy.

In contrast to the approaches in [8,38–50,52,105], SSID is used to obtain feedforward

and feedback controllers that are the best fit to data obtained from a human control

experiment. Other studies that use system identification approaches to model human

responses include [74, 75, 85, 86, 106–108]. Specifically, [85] identifies models of a hu-

man’s precision grip force and [86] identifies models of a human’s oculomotor system.

However, the human systems investigated in [85, 86] are modeled without feedback.

In [106–108], identification methods are used to model the behavior of human pilots;

however, these models include error feedback only and thus, do not incorporate feed-

forward control. In [74, 75], feedforward and feedback controllers are estimated for

humans performing ramp-tracking tasks. However, these feedforward and feedback

models rely on an assumed control strategy, specifically, the feedforward models are

assumed to include the inverse system dynamics. In contrast to [74,75,85,86,106–108],

the present chapter uses SSID to model a human’s response with both feedforward

and feedback control without assuming a priori a specific feedforward or feedback

control strategy.

3.2 Experimental Methods

Subjects in this experiment use a single-degree-of-freedom joystick to affect the

motion of an object on a computer screen as shown in Figure 3.1. The controlled

object’s position y and the joystick position u are functions of time t and are related to

each other by a dynamic system. A reference object, whose position r is independent

of the joystick position u, also moves on the computer screen. The subject’s objective
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Figure 3.1: Subjects use a joystick to affect the motion of an object on a computer
screen. The object’s position y represents the position of a mass in a mass-spring-
damper system that is simulated by a computer, and the joystick position u represents
the force applied to the mass. A reference object is also displayed on the screen, and
its position r is an 80-s chirp signal.

is to manipulate the joystick in a manner that makes the controlled object and the

reference object have the same position at each instant of time. Specifically, the

objective is to generate a control u that minimizes the magnitude of the command-

following error e = r − y. Prior to performing the experiment, a subject has no

knowledge of the reference object’s motion r or the dynamic system relating u and y.

The controlled object’s position y satisfies the differential equation

M

 ẍ

ÿ

+ C

 ẋ

ẏ

+K

 x

y

 = Bu, (3.1)

where M , C, and K are real 2× 2 matrices, B is a real 2× 1 matrix, and the initial

conditions are zero. Many physical systems such as aircraft, bicycles, and haptic

interfaces can be modeled by (3.1). In this experiment, (3.1) models the mass-spring-

damper system shown in Figure 3.1, where y represents the position of the second

mass, and u represents the force applied to the second mass. In this case, the matrices
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M , C, K, and B are given by

M =

 m1 0

0 m2

 , C =

 c1 + c2 −c2

−c2 c2

 , (3.2)

K =

 k1 + k2 −k2

−k2 k2

 , B =

 0

1

 , (3.3)

where m1 and m2 are the masses, k1 and k2 are the spring stiffnesses, and c1 and

c2 are the damping constants shown in Figure 3.1. The input-output response of

(3.1)–(3.3) is written in the Laplace domain as ŷ(s) = G(s)û(s), where

G(s) = BT(s2M + sC +K)−1B

is the transfer function from u to y, and û(s) and ŷ(s) are the Laplace transforms of

u and y. Since all of the physical parameters m1, m2, c1, c2, k1, and k2 are positive,

the transfer function G is asymptotically stable (that is, the poles of G are in the

open-left-half complex plane) and minimum phase (that is, the zeros of G are in the

open-left-half complex plane). Specifically, the transfer function is

G(s) =
m1s

2 + c1s+ c2s+ k1 + k2

(m1s2 + c1s+ k1)(m2s2 + c2s+ k2) +m2c2s3 +m2k2s2
,

and the parameters are m1 = 1, m2 = 0.5, c1 = 0.56π, c2 = 0.5π, k1 = 0.16π2, and

k2 = 0.5π2.

A total of 10 people voluntarily participated in this study. At the time of the

experiment, these 10 subjects had no known neurological or motor control disorders

and were 18–35 years of age. Each subject performed 40 trials of the experiment

in a period of 14 days. A trial is an 80-second time period during which a subject

operates a joystick. Each subject’s 40 trials were divided into 8 sessions, and each
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session consisted of 5 trials. Each session was completed within a period of 20 minutes.

No subject participated in more than one session within a 12-hour period. For each

session, subjects are placed in an isolated area free from distraction. Subjects sit in

a chair facing a computer screen. A subject’s dominant hand is used to manipulate a

single-degree-of-freedom joystick. Prior to their first trial, the subjects are told that

manipulating the joystick moves an object that is displayed on the computer screen,

as shown in Figure 3.1. A reference object is also displayed on the computer screen.

Participants are instructed to manipulate the joystick such that the controlled object

and the reference object have the same position at each instant of time. The subjects

possess no initial knowledge of the reference object’s motion or the dynamics G from

the joystick motion to object’s motion.

This experiment satisfies the U.S. Department of Health and Human Services Code

of Federal Regulation for human subject research (45 CFR 46) and was approved by

the University of Kentucky Institutional Review Board (IRB number 12-0816-P4S).

For each trial, the joystick position u is the real-time input to a computer simulation

of the dynamic system (3.1)–(3.3), which determines the controlled object’s motion

on the computer screen. The reference object’s position r is an 80-second chirp signal

with frequency content between 0.1 and 0.4 Hz, specifically,

r(t) =


(2− 0.035t) sin (0.2πt+ 0.015πt2) , if t ∈ [0, 40],

(0.8− 0.035t) sin (0.2π(80− t) + 0.015π(80− t)2) , if t ∈ (40, 80].

3.3 Experimental Results in the Time Domain

Each trial of the experiment lasts for T = 80s. For each trial of the experiment,

we record data r and y with the sampling time Ts = 0.002s and obtain the sequences

r(iTs), y(iTs), and e(iTs), where i = 0, 1, 2, . . . , 40000. For each trial, we define time-

44



averaged magnitude of the error is

‖e‖ =
1

40001

40000∑
i=0

|e(iTs)|.

Figure 3.2(a) shows the reference r and output y for one subject’s Trials 1 and 40.

For this subject, the error e for Trial 40 is smaller than that for Trial 1. Figure 3.2(b)

y

−4

−2

0

2

4

6
Trial 1

(a) Single Subject Data

y

r

Time (s)

y

0 20 40 60 80

−4

−2

0

2

4

6
Trial 40 y

r

Trial Number

T
im

e-
A
v
er
a
g
ed

E
rr
o
r
‖
e
‖

10 20 30 40
0

0.2

0.4

0.6

0.8

1

(b) Averaged Data

Figure 3.2: Figure (a) shows the position y and reference r for a single subject on
the first and last trial. The subject’s error e = r − y is smaller on the last trial than
on the first trial, indicating that the subject learned to control the dynamic system.
Figure (b) shows the time-averaged magnitude of the error ‖e‖ of the 10 subjects for
each of the 40 trials. The × indicates the mean of the 10 subjects and the vertical
lines show one standard deviation. The mean ‖e‖ improves over the trials.

shows the time-averaged magnitude of the error ‖e‖ of the 10 subjects for each of the

40 trials. The mean ‖e‖ improves over the trials.
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3.4 Discussion of Potential Control Strategies

The linear time-invariant control architecture shown in Figure 3.3 is used to model

each subject’s control strategy. See [6] for a physiological interpretation of this archi-

-r

-y e?k -

Subject’s Control Strategy

Gff

?

Gfb

6

k -u

Figure 3.3: Each subject’s control strategy is modeled using a feedback controller Gfb

and a feedforward controller Gff .

tecture. A subject’s control strategy is modeled by

û(s) = Gfb(s)ê(s) +Gff(s)r̂(s), (3.4)

where ê(s) and r̂(s) are the Laplace transforms of e and r, and the real rational

transfer functions Gfb and Gff are the feedback and feedforward controllers. Feedback

is the reactive control determined from the observed error e, whereas feedforward is

the anticipatory control determined solely from the reference r. The closed-loop

response is ê(s) = G̃er(s)r̂(s), where

G̃er(s) ,
1−Gff(s)G(s)

1 +Gfb(s)G(s)
(3.5)

is the closed-loop transfer function from r to e. The frequency response of G̃er is the

complex-valued function G̃er(ω), where ω is the frequency.

To ensure that the error e is bounded, the controllers Gff and Gfb must be such

that the closed-loop transfer function G̃er is asymptotically stable (that is, the poles

of G̃er are in the open-left-half complex plane). To make the error e small, Gff and
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Gfb must make the magnitude of G̃er(ω) small at frequencies coinciding with the

0.1-to-0.4 Hz frequency content of the reference r.

Now, we consider control strategies that could be used to achieve good command

following. One control strategy is to use high gain in feedback. It follows from

(3.5) that the magnitude of G̃er(ω) is small if the magnitude of Gfb(ω) is large.

Therefore, as long as G̃er is asymptotically stable, the magnitude of e is decreased by

increasing the magnitude of Gfb(ω) at the frequencies of r. Figure 3.4(a) shows that

using high gain in feedback can make the magnitude of e small even if there is no

feedforward control. High-gain feedback makes the magnitude of e small by making

the closed-loop transfer function from r to y

G̃yr(s) , 1− G̃er(s) =
G(s)[Gff(s) +Gfb(s)]

1 +G(s)Gfb(s)

close to 1 over the 0-to-0.5 Hz frequency range. Note that humans cannot use arbi-

trarily high gain in feedback due to delay in a human’s reaction as well as the physical

limitations of a human’s speed and range of motion.

Another control strategy is to use the inverse dynamics G−1 in feedforward. If

Gff ≈ G−1, then it follows from (3.5) that G̃er ≈ 0, which implies that the command-

following error is small, that is, e ≈ 0. In this case, the human must learn to

approximate the inverse dynamics G−1 in feedforward. Figure 3.4(b) shows that

using the approximate inverse dynamics in feedforward can make the magnitude of

e small even if there is no feedback control. Other control strategies also make the

magnitude of e small. For example, high gain in feedback and approximate inverse

dynamics in feedforward can be combined across the frequency range of r.
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Figure 3.4: Two control strategies that make the magnitude of the error e small
are high gain in feedback and approximate inverse dynamics in feedforward. Figure
(a) shows the high-gain control strategy with the proportional feedback controller
Gfb = 30 and with no feedforward controller (i.e., Gff = 0). Figure (b) shows the
control strategy of approximating the inverse dynamics in feedforward. The feedfor-
ward controller is Gff(s) = 900G−1(s)/(s + 30)2, which is a proper approximation of
G−1 across the frequency range. There is no feedback controller (i.e., Gfb = 0). In
both cases, the closed-loop transfer function G̃yr is approximately 1 (i.e., 0 decibels
magnitude and 0 degrees phase) across the frequency range and the magnitude of e
is small.
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3.5 Modeling Human Control Behavior

We review the SSID algorithm in Chapter 2 in a simplified form and use it to identify

the feedback and feedforward controllers used by humans in the experiment. For each

trial, a subject’s control strategy is modeled using the linear time-invariant control

structure 3.4 shown in Figure 3.3. We also present the details how we generated the

candidate pool used in the SSID algorithm.

3.5.1 Summary of Subsystem Identification Algorithm

The time-domain signals {r(iTs)}40000
i=0 and {y(iTs)}40000

i=0 are divided into two seg-

ments of 40 s. For each segment, the discrete Fourier transform is calculated at the

frequencies ωk = 2π (0.1 + 0.025(k − 1)) rad/s, where k = 1, 2 . . . , N = 13. The ratio

of the discrete Fourier transforms from the two segments are averaged to obtain the

frequency response data {H(ωk)}Nk=1.

Our objective is to determine Gff and Gfb such that the modeled frequency response

{G̃yr(ωk)}Nk=1 approximates the data {H(ωk)}Nk=1. To achieve this objective, we seek

to find Gff and Gfb that minimize the cost J(Gff , Gfb), given by (3.6), subject to the

constraint that G̃yr is asymptotically stable.

J(Gff , Gfb) =
N∑
k=1

∣∣∣G̃yr(ωk)−H(ωk)
∣∣∣2

=
N∑
k=1

∣∣∣∣G(ωk) [Gff(ωk) +Gfb(ωk)]

1 +Gfb(ωk)G(ωk)
−H(ωk)

∣∣∣∣2 , (3.6)

We parameterize the feedback and feedforward controllers by their numerator and

denominator coefficients and cast the SSID problem in terms of these coefficients.

Let nff and nfb be nonnegative integers that denote the degrees of the numerator

polynomials of Gff and Gfb. Similarly, let dff and dfb be nonnegative integers that

denote the degrees of the denominator polynomials of Gff and Gfb. Define d ,
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dff + dfb +nfb + 1, and consider the functions Nff : C×Rnff+1 → C, Dff : C×Rd → C,

Nfb : C× Rd → C, and Dfb : C× Rd → C given by

Nff(s, β) , νff(s)β, Dff(s, φ) , sdff + µff(s)φ,

Nfb(s, φ) , νfb(s)φ, Dfb(s, φ) , sdfb + µfb(s)φ,

where νff : C→ C1×(nff+1) and µff , νfb, µfb : C→ C1×d are given by

νff(s) ,

[
snff snff−1 · · · s 1

]
,

µff(s) ,

[
sdff−1 sdff−2 · · · s 1 01×(dfb+nfb+1)

]
,

νfb(s) ,

[
01×dff

snfb snfb−1 · · · s 1 01×dfb

]
,

µfb(s) ,

[
01×(dff+nfb+1) sdfb−1 sdfb−2 · · · s 1

]
.

We consider the functions Gff : C× Rnff+1 × Rd → C and Gfb : C× Rd → C given by

Gff(s, β, φ) ,
Nff(s, β)

Dff(s, φ)
, Gfb(s, φ) ,

Nfb(s, φ)

Dfb(s, φ)
,

where β contains the numerator coefficients of Gff , and φ contains the denominator

coefficients of Gff as well as the numerator and denominator coefficients of Gfb.

The real rational transfer function G can be expressed as G(s) = Np(s)/Dp(s),

whereNp andDp are coprime polynomials. Next, consider the cost function J : Rnff+1×

Rd → [0,∞) given by

J(β, φ) , J(Gff(s, β, φ),Gfb(s, φ)) = βTΩ2(φ)β + ΩT
1 (φ)β + Ω0(φ),
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where

Ω0(φ) ,
N∑
k=1

∣∣∣∣∣Ñ2(ωk, φ)

D̃(ωk, φ)
−H(ωk)

∣∣∣∣∣
2

,

Ω1(φ) , 2Re
N∑
k=1

[
Ñ2(ωk, φ)

D̃(ωk, φ)
−H(ωk)

]
ÑT

1 (−ωk, φ)

D̃(−ωk, φ)
,

Ω2(φ) , Re
N∑
k=1

ÑT
1 (−ωk, φ)Ñ1(ωk, φ)∣∣∣D̃(ωk, φ)

∣∣∣2 ,

and

Ñ2(s, φ) , Np(s)Dff(s, φ)Nfb(s, φ),

Ñ1(s, φ) , Np(s)Dfb(s, φ)νff(s),

D̃(s, φ) , [Dp(s)Dfb(s, φ) +Np(s)Nfb(s, φ)]Dff(s, φ).

For each φ ∈ Rd, Ω0(φ) ∈ R, Ω1(φ) ∈ Rnff+1, and Ω2(φ) ∈ R(nff+1)×(nff+1) is positive

semidefinite.

We restrict our attention to φ ∈ Rd contained in

S , {φ ∈ Rd : D̃(s, φ) is Hurwitz},

which is the set of parameters that yield asymptotically stable closed-loop transfer

functions. Let M be a positive integer, and let Φ ⊂ S be a set with M elements. We

call Φ the candidate pool. Next, we create a candidate sequence using the M elements

in the candidate pool Φ. Specifically, for i, j = 1, 2, . . . ,M , let φi, φj ∈ Φ such that

if i 6= j, then φi 6= φj. The sequence {φi}Mi=1 is not unique; however, the order of the

sequence is selected arbitrarily.
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Define M , {1, 2, . . . ,M}, and for all i ∈M, define the quadratic cost function

Ji(β) , J(β, φi) = βTΩ2(φi)β + ΩT
1 (φi)β + Ω0(φi).

If the numberN of frequency response data is sufficiently large, then Ω2(φ1), . . . ,Ω2(φM)

are positive definite and thus nonsingular. In this case, for each i = 1, . . . , N , define

βi , −
1

2
Ω−1

2 (φi)Ω1(φi),

which is the unique global minimizer of Ji. Specifically, for each i ∈ M and for all

β ∈ Rnff+1\{βi},

Ji(βi) < Ji(β).

Let ` ∈ M be the smallest integer such that J`(β`) = mini∈M Ji(βi). Thus, the

identified parameters are β` and φ` and the identified transfer functions are

Gff(s) ,
Nff(s, β`)

Dff(s, φ`)
, Gfb(s) ,

Nfb(s, φ`)

Dfb(s, φ`)
. (3.7)

The linear feedback-and-feedforward control (3.4) with are estimates of the unknown

subsystem. We now summarize this SSID method.

Algorithm 3.1. Consider the known transfer function G and the known closed-

loop frequency response data {H(ωk)}Nk=1. Then, the subsystem identification algo-

rithm is as follows:

Step 1. Generate the candidate pool Φ ⊂ S and candidate sequence {φi}Mi=1.

Step 2. For each i ∈ M, find βi , −1
2
Ω−1

2 (φi)Ω1(φi), which is the unique global

minimizer of Ji.

Step 3. Find the smallest ` ∈M such that J`(β`) = mini∈M Ji(βi).
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Step 4. The identified parameters are β` and φ`.

Step 5. The identified feedforward and feedback transfer functions are Gff and Gfb

given by (3.7).

3.5.2 Application of SSID Algorithm to Experimental Data

For each of the 400 trials, we identify a second-order strictly proper feedback con-

troller and a second-order improper feedforward controller (i.e., nfb = 1, nff = 4,

dfb = 2, dff = 2). These controller orders allow for high gain feedback as well as ap-

proximate feedforward model inversion, or combinations of these control approaches.

The candidate pool Φ is designed to capture a wide range of behavior over the

0.1-to-0.4 Hz frequency range. The candidate pool Φ is constructed subject to the

following conditions:

C1) If φ ∈ Φ, λ ∈ C, and Dff(λ, φ) = 0, then |λ| ≤ 25.

C2) If φ ∈ Φ, λ ∈ C, and Dfb(λ, φ) = 0, then |λ| ≤ 25.

C3) If φ ∈ Φ, λ ∈ C, and Nfb(λ, φ) = 0, then |λ| ≤ 25.

C4) If φ ∈ Φ, then maxω∈[0.2π,0.8π] |Gfb(ω, φ)| ≤ 30.5.

C5) If φ ∈ Φ, λ ∈ C, and D̃(λ, φ) = 0, then Reλ < −0.1.

Conditions C1)–C3) constrain Φ to include only elements that have a significant

impact on controller dynamics over the 0.1-to-0.4 Hz frequency range. Specifically,

C1)–C3) state that for each φ ∈ Φ, the poles of the feedforward controller, the poles of

the feedback controller, and the zeros of the feedback controller have absolute value

between 0 and 25 rad/s. This condition arises because the data {H(ωk)}Nk=1 is at

frequencies ω1, . . . , ωN ∈ [0.2π, 0.8π] rad/s, which corresponds to the the frequency

range of the chirp signal r. Thus, we seek to identify Gff and Gfb on the interval

[0.2π, 0.8π] rad/s. The upper limit 25 rad/s on the magnitude of the poles and zeros
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is one decade above the 0.8π rad/s limit on the chirp frequency (i.e., (10)(0.8π) ≈ 25).

Moreover, a pole or zero with magnitude greater than 25 rad/s has negligible effect on

the Bode plot over the frequency range [0.2π, 0.8π] rad/s. Thus, the candidate pool is

restricted to contain elements that correspond to poles and zeros with absolute value

between 0 and 25 rad/s.

Conditions C4) states that for each φ ∈ Φ, the peak magnitude of the feedback

controller Gfb(s, φ) over the frequency range [0.2π, 0.8π] rad/s is no more than 30.5

(or approximately 30 dB). An upper limit on the magnitude of the feedback controller

is imposed, because a human cannot use arbitrarily high gain in feedback. The 30

dB upper limit is determined from another experiment with 10 subjects, where each

subject was asked to follow a single-frequency sinusoid using only error feedback (i.e.,

feedforward of the command signal was not available). In this experiment, the peak

magnitude of the feedback controller used by the subjects is approximately 30 dB,

suggesting that 30 dB is the peak gain that a human can use in feedback.

Conditions C5) states that for each φ ∈ Φ, the real parts of the roots of D̃(s, φ) are

bounded away from the imaginary axis, specifically, less than −0.1. This condition

guarantees that Φ ⊂ S (i.e., for all φ ∈ Φ, the roots of D̃(s, φ) are in the open-left-half

complex plane). A pole with −0.1 real part has a settling time of approximately 40 s.

Thus, C5) restricts the candidate pool to elements that result in closed-loop transfer

functions with settling times less than 40 s. Note that the behavior observed in this

experiment exhibits settling times significantly less than 40 s.

The candidate pool contains approximately 160 billion elements, and more details

of the candidate pool is present in Appendix B.

The SSID algorithm is implemented using parallel computation on a supercomputer.

Algorithm 3.1 is coded in C++ for parallel computation and implemented on the

Lipscomb High Performance Computing Cluster at the University of Kentucky. For

each trial, Algorithm 3.1 is run on 2 compute nodes of the Lipscomb cluster; each
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node has a 16 Intel E5-2670 @ 2.6 GHz cores. For each trial, it takes approximately

3.5 hours to run Algorithm 3.1 using 2 compute nodes and the candidate pool Φ

given above. Thus, performing SSIDs for all 400 trials requires approximately 2,800

compute node hours.

3.6 Subsystem Identification Results

For each of the 400 trials, the second-order feedback controller Gfb and second-order

feedforward controller Gff that minimize J are identified. Figure 3.5 shows the Bode

plots of the identified Gfb and Gff for the first and last trials of one subject. The

identified Gff for the first trial does not approximate G−1, whereas the identified Gff

for the last trial is a better approximation of G−1. Similarly results are observed for

the other 9 subjects.

Figure 3.6(a) shows that the average magnitude of the identified feedback controller

Gfb does not change significantly over the 40 trials. This observation contrasts the

results of [109], which suggests that higher feedback gains are used during the learning

period (i.e., the early trials). Figure 3.6(a) also shows that the difference between the

identified feedforward controller Gff and the inverse dynamics G−1 decreases over the

40 trials. The metrics ‖Gfb‖ and ‖Gff −G−1‖ are the frequency-averaged magnitudes

of Gfb and Gff −G−1, which are given by

‖Gfb‖ =
1

ωN − ω1

∫ ωN

ω1

|Gfb(ω)| dω,

‖Gff −G−1‖ =
1

ωN − ω1

∫ ωN

ω1

|Gff(ω)−G−1(ω)| dω,

where ω1 = 0.2π radians per second and ωN = 0.8π radians per second. Figure 3.6(b)

compares the command-following error on all 400 trials to how closely the identified

Gff approximates G−1. The trials with the smaller command-following errors yield

identified feedforward controllers Gff that are better approximations of the inverse
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Figure 3.5: The subject’s control strategy is modeled by a feedback controller Gfb

and a feedforward controller Gff , which results in the closed-loop response ŷ(s) =
G̃yr(s)r̂(s) from the command r to the position y. Figures (a), (b), and (c) show
the Bode plots of the identified controllers Gff and Gfb, and the closed-loop transfer
function G̃yr for the first and last (i.e., 40th) trials of one subject. Figure (a) shows
that the identified Gff for the first trial does not approximate G−1, whereas the
identified Gff for the last trial does approximate G−1. Figure (b) shows that the
identified Gfb for the first trial has higher gain (i.e., magnitude) than the identified
Gfb for the last trial. Figure (c) shows that the closed-loop transfer function G̃yr is
approximately 1 (i.e., 0 decibels magnitude and 0 degrees phase) for the last trial,
which implies that y approximates r across the frequency range of r.
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Figure 3.6: Figure (a) shows ‖Gfb‖ and ‖Gff −G−1‖ for the subjects’ identified con-
trollers for each of the 40 trials. The × indicates the mean of the 10 subjects and
the vertical lines show one standard deviation. The difference between Gff and G−1

decreases over the 40 trials, whereas ‖Gfb‖ does not changes significantly over the
trials. Figure (b) compares ‖e‖ to how closely the identified Gff approximates G−1.
The trials with the smaller command-following errors yield identified feedforward con-
trollers that are better approximations of G−1. Figure (c) shows the Bode plot of the
average identified feedforward controller for all 10 subjects on the last trial. The
shaded region shows one standard deviation above and below the average identified
feedforward controller. The average feedforward controller approximates G−1.

dynamics G−1. Finally, Figure 3.6(c) shows the Bode plot of the average identified

feedforward controller for all 10 subjects on the last trial. The average identified

feedforward controller approximates G−1. Thus, the data suggests that by the last
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trial the subjects learned the inverse dynamics G−1 and used a model of those inverse

dynamics in feedforward. This observation supports the internal model hypothesis.

3.7 Conclusions

In this chapter, we conducted an HITL experiment, where 10 human subjects

learned to control an unknown dynamic systems over 40 trials, and the SSID al-

gorithm in Chapter 2 is used to model feedback and feedforward controllers used by

humans. Over 40 trials, the feedforward controllers used by humans tend to approx-

imate the dynamic inversion of the plant and no clear trend in feedback controller is

observed. This observation supports the IMH.

To model human control behavior in more complicated situations (e.g., with multi-

ple inputs and outputs), a more general SSID algorithm is needed. The next chapter

presents an SSID algorithm for multivariable linear time-invariant feedback and feed-

forward controllers.
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Chapter 4 Subsystem Identification for Multi-Input Multi-Output Sub-

systems

In this chapter, we present a frequency-domain subsystem identification technique

for identifying discrete-time multivariable feedback and feedforward subsystems that

are interconnected with a known subsystem. This subsystem identification algorithm

uses closed-loop input-output data, but no other system signals are assumed to be

measured. In particular, neither the feedback signal nor the outputs of the unknown

subsystems are assumed to be measured. We use a candidate-pool approach to iden-

tify the feedback and feedforward transfer functions, while guaranteeing asymptotic

stability of the identified closed-loop transfer function. The main analytic result shows

that if the data noise is sufficiently small and the candidate pool is sufficiently dense,

then the parameters of the identified feedback and feedforward transfer functions are

arbitrarily close to the true parameters. The methods and results of this chapter have

been submitted for publication in [110].

4.1 Introduction

Subsystem identification (SSID) is the process of building empirical models of un-

known dynamic subsystems, which are interconnected with known dynamic subsys-

tems. These connections can be series, parallel, or feedback. SSID relies on measured

data to identify the unknown subsystems. However, not all input and output signals

to the unknown subsystems are necessarily accessible, that is, available for measure-

ment.
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This chapter is concerned with closed-loop SSID of unknown feedback and feedfor-

ward subsystems interconnected with a known subsystem as shown in Figure 4.1. The

-r Unknown feedback and

feedforward subsystems

(To be identified)

-u
Known

subsystem

-y

v
-

Figure 4.1: The unknown feedback and feedforward subsystems are to be identified
using the measured data r and y. The internal signals u and v are inaccessible.

exogenous input r and closed-loop output y are measured, whereas internal signals u

and v are not assumed to be accessible.

Note that closed-loop SSID is distinct from the well-studied problem of system

identification in closed loop [62–65], specifically, the unknown subsystems have inputs

and outputs that are inaccessible.

SSID has applications in biology and physics as well as human-in-the-loop sys-

tems. For example, many biological systems are modeled by the interconnection of

subsystems [77], which may be unknown and have inaccessible inputs and outputs.

Similarly, physical systems are often modeled by a composition of subsystems, which

are based on either physical laws or empirical information. For example, in [78], a

large-scale physics-based model of the global ionosphere-thermosphere is improved

by using measured data to estimate thermal conductivity, which can be regarded as

an unknown feedback subsystem. In this application, the output of the unknown

subsystem is inaccessible.

SSID also has application to modeling human behavior. For example, there is

interest in modeling human-in-the-loop behavior for applications such as aircraft [67–

69, 111] and automobiles [70–72]. In addition, SSID methods can be used to model

human behavior in motor control experiments, which study human learning [73–76,

91,92].
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Closed-loop SSID of feedback and feedforward models is considered in [78, 88–90].

However, these approaches may identify feedback and feedforward models that result

in unstable closed-loop dynamics. To address closed-loop stability, [91, 92] presents

an SSID technique that guarantees asymptotic stability of the identified closed-loop

transfer function. The approach in [91,92] applies to single-input single-output (SISO)

subsystems and requires that the measured closed-loop output y is the same as the

feedback v.

The new contribution of this chapter is a closed-loop SSID method that: i) iden-

tifies multi-input multi-output (MIMO) feedback and feedforward subsystems; ii)

allows for a measured output y that is not necessarily the same as the feedback v;

and iii) guarantees asymptotic stability of the identified closed-loop transfer function.

This chapter adopts techniques from [91, 92] but goes beyond the previous work by

addressing MIMO subsystems and allowing for the measured output y to differ from

the feedback v. Furthermore, the discrete-time SSID approach in this chapter can im-

prove computational efficiency relative to the continuous-time approaches in [91,92].

In this chapter, the feedforward subsystem model is parameterized as a finite impulse

response (FIR) transfer function, which can improve computational efficiency as dis-

cussed in Section 4.7. To accomplish i)–iii), a candidate-pool approach is adopted

to the SSID problem. Our main analytic result shows that if the data noise is suffi-

ciently small and the candidate pool is sufficiently dense, then the parameters of the

identified feedback and feedforward transfer functions are arbitrarily close to the true

parameters.

4.2 Notation

Let F be either R or C. Then, x(i) denotes the ith component of x ∈ Fn, and A(i,j)

denotes the (i, j) entry of A ∈ Fm×n. Let ‖ ·‖ be a norm on Fm×n, and let ‖ ·‖2 be the

two-norm on Fn. Next, let A∗ denote the complex conjugate transpose of A ∈ Fm×n,
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and define ‖A‖F ,
√

trA∗A, which is the Frobenius norm of A ∈ Fm×n. Let AA

denote the adjugate of A ∈ Fm×n.

Let vecA be the vector in Fmn formed by stacking the columns of A ∈ Fm×n. Let

vec−1 be the inverse vec operator, that is, vec−1(vecA) = A. Let A⊗ B denote the

Kronecker product of A ∈ Fm×n and B ∈ Fk×l.

Define the open ball of radius ε > 0 centered at c ∈ Fm×n by Bε(c) , {x ∈

Fm×n : ‖x− c‖ < ε}. Let Z+ denote the set of positive integers.

Definition 4.1. Let ∆ ⊆ Fm×n be bounded and contain no isolated points. For all

j ∈ Z+, let ∆j ⊆ ∆ be a finite set. Then, {∆j}∞j=1 converges to ∆ if for each x ∈ ∆,

there exists a sequence {xj : xj ∈ ∆j}∞j=1 such that for all ε > 0, there exists L ∈ Z+

such that for all j > L, xj ∈ Bε(x).

Let R[z] denote the set of polynomials with coefficients in R, and let Rm×n[z]

denote the set of m × n polynomial matrices, that is, the set of matrix functions

P : C → Cm×n whose entries are elements in R[z]. The degree of the polynomial

p ∈ R[z] is denoted by deg p, and the degree of the polynomial matrix P ∈ Rm×n[z]

is denoted by degP , maxi=1,...,m;j=1,...,n degP(i,j).

4.3 Problem Formulation

LetGy : C→ Cn×m andGv : C→ Cl×m be a real rational transfer function matrices,

and consider the linear time-invariant system

y(z) = Gy(z)[u(z) + γu(z)] + γy(z), (4.1)

v(z) = Gv(z)[u(z) + γu(z)], (4.2)

where y(z) ∈ Cn, γy(z) ∈ Cn, u(z) ∈ Cm, γu(z) ∈ Cm, and v(z) ∈ Cl are the z-

transforms of the output, output noise, control, control noise, and feedback, respec-

tively. The control u is generated by feedback and feedforward as shown in Figure
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4.2. In particular, let Gff , Gfb : C→ Cm×l be real rational transfer function matrices,

Gfb
- k -

u ?

γu

k -

[
Gy

Gv

]
- k?
γy

-
y

v
6

- k -
e ?

γe

r
-

k-
γr

6

- Gff

?k

Figure 4.2: The input r and output y are measured, but all internal signals (e.g., u
and v) and the noises γr, γe, γu, and γy are unmeasured.

and consider the control

u(z) = Gff(z)[r(z) + γr(z)] +Gfb(z)[e(z) + γe(z)], (4.3)

where r(z) ∈ Cl is the exogenous input, γr(z) ∈ Cl is the feedforward noise, e(z) ,

r(z) − v(z) is the error, and γe(z) ∈ Cl is the error noise. We assume that Gff is

asymptotically stable, that is, the poles of Gff are contained in the open unit disk.

The closed-loop system obtained from (4.1)–(4.3) is

y(z) = G̃(z)r(z) + γ(z),

where

G̃ , Gy(Im +GfbGv)
−1(Gfb +Gff) (4.4)

is assumed to be asymptotically stable, and the noise is

γ , Gy(Im +GfbGv)
−1(Gffγr +Gfbγe −GfbGvγu) +Gyγu + γy.

LetN ∈ Z+ be the number of frequency response data, and define N , {1, 2, . . . , N}.
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For all k ∈ N, let θk ∈ [0, π], where θ1 < · · · < θN . Define the closed-loop frequency

response data

H(θk) , G̃(eθk) + Γ(eθk) ∈ Cn×l, (4.5)

where Γ: C → Cn×l is such that, for all i ∈ {1, 2, . . . , n} and all j ∈ {1, 2, . . . , l},

Γ(i,j) , γ(i)/r(j).

This chapter presents an SSID method to identify Gff and Gfb under the assumption

that Gy, Gv, and {H(θk)}Nk=1 are known. For each k ∈ N, H(θk) can be calculated

from y and r as H(i,j)(θk) = y(i)(e
θk)/r(j)(e

θk). Thus, {H(θk)}Nk=1 can be obtained

from the accessible signals r and y, and does not depend on the internal signals (e.g.,

u and v) or the noise signals γr, γe, γu, and γy, which are not assumed to be measured.

Assume that Gff is FIR. Thus, the feedforward transfer function can be expressed

as Gff(z) = z−nffNff(z), where Nff ∈ Rm×l[z] and nff , degNff . Since Gff is asymp-

totically stable, it follows that for sufficiently large order nff , Gff can approximate

an IIR transfer function to arbitrary accuracy evaluated along the unit circle. Thus,

the assumption that Gff is FIR does not significantly restrict the class of feedforward

behavior. The SSID approach in this chapter can also be used with an IIR feedfor-

ward model, but using an FIR feedforward model improves computational efficiency,

as discussed in Section 4.7.

Let Gy and Gv have the right-matrix-fraction descriptions Gy = NyD
−1 and Gv =

NvD
−1, and let Gfb have the left-matrix-fraction description Gfb = D−1

fb Nfb, where

Ny ∈ Rn×m[z], Nv ∈ Rl×m[z], Nfb ∈ Rm×l[z], and D,Dfb ∈ Rm×m[z]. Without loss of

generality, it is assumed that D and Dfb are monic. Thus, (4.4) can be expressed as

G̃(z) = Ny(z)D̃−1(z)[Nfb(z) + z−nffDfb(z)Nff(z)],

where D̃ , DfbD+NfbNv ∈ Rm×m[z]. Define d , degD, dfb , degDfb, ny , degNy,
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nv , degNv, and nfb , degNfb. We make the following assumptions:

(A3.1) d+ dfb > nv + nfb.

(A3.2) N > ny + (m− 1)(d+ dfb) + dfb + nff .

(A3.3) If λ ∈ C and det D̃(λ) = 0, then |λ| < 1.

Assumption (A3.1) states that GfbGvu is strictly proper. Assumption (A3.2) re-

quires that the number N of frequency response data points is sufficiently large.

Assumption (A3.3) implies that G̃ is asymptotically stable. Also assume that nff , dfb,

and nfb are known.

To formulate the SSID problem, define a , l(nfb + 1) + mdfb and b , m(nff + 1),

and consider the functions Nff : C×Rb×l → Cm×l, Nfb : C×Ra×m → Cm×l, Dfb : C×

Ra×m → Cm×m given by

Nff(z, β) , ([ znff · · · z 1 ]⊗ Im)β,

Nfb(z, φ) , φT

 Il ⊗ [ znfb · · · z 1 ]T

0mdfb×l

 ,
Dfb(z, φ) , zdfbIm + φT

 0l(nfb+1)×m

Im ⊗ [ zdfb−1 · · · z 1 ]T

 ,
where β ∈ Rb×l contains the unknown parameters of Nff , and φ ∈ Ra×m contains the

unknown parameters of Nfb and Dfb. Consider Gff : C × Rb×l → Cm×l and Gfb : C ×

Ra×m → Cm×l given by

Gff(z, β) , z−nffNff(z, β), Gfb(z, φ) , D−1
fb (z, φ)Nfb(z, φ),

which, for each β ∈ Rb×l and φ ∈ Ra×m, are real rational transfer function matrices.

Let β∗ ∈ Rb×l and φ∗ ∈ Ra×m be such that, Nff(z) ≡ Nff(z, β∗), Nfb(z) ≡ Nfb(z, φ∗),

and Dfb(z) ≡ Dfb(z, φ∗). Thus, Gff(z, β∗) ≡ Gff(z) and Gfb(z, φ∗) ≡ Gfb(z). Consider
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G̃ : C× Rb×l × Ra×m → Cn×l given by

G̃(z, β, φ) ,Ny(z)D̃−1(z, φ)[Nfb(z, φ) + z−nffDfb(z, φ)Nff(z, β)], (4.6)

where

D̃(z, φ) , Dfb(z, φ)D(z) + Nfb(z, φ)Nv(z).

Note that G̃(z, β, φ) is the closed-loop transfer function obtained using β and φ. Thus,

G̃(z, β∗, φ∗) = G̃(z).

Our objective is to determine β and φ such that Gff and Gfb approximate Gff and

Gfb, respectively. To achieve this objective, we seek to minimize

J(β, φ) =
N∑
k=1

∥∥∥G̃(eθk , β, φ)−H(θk)
∥∥∥2

F
, (4.7)

subject to the constraint that D̃(z, φ) is asymptotically stable, that is,

φ ∈ S , {φ ∈ Ra×m : if λ ∈ C and det D̃(λ, φ) = 0, then |λ| < 1}.

The cost (4.7) is a measure of the difference between the data {H(θk)}Nk=1 and the

closed-loop transfer function obtained from the estimates Gff and Gfb. The cost (4.7)

and constraint φ ∈ S are nonlinear and nonconvex in (β, φ). If Γ(eθk) ≡ 0, then

J(β∗, φ∗) = 0.
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4.4 Subsystem Identification Algorithm

Now, we develop an SSID algorithm to estimate Gff and Gfb. For each k ∈ N,

define σk , eθk , and define

Ak(φ) , σ−nff
k Ny(σk)D̃

−1(σk, φ)Dfb(σk, φ)ν(σk), (4.8)

Bk(φ) , Ny(σk)D̃
−1(σk, φ)Nfb(σk, φ)−H(θk), (4.9)

where ν(z) , [ znff znff−1 · · · z 1 ]⊗ Im. It follows from (4.6)–(4.9) that

J(β, φ) =
N∑
k=1

‖Ak(φ)β + Bk(φ)‖2
F

=
N∑
k=1

‖vecAk(φ)β + vecBk(φ)‖2
2

=
N∑
k=1

‖[Il ⊗Ak(φ)]vecβ + vecBk(φ)‖2
2,

which can be expressed as

J(β, φ)=[vecβ]TΩ2(φ)vecβ+ΩT
1 (φ)vecβ+Ω0(φ), (4.10)

where

Ω0(φ) ,
N∑
k=1

‖Bk(φ)‖2
F ∈ R, (4.11)

Ω1(φ) , 2Re
N∑
k=1

vecA∗k(φ)Bk(φ) ∈ Rlb, (4.12)

Ω2(φ) , Il ⊗ Re
N∑
k=1

A∗k(φ)Ak(φ) ∈ Rlb×lb. (4.13)

For the remaining of this chapter, it is assumed that for all φ ∈ S, Ω2(φ) is positive
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definite. The following result provides a sufficient (but not necessary) condition such

that Ω2(φ) is positive definite.

Proposition 4.1. Consider Ω2 given by (4.13), where (A3.1) and (A3.2) are satis-

fied. Assume that maxz∈C rankNy(z) = m ≤ n. Then, for all φ ∈ S, Ω2(φ) is positive

definite.

Proof. Let φ ∈ S. Then, for all k ∈ N, D̃(σk, φ) is nonsingular, and thus, it follows

from (4.8) and (4.13) that Ω2(φ) is well defined and positive semidefinite. Assume for

contradiction that there exists x ∈ Rb\{0} such that xT[Re
∑N

k=1 A
∗
k(φ)Ak(φ)]x = 0.

Let k ∈ N, and it follows that Ak(φ)x = 0. Define

Ξ(z) , Ny(z)D̃A(z, φ)Dfb(z, φ)ν(z)x ∈ Rn[z].

Thus, (4.8) implies that 0 = Ξ(σk)/[σ
nff
k det D̃(σk, φ)], which implies that Ξ(σk) = 0.

Since deg D̃ = d+ dfb, it follows that deg D̃A ≤ (m− 1)(d+ dfb). Since, in addition,

deg ν(z)x ≤ nff , it follows from (A3.2) that deg Ξ ≤ ny+(m−1)(d+dfb)+dfb+nff < N .

Since Ξ(σ1) = · · · = Ξ(σN) = 0 and deg Ξ < N , it follows that Ξ = 0.

Define T , {z ∈ C : min{rankNy(z), rankD̃A(z, φ), rankDfb(z, φ)} < m}. Since,

for all z ∈ C\T, rankNy(z) = m ≤ n, it follows that Ny has full column rank,

which implies that for all z ∈ C\T, Ny(z) is left invertible. Thus, for all z ∈ C\T,

D̃A(z, φ)Dfb(z, φ)ν(z)x = 0. Since for all z ∈ C\T, D̃A(z, φ) and Dfb(z, φ) are non-

singular, it follows that for all z ∈ C\T, ν(z)x = 0. Finally, the structure of ν implies

that x = 0, which is a contradiction. Thus, Re
∑N

k=1 A
∗
k(φ)Ak(φ) is positive definite.

Therefore, it follows from (4.13) that Ω2(φ) is positive definite.

The next result shows that for each φ ∈ S, J(β, φ) has a unique global minimizer.

See Proposition 2.2 for the proof of this result.

Proposition 4.2. Consider J given by (4.10), where (A3.1) and (A3.2) are sat-

isfied. Let φ ∈ S and define βmin , −1
2
vec−1[Ω−1

2 (φ)Ω1(φ)] ∈ Rb×l. Let β ∈
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Rb×l\{βmin}. Then, J (βmin, φ) < J(β, φ).

Let Φ ⊆ S be a set with M elements. Call Φ the candidate pool. Now, a candidate

sequence is created using the M elements in Φ. For i, j ∈ M , {1, 2, . . . ,M}, let

φi be such that φi ∈ Φ and if i 6= j, then φi 6= φj. Now, for all i ∈ M, define the

quadratic cost function

Ji(β) , J(β, φ)

∣∣∣∣
φ=φi

= [vecβ]TΩ2(φi)vecβ + ΩT
1 (φi)vecβ + Ω0(φi).

Since φ1, . . . , φM ∈ Φ ⊆ S, it follows that Ω2(φ1), . . . ,Ω2(φM) are positive definite.

Then, for each i ∈ M, define βi , −1
2
vec−1[Ω−1

2 (φi)Ω1(φi)] ∈ Rb×l, and it follows

from Proposition 4.2 that βi is the unique global minimizer of Ji. Next, let ` ∈M be

the smallest integer such that

J`(β`) = min
i∈M

Ji(βi).

Thus, the identified parameters are β+ , β` and φ+ , φ`, and the identified transfer

functions are

G+
ff (z) , Gff(z, β+), G+

fb(z) , Gfb(z, φ+).

Note that arg mini∈M Ji(βi) is not necessarily unique. In this case, ` ∈ M is the

smallest integer such that J`(β`) = mini∈M Ji(βi). In practice, arg mini∈M Ji(βi) is

usually unique. Now, this SSID method is summerized.

Algorithm 4.1. Consider the closed-loop transfer function (4.4), where Gy, Gv,

and {H(θk)}Nk=1 are known, and (A3.1)–(A3.3) are satisfied. Then, the subsystem

identification algorithm is as follows:

Step 1. Generate the candidate pool Φ ⊆ S and candidate sequence {φi}Mi=1.
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Step 2. For each i ∈ M, find βi = −1
2
vec−1[Ω−1

2 (φi)Ω1(φi)] ∈ Rb×l, which is the

unique global minimizer of Ji.

Step 3. Find the smallest integer ` ∈M such that J`(β`) = mini∈M Ji(βi).

Step 4. The identification results are β+ = β`, φ
+ = φ`, G

+
ff (z) = Gff(z, β+), and

G+
fb(z) = Gfb(z, φ+).

4.5 Analysis of Subsystem Identification Algorithm

Assume Nfb and Dfb are left coprime. We impose the following assumption, which

is stronger than (A3.2):

(A3.4) N > ny + (2m− 1)(d+ dfb) + nff + max{dfb, nfb}.

Assumption (A3.4) is used in the next result to provide sufficient conditions on

β ∈ Rb×l and φ ∈ Ra×m such that G̃(z, β, φ) ≡ G̃(z).

Proposition 4.3. Let β ∈ Rb×l and φ ∈ Ra×m, and assume (A3.4) is satisfied.

Then,
∑N

k=1 ‖G̃(σk, β, φ)− G̃(σk)‖F = 0 if and only if G̃(z, β, φ) ≡ G̃(z).

Proof. Let β ∈ Rb×l and φ ∈ Rm×a, and define O : C→ Cn×l by O(z) , G̃(z, β, φ)−

G̃(z). Next, define

P(z) , Ny(z)D̃A(z, φ)[znffNfb(z, φ) + Dfb(z, φ)Nff(z, β)] ∈ Rn×l[z],

Q(z) , Ny(z)D̃A(z, φ∗)× [znffNfb(z, φ∗) + Dfb(z, φ∗)Nff(z, β∗)] ∈ Rn×l[z],

H(z) , P(z)diag D̃(z, φ∗)− Q(z)diag D̃(z, φ) ∈ Rn×l[z].

Note that O(z) = H(z)/[znff det D̃(z, φ) det D̃(z, φ∗)]. Since
∑N

k=1 ‖O(σk)‖F = 0, it

follows that for all k ∈ N, O(σk) = 0, which implies that H(σk) = 0. Since

deg det D̃(z, φ) = deg det D̃(z, φ∗) = m(d+ dfb),
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degP, degQ ≤ nff + ny + (m− 1)(d+ dfb) + max{dfb, nfb},

it follows that degH ≤ ny + (2m − 1)(d + dfb) + nff + max{dfb, nfb}. Since for all

k ∈ N, H(σk) = 0, and (A3.4) implies that degH < N , it follows that H = 0, which

implies that O = 0. Thus, G̃(z, β, φ) ≡ G̃(z).

The conditions in Proposition 4.3 are not sufficient to conclude that β = β∗ and

φ = φ∗. The following example demonstrates this scenario.

Example 4.1. Let

Gy(z) = Gv(z) =
1

z + 0.5
, Gff(z) =

0.9z + 0.6

z
, Gfb(z) = 0.1,

and note that β∗ = [ 0.9 0.6 ]T and φ∗ = 0.1. The closed-loop transfer function

(4.4) is G̃ = 1. Let β = [ 0.8 0.7 ]T 6= β∗ and φ = 0.2 6= φ∗, and it follows that

G̃(z, β, φ) ≡ G̃(z). 4

In Example 4.1, the SSID problem is not well posed, because (β∗, φ∗) cannot be

uniquely determined from the noiseless frequency response data. See [62, Chapter

13] for more details in the case with feedback only. Now, an additional assumption

is imposed to ensure that G̃(z, β, φ) ≡ G̃(z) if and only if β = β∗ and φ = φ∗.

Let Ψ ⊆ Ra×m be a compact set with no isolated points such that φ∗ ∈ Ψ. In

practice, Ψ is used to generate the candidate pool. Assume Ψ is known, and

(A3.5) If β ∈ Rb×l, φ ∈ Ψ ∩ S, and G̃(z, β, φ) ≡ G̃(z), then β = β∗ and φ = φ∗.

The following notation is needed in the proofs of Theorems 4.1 and 4.2. Define

Ω̂1 : S× Cn×lN → Rlb by

Ω̂1(φ, η) , Ω1(φ) + 2Re
N∑
k=1

vecA∗k(φ)[H(θk)− G̃(σk)− ηk],
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where η1, . . . , ηN ∈ Cn×l and η , [ η1 · · · ηN ] ∈ Cn×lN . Define the noise matrix

η∗ , [ Γ(σ1) · · · Γ(σN) ] ∈ Cn×lN . Note that Ω̂1(φ, η∗) = Ω1(φ). Thus, Ω̂1 is a

function not only of φ but also the noise η. Define Ĵ : Rb×l × S × Cn×lN → [0,∞),

θ̂ : S× Cn×lN → Rb×l, and Q̂ : S× Cn×lN → [0,∞) by

Ĵ(β, φ, η) ,
N∑
k=1

∥∥G̃(σk, β, φ)− G̃(σk)− ηk
∥∥2

F
∈ R, (4.14)

θ̂(φ, η) , −1

2
vec−1

[
Ω−1

2 (φ)Ω̂1(φ, η)
]
∈ Rb×l, (4.15)

Q̂(φ, η) , Ĵ(θ̂(φ, η), φ, η) ∈ R. (4.16)

Note that Ĵ(β, φ, η∗) = J(β, φ).

It follows from (4.6), (4.8), (4.9), and (4.14)–(4.16) that

θ̂(φ∗, 0) = −1

2
vec−1

[
Ω−1

2 (φ∗)Ω̂1(φ∗, 0)
]

= β∗, (4.17)

Q̂(φ∗, 0) = Ĵ(β∗, φ∗, 0) = 0. (4.18)

The following result addresses the case where φ∗ is in the candidate pool Φ.

Theorem 4.1. Assume (A3.1)–(A3.5) are satisfied. Let Φ ⊆ (Ψ ∩ S), and assume

φ∗ ∈ Φ. Let β+ and φ+ denote the identified parameters obtained from Algorithm

4.1 with the candidate pool Φ. Then, the following statements hold:

(i) There exists δ0 > 0 such that if ‖η∗‖ < δ0, then φ+ = φ∗. Moreover, for all

ε > 0, there exists δ ∈ (0, δ0) such that if ‖η∗‖ < δ, then β+ ∈ Bε(β∗).

(ii) If η∗ = 0, then β+ = β∗ and φ+ = φ∗.

Proof. To prove (i), let φ ∈ Φ\{φ∗}, and assume for contradiction that Q̂(φ, 0) = 0.

It follows from (4.14) and (4.16) that

0 = Q̂(φ, 0) = Ĵ(θ̂(φ, 0), φ, 0) =
N∑
k=1

‖G̃(σk, θ̂(φ, 0), φ)− G̃(σk)‖2
F.
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Thus, Proposition 4.3 implies that G̃(z, θ̂(φ, 0), φ) ≡ G̃(z), and it follows from (A3.5)

that φ = φ∗, which is a contradiction. Therefore, Q̂(φ, 0) > 0. Define U ,

minx∈Φ\{φ∗} Q̂(x, 0) > 0. It can be shown that Q̂ is continuous on S × Cn×lN . Thus,

for each j ∈M, Q̂(φj, ·) is continuous on Cn×lN , which implies that, for each j ∈M,

there exists δj > 0 such that for all η ∈ Bδj(0),

|Q̂(φj, η)− Q̂(φj, 0)| < U/2.

Define δ0 , minj∈M δj, and assume that ‖η∗‖ < δ0. Since φ∗ ∈ Φ, it follows that

there exists i ∈ M such that φi = φ∗. Since Q̂(φi, 0) = Q̂(φ∗, 0) = 0, it follows

that Q̂(φi, η∗) = |Q̂(φi, η∗) − Q̂(φi, 0)| < U/2. Let j ∈ M\{i}, and it follows that

−U/2 < Q̂(φj, η∗)−Q̂(φj, 0), which implies that Q̂(φj, η∗) > Q̂(φj, 0)−U/2. Since, in

addition, Q̂(φj, 0) ≥ U , it follows that Q̂(φj, η∗) > U/2. Thus, Q̂(φi, η∗) < Q̂(φj, η∗),

which implies that Ji(βi) < Jj(βj) using (4.7) and (4.14)–(4.16). Therefore, it follows

from Algorithm 4.1 that φ+ = φi = φ∗ and

β+ = βi = θ̂(φ∗, η∗).

Let ε > 0. It can be shown that θ̂ is continuous on S × Cn×lN . Thus, θ̂(φ∗, ·) is

continuous on Cn×lN . Therefore, there exists δ ∈ (0, δ0) such that for all η ∈ Bδ(0),

θ̂(φ∗, η) ∈ Bε(θ̂(φ∗, 0)). Finally, assume ‖η∗‖ < δ. Since β+ = θ̂(φ∗, η∗), it follows

from (4.17) that β+ ∈ Bε(β∗), which confirms (i).

To prove (ii), assume η∗ = 0. Thus, ‖η∗‖ = 0 < δ0 and part (i) implies that

φ+ = φ∗. Since η∗ = 0, it follows from (4.17) that β+ = θ̂(φ∗, 0) = β∗.

Theorem 4.1 (i) provides sufficient conditions such that φ+ = φ∗. This result

also shows that if the norm of the noise η∗ is sufficiently small, then the identified

parameter β+ is arbitrarily close to β∗. In fact, if the frequency response data is

noiseless and φ∗ ∈ Φ, then the identified parameters are equal to the true parameters.
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Now, the analysis is extended to address the case where φ∗ is not necessarily in the

candidate pool Φ. Let ρ ∈ (0, 1) be such that if λ ∈ C and det D̃(λ, φ∗) = 0, then

|λ| < ρ, and define

Sρ , {φ ∈ Ra×m : if λ ∈ C and det D̃(λ, φ) = 0, then |λ| < ρ}.

In practice, Sρ is used to generate the candidate pool, and ρ can be selected sufficiently

closed to 1 to ensure that φ∗ ∈ Sρ.

In the following result, consider Algorithm 4.1 with a sequence of candidate pools

that converges to Ψ ∩ Sρ, which is bounded and contains no isolated points (see

Proposition 2.7). This result demonstrates that a sufficiently dense candidate pool

and sufficiently small noise ‖η∗‖ yield identified parameters β+ and φ+ that are arbi-

trarily close to β∗ and φ∗.

Theorem 4.2. Assume (A3.1)–(A3.5) are satisfied. For all j ∈ Z+, let Λj ⊆

(Ψ ∩ Sρ) be a finite set such that {Λj}∞j=1 converges to Ψ ∩ Sρ. For each j ∈ Z+, let

β+
j and φ+

j denote the identified parameters obtained from Algorithm 4.1 with the

candidate pool Φ = Λj. Then, for all ε > 0, there exist δ > 0 and L ∈ Z+ such that

if ‖η∗‖ < δ and j > L, then β+
j ∈ Bε(β∗) and φ+

j ∈ Bε(φ∗).

Proof. Let ε > 0. It can be shown that θ̂ is continuous on S × Cn×lN . Since, in

addition, φ∗ ∈ S, it follows that there exists δ0 > 0 such that for all φ ∈ Bδ0(φ∗) and

all η ∈ Bδ0(0),

θ̂(φ, η) ∈ Bε(θ̂(φ∗, 0)). (4.19)

Define ε1 , min{ε, δ0} and Λc , Ψ ∩ Sρ. Using the process in Proposition 2.8, it can

be shown that Λc ⊆ S is compact. Since Λc is compact, and {x ∈ Ra×m : ‖x−φ∗‖ ≥ ε1}
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is closed, it follows that

Λε1 , Λc\Bε1(φ∗) = Λc ∩ {x ∈ Ra×m : ‖x− φ∗‖ ≥ ε1}

is compact.

Let c > δ0, define C , {x ∈ Cn×lN : ‖x‖ ≤ c}, and note that Q̂ is continuous

on Λε1 × C. Next, define Θ: C → [0,∞) by Θ(η) , minφ∈Λε1
Q̂(φ, η), which exists

because Λε1 is compact and Q̂ is continuous on Λε1 × C [93, Theorem 7.7].

Assume for contradiction that Θ(0) = 0. Thus, there exists x ∈ Λε1 such that

Q̂(x, 0) = 0, and it follows from (4.14)–(4.16) that

0 = Ĵ(θ̂(x, 0), x, 0) =
N∑
k=1

‖G̃(σk, θ̂(x, 0), x)− G̃(σk)‖2
F.

Thus, Proposition 4.3 implies that G̃(z, θ̂(φ, 0), φ) ≡ G̃(z), and it follows from (A3.5)

that x = φ∗ 6∈ Λε1 , which is a contradiction. Thus, Θ(0) > 0. Since Q̂ is continuous

on Λε1 ×C, and Λε1 and C are compact, it follows from [94, Theorem 9.14] that Θ is

continuous on C. Furthermore, since Q̂ is continuous on S × Cn×lN , it follows that

Q̂(φ∗, ·) is continuous on C. Thus, W : C → R defined by W (η) , Θ(η)− Q̂(φ∗, η) is

continuous on C. Note that (4.18) implies that W (0) = Θ(0)− Q̂(φ∗, 0) = Θ(0) > 0.

Therefore, it follows that there exists δ1 ∈ (0, c) such that for all η ∈ Bδ1(0), W (η) > 0.

Define δ , min{δ0, δ1} > 0 and assume ‖η∗‖ < δ. Then, W (η∗) > 0.

Since W (η∗) > 0 and Q̂(·, η∗) is continuous on Λc, it follows from the continuity

of Q̂(·, η∗) that there exists δ2 > 0 such that for all φ ∈ (Λc ∩ Bδ2(φ∗)), |Q̂(φ, η∗) −

Q̂(φ∗, η∗)| < W (η∗). Thus, for all φ ∈ (Λc∩Bδ2(φ∗)), Q̂(φ, η∗)−Q̂(φ∗, η∗) ≤ |Q̂(φ, η∗)−

Q̂(φ∗, η∗)| < W (η∗) = Θ(η∗)− Q̂(φ∗, η∗), which implies that

Q̂(φ, η∗) < Θ(η∗). (4.20)
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Since {Λj}∞j=1 converges to (Ψ ∩ Sρ) ⊆ Λc, it follows from Definition 4.1 that there

exists a sequence {φj : φj ∈ Λj}∞j=1 and L ∈ Z+ such that for all j > L, φj ∈

Bmin{ε1,δ2}(φ∗). Thus, it follows from (4.20) that for all j > L, Q̂(φj, η∗) < Θ(η∗).

Let j ∈ Z+ be such that j > L. It follows from Algorithm 4.1, (4.14)–(4.16),

and (4.20) that Q̂(φ+
j , η∗) ≤ Q̂(φj, η∗) < Θ(η∗). Assume for contradiction that

φ+
j 6∈ Bε1(φ∗), which implies that φ+

j ∈ Λε1 . Thus, Θ(η∗) = minφ∈Λε1
Q̂(φ, η∗) ≤

Q̂(φ+
j , η∗) < Θ(η∗), which is a contradiction. Therefore, φ+

j ∈ Bε1(φ∗) ⊆ Bε(φ∗).

Since φ+
j ∈ Bε1(φ∗) ⊆ Bδ0(φ∗), it follows from (4.17) and (4.19) that β+

j = θ̂(φ+
j , η∗) ∈

Bε(θ̂(φ∗, 0)) = Bε(β∗).

4.6 Numerical Examples

We present numerical examples, where m = l = n = 2. For all examples, let

D(z) = diag(z + 0.1, z − 0.2), Ny(z) = Nv(z) = diag(1,−1), Dfb(z) = I2, and

Nfb(z) =

 0.3 1

0.2 0.4

 , Nff(z) =

 z − 0.3 z + 0.4

0.5z 1

 .
Note that

β∗ =

 1 0.5 −0.3 0

1 0 0.4 1


T

, φ∗ =

 0.3 1

0.2 0.4


T

.

Let N = 20, and for k ∈ N, let θk = 0.02πk. This example satisfies (A3.1)–(A3.4),

and for any compact set Ψ ⊆ Ra×m containing φ∗, (A3.5) is satisfied.

Example 4.2. Consider the case with φ∗ ∈ Φ and noiseless data. Define the

candidate pool

Λ0 , {φ ∈ R2×2 : for i, j ∈ {1, 2}, φ(i,j) ∈ {−0.5 + 0.1k}20
k=0} ∩ S,
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and note that φ∗ ∈ Λ0. Algorithm 4.1 is used with the candidate pool Φ = Λ0 to

obtain β+ = β∗ and φ+ = φ∗, which agrees with (ii) of Theorem 4.1. 4

Example 4.3. Consider the case with φ∗ ∈ Φ and noisy data. For i = 1, . . . , 15,

let Γi(z) ∈ C2×2 be the noise, and define the noise-to-signal ratio

Ri ,
1

N

N∑
k=1

‖Γi(σk)‖F

‖G̃(σk)‖F

.

For i = 1, . . . , 15, the frequency response data is Hi(θk) , G̃(σk) + Γi(σk). In this

example, Γ1, . . . ,Γ15 are randomly generated such that R1 > R2 > · · · > R15. For

example, R1 = 2.39, R2 = 1.29, R4 = 0.28, R7 = 3.76× 10−2, and R15 = 1.42× 10−4.

For i = 1, . . . , 15, Algorithm 4.1 is used with the candidate pool Φ = Λ0 and data

{Hi(θk)}Nk=1 to obtain the identified parameters β+
i and φ+

i . Figure 4.3 shows that

for i ≥ 7, φ+
i = φ∗, and for sufficiently large i, ‖β+

i − β∗‖F is arbitrarily small, which

agrees with (i) of Theorem 4.1. 4

Example 4.4. Consider the case with φ∗ 6∈ Φ and noisy data. For j = 1, . . . , 18,

define the candidate pool

Λj , {φ ∈ R2×2 : for i, h ∈ {1, 2}, φ(i,h) ∈ {−0.5 + 2k/(1 + j)}1+j
k=0} ∩ Sρ,

where ρ = 0.99, and note that for j = 1, . . . , 18, φ∗ 6∈ Λj. For i = 2, 4, 15, and

j = 1, . . . , 18, Algorithm 4.1 is used with the candidate pool Φ = Λj and data

{Hi(θk)}Nk=1 to obtain the identified parameters β+
j,i and φ+

j,i. Figure 4.4 shows that

for sufficient large j and i, ‖β+
j,i − β∗‖F and ‖φ+

j,i − φ∗‖F are arbitrarily small, which

agrees with Theorem 4.2. 4
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Figure 4.3: Noisy data and φ∗ ∈ Φ. For i = 1, . . . , 15, Algorithm 4.1 is used with the
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Figure 4.4: Noisy data and φ∗ 6∈ Φ. For i = 2, 4, 15, and j = 1, . . . , 18, Algorithm 4.1
is used with the candidate pool Λj and data {Hi(θk)}Nk=1 to obtain β+

j,i and φ+
j,i. For

sufficient large j and i, ‖β+
j,i − β∗‖F and ‖φ+

j,i − φ∗‖F are arbitrarily small.
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4.7 Computational Complexity

The computational complexity of Algorithm 4.1 is dominated by Step 2, where a

quadratic minimization problem is solved by M times. The modified Gram Schmidt

method [112, Chapter 14] is used to perform this quadratic minimization. It follows

from [112, Chapter 14] that the computation complexity of Algorithm 4.1 is C ,

M [4Nnm2l3(nff + 1)2 + 2Nnml2(nff + 1)] flops.

Next, we compare the computational complexity of Algorithm 4.1 with that of

Algorithm 2.1. The Algorithm 2.1 also uses a candidate pool approach; however,

Gff is parameterized as an IIR transfer function, and the method only applies to

subsystems that are SISO (i.e., v = y and l = m = n = 1). For SISO subsystems, the

computational complexity of Algorithm 4.1 is C = M [4N(nff +1)2+2N(nff +1)] flops.

Next, consider Algorithm 2.1, where N̂ denotes the number of frequency response data

points, Mfb denotes the number of elements in the feedback candidate pool, and Mff

denotes the number of elements in the feedforward candidate pool. Let n̂ff denote the

degree of numerator of Gff . It follows from [112, Chapter 14] that the computation

complexity of Algorithm 2.1 is Ĉ = MffMfb[4N̂(n̂ff + 1)2 + 2N̂(n̂ff + 1)] flops.

To compare the computational complexities of these algorithms, it is assumed that

these algorithms use the same frequency response data and feedback candidate pool,

which implies that N = N̂ and M = Mfb. Thus, the computational complexity ratio

is

R ,
C

Ĉ
=

2(nff + 1)2 + (nff + 1)

Mff [2(n̂ff + 1)2 + (n̂ff + 1)]
.

In general, n̂ff ≤ nff and Mff � 1, which result R < 1.

Example 4.5. Let

Gy(z) = Gv(z) =
0.4

z − 0.9
, Gff(z) =

0.2(z − 0.77)

(z − 0.83)(z − 0.89)
, Gfb(z) =

0.32

z − 0.81
.
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Let N = 31, and for k ∈ N, let θk = 0.008π(k − 1). Consider the candidate pool

Λ0 , {φ ∈ R2 : φ(1) ∈ {−2 + 0.05k}40
k=0 , φ(2) ∈ {−2 + 0.05k}80

k=0} ∩ S,

which contains 297 elements.

First, we use Algorithm 4.1 with the candidate pool Λ0. For nff = 1, 2, . . . , 17, we

identify feedforward and feedback controllers, where Gff is FIR even though Gff is IIR.

Next, consider Algorithm 2.1, where Gff is parameterized as IIR with n̂ff = 1.

Consider feedforward candidate pool

F = {[ x1 + x2 x1x2 ]T ∈ R2 : x1, x2 ∈ {−0.05k}19
k=0},

which contains Mff = 210 elements. We use Algorithm 2.1 with the candidate pool

F × Λ0 to identify feedback and feedforward controllers.

Figure 4.5 shows the identification errors

Efb ,
∫ θN

θ1

∣∣G+
fb(eθ)−Gfb(eθ)

∣∣ dθ, Eff ,
∫ θN

θ1

∣∣G+
ff (eθ)−Gff(eθ)

∣∣ dθ
for each algorithm. In this example, for nff = 14, . . . , 17, Algorithm 4.1 yields errors

Efb and Eff smaller than those obtained from Algorithm 2.1. Figure 4.5 also shows

that for nff = 1, 2, . . . , 17, R < 0.32. 4

4.8 Conclusions

In this chapter, we presented a discrete-time SSID algorithm for MIMO systems

with feedback and feedforward architecture. This discrete-time SSID method ensures

asymptotic stability of the identified closed-loop transfer function. The analytic re-

sults are in Theorems 4.1–4.2, which describe the properties of the discrete-time SSID

algorithm. In particular, Theorem 4.2 shows that the coefficients of the identified feed-
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Figure 4.5: Computation complexity. For nff = 14, . . . , 17, Algorithm 4.1 yields errors
Efb and Eff smaller than those obtained from Algorithm 2.1. For nff = 1, 2, . . . , 17,
R < 0.32.

back and feedforward transfer functions are arbitrarily close to the true coefficients if

the candidate pool is sufficiently dense and the data noise is sufficiently small. Also,

the computational complexity of the SSID algorithm is discussed.

In the next chapter, the SSID algorithm is used to model human control behavior

when human subjects learn to control an unknown nonminimum-phase system, which

is interesting because the dynamic inversion of nonminimum-phase system is unstable.
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Chapter 5 The Impact of System Zeros on Human Learning

In this chapter, we present results from a human-in-the-loop (HITL) experiment

in which human subjects learn to control unknown dynamic systems over 40 trials.

We examine the impact of system zeros on human learning by comparing results for

humans interacting with 3 different systems, which have the same poles but different

zeros. For each trial, the subsystem identification (SSID) algorithm in Chapter 4 is

used to model each subject’s feedforward and feedback control behavior. By com-

paring the experimental results and identified control strategies used by humans, we

examine the impact of system zeros. Preliminary results related to this chapter have

been published in [113].

5.1 Introduction

Humans learn to control a wide range of complex dynamic systems, including bi-

cycles, kites, and hula hoops. The objective of research on human motor control is

to determine how the central nervous system directs motion. The internal model

hypothesis (IMH) proposes that the brain constructs models of the body’s interac-

tions with the physical world and that those models are used for control [6, 7, 97].

Suggested uses of internal models include prediction, state estimation, inverse model,

and forward model [10,98–104].

One approach to explore the IMH is to compare the results of human control ex-

periments with mathematical models of proposed human control architectures [8,38–

50, 52, 105]. However, vastly different control strategies can yield similar dynamic
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behavior. Thus, a model that reproduces qualitative features of an experiment does

not necessarily provide an accurate representation of the human’s control strategy.

In contrast to the approaches in [8, 38–50, 52, 105], we use SSID to obtain feedfor-

ward and feedback controllers that are the best fit to data obtained from a human

control experiment. Other studies that use system identification approaches to model

human responses include [74, 75, 85, 86, 106–108]. Specifically, [85] identifies models

of a human’s precision grip force and [86] identifies models of a human’s oculomo-

tor system. However, the HITL systems investigated in [85,86] are modeled without

feedback. In [106–108], identification methods are used to model the behavior of

human pilots; however, these models include error feedback only and thus, do not

incorporate feedforward control. In [74,75], feedforward and feedback controllers are

estimated for humans performing ramp-tracking tasks. However, these feedforward

and feedback models rely on an assumed control strategy, specifically, the feedforward

models are assumed to include the inverse system dynamics.

In contrast to [74,75,85,86,106–108], we use an SSID method to model a human’s

response with both feedforward and feedback control without assuming a priori a

specific feedforward or feedback control strategy.

In Chapter 3, we presented results from an HITL experiment where human sub-

jects learn to control a linear time-invariant (LTI) dynamic system, which is min-

imum phase, that is, has asymptotically stable inverse dynamics. The results of

Chapter 3 suggest that, for a minimum-phase system, humans tend to learn to ap-

proximate the inverse dynamics in feedforward. In this case, the inverse dynamics

are asymptotically stable and can thus be used in feedforward. However, not all LTI

systems have asymptotically stable inverse dynamics. An LTI system with unstable

inverse dynamics is referred to as nonminimum phase. Since the inverse dynamics of

a nonminimum-phase system are unstable, we ask the questions: Can humans learn

to control a nonminimum-phase system? What control strategies do humans use with
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nonminimum-phase systems? Are nonminimum-phase systems harder to control than

minimum-phase systems, and if so why?

5.2 Experimental Methods

Subjects participating in this experiment use a single-degree-of-freedom joystick to

affect the motion of an object displayed on a computer screen as shown in Figure 5.1.

The controlled object’s position y and the joystick position u are functions of time t
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−2

0

2

r

Human Subject

r

y

u

y
u

r

Feedback to Subject

Dynamic System
Simulation of

S
im

u
la

ti
on

Figure 5.1: Subjects use a joystick to affect the motion of an object on a computer
screen. The object’s position y represents the output of a dynamic system and the
joystick position u represents the input to the dynamic system. A reference object is
also displayed on the screen, and its position r is an 60s chirp signal.

and are related to each other by a dynamic system. A reference object, whose posi-

tion r is independent of the joystick position u, also moves on the computer screen.

The subject’s objective is to manipulate the joystick in a manner that makes the con-

trolled object and the reference object have the same position at each instant of time.

Specifically, the objective is to generate a control u that minimizes the magnitude

of the command-following error e = r − y. Prior to performing the experiment, a

subject has no knowledge of the reference object’s motion r or the dynamic system

relating u and y.

Thirty-three people voluntarily participated in this study. At the time of the exper-
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iment, the subjects had no known neurological or motor control disorders and were

18–35 years of age. Each subject performed 40 trials of the experiment in a period

of 7 days. A trial is an 60-second time period during which a subject operates the

joystick. Each subject’s trials were divided into 4 sessions, and each session consisted

of 10 trials, which were completed within a period of 20 minutes. No subject partic-

ipated in more than one session in a 12-hour period. For each session, a subject is

placed in an isolated area free from distraction and sits in a chair facing a computer

screen. A subject’s dominant hand is used to manipulate a single-degree-of-freedom

joystick.

This experiment satisfies the U.S. Department of Health and Human Services Code

of Federal Regulation for human subject research (45 CFR 46) and was approved by

the University of Kentucky Institutional Review Board (IRB number 14-0526-P4S).

The reference object’s position r is an 60-second chirp signal with frequency content

between 0 and 0.5 Hz. Specifically, for all t ∈ [0, 60], the reference is

r(t) = 2 sin
π

120
t2.

The magnitude of reference r is 2, which is within the ±8 range of motion displayed

on the computer screen.

The controlled object’s position y satisfies the differential equation

mÿ(t) + cẏ(t) + ky(t) = f(t), (5.1)

where m, c, and k are real numbers and the exogenous force f is determined from the

joystick input u according to

f(t) = au̇(t) + bu(t), (5.2)
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where all initial conditions are zero.

The differential equations (5.1) and (5.2) can be used to model a variety of second-

order dynamic systems, including simple electrical circuits or a single-link robotic arm.

In this experiment, (5.1) and (5.2) models the spring-mass-damper system shown in

Figure 5.2, where y represents the position of the mass, and f , which is generated from

the joystick input u, represents the force applied to the mass. In this case, m is the

c

��A
AA�
��A
AA��

k

m

- y

-
f

Figure 5.2: The single-degree-of-freedom mass-spring-damper system.

mass, k is the spring stiffness, and c is the damping constant. Thus, the relationship

between u and y can be written in the Laplace domain as ŷ(s) = G(s)û(s), where

G(s) =
as+ b

ms2 + cs+ k
(5.3)

is the transfer function from u to y, and û(s) and ŷ(s) are the Laplace transforms of

u and y.

5.3 System Zeros

In general, an LTI system can be expressed in the Laplace domain as ŷG(s) =

G(s)ûG(s), where ŷG is the Laplace transform of a scalar output, ûG is the Laplace

transform of a scalar input, and G is a real rational transfer function, which can be

written as

G(s) =
N(s)

D(s)
,
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where N and D are polynomials in s. For this discussion, we assume that N and D

have no common roots. The roots of N are the zeros of G, while the roots of D are

the poles of G.

The poles of G are determined from the physics (e.g., the physical parameters) of

the dynamic system. For example, the poles of G are determined from the mass m,

damping c, and spring stiffness k. The poles determine whether G is asymptotically

stable or unstable. In addition, the poles determine the natural frequencies and

growth or decay rate of the impulse response of G (i.e., the response if ûG = 1,

which is the Laplace transform of the Dirac delta function). The transfer function

G is asymptotically stable if every pole is in the open-left-half plane (OLHP). In

this case, the impulse response of G decays exponentially to 0. Conversely, G is

unstable if at least one pole is in the open-right-half plane (ORHP). In this case, the

impulse response of G grows exponentially and diverges to infinity. Since the physical

parameters m, c, and k are positive, it follows that G is asymptotically stable.

In contrast to poles, the zeros of G are determined not only from the physics of the

dynamic system but also from the location and type of sensors and actuators. For

example, the zeros of G are determined from a and b, which are the parameters that

govern how the actuation force f is determined from the joystick input u. Zeros play

an important role in control theory and control systems design [114].

A zero of G is minimum phase if it is in the OLHP, whereas a zero of G is non-

minimum phase if it is in the ORLP. For example, the zero of G is −b/a, which is

minimum phase if b/a > 0 and nonminimum phase if b/a < 0. The transfer function

G is minimum phase if all zeros are minimum phase. In contrast, G is nonminimum

phase if at least one zero is nonminimum phase.

Many physical systems are modeled by transfer functions containing only minimum-

phase zeros. For example, a vibration absorber attached to a vibrational system is

minimum phase. In this case, a vibration absorber is connected to a primary system
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to reduce the vibration of the primary system. Assume that the primary system is

for example the single-degree-of-freedom mass-spring-damper system shown in Figure

5.2. Then, the transfer function from the external force f to the position y of the mass

in the primary system is minimum phase [115]. However, nonminimum-phase zeros

also arise in physical systems. For example, driving a car backwards is a dynamic

system containing nonminimum-phase zeros. When we drive a car backwards (e.g.,

parallel parking), the transfer function from the steering angle to the lateral position

of the center of the front wheels is nonminimum phase [114].

To examine the effect of system zeros on human learning, we divided the 33 subjects

into 3 groups, where each group has 11 subjects. The subjects interact with the

dynamic system (5.1) and (5.2), where m = 1, c = 3.6, k = 4, and b = 4.4, but where

a is different for each group. For one group, a = 2, which means that the transfer

function G is given by

Gm(s) ,
2(s+ 2.2)

s2 + 3.6s+ 4
, (5.4)

which has a minimum-phase zero at −2.2. For another group, a = −2, which means

that G is given by

Gn(s) ,
−2(s− 2.2)

s2 + 3.6s+ 4
, (5.5)

which has a nonminimum-phase zero at +2.2. For the third group, a = −5.5, which

means that G is given by

Gsn(s) ,
−5.5(s− 0.8)

s2 + 3.6s+ 4
, (5.6)

which has a slower (i.e., closer to the imaginary axis) nonminimum-phase zero at

+0.8. Note that Gm, Gn, and Gsn have the same poles, which are −1.8± 0.87. Thus,
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all 3 transfer functions are asymptotically stable. Moreover, all 3 transfer functions

have the same zero-frequency gain, that is, Gm(0) = Gn(0) = Gsn(0) = 1.1. Thus,

these transfer functions differ only by the location of the zero.

Figure 5.3 shows the Bode plots for Gm, Gn, and Gsn. Notice that the magnitude
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Figure 5.3: Bode plots of Gm, Gm, and Gsn.

plots for Gm and Gn coincide, whereas the phase plot for Gn has 180◦ more asymptotic

phase lag. This phase lag is an important feature of nonminimum-phase zeros—a

feature that tends to limit robustness and achievable performance in automatic control

system technology [114, 116]. Although Gn and Gsn both have 270◦ of asymptotic

phase lag, the phase of Gsn decreases more rapidly than that of Gn as shown in

Figure 5.3. In addition, the magnitude of Gsn is always larger than that of Gm and

Gn.

A nonminimum-phase zero has the property that it can “block” a specific un-

bounded input. For example, Figure 5.4 shows that the response y of Gm and Gn

to the unbounded input u(t) = e2.2t. The response of Gm is unbounded, whereas

the response of Gn is bounded and, in fact, converges to 0. Notice that the expo-
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Figure 5.4: For a bounded input u(t) = e2.2t, the output of Gm is unbounded, but the
output of Gn is bounded and converges to 0.

nential growth rate of u(t) = e2.2t is 2.2, which corresponds to the location of the

nonminimum-phase zero of Gn. This matching of growth rate and zero location is

why the response y of Gn decays to 0, even though the input u(t) = e2.2t is un-

bounded. For every dynamic system with a nonminimum-phase zero, there exists

an unbounded input that leads to a bounded response that converges to 0 [114]. In

contrast, minimum-phase zeros can “block” only bounded inputs.

Since the zero of Gm is minimum phase, the inverse dynamics G−1
m are asymptot-

ically stable; however, the zero of Gn is nonminimum phase, which implies that the

inverse dynamics G−1
n are unstable. The unstable inverse dynamics associated with

Gn may be an impediment to humans approximating G−1
n in feedforward for control.

Figure 5.5 shows the step response of Gm, Gn, and Gsn, that is, the response y with

input u(t) ≡ 1. For Gn and Gsn, the response y departs from 0 in the nonasymptotic

direction. This phenomenon is called initial undershoot [114]. The step response of

an asymptotically stable, strictly proper (i.e., the degree of numerator is smaller than
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Figure 5.5: Step responses of Gm, Gm, and Gsn.

that of the denominator) transfer function exhibits initial undershoot if and only if the

transfer function has an odd number of positive zeros [117–119]. Initial undershoot

may be an impediment to a human’s ability to control a nonminimum-phase system.

In particular, initial undershoot may make it difficult for a human to learn to generate

a control u in the “correct” direction.

5.4 Experimental Results in Time Domain

Each trial of the experiment lasts for T = 60s. For each trial in the experiment, we

record data r, u, and y with the sampling time Ts = 0.02s and obtain the sequences

r(iTs), u(iTs), y(iTs), and e(iTs), where i = 0, 1, 2, . . . , 3000.

For certain trials, the output {y(iTs)}3000
i=0 exceeds the ±8 display boundary on

the computer screen. A trial where, for any i = 0, 1, 2, . . . , 3000, y(iTs) exceed ±8

is termed a divergent trial. For the remainder of this chapter, divergent trials are

omitted from the reported results.
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For each trial of the experiment, we define the time-averaged error

‖e‖ , 1

3001

3000∑
i=0

|e(iTs)|.

Figure 5.6 shows the reference r, output y, and command-following error e for the

first and last trials of the subject from each group who has the median time-averaged

error among the 11 subjects in the group. We observe that, for all 3 groups, the

command-following error on the last trial is improved relative to the error on the first

trial. We also note that the command-following error for the subject in the group

with Gm is smaller than that in the group with Gn, which is smaller than that in the

group with Gsn.

Figure 5.7 shows that, for each group, the mean time-averaged error improved over

40 trials. Figure 5.7 also shows that the mean ‖e‖ with Gm is smaller than that with

Gn, and the mean ‖e‖ with Gn is smaller than that with Gsn.

For each group, the number of divergent trials over the 40 trails is shown in Figure

5.8. We observe that there are more divergent trials at the beginning than the end

of the 40 trials, which implies that the subjects learn to control the systems such

that the output y is within the ±8 display boundary. The number of divergent trials

for the groups with Gm, Gn, and Gsn are 1, 10 , and 61, respectively. One possible

interpretation for the difference in the number of divergent trials is related to the

high-gain limitations of the 3 systems. For the group with Gn, if a subject tries to

reduce the error e by using high-gain feedback, then the high-gain feedback is more

likely to destabilize the closed-loop system than it is with Gm. Similarly, high-gain

feedback is more likely to destabilize the closed-loop system with Gsn than it is with

Gn.
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Figure 5.6: The reference r, output y, and command-following error e for the first
and last trials of the subject from each group who has the median time-averaged error
among the 11 subjects in the group. The command-following error e for the subject
in the group with Gm is smaller than that in the group with Gn, which is smaller
than that in the group with Gsn.
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5.5 Discussion of Potential Control Strategies

The linear time-invariant control architecture shown in Figure 5.9 is used to model

each subject’s control strategy. See [6] for a physiological interpretation of this archi-

-r

-y e?k -

Humans’ Control Strategy

Gff

?

Gfb

6

k -u

Figure 5.9: Each subject’s control strategy is modeled using a feedback controller Gfb

and a feedforward controller Gff .

tecture. A subject’s control strategy is modeled by

û(s) = Gfb(s)ê(s) +Gff(s)r̂(s),

where ê(s) and r̂(s) are the Laplace transforms of e and r, and the transfer functions

Gfb and Gff are the feedback and feedforward controllers. Feedback is the reactive

control determined from the observed error e, whereas feedforward is the anticipatory

control determined solely from the reference r. The closed-loop response is ê(s) =

G̃er(s)r̂(s), where

G̃er(s) ,
1−Gff(s)G(s)

1 +Gfb(s)G(s)
(5.7)

is the closed-loop transfer function from r to e. The frequency response of G̃er is the

complex-valued function G̃er(ω), where ω is the frequency.

To ensure that the error e is bounded, the controllers Gff and Gfb must be such

that the closed-loop transfer function G̃er is asymptotically stable. To make the

error e small, Gff and Gfb must make the magnitude of G̃er(ω) small at frequencies

coinciding with the 0-to-0.5 Hz frequency content of the reference r.
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First, we consider control strategies that could be used to achieve good command

following for the dynamic system Gm. One control strategy is to use high gain in

feedback. It follows from (5.7) that |G̃er(ω)| is small if |Gfb(ω)| is large. Therefore,

as long as G̃er is asymptotically stable, the magnitude of e is decreased by increasing

|Gfb(ω)| at the frequencies of r. Figure 5.10(a) shows that using high gain in feedback

can make the magnitude of e small. High-gain feedback makes the magnitude of e

small by making the closed-loop transfer function from r to y

G̃yr(s) , 1− G̃er(s) =
G(s)[Gff(s) +Gfb(s)]

1 +G(s)Gfb(s)

close to 1 over the 0-to-0.5 Hz frequency range. Note that humans cannot use arbi-

trarily high gain in feedback due to delay in a human’s reaction as well as the physical

limitations of a human’s speed and range of motion.

Another control strategy is to use the inverse dynamics G−1
m in feedforward. If

Gff ≈ G−1
m , then it follows from (5.7) that G̃er ≈ 0, which implies that the command-

following error is small, that is, e ≈ 0. In this case, the human must learn to

approximate the inverse dynamics G−1
m in feedforward. Figure 5.10(b) shows that

using the approximate inverse dynamics in feedforward can make the magnitude of e

small.

We now consider control strategies that could be used to achieve good command

following for the dynamic system Gn. Similar to the case with Gm, high gain in

feedback and dynamic inversion in feedforward can make e small. However, the

feedback and feedforward controllers required to achieve good command following

are more mathematically complex than those with Gm.

To design a proportional feedback controller Gfb ∈ R that yields relatively small

command-following error to the chirp command r with no feedforward (i.e., Gff = 0),
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Figure 5.10: Two control strategies for Gm that make the magnitude of the error e
small are high gain in feedback and approximate inverse dynamics in feedforward.
Figure (a) shows the high-gain control strategy with the proportional feedback con-
troller Gfb = 30 and with no feedforward control (i.e., Gff = 0). Figure (b) shows
the control strategy of approximating the inverse dynamics in feedforward. The feed-
forward controller is Gff(s) = 50G−1

m (s)/(s + 50), which is a proper approximation
of G−1

n across the 0-to-0.5 Hz frequency range. There is no feedback controller (i.e.,
Gfb = 0). In both cases, the magnitude of the error e is small.
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consider the cost function

Cfb(Gfb) =

∫ π

0

|G̃er(ω)|2dω =

∫ π

0

∣∣∣∣ 1

1 +GfbGn(ω)

∣∣∣∣2 dω.

Minimizing Cfb subject to the constraint that G̃er is asymptotically stable yields the

proportional feedback Gfb = −0.0535. Figure 5.11(a) shows the closed-loop transfer

function G̃yr and closed-loop behavior with this proportional feedback controller. The

magnitude of e shown in Figure 5.11(a) is larger than that shown in Figure 5.10(a)

for proportional feedback with Gm.

To design a second-order feedforward controller Gff that yields relatively small

command-following error to the chirp command r with no feedback (i.e., Gfb = 0),

consider the cost function

Cff(Gff) =

∫ π

0

|G̃er(ω)|2dω =

∫ π

0

|Gff(ω)Gn(ω)− 1|2 dω.

Minimizing Cff subject to the constraint that G̃er is asymptotically stable and the

magnitude of poles of Gff is less than or equal to 50 rad/s, yields the second-order

feedforward controller Gff(s) = 742.8s2+1025.9s+1597.4
s2+2s+2500

. Note that poles of Gff with mag-

nitude larger than 50 rad/s have negligible effect on Gff over the 0-to-0.5 Hz frequency

range. Figure 5.11(b) shows the closed-loop transfer function G̃yr and closed-loop be-

havior with this second-order feedforward controller. The magnitude of e shown in

Figure 5.11(b) is larger than that shown in Figure 5.10(b) for second-order feedfor-

ward with Gm.

We now explore control strategies for Gn to make e small by using higher-order

controllers. Figure 5.12(a) shows that using high gain in feedback can make the

magnitude of e small. Note that the feedback controller in Figure 5.12(a) is a forth-

order controller, which is more mathematically complicated than the proportional
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Figure 5.11: Two control strategies forGn. Figure (a) shows the proportional feedback
controller Gfb = −0.0535 with no feedforward controller (i.e., Gff = 0). Figure (b)
shows the second-order feedforward controller Gff(s) = 742.8s2+1025.9s+1597.4

s2+2s+2500
with no

feedback controller (i.e., Gfb = 0). In both cases, the magnitude of the error e is
larger than that shown in Figure 5.10 for Gm with high-gain feedback or dynamic-
inversion feedforward.
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Figure 5.12: Two control strategies for Gn that make the magnitude of the error e
small are high gain in feedback and approximate inverse dynamics in feedforward.
Figure (a) shows the high-gain control strategy with the feedback controller Gfb(s) =

1.99×108(s+2.03)(s2+4.47s+15.42)
(s2+0.73s+5.2)(s2+607.1s+2.98×108)

and with no feedforward controller (i.e., Gff = 0). Figure

(b) shows the control strategy of approximating the inverse dynamics in feedforward.

The feedforward controller is Gff(s) = 4.69×104(s2+2.91s+2.88)(s2+3.37s+13.21)
(s+40)4 , which is a

proper approximation of G−1
n across the 0-to-0.5 Hz frequency range. There is no

feedback controller (i.e., Gfb = 0). In both cases, the magnitude of the error e is
small.
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feedback controller in Figure 5.10(a). Nevertheless, the error in Figure 5.12(a) is still

larger than that in Figure 5.10(a). Even higher-order feedback controllers could be

designed to yield closed-loop behavior with Gn similar to that observed in Figure

5.10(a) with Gm.

Figure 5.12(b) shows a forth-order feedforward controller, which is more mathemat-

ically complicated than the second-order controller in Figure 5.11(b). The magnitude

of error e shown in Figure 5.12(b) is smaller than that in Figure 5.11(b). However,

the magnitude of e in Figure 5.12(b) is still larger than that in Figure 5.10(b).

5.6 Modeling Human Control Behavior

We review the SSID algorithm in Chapter 4 in a simplified form and use it to

identify the feedback and feedforward controllers used by humans in the experiment.

5.6.1 Summary of Subsystem Identification Algorithm

For each trial of the experiment, we calculate the discrete Fourier transform of

{r(iTs)}3000
i=0 and {y(iTs)}3000

i=0 at the frequencies ωk = π
30

(k − 1) rad/s, where k =

1, 2, . . . , N = 31. For k = 1, 2, . . . , N , let rdft(ωk) and ydft(ωk) be the discrete Fourier

transforms of the time-domain signals {r(iTs)}3000
i=0 and {y(iTs)}3000

i=0 , and define the

closed-loop frequency response data H(ωk) , ydft(ωk)/rdft(ωk).

For the remainder of this chapter, letG(z) denote the discrete-time transfer function

obtained by discretizing G(s) using a zero-order hold on the input with sampling time

Ts. The open-loop dynamics are expressed with the z-transform as ŷ(z) = G(z)û(z),

where ŷ(z) and û(z) are the z-transforms of the output and control input. For each

group in this experiment, G is the discrete-time transfer function obtained from a

zero-order-hold discretization of Gm, Gn, or Gsn as appropriate.

Let Gff , Gfb : C→ C denote discrete-time real rational transfer functions. For each
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trial, a subject’s control strategy is modeled using the LTI control structure

û(z) = Gfb(z)ê(z) +Gff(z)r̂(z), (5.8)

where ê and r̂ are z−transforms of the error and the command. The discrete-time

closed-loop transfer function is

G̃yr(z) ,
G(z)[Gff(z) +Gfb(z)]

1 +G(z)Gfb(z)
.

Our objective is to determine Gff and Gfb such that the modeled frequency response

{G̃yr(γk)}Nk=1 approximates the data {H(ωk)}Nk=1, where γk , eωkTs . To achieve this

objective, we seek to find Gff and Gfb that minimize the cost

J(Gff , Gfb) =
N∑
k=1

∣∣∣G̃yr(γk)−H(ωk)
∣∣∣2

=
N∑
k=1

∣∣∣∣G(γk) [Gff(γk) +Gfb(γk)]

1 +G(γk)Gfb(γk)
−H(ωk)

∣∣∣∣2 , (5.9)

subject to the constraint that G̃yr is asymptotically stable. We assume that Gff is

finite impulse response (FIR) and Gfb is infinite impulse response (IIR).

We parameterize the feedback and feedforward controllers by their numerator and

denominator coefficients and cast the discrete-time SSID problem in terms of these

coefficients. Let nff and nfb be nonnegative integers that denote the degrees of the

numerator polynomials of Gff and Gfb. Similarly, let dff and dfb be nonnegative

integers that denote the degrees of the denominator polynomials ofGff andGfb. Define

d , dfb + nfb + 1, and consider the functions Nff : C×Rnff+1 → C, Nfb : C×Rd → C,

and Dfb : C× Rd → C given by

Nff(z, β) , νff(z)β, Nfb(z, φ) , νfb(z)φ, Dfb(z, φ) , zdfb + µfb(z)φ,
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where νff : C→ C1×(nff+1) and νfb, µfb : C→ C1×d are given by

νff(z) ,

[
znff znff−1 · · · z 1

]
,

νfb(z) ,

[
znfb znfb−1 · · · z 1 01×dfb

]
,

µfb(z) ,

[
01×(nfb+1) zdfb−1 zdfb−2 · · · z 1

]
.

We consider the functions Gff : C× Rnff+1 × Rd → C and Gfb : C× Rd → C given by

Gff(z, β) ,
Nff(z, β)

zdff
, Gfb(z, φ) ,

Nfb(z, φ)

Dfb(z, φ)
,

where β contains the numerator coefficients of Gff , and φ contains the numerator and

denominator coefficients of Gfb.

The real rational transfer function G can be expressed as G(z) = Nd(z)/Dd(z),

whereNd andDd are coprime polynomials. Next, consider the cost function J : Rnff+1×

Rd → [0,∞) given by

J(β, φ) , J(Gff(z, β),Gfb(z, φ)) = βTΩ2(φ)β + ΩT
1 (φ)β + Ω0(φ),

where

Ω0(φ) ,
N∑
k=1

∣∣∣∣∣Ñ2(γk, φ)

D̃(γk, φ)
−H(ωk)

∣∣∣∣∣
2

,

Ω1(φ) , 2Re
N∑
k=1

[
Ñ2(γk, φ)

D̃(γk, φ)
−H(ωk)

]
ÑT

1 (γ−1
k , φ)

D̃(γ−1
k , φ)

,

Ω2(φ) , Re
N∑
k=1

ÑT
1 (γ−1

k , φ)Ñ1(γk, φ)∣∣∣D̃(γk, φ)
∣∣∣2 ,
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and

Ñ2(z, φ) , Nd(z)zdffNfb(z, φ),

Ñ1(z, φ) , Nd(z)Dfb(z, φ)νff(z),

D̃(z, φ) , [Dd(z)Dfb(z, φ) +Nd(z)Nfb(z, φ)]zdff .

For each φ ∈ Rd, Ω0(φ) ∈ R, Ω1(φ) ∈ Rnff+1, and Ω2(φ) ∈ R(nff+1)×(nff+1) is positive

semidefinite.

We restrict our attention to φ ∈ Rd contained in

S , {φ ∈ Rd : if p ∈ C and D̃(p, φ) = 0, then |p| < 1},

which is the set of parameters that yield asymptotically stable closed-loop transfer

functions. Let M be a positive integer, and let Φ ⊂ S be a set with M elements. We

call Φ the candidate pool. Next, we create a candidate sequence using the M elements

in the candidate pool Φ. Specifically, for i, j = 1, 2, . . . ,M , let φi, φj ∈ Φ such that

if i 6= j, then φi 6= φj. The sequence {φi}Mi=1 is not unique; however, the order of the

sequence is selected arbitrarily.

Define M , {1, 2, . . . ,M}, and for all i ∈M, define the quadratic cost function

Ji(β) , J(β, φi) = βTΩ2(φi)β + ΩT
1 (φi)β + Ω0(φi).

It follows from Proposition 4.1 that If the number N of frequency response data is

sufficiently large, then Ω2(φ1), . . . ,Ω2(φM) are positive definite and thus nonsingular.

In this case, for each i = 1, . . . , N , define

βi , −
1

2
Ω−1

2 (φi)Ω1(φi),
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which is the unique global minimizer of Ji. Specifically, for each i ∈ M and for all

β ∈ Rnff+1\{βi},

Ji(βi) < Ji(β).

Let ` ∈ M be the smallest integer such that J`(β`) = mini∈M Ji(βi). Thus, the

identified parameters are β` and φ` and the identified transfer functions are

Gff(z) ,
Nff(z, β`)

zdff
, Gfb(z) ,

Nfb(z, φ`)

Dfb(z, φ`)
. (5.10)

The linear feedback-and-feedforward control (5.8) with are estimates of the unknown

subsystem. We now summarize this SSID method.

Algorithm 5.1. Consider the known discrete-time transfer function G and the

known closed-loop frequency response data {H(ωk)}Nk=1. Then, the subsystem iden-

tification algorithm is as follows:

Step 1. Generate the candidate pool Φ ⊂ S and candidate sequence {φi}Mi=1.

Step 2. For each i ∈ M, find βi , −1
2
Ω−1

2 (φi)Ω1(φi), which is the unique global

minimizer of Ji.

Step 3. Find the smallest ` ∈M such that J`(β`) = mini∈M Ji(βi).

Step 4. The identified parameters are β` and φ`.

Step 5. The identified feedforward and feedback discrete-time transfer functions are

Gff and Gfb given by (5.10).

5.6.2 Application of SSID Algorithm to Experimental Data

We use the SSID algorithm to identify feedback and feedforward control strategies

used by humans subjects for the groups with Gm and Gn. Note that for the group
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with Gsn, the average of the time-averaged error ‖e‖ among all subjects on the last

trial is approximately 1.2 (as shown in Figure 5.7), which is close to the time-averaged

error ‖e‖ with no control (i.e., u = 0).

The controller orders dfb and dff are chosen sufficiently large to capture different

control approaches that lead to good command-following performance. For example,

we select the controller orders to allow for high gain in feedback as well as approximate

dynamic inversion in feedforward. For the groups with Gm and Gn, the feedback is

modeled as a second-order exactly proper controller (i.e., nfb = dfb = 2). To allow

for feedforward dynamic inversion as a possible control strategy, we select dff large

enough to allow Gff to approximate G−1 with approximately 0.1% error over the 0-

to-0.5 Hz range. Thus, dff is 2 and 6 for Gm and Gn. Higher-order controllers can be

used; however, this can lead to poor conditioning for the SSID problem.

The candidate pool Φ is designed to capture a wide range of behavior over the 0-to-

0.5 Hz frequency range. We construct the candidate pool Φ subject to the following

conditions:

C1) If φ ∈ Φ, λ ∈ C, and Dfb(eλTs , φ) = 0, then |λ| ≤ 31.5.

C2) If φ ∈ Φ, λ ∈ C, and Nfb(eλTs , φ) = 0, then |λ| ≤ 31.5.

C3) If φ ∈ Φ, then maxω∈[0,π]

∣∣Gfb(eωTs , φ)
∣∣ ≤ 30.5.

C4) If φ ∈ Φ, λ ∈ C, and D̃(eλTs , φ) = 0, then Reλ < −0.1.

Conditions C1)–C2) constrain Φ to include only elements that have a significant

impact on controller dynamics over the 0-to-0.5 Hz frequency range. Specifically,

C1)–C2) state that for each φ ∈ Φ, the poles and zeros of the feedback controller

have absolute value between 0 and 31.5 rad/s. This condition arises because the data

{H(ωk)}Nk=1 is at frequencies ω1, . . . , ωN ∈ [0, π] rad/s, which corresponds to the the

frequency range of the chirp signal r. Thus, we seek to identify Gff and Gfb on the

interval [0, π] rad/s. The upper limit 31.5 rad/s on the magnitude of the poles and
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zeros is one decade above the π rad/s limit on the chirp frequency (i.e., 10π ≈ 31.5).

Moreover, a pole or zero with magnitude greater than 31.5 rad/s has negligible effect

on the Bode plot over the frequency range [0, π] rad/s. Thus, we restrict the candidate

pool to elements that correspond to poles and zeros with absolute value between 0

and 31.5 rad/s.

Conditions C3) states that for each φ ∈ Φ, the peak magnitude of the feedback

controller Gfb(z, φ) over the frequency range [0, π] rad/s is no more than 30.5 (or

approximately 30 dB). We impose an upper limit on the magnitude of the feedback

controller because a human cannot use arbitrarily high gain in feedback. The 30

dB upper limit is determined from another experiment with 10 subjects, where each

subject was asked to follow a single-frequency sinusoid using only error feedback (i.e.,

feedforward of the command signal was not available). In this experiment, the peak

magnitude of the feedback controller used by the subjects is approximately 30 dB,

suggesting that 30 dB is the peak gain that a human can use in feedback.

Conditions C4) states that for each φ ∈ Φ, the magnitudes of the roots of D̃(z, φ)

are bounded away from the unit circle, specifically, less than e−0.1Ts . This condition

guarantees that Φ ⊂ S (i.e., for all φ ∈ Φ, the roots of D̃(z, φ) are in the unit circle

of the complex plane). A pole with −0.1 indicates a settling time of approximately

40 s. Thus, C4) restricts the candidate pool to elements that result in closed-loop

transfer functions with settling times less than 40 s. Note that the behavior observed

in this experiment exhibits settling times significantly less than 40 s.

For the group with Gm, the candidate pool contains approximately 8.3 billion ele-

ments. For the group with Gn, the candidate pool contains approximately 4.5 billion

elements. More details of the candidate pool are present in Appendix C.

The SSID algorithm is implemented using parallel computation on a supercomputer.

Algorithm 5.1 is coded in C++ for parallel computation and implemented on the

Lipscomb High Performance Computing Cluster at the University of Kentucky. For
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each trial of the group with Gm, it takes approximately 4.6 hours to run Algorithm

5.1 on 1 compute node of the Lipscomb cluster; each node has a 16 Intel E5-2670

@ 2.6 GHz cores. Thus, performing the SSID algorithm for all 440 trials requires

approximately 2,000 compute node hours. For each trial of the group with Gn, it takes

approximately 2.3 hours to run Algorithm 5.1 on 1 compute node of the Lipscomb

cluster. Thus, performing the SSID algorithm for all 440 trials requires approximately

1,000 compute node hours.

5.7 Subsystem Identification Results

We present the SSID results for the groups with Gm and Gn excluding divergent

trials. Figure 5.13 shows the Bode plots of the identified feedforward controller Gff ,

feedback controller Gfb, and closed-loop transfer function G̃yr for Trial 1 and Trial 40

of the subject from each group who has the median time-domain error. For Gm and

Gn, the closed-loop transfer function G̃yr is near 1 (i.e., 0 decibels magnitude and

0 degrees phase) for the last trial, which implies that y approximates r across the

frequency range of r as shown in Figure 5.13(c). Also, for Gm and Gn, the identified

Gff for the first trial does not approximate inverse dynamics, whereas the identified

Gff for the last trials does approximate inverse dynamics for both systems Gm and

Gn as shown in Figure 5.13(a).

Define ‖Gfb‖ and ‖GffG− 1‖, which are the frequency-averaged magnitudes of Gfb

and GffG− 1, and are given by

‖Gfb‖ =
1

π

∫ π

0

|Gfb(eωTs)| dω,

‖GffG− 1‖ =
1

π

∫ π

0

|Gff(eωTs)G(eωTs)− 1| dω,

where G can be either Gm or Gn. Figure 5.14 shows that the frequency-averaged

magnitude of the identified feedback controller Gfb does not change significantly over
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Figure 5.13: The subject’s control strategy is modeled by a feedback controller Gfb

and a feedforward controller Gff , which results in the closed-loop response ŷ(s) =
G̃yr(s)r̂(s) from the command r to the output y. For groups with Gm and Gn, Figures
(a), (b), and (c) show the Bode plots of the identified controllers Gff and Gfb, and
the closed-loop transfer function G̃yr for the same trials (Trials 1 and 40) shown in
Figure 5.6. Figure (a) shows that the identified Gff for Trial 1 does not approximate
G−1, whereas the identified Gff for Trial 40 does approximate G−1. Figure (b) shows
that the identified Gfb for Trial 1 has higher gain (i.e., magnitude) than that for Trial
40. Figure (c) shows that the closed-loop transfer function G̃yr is approximately 1
(i.e., 0 decibels magnitude and 0 degrees phase) for Trial 40, which implies that y
approximates r in the 0-to-0.5 Hz frequency range.

110



the 40 trials. Figure 5.14 also shows that the difference between the identified feed-
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Figure 5.14: The metrics ‖Gfb‖ and ‖GffG−1‖ for the subjects’ identified controllers
for each of the 40 trials. The × indicates the mean of the subjects and the vertical
lines show one standard deviation. The difference between Gff and G−1 decreases
over the 40 trials, whereas ‖Gfb‖ does not changes significantly over the trials.

forward controller Gff and the inverse dynamics decreases over the 40 trials for both

groups.

Figure 5.15 compares the command-following error on all trials to how closely the

identified Gff approximates inverse dynamics. The trials with the smaller command-

following errors yield identified feedforward controllers Gff that are better approxi-

mations of the inverse dynamics.

Figure 5.16 shows the Bode plot of the average identified feedforward controller for

all 11 subjects of each group on the last trial. For both groups, the average identified

feedforward controller approximates inverse dynamics. Thus, the identification results

suggest that by the last trial the subjects learned the inverse dynamics and used

a model of those inverse dynamics in feedforward. This observation supports the

internal model hypothesis.
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Figure 5.16: The Bode plot of the average identified feedforward controller for all 11
subjects on the last trial. The shaded region shows one standard deviation above
and below the average identified feedforward controller. For both groups, the average
identified feedforward controller approximates inverse dynamics.
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5.8 Discussion of the Impact of System Zeros

We now discuss the impact of system zeros on human learning. In particular, we

explore reasons why the time-averaged error ‖e‖ for Gm is smaller than that for Gn,

and the time-averaged error ‖e‖ for Gn is smaller than that for Gsn. In other words,

we explore reasons why nonminimum-phase zeros make a system difficult to control.

Although the SSID results in Section 5.7 suggest that the subjects learned to ap-

proximate the inverse dynamics G−1
m and G−1

n in feedforward, subjects may not learn

to approximate G−1
n as well as G−1

m .

Figure 5.17 shows ‖GffG − 1‖ and ‖Gfb‖ on the last trial for each subject in each

groups with Gm and Gn. For the group with Gm, the identified feedforward controllers
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Figure 5.17: The metrics ‖GffG−1‖ and ‖Gfb‖ for the last trial for each in the groups
with Gm and Gn. For the group with Gn, the identified Gff for all 11 subjects is close
to G−1

n . For the group with Gm, the identified Gff for 10 subjects is close to G−1
m , and

the remaining subject (i.e., number 2) has appears to rely on higher gain in feedback.

for 10 subjects appear approximate of G−1
m , while the identified feedback controller

for the one remaining subject (i.e., number 2) has higher gain (i.e., ‖Gfb‖ = 6.6).
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On the last trial, the average of ‖GffGm − 1‖ for all 11 subjects is 0.17, which is

smaller than the average of ‖GffGn − 1‖, which is 0.23. However, on the last trial,

the standard deviation of ‖GffGm − 1‖ is 0.29, which is larger than the standard

deviation of ‖GffGn− 1‖, which is 0.14. If we exclude the largest and smallest values

of ‖GffG− 1‖, then the average and standard deviation on the last trial with Gm are

0.093 and 0.072, which are smaller than those with Gn, which are 0.21 and 0.080.

Figure 5.18 shows the Bode plots of the average identified GffGm and GffGn for the

subjects on the last trial excluding the smallest and largest values of ‖GffG−1‖. The
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Figure 5.18: The Bode plot of the average identified GffGm and GffGn for all 11
subjects on the last trial excluding the largest and smallest values of ‖GffGm−1‖ and
‖GffGm − 1‖. The shaded region shows one standard deviation above and below the
average identified value. The average identified GffGm and GffGn both approximate
1. However, the average identified GffGm is closer to 1 than the average identified
GffGn.

average identified GffGm and GffGn both approximate 1. However, the average iden-

tified GffGm is closer to 1 than the average identified GffGn. Recall that we require

a more mathematically complicated feedforward controller (i.e., higher-order transfer

function) for Gn than for Gm to achieve comparably small e as shown in Figures
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5.10(b), 5.11(b), and 5.12(b). The need for a more mathematically complicated feed-

forward for Gn than for Gm may be a reason why the mean ‖e‖ with Gm is smaller

than that with Gn.

Recall that we need a more mathematically complicated feedback controller for Gn

than for Gm to achieve comparably small e as shown in Figures 5.10(a), 5.11(a), and

5.12(a). The need for a more mathematically complicated feedback for Gn than for

Gm may be another reason why the mean ‖e‖ with Gm is smaller than that with Gn,

because both feedback and feedforward are needed in the process of constructing the

internal model [120].

The nonminimum-phase zero in Gn makes it harder for subjects to use high-gain

control in feedback. The SSID results in Figures 5.14 and 5.15 show that the magni-

tude of the identified feedback controllers for the group with Gm is higher than that

with Gn.

Figure 5.19 shows the control u generated by human subjects with the median

time-averaged error ‖e‖ among all subjects for Trials 10, 20, 30, and 40 for each of

the 3 groups. We observe that for Gm, the control u is smooth like the chirp command

r. In contrast, for Gn, the control u is less smooth on Trial 10 but tends to become

smoother on Trails 20, 30, and 40. For Gsn, the control u looks like a sequence of step

functions, which is different from the smooth chirp command.

The observation that human subjects generate step-function control may be related

to the initial undershoot phenomenon. Recall that Gn has initial undershoot, whereas

Gm does not. Figure 5.19 shows that for Gn, the control has some step-function

behavior, whereas for Gm, it does not. Furthermore, the initial undershoot peak for

Gsn is larger than that for Gn (see Figure 5.5). Figure 5.19 shows that the control

for Gsn has more step-function behavior than for Gn. Thus, we observe the most

step-function behavior with Gsn, which also has the most initial undershoot.

It is possible that initial undershoot is an impediment to humans learning a control

115



−3

0

3

T
r
ia
l
1
0

Gm

u

−3

0

3

T
ri
a
l
2
0

−3

0

3

T
r
ia
l
3
0

20 40 60

−3

0

3

T
ri
a
l
4
0

T ime (s)

G n

20 40 60

Time (s)

G s n

20 40 60

Time (s)

Figure 5.19: The control u generated by human subjects with the median time-
averaged error ‖e‖ among all subjects for Trials 10, 20, 30, and 40. For the group
with Gm, the control u is smooth. For the group with Gn, the control u is less
smoother than for Gn, but tends to become smoother over the trails. For the group
with Gsn, the control u contains behavior similar to a step function.
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that makes the magnitude of e small. In particular, large initial undershoot may make

it more difficult for humans to learn that a smooth control can make the magnitude

of e small.

Another indicator of the impact of initial undershoot is the control at the start time

(i.e., t = 0) of each trial. Since Gm does not have initial undershoot, it follows that y

initially moves in the same direction as r (i.e., ẏ(0) > 0) if u initially moves in the same

direction as r (i.e., u̇(0) > 0). Since Gn and Gsn each have initial undershoot, it follows

that y initially moves in the same direction as r if u initially moves in the opposite

direction of r (i.e., u̇(0) < 0). For each trial, let i0 be the smallest positive integer

such that |u(i0Ts)| > 0.05. The threshold 0.05 is determined from another experiment,

where a human holds the joystick but attempts no movement. Specifically, 0.05 is the

maximum magnitude of the control signal in that experiment. Thus, control signals

smaller than the threshold are regarded as potentially involuntary motion arising from

the fact that humans can not hold the joystick perfectly still.

We define the right control at the start time as a control such that u((i0 +1)Ts) is in

the same direction as r((i0 +1)Ts) for Gm, or in the opposite direction as r((i0 +1)Ts)

for Gn and Gsn.

For Gm, subjects generate the right control at the start time for 431 trials out of

440 trials (98%). For Gn, subjects generate right control at the start time for 16 trials

out of 440 trials (3.6%). For Gsn, subjects generate right control at the start time

for 115 trials out of 440 trials (26%). Initial undershoot is one explanation for the

differences in numbers of trials with Gm, Gn, and Gsn for which subjects generate the

right control at the start time. Since Gm does not have initial undershoot, subjects

generate the right control at the start time for 98% of trials. However, 96% of the

trials with Gn do not have the right control at the start time. This suggests that

most subjects on most trials ignore the initial undershoot, that is, allow y to move

initially in the opposite direction of r. In contrast, only 74% of the trials with Gsn
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do not have the right control at the start time. This suggests that subjects ignore

initial undershoot less often with Gsn than with Gn. This could be explained by the

difference in the peak value of the initial undershoot as shown in Figure 5.5.

5.9 Conclusions

In this chapter, we presented results from a HITL experiment in which human

subjects learn to control 3 different unknown dynamic systems over 40 trials. One of

the dynamic systems has a minimum-phase zero, one has a nonminimum-phase zero,

and the other one has a slower nonminimum-phase zero. For all 3 dynamic systems,

the command-following error tends to decrease over 40 trials. The mean time-averaged

error for the system with a minimum-phase zero is smaller than that for the system

with a nonminimum-phase zero, which is smaller than that for the system with a

slower nonminimum-phase zero. Thus, the system with a nonminimum-phase zero

is harder to control than the system with a minimum-phase zero, and the slower

nonminimum-phase zero makes the system even harder to control.

We used the SSID algorithm in Chapter 4 to model the feedback and feedfor-

ward controllers used by humans to interact with the minimum-phase system and the

nonminimum-phase system. For both systems, the identified feedforward controllers

approximate the inverse of the dynamic system. This observation supports the IMH.

We also discussed reasons why nonminimum-phase zeros may make the systems hard

for humans to control.
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Chapter 6 Conclusions and Future Work

This dissertation investigated humans motor control and human learning using

subsystem identification (SSID). We developed novel SSID techniques for single-input

single-output (SISO) and multi-input multi-output (MIMO), linear time-invariant

dynamic systems. These SSID methods identify unknown feedback and feedforward

subsystems, which are interconnected with a known subsystem, and use only input

and output data from the closed-loop system. These SSID methods also guarantee

closed-loop stability.

We conducted human-in-the-loop (HITL) experiments, and applied the SSID meth-

ods to the experimental data to model humans’ control behavior. The identification

results suggest that humans can construct a model of an unknown dynamic system

and use the inverse dynamics in feedforward for control. These identification results

support the internal model hypothesis (IMH). Furthermore, we explored the impact

of system zeros on human motor control and humans learning.

In Chapter 2, we presented a frequency-domain SSID algorithm for identifying un-

known feedback and feedforward subsystems interconnected with a known subsystem.

This SSID method ensures asymptotic stability of the identified closed-loop transfer

function, and has application to modeling human control behavior (both feedback and

feedforward). The main analytic results of Chapter 2 are Theorems 2.1–2.4, which

describe the properties of the SSID algorithm. In particular, Theorem 2.4 shows that

the coefficients of the identified feedback and feedforward transfer functions are arbi-

trarily close to the true coefficients if the candidate pool is sufficiently dense and the
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data noise is sufficiently small.

In Chapter 3, we presented results from an HITL experiment where 10 subjects

learn to control an unknown dynamic systems over 40 trials. The SSID algorithm in

Chapter 2 was used to model the feedback and feedforward control strategies used by

the subjects. Over 40 trials, the feedforward controllers used by the subjects tend to

approximate the inverse of the dynamic system. This observation supports the IMH.

We observed no clear trend in feedback.

In Chapter 4, a discrete-time SSID algorithm was presented for MIMO systems

with feedback and feedforward subsystems. The algorithm uses frequency-domain

data, and ensures asymptotic stability of the identified closed-loop transfer function.

The main analytic results of Chapter 4 are Theorems 4.1–4.2, which describe the

properties of the MIMO SSID algorithm. In particular, Theorem 4.2 shows that the

coefficients of the identified feedback and feedforward transfer functions are arbitrarily

close to the true coefficients if the candidate pool is sufficiently dense and the data

noise is sufficiently small. Also, we discussed the computational complexity of the

SSID algorithm.

In Chapter 5, we presented results from an HITL experiment where 33 subjects

learn to control 3 unknown dynamic systems over 40 trials. The SSID algorithm in

Chapter 4 was used to model the feedback and feedforward control strategies used

by the subjects. One of the dynamic systems has a minimum-phase zero, one has

a nonminimum-phase zero, and one has a slower (i.e., closer to the imaginary axis)

nonminimum-phase zero. For all 3 dynamic systems, the command-following error

tends to decrease over 40 trials. The mean time-averaged error for the system with a

minimum-phase zero is smaller than that for the system with a nonminimum-phase

zero, which is smaller than that for the system with a slower nonminimum-phase

zero. Thus, the system with a nonminimum-phase zero is harder to control than the

system with a minimum-phase zero, and the slower nonminimum-phase zero makes
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the system even harder to control.

We used the SSID algorithm in Chapter 4 to model the feedback and feedfor-

ward controllers used by humans to interact with the minimum-phase system and the

nonminimum-phase system. For both systems, the identified feedforward controllers

approximate the inverse of the dynamic system. This observation supports the IMH.

We also discussed reasons why nonminimum-phase zeros may make the systems hard

for humans to control.

The process of human learning, that is, the mechanism that helps humans learn to

construct internal models, is still unknown. The impact of other characteristics (e.g.,

system order, relative degree, stability, and nonlinearity) of dynamic systems and the

impact of the command signals on human motor control and human learning can be

explored in the future.
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Appendices

A Proofs of Propositions 2.7 and 2.8

The following notation is needed for the proofs of Propositions 2.7 and 2.8. Let

x1, . . . , xn ∈ C, and let x =< x1 . . . xn > be an unordered n-tuple of numbers

in C. See [121, Appendix V] for more details. Let Cn
sym denote the symmetric nth

power of C as defined in [121, Appendix V]. Let x =< x1 . . . xn >∈ Cn
sym and

y =<y1 . . . yn>∈ Cn
sym, and define ξn(x, y) , mino maxj=1,...,n |xj−yo(j)|, where o is

any permutation of 1, . . . , n and o(j) denotes the image of j through the permutation

o. It follows from [121, Lemma 3D in Appendix V] that ξn is a metric on Cn
sym.

The following lemma is needed for the proofs of Propositions 2.7 and 2.8.

Lemma 1. Consider hn : Cn
sym → Cn given by

hn(x) ,



−∑n
j=1 xj

(x1x2 + · · ·+ x1xn) + (x2x3 + · · ·+ x2xn) + · · ·+ xn−1xn
...

(−1)k
∑

1≤i1<i2<···<ik≤n
∏ik

j=i1
xj

...

(−1)n
∏n

j=1 xj


, (1)

where x =< x1 · · · xn >∈ Cn
sym. Consider the polynomial P (s) = sn + τ1s

n−1 +

· · · + τn−1s + τn, where τ1, . . . , τn ∈ C. Let λ1, λ2, . . . , λn ∈ C denote the n roots

of P , and define τ , [ τ1 · · · τn ]T ∈ Cn and λ ,< λ1 · · · λn >∈ Cn
sym. Then,
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hn(λ) = τ , and hn and h−1
n are continuous.

Proof. It follows from [122, Fact 4.8.2] that hn(λ) = τ . Moreover, it follows from

[121, Theorem 4A in Appendix V] that hn and h−1
n are continuous.

The following notation is needed for the proofs of Propositions 2.7 and 2.8. Let

κ , dp + dfb. Let hdff
: Cdff

sym → Cdff and hκ : Cκ
sym → Cκ be functions given by (1),

where n is replaced by dff and κ, respectively. Let a , [ a1 a2 · · · adp
]T ∈ Rdp

and b , [ b0 b1 · · · bnp
]T ∈ Rnp+1 be such that Np(s) = ΓT

np
(s)b and Dp(s) =

sdp + ΓT
dp−1(s)a. Consider the continuous function g : Rd−dff → Rκ given by

g(z) , Az +B, (2)

where B ,

[
aT 01×dfb

]T

∈ Rκ and

A ,



0(κ−np−nfb−1)×(nfb+1) 1 0 . . . 0

b0 0 . . . 0 a1 1
. . .

...

b1 b0
. . .

... a2 a1
. . . 0

... b1
. . . 0

... a2
. . . 1

bnp

...
. . . b0 adp

...
. . . a1

0 bnp b1 0 adp a2

...
. . .

...
...

. . .
...

0 0 bnp 0 0 adp



∈ Rκ×(d−dff).

Proof of Proposition 2.7. Since Ψ is compact, it follows that Ψ is bounded, which

implies that (Ψ ∩ Sρ) ⊆ Ψ is bounded.

Let φ ∈ (Ψ∩Sρ), and we show that φ is not an isolated point. Let φ = [ xT zT ]T,

where x ∈ Rdff and z ∈ Rd−dff . Since φ ∈ Ψ and Ψ is perfect, it follows that there exists

a sequence {φi}∞i=1 ⊆ Ψ that converges to φ. For each i ∈ Z+, let φi = [ xT
i zT

i
]T,
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where xi ∈ Rdff and zi ∈ Rd−dff . Thus, {xi}∞i=1 converges to x and {zi}∞i=1 converges

to z.

Let µ1, . . . , µdff
∈ C denote the dff roots of Dff(s, φ), and define p ,<µ1 . . . µdff

>.

For each i ∈ Z+, let µi,1, . . . , µi,dff
∈ C denote the dff roots of Dff(s, φi), and de-

fine pi ,< µi,1 . . . µi,dff
>. Lemma 1 implies that x = hdff

(p) and xi = hdff
(pi).

Since limi→∞ xi = x and Lemma 1 implies that h−1
dff

is continuous, it follows that

limi→∞ pi = limi→∞ h
−1
dff

(xi) = h−1
dff

(x) = p. Since φ ∈ Sρ, it follows that for all

j = 1, . . . , d1, Re µj < ρ. Define ε1 , minj=1,...,dff
ρ− Re µj. Since limi→∞ pi = p and

ξdff
is a metric on Cdff

sym, it follows that there exists L1 ∈ Z+ such that for all i ≥ L1,

ξdff
(pi, p) < ε1. Thus, for each i ≥ L1, there exists a permutation oi of 1, . . . , dff

such that for all j = 1, . . . , dff , |µi,j − µoi(j)| < ε1. Therefore, for all i ≥ L1 and all

j = 1, . . . , dff ,

Re µi,j − Re µoi(j) ≤ |Re µi,j − Re µoi(j)| ≤ |µi,j − µoi(j)| < ε1 ≤ ρ− Re µoi(j),

which implies that Re µi,j < ρ.

Next, since (A2.2) implies that κ > np + nfb, it follows that Dp(s)Dfb(s, φ) +

Np(s)Nfb(s, φ) is a monic degree κ polynomial, which can be written as sκ+ΓT
κ−1(s)γ,

where γ ∈ Rκ. Let ν1, . . . , νκ ∈ C denote the κ roots ofDp(s)Dfb(s, φ)+Np(s)Nfb(s, φ).

For each i ∈ Z+, let νi,1, . . . , νi,κ denote the κ roots ofDp(s)Dfb(s, φi)+Np(s)Nfb(s, φi),

which can be written as sκ + ΓT
κ−1(s)γi, where γi ∈ Rκ. Using (2), it follows that

γ = g(z) and γi = g(zi). Define q ,<ν1 · · · νκ> and qi ,<νi,1 · · · νi,κ>, and

Lemma 1 implies that γ = g(z) = hκ(q) and γi = g(zi) = hκ(qi). Since limi→∞ zi = z

and g is continuous on Rd−dff , it follows that limi→∞ γi = limi→∞ g(zi) = g(z) = γ.

Since limi→∞ γi = γ and Lemma 1 implies that h−1
κ is continuous, it follows that

limi→∞ qi = limi→∞ h
−1
κ (γi) = h−1

κ (γ) = q. Since φ ∈ Sρ, it follows that for all

l = 1, . . . , κ, Re νl < ρ. Define ε2 , minl=1,...,κ ρ − Re νl. Since limi→∞ qi = q and
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ξκ is a metric on Cκ
sym, it follows that there exists L2 ∈ Z+ such that for all i ≥ L2,

ξκ(qi, q) < ε2. Thus, for each i ≥ L2, there exists a permutation oi of 1, . . . , κ such

that for all l = 1, . . . , κ, |νi,l−νoi(l)| < ε2. Therefore, for all i ≥ L2 and all l = 1, . . . , κ,

Re νi,l − Re νoi(l) ≤ |Re νi,l − Re νoi(l)| ≤ |νi,l − νoi(l)| < ε2 ≤ ρ− Re νoi(l),

which implies that Re νi,l < ρ.

Define L , max{L1, L2}. Let i ≥ L, and (2.5) implies that µi,1, . . . , µi,dff
and

νi,1, . . . , νi,κ are the dff+dp+dfb roots of D̃(s, φi). For all j = 1, . . . , dff and l = 1, . . . , κ,

Re µi,j < ρ and Re νi,l < ρ, which implies that D̃(s + ρ, φi) is Hurwitz. Thus,

φi ∈ Sρ, which implies that φi ∈ (Ψ ∩ Sρ). Therefore, {φi}∞i=L ⊆ (Ψ ∩ Sρ) converges

to φ ∈ (Ψ ∩ Sρ), which implies that φ is not an isolated point.

Proof of Proposition 2.8. Since Ψ is compact, it follows that Ψ ∩ Sρ ⊆ (Ψ ∩ Sρ) =

Ψ ∩ Sρ, which implies that Ψ ∩ Sρ is compact.

We now show that Ψ ∩ Sρ ⊆ S. Define E4 , [ ET
2 ET

3
]T ∈ R(d−dff)×d, F , {λ ∈

C : Re λ ≤ ρ < 0}, and

S0 , {φ ∈ Rd : if λ ∈ C and D̃(λ, φ) = 0, then λ ∈ F},

S1 , {x ∈ Rdff : x = E1φ, where φ ∈ Rd and if λ ∈ C and Dff(λ, φ) = 0, then λ ∈ F},

S2 , {z ∈ Rd−dff : z = E4φ, where φ ∈ Rd and if λ ∈ C and

Dp(λ)Dfb(λ, φ) +Np(λ)Nfb(λ, φ) = 0, then λ ∈ F}.

Let x ∈ S1, z ∈ S2, and φ = [ xT zT ]T ∈ S0.

First, we show that S1 is closed in Rdff . Let µ1, . . . , µdff
denote the dff roots of

Dff(s, φ), and define p ,<µ1, · · · , µdff
>. Since x ∈ S1, it follows that µ1, . . . , µdff

∈

F and µ ∈ Fdff
sym. Lemma 1 implies that x = hdff

(p) ∈ hdff
(Fdff

sym), which implies that

x ∈ (Rdff ∩hdff
(Fdff

sym)). Thus, S1 ⊆ (Rdff ∩hdff
(Fdff

sym)). Next, let x̂ ∈ (Rdff ∩hdff
(Fdff

sym)),
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and let µ̂1, . . . , µ̂dff
denote the dff roots of Dff(s, [ x̂T zT ]T). Thus, x̂ ∈ Rdff and

h−1
dff

(x̂) ∈ Fdff
sym, which implies that µ̂1, . . . , µ̂dff

∈ F. Thus, x̂ ∈ S1, which implies that

(Rdff ∩ hdff
(Fdff

sym)) ⊆ S1. Therefore, S1 = Rdff ∩ hdff
(Fdff

sym). Since F is closed in C, it

follows that Fdff
sym is closed in Cdff

sym. Since Lemma 1 implies that h−1
dff

is continuous, it

follows that hdff
(Fdff

sym) is closed in Cdff . Thus, S1 = Rdff ∩ hdff
(Fdff

sym) is closed in Rdff .

Next, we show that S2 is closed in Rd−dff . Since (A2.2) implies that κ > np + nfb,

it follows that Dp(s)Dfb(s, φ) +Np(s)Nfb(s, φ) is a monic degree κ polynomial, which

can be written as sκ + ΓT
κ−1(s)γ, where γ ∈ Rκ. Using (2), it follows that γ = g(z).

Let ν1, . . . , νκ denote the κ roots of sκ + ΓT
κ−1(s)γ, and define q ,<ν1, · · · , νκ>.

Since z ∈ S2, it follows that ν1, . . . , νκ ∈ F and q ∈ Fκsym. Lemma 1 implies that

γ = hκ(q) ∈ hκ(Fκsym), which implies that z = g−1(γ) ∈ g−1(Rκ ∩ hκ(Fκsym)). Thus,

S2 ⊆ g−1(Rκ ∩ hκ(Fκsym)). Next, let ẑ ∈ g−1(Rκ ∩ hκ(Fκsym)) ⊆ Rd−dff . Thus, g(ẑ) ∈

(Rκ∩hκ(Fκsym)). Let ν̂1, . . . , ν̂κ denote the κ roots of sκ+ΓT
κ−1(s)g(ẑ). It follows from

Lemma 1 that < ν̂1, · · · , ν̂κ>= h−1
κ (g(ẑ)) ∈ Fκsym, which implies that ν̂1, . . . , ν̂κ ∈

F. Thus, ẑ ∈ S2, which implies that g−1(Rκ ∩ hκ(Fκsym)) ⊆ S2. Therefore, S2 =

g−1(Rκ ∩ hκ(Fκsym)). Since F is closed in C, it follows that Fκsym is closed in Cκ
sym.

Since Lemma 1 implies that h−1
κ is continuous, it follows that hκ(F

κ
sym) is closed in

Cκ. Thus, Rκ∩hκ(Fκsym) is closed in Rκ. Since, in addition, g is continuous, it follows

that S2 = g−1(Rκ ∩ hκ(Fκsym)) is closed in Rd−dff .

Since S1 is closed in Rdff , S2 is closed in Rd−dff , and (2.5) implies that S0 = S1×S2,

it follows that S0 is closed in Rd. Since, in addition, Sρ ⊆ S0, it follows that Sρ ⊆ S0.

Thus, Ψ ∩ Sρ ⊆ (Ψ ∩ Sρ) ⊆ Sρ ⊆ S0 ⊆ S.
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B Details of Candidate Pool used in Chapter 3

Now, C1) and C2) are used to construct a set of potential pole locations for the

feedforward and feedback controllers. Since dff = dfb = 2, it follows that Dff and Dfb

are monic second-order polynomials. If the roots of Dff or Dfb are real, then C1) and

C2) implies that the roots are on the interval [−25, 25]. Thus, consider the set of

potential real pole locations for the feedforward and feedback controller given by

Pr , {−25 + 0.5i}44
i=0 ∪ {−2.6 + 0.1i}52

i=0 ∪ {3.0 + 0.5i}44
i=0.

Note that Pr ∈ [−25, 25], and that the elements of Pr are more densely spaced near

the origin. If the roots of Dff or Dfb are complex, then C1) and C2) implies that

these roots are given by the roots of s2 + 2ζωns+ ω2
n, where the natural frequency is

ωn ∈ [0, 25] and the damping ratio is ζ ∈ (−1, 1). Thus, the set of potential natural

frequencies for the poles of feedforward and feedback controller is given by

Pωn , {0.05i}52
i=0 ∪ {2.7 + 0.1i}63

i=0 ∪ {9.5 + 0.5i}31
i=0,

and the set of potential damping ratios is given by

Pζ , {−0.9 + 0.1i}4
i=0 ∪ {−0.45 + 0.05i}5

i=0 ∪ {−0.18 + 0.02i}18
i=0

∪ {0.2 + 0.05i}5
i=0 ∪ {0.5 + 0.1i}4

i=0.

Note that Pζ ∈ (−1, 1) and Pωn ∈ [0, 25]. Moreover, note that the elements of Pζ and

Pωn are more densely spaced near the origin.

Now, the sets Pr, Pωn , and Pζ are used to construct the set of potential denomi-

nator coefficients for the feedback and feedforward controller. Specifically, the set of
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potential denominator coefficients for the controllers is given by

P ,


 −p1 − p2

p1p2

 : p1, p2 ∈ Pr

 ∪

 2ζωn

ω2
n

 : ζ ∈ Pζ , ωn ∈ Pωn

 .

Now, C3) is used to construct a set of potential numerator coefficients for the

feedback controller. Since nfb = 1, it follows that Nfb is a first-order polynomial.

Thus, the root of Nfb is on the interval [−25, 25]. Specifically, the set of potential

zeros for the feedback controller is Pr. Thus, the set of potential numerator coefficients

for the feedback controller is given by

Z ,


 k

−kz

 : z ∈ Pr, k ∈ R

 .

Now, C4) is used to construct a set of potential peak magnitudes for the feedback

controller. Specifically, consider the set

K , {0.1k}9
k=0 ∪ {1.1k}35

k=0 ∪ {30.5},

and note the K ∈ [0, 30.5]. Define Γ: C → C2 by Γ(s) =

 s

1

, and define the

function κ : Z × P → [0,∞) by

κ(βfb, αfb) , max
ω∈[0.2π,0.8π]

∣∣∣∣ ΓT(ω)βfb

ΓT(ω)αfb − ω2

∣∣∣∣ .
Next, define

Λ ,




αff

βfb

αfb

 : αff ∈ P, βfb ∈ Z, αfb ∈ P, κ(βfb, αfb) ∈ K

 ,
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and note that the elements of Λ satisfy C1)–C4). To construct the candidate pool

Φ from the set Λ, consider the elements of Λ that satisfy the closed-loop stability

condition C5). Specifically, the candidate pool is defined as

Φ ,
{
φ ∈ Λ: if D̃(λ, φ) = 0, then Reλ < −0.1

}
.

Note that Φ can be generated from the superset Λ by using the Hurwitz criteria.
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C Details of Candidate Pool used in Chapter 5

We generate potential feedback controllers by constructing a set of potential pole

and zero locations in continuous time and then convert these potential pole and zero

locations into discrete time by zero-pole matching [123].

Now, C1) is used to construct a set of potential pole locations for the feedback

controller. Since dfb = 2, it follows that Dfb are monic second-order polynomials.

If the roots of Dfb are real, then C1) implies that the roots are on the interval

[−31.5, 31.5]. Thus, consider the set of potential real pole locations for the feedforward

and feedback controller given by

Pr , {−31.5 + 0.5i}56
i=0 ∪ {−3.2 + 0.1i}31

i=0 ∪ {0.1i}32
i=1 ∪ {3.5 + 0.5i}56

i=0.

Note that Pr ∈ [−31.5, 31.5], and that the elements of Pr are more densely spaced

near the origin. If the roots of Dfb are complex, then C1) implies that these roots are

given by the roots of s2 + 2ζωns + ω2
n, where the natural frequency is ωn ∈ [0, 31.5]

and the damping ratio is ζ ∈ (−1, 1). Thus, the set of potential natural frequencies

for the poles of feedforward and feedback controller is given by

Pωn , {0.05i}64
i=1 ∪ {3.3 + 0.1i}87

i=0 ∪ {12.5 + 0.5i}18
i=0,

and the set of potential damping ratios is given by

Pζ , {−0.9 + 0.1i}4
i=0 ∪ {−0.45 + 0.05i}5

i=0 ∪ {−0.18 + 0.02i}18
i=0

∪ {0.2 + 0.05i}5
i=0 ∪ {0.5 + 0.1i}4

i=0.

Note that Pζ ∈ (−1, 1) and Pωn ∈ [0, 31.5]. Moreover, note that the elements of Pζ

and Pωn are more densely spaced near the origin.
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Now, the sets Pr, Pωn , and Pζ are used to construct the set of potential denomi-

nator coefficients for the feedback controller in discrete-time. Specifically, the set of

potential denominator coefficients for the controllers in discrete-time is given by

P ,


 −ep1Ts − ep2Ts

e(p1+p2)Ts

 : p1, p2 ∈ Pr

∪
 −2e−ζωnTs cos(Tsωn

√
1− ζ2)

e−2ζωnTs

 : ζ ∈ Pζ , ωn ∈ Pωn

 .

Now, C2) is used to construct a set of potential numerator coefficients for the

feedback controller. Since nfb = 2, it follows that Nfb is a second-order polynomial.

If the roots of Dfb are real, then C2) implies that the roots are on the interval

[−31.5, 31.5]. Thus, consider the set of potential real pole locations for the feedforward

and feedback controller given by

Zr , {−31.5 + 0.5i}56
i=0 ∪ {−3.2 + 0.1i}64

i=0 ∪ {3.5 + 0.5i}56
i=0.

Note that Zr ∈ [−31.5, 31.5], and that the elements of Pr are more densely spaced

near the origin. If the roots of Dfb are complex, then C2) implies that these roots are

given by the roots of s2 + 2ζωns + ω2
n, where the natural frequency is ωn ∈ [0, 31.5]

and the damping ratio is ζ ∈ (−1, 1). Thus, the set of potential natural frequencies

for the poles of feedforward and feedback controller is given by

Zωn , {0.05i}64
i=1 ∪ {3.3 + 0.1i}87

i=0 ∪ {12.5 + 0.5i}18
i=0,

and the set of potential damping ratios is given by

Zζ , {−0.9 + 0.1i}4
i=0 ∪ {−0.45 + 0.05i}5

i=0 ∪ {−0.18 + 0.02i}18
i=0
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∪ {0.2 + 0.05i}5
i=0 ∪ {0.5 + 0.1i}4

i=0.

Note that Zζ ∈ (−1, 1) and Zωn ∈ [0, 31.5]. Moreover, note that the elements of Zζ

and Zωn are more densely spaced near the origin.

Now, the sets Zr, Zωn , and Zζ are used to construct the set of potential denomi-

nator coefficients for the feedback controller in discrete-time. Specifically, the set of

potential denominator coefficients for the controllers in discrete-time is given by

Z ,




k

−k(ez1Ts + ez2Ts)

ke(z1+z2)Ts

 : z1, z2 ∈ Zr, k ∈ R

∪


k

−2ke−ζωnTs cos(Tsωn

√
1− ζ2)

ke−2ζωnTs

 : ζ ∈ Zζ , ωn ∈ Zωn , k ∈ R

 .

Now, C3) is used to construct a set of potential peak magnitudes for the feedback

controller. Specifically, consider the set

K , {0.1k}9
k=0 ∪ {1.1k}35

k=0 ∪ {30.5},

and note the K ∈ [0, 30.5]. Define Γ: C → C2 by Γ(z) =


z2

z

1

, and define the

function κ : Z × P → [0,∞) by

κ(βfb, αfb) , max
ω∈[0,π]

∣∣∣∣ ΓT(eωTs)βfb

ΓT(eωTs)αfb + e2ωTs

∣∣∣∣ .
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Next, define

Λ ,




αff

βfb

αfb

 : αff ∈ P, βfb ∈ Z, αfb ∈ P, κ(βfb, αfb) ∈ K

 ,

and note that the elements of Λ satisfy C1)–C3). To construct the candidate pool

Φ from the set Λ, consider the elements of Λ that satisfy the closed-loop stability

condition C4). Specifically, the candidate pool is defined as

Φ ,
{
φ ∈ Λ: if D̃(eλTs , φ) = 0, then Reλ < −0.1

}
.

Note that Φ can be generated from the superset Λ by using the Jury criteria.
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