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ABSTRACT OF THESIS 

 

AIRBORNE PATH FREQUENCY BASED SUBSTRUCTURING METHOD  

AND ITS APPLICATIONS 

Frequency based substructuring (FBS) is routinely used to model structural 
dynamics. It provides a framework for connecting structural subsystems together, 
assessing path contributions, determining the effect of mount modification, and 
identifying inverse forces. In this work, FBS methods are extended to include 
acoustic subsystems and  connecting pipes and ducts. Connecting pipes or ducts 
are modeled using the transfer matrix approach which is commonly used for 
modeling mufflers and silencers below the plane wave cutoff frequency. The 
suggested approach is validated using boundary element method (BEM) 
simulation. Applications of the procedure include determining airborne path 
contributions, the effect of treating ducts and apertures, and the effect of making 
lumped acoustic impedance modifications to a subsystem. The method can be 
simplified and used for determining the effect of design changes on the insertion 
loss of enclosures. 
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Chapter 1  

INTRODUCTION 

1.1 Background 

Industry is becoming increasingly concerned about the user experience when 

utilizing their products and services. One important concern is noise, vibration and 

harshness (NVH). In the automotive and heavy equipment industries, emphasis is 

placed on reducing structural vibration and interior cabin noise by a number of 

different strategies including isolation, damping treatments, and sound absorption. 

In the building industry, fan, compressor and flow noise impact the building 

environment and must be minimized. When it comes to the consumer electronics 

industry, low noise emissions from cell phone vibration, or from circuitry affect the 

user experience. Irrespective of the industry, reduction of noise is achieved by 

identifying noise sources, paths, and receivers and making appropriate changes. 

Machines can be thought of as systems which consist of components and 

connections. Vibration or sound energy passes from active-side to passive-side 

components through connections. An active component consists of at least one 

source which may be vibrational or acoustic. For instance, an engine, compressor, 

or pump would be considered an active component. Passive components are 

driven by active components and include panels and windows, duct work and 

enclosures. 

Structure-borne vibration propagates through mounts and isolators to the passive 

components. A receiver may be located on either an active or a passive 
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component. Receivers include the vibration or acoustic pressure at some specified 

position. Transfer functions relate the sources or inputs to the receivers or outputs. 

The response may be reduced by reducing the transfer function amplitude through 

proper isolation or damping, or by changing the transmission path through mass 

or stiffness modification.  

Airborne paths are often the most important in buildings and partially enclosed 

sources. Noise propagates through air from the source to the receiver, and the 

transfer function is a function of geometry and noise control treatments.  Chillers, 

boilers, furnaces, fans and pumps are common sources of noise in building 

environments. Sound energy propagates through the duct airspace from an 

equipment room to the other parts of the building. This airborne noise can be 

reduced by using sound absorbing materials like fiber or foam, adding silencers or 

plenums, or by extending the length of the ducts. 

Similarly, partial enclosures are often used to reduce the transmission of noise 

from machinery to a receiver. The partial enclosure behaves like a barrier and 

normally includes sound absorption to reduce the noise within the enclosure itself. 

In that case, the enclosure compartment is analogous to the source room, and 

enclosure openings introduce airborne paths to the receiver. 

Figure 1.1 engine-mount-body frameshows an engine mounted to an automobile 

frame and body. One important path is structure borne. The engine, which is the 

active component, is attached to the body frame through isolators or connections.  

The body frame is a passive component driven by the engine. Structural energy 
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propagates through the isolators to the frame and onto firewall which radiates 

sound to the passenger compartment. 

Another important path can be classified as an airborne indirect path.  The engine 

structure will radiate sound which will vibrate the firewall which in turn radiates 

sound to the passenger compartment.  In this case, the engine compartment can 

be considered an active component, and the firewall and passenger compartments 

passive components. 

Similarly, there is a path that can be classified as an airborne direct or strictly 

airborne path. The radiated noise in the engine compartment propagates to the 

receiver (i.e., driver) through any gaps or leaks between the engine and passenger 

compartments.  

 

Figure 1.1 engine-mount-body frame  

http://www.lmsintl.com/How-to-perform-transfer-path-analysis 

http://www.lmsintl.com/How-to-perform-transfer-path-analysis
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An HVAC system is shown in Figure 1.2. The equipment room is the active 

component, and the building rooms are the passive components. Active and 

passive components are connected by ducts which are analogous to mounts for 

the mechanical system case. The direct airborne path is most important.  

Equipment generated noise passes through the ducts to the rooms. Another 

important path is the airborne indirect path. Noise within the ducts impinges on the 

ductwork which in turn radiates sound to the rooms. At low frequnecies, the 

structureborne path from the equipment vibration to the floors and walls may also 

be important.  

 

Figure 1.2 HVAC enclosures with pipes 

http://www.epa.gov/iaq/schools/ventilationenergy.html 

To identify the vibro-acoustic system response, frequency based substructuring 

(FBS, also referred to as Frequency Response Function (FRF) based 

http://www.epa.gov/iaq/schools/ventilationenergy.html


 

 
5 

substructuring) is one of the most powerful methods in analyzing the responses of 

complex built-up structures. Frequency based substructuring is a transfer function 

based approach which can utilize both experimental or simulation results. It is 

assumed that the problem is linear and that transfer functions can be used to 

characterize the dynamic response of the vibro-acoustic system. Chapter 2 will 

provide a detailed review of FBS. 

FBS is normally used in structure-borne mechanical system identification. The 

current work is aimed at extending FBS to include the modeling of airborne 

connections between subsystems. Examples include ducts, apertures, and leaks 

which are the direct analogs of isolators and springs in mechanical systems. 

Accordingly, the equations developed are similar to those used for the mechanical 

counterpart. 

1.2 Objectives 

In this work, FBS is used to characterize and simulate airborne paths. After a FBS 

representation is in place, airborne paths can be modified and the effects of 

modifications can be assessed. Specifically, the following objectives were 

accomplished:  

• The FBS equations were developed for airborne paths and validated by 

boundary element simulation.  

• The FBS approach was used to determine the contribution through airborne 

paths. 
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• The FBS approach was used to determine the effect of adding attenuation 

elements in the connecting ducts. 

• The FBS approach was used to determine the response after lumped 

impedance modifications were made to airborne subsystems. 

• FBS substructuring was utilized to determine the insertion loss of partial 

enclosures. 

1.3 Organization 

This thesis is organized in the following manner. Chapter 2 reviews the concepts 

of transfer path analysis (TPA) and frequency based substructuring in structure-

borne systems. Mathematical models are introduced and methodology for 

measuring and modeling of systems is reviewed. After laying this groundwork, 

Chapter 3 derives the airborne system FBS, which is the basic theory.  

Chapter 4 presents case-verifications of the airborne FBS theory derived in 

Chapter 3. Boundary element simulation is used for the case studies. Cases with 

two open pipes, two rooms and two sets of sources are described. The method is 

then simplified and utilized to predict the insertion loss of a partial enclosure. 

In Chapter 5, an enclosure case experiment is presented to verify the airborne FBS 

theory. The sound pressure is predicted using FBS and compared with 

measurement.  

Chapter 6 looks at applications of the approach. FBS is used to determine path 

contributions and to examine the effectiveness of adding muffler attenuation 



 

 
7 

elements to connecting ducts or making lumped impedance modifications to a 

subsystem. 

Conclusions and recommendations for future work are discussed in Chapter 7. 
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Chapter 2  

REVIEW OF FREQUENCY BASED SUBSTRUCTURING METHOD 

Frequency based substructuring or FBS is an approach where a model of a system 

is developed based on transfer functions between inputs, outputs, and connections. 

The approach is sometimes called transfer path analysis (TPA) because transfer 

functions are sometimes referred to as paths. In this chapter, the method will be 

described and the assumptions will be detailed. 

2.1 FBS background 

Frequency based substructuring (FBS), which is sometimes referred to as FRF-

based substructuring, is commonly used to rank structure-borne and airborne path 

contributions to a receiver.  In general, models assume that the problem is linear 

and that transfer functions can be used to characterize the dynamic response of 

the vibro-acoustic system. 

FBS was proposed by Jetmundsen et al. [1], who termed the procedure admittance 

modeling. Gordis et al. [2] derived the formulation for frequency domain structure 

synthesis. Avitabile [3], de Klerk et al. [4], and Craig Jr. [5] continued their work 

examining methods for making impedance modifications.  In the intervening years, 

FBS has become quite popular in the experimental noise and vibration community.  

There are several benefits to this approach. First, models can be developed using 

a combination of experimental and simulation tools. For example, complicated 

structural components like the engine and the transmission can be assessed 

experimentally while simpler components like the chassis and body-in-white can 
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be modeled using simulation. Thus, FBS provides a framework for integrating test 

and analysis information into a single model. Secondly, FBS provides a means for 

coupling components together in a system model. For a mechanical case, 

connections between subsystems via springs and rubber mounts can be modeled 

and system level effects can be understood. Moreover, different treatment options 

can be assessed without solving deterministic models of the entire system, greatly 

reducing computational time.   

The work in this thesis is aimed at extending FBS to include the modeling of 

airborne connections between subsystems. Leaks, apertures, and ducts are direct 

analogs of isolators and springs in mechanical systems. Accordingly, FBS theory 

in acoustic systems is similar to that used for the mechanical counterpart.  

2.2 Linear time invariant system 

In order for FBS to be appropriate, it must be assumed that the system is linear 

time invariant. If the output 𝑦(𝑡) is a function of the input 𝑥(𝑡), it can be expressed 

as: 

 𝑦(𝑡) = ℋ(𝑥(𝑡)) (2.1) 

Time invariance is satisfied when a time shift 𝜎 applied to the input (𝑥(𝑡) to  (𝑡 + 𝜎) ) 

results in an equal shifted output (𝑦(𝑡) to (𝑡 + 𝜎) ) [6]. This can be expressed as:  

 𝑦(𝑡 + 𝜎) = ℋ(𝑥(𝑡 + 𝜎))∀𝜎 (2.2) 

 

Linearity implies that if the output will be scaled by the same amount as the input. 

Thus, 
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Moreover, the principle of superposition must also be valid. This means that the 

outputs from different inputs can be determined separately and then superimposed. 

It reflects the parallel connections of the linear time invariant (LTI) system. 

Accordingly, the output to input relationship can be modeled using the block 

diagram shown in Figure 2.1. This is expressed as:  

 

 

 

 

 

Figure 2.1 Schematic of an LTI system in parallel 

2.3 Transfer function of second order system 

A second order ordinary differential equation can describe most mechanical 

systems at low frequencies. A single degree of freedom system is shown in Figure 

2.2. The equation of motion can be found using Newton's laws of motion and 

expressed as: 

 𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝑥(𝑡) = 𝐹(𝑡) (2.5) 

  

 

 ℋ(𝛼𝑢(𝑡) + 𝛽𝑣(𝑡)) = 𝛼ℋ(𝑢(𝑡)) + 𝛽ℋ(𝑣(𝑡)) (2.3) 

 
𝑦(𝑡) = ℋ(𝑥(𝑡)) = ∑ ℋ𝑚(𝑥(𝑡))

𝑛

𝑚=1

 
(2.4) 

ℋ1 

ℋ𝑛 

…
  

+ 𝑥(𝑡) 𝑦(𝑡) 
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Figure 2.2 SDOF dynamics system 

where 𝑥(𝑡)  is the displacement. 𝑀,𝐶, and 𝐾 represent the mass, damping and 

stiffness respectively. 𝐹(𝑡)  is the external applied force to the system and is 

assumed to be harmonic. For the single degree of freedom (SDOF) system shown 

above, its undamped natural frequency 𝜔𝑛 and damped natural frequency 𝜔𝑑 are 

expressed as:  

 

𝜔𝑛 = √
𝐾

𝑀
 

(2.6) 

and 

 
𝜔𝑑 = 𝜔𝑛√1 − 𝜉

2 
(2.7) 

where 

 
𝜉 =

𝐶

2 √𝐾𝑀
 

(2.8) 

When the system consists of multiple degrees of freedom (MDOF), a matrix 

system of equations can be expressed as: 

 𝐌𝑛×𝑛𝑥�̈�(𝑡) + 𝐂𝑛×𝑛𝑥�̇�(𝑡) + 𝐊𝑛×𝑛𝑥𝑛(𝑡) = 𝐹𝑛(𝑡) (2.9) 

 

K 

M 

C 

F(t) 
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where 𝐌n×n , 𝐂n×n , and 𝐊n×n  are the respective mass, damping, and stiffness 

matrices for an n degree of freedom system. 𝐌n×n, 𝐂𝑛×𝑛, and 𝐊𝑛×𝑛 are symmetric, 

and 𝐌𝑛×𝑛 is diagonal. This is the case when masses are "point lumped" at the 

DOF locations. 

For Rayleigh or proportional damping, the damping matrix can be expressed as a 

superposition of the mass and stiffness matrices and can be expressed as 𝐂 =

𝛼𝐌+ 𝛽𝐊. For a single degree of freedom system, the transfer function can be 

expressed in the Laplace domain as:  

 𝑋(𝑠)

𝐹(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔𝑛2
 

(2.10) 

When expressed in terms of eigenvectors in modal space, the FRF can be written 

as: 

 
𝐻(𝑗𝜔) =∑

{Φi}{Φi}
T

(𝜔𝑖
2 − 𝜔2) + 𝑗2𝜉𝑖𝜔𝑖𝜔

𝑛

𝑖=1

 
(2.11) 

where {Φ
i
} is the 𝑖th order mode shape, and  𝜔𝑖 is the natural frequency of the 

𝑖th degree of freedom [7]. The transfer function between the input and output of 

the system represents the fundamental characteristics of the system, and is 

independent of the input depending instead on the structure and path between 

the input and response positions. The transfer function is sometimes referred to 

as a path and is the key to transfer path analysis.  
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2.4 FBS theory and application 

2.4.1 FBS theory review 

Transfer Path Analysis (TPA) is commonly used to identify dominant paths and 

then determine appropriate treatments in complicated systems. The system is 

normally broken up into active and passive components. The former containing the 

sources, and the latter containing the receivers where the responses are measured. 

The classical “source - path – receiver” transfer path model shown in Figure 2.3 

FBS model, which was first suggested in the 1950’s [8], and was enhanced to 

become frequency based substructuring in the 1980’s [9, 10]. The basic ideas and 

some applications are now discussed.  

  

Figure 2.3 General TPA model 

 

Each connection point in the FBS model will generate a response at all other 

connection points and receivers as shown in Figure 2.3 for the passive side. These 
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input-output relationships are expressed as frequency response functions (FRF’s) 

and are sometimes called noise transfer functions (NTF’s). The paths between 

sources and receivers are represented by these FRF’s. The contribution of a single 

path to a response point can be determined by multiplying the FRF for a path by a 

corresponding input. Since linear time invariance is assumed, the response is 

assumed to result from the contribution from each respective input.  

The system response can be described as the superposition of structureborne (𝑦𝑟𝑖) 

and airborne (𝑦𝑟𝑗) responses.  Accordingly, 

 
𝑦𝑟 =∑𝑦𝑟𝑖

𝑛

𝑖=1

+∑𝑦𝑟𝑗

𝑚

𝑗=1

 
(2.12) 

The structureborne response can be expressed in terms of the input forces (𝐹𝑖) 

and the transfer function relating the force to the response (𝐻𝑟𝑖). 

 𝑦𝑟𝑖 = 𝐻𝑟𝑖 × 𝐹𝑖 (2.12a) 

The transfer function 𝐻𝑟𝑖 can be determined from  

 
𝐻𝑟𝑖 =

𝑦𝑟
𝐹𝑖
|
𝐹𝑘=0,𝑘≠𝑖

 (2.12b) 

The airborne response can be expressed in terms of the acoustic source volume 

velocity (𝑄𝑗) and transfer functions relating the acoustic source to the response 

(𝐻𝑟𝑗) as 

 𝑦𝑟𝑗 = 𝐻𝑟𝑗 ×𝑄𝑗 (2.12c) 

where the transfer functions are determined using 
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𝐻𝑟𝑗 =

𝑦𝑟
𝑄𝑗
|

𝑄𝑝=0,𝑝≠𝑗

 
(2.12d) 

Note that all transfer functions are determined with one source active and all other 

connections removed.  

There are several procedures to obtain frequency response (or transfer) functions.  

They can be determined numerically using finite or boundary element analysis. On 

the other hand, frequency response functions could be measured directly or 

indirectly via measurement. An impact hammer or shaker is usually used as the 

source for structural paths. For acoustic transfer functions, a volume velocity 

source (often a loudspeaker) must be used. The response is collected using 

accelerometers (vibration) or microphones (sound pressure).  

However, direct measurements are sometimes difficult due to loads applied at 

difficult to reach positions (i.e., positions internal to a machine). In that case, 

transfer functions can be measured easier by swapping the source and response 

and taking advantage of reciprocity [11]. In most cases, placing a source (which 

has a sizeable footprint) at a receiver location which is easily accessible is 

preferable. Measurements are then procured at the source locations. Another 

advantage of this approach is that there are often less receiver points of interest 

than sources. It is normally more convenient to move sensors or acquire data 

simultaneously at a number of sensors than it is to move the more massive source.  

Systems are often highly coupled and excitation at one source will produce 

vibration at other sources. It is important to measure the FRF's for each source 
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separately while avoiding cross contamination from the other sources. As in 

Equations 2.12c and 2.12d, frequency response functions should be procured with 

all other sources inactive. Failure to uncouple the other sources will lead to errors. 

Transfer path analysis works especially well at low frequencies. Plunt [12] provides 

a good overview of TPA discussing both low and high frequency predictions.  

Sometimes transfer functions are estimated where an acceleration response is 

measured instead of an input since inputs are difficult to measure. This is often 

referred to as operational transfer path analysis. Alternatively, hybrid models can 

be used where both measured and simulated transfer functions are used [13, 14, 

15]. The aforementioned approaches can significantly speed up the process but 

the accuracy may be compromised. 

2.4.2 FBS applications 

FBS is useful for a number of applications [16, 17]. The dynamic forces during 

machinery operation are typically difficult to measure.  In that case, the response 

can be measured at a number of easily accessible sensor locations. Transfer 

functions between the force and sensor locations can be measured with the 

system off. The unknown forces can then be determined by matrix inversion. The 

first step of the method is to collect the frequency response functions between 

each source, and indicators and receivers. Indicators are response points at 

passive locations. Paths or frequency response functions are measured or 

determined computationally between each source and indicator. A transfer 

function matrix is then populated using the determined transfer functions. After 
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which, the responses are measured at the indicators and receivers during 

operating conditions. Operational or inverse loads can be determined using: 

 

[

𝐹1
𝐹2
⋮
𝐹𝑛

] = [

𝐻11
𝐻21
⋮

𝐻𝑚1

𝐻12
𝐻22
⋮

𝐻𝑚2

…
…
⋱…

𝐻1𝑛
𝐻2𝑛
⋮

𝐻𝑚𝑛

]

−1

[

𝐴1
𝐴2
⋮
𝐴𝑚

] 

(2.13) 

The number of measured indicator responses should exceed the number of 

unknown loads to be calculated in order to insure that the problem is well-

conditioned. Accordingly, 𝑚 should be greater than 𝑛. Then unknown forces can 

be determined using a least squares solution [18]. It is recommended that 𝑚 ≥ 2𝑛 

to minimize ill-conditioning problems when calculating the pseudo-inverse [19].  

Path contribution analysis is another widely used application. The contribution from 

each path to the receiver is calculated by multiplying the FRF and the 

corresponding load. This can be expressed equationally as: 

 𝑦𝑟𝑖 = 𝐻𝑟𝑖 × 𝐹𝑖 (2.14) 

If the loads are known, the primary source contributions can be identified. The 

results are commonly shown in a path contribution plot, like in Figure 2.4 where 

the path contributions are shown as a function of frequency and/or RPM. From 

Figure 2.4, it can be seen that the major contribution comes from Paths 3 and 4 at 

3500 RPM. Gajdatsy [20] discusses the limitations of a path contribution plot. This 

particular plot does not show the phase and does not illustrate cancellation effects 

which may be important at low frequencies. 
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Figure 2.4 Example of path contribution plot [20]  

Flexible connections like mounts are often used to decouple active from passive 

components [21, 22]. If the mass of the connection is neglected, forces are equal 

on opposite sides of the mounts. The connector can be modeled as a complex 

dynamics stiffness which includes both stiffness and damping. This dynamic 

stiffness may be frequency dependent and may be expressed as:  

 
𝐹𝑖(𝜔) = 𝐾𝑖(𝜔) ×

𝑎𝑎𝑖(𝜔) − 𝑎𝑝𝑖(𝜔)

−𝜔2
 

(2.15) 

𝐹𝑖(𝜔) is the mount force, 𝐾𝑖(𝜔) the stiffness of mount and 𝑎𝑎𝑖(𝜔) and 𝑎𝑝𝑖(𝜔) are 

active and passive side acceleration respectively.  

2.5 Summary 

In this chapter, the prior work and assumptions for transfer path analysis have 

been reviewed. It has been shown that the method is advantageous for 

determining inverse forces, path contributions, and for predicting the effect of 

connection modifications. The next chapter will extend the method to airborne path 

analysis including airborne connections.  
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Chapter 3  

DEVELOPMENT OF FREQUENCY BASED SUBSTRUCTURING FOR 

AIRBORNE PATHS 

This Chapter will detail the mathematics of FBS for structure-borne paths. After 

which, the theory will be extended to airborne paths in which connections are 

modeled using transfer matrix theory.  

3.1 System modeling using frequency based substructuring 

 

Figure 3.1 Four-spring mount system 

A simple four-spring mount system case is discussed to demonstrate the FBS 

concepts. Figure 3.1 shows a dynamic system containing active (i.e., source side) 

and passive (i.e., target side) components with four springs as connections in 

between the active and passive components.   



 

 
20 

Sources might include internal combustion engines or compressors.  Assume the 

source can be represented by a single load 𝐹𝐸 to the system.   

The response at the active and passive side connection points can be expressed 

in matrix form as:   

 

[

𝑥1
𝑥2
𝑥3
𝑥4

] = [

𝐻11
𝐻21
𝐻31
𝐻41

𝐻12
𝐻22
𝐻32
𝐻42

𝐻13
𝐻23
𝐻33
𝐻43

𝐻14
𝐻24
𝐻34
𝐻44

] [

𝐹1
𝐹2
𝐹3
𝐹4

] + [

𝐻1𝐸
𝐻2𝐸
𝐻3𝐸
𝐻4𝐸

] 𝐹𝐸 

 

(3.1) 

and 

 

[

𝑥5
𝑥6
𝑥7
𝑥8

] = [

𝐻55
𝐻65
𝐻75
𝐻85

𝐻56
𝐻66
𝐻76
𝐻86

𝐻57
𝐻67
𝐻77
𝐻87

𝐻58
𝐻68
𝐻78
𝐻88

] [

𝐹5
𝐹6
𝐹7
𝐹8

] 

 

(3.2) 

respectively where 𝐹𝑖 are the forces applied at the connection points  and  𝐻𝑖𝑗 are 

the transfer functions between connection points. Note that the forces are defined 

along the axis of the spring in this particular case but forces (or torques) may be 

considered in all six degrees of freedom at each point if needed. The two equations 

can be combined as: 

 

[
 
 
 
 
 
𝑥1
⋮
𝑥4
𝑥5
⋮
𝑥8]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝐻11
𝐻21
𝐻31
𝐻41

𝐻12
𝐻22
𝐻32
𝐻42

𝐻13
𝐻23
𝐻33
𝐻43

𝐻14
𝐻24
𝐻34
𝐻44

0

0

𝐻55
𝐻65
𝐻75
𝐻85

𝐻56
𝐻66
𝐻76
𝐻86

𝐻57
𝐻67
𝐻77
𝐻87

𝐻58
𝐻68
𝐻78
𝐻88]

 
 
 
 
 
 
 

[
 
 
 
 
 
𝐹1
⋮
𝐹4
𝐹5
⋮
𝐹8]
 
 
 
 
 

+

[
 
 
 
 
 
 
 
𝐻1𝐸
𝐻2𝐸
𝐻3𝐸
𝐻4𝐸
0
0
0
0 ]
 
 
 
 
 
 
 

𝐹𝐸 

 

 

(3.3) 
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For a certain spring mount, the relationship between the upper and lower positions 

can be expressed through a transfer or transmissibility matrix, which is a 

characteristic property of the mount. This can be expressed as:  

 [
𝑥𝑖
𝐹𝑖
] = [𝑇] [

𝑥𝑖+4
𝐹𝑖+4

] (3.4) 

If all connections are included, a connection matrix can be defined as:  

  

[
 
 
 
 
 
𝑥1
⋮
𝑥4
𝑥5
⋮
𝑥8]
 
 
 
 
 

= [𝑇∗]

[
 
 
 
 
 
𝐹1
⋮
𝐹4
𝐹5
⋮
𝐹8]
 
 
 
 
 

 

 

(3.5) 

where  [𝑇∗] is the combined matrix and is reconfigured from the [𝑇] matrix for each 

mount. 

The response at a receiver on the passive side can be obtained by: 

 𝑥𝑇 = 𝐻𝑇5𝐹5 + 𝐻𝑇6𝐹6 + 𝐻𝑇7𝐹7 + 𝐻𝑇8𝐹8 (3.6) 

It is common to solve for either the unknown forces  [𝐹𝑖] or responses [𝑥𝑖] using 

Equation 3.3. Once the unknown forces are known, the response at the target can 

be identified. Additionally, each of the terms on the right hand side of Equation 3.6 

is the contribution of a single force to the response.  

Transfer path analysis (TPA) has been applied to airborne paths to determine the 

contributions at receiver locations. In most cases, transfer functions are measured 

for the reciprocal case [24] and the volume velocity is measured for patches on the 

surface using either acceleration or sound intensity measurements [23, 24]. This 

approach is commonly referred to as panel contribution analysis.  
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In this work, FBS will be applied to airborne paths for interior acoustic spaces 

attached by ducts. Transfer matrix theory is utilized to simulate the connections 

between larger airspaces. The approach described is beneficial for determining 

the effect of adding treatments in connecting ducts.  

3.2 Frequency based substructuring for airborne paths 

In the discussion that follows, the equations are derived for the two-room and two-

opening case shown in Figure 3.2. The two airborne pathways are denoted as 

connections 1 and 2. The source and receiving sides of the ducts are denoted as 

𝑎 and 𝑏 respectively (See Figure 3.2). First, assume that Room 𝑎 is closed and 

sources are placed at the openings. The sound pressure at the entry to Connection 

1 will be the summation from the source itself plus the contributions from each of 

the openings.  In that case, the sound pressure at the entry to connection 1 (𝑝1
𝑎) 

can be expressed as 

 𝑝1
𝑎 = 𝑃1

𝑎 + 𝐻11
𝑎 𝑆1𝑢1

𝑎 + 𝐻12
𝑎 𝑆2𝑢2

𝑎 (3.7) 

The first term on the right hand side of Equation 3.7 is the sound pressure from the 

source assuming that connection 1 is closed. It can be found via analysis provided 

the source is well understood.  Alternatively, it can be determined experimentally 

by sealing the room. The remaining terms on the right hand side are the 

contributions from openings 1 and 2 (side 𝑎). 
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A similar expression can be also written for the sound pressure at the entry to 

airborne pathway 2 (𝑝2
𝑎).  That can be expressed as: 

 𝑝2
𝑎 = 𝑃2

𝑎 + 𝐻21
𝑎 𝑆1𝑢1

𝑎 + 𝐻22
𝑎 𝑆2𝑢2

𝑎 
(3.8) 

Similarly, the first term on the right hand side is the blocked sound pressure which 

is denoted as 𝑃2
𝑎. Expressions can also be developed which relate the particle 

velocity and sound pressure at the openings for side 𝑏. Accordingly, 

 𝑝1
𝑏 = 𝐻11

𝑏 𝑆1𝑢1
𝑏 + 𝐻12

𝑏 𝑆2𝑢2
𝑏 

𝑝2
𝑏 = 𝐻21

𝑏 𝑆1𝑢1
𝑏 + 𝐻22

𝑏 𝑆2𝑢2
𝑏 

(3.9a) 

(3.9b) 

For connections between subsystems, the sound pressure and particle velocity on 

side 𝑎  can be related to that on side 𝑏  using transfer matrix theory.  This is 

mathematically expressed as 

 

 

{
𝑝𝑖
𝑎

𝑆𝑖𝑢𝑖
𝑎} = [

𝐴𝑖 𝐵𝑖
𝐶𝑖 𝐷𝑖

] {
𝑝𝑖
𝑏

𝑆𝑖𝑢𝑖
𝑏} (3.10) 

where 𝑖  denotes the acoustic connection or pathway.  Equation 3.10 can be 

rearranged and expressed as 

 

 

{
𝑝𝑖
𝑎

𝑝𝑖
𝑏} = [

𝑎𝑖 𝑏𝑖
𝑐𝑖 𝑑𝑖

] {
𝑆𝑖𝑢𝑖

𝑎

𝑆𝑖𝑢𝑖
𝑏} (3.11) 

where  
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𝑎𝑖 =
𝐴𝑖
𝐶𝑖

 

𝑏𝑖 = 𝐵𝑖 −
𝐴𝑖𝐷𝑖
𝐶𝑖

 

𝑐𝑖 =
1

𝐶𝑖
 

𝑑𝑖 = −
𝐷𝑖
𝐶𝑖

 

(3.12) 

 

 

 

 

 

 

 

Figure 3.2 Schematic showing acoustics systems 

Equations 3.7, 3.8, and 3.9 can be expressed in matrix form as 

 

 

{
 
 

 
 𝑝1

𝑎

𝑝2
𝑎

𝑝1
𝑏

𝑝2
𝑏
}
 
 

 
 

=

[
 
 
 
 
𝐻11
𝑎 𝐻12

𝑎 0 0

𝐻21
𝑎 𝐻22

𝑎 0 0

0 0 𝐻11
𝑏 𝐻12

𝑏

0 0 𝐻21
𝑏 𝐻22

𝑏 ]
 
 
 
 

{
 
 

 
 𝑆1𝑢1

𝑎

𝑆2𝑢2
𝑎

𝑆1𝑢1
𝑏

𝑆2𝑢2
𝑏
}
 
 

 
 

+ {

𝑃1
𝑎

𝑃2
𝑎

0
0

} (3.13) 

which is analogous to Equation 3.3 for the structural case. 

𝑆1𝑢1
𝑏 

𝑝1
𝑏 

 

Receiver 

  
Source 

Room a 

Room b 

𝑆2𝑢2
𝑏 𝑆2𝑢2

𝑎 

𝑝2
𝑎 

𝑆1𝑢1
𝑎 

𝑝1
𝑎 

𝑝2
𝑏 

𝑝𝑏 

Connector 1 

Connector 2 
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For the case with two connections, Equation 3.11 can be expanded as 

 

{
 
 

 
 𝑝1

𝑎

𝑝2
𝑎

𝑝1
𝑏

𝑝2
𝑏
}
 
 

 
 

= [

𝑎1 0 𝑏1 0
0 𝑎2 0 𝑏2
𝑐1 0 𝑑1 0
0 𝑐2 0 𝑑2

]

{
 
 

 
 𝑆1𝑢1

𝑎

𝑆2𝑢2
𝑎

𝑆1𝑢1
𝑏

𝑆2𝑢2
𝑏
}
 
 

 
 

 (3.14) 

which is the analog to Equation 3.5 for the structural case.  

Equations 3.12 and 3.13 can then be solved for the volume velocities (𝑆𝑖𝑢𝑖
𝑗
).  Thus, 

the equation can be rewritten as: 

 

{
 
 

 
 𝑆1𝑢1

𝑎

𝑆2𝑢2
𝑎

𝑆1𝑢1
𝑏

𝑆2𝑢2
𝑏
}
 
 

 
 

=

(

 
 
[

𝑎1 0 𝑏1 0
0 𝑎2 0 𝑏2
𝑐1 0 𝑑1 0
0 𝑐2 0 𝑑2

] −

[
 
 
 
 
𝐻11
𝑎 𝐻12

𝑎 0 0

𝐻21
𝑎 𝐻22

𝑎 0 0

0 0 𝐻11
𝑏 𝐻12

𝑏

0 0 𝐻21
𝑏 𝐻22

𝑏 ]
 
 
 
 

)

 
 

−1

{

𝑃1
𝑎

𝑃2
𝑎

0
0

} (3.15) 

For the general case involving sources in multiple rooms and multiple connection 

paths, this can be rewritten as: 

 {𝑆𝑢} = ([𝑇] − [𝐻])−1{𝑃} (3.16) 

where [𝑇] and [𝐻] are matrices for connections and subsystems respectively and 

{𝑆𝑢} and 𝑃 are vectors for the volume velocities and blocked sound pressures 

respectively. 

Once the volume velocities are obtained, the sound pressures at a receiver point 

in rooms 𝑎 and 𝑏 can be found via 

 𝑝𝑎 = 𝐻𝑎1𝑆1𝑢1
𝑎 + 𝐻𝑎2𝑆2𝑢2

𝑎 + 𝑃𝑎 (3.17a) 
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and 

 𝑝𝑏 = 𝐻𝑏1𝑆1𝑢1
𝑏 + 𝐻𝑏2𝑆2𝑢2

𝑏 (3.17b) 

respectively. 

3.3 Transfer function determination 

The transfer functions (𝐻𝑖𝑗 ) relating the sound pressure at one opening to the 

volume velocity at another (or the same) are easily determined using acoustic 

simulation. In order to determine the transfer functions, a unit velocity is defined as 

a boundary condition at one opening with other openings sealed (i.e., rigid) and 

the source inactive.  In all equations, it is assumed that a positive volume velocity 

is directed into the room (i.e., acoustic subdomain). 

Transfer functions can also be determined experimentally. This is most easily 

accomplished by attaching an impedance tube (a tube with a loudspeaker on one 

side) at an opening. The volume velocity at the end of the tube can be found by 

measuring the sound pressure at two points inside the tube. Using wave 

decomposition, the volume velocity at the end of the opening of the tube can be 

expressed as (variables are defined in Fig A.1 in Appendix A): 

 𝑢0 =
𝑆0|𝑝1|

𝜌𝑐(𝑅 + 1)
(𝑒−𝑗𝑘𝐿1 − 𝑅𝑒𝑗𝑘𝐿1) (3.18) 

3.4 Transfer matrix models for airborne connections  

The connection elements in acoustic systems can consist of straight pipes, 

perforated panels, Helmholtz resonators and other acoustic elements. Plane wave 
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behavior is assumed in the acoustic connections (i.e., sound pressure is constant 

for any cross-section). 

The sound pressure and volume velocity at the inlet and outlet for several different 

connections are summarized.  For a straight pipe, the transfer matrix can be 

expressed as: 

 {
𝑝1
𝑆1𝑢1

} =

[
 
 
 cos 𝑘𝐿

𝑗𝜌𝑐

𝑆2
sin 𝑘𝐿

𝑗𝑆1
𝜌𝑐
sin 𝑘𝐿

𝑆1
𝑆2
cos 𝑘𝐿

]
 
 
 

{
𝑝2
𝑆2𝑢2

} (3.19) 

 

 

 

Figure 3.3 schematic of the variables and the sign convention for volume velocity 

Elements such as quarter wave tubes or Helmholtz resonators can be modeled as 

a parallel or branch impedance.  The transfer matrix can be expressed as: 

 𝑇 = [
1 0
𝑍𝐵 1

] (3.20) 

An example of a parallel or branch impedance is a closed side branch (i.e. quarter 

wave tube).  The acoustic impedance can be expressed as: 

 𝑍𝐵 = −
𝑗𝜌𝑐

𝑆𝐵
cot(𝑘𝐿𝐵) (3.21) 

𝑝1 𝑝2 

𝑆1𝑢1 𝑆2𝑢2 
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where 𝐿𝐵 and 𝑆𝐵 are the length and cross-sectional area of the closed side branch 

respectively [7]. Similarly, the branch impedance of a Helmholtz resonator is 

 𝑍𝑏 = −𝑗 (
𝜌𝜔𝐿′

𝑆𝐵
−
1

𝜔

𝜌𝑐2

𝑉
) (3.22) 

where 𝐿′ is the equivalent length of the neck, 𝑉 is the volume of the resonator and 

𝑆𝐵 is the area of the side branch [7].   

Elements can be cascaded in series as shown in Figure 3.4. The total transfer 
matrix can be expressed as:  

 

 [𝑇] = [𝑇1][𝑇2] … [𝑇𝑁] (3.23) 

for 𝑁 elements.  

 

 

 

 

 

Figure 3.4 Duct with a number of elements 

 

Note that the sign convention for volume velocity is reversed in Equations 3.10-

3.12.  Thus, the four pole parameters in Equation 3.10 can be expressed in terms 

of [𝑇] in Equation 3.23 as: 

 
 [
𝐴 𝐵
𝐶 𝐷

] = [
𝑇11 𝑇12
−𝑇21 −𝑇22

] (3.24) 

Notice that the signs of matrix elements (2, 1) and (2, 2) have been reversed. 

Straight pipe 1 Straight pipe 2 

Perforated panel 

Straight pipe 3 Muffler 
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3.5 Insertion loss prediction 

Insertion loss is defined as the radiated sound pressure or sound power change 

due to the insertion of attenuation elements. It is often used to evaluate how well 

an attenuation device will perform in the actual system. The insertion loss for an 

enclosure can be defined as the difference between two sound pressure levels at 

the same point without and with the enclosure. It can also be defined as the 

reduction in radiated sound power due to the enclosure.  

The termination impedance at the duct opening can be determined using the 

formulas for unflanged and flanged openings [25, 72, 73]. The termination 

impedance of an unflanged opening can be expressed as: 

where  𝜌 is the density of air, 𝑐 the speed of sound in air and 𝑆 the cross-sectional 

area of the opening. 𝑅 denotes the reflection coefficient which can be expressed 

as: 

where  𝑘  is the wave number and 𝛼  the radius of the opening.  𝜁0  is the end 

correction which is: 

  𝑍𝑟𝑎𝑑 =
𝜌𝑐(1+𝑅)

𝑆(1−𝑅)
 (3.25) 

  𝑅 = −𝑅0𝑒
−𝑗2𝑘𝛼𝜁0 (3.26) 

 
 𝜁0 = {

0.6133 − 0.1169(𝑘𝑎)2, 𝑘𝑎 < 0.5
0.6393 − 0.1104𝑘𝑎, 0.5 ≤ 𝑘 < 2

 (3.27) 
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𝑅0 is the amplitude of the reflection coefficient without flow and can be expressed 

as: 

In a similar manner, the termination impedance for a flanged opening can be 

written as: 

where   

and 

𝐽1 and 𝐻1 are the first order Bessel function of first kind and Struve function of first 

kind respectively. 

Given the transfer functions, partial pressures from the sources and the transfer 

matrix of the connections, the sound pressure and volume velocity at the openings 

can be determined by solving the Equations 3.16. The sound pressure at the 

receiver positions can be determined using Equation 3.17.  

  𝑅0 = 1 + 0.01336𝑘𝑎 − 0.59079(𝑘𝑎)
2 + 0.33576(𝑘𝑎)3 −

0.06432(𝑘𝑎)4, 𝑘𝑎 < 1.5 

(3.28) 

  𝑍𝑟𝑎𝑑 =
𝜌𝑐

𝑆
(𝑅1 − 𝑗𝑋1) (3.29) 

  𝑅1 = 1 −
𝐽1(2𝑘𝑎)

𝑘𝑎
 (3.29a) 

  𝑋1 =
𝐻1(2𝑘𝑎)

𝑘𝑎
 (3.29b) 
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The sound intensity can be determined using the previously calculated sound 

pressure and volume velocity. Accordingly, the radiated sound power from the 

openings can be obtained by [26]:  

The sound power of a source can be found by integrating the normal component 

of the mean active sound intensity over any closed contour S which encloses the 

sound source [27]. The sound power is expressed as: 

 𝑊𝑆 = ∫ 𝐼�̅�
𝑆

𝑑𝑆 (3.31) 

The mean active intensity can be found from: 

 𝐼�̅� = 𝑝𝑢̅̅̅̅ =
1

2
𝑅𝑒{�̃��̃�∗} (3.32) 

Here p̃ and �̃� contain the space-dependent terms. 

The estimated sound power can be determined by 1) estimating the normal 

component of the mean active intensity at N fixed field points on any surface 

enclosing the source; and 2) weighting with the corresponding area. The sound 

power can be determined by summing up the intensities and respective areas 

using: 

 

 

 


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 𝑊𝑆 ≈∑𝐼𝑛𝑖̅̅ ̅

𝑁

𝑖=1

∆𝑆𝑖 (3.33) 

3.6 Summary 

In this chapter, frequency based substructuring was implemented for airborne 

paths with connections between airspaces described via transfer matrix theory.  

This approach is especially applicable to heating, ventilation, and air conditioning 

systems in which rooms are connected by ducts which may be treated or untreated. 

A definition of insertion loss for enclosures is also presented. With the theoretical 

foundation in place, the next chapter presents numerical cases which validate the 

theory. 
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Chapter 4  

VALIDATION OF FREQUENCY BASED SUBSTRUCTURING APPROACH 

In the prior chapter, a frequency based substructuring (FBS) approach for dealing 

with air spaces with connecting ducts was detailed.  In this chapter, the approach 

is validated using the boundary element method. The 3-D modeling software Pro-

Engineer (Creo) was used to build the geometry of the enclosure, and ANSYS was 

used to generate the mesh of the geometry. The software LMS Virtual.Lab was 

used for all boundary element analyses. 

4.1 Sound pressure prediction 

4.1.1 Two rooms, two connecting pipes 

The first validation case consists of two rooms connected by two pipes. A source 

is placed in Room a. Figure 4.1 shows a schematic of the model. The two rooms 

are treated as two separate subsystems and the two pipes are modeled as 

connections. Each opening can be considered as a connection point. Accordingly, 

a connecting duct is analogous to a structural mount and a connection point to one 

side of a mount. The objective is to compare the response using a BEM model of 

the complete system with the calculated result using FBS.  

Figure 4.2 shows the BEM model. The indirect boundary element method was 

used for the analysis [27]. Table 4.1 shows the dimensions of the two rooms.  The 

length and diameter of the connecting pipes are 0.5 m and 0.1 m respectively. The 

positions and strengths of the sources located in Room a are shown in Table 4.2. 

A response or field point was positioned in Room b at the position of (0.3, 0.2, 1.1) 

(unit: m). The connections are located in Room b at the positions of (-0.2, -0.2, 
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0.85) (unit: m) and (-0.33, -0.03, 0.85) (unit: m) respectively. The fluid inside the 

rooms is assumed to be air with a speed of sound and density of 340 𝑚/𝑠 and 

1.225 𝑘𝑔/𝑚3 respectively. There are 5173 nodes and 5174 elements in the model 

with the element edge length 0.05 m. The model is valid up to the frequency range 

of 1000 Hz. 

 

 

 

 

 

 

 

Figure 4.1 Schematic of two-room validation case 
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Figure 4.2 BEM model of two-room validation case 

 

Table 4.1 Dimensions of rooms 

Room No. Length (Lz) m Width (Lx) m Height (Ly) m 

a 0.7 1.0 0.8 

b 0.7 1.2 1.0 
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Table 4.2 Positions and strength of the sources in Room a. 

 

Monopole 

source 

 

x position 

m 

 

y position 

m 

 

z position 

m  

Strength 

Real 

(kg/s2) 

Image 

(kg/s2) 

1 -0.30 0 0 1 0 

2 0.20 -0.20 0.20 1 0 

3 0.28 0.22 -0.10 1 0 

4.1.1.1 Step 1: Determine transfer functions 

The transfer functions were calculated using the method discussed in the Section 

3.3. In the discussion that follows, a direction of sound propagation was assumed 

from the source to the receiver room.  Note that the method does not require the 

direction of propagation to be known. Four separate BEM runs (one for each 

opening in each component) were required to define all of the required transfer 

functions. In each run, a unit velocity was applied on the opening and was directed 

into the acoustic domain of the respective airspace with the other opening blocked. 

The sound pressures at the two openings were obtained to calculate the transfer 

functions as shown in Figure 4.3. The receiver transfer functions should also be 

determined in the passive-side component. See Figure 4.4. 
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Figure 4.3 Schematic showing transfer functions 𝑯𝟏𝟏and 𝑯𝟐𝟏 between connection points in 

Room a  

 

 

Figure 4.4 Schematic showing receiver Transfer functions 
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4.1.1.2 Step 2: Determine blocked pressure 

The blocked pressure 𝑃𝑆𝐵𝑖 at each opening was determined by solving the BEM 

model with all openings closed as shown in Figure 4.5. If the receiver is in the 

same room with the sources, the blocked sound pressure at the receiver caused 

by the same-room sources should also be determined.  

 

Figure 4.5 Schematic showing blocked pressure in Room a 

4.1.1.3 Step 3: Determine transfer matrix of connectors  

The transfer matrix of the connection element was calculated analytically. It can 

also be determined experimentally using either the two-load or two-source 

methods [28]. The transfer matrix of straight pipes in this case was determined as 

detailed in Section 3.4.  

Receiver 

Source 
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Figure 4.6 Transfer Matrix of Connectors 

4.1.1.4 Step 4 Results and Discussion 

A comparison of the sound pressure at receiver points using the indirect BEM and 

the FBS method is plotted in Figure 4.7. The BEM for the complete system and the 

FBS approach agree well over the full frequency range with only minor differences.  

These are likely due to the fact that the sound pressure is assumed to be constant 

over the cross-section of the opening. This assumption will be violated especially 

at higher frequencies. Nevertheless, the results agree well with the full system 

model at most frequencies. 
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Figure 4.7 Sound pressure level comparison between full model BEM and FBS for system 

4.1.2 Two rooms, two pipes, two sets of source 

In this section, sources are located in each room. The simulation approach is 

identical to that in the prior section. There are three monopole sources in Room a 

and two in Room b. The positions of the sources and the respective source 

strengths are indicated in Table 4.2. The receiver is set in Room a at the position 

of (-0.2, 0.2 -0.2) (unit: m). The BEM model is shown in Figure 4.8. There are 5173 

nodes and 5174 elements with the element edge length of 0.05 m. The model is 

valid up to the frequency of 1000 Hz. 
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Figure 4.8 Two sources case 

 

Since the receiver and sources are both in Room a, as discussed in the prior 

section, the blocked sound pressure at the receiver contributed by source a must 

be determined. All other steps remain the same. Figure 4.9 shows the comparison 

of FBS and BEM results for the sound pressure level at the receiver. Sound 

pressure level results compare well. Results are similar to the prior case shown in 

Figure 4.7. Figure 4.10 shows the contribution from each source and the results 

indicate that the sources in the second room do not contribute greatly to the sound 

pressure at the receiver.  
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Figure 4.9 Sound pressure level comparison 

 

Figure 4.10 Sound pressure level contribution 
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4.2 Determing the insertion loss 

Another validation case is for a single room with two extended pipes radiating noise 

with no reflections. One-inch thick glass fiber with a flow resistivity of 15000 rayls/m 

was assumed to be attached to the sides of the room. The complex wave number 

and characteristic impedance were determined using Equations 6.1 and 6.2 

respectively. When the material is attached to a rigid surface, the normal 

impedance was determined using the expression:  

 𝑍 = −𝑗𝑍𝑐 cot(𝑘′𝐿)  (4.1) 

where 𝐿 is the thickness of the sound absorbing lining. The insertion loss was 

determined directly using BEM and the sound power predicted by FBS was 

compared to it. The sound power was determined using the BEM by surrounding 

the boundary element mesh with a spherical field point mesh and calculating the 

sound power through the field point mesh.  

Figure 4.11 shows a schematic of the setup for determining the insertion loss. 

Figure 4.12 shows the BEM model with a spherical field point mesh. The whole 

enclosure is enclosed in the 2 m diameter spherical field point mesh which is 

comprised of 386 field points. Sound intensity at each field point was calculated 

using BEM, and the sound power was obtained by Equation 3.31.  

The FBS case considers the two openings as two sources. By using Equation 3.18, 

the sound power was predicted. The FBS and BEM results match well as shown 

in Figure 4.13. 
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Figure 4.11 Schematic showing one-room sound power insertion loss case. 

 

Figure 4.12 BEM model of sound power insertion loss case 
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Figure 4.13 Sound power insertion loss comparison 

 

4.3 Results and discussions 

The sound pressure at receiver positions and sound power insertion loss 

determined by the indirect BEM model compares well with the FBS predicted 

results. This has been validated for a two room case with two connecting ducts 

between the rooms. In addition, the contribution for a given source to a receiver 

was determined. The method was also demonstrated for determinging the 

insertion loss of enclosures. 
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Chapter 5  

EXPERIMENT VALIDATION 

In the previous chapter, airborne frequency based substructuring (FBS) including 

connecting ducts was validated using simulation.  In this chapter, an experiment is 

used to demonstrate the experimental methodology for the FBS approach. The 

experiment was conducted in the anechoic chamber at the University of Kentucky. 

The purpose of the experiment was to compare directly measured and FBS 

calculated receiver sound pressure. Measured transfer functions were used for the 

FBS approach.  

5.1 Enclosure geometry 

The partial enclosure used in this chapter is built from 0.75 inch thick particle board.  

Care was taken to insure that the box was sealed by putty. The two pipes are 2 

inch diameter PVC pipe.  Figures 5.1 and 5.2 show two views of the enclosure with 

important dimensions. Two pieces of glass fiber were placed inside the enclosure 

as shown in Figure 5.3. The flow resistivity of the material used was 15,000 rayls/m, 

which was measured using ASTM C522 [28]. Figure 5.3 shows a photograph of 

the inside of the enclosure. 
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Figure 5.1 Schematic of the enclosure and set up 

 

Figure 5.2 Side-view of the enclosure 
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Figure 5.3 Inside-view of the enclosure 

5.2 Equipment 

Equipment used in this test includes a Bruel and Kjaer bookshelf loudspeaker, 

Spectronics impedance tube kit, two PCB microphones, and Microflown PU probe 

kit. Data was acquired using the LMS SCADAS data acquisition and laptop. The 

test software used was LMS Test.Lab, and Matlab was used for processing the 

data. Serial numbers are listed below in Table 5.1. All measurements were made 

in the hemi-anechoic chamber at the University of Kentucky. The 120 m3 room is 

qualified down to 150 Hz. 

 

 

 

 



 

 
49 

Table 5.1 Equipment list 

Items Serial Numbers 

PCB Microphone 1 377B02, SN119297 

PCB Microphone 2 377B02, SN119510 

Microflown PU Probe Kit 900490 

LMS DAQ SCM01, SN 47122113 

Spectronics impedance tube ACUPRO Version 4 

 

 

Figure 5.4 LMS 8-channel DAQ (upper) and PCB microphones (lower) 
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Figure 5.5 PU-probe kit 

5.3 Procedure 

The procedures used for the experimental study are detailed below.  There are five 

primary steps.  These include: 

1. Measuring interior transfer functions; 

2. Measuring external transfer functions; 

3. Measuring blocked or partial sound pressures; 

4. Measuring sound pressure in the field; 

5. Calculate using the FBS procedure. 

5.3.1 Measure interior transfer functions 

The first step is to measure the transfer functions between the two duct ports inside 

the enclosure. Figure 5.6 shows a schematic of the measurement of interior 

transfer functions 𝐻11 and 𝐻21. In the schematic, the inside loudspeaker is turned 

off. Opening 1 is open and Opening 2 is blocked with a piece of wood. Opening 1 

is connected to an impedance tube. A loudspeaker is located at the end of the 

impedance tube and is the sound source for the measurement. Two sensors are 

used in this case. A PU probe is installed in the middle of Opening 1 to measure 
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the sound pressure and particle velocity at the center of the opening. A microphone 

is positioned at the center of the blocked opening at position 2 to measure the 

sound pressure. 

When the loudspeaker is turned on, the sound propagates from the loudspeaker 

into the enclosure through the impedance tube. The particle velocity and sound 

pressure at Opening 1 is used to determine the transfer function 𝐻11 . The particle 

velocity at Opening 1 and the sound pressure at Opening 2 are used to determine 

the transfer function 𝐻21.  

The measured transfer functions are expressed as follows. 

 
𝐻11 =

𝑃1
𝑈1𝑆1

 
(5.1a) 

 
𝐻21 =

𝑃2
𝑈1𝑆1

 
(5.1b) 

Figures 5.7 and 5.8 are photographs showing the setup for measuring the transfer 

functions 𝐻11  and 𝐻21 . Figure 5.9 shows the loudspeaker attached to the 

impedance tube.  

Following this, the impedance tube and loudspeaker were attached to Opening 2 

and Opening 1 is blocked to facilitate measurement of transfer functions 𝐻12 and 

𝐻22. The process is identical to this for the other opening.   
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Figure 5.6 Schematic showing process to determine interior transfer functions 

 

Figure 5.7 Inside-view of the settings for Opening 1 and Hole 2 
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Figure 5.8 Outside-view of settings for Opening 1 and Hole 2 

 

 

Figure 5.9 Settings for measuring the inside transfer functions 
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5.3.2 Measure external transfer functions 

The second step is to measure the transfer functions between the two openings 

outside the pipes. Figure 5.10 shows a schematic identifying external transfer 

functions  𝐻33, 𝐻43 and 𝐻53 which describe the exterior of the enclosure.  

In the schematic, the interior loudspeaker is turned on. Both Openings 1 and 2 

inside the enclosure are open and connected to the exterior by PVC pipe. Opening 

3 is open but Opening 4 is blocked using a wood board. Three sensors are used. 

A PU probe is installed in the middle of Opening 3 to measure the sound pressure 

and particle velocity at the center of the opening. A microphone is positioned at the 

center of blocked Opening 4. The other microphone is located outside the box and 

serves as a target response location. 

The transfer functions describing the exterior pictured in Figure 5.11 can be 

determined in an analogous manner. These include 𝐻33 , 𝐻43  𝐻53  𝐻34 , 𝐻44, 𝐻54 .  

Position 5 corresponds to the receiver. 

The transfer function 𝐻33 is expressed as 

 
𝐻33 =

𝑃3
𝑈3𝑆3

 
(5.2) 

Other transfer functions 𝐻43, 𝐻53, 𝐻34, 𝐻44and 𝐻54 can be obtained similarly.  
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Figure 5.10 Schematic showing the measurement of external transfer functions 

 

Figure 5.11 Settings for measurement of external transfer functions 

5.3.3 Measure blocked or partial sound pressure 

This step is to measure the blocked or partial sound pressure at Openings 1 and 

2 with both openings blocked. Figure 5.12 shows a schematic of the measurement 

of blocked or partial sound pressures  𝑃𝑆𝐵1 and 𝑃𝑆𝐵2 with the opening blocked. In 

the schematic, the inside loudspeaker is turned on with signal generated by LMS 

Microphone at  

blocked End 4 

PU probe at 

open end 3 

Microphone 

at field point 
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Test.Lab. Care was taken to insure that the input signal was the same for all tests. 

Opening 1 and Opening 2 are blocked with two pieces of wood. A microphone is 

positioned at the center of each opening. The phase of the sound pressure is 

determined using the loudspeaker signal as a reference. Figure 5.13 shows a 

photograph of the measurement test setup. 

 

Figure 5.12 Schematic of the measurement of blocked or partial sound pressure 
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Figure 5.13 Photograph showing setup for measurement of blocked or partial sound 

pressures  

5.3.4 Measure sound pressure in the field 

The actual sound pressure at the receiver point was then measured and used to 

compare to the FBS determined sound pressure. Figure 5.14 shows a schematic 

of the relative position of the receiver point with respect to the two outlet pipes.  

Care was taken to insure that the loudspeaker level remained the same throughout 

the testing.  

The sound power from the two openings was measured using the same setup.  A 

measurement surface enclosing the two openings was created using string and a 

frame.  The sound intensity was scanned for each surface using ISO-9614. Figure 

5.15 shows the measurement setup.  
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Figure 5.14 Schematic of sound pressure measurement in working condition  

 

 

Figure 5.15 Settings for sound pressure measurement in working condition 

5.3.5 Calculate using the FBS Procedure 

All the data collected in the four steps was imported to MATLAB for FBS calculation. 

The voltage data from the PU-probe was converted to Pa and m/s using the 

calibration curve provided by Microflown Inc. The transfer matrix of the connecting 
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pipes was determined using Equation 3.19. The equations used for the 

calculations are detailed in Chapter 3. 

5.4 Results and Discussion 

5.4.1 Sound pressure prediction 

Sound pressure at the receiver point was measured directly and calculated using 

the FBS method. Results are compared in Figure 5.16. In this case, the pipe’s 

diameter is 2 inches, which means the plane wave cut-off frequency is around 

4000 Hz [26]. The blue curve is the direct measurement and the red curve shows 

the FBS prediction. Sound pressure levels are comparable but there are obvious 

differences. Differences may be due to the highly reverberant nature of the 

enclosure since very little sound absorption was added to the interior. Additionally, 

the measurement procedure for determing the volume velocity using the P-U probe 

and additional measurement protocols should be reviewed. At this juncture, results 

are inconclusive. It is recommended that measurement research continue to prove 

out the method. 
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Figure 5.16 Results of Receiver Sound Pressure Prediction 

5.5 Summary 

In this chapter, the FBS method was applied experimentally to a partial enclosure.  

Sound pressure predictions are on the same order of magnitude as those 

measured but there are some noticeable differences.  It is recommended that the 

measurements in this chapter be repeated with a less reverberant enclosure.  
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Chapter 6  

APPLICATION OF AIRBORNE FREQUENCY BASED SUBSTRUCTURING TO 

REDUCE ENCLOSURE NOISE 

Frequency based substructuring (FBS) is a procedure in which structural or 

acoustic subsystems and connections are simulated by transfer functions. FBS is 

routinely applied to determine the structural response.  It is advantageous for a 

number of reasons. First, subsystem and connection transfer functions can be 

determined numerically or experimentally. As such, the method is a convenient 

way to combine numerical and experimental component models into an overall 

system model. Additionally, connection and some component modifications may 

be considered without the need to reanalyze the complete system. Additional 

benefits include the ability to identify sources based on the measured transfer 

functions and operational data and to determine contributions. FBS is sometimes 

referred to as transfer path analysis (TPA).   

In previous chapters, the method for airborne subsystems and connections was 

detailed. In this case, airborne subsystems refer to rooms or enclosure volumes 

and connections to ducts running between the subsystems. The procedure was 

validated for a two room case and was also used to determine the insertion loss 

for a partial enclosure. 

This chapter will demonstrate the applicability of the approach for path contribution 

analysis, modifications to connecting ducts, and adding lumped impedance 

attenuation devices (Helmholtz resonators or quarter wave tubes) to a subsystem.   

6.1 Path contribution analysis 

In Equation 3.17b, the individual terms on the right hand side represent the 

contributions from connections 𝑎 and 𝑏 and the sources 𝑠 to the sound pressure 

in either Room 𝑎 or 𝑏.  Once the contributions are well understood for a particular 

problem, treatments can be considered and simulated to evaluate their 

effectiveness. 
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The two-room with two-connection case is used as an example.  The source is 

assumed to be present in Room 𝑎 and the receiver in Room 𝑏.  To determine the 

contribution from each opening to the passive room, a contribution analysis was 

carried out using airborne FBS.  For structureborne analyses, contribution analysis 

is commonly used to assess the contributions from the forces at respective 

mounting points. For airborne paths, the contribution from each opening was 

determined. LMS Virtual.Lab was used for all simulations. 

The BEM model is shown in Figure 6.1. The dimensions of the room are indicated 

in Table 4.1. Three unit monopole sources are located in Room 𝑎. A receiving point 

or field point was positioned in Room 𝑏.  There are 5173 nodes and 5174 elements 

in the model with an element edge length of 0.05 m. The model is valid up to 1000 

Hz.  Three unit amplitude monopoles were positioned in Room 𝑎 having the same 

phase. The length and the diameter of the connecting pipes were 0.5 m and 0.1 m 

respectively.   

The transfer functions were calculated using the method discussed in the previous 

section. Two BEM runs were performed for each room to determine the required 

transfer functions. The blocked pressure (𝑃1
𝑎 and 𝑃2

𝑎) at each opening in Room 𝑎 

was determined by solving with the source active and all openings closed. The 

transfer matrix for the connecting ducts was determined using transfer matrix 

theory. 

After the FBS analysis, results were compared with BEM simulation of the entire 

system using the mesh shown in Fig. 6.1.  The total response and the contribution 

from each duct are shown in Figure 6.2. For the receiver point selected, 
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Connection 1 contributes more to the sound pressure level at the receiver than 

Connection 2. The results demonstrate how FBS can be used to identify the 

dominant energy paths.  

 

Figure 6.1 BEM model of path contribution analysis 

 

Figure 6.2 Path contribution analysis results 
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6.2 Adding expantion chambers 

Connections between the two rooms are represented as a transfer matrix. In this 

example, an expansion chamber is positioned in the connecting duct. A schematic 

of the connection with added muffler is shown in Figure 6.3 and the BEM model is 

shown in Figure 6.4. The transfer matrix of the muffler is calculated by multiplying 

three transfer matrices of straight pipes with lengths of 0.2 m, 0.05 m, and 0.25 m 

using transfer matrix theory (See Section 3.4). Sound pressure level comparisons 

are shown in Figure 6.5 with good agreement.  

 

 

  

 

 

 

 

 

Figure 6.3 Cross-section of a muffler 
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Figure 6.4 Adding two mufflers  

 

Figure 6.5 Sound pressure level comparison 
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6.3 Adding absorption filling 

To improve the attenuation performance at the receiver points, treating the 

connecting pipes with a sound absorptive fill was considered. Glass fiber with a 

flow resistivity of 15,000 rayls/m was assumed. The complex wave number and 

characteristic impedance were determined using Mechel's [29] model. The 

complex wave number 𝑘′ can be expressed as: 

 𝑘′ = 𝛽 − 𝑗𝛼  (6.1) 

where 𝛽 is called the phase constant or propagation constant, while, 𝛼 is known 

as the attenuation constant. Usually 𝑘′ is measured directly for a given material. 

The characteristic impedance of the porous material is 𝑍𝑐, which is equal to the 

sound pressure divided by particle velocity expressed as: 

 𝑍𝑐 =
𝑝(𝑥)

𝑢(𝑥)
  (6.2) 

Given the complex wave number 𝑘′  and characteristic impedance 𝑍𝑐  for an 

acoustic material, the transfer matrix of the filled duct can be written as: 

 {
𝑝1
𝑆1𝑢1

} =

[
 
 
 cos 𝑘′𝐿

𝑗𝑍𝑐
𝑆2
sin 𝑘′𝐿

𝑗𝑆1
𝑍𝑐
sin 𝑘′𝐿

𝑆1
𝑆2
cos 𝑘′𝐿

]
 
 
 

{
𝑝2
𝑆2𝑢2

} (6.3) 

where 𝐿 is the length of the fill in the duct. 

The BEM model used for validation is shown in Figure 6.6. The sound pressure at 

the receiver point with and without glass fiber treatment is shown in Figure 6.7. 
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With the absorption material added, the sound pressure level at the receiver 

decreased by 40 to 70 dB over the frequency range. As anticipated, filling the ducts 

with glass fiber greatly improves the acoustic attenuation in the ducts.  

 

Figure 6.6 BEM model showing where glass fiber is filled 

 

Figure 6.7 Glass fiber effect using FBS 
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Another treatment considered was one pipe filled with glass fiber and the other 

with muffler added, as shown in Figure 6.8. Figure 6.9 shows the difference in 

sound pressure at the receiver when adding the muffler in one duct and glass fiber 

in the other. It is apparent that the response through the muffler path is dominant 

and that the muffler is especially effective at 315 Hz. Figure 6.10 shows the sound 

pressure insertion loss by adding muffler and glass fiber. 

 

Figure 6.8 One muffler and one pipe with glass fiber 
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Figure 6.9 Effect of adding muffler and glass fiber 

 

Figure 6.10 Insertion loss of adding muffler and glass fiber 
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6.4 Adding Helmholtz resonators 

Consider adding two side branches to the middle of the two straight pipes. 

Commonly used side branches include Helmholtz resonators and quarter wave 

tubes. A Helmholtz resonator consists of a neck connected to a comparatively 

large volume. The added Helmholtz resonators were tuned to approximately 325 

Hz to each duct. The adjusted neck length neck diameter, and cavity volume were 

8.8 cm, 10 cm and 0.0025 m3 respectively. The sound pressure level at the field 

point in the two-room case with straight pipes and Helmholtz resonators is shown 

in Figurer 6.11. The Helmholtz resonator is effective at the targeted frequency of 

325 Hz but is ineffective at other frequencies. 

 

Figure 6.11 Sound pressure level without and with Helmholtz resonators added 

 

70

80

90

100

110

120

130

140

150

160

0 200 400 600 800

So
u

n
d

 P
re

ss
u

re
 L

ev
el

 d
B

Frequency Hz

Two straight pipes

Add 2 Helmholtz resonators



 

 
71 

6.5 Lumped impedance treatments to subsystems 

 

 

 

 

 

 

Figure 6.12 Schematic showing test case with side branches 

The FBS approach is also valuable for investigating the effectiveness of lumped 

impedance treatments for the subsystems. The equations for the lumped elements 

are detailed in Appendix B. Here a single-room case with side branches is 

introduced in Figure 6.12. Each side branch can be considered as a lumped 

impedance. For each lumped impedance, the sound pressure (𝑃𝑖) and volume 

velocity (𝑆𝑖𝑈𝑖) are related via the impedance (𝑍𝑖) so that: 

 
𝑃𝑖 = 𝑍𝑖𝑆𝑖𝑈𝑖 , 𝑖 = 1,2 (6.4) 

This can be expressed as an impedance matrix where the sound pressures and 

particle velocities are related to one another via  

 
{
𝑃1
𝑃2
} = [

𝑍1 0
0 𝑍2

] {
𝑆1𝑈1
𝑆2𝑈2

} . (6.5) 

The respective particle velocities and sound pressures can also be related to one 

another via 

 {
𝑃1
𝑃2
} = [

𝐻11 𝐻12
𝐻21 𝐻22

] {
𝑆1𝑈1
𝑆2𝑈2

} + {
𝑃1
𝑎

𝑃2
𝑎} 

(6.6) 

where 𝐻𝑖𝑗 are transfer functions relating the sound pressure and volume velocity 

at the lumped impedance positions and 𝑃1
𝑎  and 𝑃2

𝑎  are the blocked sound 

𝑃1 

𝑃2 

Room  

Path 1 

Side branches 

Point Sources Path 2 

𝑝𝑏 

Receiver 

 

 



 

 
72 

pressures at the lumped impedance positions when the openings are blocked and 

the internal source is active. Combining Equations 6.5 and 6.6, the volume 

velocities can be determined via  

 {
𝑆1𝑈1
𝑆2𝑈2

} = ([
𝑍1 0
0 𝑍2

] − [
𝐻11 𝐻12
𝐻21 𝐻22

])
−1

{
𝑃1
𝑎

𝑃2
𝑎}  . (6.7) 

Once the volume velocities and the transfer functions from the side branch inlets 

to the target receivers (𝐻𝑇𝑖) are determined, the sound pressure at a receiver (𝑃𝑇) 

can be expressed as:   

 𝑃𝑇 = 𝐻𝑇1𝑆1𝑈1 + 𝐻𝑇2𝑆2𝑈2 + 𝑃𝑇
𝑎  (6.8) 

where 𝑃𝑇
𝑎 is the blocked sound pressure at the target.  

A single room with three point monopole sources was considered. Two resonators 

were attached to the wall as a treatment with an aim to reduce the sound pressure 

at a receiver position in the room. A schematic of the case considered is shown in 

Figure 6.12 and a BEM model of the room plus one and two resonators are shown 

in Figure 6.13 and 6.14 respectively.   

The room had dimensions of 4.5 m × 4.5 m × 4.5 m. There were two Helmholtz 

resonators (R1 and R2) attached to the wall as shown in Figures 6.15. The neck 

diameter of the Helmholtz resonators is 0.65 m. The neck length was 48.8 cm for 

both resonators and the attached volume was 1 m3  and 0.5 m3  for R1 and R2 

respectively. Three unit point sources were positioned in the machine room at 

coordinates of (2.0, 3.0, 1.5), (2.5, 1.8, 3.0) and (1.0, 2.5, 1.5) (unit: m) and were 

in phase with one another.  Three panels of 2.5 cm thick sound absorbing material 

(2.4 m × 3.3 m) were centered on three walls. The sound absorption coefficient 
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was determined using Mechel’s equation for fiber assuming a flow resistivity 

of 15,000 rayls/m.  The receiver was positioned at (1.2, 0.2, 1.5) (unit: m). 

The finite element analysis was performed in LMS Virtual.Lab. The element edge 

edge length was 0.3 m, so analyses should be valid up to 180 Hz.  

For the first case, a BEM model of a single room without resonators was built with 

the point sources and receivers set as above. This model was also used to 

determine the transfer functions (𝐻𝑖𝑗  and 𝐻𝑇𝑖) in Equations (13) and (14). After 

which, a BEM model of a single room with resonators R1 and R2 was constructed 

(Figure 6.17). The sound pressures at receivers were obtained by both BEM 

calculation and FBS prediction. The resonant frequencies of the Helmholtz 

resonators R1 and R2 are 37.5 Hz and 54.5 Hz respectively. The impedance at 

the resonator inlets were calculated numerically in order to accurately include 

inertial effects.  

In the first baseline case, a BEM model of a single room without resonators was 

built. With the point sources and receivers set as above, the sound pressures at 

receivers were obtained by BEM calculation as the baseline.  

In the second case, a BEM model of a single room with resonator R1 was built 

(Figure 6.13). With the same point sources and receivers as in the baseline, the 

sound pressures at receivers were obtained by both BEM calculation and FBS 

prediction. The tuned frequency of the Helmholtz resonator R1 is 37.5 Hz. 
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In the third case, there was an additional resonator R2 added to the model (Figure 

6.14).  Similarly the sound pressure at receivers were obtained using both BEM 

and FBS. The tuned frequency of the Helmholtz resonator R2 is 54.5 Hz. 

In the fourth case, two Helmholtz resonators in Case Three were replaced with two 

quarter wave length resonators which were tuned at the same frequencies as the 

Helmholtz resonators.  

In each case, the impedances at the resonator inlets were calculated using the 

equations in Appendix B. The transfer functions and blocked sound pressure were 

obtained using BEM simulation. The data was imported into MATLAB and the 

responses were determined using the FBS method.  

 

Figure 6.13 BEM model of single room with resonator R1 
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Figure 6.14 BEM model of single room with resonators R1 and R2 

  
 

Figure 6.15 Top view of the room indicating the locations of the resonators 

Figure 6.16 shows the results for the case with a single resonator which is shown 

in Figure 6.13.  The complete system BEM and FBS prediction compare well up to 
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200 Hz. This case demonstrates the validity of the approach for lumped impedance 

modifications.  Figure 6.17 shows the same results from 30 to 60 Hz. 

Similarly, Figures 6.19 and 6.20 show similar results for the case with two 

resonators.  Notice again the good agreement between the complete system BEM 

and the FBS prediction up to 200 Hz and especially in the region of the resonance. 

The Helmholtz resonators were then replaced with with quarter wave tubes having 

lengths of 2.28 m and 1.54 m. They were tuned at the same frequencies as the 

Helmholtz resonators in the prior case. Figure 6.21 compares the sound pressures 

with the quarter wave tubes to that for Helmholtz resonators.  The results indicate 

that both treatment options are effective. 

Thus, FBS can be used to predict the receiver response when lumped impedance 

modifications are added without BEM remodeling. 

 

Figure 6.16 Sound pressure at Receiver A with Resonator R1: frequency range of 0~200 Hz 
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Figure 6.17 Sound pressure at Receiver A with Resonator R1: frequency range of 30~60 Hz 

  

Figure 6.18 Sound pressure at Receiver A with Resonators R1 and R2: turned frequency  
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Figure 6.19 Sound pressure at Receiver B with Resonator R1: turned frequency  

 

Figure 6.20 Sound pressure at Receiver B with Resonators R1 and R2: turned frequency  
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Figure 6.21 Sound pressure at Receiver A with Helmholtz resonators and quarterwave 

resonators 

 

6.6 Summary 

In this chapter, the applications of the FBS method were demonstrated.  It was 

shown that the approach could be used to: 

1. Determine the contributions from different airborne connection paths. 

2. Determine the effect of adding resonators or glass fiber fill to the connecting 

ducts. 

3. Determine the attenuation due to adding lumped impedance modifications to 

the subsystems or rooms.  Lumped impedance modifications considered 

included Helmholtz resonators and quarter wave tubes. 
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In each case, the FBS method proved to be reliable and useful for assessing the 

impact of modifications without needing to build a new BEM model including the 

modifications. 
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Chapter 7  

SUMMARY AND FUTURE WORK 

7.1 Summary 

In this work, frequency based substructuring (FBS), which is commonly used in 

structural systems, was extended to acoustic systems. Specifically, rooms and 

connecting ducts between rooms were simulated. FBS provides an approach 

where subsystems and connections (i.e., rooms and connecting ducts) are 

simulated and then connected to one another via their respective transfer functions. 

Transfer functions can be determined using analytical expressions, numerical 

simulation, or measurement. In so doing, a system model can incorporate 

components defined by analysis or measurement. 

The background of FBS, which is sometimes called transfer path analysis (TPA), 

was first reviewed. The underlying assumptions were discussed and detailed and 

the approach was reviewed for structural subsystems. After that, the airborne FBS 

was derived which serves as the basis for this thesis.  

Airborne FBS can be used to determine the contributions from individual sources 

or connections. Additionally, it can be used to determine the effect of adding 

attenuation elements to connections or lumped impedances to a component.  The 

method requires that the transfer functions relating the sound pressure to the 

volume velocity be determined 1) between connection locations, 2) from sources 

to connection locations, and 2) from sources and connection locations to receivers.  

These transfer functions can be determined by analysis, experiment, or a 
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combination of the two. For connections, plane wave propagation is assumed.  

Accordingly, the sound pressure is assumed to be constant across the cross-

section of the duct.  

With the theory developed, simulation cases were performed to validate the FBS 

approach. Boundary element meshes were created using Pro-E and ANSYS, and 

analyses were performed using LMS Virtual.Lab. A case with two small rooms or 

enclosures with sources in each room, and two connecting ducts between rooms 

was considered. Several cases were considered and results from the FBS 

approach were compared to boundary element simulation of the complete system 

with good agreement. 

The FBS approach was then applied to an enclosure in a hemi-anechoic room with 

two connecting ducts to the exterior. The approach was demonstrated using 

measurement. Results obtained using FBS were compared to direct measurement 

for the entire system.  Measured and FBS results were on the same order but there 

were significant differences. It was suggested that the experiment should be 

reconsidered and should be the subject of a future research project.  

The application of the method was then demonstrated using several examples.  It 

was shown that the FBS approach could be used to determine the contribution to 

the sound pressure from different connecting ducts.  In addition, the effect of 

adding attenuation elements in the ducts was examined.  Finally, lumped 

impedance modifications were introduced into a room with a source and the 

effectiveness was determined. Lumped impedance modifications considered 

included Helmholtz resonators and quarter wave tubes.  
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The primary weakness of the approach is that plane waves are assumed at the 

beginning and end of connecting ducts.  In addition, it is assumed that the sound 

pressure is constant across any opening.  This limits the applicability of the 

approach to lower frequencies.  

7.2 Future work 

There are a number of opportunities for applying this approach in the lab and in 

industrial applications. It is recommended that the approach first be experimentally 

applied in a laboratory setting in order to establish the best experimental practices. 

After which, a more ambitious example can be considered such as a case involving 

multiple rooms and ducts. In addition, the effectiveness of the approach for 

suggesting lumped impedance modifications should be considered for a room or 

enclosure example. The passenger compartment of heavy equipment would 

appear to be an ideal application.  
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Appendix A 

This section is to determine the volume velocity at the end of the opening of the 

impedance tube using wave decomposition. 

 

 

Figure A.0.1 Schematic showing impedance tube setup 

Using plane wave decomposition, sound pressure at 𝑥1 and 𝑥2 can be expressed 

as 

 𝑝1 = 𝐴𝑒−𝑗𝑘𝑋1 + 𝐵𝑒𝑗𝑘𝑋1 (A.1) 

and  

 𝑝2 = 𝐴𝑒
−𝑗𝑘𝑋2 + 𝐵𝑒𝑗𝑘𝑋2 (A.2) 

respectively.  

The volume velocity at the tube opening 𝑥0 can be expressed as 

A 

B 

Sound source 

𝑝1 𝑝2 

𝑥1 𝑥2 𝑥0 

𝐿1 
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 𝑢0 =
𝑆0
𝜌𝑐
(𝐴𝑒−𝑗𝑘𝑋0 − 𝐵𝑒𝑗𝑘𝑋0) (A.3) 

Two microphones positioned at 𝑥1 and 𝑥2 measure the sound pressure 𝑝1 and 𝑝2 

respectively. The transfer function between the two microphones is determined as  

 𝐻12 =
𝑝2
𝑝1
=
𝐴𝑒−𝑗𝑘𝑋2 + 𝐵𝑒𝑗𝑘𝑋2

𝐴𝑒−𝑗𝑘𝑋1 + 𝐵𝑒𝑗𝑘𝑋1
=
𝑒−𝑗𝑘𝑋2 + 𝑅𝑒𝑗𝑘𝑋2

𝑒−𝑗𝑘𝑋1 + 𝑅𝑒𝑗𝑘𝑋1
 (A.4) 

where 

 𝑅 =
𝐵

𝐴
 (A.5) 

Solve for 𝑅: 

 𝑅 =
𝑒−𝑗𝑘𝑋2 − 𝐻12𝑒

−𝑗𝑘𝑋1

𝐻12𝑒𝑗𝑘𝑋1 − 𝑒𝑗𝑘𝑋2
 (A.6) 

To make calculations easy, assume 𝑥1 = 0, and the phase of 𝑝1 equal zero, which 

means 𝜑1 = 0, thus: 

 𝑝1 = |𝑝1| = 𝐴 + 𝐵 (A.7) 

Combining Equations A.5 and A.7, solve for A and 𝐵, substitute to Equation A.3: 

  𝑢0 =
𝑆0|𝑝1|

𝜌𝑐(𝑅 + 1)
(𝑒−𝑗𝑘𝐿1 − 𝑅𝑒𝑗𝑘𝐿1) (A.8) 

where  𝐿1 is the distance between microphone 1 and the tube opening. 
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Appendix B 

 

Quarter wave length resonator 

A quarter wave length resonator is a simple side branch with closed end. In plane 

wave region, we assume that the dimensions of the cross-section are much 

smaller than an acoustic wavelength.  

 

 

 

 

 

 

Figure B.1 Quarter wave resonator  

The impedance at the opening of the quarter wave resonator can be determined 

in the following way [26]. The sound pressure and particle velocity can be 

expressed as:  

 𝑃𝑆(𝑥) = 𝑃𝑆
+𝑒−𝑗𝑘𝑥 + 𝑃𝑆

−𝑒𝑗𝑘𝑥 (B.1) 

and 

 𝑈𝑆(𝑥) = (𝑃𝑆
+𝑒−𝑗𝑘𝑥 − 𝑃𝑆

−𝑒𝑗𝑘𝑥)/(𝜌0𝑐) (B.2) 

respectively.   

Note that x = 0 at the inlet to the branch.  In addition, the termination of the branch 

is rigid so 

X=0 

X=L 

𝑃𝑆
+   𝑃𝑆

−
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 𝑈𝑆(𝐿) = 0 (B.3) 

From Equations B.1, B.2, and B.3, the impedance at the inlet of the quarter wave 

resonator can be expressed as: 

 𝑍𝑆 = −
𝑗𝜌0𝑐

𝑆𝐵
cot(𝑘𝐿𝐵) (B.4) 

The resonator will be most effective if the impedance at the opening is 0 and is 

analogous to a short circuit in an electrical system. That will be the case when: 

 𝑘𝐿𝐵 =
𝑛𝜋

2
, 𝑛 = 1,3,5,… (B.5) 

It follows that the length of side branch will be: 

 𝐿𝐵 =
𝑛𝑐

4𝑓
= 𝑛(

𝜆

4
), 𝑛 = 1,3,5, … (B.6) 

where n is an integer. This resonator type is often referred to as a quarter wave 

tube because it is effective at multiples of a quarter wave length. 

Helmholtz resonator 

A Helmholtz resonator is a side branch with a narrow neck and a large volume 

body. In plane wave region, the dimensions of the cross-section are much smaller 

than an acoustic wavelength.  
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Figure B.2 Helmhotz resonator  

 

The impedance at the opening of the Helmholtz resonator can be determined in 

the following way [26]. The inlet impedance in terms of sound pressure and volume 

velocity can be expressed as:  

 𝑍𝑆 =
𝑃𝑆
𝑣𝑆𝑆𝐵

=
𝑗𝑘𝜌0𝑐𝐿

𝑆𝐵
+
𝜌0𝑐

𝑗𝑘𝑉0
 (B.7) 

Note that x = 0 at the inlet to the branch.  In addition, the termination of the branch 

is rigid so 

 𝑣𝑆(𝐿) = 0 (B.8) 

From Equations B.7, B.8, and B.9, the impedance at the inlet of the quarter wave 

resonator can be expressed as: 

 𝑍𝑆 =
𝑃𝑆
𝑣𝑆𝑆𝐵

= −
𝑗𝜌0𝑐

𝑆𝐵
cot(𝑘𝐿𝐵) (B.9) 

The resonator will be most effective if the impedance at the opening is 0 and is 

analogous to a short circuit in an electrical system. That will be the case when: 

Volume V 

Neck length L 

Inlet Diameter D 
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 𝑓 =
𝑐

2𝜋
√
𝑆𝐵
𝐿𝑉0

 (B.10) 

which is also called the eigenfrequency of the Helmholtz resonator.  

Due to the different connection condition between the Helmholtz resonator volume 

and the enclosure system, there will be an incompressible near field around the 

opening, which will increase the effective length of the resonator neck by ∆𝐿. This 

end corrections are proportional to the cross sectional dimension of the neck. For 

a circular cross section neck, the increased amount of length can be expressed as: 

The Equation (B.11a) expresses the situation when the resonator is connect to a 

large wall compared to the sound wave length. The Equation (B.11b) is applied 

when the resonator is connected far away from any reflecting surfaces.   

 

 

 

 

 

 

∆𝐿 = 0.82 𝐷/2 (baffled inlet) 

∆𝐿 = 0.61𝐷/2 (inlet in a free field) 

(B.11a) 

(B.11b) 
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