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ABSTRACT OF THESIS 

 

DIFFUSION-MEDIATED DEPOSITION OF PROTEINS 

 

Gradients of proteins play a prominent role in many biological processes, from development 

of multicellular organisms to chemical signaling in the immune system. Deposition of surface 

gradients is a way to permanently modifying a surface’s properties, resulting in the creation 

of novel materials which have widespread applications in biologically relevant fields, such as 

directed cell growth, production of biocompatible implantable materials, and creation of 

functional biosensors. These types of surfaces can also be used as an ex vivo tool to help 

understand many biological processes by mimicking the environment in gradient-related 

phenomena in a controllable way. However, despite the large number of applications for 

chemically graded surfaces, creating them remains a challenge. 

 

In this work, a novel diffusion-based patterning mechanism is presented that relies on a 3D 

micropatterned poly(ethylene glycol) diacrylate (PEG) ‘stamps’ for the controlled deposition 

of fluorescently-tagged protein ‘ink’ onto pre-treated glass slides. By controlling the contact 

time and mechanical deformation of the PEG hydrogel on the glass surfaces, it is possible to 

control local concentration of protein deposition. 

 

KEYWORDS: Protein Deposition, Surface Patterning, Gradients, Hindered Diffusion, 3D 

Microfabrication 
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Chapter 1 Introduction 

1.1 Background and Motivation 

Gradients of proteins play a prominent role in many biological processes, from 

development of multicellular organisms to chemical signaling in the immune system. 

Deposition of surface gradients is a way to permanently modifying a surface’s 

properties, resulting in the creation of novel materials which have widespread 

applications in biologically relevant fields, such as directed cell growth, production of 

biocompatible implantable materials, and creation of functional biosensors. These 

types of surfaces can also be used as an ex vivo tool to help understand many 

biological processes by mimicking the environment in gradient-related phenomena in 

a controllable way. However, despite the large number of applications for chemically 

graded surfaces, creating them remains a challenge. 

 

In this work, a novel diffusion-based patterning mechanism is presented that relies 

on a 3D micropatterned poly(ethylene glycol) diacrylate (PEG) ‘stamps’ for the 

controlled deposition of fluorescently-tagged protein ‘ink’ onto pre-treated glass 

slides (Figure 1). By controlling the contact time and mechanical deformation of the 

PEG hydrogel on the glass surfaces, it is possible to control local concentration of 

protein deposition. Experimental results show that this method can be used to 

generate micropatterns with uniform density of proteins on pre-treated surface. 

Additionally, intentionally “stepped” micropatterns with regions of different protein 

density can be printed by controlling contact pressure and time between the PEG 
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and the target surface. Using these results, careful design of hydrogel topography, 

and precise control of contact pressure, it may be possible to extend this method in 

the future to print gray-scale surface patterns of virtually any concentration.  

 
Figure 1 Microcontact printing of proteins from hydrogel onto treated surface by using 

time-varying contact pressure and local polymer stamp deformation to control contact time 

and solute transfer 

 

1.2 Thesis Organization 

The research presented in this thesis involves surface patterning of proteins using 3D 

micropatterned PEG. Proteins can diffuse through the mesh microstructure created 

by the cross-linked polymer chains within the PEG hydrogel. When a PEG hydrogel 

that contains a uniform concentration of a protein is brought into contact with a 

target surface, the protein will absorb onto the surface, locally depleting the protein 

concentration within the PEG. These molecules will be replenished as proteins 

diffuse from the body of the PEG to the surface. By controlling the density of 

cross-linking within the hydrogel, the size of proteins in the hydrogel, and the volume 

fraction of water within the PEG, the diffusion rate of the protein can be adjusted.  
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In this research, a novel microprinting mechanism was developed based on this 

method of molecular transport within hydrogels, combined with local deformation of 

compliant hydrogel hemispheres. 3D PEG “stamps” were installed on a height 

changeable printing platform, which was used to bring the PEG into controlled 

contact with microscope cover glass that was chemically pretreated so that it would 

bind the protein molecules that came into contact with it. A fluorescently-tagged 

protein was used as the “ink” inside the PEG stamp, making it possible to use 

fluorescent intensity to determine the relative concentration of proteins deposited 

on the surface. By controlling the amount of time the hydrogel was in contact with 

the target glass surface, it was possible to locally control protein deposition.  

 

This thesis consists of 6 chapters with the following content: 

 Chapter 1 provides a brief introduction to the thesis and the 

research presented herein. 

 Chapter 2 reviews past and current research work in the field of 

surface patterning of chemicals and proteins, with a special 

emphasis on the creation of surface gradients of chemicals and 

proteins. 

 Chapter 3 explains two fundamental physical mechanisms used in 

this microcontact printing method: deformation in Hertzian contact 

and hindered diffusion of molecules in hydrogels. 
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 Chapter 4 discusses the design and components of the 

microcontact printing device and how the device functioned once 

assembled. 

 Chapter 5 illustrates the creation of hemispherical PEG hydrogel 

stamps and using these hydrogels to create protein surfaces with 

uniform concentration, binary concentrations, and multiple 

concentration steps. 

 Chapter 6 summarizes the work presented in this thesis and 

discusses possible future work on this project. 
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Chapter 2 Literature Review 

2.1 Surface Patterning of Chemicals and Proteins 

Modifying a surface with biomolecules such as proteins or DNA has wide-reaching 

applications among many biologically-related fields: medical diagnostics, culturing 

cells, or synthesizing carbohydrates, polypeptides and DNA to name a few. Proteins 

cannot be easily synthesized on a solid surface, but can be transferred to a target 

surface using a number of patterning or printing methods. One of the most widely 

used method for patterning of proteins is micro-contact printing (μCP), shown in 

Figure 2. This method was originally developed by Whitesides and coworkers at 

Harvard in 1993 [1].  

  

      A                         B 

Figure 2 (A) Schematic description for the fabrication of gold patterns using PDMS 

microcontact printing, (B) SEM images of features produced with multiple stamping steps [1]. 
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The Whitesides group used polydimethylsiloxane (PDMS) stamps with 

micropatterned surface features, which they exposed to a solution of alkanethiol 

“ink.” The alkanethiols adsorbed onto the PDMS surface, so that when dried, these 

stamps could be used to transfer self-assembled monolayers (SAMs) of the 

alkanethiol onto a gold surface. In this work, they followed this step with an etching 

processes in an aqueous solution to obtain patterned gold features ranging in scale 

from micrometers to centimeters.  

 

Bernard and co-workers extended this method to create micropatterns of proteins 

using μCP [2]. Featured PDMS stamps were incubated with protein solutions and 

then dried; the protein retained on the PDMS could be transferred to a target surface 

with only ~1 second of contact between the two. The advantage of this method is 

that the average density of proteins in the patterned area printed onto the surface 

could be controlled by adjusting the concentration of protein solution during inking 

process. However, each region of the stamp that contacts the target surface will 

transfer the same protein density, meaning that the overall effect is a “binary” 

pattern. 

 

James and co-workers further improved previous micro-contact printing methods [3]. 

They overcame two major problems with early μCP: one was difficulty in printing 

water-based biological solutions (such as proteins in saline solution) because the 

PMDS stamp used in μCP was hydrophobic, the other issue was a lack of precision in 
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alignment and patterning caused by the very compliant material of the soft 

elastomer stamps.  They solved the first problem by exposing PDMS to a low 

temperature plasma, causing the surface to become hydrophilic. The second problem 

was solved by fabricating thin elastomer stamps on a stiff glass backing to eliminate 

sagging and handling problems experienced in conventional thick stamp printing 

(Figure 3). 

 

 

Figure 3 (a) Printing isolated features using conventional μCP; stamp sagging causes pattern 

transfer in undesired locations. (b) Printing isolated features using a thin stamp with a rigid 

back support; stamp sagging is eliminated [3]. 

 

Patel and co-workers further improved microcontact printing of proteins by using a 

high-affinity bond to immobilize printed protein on the surface [4]. Prior 

microcontact printing relied on the non-covalent absorption of protein onto the 

surface, which resulted in reversible attachment. In contrast, Patel exploited high 

affinity avidin-biotin receptor-ligand interactions by coating a substrate with biotin 

molecules and then microcontact printing avidin micropatterns onto the surface. This 

surface chemistry was also used in the patterning experiments in this thesis. 
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While the majority of microcontact printing work utilized PDMS as the stamp 

material, Martin and co-workers instead used cross-linked poly- 

(6-acryloyl-β-O-methyl-galactopyranoside) as stamps [5]. They created this 

cross-linked hydrogel in the narrow ends of machine-pulled capillary tubes and 

loaded them with protein solution. Then the hydrogel/capillary stamp was brought 

into contact with an aminosilylated target surface for approximately 2 seconds, 

followed by raising stamp, shifting substrate and printing again until desired patterns 

were formed (Figure 4).  

 

      

               A                                   B 

Figure 4 (A) Method for antibody hydrogel “stamping” followed by exposure to labeled 

antigen. (B) Sequential visualization of three different antigens bound to stamped IgGs [5]. 

 

Microcontact printing and its numerous variations have gained widespread use 

because of its simplicity and ability to create high resolution micropatterns. However, 

it is generally difficult to use this method to create patterns containing multiple, 

aligned patterns of different proteins on the same surface. Microfluidic printing is 

one popular method that has overcome this hurdle. In this method, networks of 
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microfluidic channels can be used to create microarrays of biological molecules [6][7] 

by guiding liquid solutions of biochemicals over contact areas with substrates, as 

shown in Figure 5. Using this method, it is possible to localize the absorption of 

proteins to the regions in contact with the channels. After the patterning is complete, 

the channel is dried and the microfluidic channel network can be peeled off of the 

surface, leaving behind only the patterns of biochemical adsorbed on the surface. 

 

 

Figure 5 (A) Patterned elastomer that forms a μFN by temporarily attaching it to the surface 

of a substrate, allowing local delivery of a solution of biomolecules to the substrate, (B) Flow 

of liquid between the filling pad and an opposite pad draws liquid into the array of 

microchannels, (C) Pattern of chicken IgG on gold [6]. 

 

Using microfluidic patterning, it is possible to make controllable, high resolution 

surface patterns. However, there are several requirements for successful protein 

transfer using this method [6][8][9]: the material of the microfluidic networks (μFNs) 

must be sufficiently hydrophobic, the contact area between μFNs and substrates 

should be sealed well, the μFN should be capable of promoting the flow of a large 

volume of solution, and the surfaces of μFNs should resist protein absorption in 

order to prevent undesired protein loss.  
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Bernard A. and co-workers used microfluidic networks as a strategy for parallel 

printing of multiple proteins [10], as shown in Figure 6. They fabricated a microfluidic 

network with 16 microchannels which contained 16 different proteins, then 

transferred them from flat stamp to a plastic substrate. By using this method, they 

were able to print multiple proteins at once with precise alignment between the 

patterns and without using the complex and difficult process of using multiple-stamp 

microcontact printing.  

 

                       

Figure 6 Sixteen different proteins (some of them without fluorescent labels) were patterned 

onto the polystyrene surface of a cell culture dish using a stamp inked by means of a 

microfluidic network [10]. 

 

Other researchers have extended this basic microfluidic patterning concept. Papra 

and co-workers coated series type of μFN-made of PDMS, Si and Au-with 

Polyethylene Glycol making them hydrophilic enough for driving protein solution 

self-filling by capillary force and ideally resist the absorption of proteins [11]. Chiu 

and co-workers [12] used a 3D micromolding in capillaries (MIMIC) technique that 

they developed [7][13][14][15] to fabricate 3D μFNs for patterning complex and 

discontinuous multiple proteins or cells on planar surfaces.  
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There are five major steps for making a 3D-microfluidic network, as shown in Figure 7: 

(i) fabrication of silicon master for the top PDMS slab, (ii) fabrication of a 

photoresist-patterned silicon master for the bottom of the PDMS membrane, (iii) 

creating the PDMS slab that forms the top layer of the device using silicone master 

fabricated in step (i), (iv) creating a PDMS membrane which will form the bottom 

layer of the device using silicone master fabricated in step (ii), and (v) assembling and 

sealing top and bottom layers of PDMS with a substrate.  

 

                 
Figure 7 Method for the fabrication of 3D-microfluidic networks [12]. 

 

Using these 3D microfluidic networks, Chiu et al successfully etched Si/SiO2 wafer 

substrates to three different depths using three different concentrations of HF 

(Figure 8 C and D) and also used this method to patterned two kinds of proteins in a 

nested spiral (Figure 8 A and B). 
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Figure 8 3D-microfluidic network patterning. (A)and (C)shows flow patterns in the 3D stamp, 

(B) The bright green spiral is BSA; the light green one is fibrinogen, (D) The differences in the 

thickness of the SiO2 layer gave rise to the different interference colors in the etched pattern. 

These colors are caused by interference between light reflected from the air/SiO2 interface 

and that from the Si/SiO2 interface; they reveal the depth of etching [12]. 

 

There are a wealth of other, non-contact methods of depositing patterns of biological 

molecules. One of the more unique methods is biological laser printing (BioLP) which 

can be used for creating protein microarrays [16]. It is a capillary-free printing 

method that overcomes clogging problems among conventional solid pin printing 

instruments used for cDNA microarray fabrication [17][18][19]and can create protein 

microarrays on a variety of surfaces and with droplets scaling from femtoliter to 

nanoliter [20][21]. Using this method, it is possible to get highly controlled protein 

volume and position deposited from solution (Figure 9). Droplets are ejected from 

solution on the target support towards the receiving substrate due to heat transfer 

caused by laser absorption at the laser absorption interlayer. By controlling laser 

fluence, it is possible to change the fluid ejection volume.  
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             A                                 B 

Figure 9 (A) Schematic of the BioLP apparatus as it pertains to printing protein microarrays. 

(B) BioLP printed drops of BSA solution [16]. 

 

2.2 Surface Gradient Generation of Proteins 

The body of research described in the previous section focuses on binary deposition 

of molecules onto a target surface. However, the goal of the research presented in 

this thesis is to eventually be able to deposit surfaces with controllable local 

molecule concentration (i.e., “gray-scale” surfaces).  

 

Hypolite and co-workers synthesized photoactivatable molecules with fluorescent 

proteins and immobilized them in a gradient pattern on a polystyrene surface by 

controlling laser-scanning speed [21]. In this method, protein was mixed with 

photolinker polymer which can generate reactive carbenes when exposed to light. 

These carbenes can bind with adjacent surface materials or biomolecules, thus 

irreversible links between proteins and the surface could be generated. By controlling 

laser-scanning speed and position, it is possible to generate complex gradient protein 

patterns. Isabelle Caelen and co-workers [22] also used photosensitive molecules 
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which can bind with surface materials and proteins. They mixed a photosensitive 

polysaccharide-based polymer with proteins and spotted them onto Si3N4 chips using 

an ink-jet printer. By exposing chips to light for different durations, they were able to 

generate different surface concentrations of protein (Figure 10). However, these 

methods both require complex chemical synthesis and are not compatible with all 

types of biochemicals. 

 

                    

Figure 10 (A) Fluorescent-labeled mouse IgG was deposited on Si3N4 and exposed to different 

light exposure times to create different surface concentrations [22]. 

 

Caelen and co-workers used a modified version of microfluidic patterning to create 

gradients of protein on a target surface [23]. They fabricated long microchannels on a 

silicon wafer and sealed it with a PDMS substrate. Because of the length of the 

channels and fast absorption of proteins into the surface of PDMS, it depleted the 

protein concentration in solution along the length of the channel, creating a gradient 

as shown in Figure 11. 
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Figure 11 Continuous gradients of protein (rabbit IgG) produced using high aspect ratio  

µFNs on a PDMS surface [23]. 

 

Fosser and Nuzzo used fluid flow into a PDMS microfluidic network to generate linear 

protein gradients in a single microchannel, and even demonstrated two opposing 

protein gradients from opposite directions of a microchannel [24]. They applied a 

channel outgassing technique [25] to fill the channel using negative pressure rather 

than positive pressure in order to overcome bubble generation and other filling 

problems that often appear in traditional microfluidic filling processes. In this 

method, covered the inlet of a microchannel with a protein solution and sealed the 

channel outlet using a glass piece. Then the whole device was put into a vacuum 

chamber, and the time and pressure were controlled over a period of time to slowly 

control the rate of filling, as shown in Figure 12. Using this method, it is possible to 

generate multiple gradients of a single protein on a surface (Figure 13a), or by using a 

reverse-filling technique, to generate multiple patterns of two different proteins 

(Figure 13b).  
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Figure 12 Schematic of the microfluidic channel outgas filling process  

to form a protein surface gradient [24]. 

 

        
Figure 13 (a) Multiple-gradient array of BSA-TRITC formed in a 70-µm channel width device. 

(b) Counterpropagating gradient of BSA-TRITC (red) and collagen-Oregon Green (green) [24]. 

 

Whitesides and co-workers [26] generated controllable protein gradients by using 

microfluidic networks that split and recombined two initial inlet streams to 

eventually form 5 individual channels each with unique protein solution 

concentration. These channels then merged into a single wide channel to produce 

laminar flow of protein solution, creating protein gradients (Figure 14). By controlling 

the solution concentration in the input channels, the design of the microfluidic 
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network, they were able to control the shape of gradients much better than previous 

microfluidic gradient patterning methods.  

 

 

                        

Figure 14 Schematic drawing of a typical microfluidic network in PDMS used for patterning of 

immobilized surface protein gradient [26]. 

 

Mayer and co-workers used diffusion within a hydrogel to pattern a gradient of two 

counterpropagating fluorescent-tagged proteins on a flat surface [27]. To do this, 

they cured agarose solution onto a Si wafer to get a strip of agarose with a flat 

surface. They then sealed the flat surface of the agarose with a PDMS strip and 

introduced fluorescently tagged proteins (FITC-BSA and TRITC-BSA) to either of the 

two sides of the agarose strip. After proteins diffused from the ends into the gel 

setting up a gradient of proteins within the agarose, the PDMS strip was removed 

and glass slide functionalized with aldehyde groups was applied. The protein gradient 

transferred successfully to the glass slide (Figure 15). There are several advantages to 
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this method: (i) it can transfer two protein gradients at once, (ii) it can generate 

multiple arrays of proteins with small quantities of protein, (iii) it can absorb excess 

solution during inking, and (iv) because the proteins stay in solution during the 

gradient generation process, the hydrogel provides a good environment for protein 

stability.  

 

 

Figure 15 Overlapping gradients of two fluorescently labeled proteins on an 

aldehyde-functionalized glass slide. (A) A gradient with a high surface concentration of 

FITC-BSA on the left and a low surface concentration of FITC-BSA on the right side. (B) A 

gradient with a high concentration of TRITC-BSA at the right side of the image and a low 

concentration of TRITC-BSA at the left side on the same position of A [27]. 

 

Jian Shi and co-workers used controlled submersion of a substrate into a protein 

solution to generate a surface gradient [28]. They built a PDMS chamber and put a 

fiber-coated substrate into the chamber; by controlling the speed of input of solution 

from the bottom of the chamber, they were able to control the amount of time a 

region spent immersed in protein solution, creating a gradient of protein deposited 

on the fiber-coated substrate (Figure 16).   
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Figure 16 Electrospinning of nanofibers and deposition of protein surface gradient. (A) 

polymer fibers were deposited on an ITO glass slide; (B) protein surface gradient was 

generated on the fiber layer by controlled filling of a chamber; (C) scanning electronic 

micrograph of randomly deposited electrospun fibers; (D) fluorescent micrograph of the slide 

after filling with a solution of FITC-labeled fibronectin for a total length of about 10 mm; (E) 

corresponding fluorescence intensity profile of the fiber-coated slide [28]. 

 

Krämer and co-workers [29] also applied this controlled-filling method, but employed 

colloidal metal nanoparticles as protein carriers to form protein gradients. In general, 

this method does not require expensive or sophisticated equipment and has been 

demonstrated with many compatible molecules, such as thiols [30][31] and 

alkylsilanes [32][33][34][35]. These chemical modifications can be used to control 

protein deposition on a surface, so it is also indirectly applicable for protein surface 

patterning.  

 

Vasilev and co-workers [36] grafted a gradient of PEG molecules onto a surface; these 

molecules are known to resist protein absorption when deposited with sufficient 

density onto a solid surface [37]. This method was then used indirectly for the 

deposition of large and small proteins in surface gradients. The large protein was 
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incubated at the low PEG density side first and then the small protein was absorbed 

between the high PEG density and large protein.   

 

It is important to note that the microfluidic gradient patterning methods described 

here can only be used to produce relatively simple gradients: constantly increasing or 

decreasing in density along a single direction. So while it is possible to locally control 

the protein deposition concentration to an extent, it is impossible to use these 

methods for true gray-scale printing.  
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Chapter 3 Theoretical Background 

This chapter focuses on describing the physical mechanisms behind the 

diffusion-based microcontact printing method presented in this thesis. This method 

relies on elastic deformation of a three-dimensional hydrogel stamp and the diffusion 

of proteins through the hydrogel to generate complex surface patterns. The elastic 

deformation can be modeled using Hertzian contact theory, which can be used to 

predict the relationship between contact force and contact area. The motion of 

proteins through hydrogel can be estimated using a diffusion model. Both of these 

models will be discussed in this chapter.  

 

3.1 Relationship between Deformation of PEG and Contact Area 

Using Hertzian contact theory, it is possible to predict the behavior of two spheres of 

diameter 𝑑1 and 𝑑2 pressed together with a force 𝐹. This case would result in a 

circular contact area between the spheres, having a radius 𝑟:  

 

 

 
𝑟 = √

3𝐹

8

(1 − 𝑣1
2) 𝐸1 + (1 − 𝑣2

2) 𝐸2⁄⁄

1 𝑑1⁄ + 1 𝑑2⁄

3

 3.1 

 

where 𝐸1, 𝑣1 and 𝐸2, 𝑣2 are the respective Elastic Modulus (𝐸) and Poisson’s 

ratio (𝑣) of the materials of the two spheres. 

 

In the case of interest here, we want to analyze a hydrogel hemisphere pressed 

against a flat glass surface. We assign the subscript 1 to the hydrogel (𝐸1, 𝑣1, 𝑑1) 
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and the subscript 2 to the glass surface (𝐸2, 𝑣2, 𝑑2). Because the glass surface is flat, 

it has an infinite diameter (𝑑2 = ∞), thus 1 𝑑2⁄  = 0. Also, because the elastic 

modulus of the hydrogel is much smaller than that of the glass (𝐸1 ≪ 𝐸2), the 

contribution of the (1 − 𝑣2
2) 𝐸2⁄  term is negligible compared to the (1 − 𝑣1

2) 𝐸1⁄  

term. Therefore, we can approximate the radius 𝑟 of contact area as:  

 

 𝑟 ≈ √
3𝐹

8

(1 − 𝑣1
2)𝑑1

𝐸1

3

 3.2 

 

This indicates that higher contact force results in a larger contact area as shown in 

Figure 17; specifically, the radius scales as 𝑟~𝐹1/3 

 

Figure 17 Deformation of hydrogel hemisphere and microscope images of contact circles for 

low and high pressure cases. 
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In order to determine the relationship between the vertical deformation of the 

stamp during contact and the contact radius, we define the Equivalent modulus of 

elasticity, 𝐸𝑒, to be a function of the material properties of the two materials [39]: 

 

𝐸𝑒 = (
1 − 𝑣1

2

𝐸1
+

1 − 𝑣2
2

𝐸2
)

−1

 
 

3.3 

 

And the equivalent radius of the system as  

 

𝑅𝑒 = (
4

𝑑1
+

4

𝑑2
)

−1

        3.4 

 

Then equation 3.1 can be expressed as: 

 

 

 
𝑟 = √

3𝐹𝑅𝑒

2𝐸𝑒

3

 3.5 

 

The deflection of the system due to elastic deformation of the bodies at the contact 

interface, 𝛿, as defined in Figure 18 is  

 

 𝛿 =
1

2
(

1

𝑅𝑒
)

1/3

(
3𝐹

3𝐸𝑒
)

2/3

 3.6 
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Figure 18 Relationship between distance from hydrogel base to surface (h), contact radius (r), 

and hemisphere diameter (d). 

 

Combining equations 3.5 and 3.6, we get  

 

 𝑟 = 2𝛿𝑅𝑒
2/3 3.7 

 

Which predicts a linear relationship between vertical deformation of the hemisphere 

and the contact radius formed. Interestingly, this relationship is independent of 

material properties and is only a function of geometric parameters. 

 

The maximum pressure, 𝒫𝑚𝑎𝑥, occurs at the center of the contact area: 

 

 𝒫𝑚𝑎𝑥 =
3𝐹

2𝜋𝑟2
 3.8 

 

The maximum stresses occur on the z axis, and these are principal stresses. Their 

values are: 

 

𝜎1 = 𝜎2 = 𝜎𝑥 = 𝜎𝑦

= −𝒫𝑚𝑎𝑥 [(1 − |
𝑧

𝑟
| tan−1

1

|
𝑧
𝑟

|
) (1 + 𝜈) −

1

2(1 +
𝑧2

𝑟2)
] 

3.9 
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𝜎3 = 𝜎𝑧 =
−𝒫𝑚𝑎𝑥

1 +
𝑧2

𝑟2

 

 

3.10 

 

since 𝜎1 = 𝜎2, we have 𝜏12 = 0 and  

 

 𝜏𝑚𝑎𝑥 = 𝜏13 = 𝜏23 =
𝜎1 − 𝜎3

2
=

𝜎2 − 𝜎3

2
 3.11 

 

Figure 19 is a plot of equations 3.9, 3.10, and 3.11 for a distance to 3𝑟 below the 

surface. If we consider the Poisson’s ration of PEG to be 0.18 [38], the shear stress 

reaches its maximum value at a distance 𝑧 = 0.45𝑟 below the surface, where it is 

approximately equal to 0.34𝒫𝑚𝑎𝑥. 

 

 

Figure 19 Magnitude of the stress components below the surface as a function of the 

maximum pressure of contacting sphere. 

Thus we have 

 

 𝜏𝑚𝑎𝑥 = 0.34𝒫𝑚𝑎𝑥 = 0.34 ×
3𝐹

2𝜋𝑟2
 3.12 
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If we consider material failure to occur when the shear stress exceeds the shear 

strength of the material, i.e., when 𝜏𝑚𝑎𝑥 ≤ 0.5𝑆𝑦, it is possible to use this relation 

and equation 3.5 and 3.12 to find the radius of the largest possible contact circle that 

could be produced before the material failed; the radius of this circle would be: 

 

 𝑟𝑚𝑎𝑥 =  
𝜋

0.68
𝑆𝑦

𝑅𝑒

𝐸𝑒
 3.13 

 

It should be noted that the properties of the PEG used in this work, like Elastic 

Modulus (𝐸) and yield strength (𝑆𝑦), are difficult find in literature or predict a priori 

because they are highly dependent on individual fabrication parameters (molecular 

weight of PEG chains, % crosslinking, % water, etc.). However, in the future we can 

measure these properties experimentally for a given PEG formulation and use the 

equations derived here to predict deformation of PEG once the properties are 

known. 

 

3.2 Solute Diffusion within Hydrogels  

Hydrogels are hydrophilic polymers comprised of a nanoscale network of polymer 

chains. Thermosetting hydrogels have chemical cross-links between the chains, and 

when these materials are saturated with water, the chains and cross-links form a 

nanoscale mesh through which water and solutes can diffuse. The density of this 

mesh plays an important role in governing solute movement within hydrogels.  
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The rate of solute diffusion through a hydrogel increases as the density of cross-links 

within the hydrogel decreases, the length of polymer chains increases, or the 

volumetric concentration of water in the hydrogel increases.  All of these factors 

cause a decrease in the mesh density of the hydrogel to some degree. The speed of 

solute diffusion through a hydrogel network can be described using a “hindered” 

diffusion coefficient in the hydrogel (𝐷𝑔) relative to that of the “free” diffusion of 

the solute in solution (𝐷𝑜).  

 

There are a number of models that have been used to describe the ratio between 

hindered and free diffusion [40]; one of the most common models depends on the 

solute radius (𝑟𝑠) relative to the characteristic length a of a cross-linked hydrogel 

network (𝜉). In addition, the equilibrium water content of the hydrogel network has 

an effect, described here as the polymer volume fraction in the gel (𝑉𝑓), which is the 

inverse of the equilibrium swelling ratio of hydrogel [41]. 

 

 𝐷𝑔

𝐷𝑜
= (1 −

𝑟𝑠

𝜉
) exp *−𝑌 (

𝑉𝑓

1 − 𝑉𝑓
)+ 

3.14 

 

where 𝑌 is the ratio of the critical volume required for a successful translational 

movement of the solute to the average free volume per liquid molecule and is 

usually approximated to be 1. 

 

The hindered diffusion coefficient is often difficult to calculate a priori because the 

characteristic length can be challenging to predict in a hydrogel. Thus, this coefficient 
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is often determined experimentally by using an apparatus such as the blind-well 

chambers shown in figure 20.  

 

 
Figure 20 Model of blind-well chambers; from [42]. 

 

The blind-well system is comprised of two chambers separated by a thin hydrogel 

membrane. Solute diffuses from the high-concentration “donor cell” with a solute 

concentration of 𝐶1 through the hydrogel and into the “receptor cell”, which has an 

solute concentration of 𝐶2. By measuring the concentration in the receptor cell as a 

function of time, it is possible to calculate the hindered diffusion coefficient of the 

solute in the hydrogel. In using the blind-well system the following assumptions are 

made:  

 

i. The chamber solutions are well mixed so that there is no concentration 

gradient within either solution. 

ii. Solute diffusion is one-dimensional through the hydrogel, so lateral diffusion 

within the gel can be neglected 

iii. There is no accumulation of solute at the surfaces of the hydrogel 
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iv. The diffusion coefficient of protein 𝐷𝑔  is independent of the solute 

concentration 

 

When the experiment begins, the solute concentration in the receptor cell is zero 

(𝐶2 = 0 at 𝑡 = 0), but increases slowly over time. By sampling the receptor cell 

concentration at various timepoints and the above assumptions, it is possible to 

calculate the hindered diffusion coefficient using the following relation [43]:  

 

 
𝐶2

𝑁/𝑉
=

𝐷𝑔𝑡

ℎ𝜏
 3.15 

 

where ℎ is the thickness of the hydrogel membrane, and 𝑡 is time. 𝑁 is total 

number of moles of solute in the system and 𝑉  and 𝜏  describe geometric 

parameters of the system; these parameters can be calculated as follows [43]: 

  

 𝑁 = 𝐶1 (𝑉1 +
𝐴ℎ

2
) + 𝐶2 (𝑉2 +

𝐴ℎ

2
) 3.16 

and 𝑉 = 𝑉1 + 𝐴ℎ + 𝑉2 3.17 

 𝜏 =
(𝑉1 + 𝐴ℎ/2)(𝑉2 + 𝐴ℎ/2)

𝐴𝑉
 3.18 

 

where 𝑉1 and 𝑉2 are the volumes of the donor and receptor cell, respectively, and 

𝐴 is the contact area between the hydrogel membrane and chamber of the receptor 

cell. In future work, this method will be used to determine the diffusion coefficient of 

different formulations of PEG, which will be used to build a predictive model of 

protein motion in the hydrogel. 
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Chapter 4 Experimental Device Design 

4.1 Microcontact Printing System 

The microcontact printing system was designed to hold a hydrogel stamp and glass 

target surface so that the distance between the two could be precisely controlled, 

and so that the entire printing process could be observed in real-time on an inverted 

fluorescent microscope. When using the system, shown in Fig. 21, the glass target 

surface rests on the base platform/microscope stage component, while the z-stage is 

used to lower the hydrogel (fixed inside the hydrogel printing platform) into contact. 

A viewing window in the bottom of the base platform/microscope stage allows the 

entire process to be observed optically from below.  

 

        

Figure 21 Drawing of assembled microcontact printing system. 
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The microcontact printing system includes three main parts: (1) a base component 

that attaches the system to an inverted microscope and holds the glass target surface, 

(2) a platform designed to hold the hydrogel stamp and (3) a precision vertical 

translation stage (z-stage) that connects the two. The base component (Fig. 22) was 

fabricated to fit onto a Nikon Ti-E inverted microscope; the base was machined out of 

aluminum by the Mechanical Engineering machine shop. The z-stage was also 

purchased commercially (T40Z-10A, MPositioning CO., LTD., Fig. 23); it was made of 

aluminum alloy and has a travel distance of 10 mm, resolution of 10 µm, and 

accuracy of 10 µm. 

 

 
Figure 22 Base printing platform that attached to the microscope stage, all dimensions in 

millimeters 
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Figure 23 Precision z-stage (Dimensioned drawing provided by manufacturer), all dimensions 

in millimeters. 

 

The hydrogel stamp platform (Figure 24) was designed to provide a stable base for 

holding the hydrogel stamps during printing. The s-shaped design allows it to bolt to 

the top of the z-stage, so that actuating the stage will control the distance between 

the hydrogel stamp and the target glass surface. This component was machined at 

the Mechanical Engineering departmental machine shop out of aluminum. 
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Figure 24 Hydrogel stamp platform; all dimensions in millimeters. 
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Chapter 5 Protein Printing 

5.1 Creation of Hemispherical PEG Hydrogel Stamp using PDMS Mold 

The hemispherical hydrogel stamps were made using a three-step process. First, a 

metal sphere and laser-cut acrylic components were assembled to make a mold 

cavity (Fig. 25 A and B). Then, polydimethylsiloxane (PDMS) prepolymer was poured 

into this cavity and cured in order to form a negative mold (Fig. 25 C). Finally, this 

PDMS mold was combined with acrylic pieces to build a cavity for molding the PEG 

hydrogel; a liquid PEG solution is poured into this cavity and crosslinked, resulting in 

a final PEG stamp with a hemispherical protrusion (Fig. 25 D).  

 

 
Figure 25 (A) Metal spheres with different diameters used for making the initial mold cavity. 

(B) One of the laser-cut acrylic pieces. (C) PDMS mold. (D) Hemispherical PEG. 

 

5.1.1 Creation of PDMS Mold 

The first step in creating the hydrogel stamps was to make the cavity for generating a 
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PDMS mold. To do this, a 2 mm thick acrylic sheet was cut into a 45 mm × 55 mm 

piece with a 4.8 mm diameter hole in the center using a laser cutter. A 5 mm 

diameter metal ball was installed into the 4.8 mm hole, creating a force-fit between 

the components so that the metal ball only partially protruded through the hole. A 

4 mm thick acrylic sheet was cut into a 45 mm × 55 mm piece with a 20 mm × 20 mm 

square window in the center using laser cut machine. All of these components and 

one 75mm × 50mm glass microscope slide were rinsed with IPA 

(Isopropanol(CH3)CHOH), followed by a second rinse with water, and then dried 

under a stream of air. These components would eventually form the mold cavity into 

which liquid PDMS prepolymer would be poured and cured in order to form the 

PDMS mold. 

 

 

Figure 26 Preparation of PDMS hemispherical mold. 

 

To make the PDMS mold, PDMS (Sylgard 184, Dow Corning) was prepared by 

combining the silicon base and the curing agent with 10:1 ratio in a clean plastic cup 

and stirred vigorously for 3 minutes. The mixture was then degassed by placing it in a 

vacuum (Thermo Scientific) for 2 hours, making sure there were no air bubbles 
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before removing it from the vacuum. The degassed PDMS liquid was carefully and 

slowly poured into the cavity created by the glass slide and 4 mm thick acrylic piece, 

as shown in Figure 26 A, making sure that the PDMS completely filled the cavity.  

The 2mm thick acrylic piece and metal ball were then used to completely enclose the 

cavity, being sure that there were no air bubbles entrapped during the process, as 

shown in Figure 26 B. Two binder clips were applied to clamp the assembly together. 

The whole assembly was then placed in an oven (Quincy 40 GC lab oven) at 65 

degrees Celsius for 2 hours to cross-link the PDMS. Once set, the assembly was 

removed from the oven and allowed to cool to room temperature, followed by slowly 

and gently removing the final PDMS mold. 

 

5.1.2 Fabrication of Hemispherical PEG Hydrogel Stamp 

Once the PDMS mold was prepared, it was used to create the PEG hydrogel stamp. 

First, a liquid prepolymer of 20% (wt/wt%) PEG was prepared using the following 

method: 0.25 g Polyethylene glycol diacrylate (PEG, Molecular Weight = 8000 DA, 

Alfa Aesar) was measured on a balance with a weighting paper and added to a 1.5 ml 

microcentrifuge tube. 1 ml deionized water (DI-water purified from Milli-Q® Direct 

Water Purification System, EMD Millipore Corporation) and 0.013 g 

2-Hydroxy-2-methylpropiophenone photoinitiator (Sigma-Aldrich) were also added 

to the microcentrifuge tube. The solution was then mixed using a vortex generator 

(Vortex Genie 2, Scientific Industries) at 3000 rpm for 4 minutes. 

 

The liquid prepolymer solution was then used to create a hemispherical PEG stamp 



37 

 

by pouring it into the PDMS mold. In order to accomplish this, a 2 mm thick acrylic 

sheet was cut into a 45 mm × 55 mm piece with a 5.5 mm diameter hole in the center. 

This 2 mm thick acrylic piece, two 75mm × 50mm glass slides, the PDMS mold, and 

the 4 mm thick acrylic piece used in making the PDMS mold were rinsed thoroughly 

with IPA, then rinsed with water and dried under a steam of air. One of the glass 

slides, the PDMS mold, and both acrylic pieces were assembled as shown in Figure 

27 A. Then the prepolymer solution was introduced into the well formed by the 

PDMS mold and the hole in the 2 mm thick acrylic piece. The second glass slide was 

used cover the top surface, as shown in Figure 27 B, taking care to avoid the 

introduction of any air bubble during the processes. Two binder clips were used to 

clamp together the entire assembly, which was then exposed under long wave UV 

light (2.33 MW/cm2model UVGL-25, UVP Incorporation) for 4 minutes to initiate 

cross-linking of the PEG.  

 

 

Figure 27 Preparation of Hemispherical PEG Hydrogel Stamp. 

 

After crosslinking, the PEG stamp was gently and slowly removed from the assembly, 

avoiding any breakage because the PEG is low strength. After removal from the 

molds, PEG stamps were soaked into DI water for 1 hour to reach equilibrium.  
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Prior to being used in stamping experiments, PEG stamps were removed from the DI 

water and soaked in a solution of 0.1 mg/mL Avidin labeled with fluorescent 

Tetramethylrhodamine (Avidin-TRITC 2 mg/ml, Protein Mods) for 8 hours until the 

internal protein concentration equilibrated. 

 

5.2 Preparation of Target Surface 

All patterning experiments were performed on glass surfaces that were pretreated to 

facilitate protein binding. Glass surfaces were functionalized with Biotin-PEG-Silane, 

as shown in Fig. 28: when these molecules are introduced to a glass surface, the 

silane group preferentially binds to the glass surface. These molecules align to form a 

close-packed monolayer that is covered with Biotin groups. Biotin and Avidin 

proteins experience strong preferential binding [44] so this surface is ideal for 

capturing Avidin during the microcontact printing process. 

 

 
Figure 28 Schematic of glass surface functionalization and fluorescent tagged protein 

attachment. 
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The specific process for functionalizing the glass surfaces is as follows. Glass 

microscope cover slips (22 mm × 40 mm x 0.17 mm Thermo Scientific) were cleaned 

using IPA followed by water and then dried under a steam of air. 0.95 ml of Ethanol 

(100%, Sigma-Aldrich) and 0.5 ml DI water were added to 1.5 ml microcentrifuge 

tube. 3-4 μg of Biotin-PEG-Silane (Molecular Weight = 5000, Laysan Bio, Inc.) was 

measured on the balance using weighing paper and added to the water/ethanol 

mixture. The solution was mixed by vortexing for 2 minutes. The well-mixed solution 

was then pipetted onto the surface of the microscope cover glass and retained there 

for 30 minutes, allowing the Biotin-PEG-Silane molecules time to bind to the glass 

surface. During this time, the microscope cover glass was coved with a plastic 

container to prevent evaporation of the solution. Afterwards, the microscope cover 

glass was rinsed thoroughly with Phosphate Buffer Saline solution (PBS without 

calcium and magnesium, Mediatech, Inc) and dried under a stream of air. The 

surfaced-treated microscope cover slips were always labeled with the date of 

fabrication on the corner, which also made it possible to distinguish between the 

treated and untreated surface. Surface-treated microscope cover slips were prepared 

freshly before every experiment. 

 

5.3 Uniform-Concentration Protein Printing 

The purposes of this set of experiments was to demonstrate that proteins could be 

deposited on surfaced-treated microscope cover glass and that different density of 

proteins could be printed by controlling the amount of contact time between the 

hydrogel stamp and functionalized glass.  
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To perform these experiments, first a cleaned glass slide was installed on the base 

printing platform in order to provide an optically-transparent rigid surface, and a 

freshly-prepared pre-treated microscope cover glass was placed on top of it. A 

hemispherical PEG hydrogel stamp was then removed from protein solution, rinsed 

with DI water to remove residual protein on the surface, and then the surface was 

dried briefly using a stream of air. The hydrogel was installed onto the hydrogel 

printing platform and then stamped onto a sacrificial section of the pre-treated glass 

for 1 second to remove any remaining residual proteins on the surface. Then the 

stamps were brought into contact with a clean region of the pre-treated glass surface 

for the specified amount of time. After printing, pre-treated glass surface was rinsed 

by DI water and dried under a stream of air, then all surfaces were imaged on a Nikon 

fluorescence microscope (Nikon ECLIPSE Ti) using TRITC fluorescent filters, and 

analyzed using NIS-Elements AR software to determine fluorescent intensity.  

 

Because PEG can shrink as it dehydrates after long exposure to ambient air 

conditions, the experimental setup (including the hydrogel printing platform, z-stage 

and microscope stage) was enclosed in a stainless steel cylinder with a portable 

humidifier to control the humidity and prevent the hydrogel from dehydrating. 

 

A sample image, shown in Fig. 29 was obtained from a 5-minute printing time. The 

image shows relatively uniform intensity in the contact region, indicating that Avidin 
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diffused from the PEG hydrogel to the surface of the pre-treated glass and bound 

with Biotin on the surface of pre-treated glass at a relatively uniform rate over the 

contact area. Some bright spots were occasionally observed during printing, such as 

the one seen in the upper-left hand corner of Figure 29; these spots were attributed 

to defects in the hydrogel material and/or local crystallization of the Avidin protein.  

 

             
Figure 29 Fluorescent image resulting from single-step printing of hydrogel for 5 minutes. 

 

This experiment was repeated with contact times of 5 seconds, 10 seconds, 20 

seconds and 30 seconds. Comparing light intensity of these four contact times, there 

was no statistical difference. Then, the contact experiment was repeated for 1 

minute, 2 minutes, 5 minutes, 10 minutes, 15 minutes and 20 minutes. Five 

independent experiments were performed and measured for each contact time.  
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The results of this experiment are shown in Figure 30; each data point represents the 

mean value obtained in the five independent experiments. As contact time increases 

from 30 seconds to 20 minutes, the fluorescent intensity increases, showing that the 

density of protein deposited on pre-treated glass slides increased. Contact times 

between 1 and 10 minutes showed the greatest difference in protein deposition, but 

after 15-20 minutes, the surfaces appear to reach saturation as free biotin keys on 

the pre-treated glass were fully bound with fluorescently-tagged Avidin. Surfaces 

printed for longer than 20 minutes displayed the same fluorescent intensity as those 

printed for 20 minutes. 

 

 
Figure 30 Normalized fluorescent intensity versus contact time. 
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Table 1 Fluorescent intensity profile. 

Contact Time 

(min) 

Normalized fluorescent 

intensity 

0.5 0.36 

1 0.57 

2 0.61 

5 0.68 

10 0.78 

15 0.91 

20 0.91 

 

 

5.4 Multi-step Protein Printing 

Using the knowledge gained from the previous set of experiments combined with the 

low elastic modulus of the PEG hydrogel, it was possible to generate multiple-density 

surface patterns, such as the one shown in Fig. 31. For this experiment, the hydrogel 

was initially brought into contact with the pre-treated glass under low pressure for 9 

minutes, then the pressure was increased and held there for an additional minute. 

This resulted in a contact time in the center of the pattern of 10 minutes, while the 

outer ring was only in contact for 1 minute. The resulting fluorescent image (Fig. 31) 

shows a significant difference in fluorescence intensity observed between the center 

region (high contact time) and outer region (low contact time) of the print.    
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Figure 31 Dual pressure protein printing. 

 

Using the same methodology and the data from Table 1, a four-step protein print was 

created as shown in Fig. 32. By reducing contact pressure step by step, the stamp was 

held at the highest pressure for 30 seconds, followed by a decreased pressure for 1 

minute 30 seconds, a second decrease in pressure for 6 minutes, and finally the 

lowest pressure for 14 minutes. This resulted in a contact time for each layer of 30 

seconds, 2 minutes, 8 minutes, and 20 minutes.  

 

 

Figure 32 Multiple pressure protein printing. Contact time from outer to inner are 30s, 2 min, 

8min, and 20 min. 
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The intensity values in the 4-step printing process showed good agreement with the 

individual intensity values obtained with the homogeneous printing process in 

section 5.3. Based on these results, with automated control of contact time it may be 

possible to create controllable surface gradients. Eventually integrating this method 

with more complex mold topography could pave the way for true gray-scale 

microcontact printing of proteins. 
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Chapter 6 Conclusions and Future Work 

6.1 Conclusions 

The work described in this thesis focused on the design and fabrication of 3D PEG 

hydrogel stamps and the use of this PEG to generate single-concentration or 

multiple-concentration protein surface patterns. As presented conceptually in 

Chapter 3, by controlling the contact time between a hydrogel stamp and target 

surface, it is possible to control the rate of protein deposition onto the surface. 

Combining this concept with controlled deformation of a 3D low-modulus hydrogel 

stamp, it becomes possible to print homogeneous and heterogeneous protein 

patterns on a surface. In order to make this possible, a platform was created to 

control contact pressure of the stamp, as outlined in Chapter 4. Then this device was 

used to create homogeneous and heterogeneous patterns of proteins, as outlined in 

Chapter 5. This method demonstrates an approach that can be used to generate 

protein arrays with controlled density, and used to generate complex micro-contact 

printed protein surfaces.   
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6.2 Future Work 

The research presented in this thesis presents a novel method for using 3D hydrogel 

stamps to generate multiple-density protein surface patterns. The negative PDMS 

mold used in this demonstration was a simple hemisphere, but using other 

fabrication methods, such as 3D printing, it is possible to generate much more 

complex mold topography, which in turn can be used to generate more complex 

surface patterns. In addition, while a single feature was demonstrated in this work, 

the stamping process provides the possibility of parallel printing of multiple identical 

or unique patterns simultaneously. Finally, using the knowledge gained regarding the 

protein diffusion within the PEG hydrogel and the relationship between contact time 

with protein intensity, with automated control of contact pressure over time, it 

opens up the possibility to use this method to print surface patterns with 

concentration gradients rather than the multi-stepped patterns demonstrated here.  
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