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ABSTRACT OF DISSERTATION 

 

COMPUTATIONAL MODELING OF CARDIAC BIOMECHANICS 

The goal of this dissertation was to develop a realistic and patient-specific computational 

model of the heart that ultimately would help medical scientists to better diagnose and treat 

heart diseases. In order to achieve this goal, a three dimensional finite element model of 

the heart was created using magnetic resonance images of the beating pig heart. This model 

was loaded by the pressure of blood inside the left ventricle which was measured by 

synchronous catheterization. A recently developed structurally based constitutive model of 

the myocardium was incorporated in the finite element solver to model passive left 

ventricular myocardium. Additionally, an unloading algorithm originally designed for 

arteries was adapted to estimate the stress-free geometry of the heart from its partially-

loaded geometry obtained from magnetic resonance imaging. Finally, a regionally varying 

growth module was added to the computational model to predict eccentric hypertrophy of 

the heart under various pathological conditions that result in volume overload of the heart. 

The computational model was validated using experimental data obtained from porcine 

heart such as in vivo strains measured from magnetic resonance imaging.  
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Chapter One: Introduction 

According to CDC (Centers for Disease control and Prevention), heart diseases are the leading 

cause of death in the US (611,105 death in 2013). Common heart diseases are CAD (Coronary 

Artery Disease), CHF (Congestive Heart Failure), Cardiomyopathy (weak heart muscles), 

Arrhythmias (irregular heartbeat), congenital heart defects and heart valve problems. In order to 

better understand the mechanics of the heart and its disorders, computational methods are being 

used increasingly to investigate healthy and diseased cardiac tissue. Realistic computational 

simulations of the heart are able to provide information that cannot be measured clinically and may 

help them to better diagnose and treat cardiac diseases. For instance, stress distributions in the heart 

affect cardiac remodeling, but such distributions are not clinically available. Biomechanical models 

of the heart offer detailed three-dimensional deformation, stress and strain fields that can 

supplement conventional clinical data. The final goal of such efforts is to develop validated 3D 

patient-specific models that could be used easily in a clinical setting [2-8]. 

The long term goal of this study is to develop a realistic and patient-specific computational model 

of the heart that would hopefully help medical researchers to better diagnose and treat heart 

diseases. This goal could be achieved by either adding new capabilities to the existing model or by 

replacing current sub-models with more elaborate and recently developed ones. These models can 

be validated by applying these techniques to analyze healthy and diseased hearts using in vivo data 

from animals. Initial development of such models could involve data acquisition techniques that 

might not necessarily be patient-friendly or patient specific. For example, ventricular pressure is 

recorded by inserting a pressure catheter inside the animal’s heart or tagged MRI used for capturing 

the deformation of the myocardium, but the final validated computational model must be able to 

use clinically available data such as clinically measured pressure, volume and CINE MRI data. 
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The Finite Element Method (FEM) has proven to be a universal tool for the analysis of complex 

structures in engineering and with increasing computing power, different nonlinear problems can 

be treated more easily [9]. Bioengineers increasingly make use of FEM to simulate the heart at 

systole (active contraction or ejecting phase of cardiac cycle) and diastole (passive dilation or filling 

phase of cardiac cycle). There are a variety of FEM commercial packages that could be used in 

computational modeling of bioengineering problems. In the Computational Biomechanics Lab 

(CBL) here at UK, we use LS-DYNA (Livermore Software Technology Corporation, Livermore, 

CA). LS-DYNA is an explicit solver that gives the user the ability to embed complicated user 

defined material models as FORTRAN subroutines. Additionally, it could be easily coupled with 

LS-OPT (Livermore Software Technology Corporation, Livermore, CA) which is a multi-purpose 

optimizer that is used to identify material parameters of different soft tissue constitutive laws.  

The objective of this dissertation was to improve technical aspects of the current computational 

model and apply them to new series of data sets to characterize material properties of healthy and 

diseased hearts. More specifically, in chapter 2, in order to improve the constitutive modeling of 

cardiac tissue, the current transversely isotropic constitutive law was replaced by a newly 

developed and structurally based one. In chapter 3, a previously developed numerical method for 

unloading arteries was adapted to unload the geometry of heart from the early-diastolic state (non-

zero pressure) to a zero pressure reference state.  Finally in chapter 5, a continuum growth model 

was incorporated in the finite element solver which can predict concentric and eccentric 

hypertrophy after imposing pressure and volume overload to the finite element model. 
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Chapter Two: Constitutive Modeling 

Understanding the complex structure of myocardium has been the subject of many studies. See 

works by Young et al. [10] and Sands et al. [11] for example. Accordingly, different models of 

cardiac structure have been proposed to better understand its performance. For an account of some 

approaches to describe the structure of the heart see the study of Gilbert et al. [12]. A common 

approach in the engineering community is to consider the myocardium as layered sheets of 

myofibers, which have orientation angles that vary transmurally and depend on species. Streeter et 

al. made some of the first quantitative measurements of fiber orientation in canine ventricles [13]. 

Subsequent investigations showed that myocardial microstructure is composed of discrete layers 

which run transmurally across the ventricular wall (Figure 1) [14] [15]. LeGrice et al. provided a 

more detailed and systematic account of the architecture of these sheets [16].  

After obtaining descriptions of the geometry and structure of the myocardium, the next step in 

understanding myocardial mechanics is the constitutive equations that characterize the material 

properties of myocardium. There are several proposed models for describing the elasticity of 

myocardium, which are generally classified as: isotropic, transversely isotropic and orthotropic 

models. Isotropic models are not appropriate in view of the morphology and structure of passive 

myocardium [17]. Most of the previous analyses of cardiac function were based on the assumption 

that the material properties of the heart are highly dependent on muscle fiber orientation, but 

independent of the direction in the plane transverse to the muscle fiber axis [18]. This is to say that 

the material properties of myocardium are symmetric about the myofiber axis, which is referred to 

as transversely isotropic. The models of Humphrey and Yin [19], Humphrey et al. [20], Guccione 

et al. [21], Costa et al. [22] and Kerckhoffs at el. [23] assume myocardium as a transversely 

isotropic material. While transversely isotropic models are based on biaxial tension tests of 

myocardium, the results from shear experiments showed that the resistance of myocardial tissue to 

simple shear loading in different planes is noticeably different. This suggests that myocardial tissue 
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in diastole is an orthotropic material with distinct material properties in orthonormal planes of 

symmetry [24].  

Although transversely isotropic models have been used extensively in computational simulations 

of myocardium, which have led to great insights to the mechanics of the heart, they do not capture 

the distinct response of myocardium in the three mutually orthogonal planes. Therefore more 

recently, orthotropic models of passive myocardium have been proposed, which take into account 

the distinct material response in the mutually orthogonal planes. The pole-zero model of Hunter et 

al. [25], and the Fung type models of Costa et al. [22] and Schmid et al. [26] are among some of 

the proposed orthotropic models. These models are partly structurally based, relating to the fiber, 

sheet, and normal directions, and are partly phenomenological [17]. 

The most recent orthotropic model for passive myocardium was proposed by Holzapfel and Ogden 

[17]. We will refer to this as the H-O model. Holzapfel and Ogden treated the left ventricular 

myocardium as a non-homogeneous, thick-walled, nonlinearly elastic, and incompressible 

material. This model takes into account the muscle fiber, myocyte sheet, and sheet normal 

directions. Additionally, this model describes the general characteristics of the available biaxial 

and shear experimental data, as examined in detail in their study. The H-O model is invariant based, 

which makes it geometry independent, and is suitable to use within the finite element method [27]. 

Furthermore, it is consistent with standard inequalities required for considerations of convexity, 

strong ellipticity, and material stability[17]. 

Goktepe et al. [28] implemented the H-O model in order to perform a finite element analysis of a 

generic biventricular heart model subjected to physiological ventricular pressure. Wang et al. [29] 

made use of the H-O model in a finite element simulation of a human left ventricle (LV), where 

the geometry was determined from magnetic resonance imaging (MRI) data. Additionally, they 

investigated the sensitivity of the H-O model to parameterizing errors and compared the results 

with other constitutive models and experimental results from canine hearts. The Wang et al. group 

then introduced a modified H-O model, which takes into account the effect of residual stresses in 
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the myocardium [30]. In both of these studies, the material parameters that were used in the 

ventricular finite element simulations were obtained by fitting the H-O model to previously 

published simple shear test data from porcine myocardium [24]. Holzapfel and Ogden [17] first 

reported a set of parameters by fitting their model to this experimental data and then Goketpe et al. 

and Wang et al. independently reported their own sets of parameters from the same experimental 

data [28] and [29].  

Other studies have also used the same set of material parameters to implement the H-O model in 

their simulations. For example, Baillargeon et al. [31] used the parameters of Goktepe et al. [28] to 

implement the H-O model in order to represent a proof-of-concept simulator for a four-chamber 

human heart model created from computed topography and MRI. Some studies have used modified 

forms of the H-O model that have less material parameters. In a sense, these models have made 

limited use of the structurally based constitutive model by using less material parameters from the 

original form. For example, Krishnamurthy et al. [32] used a transversely isotropic variation of the 

H-O model, which has only four material parameters, to build LV models. That study incorporated 

myofiber and sheet architecture obtained from diffusion tensor MRI of an isolated and fixed human 

organ-donor heart, and then transformed it to a patient specific geometric model.  

Most recently, Gao et al. [33] investigated the feasibility of identifying parameters of the H-O 

model from non-invasive clinical measurements for healthy myocardium. They introduced an 

optimization scheme to first identify known parameters of a LV model by generating a set of 

synthetic strain data and then extended their optimization method to in-vivo models with clinical 

data. In this study in-vivo strain data from cine MRI, along with a set of population based pressure 

data rather than measured pressure, were used to identify material parameters. 

To our knowledge, parameter identification of the H-O material law using animal-specific strain 

data from SPAMM (SPAtial Modulation of Magnetization) MRI and synchronous pressure 

catheterization data has not yet been investigated. In this study we make use of finite element 
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models, which employ the H-O material law, and the optimization scheme proposed by Gao et al. 

[33] to estimate the eight material parameters of the H-O model using in-vivo MRI and pressure 

data from four healthy porcine LVs. Additionally, the resulting End-Diastolic Pressure-Volume 

Relationship (EDPVR) of each LV is examined to further explore the influence of the H-O model. 

Finally, the results obtained from the H-O models are compared with finite element models that 

employed the widely used constitutive model of Guccione et al.[21], which were also determined 

by optimization.   

The data used in the current study is from same animal cohort that was used in the study of 

Mojsejenko et al. [34]. The animals used in this work received care in compliance with the protocols 

approved by the Institutional Animal Care and Use Committee at the University of Pennsylvania 

in accordance with the guidelines for humane care (National Institutes of Health Publication 85-

23, revised 1996). For detail, please see Mojsejenko et al.[34]. Briefly, 3D SPAMM was performed 

in order to assess regional wall strain in four healthy adult male pigs weighing approximately 40 

kg.  The endocardium and epicardium of the LV were contoured from the 3D SPAMM images 

(Fig. 3). The reference contours were generated at early-diastolic filling and the endocardium was 

also contoured at end-diastole in order to calculate LV volume. The LV strain, volume, and contour 

data were all generated from the 3D SPAMM images and matched with the simultaneous pressure 

measurements (Fig. 4). This ensures that the data used in this study is consistent in terms of space 

and time. 

The finite element model generation procedure is also explained in detail previously [34]. The 

primary difference is that the current study focuses only on healthy left ventricular myocardium 

and the use of the H-O model.  In short, the reference state was taken to be early diastolic filling 

because it represents a relatively stress-free state as a result of minimal LV pressure. The LV 

pressure that was recorded simultaneously during MRI was used as a pressure loading boundary 

condition (Fig. 2). FE models were generated by fitting the endocardial and epicardial contours 

derived from MRI with 3D surfaces (Rapidform; INUS Technology, Inc., Sunnyvale, CA). 
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Hexahedral trilinear elements (TrueGrid; XYZ Scientific, Inc., Livermore, CA, USA) were used to 

generate the finite element mesh of the myocardium (Fig. 5). A custom MATLAB code was used 

to assign a linear distribution of myofiber orientation and myocyte sheet angles to each hexahedral 

element. For myofiber orientation angles, a distribution of -37o (at epicardium) to +83o (at 

endocardium) with respect to the circumferential direction was used based on the study of Lee et 

al.[35] and myocyte sheet angles varied from -45o (at epicardium) to +45o (at endocardium) with 

respect to radial direction following the study of LeGrice et al.[16]. A homogeneous distribution 

of the fiber and sheet angles was assumed over the entire LV. The constitutive model outlined in 

the next section was coded as a user defined material subroutine that was implemented in the 

nonlinear FE solver LS-DYNA (Livermore Software Technology Corporation, Livermore, CA). 

An explicit (central difference) time integration scheme with adaptive time stepping for stability 

was used to conduct the FE simulations 

The strain energy function per unit reference volume proposed for the H-O model is given by [17]: 

𝜓 =
𝑎

2𝑏
{𝑒𝑥𝑝[𝑏(𝐼1 − 3)] − 1} + ∑

𝑎𝑖

2𝑏𝑖

{𝑒𝑥𝑝[𝑏𝑖(𝐼4𝑖 − 1)2] − 1}

𝑖=𝑓,𝑠

+
𝑎𝑓𝑠

2𝑏𝑓𝑠
{𝑒𝑥𝑝(𝑏𝑓𝑠𝐼8𝑓𝑠

2 ) − 1} (1) 

where 𝑎, 𝑏, 𝑎𝑓 , 𝑏𝑓 , 𝑎𝑠, 𝑏𝑠, 𝑎𝑓𝑠 and 𝑏𝑓𝑠 are the eight positive material constants (𝑎 parameters have 

dimensions of stress and contribute to the magnitude of the stress-strain curve while 𝑏 parameters 

are dimensionless and contribute to the nonlinearity of the stress-strain curve). The contribution of 

isotropic terms is included in 𝐼1, transversely isotropic terms in 𝐼4𝑓, 𝐼4𝑠 and orthotropic terms in 

𝐼8𝑓𝑠. 

The four invariants used in the strain energy function are defined as follows: 

𝐼1 = 𝑡𝑟(𝐂),        𝐼4𝑓 = 𝐟𝟎. (𝐂𝐟𝟎),       𝐼4𝑠 = 𝐬𝟎. (𝐂𝐬𝟎),             𝐼8𝑓𝑠 = 𝐟𝟎. (𝐂𝐬𝟎)                                   (2) 

where f0 and s0 are unit vectors that define the myofiber direction and myocyte sheet direction, 

respectively (Fig. 5), and C is the right Cauchy-Green deformation tensor defined as (F is the 

deformation gradient tensor): 
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𝐂 = 𝐅𝐓𝐅                                                                                                                                                         (3) 

In order to avoid numerical complications in the finite element analysis of myocardium, which is 

assumed to be a nearly incompressible or slightly compressible material, the concept of 

multiplicative decomposition of the deformation gradient tensor F is used. Consequently, the strain 

energy function and second Piola-Kirchohff stress tensor were also decomposed into volumetric 

(volume-changing) and isochoric (volume preserving)  parts [27]: 

𝐅 = (𝐽
1

3⁄ I) �̅� = 𝐽
1

3 ⁄ �̅�                                                                                                                                (4) 

𝐂 = (𝐽
2

3⁄ I) 𝐂 = 𝐽
2

3⁄  𝐂                                                                                                                     (5) 

where  𝐽 = det (F) and the tensors F̅ and C̅ are the modified deformation gradient and modified 

right Cauchy-Green tensors, respectively. In the same way, modified invariants (shown with over 

bar) can be defined using C̅ instead of C in their original definition.  

The unique decoupled representation of the strain energy function is defined in the form[27]:  

𝜓(𝐂 ) = 𝜓𝑣𝑜𝑙(𝐽) + 𝜓𝑖𝑠𝑜(𝐂)                                                                                                                       (6) 

or when the strain energy is written as a function of the invariants: 

𝜓(𝐼1, 𝐼4𝑓 , 𝐼4𝑠, 𝐼8𝑓𝑠 ) = 𝜓𝑣𝑜𝑙(𝐽) + 𝜓𝑖𝑠𝑜(𝐼1̅, 𝐼4̅𝑓 , 𝐼4̅𝑠, 𝐼8̅𝑓𝑠 )                                                                      (7) 

The first part of Eq. (7) is the purely volumetric contribution to 𝜓 and in the case of 

incompressibility it denotes a Lagrange contribution and enforces the associated kinematical 

constraint[36]. In the current computational implementation, the volumetric contribution is defined 

by Eq. (8), where K is the bulk modulus and 𝐽 is the Jacobian of the deformation gradient tensor[5]. 

A penalty method was used to enforce the near incompressibility condition. 

𝜓𝑣𝑜𝑙(𝐽) =
𝐾

2
(𝐽 − 1)2                                                                                                                                   (8) 

The second part of Eq. (7) is the purely isochoric contribution to 𝜓 and its representation is the 

same as Eq. (1), but with the invariants replaced with their corresponding modified invariants. The 
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second Piola-Kirchoff stress tensor is defined as the sum of the purely volumetric and purely 

isochoric parts: 

 

𝐒 = 𝐒vol + 𝐒iso                                                                                                                                              (9) 

Using the well-known relation 𝐒 = 2
𝜕𝜓(𝐂)

𝜕𝐂
 we have: 

𝐒𝑣𝑜𝑙 = 2
𝜕𝜓𝑣𝑜𝑙

𝜕𝐂
=  𝐾(𝐽 − 1)𝐽𝐂−𝟏                                                                                                           (10) 

𝑺𝑖𝑠𝑜 = 2
𝜕𝜓𝑖𝑠𝑜

𝜕𝐂
= 𝐽−

2
3 {𝑎 𝑒𝑥𝑝(𝑏(𝐼1̅ − 3)) (𝐼 −

1

3
𝐼1̅𝐂−1)

+ 2𝑎𝑓(𝐼4̅𝑓 − 1)𝑒𝑥𝑝 (𝑏𝑓(𝐼4̅𝑓 − 1)
2

) (𝐟𝟎⨂𝐟𝟎 −
1

3
𝐼4̅𝑓𝐂−1)

+ 2𝑎𝑠(𝐼4̅𝑠 − 1)𝑒𝑥𝑝(𝑏𝑠(𝐼4̅𝑠 − 1)2) (𝐬𝟎⨂𝐬𝟎 −
1

3
𝐼4̅𝑠𝐂−1)

+ 𝑎𝑓𝑠𝐼8̅𝑓𝑠 𝑒𝑥𝑝 (𝑏𝑓𝑠𝐼8̅𝑓𝑠
2

) (𝐟𝟎⨂𝐬𝟎 + 𝐬𝟎⨂𝐟𝟎 −
2

3
𝐼8̅𝑓𝑠𝐂−1)}                                (11) 

A widely used transversely isotropic constitutive law developed by Guccione et al. was chosen to 

compare to the results of the H-O model [21]. In this model, the Fung-type exponential relation of 

strain energy for passive myocardium is as follows:  

ψ =
1

2
C(eQ − 1)                                                                                                                                         (12)  

with transverse isotropy given by:  

Q = bfE11
2 + bt(E22

2 + E33
2 + E23

2 + E32
2) + bfs(E12

2 + E21
2 + E13

2 + E31
2)                 (13) 

where the constants C, bf, bt and bfs are material parameters, E11 is the Green-Lagrange strain in 

the fiber direction, E22 is the sheet normal strain, E33 is the strain in the sheet direction and the rest 

are shear strains. For this model again we make use of decoupling the strain energy function into 

volumetric and isochoric parts. The final form of the Second Piola-Kirchoff stress is derived by 

taking the derivative of the strain energy function with respect to the deformation: 

𝐒 = 𝐾(𝐽 − 1)𝐽𝐂−1 + 2𝐽−2
3⁄ 𝐷𝑒𝑣 (

𝜕�̅�

𝜕𝐂
)                                                                                           (14) 
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where near incompressibility is also enforced with a penalty method and Dev is deviatoric 

projection operator:  

Dev(∗) = (∗) −
1

3
([∗]: 𝐂)𝐂−1                                                                                                                (15) 

The user defined material subroutine for this model was previously developed by Sun et al. [37]. 

The multi-step optimization scheme proposed by Gao et al. [33] was used to estimate the eight 

material parameters of the H-O model. Optimization was performed in three steps by minimizing 

the two following objective functions in a specific sequence:  

𝑓𝑂1 = ∑ ∑ (𝐸𝑖𝑗,𝑛 − �̅�𝑖𝑗,𝑛)
2

𝑖,𝑗=1,2,3

𝑁

𝑛=1

+ (𝑉 − �̅�)2                                                                                    (16) 

𝑓𝑂2 = ∑ ∑ (𝐸𝑖𝑗,𝑛 − �̅�𝑖𝑗,𝑛)
2

𝑖,𝑗=1,2,3

𝑁

𝑛=1

+ (
𝑉 − �̅�

�̅�
)

2

                                                                                   (17) 

where 𝑛 is the strain point within the myocardium, 𝑁 is the total number of strain points, 𝐸𝑖𝑗,𝑛 and 

𝑉 are the FE predicted end-diastolic strain and end-diastolic LV cavity volume, respectively, and 

the corresponding over bar variables represent in-vivo measured values. A total of 𝑁 = 252 points 

in the mid-wall of the LV FE model, along with 252 of the nearest LV points measured from MRI 

data, were chosen for generation of each objective function. Details of the multi-step optimization 

scheme are presented in the study of Gao et al. [33]. Briefly, in the first step all parameters are 

updated by optimizing two scaling factors 𝐶𝑎 and 𝐶𝑏 defined as follows and using 𝑓𝑂1 (Eq. (16)) 

as the objective function. 

𝑎𝑔𝑟𝑜𝑢𝑝 = 𝐶𝑎 × 𝑎0
𝑔𝑟𝑜𝑢𝑝

 ,                  𝑏𝑔𝑟𝑜𝑢𝑝 = 𝐶𝑏 × 𝑏0
𝑔𝑟𝑜𝑢𝑝

                                                                 (18)  

where 𝑎𝑔𝑟𝑜𝑢𝑝 = {𝑎, 𝑎𝑓 , 𝑎𝑠, 𝑎𝑓𝑠},   𝑏𝑔𝑟𝑜𝑢𝑝 = {𝑏, 𝑏𝑓 , 𝑏𝑠, 𝑏𝑓𝑠} and 𝑎0
𝑔𝑟𝑜𝑢𝑝

, 𝑏0
𝑔𝑟𝑜𝑢𝑝

 are an  

 

initial set of available H-O parameters. In the current study, we chose the parameters fit by Wang 

et al. to simple shear tests of Dokos et al. [24] on porcine heart samples as 𝑎0
𝑔𝑟𝑜𝑢𝑝

 and 𝑏0
𝑔𝑟𝑜𝑢𝑝
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(Table 1). In the second step 𝑎𝑓  and 𝑏𝑓 are optimized using 𝑓𝑂2 as the objective function while 

enforcing the following two constraints:  

𝑎𝑓 ≥ 2𝑎𝑠 ,                       𝑏𝑓 ≥ 2𝑏𝑠                                                                                                             (19) 

Finally, in the third step, 𝑎  and 𝑎𝑓𝑠 are updated by optimizing the scaling factor 

𝐶3 defined as follows and using 𝑓𝑂1 as the objective function [33].  

𝑎 = 𝐶3𝑎 ,                        𝑎𝑓𝑠 = 𝐶3𝑎𝑓𝑠                                                                                                        (20)       

A single step optimization scheme using the objective function 𝑓𝑂2 (Eq. (17)) was used to determine 

the four material parameters of the transversely isotropic model from Guccione et al. To minimize 

the objective function in each step of the multi-step scheme and single step scheme, a Genetic 

Algorithm (GA) technique was chosen as the optimization method using LS-OPT software 

(Livermore Software Technology Corporation, Livermore, CA). Nair et al. [38] have shown that 

GAs are robust for the optimization of cardiac material parameters in 3D models. Details of the 

genetic algorithm used in this study, along with a flow chart of the optimization procedure, are 

presented in the study of Mojsejenko et al. [34]. Briefly, for the multi-step scheme the design 

variables are 𝐶𝑎 and 𝐶𝑏 in first step, 𝑎𝑓, 𝑎𝑠, 𝑏𝑓 and 𝑏𝑠 in second step, and  𝐶3 in third step. In the 

single step scheme the design variables are the the four material parameters (C, 𝑏𝑓, 𝑏𝑡 and 𝑏𝑓𝑠). 

Within each iteration of the optimization, the software LS-DYNA runs the FE simulations 

corresponding to each set of design variables, after which LS-OPT begins the optimization using 

Eq. (16) and Eq. (17) as objective functions.  

After running the optimization with data from the four porcine cases, the final optimized material 

parameters from both constitutive models were used to generate end-diastolic pressure-volume 

relationship (EDPVR) curves for each case. To do this, the FE model of the LV was loaded with 

different end-diastolic pressures above and below the measured end-diastolic pressure to obtain the 

corresponding end-diastolic volumes. The method proposed by Klotz et al. [39], to estimate the 

EDPVR curve from a measured end-diastolic pressure and volume point, was used to generate a 
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physiological benchmark for comparison with the FE predicted EDPVR curves. The Klotz relation 

for end-diastolic pressure in mmHg versus end-diastolic volume in mL is  

𝐸𝐷𝑃 = 𝛼 .  𝐸𝐷𝑉𝛽                                                                                                                                        (21)      

where 𝛼 and 𝛽 are defined as 

𝛽 = 𝐿𝑜𝑔 (
𝑃𝑚

30⁄ ) /𝐿𝑜𝑔 (
𝑉𝑚

30⁄ ) 

𝛼 = 30/𝑉30
𝛽 

𝑉𝑚 and 𝑃𝑚 are measured volume and pressure, respectively, 𝑉30 is the end-diastolic volume at an 

end-diastolic pressure of 30 mmHg, which is defined as 

𝑉30 = 𝑉0 + (𝑉𝑚 − 𝑉0)/(𝑃𝑚/𝐴𝑛)(1/𝐵𝑛) 

𝐴𝑛 = 28.2, 𝐵𝑛 = 2.79 and 𝑉0 is the unloaded LV cavity volume or end-diastolic volume at pressure 

of 0 mmHg. In this study, instead of using an empirical identity that Klotz et al. developed to 

estimate LV volume at zero pressure [39], we used measured volume at early diastole, which is the 

closest to a zero pressure state as can be measured in-vivo. Additionally, the same value was used 

as the reference volume to build the FE models, which allows a more direct comparison to the Klotz 

et al. results.   

In order to initially validate the implementation of the H-O model into our FE framework, the 

results of the simple shear experiments of Dokos et al. [24] were replicated using the H-O model 

in a FE simulation of a single element. Independent studies by Holzapfel and Ogden [17], Goktepe 

et al.[28], and Wang et al. [29] used these results to estimate sets of the eight material parameters. 

Here we used the H-O parameters from Goktepe et al. to simulate the simple shear FE model. As 

shown in Figure 6, there is very good agreement over the entire strain range between our FE results 

and the experimental data. Additionally, the sensitivity of the H-O model to different orientations 

of myocyte sheets was tested by calculating different components of stress for one of the simple 

shear cases shown in Figure 7 (fs shear). To do this, a single element was rotated about the fiber 

direction from -45 to +45 degrees and a fixed amount of shear (maximum amount of shear shown 
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in the plot of Figure 6) was applied to the element in each orientation angle. The results indicate 

changes in different components of stress as the sample is rotated (Fig. 7). Obviously, transversely 

isotropic models of myocardium would not account for such changes. 

Table 2 shows the final results of the multi-step optimization, yielding eight material parameters of 

the H-O model for each case under investigation. The corresponding material parameters using the 

constitutive model of Guccione et al. are listed in Table 3. In order to compare the optimization 

results of the two constitutive models, the optimized parameters in Tables 2 and 3 were used to run 

FE simulations corresponding to each of the four LV cases. Then, the mean squared error (MSE) 

between FE predicted strains and MRI measured strains, using Eq. (22), was computed for each 

case (Table 4). It can be seen that the MSE values for cases 1 through 3 are in close agreement, 

differing by 3% - 7% from each other, whereas case 4 showed more deviation with a difference of 

14%. The reason for these differences is discussed in the next section. 

𝑀𝑆𝐸 = ∑ ∑ (𝐸𝑖𝑗,𝑛 − �̅�𝑖𝑗,𝑛)
2

𝑖,𝑗=1,2,3

𝑁

𝑛=1

                                                                                                        (22) 

In order to better understand the influence of the sheet angles on the fit of the H-O models, all of 

the LV simulations were rerun with sheet angles that aligned with the radial direction, rather than 

varying by ±45 degrees. As expected, the MSE values for the cases with the Guccione material 

law were unchanged, due to the transversely isotropic nature of the law. However, the MSE values 

for the cases with the H-O material law increased by 6%, meaning that the difference between the 

FE predicted and MRI measured strain increased, leading to a worse fit of the experimental data. 

This indicates that the H-O model is sensitive to the orthonormal basis that is used to describe the 

fiber, normal, and sheet directions and that more realistic sheet angles lead to a better fit between 

the model and experimental data.  

 

As an additional step to qualitatively compare the results of the two constitutive models, the 

EDPVR curve was used, which is a powerful tool in both the medical and biomechanics 
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communities since it characterizes the passive properties of the ventricles. Furthermore, the 

parameter estimation in this study is based on measured strains, cavity volume and pressure at the 

end of diastole, which justifies the use of the EDPVR curve to have a qualitative understanding of 

the two different constitutive models. As a benchmark for the EDPVR curve, we used the method 

developed by Klotz et al. [39]. They proposed a single-beat approach to estimate the whole EDPVR 

from one measured volume-pressure point. Figures 8 through 11 show the EDPVR curves obtained 

using the H-O model, model of Guccione et al., and the physiological benchmark curve using the 

Klotz et al. method. These figures clearly show that the H-O model gives better agreement with the 

Klotz curve. 

The goal of this study was to quantify the eight material parameters of the structurally based H-O 

constitutive model using in-vivo strain and synchronous pressure data from four healthy porcine 

LV cases. The parameter estimation was achieved by using a combination of FE simulations and a 

recently developed optimization scheme specifically for the H-O model [33]. Additionally, four 

material parameters for the widely used phenomenological constitutive model developed by 

Guccione et al. [21] were obtained and the corresponding results compared.  

Based on the results of our study, the H-O model was shown to produce a more realistic estimate 

of the ventricular mechanics, by generating a more physiological EDPVR curve. Figures 8 through 

11 show the EDPVR curves obtained using both constitutive models, as well as a physiological 

benchmark curve using the method by Klotz et al. [39]. A common trend in all four cases is that 

the EDPVR curve predicted by the H-O model is closer to the Klotz curve, indicating a 

physiological EDPVR. The slope of the EDPVR curve is an indicator of the overall stiffness of the 

myocardium during the passive phase of the cardiac cycle. A closer look at Figures 8 through 11 

reveals that the H-O model also predicts the myocardial stiffness more exactly than model of 

Guccione et al. over the entire range of volumes. This is very advantageous, since this was achieved 

by fitting the constitutive model to measured data only from end-diastole. 
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Considering that the identical fiber orientation angles were used in both models, one reason the 

results of the H-O model is more realistic is that the mathematical formulation takes into account 

the myocyte sheet angles, which leads to more realistic description of the morphology of the 

myocardium. The final results in the form of MSE values for the two constitutive laws (Table 4) 

indicate that MSEs are very close, but the H-O model has MSE values that are slightly higher than 

the Guccione model. One explanation is that in this study we are assigning assumed distributions 

of myofiber orientation and myocyte sheet angles to a structurally based model. Structurally based 

models sense the material only from its assigned architecture, unlike phenomenological models 

that follow the general behavior of material. This was also observed when the simulations that used 

the H-O model were assigned more realistic sheet architecture. Specifically, when assigning the 

assumed variation in sheet angles versus the case when the sheet angles were assumed to be directed 

radially toward the center of LV, the MSE values decreased indicating a better fit.  Obviously, 

improvement in the sheet angle distribution does not affect the results of transversely isotropic 

models. Based on the results of four LV cases in this study, the best way to incorporate myocardium 

architecture when using the H-O model (or any other structurally based constitutive law) is by 

mapping animal-specific, real fiber and sheet angles (e.g. from DTMRI) to the FE model. This is 

the subject of future investigations for the authors.  

In some studies, the material parameters were obtained by fitting the H-O model to simple shear or 

biaxial experimental data of ex-vivo heart tissues and then used to simulate beating LVs, (for 

example see [28] [29] [32]). However, in the current study the parameters of the H-O model were 

quantified using in-vivo strain data from MRI. Despite some studies that used reduced forms of the 

H-O model with less material parameters (for example see [32]), in the current study the proposed 

optimization scheme of Gao et al. was used to quantify all eight material parameters. In addition, 

by using a larger number of 3-D strain data points (252 points, all 6 components of the strain tensor 

at each point) in the optimization procedure, this adds to the reliability of the optimization results 

in this study. In the work by Gao et al., a smaller number of strain points were used in the 
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optimization, and radial strains were not used to quantify the material parameters of the H-O model. 

In addition to the quantity of experimental data, the 3D SPAMM MRI data used in this study are 

more accurate at capturing myocardial deformation than the cine MRI data used in previous studies. 

Furthermore, in this study synchronous pressure catheterization data was used to load the FE model, 

while in other implementations of the H-O model average or population based pressure data was 

used [29] [33]. 

There are some limitations associated with this implementation of the constitutive models. One 

limitation is that the FE models lack the pericardium and RV. The absence of the RV decreases the 

accuracy of estimated parameters as discussed previously by Mojsejenko et al. [34]. Another 

limitation is using early diastolic filling, where LV is under minor loading, as the reference state of 

the FE models. Additionally, the residual active tension in the myocardium is not taken into 

account, which could be a source of error in the parameter estimation. The techniques proposed by 

Krishnamurthy et al. [32] and Xi et al.[40] will be used in future investigations to incorporate these 

effect to the FE model used to estimate parameters. Despite these limitations, the implementation 

of the H-O model in the current study demonstrates enhanced capabilities for fitting constitutive 

models using in-vivo data.     
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Table 1: Parameters of Wang et al. [29] used as the initial set of parameters in step 1 

𝑎 (𝑘𝑃𝑎) 𝑏 𝑎𝑓(𝑘𝑃𝑎) 𝑏𝑓 𝑎𝑠(𝑘𝑃𝑎) 𝑏𝑠 𝑎𝑓𝑠(𝑘𝑃𝑎) 𝑏𝑓𝑠 

0.2362 10.810 20.037 14.154 3.7245 5.1645 0.4108 11.300 

 

Table 2: Optimized parameters of H-O model to in-vivo healthy myocardium of 

four cases under investigation 

 

Parameters 𝑎 (𝑘𝑃𝑎) 𝑏 𝑎𝑓(𝑘𝑃𝑎) 𝑏𝑓 𝑎𝑠(𝑘𝑃𝑎) 𝑏𝑠 𝑎𝑓𝑠(𝑘𝑃𝑎) 𝑏𝑓𝑠 

Case 1 1.055 20.85 4.659 0.23 0.224 0.11 1.833 21.80 

Case 2 2.401 54.05 0.271 151 0.128 47.33 4.176 56.50 

Case 3 0.6542 20.85 6.959 2.15 3.407 1.05 1.219 21.79 

Case 4 1.780 37.83 0.1435 200.2 0.012 8.72 3.096 39.55 

Table 3 : Optimized parameters of Guccione et al. model to in-vivo healthy myocardium of four 

cases under investigation 

Parameters 𝐶 (kPa) 𝐵𝑓 𝐵𝑡 𝐵𝑓𝑠 

Case 1  0.493 38.06 4.11 45.07 

Case 2 0.589 98.44 12.36 26.45 

Case3 0.225 93.78 11.86 18.36 

Case 4 0.391 92.6 1.11 49.27 
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Table 4: MSE between in-vivo MRI and FE predicted strains using two constitutive models and 

optimized parameters from Tables 2 and 3 

 MSE, Holzapfel-Ogden model MSE, Guccione et al. model 

Case 1                            7.55                               7.11 

Case 2                            15.37                                14.87 

Case 3                            10.90                                10.17 

Case 4                             10.13                                8.64 
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Figure 1: Micro structure of myocardium. Vectors a, b and c define local material axes, 

respectively: fiber, sheet and normal directions [1] 

 

Figure 2 : Pressure versus time collected from LV catherization of case 1. Indicated points are 

early-diastolic and end-diastolic time points. 
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Figure 3: MRI data were contoured and converted to surface geometry and finite element meshes 

were projected to the surfaces 

 

Figure 4: Short axis view of 3D SPAMM images from case 1 at end diastole 
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Figure 5: Finite Element model of porcine LV for case 1, the frame shows local fiber (𝐟𝟎), sheet 

(𝐬𝟎) and normal (𝐧𝟎) directions in H-O model schematically. 
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Figure 6: Fit of the H-O model (solid lines) to the experimental data (circles) of Dokos et al.[24]. 

Material parameters of Goktepe et al. [28] used for H-O model. 
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Figure 7: Variation of stress components vs. orientation angle of single element (rotation about 

fiber direction) for one simple shear case (fs shear), the amount of shear applied on the element is 

fixed (=0.5). 
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Figure 8: EDPVR curve predicted by H-O model (blue), model of Guccione et al. (red) and 

method of Klotz et al. (green) as a physiological benchmark for case 1. 

 

Figure 9: EDPVR curve predicted by H-O model (blue), model of Guccione et al. (red) and 

method of Klotz et al. (green) as a physiological benchmark for case 2. 
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Figure 10: EDPVR curve predicted by H-O model (blue), model of Guccione et al. (red) and 

method of Klotz et al. (green) as a physiological benchmark for case 3. 

 

Figure 11: EDPVR curve predicted by H-O model (blue), model of Guccione et al. (red) and 

method of Klotz et al. (green) as a physiological benchmark for case 4. 
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Chapter Three: Estimating Reference Configuration of the Heart 

In order to create realistic computational models, researchers increasingly make use of magnetic 

resonance images (MRI) of the heart. In addition to capturing geometric features, special imaging 

sequences (such as tagged MRI) can be used to obtain a realistic description of myocardial 

deformation. This deformation field can eventually be used, in combination with finite element 

(FE) modeling and numerical optimization, to quantify the nonlinear material properties of the 

heart. 

In FE methods (and other computational modeling methods as well), using a good estimate of the 

initial unloaded configuration is a key factor to obtain realistic deformation and distribution of 

stress. Such a reference state rarely exists during a normal cardiac cycle, due to a continuously 

present physiological pressure load. Consequently, MR images of the heart, which are used to 

construct FE models, can only represent loaded states. Different assumptions in the literature have 

been made to improve the approximation of using a loaded configuration as a reference state. Some 

studies have used the early-diastolic geometry of the heart (or ventricles) as the reference state of 

their FE model [7], [41], while others have used the mid-diastolic state [42]. In the majority of these 

cases the specific reference state was chosen because the LV pressure was “at a minimum”. 

However, the ventricle was still partially loaded, i.e., none of these states represent the true zero 

pressure or stress free configuration of the heart [39].  

Several methods have been suggested to estimate the unloaded configuration of a deformed 

structure.  In one such approach, the unloaded configuration of a soft structure is identified from a 

known deformed configuration by using conventional finite elasticity balance equations along with 

a solution procedure that treats the reference configuration as the unknowns [43]. Another method 

is based on a multiplicative decomposition of the deformation gradient tensor, which is typically 

useful in growth and remodeling studies [44]. There are also less direct methods, which are based 

on iterative schemes that are coupled to parameter identification methods for evaluating 
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biomaterials [32]. Recently, Bols et al. proposed the backward displacement method which is able 

to solve the inverse problem of finding the unloaded configuration based on fixed-point iterations 

[45]. The goal of that study was to assess the unloaded configuration of patient-specific blood 

vessels. The implementation of the method is straightforward and it is not computationally 

intensive compared to previously developed methods. Several of these unloading methods have 

been implemented in studies that focused on computational modeling of the cardiovascular system 

[30, 32, 46]. However, no studies have been conducted that investigate the effect of utilizing an 

unloaded versus partially loaded reference configuration when using FE modeling and optimization 

to predict the mechanical properties of the myocardium. 

In our preliminary study, the method of Bols et al. [45] was adapted to unload the geometry of five 

healthy porcine left ventricle (LV) models, which were created from in-vivo MRI data that was 

contoured at early-diastole. This provided two FE models for each of the five cases, (1) with a 

reference geometry based on early-diastole and (2) with a reference geometry that is based on the 

estimated unloaded state. In order to study the effect of unloading, passive material parameters of 

the myocardium were identified using a technique that uses a combination of MRI/pressure data, 

FE modeling, and numerical optimization [34]. The ultimate goal was to see if the choice of an 

early-diastolic (partially loaded) or unloaded reference state affects the predicted material 

properties. After each case was processed with the optimization technique, the resulting properties 

were then used in the simulation of equi-biaxial extension, in order to visualize the predicted fiber 

and cross-fiber stiffness.  

In this study, five healthy adult male pigs weighing approximately 40 kg were used in order to 

assess in-vivo cardiac function (Table 5). The animals used in this work received care in compliance 

with the protocols approved by the Institutional Animal Care and Use Committee at the University 

of Pennsylvania in accordance with the guidelines for humane care (National Institutes of Health 

Publication 85-23, revised 1996). The data used in the current study is from the same animal cohort 

that was used in the study of Mojsejenko et al. [34]. Briefly, 3D SPAMM (SPAtial Modulation of 
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Magnetization) MRI was performed in order to assess regional wall strain and contours of the LV 

epicardium and endocardium. The reference contours were generated at early-diastolic filling and 

the endocardium was also contoured at end-diastole, in order to calculate LV volume. FE models 

were generated by fitting the endocardial and epicardial contours with 3D surfaces (Rapidform; 

INUS Technology, Inc., Sunnyvale, CA). Hexahedral trilinear elements (TrueGrid; XYZ Scientific, 

Inc., Livermore, CA, USA) were used to generate the finite element mesh of the myocardium. A 

custom MATLAB code was used to assign a linear distribution of myofiber orientation and 

myocyte sheet angles to each hexahedral element. For myofiber orientation angles, a homogeneous 

distribution of -37o (at epicardium) to +83o (at endocardium) with respect to the circumferential 

direction was used based on the study of Lee et al. [35]. The strain, volume, and contour data were 

all generated from the 3D SPAMM images and matched with the simultaneous LV pressure 

measurements. This ensures that the data used in this study is consistent in terms of space and time. 

The LV pressure was used as a pressure loading boundary condition in the model (end-diastolic 

pressure for FE simulations in the material parameter estimation and early-diastolic pressure for 

FE simulations in the unloading routine). The constitutive model outlined in section 2.2 was coded 

as a user defined material subroutine that was implemented in the nonlinear FE solver LS-DYNA 

(Livermore Software Technology Corporation, Livermore, CA). An explicit (central difference) 

time integration scheme with adaptive time stepping for stability was used to conduct the FE 

simulations. 

The passive material properties of the myocardium were assumed to be nearly incompressible and 

transversely isotropic with respect to the local myofiber direction. The diastolic mechanics are 

described by the strain energy function for passive myocardium, in which a Fung-type exponential 

relation is used [21]. 

𝜓 =
1

2
C(eQ − 1)                                                                                                                                        (23) 

With transverse isotropy given by 
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Q = bfE11
2 + bt(E22

2 + E33
2 + E23

2 + E32
2) + bfs(E12

2 + E21
2 + E13

2 + E31
2)                 (24) 

where the constants C, bf, bt and bfs are material parameters, E11 is the Green-Lagrange strain in 

the fiber direction, E22 is the sheet normal strain, E33 is the strain in the sheet direction and the rest 

are shear strains. To enforce incompressibility, the strain energy function is decoupled into 

volumetric and isochoric parts. The final form of the Second Piola-Kirchoff stress is derived by 

taking the derivative of the strain energy function with respect to the deformation: 

𝐒 = 𝐾(𝐽 − 1)𝐽𝐂−1 + 2𝐽−2
3⁄ 𝐷𝑒𝑣 (

𝜕�̅�

𝜕𝐂
)                                                                                              (25) 

where near incompressibility is enforced with a penalty method and Dev is deviatoric projection 

operator:  

Dev(∗) = (∗) −
1

3
([∗]: 𝐂)𝐂−1                                                                                                               (26) 

A Genetic algorithm (GA) technique was chosen for the optimization, and was performed using 

the software LS-OPT (Livermore Software Technology Corporation, Livermore, CA). In a 

previous study GAs were found to be a robust method for optimizing cardiac material parameters 

in 3D models. Details of the method, which was also used in the current study, can be found in 

[34]. Briefly, the material parameters in Equations 23 and 24 (C, bf, b𝑡 , bfs) were optimized within 

the ranges previously reported for normal myocardium [47]. The objective function that was 

minimized during the optimization was taken to be the mean squared error (MSE) between MRI 

measured and FE predicted strains as well as the normalized difference in LV cavity volume, both 

at end-diastole. A total of N=252 points (centroids of midwall elements) were compared to the 

nearest LV points from the MRI data where strain was measured. The MSE was defined as 

𝑀𝑆𝐸 = ∑ ∑ (𝐸𝑖𝑗,𝑛 − �̅�𝑖𝑗,𝑛)
2

𝑖,𝑗=1,2,3

𝑁

𝑛=1

+ (
𝑉 − �̅�

�̅�
)

2

                                                                               (27) 
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where 𝑛 is the strain point within the myocardium, 𝑁 is the total number of strain points, 𝐸𝑖𝑗,𝑛 and 

𝑉 are the FE predicted end-diastolic strain and end-diastolic LV cavity volume, respectively, and 

the corresponding over bar variables represent in-vivo measured values. 

In this study, the unloading of MRI derived geometry is dependent on the material parameters of 

the constitutive model incorporated in the FE solver, since multiple FE solutions are required to 

obtain the unloaded configuration [45]. Therefore, material parameter estimation and unloading of 

the geometry are coupled together. The outline of the two major steps that were used is as follows: 

in the first step, parameters of the passive constitutive law are estimated by using early-diastolic 

geometry (loaded configuration) as the reference configuration of the FE model. The details of the 

FE model and parameter estimation procedure are given in chapter 2. Clearly, the material 

parameters estimated at this step are dependent on the assumed reference configuration in the FE 

model, which is in a loaded state. In the second step, the unloaded configuration is obtained using 

material parameters estimated in the first step. In order to unload the LV geometry, the backward 

displacement method is used; in this method a given target geometry (early-diastolic geometry 

derived from MRI) and a load (early-diastolic pressure measured via catheterization) are used in a 

fixed point algorithm in which an iteratively updated displacement field is subtracted from the 

target geometry (Figure 12). The first estimate of the unloaded geometry was chosen to be the 

early-diastolic geometry and the final estimate was assumed to be the one that when loaded to the 

early-diastolic pressure, matches the target geometry best. In order to further refine the estimate of 

the unloaded geometry and material properties, these two steps were repeated until the unloaded 

geometry did not change. Specifically,  the estimate of the unloaded geometry from the previous 

set of steps was used as the reference configuration of the FE model in the material parameter 

estimation process. Then, these updated properties were used to generate a new estimate of the 

unloaded geometry. A flowchart of the unloading-parameter estimation scheme is shown in Figure 

13. On average, each case underwent three sets of material parameter estimation and unloading. 
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Parameter estimations for all cases converged to the optimized values in less than 30 iterations of 

the Genetic Algorithm and each set of the unloading scheme converged to the final estimate of 

unloaded configuration in less than 10 iterations (Figure 14). Each of the 5 cases had different 

levels of pressure at early-diastole (Table 5), which affected the amount of unloading that was 

estimated. For the cases when the early-diastolic pressure was low, the amount of unloading was 

less, as compared to when the pressure was high (Table 6). This is intuitive, since a low pressure 

causes the LV to be close to an unloaded state. The amount of unloading ranged from 3.2 mL to 

11.15 mL, which is directly related to the level of early-diastolic pressure and material stiffness.  

The optimized material parameters before and after unloading are listed in Table 6. It should be 

noted that the agreement between the FE model predict strain and MRI measured strain (as 

indicated by the MSE) was comparable in each of the 5 cases, when comparing the results of using 

the loaded vs. unloaded reference state. It is clear that in most cases, the material parameters 

changed noticeably after unloading. Since the contribution of the first parameter (𝐶) and other 

parameters (𝑏𝑓 , 𝑏𝑡 and 𝑏𝑠) in the strain energy function (Equation 23) are coupled it is difficult to 

infer a meaningful conclusion, regarding changes in stiffness, only from their numeric values. In 

order to better visualize the effects of unloading the LV on predictions of myocardial stiffness, we 

used the estimated parameters to plot stress vs. strain curves of the material based on simulated 

equi-biaxial extension tests. From these plots, it is clear that in all cases, the computational model 

predicts a softer passive myocardium after unloading. Case 1 showed the smallest change in 

stiffness, but this was also the case that unloaded the least. The other cases showed a larger change 

in stiffness, but converged to the final values after 3 sets of the unloading scheme. 

The average stress in the LV wall also changed due to unloading (Table 7 and Figure 15). The 

global average of stress in the myofiber direction decreased in all of the cases, except for case 1. 

Since the material properties of the myocardium became less stiff, due to using the unloaded 
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reference geometry in the optimization scheme, the stress decreased even though the ventricles are 

loaded to the same end diastolic pressure.  

The stress-strain curves in Figures 16 through 20 are used merely as an estimate of overall 

myocardial stiffness since in reality, the deformation and loading of myocardium is more 

complicated than a biaxial stress-strain state. The general trend in all cases is that using an unloaded 

configuration for the LV FE model results in a softer passive myocardium. The decrease in 

stiffness, when using the unloaded configuration, could be explained as follows: in the parameter 

estimation process, the FE solver inflates the reference configuration of the LV to the end-diastolic 

pressure and then optimum parameters are chosen in a way such that the deformation in the FE 

model at the end-diastolic point matches the best with in-vivo measured strains. For unloaded 

models, a relatively larger deformation is required to reach to the measured deformation field 

because the loaded (not-unloaded) models have already undergone some deformation without any 

applied pressure load. This means that the unloaded models undergo larger deformation under the 

same load, which is only possible if the material is softer.  

The material parameters determined in the current study showed variability from case to case 

(Table 6). It should be noted that this type of variability has been observed in several previous 

studies of normal myocardium, where the values of 𝐶, 𝑏𝑓 , 𝑏𝑡 , and 𝑏𝑠 varied by as much as a factor 

of 5 within the same group of animals [47-49].  Given the results of the current study, as well as 

previous studies, there appears to be natural variability in ventricular stiffness within an animal 

group. 

Figure 21 shows myofiber stress vs. strain curves from the simulated equi-biaxial extension test 

using the results of this study (before and after unloading) and a previous study that used four 

isolated arrested pig hearts undergoing passive inflation of the left ventricle [47]. In that study, a 

similar approach was used to estimate the passive material parameters, i.e., using a combination of 

tagged MRI/pressure measurements, FE modeling, and numerical optimization. Clearly, after 

unloading the LV model, the myofiber stiffness is closer to the stiffness predicted by the previous 
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study, which used unloaded (isolated hearts) as the reference configuration of the LV models. This 

indicates that unloading the heart does have a significant influence on the determination of the 

myocardial stiffness, when using the combined MRI/modeling approach. 

To investigate the effect of unloading on predicting the pressure-volume (PV) relationship 

of the LV, the experimentally measured PV data for one case (case 4) was compared with 

the corresponding FE predicted values (Figure 22). It is clear that the unloaded model 

resulted in a more accurate prediction of the PV data compared to the early-diastolic 

reference state model. 

There are several limitations associated with the presented work. The contribution of residual 

stresses in the myocardial tissue is not taken to account, even though the effect of these stresses are 

relatively small in diastole [30]. Moreover, the transversely isotropic constitutive law used in this 

study is not completely consistent with the morphology and structure of myocardium [24]. In future 

works, this material law will be replaced with a structurally based material law [17]. Additionally, 

in the current study, average myofiber angles in porcine heart were assigned to the myocardium. In 

the future, animal specific distribution of myofiber angles obtained from diffusion tensor images 

(DTI) will be used [50].  

In this study, in-vivo MRI and pressure catheterization data of five healthy porcine heart were used 

to measure the deformation and create 3D FE models. The LV models were numerically unloaded 

and the passive parameters of the material law embedded in FE solver were estimated using both 

the loaded and unloaded reference state models. Final results indicate that the unloaded 

configuration results in better approximation of myocardium response that is in good agreement 

with previous studies. Specifically, passive stiffness of myocardium decreases by unloading the 

reference state of the model, which is initially taken from MRI as the early-diastolic state. This 

study shows that numerically unloading the MRI-derived model is an essential step toward 

developing a more realistic representation of LV mechanical function. This will play a key role 
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when applying these approaches to build patient-specific computational models for assessing 

myocardial health. 
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Table 5: Five studied cases and their physiological characteristics 

Case 

# 

Early-diastolic 

pressure (𝑘𝑃𝑎) 

End-diastolic 

pressure (𝑘𝑃𝑎) 

Early-diastolic 

volume (𝑚𝐿) 

End-diastolic 

volume (𝑚𝐿) 

1  0.04 0.90 47.1 61.0 

2 0.60 2.78 57.6 71.6 

3 0.56 2.22 54.7 68.8 

4 0.54 1.92 35.9 57.0 

5 0.94 2.17 49.9 56.1 
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Table 6: Results of the material parameter estimation. For each case, the first and second row 

show optimization results when loaded and unloaded geometries were used as the reference 

configuration of the FE model, respectively. 

Case # 
FE reference volume (𝑚𝐿) 𝐶 (𝑘𝑃𝑎) 𝑏𝑓 𝑏𝑡 𝑏𝑓𝑠 𝑀𝑆𝐸 

1 

47.1 0.493 38.06 4.11 45.07 7.11 

43.9 0.433 37.88 4.195 45.41 7.09 

2 

57.6 7.086 
11.53 3.70 3.70 

15.37 

50.3 0.208 79.21 24.94 9.83 15.26 

3 

54.7 
0.589 98.44 12.36 26.45 

14.87 

49.3 
6.719 7.95 1.21 2.38 

15.01 

4 

35.9 
0.238 87.54 12.47 16.69 

10.30 

24.75 
0.343 29.41 4.62 5.46 

10.53 

5 

49.9 
3.914 49.42 1.00 12.05 

5.39 

44.4 4.944 20.40 1.07 8.57 6.09 
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Table 7: Global avera ge of LV stress in the myofiber direction at end-diastole (kPa). Note, each case was loaded 

to the measured end diastolic pressure to generate the stress in the LV. 

Case # 

Before 

unloading 

After unloading % Decrease 

1  
1.42 1.42 0% 

2 
3.35 3.24 3.3% 

3 
3.33 3.14 5.7% 

4 
2.94 2.73 7.1% 

5 
4.08 3.56 12.7% 
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Figure 12: Backward displacement method applied to LV model. X represents nodal coordinates 

of consecutive estimates of unloaded geometry and x represents nodal coordinates of these 

estimates when inflated to early-diastolic pressure. xm is the nodal coordinates of target geometry 

(MRI derived geometry at early-diastole) 
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Figure 13: The flowchart of the unloading-parameter estimation scheme 
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Figure 14: Root Mean Square (RMS) of distance between nodal points on epicardium and 

endocardium of inflated and target geometries (total of 1064 points) 

 

Figure 15: Contours of first principle stress (kPa) in a mid-ventricle slice at end-diastole 

before (left) and after (right) unloading 
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Figure 16: Biaxial stress vs. strain in fiber (solid lines) and transverse sheet (dashed lines) before 

unloading (blue) after first unloading (in red), after second unloading (in green) and after third 

unloading (in cyan, only for case 2 and 4) 

 

Figure 17: Biaxial stress vs. strain in fiber (solid lines) and transverse sheet (dashed lines) before 

unloading (blue) after first unloading (in red), after second unloading (in green) and after third 

unloading (in cyan, only for case 2 and 4) 
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Figure 18: Biaxial stress vs. strain in fiber (solid lines) and transverse sheet (dashed lines) before 

unloading (blue) after first unloading (in red), after second unloading (in green) and after third 

unloading (in cyan, only for case 2 and 4) 

 

Figure 19: Biaxial stress vs. strain in fiber (solid lines) and transverse sheet (dashed lines) before 

unloading (blue) after first unloading (in red), after second unloading (in green) and after third 

unloading (in cyan, only for case 2 and 4) 
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Figure 20: Biaxial stress vs. strain in fiber (solid lines) and transverse sheet (dashed lines) before 

unloading (blue) after first unloading (in red), after second unloading (in green) and after third 

unloading (in cyan, only for case 2 and 4) 

 

Figure 21: Average of five cases’ myofiber stress vs. strain in a biaxial test, before unloading (in 

blue), after unloading (in green) and results of reference [47] (average of four cases) 
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Figure 22: Comparison of experimentally measured LV pressure versus volume during 

diastole (case 4) to the values predicted by the models before and after unloading. Using 

the numerically unloaded reference state more precisely described the diastolic PV 

relationship. 
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Chapter Four: Myofiber Architecture Sensitivity Analysis 

The goal of this study was to investigate the sensitivity of computational models of the heart to 

their incorporated myofiber architecture during diastole. This architecture plays a critical role in 

the mechanical and electrical function of the heart and changes after myocardial tissue remodeling, 

which is associated with some of the most common heart diseases. In the current study, a left 

ventricular finite element (FE) model of the porcine heart was created using magnetic resonance 

images (MRI), which represents the in-vivo geometry. Various myofiber architectures were 

assigned to the FE mesh, in the form of fiber and sheet angles. A structural based material law was 

used to model the behavior of passive myocardium and its parameters were estimated using 

measured in-vivo strains and cavity volume from MRI. The final results showed noticeable 

sensitivity of the stress distribution to both the fiber and sheet angle distributions. This implies that 

a structural based material law that take into account the effect of both fiber and sheet angle 

distributions should be used. The results also show that even though the simulation results improve 

by using available data from histological studies of myocardial structure, the need for 

individualized myofiber architecture data is crucial.   

The myocardium of the left ventricle (LV) is predominantly composed of bundles of myofibers, 

which have s significant effect on both the mechanical and electrical function of the heart. The 

architecture of these myofibers has orientation angles that vary transmurally, which enables the 

heart to eject blood in the most efficient manner as it deforms [17]. Some of the first quantitative 

measurements of myofiber orientations were collected from canine ventricles [13]. Subsequent 

investigations showed that myocardial microstructure is composed of discrete layers, which run 

transmurally across the ventricular wall and are referred to as sheets [14, 15]. LeGrice et al. 

provided a more detailed and systematic account of the architecture of these sheets [16]. Finite 

element (FE) models of the heart incorporate constitutive laws that simulate the anisotropic and 
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nonlinear behavior of the myocardium, which rely on a description of myofiber architecture (i.e., 

the distribution of fiber and sheet orientation angles) [17].  

A common approach to incorporate anisotropy of myocardium in FE models of the heart is to 

assume a uniform distribution of fiber and sheet angles based on the information obtained from 

histological studies [51, 52]. In order to create more realistic FE models of the heart, it is crucial to 

investigate the sensitivity of these models to myofiber architecture. Previously, Wang et al. [29] 

studied the sensitivity of a human LV model to changes in myofiber architecture. The FE model 

incorporated a structural based material law [17], which employed a set of material parameters that 

were taken from simple shear tests on specimens of excised pig heart previously reported by Dokos 

et al. [24]. The results of that study imply that the transmural distribution of myofiber stress and 

strain are highly sensitive to fiber angles distribution but insensitive to sheet angles.  However, 

those results were taken from a single longitudinal region. In the current work, a comprehensive 

animal specific model is constructed to conduct a similar sensitivity study. Here the same 

constitutive law used in [29] was used to model healthy LV myocardium of a porcine heart in 

diastole. In order to use realistic animal specific material parameters in the constitutive model, in-

vivo strains were measured from magnetic resonance imaging (MRI) and used for parameter 

estimation of the material law. A FE model was created from the in-vivo images of the LV and was 

assigned different combinations of fiber and sheet angles. Parameter estimation was performed by 

minimizing the difference between MRI measured and FE predicted strains and cavity volumes. 

Both were assess at the same end-diastolic pressure, which was measured via catheterization.  

It should be noted that the same experimental MRI and pressure data, along with the modeling and 

optimization techniques, that were used in the previous two chapters were also employed in this 

study. Previously, Lee et al. [35] measured myofiber orientation angles in five in vitro porcine 

hearts and reported the transmural change of average myofiber angle with respect to the 

circumferential direction from −40° (at epicardium) to 80° (at endocardium). Myocyte sheet angles 

following the study of LeGrice et al. [16] on canine hearts varied from -45o (at epicardium) to +45o 
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(at endocardium) with respect to radial direction. In the current study, a custom MATLAB code 

was used to assign a linear distribution of myofiber and myocyte sheet orientation angles to each 

hexahedral element. It has been shown that a linear distribution of myofiber angles across the 

myocardium provides a relatively close match to DTMRI data [52]. In order to investigate the 

sensitivity of left ventricular response to changes of myofiber architecture, we assumed seven 

different transmural distributions of myofiber and sheet angles.  Each set of angles was assigned to 

an identical FE model of a porcine LV (Table 8).  

Parameters of the material law were estimated for each one of the FE models using the procedure 

described in Chapter 2 (total of 7 parameter estimation problems). The final MSE values are listed 

in Table 8. Upon inspection of the MSE values obtained from the structural based material law, it 

is clear that the MSE values vary when identical FE models with different myofiber architecture 

were used during the parameter estimation. The best fit was obtained when a distribution of −45° 

to 90° for the myofiber angle and a distribution of −45° to +45° for the sheet angle were used. 

Considering the variability between animals used in different studies, this result is consistent with 

the results of previous histological studies [16, 35]. In order to study the sensitivity of the stress 

distribution to myofiber architecture, the estimated parameters of the material law were used in FE 

models which were loaded to the same end-diastolic pressure. Figures 24-26 show the results of 

these FE simulations in the form of the circumferential distribution of myofiber stress at three 

regions of the LV model, i.e., near the base, mid-ventricle and apex. The stresses in these figures 

are the average of the three neighboring transmural elements (transmural average).  

Based on the results of the current study (Figs. 24-26), the myofiber stress distribution is sensitive 

to both fiber and sheet angle distributions in several regions of the FE model of the in-vivo LV. 

Although the stresses are affected more by fiber angles compared to sheet angles, their dependence 

to sheet angles is not negligible. Notably, Wang et al. did not observe sensitivity of stresses to sheet 

angles in their study with FE models of a human LV  [29]. This could be due to the fact that in that 

study, stress was only assessed at one longitudinal section of the LV model, i.e., the circumferential 
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stress distribution was not assessed. In the current study it can be seen that at multiple 

circumferential locations the fiber stress varies when the sheet angle distribution changes (where 

dashed lines in Figs. 24-26 deviate). The contribution of sheet angles on the myofiber stress 

distribution is due to terms in Eq. (11) that contain I4̅s and I8̅fs(sheet and fiber-sheet coupling 

invariants).  In contrast, constitutive laws that treat the myocardium as transversely isotropic 

relative to the local myofiber direction (for example see [21]) cannot capture the effect of variations 

of local myocyte sheet directions. 

 

The results of this study show that the in-vivo stress distributions of the LV during diastole are 

sensitive to both fiber and sheet angle distributions. Therefore, precise patient-specific descriptions 

of myofiber architecture should be an essential part of a realistic computational model of the heart. 

The results of this study also imply that in order to have a more realistic computational simulation 

of myocardial mechanics, structural based material laws that take into account the effect of both 

myofiber and sheet angle distributions should be used. 
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Table 8: Seven variations of myofiber orientation and myocyte sheet angles assigned to the FE 

model (angles in degrees). Shaded cells represent average measured values from references [35] 

and [16]. 

Fiber angle at 

epicardium 

Fiber angle at 

endocardium 

Sheet angle at 

epicardium 

Sheet angle at 

endocardium 

MSE  

values 

-20 40 -45 45 7.283 

-30 60 -45 45 7.166 

-40 80 -45 45 7.033 

-45 90 -45 45 6.984 

-70 90 -45 45 7.017 

-40 80 -30 30 7.242 

-40 80 -60 -60 6.999 
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Figure 23: (a) The FE model of the LV used in this study. The local myofiber, sheet and normal 

angles incorporated in the structure based material law are shown in a representative element. (b) 

Short axis view of the FE model. Numbers indicate the circumferential location around the LV. 
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Figure 24: Circumferential distribution of fiber stress near base region. Stress was calculated as 

the average of three elements in the same circumferential location. Solid lines represent results of 

FE models in which only fiber angle distributions were deviated from measured experimental 

values and dashed lines represent results of FE models in which only sheet angle distributions 

were deviated from measured experimental values. 
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Figure 25: Circumferential distribution of fiber stress near mid-ventricle region. Stress was 

calculated as the average of three elements in the same circumferential location. Solid lines 

represent results of FE models in which only fiber angle distributions were deviated from 

measured experimental values and dashed lines represent results of FE models in which only 

sheet angle distributions were deviated from measured experimental values. 
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Figure 26: Circumferential distribution of fiber stress near apex region. Stress was calculated as 

the average of three elements in the same circumferential location. Solid lines represent results of 

FE models in which only fiber angle distributions were deviated from measured experimental 

values and dashed lines represent results of FE models in which only sheet angle distributions 

were deviated from measured experimental values. 
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Chapter Five: Modeling Heart Growth  

Medical professionals usually classify heart failure into diastolic and systolic heart failure [53]. In 

diastolic heart failure, “ventricular chamber is unable to accept an adequate volume of blood  during 

diastole at normal diastolic pressures and at volumes sufficient to maintain an  appropriate stroke 

volume” [54]. Diastolic heart failure is followed by the thickening of the ventricular wall or 

concentric hypertrophy [55]. Systolic heart failure is “a condition in which the heart fails to 

discharge its contents adequately” [56]. Systolic heart failure is followed by the dilation of the 

ventricles or eccentric hypertrophy. Both conditions will seriously endanger the overall health and 

can be fatal. Heart failure is very sensitive to cardiac microstructure, geometry and loading, 

therefore predicting the timeline of heart failure for a specific patient is almost unattainable. 

Computational modeling of heart growth and remodeling is a powerful tool to predict the geometric 

changes during heart failure [57]. There are multiple growth models proposed by various research 

groups [57-60]. In the current study we used a recently developed growth model by Genet et al. 

[57] and adapted it with our finite element model of the left ventricle discussed in previous chapters. 

In order to model growth, the deformation gradient tensor 𝑭 was multiplicatively decomposed into 

an elastic part 𝑭𝑒 and a growth part 𝑭𝑔: 

𝑭 = 𝑭𝑒 ∙  𝑭𝑔                                                                                                                                                  (32)   

The growth model is conceptually modular and can easily be combined with various myocardial 

constitutive models. For convenience , we incorporated the constitutive model of Guccione et al. 

[21] in our growth model. In this manner, the elastic tensor 𝑭𝑒 is equivalent to the regular elastic 

deformation gradient tensor 𝑭 used to calculate stresses (see chapter 2).  The total second Piola-

Kirchhoff stress is calculated using chain rule as follows [57]: 
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𝑺 =
𝜕𝜓

𝜕𝑬
=

𝜕𝜓

𝜕𝑬𝑒
:
𝜕𝑬𝑒

𝜕𝑬
= (𝑭𝑔)−1 ∙ 𝑺𝑒 ∙ (𝑭𝑔)−𝑇                                                                                       (33) 

Where 𝑺𝑒 is the elastic second Piola-Kirchhoff stress obtained from Eq. (14), and 𝜓 and 𝑬 are the 

strain energy per unit volume of the reference configuration and Green-Lagrange strain 

respectively. We need to have 𝑭𝑔 before we can calculate the Cauchy stress using Eq. (34): 

𝝈 =
1

𝐽
𝑭 ∙ 𝑺 ∙  𝑭𝑇                                                                                                                                            (34) 

In order to quantify transverse growth of the myocardium, a scalar valued growth multiplier 𝑣⊥ is 

introduced to model parallel deposition of sarcomeres on the molecular level. The transverse 

growth tensor is defined as [57]: 

𝑭𝑔 = 𝑣⊥𝑰 + [1 − 𝑣⊥]𝒇0 ⊗ 𝒇0                                                                                                                 (35) 

Where 𝒇0 is the local myofiber direction in the reference configuration.  

To quantify longitudinal growth of the myocardium another growth multiplier 𝑣∥ is introduced to 

model serial decomposition of sarcomeres. The longitudinal growth tensor is defined as [57]: 

𝑭𝑔 = 𝑰 + [𝑣∥ − 1]𝒇0 ⊗ 𝒇0                                                                                                                    (36) 

It should be noted that 𝑣⊥, 𝑣∥ ≥ 1 and only growth multipliers greater than unity will result in 

growth, otherwise the growth tensor is equal to identity tensor. For simplicity, stretch driven 

kinetics are assumed for both growth mechanisms (transverse and longitudinal growth) [57]: 

�̇� =
1

𝜏
〈𝜆 − 𝜆𝑐𝑟𝑖𝑡〉                                                                                                                                          (37) 

Where the terms in the Macaulay brackets are the current fiber stretch (stretch in the current 

configuration), 𝜆 = [𝒇0. 𝑭𝑡 . 𝑭. 𝒇0]
1

2⁄  and physiological stretch limit (𝜆𝑐𝑟𝑖𝑡). We calculate 𝜆𝑐𝑟𝑖𝑡 as 
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a regionally varying stretch under physiological conditions. The parameter 𝜏 is a scaling parameter 

in time which governs the growth rate (the smaller the value of 𝜏 the faster the growth rate and vice 

versa). The true value of this parameter is different for different animals and should be calibrated 

for a specific animal being studied. 

The growth model was incorporated as a user defined material subroutine in the finite element 

solver LS-DYNA (Livermore Software Technology Corporation, Livermore, CA). In each time 

step, the ordinary differential equation in Eq. (37) is solved to obtain an update of the growth 

multiplier for each element. To solve this equation, a finite difference approximation of the first 

order time derivative is used as �̇� = [𝑣 − 𝑣𝑛]/Δ𝑡 where 𝑣𝑛 denotes the growth multiplier of the 

previous time step and Δ𝑡 = 𝑡 − 𝑡𝑛 is the current time increment. Consequently, the growth 

multiplier of the current time step is explicitly updated using Eq. (34): 

𝑣 = 𝑣𝑛 + 〈𝜆 − 𝜆𝑐𝑟𝑖𝑡〉
Δ𝑡

𝜏
                                                                                                                            (38) 

The critical stretches (𝜆𝑐𝑟𝑖𝑡) were calculated after applying the physiological end-diastolic pressure 

on a left ventricular model of a healthy porcine heart (baseline model). Then the regionally varying 

values of critical stretch 𝜆𝑐𝑟𝑖𝑡 were saved in the FE input deck (one stretch value for each element). 

These stretches are invoked in each call of the user defined material subroutine to calculate the 

growth multiplier. It should be noted that if during the finite element solution, the current stretch 

value of an element doesn’t exceed the critical stretch value the growth multiplier for that element 

will not change. The flowchart of user defined material subroutine for modeling growth is shown 

in Figure 27. In order to trigger growth, we applied an end-diastolic pressure overload on the finite 

element model. We applied a pressure load two times the physiological end-diastolic pressure and 

kept the pressure load constant to allow for growth evolution and finally unload the model to zero 

pressure (Fig. 28).  
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The time step in Eq. (38) was taken identical to the finite element solver time step. The value of 

scaling parameter 𝜏 is not reported for pig heart in literature; therefor we tried various values to 

reach a rough approximation. Using very small values of 𝜏, the finite element model will grow 

unrealistically fast; on the other hand, using very large values of 𝜏 the resulting growth will not be 

visible. Following the calculation of the growth multiplier, the growth tensor 𝑭𝑔 is constructed 

using either Eq. (37) or Eq. (38) depending on which growth model is chosen in the input deck (a 

flag was defined in the user defined material subroutine to choose between transverse and 

longitudinal growth models in the finite element input deck). Subsequently, the elastic tensor 𝑭𝑒 is 

calculated using Eq. (32): 

 𝑭𝑒 = 𝑭 ∙ 𝑭𝑔−1
                                                                                                                                            (35) 

It should be noted that only 𝑭 is the gradient of a continuous mapping and two other tensors (the 

elastic tensor 𝑭𝑒 and the growth tensor 𝑭𝑔) generally cannot be derived as gradient from a vector 

field. Additionally, only elastic deformation generates stress, therefor the strain energy function is 

a function of elastic deformation only [57]. In the next step the elastic tensor 𝑭𝑒 is fed into the 

hyper-elastic constitutive model to update the stress. The resulting stresses are used to calculate 

new deformations. Fig. 30-31 show some qualitative results of a single finite element solution in 

which the growth module was triggered due to pressure overload.   

The simulation presented in this chapter was a rudimentary growth model and in order to get 

reliable results that predict real growth in animal heart it needs further refinement. For example, 

the ordinary differential equation (Eq. (37)) which represents the kinetics of the growth should be 

replaced with a more elaborate equation that caps the maximum growth [58], involves reverse 

growth [60] or is stress dependent (for stress-driven growth modeling) [61]. Additionally, in our 
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simulation the value of parameter 𝜏 was based on some computational experiments that resulted in 

a qualitative representation of growth. To develop an animal specific growth model, the value of 

this parameter should be estimated for that animal. These details will be the subject of future 

investigations in our lab.      
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Figure 27: The flowchart of user defined material subroutine for modeling growth 

 

Figure 28: The ventricle is loaded to a pressure two times the physiological end-diastolic 

pressure, then allowed to grow for a duration and then unloaded 
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Figure 29: Short axis view of a mid-slice of the finite element model before (left) and after 

growth (right), myocardial wall thickness decreased because the longitudinal growth tensor was 

used (Eq. (36)) 

 

Figure 30: Total elements’ volume versus time; growth triggers at t=0.05 
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Figure 31: Cavity volume versus time 
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Chapter Six: Conclusion 

In chapter two, a newly developed structural constitutive model was incorporated in the finite 

element solver as a user defined material subroutine. Using four MRI data sets, we showed that 

using this constitutive model would approximate the physiological behavior of the heart more 

accurately during simulation. In chapter three, we implemented a previously reported numerical 

technique to unload the geometry of the heart from its partially loaded geometry obtained from 

imaging of the beating heart. We showed that when these unloaded geometries were used as the 

reference state of the finite element simulations, the resulting estimated material parameters would 

be more accurate. In chapter 4, we used computational model developed in chapters 2 and 3 to 

study the sensitivity of the computational model to myofiber structure. Finally in chapter 5, a stretch 

driven continuum growth model was incorporated in the finite element solver which was one of the 

first steps of growth modeling in our lab and needs further refinement and development.  

In future investigations the computational model we presented here will be further refined and 

developed toward a patient specific computational model that could be used in clinical settings. For 

example, currently the material parameters estimation is based on using specialized MRI techniques 

that a human patient would not usually experience in clinic. Pressure catheterization is also not a 

regular clinical practice for measuring heart pressure. Additionally, in order to have a 

comprehensive and realistic computer model of the heart, the left ventricular models should be 

extended to biventricular and ultimately whole heart models that contain all four chambers of the 

heart and its valves. Obviously, these goals cannot be achieved in a single dissertation but will 

create fascinating research opportunities for the new graduate students and research fellows in our 

lab.        
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