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ABSTRACT OF DISSERTATION 

 

KINETICS OF MOLTEN METAL CAPILLARY FLOW IN NON-REACTIVE AND 

REACTIVE SYSTEMS 

        Wetting and spreading of liquid systems on solid substrates under transient 

conditions, driven by surface tension and viscous forces along with the interface 

interactions (e.g., a substrate dissolution or diffusion and/or chemical reaction) is a 

complex problem, still waiting to be fully understood. In this study we have performed an 

extensive experimental investigation of liquid aluminum alloy spreading over aluminum 

substrate along with corroboration with theoretical modeling, performed in separate but 

coordinate study. Wetting and spreading to be considered take place during a transient 

formation of the free liquid surface in both sessile drop and wedge-tee mating surfaces’ 

configurations. The AA3003 is used as a substrate and a novel self-fluxing material 

called TrilliumTM is considered as the filler metal. In addition, benchmark, non-reactive 

cases of spreading of water and silicon oil over quartz glass are considered. The study is 

performed experimentally by a high temperature optical dynamic contact angle 

measuring system and a standard and high speed visible light camera, as well as with 

infra read imaging. Benchmark tests of non-reactive systems are conducted under 

ambient environment’s conditions. Molten metal experiment series featured aluminum 

and silicone alloys under controlled atmosphere at elevated temperatures. The chamber 

atmosphere is maintained by the ultra-high purity nitrogen gas purge process with the 

temperature monitored in real time in situ. Different configurations of the wedge-tee 

joints are designed to explore different parameters impacting the kinetics of the triple line 

movement process. Different power law relationships are identified, supporting 

subsequent theoretical analysis and simulation. Under ambient temperature conditions, 



the non-reactive liquid wetting and spreading experiments (water and oil systems) were 

studied to verify the equilibrium triple line location relationships. The kinetics 

relationship between the dynamic contact angle and the triple line location is identified. 

Additional simulation and theoretical analysis of the triple line movement is conducted 

using the commercial computer software platform Comsol in a collaboration with a team 

from Washington State University within the NSF sponsored Grant #1235759 and # 

1234581. The experimental work conducted here has been complemented by a 

verification of the Comsol phase-field modeling. Both segments of work (experimental 

and numerical) are parts of the collaborative NSF sponsored project involving the 

University of Kentucky and Washington State University. The phase field modeling used 

in this work was developed at the Washington State University and data are corroborated 

with experimental results obtained within the scope of this Thesis. 

KEYWORDS: Kinetics, Wetting and Spreading, Wedge-tee, TrilliumTM, Model 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background Fundamentals 
 

Surface tension driven flow has been studied both theoretically and experimentally for a 

long time (de Gennes, 1985; Voinov, 1976; Dussan, 1979.; Kistler, 1993; Eustathopoulos 

et al., 1999; Quéré, 2008; Bonn et al., 2009; Sui et al., 2014). The surface interactions 

play important role in many technologies. These include but are not restricted to oil 

recovery, pesticides deposition, water drainage, industrial cooling of reactors, etc. The 

associated phenomena manifest themselves at multiple scales, in microfluidics, nano-

printing, coating technology, etc. Hence, they play an important role in almost every 

aspect of our lives, and are of key importance for many applications (Bonn et al., 2009).  

Although the surface driven flow has been studied for a long time, only a limited number 

of high temperature studies were published before 1940s (Eustathopoulos et al. 1999). A 

new wave of wetting studies started to come out in the 1980s in the studies of metal 

joining, non-similar materials bonding, especially ceramic brazing and glazing (de 

Gennes, 1985; Eustathopoulos et al., 1999). In high temperature metal bonding, governed 

by the interfacial interactions, multiple parameters are relevant. These include 

constitutive species of the system, temperature, pressure, surface topography, background 

atmosphere, reaction processes, electric charges and gravity impact, among the others 

less dominant. The associated very complex phenomena are crucial to understanding of 

the structure, strength and durability of the bonded materials (Zhao et al., 2006; Busbaher 

et al., 2010).  
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In the brazing process, the materials involved are heated to temperatures above the filler 

metal melting temperature hence turning a solid metal into a liquid, forming the high 

temperature flow over the mating surfaces. Spreading of the liquid requires capillary 

action (Schwartz, 2003). The metallurgical bond is ultimately formed after solidification 

of the filler metal. The temperatures involved in brazing are, according to a widely 

adopted convention (Sekulic, 2013) above 450°C (liquidus temperature above 450°C but 

below the solidus temperature of the bonding metals, Schwartz, 2003).  

In automotive industry and many aerospace applications, aluminum is normally preferred 

for its superior physical and economical properties over, say, copper. Motivated by these 

applications, this work focusses on aluminum alloy both used as mating surfaces 

substrates and filler metals. Associated materials processing require stringent processing 

conditions, including the liquid phase, imposed by novel designs of the components of 

engineering systems in those applications (Sekulic, 2011).  

The kinetics of the molten metal flow has a direct impact on the solidified metal 

properties, notably strength and durability. The liquid metal wetting assumes often 

chemically inert atmosphere (as well as in a limit vacuum). Due to a high sensitivity in 

reaction of the involved materials, in particular at the elevated temperatures, formation of 

oxides is present. (Eustathopoulos et al. 1999). The oxide film formed during the process 

has to be eliminated to allow the free flow of the molten metal around the joint areas. For 

example, for high production rate joining of automobile heat exchanger assemblies, the 

Controlled Atmosphere Brazing (CAB) became the state-of-the-art manufacturing 

process (Sekulic, 2013). Furthermore, in various aerospace applications, vacuum brazing 

is a standard process. The low moisture level and drastically reduced oxygen level are 
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benefits of the desired atmosphere filled with inert gas (or vacuum) to ensure the 

controllable minimal oxidation layer formation on the surfaces of the metal. In controlled 

atmosphere traditionally, the molten metal at elevated temperatures is covered with a flux 

coating, so that the flux can react to disrupt the oxide film. Analogously, addition of a 

getter (Mg) in vacuum brazing serves a similar supporting role. Under this circumstance, 

the flux reaction at the elevated temperature in the controlled atmosphere can disrupt the 

aluminum oxide layer and provide the free flow of the molten metal, driven into the joint 

by the capillary force.  

Recently, a novel aluminum alloy, TrilliumTM (US Patent US20100206529), was 

introduced. Trillium features the potassium fluoroaluminate flux imbedded into the solid 

filler (Hawksworth et al., 2012; Fu et al., 2013; Yu et al., 2013; Sekulic, 2013). This 

“fluxless” brazing (actually an absence of the flux coating) achieves the same or better 

results than the traditional brazing with a flux, and decreases the complexity and 

expenses at the same time (Sekulic, 2013). In this dissertation, the kinetics of the joint 

formation involving this material is the subject of this study. 

It is well understood that the kinetics of the wetting process is controlled by factors like 

temperature, atmosphere composition, surface properties, reaction rates, in addition to the 

materials systems properties. Controlling different variables to study the kinetics process 

helps better understand of the brazing process, hence getting ultimately a better quality of 

brazing. The interest of the study is to analyze and understand the kinetics of the wetting 

processes in brazing aluminum. Both, reactive (molten aluminum on aluminum) and non-

reactive systems (water and silicon oil on glass) were considered.  
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1.2 Scope of the research 
 

Wetting and spreading of liquid systems on solid substrates under transient conditions, 

driven by surface tension and retarded by viscosity, under both non-reactive and reactive 

conditions at liquid/solid interface are being investigated. The study was performed 

experimentally and is supported by theoretical modeling simultaneously developed by a 

collaborating team. Wetting and spreading to be considered takes place during a transient 

formation of the free liquid surface in a so called wedge-tee configuration, using AA3003 

metal as a substrate. In addition, non-reactive benchmark cases of spreading of water and 

silicon oil over quartz glass as a substrate were considered. Measurements were obtained 

by using a high temperature optical dynamic contact angle measuring system equipped by 

both low and high speed visible light and infra-red cameras. Benchmark tests of non-

reactive systems were be conducted under ambient environment’s conditions. In a high 

temperature reactive (or more precisely, a weak-reactive) molten metal liquid experiment 

series, aluminum and silicone alloys were used. The atmosphere was controlled by the 

ultra-high purity nitrogen gas purge process with the temperature monitored in real time 

in situ. Different configurations of the wedge-tee joints are designed to explore the 

different parameters impacting the kinetics of the triple line movement process. Power 

law relationships are identified in the experiments, supporting the subsequent theoretical 

analysis and simulation. The set of non-reactive liquid wetting and spreading experiments 

has been performed at the ambient temperatures. Water and silicon oil systems were 

studied to verify the contact angles equilibrium triple line location relationships. The 

kinetics between the dynamic contact angle and the triple line location relation was 



5 
 

identified. An empirical best fit model was determined for benchmarking the high 

temperature reactive wetting and spreading tests.  

Additional simulation and theoretical analysis of the triple line movement prediction 

were performed.  

The main objectives of the study were to explore, explain, model and ultimately 

understand the dynamics of the wetting process in both reactive and non-reactive systems 

and at both high and low temperatures. The main research hypothesis of the experimental 

work is that a novel liquid metal (Al-Si eutectic + KxFyAlz) spreading kinetics, driven by 

surface tension, can be modeled by a Washburn type correlation (power law), regardless 

of the reactive nature of the solid-liquid substrate. 

1.3 Organization of the dissertation 
 

Following the introduction in Chapter 1, Chapter 2 reviews the literature involving the 

fundamental knowledge and most recent research related to the non-reactive, and reactive 

surface tension driven wetting and spreading on smooth surfaces. High temperature 

wetting, especially in brazing will also be reviewed.  

As a benchmark study, the capillary flow of the non-reactive liquid systems is studied 

experimentally. Two material systems: water and silicone oil are considered in Chapter 3.  

Chapter 4 introduces the high temperature brazing experimental facility, namely the 

Optical Contact Angle analyzer (OCA), as well as specific procedures that were adopted 

for different experiments for the near reactive surface driven capillary molten metal flow 

on different wetting surfaces. 
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Chapter 5 explores the weak-reactive surface driven capillary flow of the molten metal on 

the wetting surface. The specific wedge-tee joint configuration, topographically similar to 

the non-reactive experiment configuration, is introduced in the experiments to study the 

reaction impacted triple line kinetics. Different power law relationships have been 

discovered in different stages of the process.  

A similar configuration of wedge-tee joint with a non-wetting horizontal surface is 

presented in Chapter 6 to further explore the reactive capillary flow kinetics of the molten 

metal. The method of surface tension measurement of the molten metal on the non-

wetting surface is also introduced in this chapter. 

Conclusion and further discussion of the results are presented in Chapter 7, with future 

research objectives as well as existing problems presented in the last chapter. 

In the Appendices section, Appendix A discusses the error analysis from the benchmark 

experiments. Appendix B extends the molten clad metal wetting on the non-wetting 

surface with the measurement of surface tension of the molten clad metal. Appendix C 

gives the review of aluminum alloy surface tension in the known literature to compare 

with the measured molten clad metal surface tension. Appendix D quantifies the 

meniscus curvature of the wedge-tee joint area from molten clad metal. Appendix E 

includes the phase field model discussion, physical parameters, phase field model 

parameters and the steps to determine the parameters.  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Overview 

Related research on the scope of this dissertation is reviewed in this chapter. A broader 

view of the wetting phenomenon in general is discussed here.  

The literature is grouped into two parts. The first part summarizes the research on the 

non-reactive surface tension driven flow at low temperatures, including the brief 

presentation of fundamental theories of the wetting and spreading. The approach to the 

basic experimental methods for the study of wetting and spreading is addressed. Different 

theoretical models for the non-reactive spreading are presented in this part. The second 

part of the literature review provides the controlled atmosphere brazing optical contact 

angle analyzer furnace description used for design of the high temperature experimental 

methods for surface tension driven flow. The text offers a review of relevant studies on 

surface tension driven flow at elevated temperatures for reactive flows. Finally, the 

aluminum brazing process related joint formation featuring interaction between the filler 

metal and substrate is covered in this part as well. The introduction of some fundamental 

concepts in this review is not intended to be either complete or rigorous. Such reviews are 

available (De Gennes, 1985) and would not be repeated here. Rather, only key concept 

relevant for this study will be summarized. 

 

 



8 
 

2.2 Wetting and spreading 
 

Wetting phenomenon is one of the basic physical phenomena in nature. As stated by de 

Gennes (1985), the wetting of a solid is based on physical chemistry which involves the 

concept of wettability, including the interpretation of surface forces as van der Waals 

forces and fluid dynamics. Spreading of a liquid is the ultimate result of wetting of the 

liquid (Myers, 1999). Wetting and spreading implies an involvement of chemistry, 

physics and engineering insights (Bonn et al., 2009). The surface chemistry is the key 

factor influencing the wetting and spreading phenomena (Bonn et al., 2009). Along with 

surface chemistry, surface forces like van der Waals and electrostatic forces are also 

controlling the wetting and spreading phenomena in general (Bonn et al., 2009). 

Application of wetting and spreading are numerous and span from painting, lubrication, 

dye and printing up to oil industry, power generation, biochemical deposition of 

pesticides, skin care, etc. In recent years, wetting and spreading phenomena applications 

in designing super hydrophobic surfaces has triggered an increasing interest, leading to 

such applications as self-cleaning, nanofluidics, and electro-wetting (Yuan et al., 2013).  

2.2.1 The Concept of Contact Angle 

 

Contact angle is one of the major physical entities in any study of wetting and spreading 

processes. It represents a quantitative measure of the wetting process. When a drop of 

liquid contacts a solid surface, the liquid either spreads more or less unconstraint across 

the surface to form a thin film, or spreads to a limited extent to form a drop (e.g., sessile 

drop) on the surface (Myers, 1999). Contact angle as a wetting metric indicates the 

degree of wetting. For example, it is well known that if the contact angle, say θ, is larger 
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than 90°, the surface is considered as a wetting surface; if the contact angle θ is less than 

90°, the surface is considered as non-wetting surface. More specifically, a partially 

wetting can be attributed to the surface/liquid couples featuring contact angles between 

30° to 89°. The contact angle considered here is referring to the so called apparent 

contact angle, as opposed to the dynamic contact angle. The contact angle of the liquid on 

the other condensed phases is the primary characteristics of any immiscible, two or three 

phase system containing two condensed phases (Myers, 1999). The contact angle can be 

defined as the angle between two planes tangent to the liquid and solid surfaces 

geometrically, see Fig. 2.1. 

 

Fig. 2.1 Contact angle concept schematics 

2.2.2 Dynamic contact angle 

The contact angle that was mentioned above is the equilibrium contact angle. Before the 

liquid spreading reaches its equilibrium state, the contact angle featured by the 

progressing front is the dynamic contact angle. Depending on the moving direction, e.g., 

if the liquid is advancing across the surface, the dynamic contact angle is equal to the 

advancing contact angle θA; if the liquid is receding from the wetted surface, the contact 

angle is the receding contact angle θR. The apparent contact angle (θ) is less than θA but 
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larger than θR, see Fig. 2.2. It is found that in the dynamic systems, θA and θR would vary 

depending on the velocity of the wetting line, with θA increasing applied by smaller 

velocity and θR decreasing applied by larger velocity (Blake et al., 1973; Johnson et al., 

1977; Rillaerts et al., 1980; Seebergh et al., 1992; Myers, 1999). The dynamic contact 

angle is apparently relevant to the dynamic process of the wetting and spreading. The 

phenomenon associated with the difference between the advancing contact angle and the 

receding contact angle is called hysteresis and can be measured by the difference in 

contact angles (H), see Fig. 2.2. The hysteresis increases with surface roughness, and/or 

surface heterogeneity (Blake et al., 1973; Joanny et al., 1984; Yuan et al., 2013): 

𝐻 = 𝜃𝐴 − 𝜃𝑅                                                    (2.1) 

 

Fig. 2.2 Advancing contact angle (left) and receding contact angle (right) comparison 

The contact angle hysteresis is one of the most important phenomena involving wetting 

of a liquid droplet system (Eral et al., 2013). 
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2.2.3 Triple line location (TLL) 

 

The triple line location, namely three-phase zone or three-phase contact line (TCL), is the 

location where solid, liquid and the gas phases meet.  

 

Fig. 2.3 Triple line location schematics 

2.2.4 Surface energy and Young’s equation 

Surface tension is caused by the unbalanced forces of liquid molecules at the surface of 

the liquid (Yuan et al., 2013), and it is interpreted as an intermolecular force. It’s well 

known (Myers, 1999; Bonn et al., 2009) that if a drop of liquid is placed on a smooth flat 

surface, it will spread and most likely form a contact angle eventually. In the equilibrium 

state, three different phases presented will form a balance with surface tensions of solid-

liquid, liquid-gas and solid-gas, see Fig.2.4. The balance is given by Young’s equation 

(Young, 1805) as: 

𝛾𝑆𝑉 = 𝛾𝑆𝐿 + 𝛾𝐿𝑉 cos 𝜃                                               (2.2) 
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where 𝛾𝑆𝑉 is the surface energy, also known as surface tension at the solid vapor interface, 

𝛾𝑆𝐿is the surface energy at the solid liquid interface, and 𝛾𝐿𝑉 is the surface tension at the 

vapor liquid surface. The surface energy is an energy per unit area, equivalent to a force 

per unit length acting on the contact line (Bonn et al., 2009) 

 

Fig. 2.4 Force balance of the three-phase contact line 

Based on Young’s equation, if  𝛾𝑆𝑉 < 𝛾𝑆𝐿 + 𝛾𝐿𝑉, a partial wetting can be observed; if 

𝛾𝑆𝑉 = 𝛾𝑆𝐿 + 𝛾𝐿𝑉 , a complete wetting with contact angle being zero can be achieved.  

Although the thermodynamic definition of the contact angle and surface energies are 

provided by Young’s equation, 𝛾𝑆𝑉 and 𝛾𝑆𝐿 cannot be determined directly from 

experiments (Myers, 1999).  

2.2.5 Capillary number, capillary length and Bond number 

 

The dimensionless number, the Capillary number (Ca), is the ratio of viscous to surface 

energy, expressed as: 

𝐶𝑎 = 𝑈𝜂/𝛾𝐿𝑉                                                (2.3) 

where U is the moving speed of the contact line, also known as triple line, and 𝜂 is the  

dynamic viscosity of the liquid. When Ca≪ 1, the spreading of the liquid is dominated by 
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the surface tension rather than the viscous effects. Bonn et al. (2009) shows that, in that 

case, 𝐶𝑎 ≈ 10−5 − 10−3. Capillary length, however, is the ratio of surface tension to 

gravitational force, expressed as: 

𝑙𝑐 = √𝛾𝐿𝑉/𝜌𝑔                                                   (2.4) 

Note that when the drop radius is smaller than the capillary length, gravity can be 

neglected (Bonn et al., 2009).  

Another dimensionless number to measure the importance of surface tension and the 

body force is known as Bond number or Eötvös number (𝐵𝑜 =
∆𝜌𝑔𝐿2

𝛾𝐿𝑉
, where ∆𝜌  is the 

two phases of liquid or gas density difference, L is is the characteristic length) (Hager, 

2012).  

 2.3 Experimental evidence of non-reactive wetting and spreading 
 

The dynamics of the surface driven flow has been studied for over a century and much of 

the study was focused mostly on ambient temperature and non-reactive liquid systems. 

Back in the early 20th century, by using capillary tube of uniform internal circular cross-

section throughout, Washburn (1921) has studied the kinetics of capillary flow of 

mercury, water and oil systems, and presented the Washburn type of flow with liquid 

penetration distance obeying the square root relationship to time. Compared to the 

spontaneous, natural wetting and spreading, for the forced wetting, the apparent dynamic 

contact angle has been the focus of the research (Kistler, 1993). The distinction between 

the two will be explained below, see Section 2.3.2. Common experimental methods for 

the forced wetting case include sessile drop configuration and the capillary displacement 
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configuration (Washburn, 1921; Tanner, 1979; Šikalo et al., 2005; Han et al., 2014), and 

Wilhelmy plate configuration or wetting-balance method (Johnson et al., 1977; Ström et 

al., 1990). The contact angles can be directly measurement as the tangent angle at the 

triple line contact point by a contact angle goniometer (Yuan et al., 2013). Alternately, 

they may be determined by a measurement of the tangent angle at the triple line contact 

point from the extracted images from a video camera (Han et al., 2014). The liquid 

systems in the studies mostly involve, as mentioned earlier, water, mercury, oils and 

organic chemical compounds. Based on the experimental data, the dynamic contact angle 

𝜃𝐷can be correlated with the triple line movement kinetics, mostly represented by the 

capillary number Ca (Kistler, 1993). 

2.3.1 Sessile drop experiments 

 

One of the most common experimental studies of the surface tension driven flow is the 

sessile drop setup, see Fig.2.1. In this type of setup, the liquid drop is placed on a 

horizontal surface, so that the drop can spread over the surface due to the surface tension 

force. Different roughness of the surfaces can be used in these tests to study the surface 

topography impact on the spreading. The dynamic contact angle, equilibrium contact 

angle and the triple line movement can all be recorded. There are many studies regarding 

this form of testing with different liquid systems (Schwartz et al., 1972; Tanner, 1979; 

Hocking et al., 1982; Biance et al., 2004; Lee et al., 2011). The dominating force 

presented on the spreading is an inertial force and the surface tension during the dynamic 

phase of the process. The drops can be generated by a syringe, either with/without the 

automatic dispenser (Yuan et al., 2013). A microscope with either CMOS camera, CCD 

camera or high speed camera is used to record the images of the spreading process, so 
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that the contact angles and triple line movement can be measured through an image of a 

drop’s profile, interpreted as the cross-section region of the sessile drop. Such tests are 

mostly done at ambient temperature, under constant pressure.  

2.3.2 Capillary displacement experiments 

 

The capillary displacement method for a surface tension driven flow dynamic study is 

also commonly used as testified by the studies in the past decades (Washburn, 1921; 

Rillaerts et al., 1980; Fermigier et al., 1991; Kistler, 1993; Sobolev et al., 2000), see Fig. 

2.5.  

 

Fig. 2.5 Capillary displacement measurement of apparent contact angle (Kistler, 1993) 

In this type of setup, since the capillary tube is of the order of several millimeters or 

micrometers or even smaller, gravity and inertial effects can be neglected. Thus the 

dominating force is the surface tension type of capillary force. This type of experiment 

can either be a spontaneous, natural spreading (Stokes et al., 1990; Calvo et al., 1991) or 

forced spreading (Fermigier et al., 1991), depending on whether the liquid is being 

pumped through the tubes. In the natural spreading method, two reservoirs are connected 

by a capillary tube (Calvo, 1991), thus the pressure difference in two reservoirs will push 

the liquid through the tube. If the radius compared to the reservoir radius is rather small, 

then the liquid variation in location and speed, in the tube can be neglected. Capillary 
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displacement experiments are similar to the sessile drop experiments in a way that the 

microscope with camera and liquid dispenser with syringe can also be used. If the 

spreading is a forced spreading, then pumps can be used to pump liquid through the 

capillary tubing. With the aid of microscope and camera, the images of each action in the 

spreading process can be recorded, thus the contact angles and the triple line movement 

can be measured. 

According to Washburn (1921), for the vertical capillaries, the capillary spontaneous 

natural rise, h, can be calculated as: 

ℎ =
2𝛾𝐿𝑉 cos 𝜃

∆𝜌𝑔𝑟
                                                        (2.5) 

where r is the capillary radius, 𝑔  is the gravitational acceleration, ∆𝜌  is the density 

difference between liquid and vapor, 𝜃 is the equilibrium contact angle, and 𝛾𝐿𝑉 is the 

surface tension between liquid and vapor.  

For the horizontal capillaries, a similar correlation can be found as: 

𝑙2 =
𝑟𝑡𝛾𝐿𝑉 cos 𝜃

2𝜂
                                                         (2.6) 

where 𝑙 is the capillary distance, 𝑟 is capillary radius, 𝜂 is the liquid viscosity, 𝜃 is the 

equilibrium contact angle, 𝛾𝐿𝑉 is the surface tension between liquid and vapor, and 𝑡 is 

the time required for the capillary intrusion.  

2.3.3 Wilhelmy plate balance experiments 

 

In the forced spreading experiments, the Wilhelmy plate configuration (Wilhelmy, 1863) 

is very common , see Fig. 2.2 and Fig.2.6.  
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Fig. 2.6 Wilhelmy plate configuration 

The contact angle can be measured on a solid plate surface with both advancing contact 

angle and receding contact angle. When a vertical plate is intruding the liquid pool, a 

balance can detect weight change of the pool. The detected force is a combination of 

buoyancy and wetting (Yuan et al., 2013). From force balance, we can have the following 

equation: 

𝐹 = 𝛾𝐿𝑉𝑝 cos 𝜃𝐷 − 𝑉∆𝜌𝑔                                         (2.7) 

where 𝐹 is the force combination of wetting and buoyancy, 𝛾𝐿𝑉  is the surface tension 

between liquid and vapor, 𝑝 is the perimeter of contact line, 𝜃𝐷 is the dynamic contact 

angle, 𝑔 is the gravitational acceleration, ∆𝜌 is the density difference between liquid and 

vapor, and 𝑉 is the displaced liquid volume.  

If the plate stops moving (see Fig. 2.2), when the kinetics of the wetting process 

completes by reaching the equilibrium for the triple line, based on Laplace equation (Cain, 

1983), the equilibrium contact angle can be determined from the capillary rise on the 

vertical plate as: 
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𝑠𝑖𝑛 𝜃 = 1 −
∆𝜌𝑔𝑦2

2𝛾𝐿𝑉
                                             (2.8) 

where 𝜃  is the equilibrium contact angle, 𝑔 is the gravitational acceleration, ∆𝜌 is the 

density difference of the liquid and vapor, 𝑦 is the capillary rise height, 𝛾𝐿𝑉 is the surface 

tension between liquid and vapor.    

The Wilhelmy plate balance method is a fairly accurate method widely used to determine 

the dynamic contact angle and the relationship between the dynamic contact angle and 

the wetting speeds. It should be noted that a sufficient quantity of liquid should be used to 

avoid the impact of the liquid level change approaching the equilibrium.  

Based on the Wilhelmy plate balance method, a combined advancing and receding 

contact angle measurement method can be established as the plunge tank method (Kistler, 

1993), as seen in Fig. 2.7. 

 

Fig. 2.7 Plunge tank configuration (Kistler, 1993) 

The continuous strand of plastic film is moving in and out of the liquid reservoir. The 

type of configuration is convenient to measure the dynamic contact angle and wetting 

speed relationship (Bracke, 1989) based on the force that is applied on the film. 
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2.3.4 Tilting plate experiments 

 

Adam (1925) developed the tilting plate method to measure the contact angle relatively 

simply but accurately. In this method, a solid plate is placed in the liquid pool to form the 

meniscus on both sides of the plate. The plate is tilted slowly until the meniscus on one 

side of the plate becomes horizontal, see Fig.2.8. The angle between the plate and the 

horizontal liquid surface is the contact angle of interest. 

 

Fig. 2.8 Tilting plate method configuration 

As the configuration suggests, due to the fact that the contact angle needs to be measured 

when it’s stable, the measure contact angle is only equilibrium contact angle. 

Microscopes are normally used to measure the contact angle (Fowkes et al., 1940). The 

accuracy of the measured contact angle can be further improved by applying scanning 

laser beams of ray tracing (Smedley et al., 2005). In the improved method, the velocity 

and dynamic contact angle correlation can be determined.  
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2.3.5 Capillary bridge experiments 

 

Vagharchakian et al. (2008) and Restagno et al. (2009) developed the capillary bridge 

method to measure the contact angle. In this method, a transparent convex surface (such 

as a watch glass) with a radius of curvature R of a few centimeters is used on a liquid 

bath with test liquid. The meniscus forms at the contact line around the curvature of the 

spherical surface. By measuring the changes of the wetted area and the distance between 

the surface and the liquid, the dynamic contact angle can be determined based on 

Young’s equation. The capillary bridge method offers the way to measure both advancing 

and receding contact angle with precise results (Vagharchakian et al., 2008; Retsgno et al., 

2009). However, due to the high sensitivity of the method, liquid evaporation may 

impose negative impact on the accuracy of the results.  

2.4 Non-reactive wetting kinetics models 
 

The kinetics of the liquid spreading has been studied over the past decades, as 

emphasized in the opening sections of this chapter. It is suggested (Kistler, 1993) based 

on dimensional analysis that the dynamic contact angle, 𝜃𝐷, should be related to the 

contact angle, 𝜃, capillary number, Weber number We (𝑊𝑒 =
𝜌𝑈2𝐿𝑐

𝛾
, 𝐿𝑐 is characteristic 

length), Bond number Bo (𝐵𝑜 =
∆𝜌𝑔𝐿𝑐

2

𝛾
  ), viscosity ratio, density ratio, species L, and 

surface properties  (such as roughness 𝜀, porosity 𝜉 and electric charges 𝜒). 

𝜃𝐷 = 𝑓 (𝜃, 𝐶𝑎, 𝑊𝑒, 𝐵𝑜,
𝜇2

𝜇1
,

𝜌2

𝜌1
,

𝐿𝑖

𝐿
, 𝜀, 𝜉, 𝜒)                        (2.9) 
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Two different approaches to the wetting modeling the kinetics of spreading on a solid 

surface deserve our attention. One is the hydrodynamic model (Seebergh et al., 1992). 

Let us assume, based on the scaling implied by Eq. (2.9), that the surface tension and 

viscosity are the dominant forces. The other approach is the molecular-kinetic model, 

focusing on the behavior/interactions of liquid and the solid molecules (Eral et al., 2013).  

 In the hydrodynamic models, an important variable is the wetting velocity U, (Hoffman 

et al., 1975). Also, wetting is characterized by the contact angle. The variation of the 

contact angle with respect to time or wetting velocity reflects the kinetics of the wetting 

process.  

Most of the kinetics models are based on the correlation between contact angle, dynamic 

contact angle and the wetting velocity. As shown in Eq. (2.3), wetting velocity can also 

be represented by the capillary number relationship, as 𝐶𝑎 = 𝑈𝜂/𝛾𝐿𝑉 . Washburn (1921) 

developed the correlations of triple line movement kinetics, see Eq. (2.5) and Eq. (2.6). In 

the 70s, Hoffman et al. (1975), Voinov et al. (1976) and Tanner (1979) have presented 

the Hoffman-Voinov-Tanner law, describing the empirical correlation between contact 

angles and wetting velocity. Later experiments have verified this correlation in different 

forms, such as Jiang’s model (Jiang et al., 1979), Bracke’s model (Bracke et al., 1989), 

Seebergh’s model (Seebergh et al., 1992), etc.  

2.4.1 Hoffman-Voinov-Tanner law 

 

Hoffman (1975) first brought up the correlation between the experimental data by 

plotting the contact angle and the capillary number for low capillary numbers, measured 

via capillary displacement measurement.  5 different liquids were used in his experiment. 
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It should be noted that the kinetics process is dominated by the interfacial and viscous 

forces. Voinov (1976) also demonstrated that for a small Reynolds number, there is a 

dependence of the contact angle on wetting velocity. It wasn’t until Tanner (1979) who 

derived the 𝜃𝐷~𝐶𝑎1/3  power law hydrodynamic theory correlation based on his 

experiments. The correlation, Hoffman-Voinov-Tanner Law, has been formulated as 

follows. 

𝜃𝐷
3 − 𝜃3 = 𝑐𝑇𝐶𝑎                                                      (2.10) 

Where cT is a constant based on the solid-vapor-liquid selection, 𝜃𝐷is the dynamic contact 

angle, and 𝜃 is the equilibrium contact angle. In order to apply the law correctly, the 

capillary number has to be much smaller than 1, and 𝜃𝐷 ≤ 135°. It also has be noted that 

the liquids tested in this interpretation are the oil-based liquids, such as silicone oil. The 

correlation between dynamic contact angle and the capillary number is independent of the 

measurement configuration (Kisler, 1993).  

2.4.2 Jiang’s Correlation Model 

 

Based on Hoffman et al. (1975) experiment data, the fitting correlation between contact 

angle and the capillary number was presented by Jiang et al. (1979), Eq. (2.11). The 

correlation was also applied to other systems, Schwartz et al. (1970).  

𝑐𝑜𝑠 𝜃 −𝑐𝑜𝑠 𝜃𝐷

𝑐𝑜𝑠 𝜃+1
= 𝑡𝑎𝑛ℎ(4.96𝐶𝑎0.702)                          (2.11) 

It should be noted the Jiang’s correlation model is a different form of Hoffman-Voinov-

Tanner Law, with the dominant forces being still surface tension and viscosity. The 
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correlation was verified with other sources of experiment data, as long as  𝐵𝑜 < 10−1 

and 𝑊𝑒 < 10−3where 

𝐵𝑜 =
𝜌𝑔𝐿1

𝛾𝐿𝑉
                                                          (2.12) 

𝑊𝑒 =
𝜌𝑈2𝐿

𝛾𝐿𝑉
                                                         (2.13) 

The Bond number, Bo, is the ratio of gravity to interfacial forces, and the Weber number, 

We, is the ratio of inertial forces to interfacial forces at the liquid-gas interface; L is the 

characteristic length, U is the wetting velocity.  Based on the empirical results, it is 

known that if inertia and gravity are negligible, Jiang’s correlation model would be valid 

for different liquid-gas-solid systems. 

2.4.3 Bracke’s Correlation Model 

 

Based on his own experiment data, Bracke et al. (1989) obtained the equation as follows. 

𝑐𝑜𝑠 𝜃 −𝑐𝑜𝑠 𝜃𝐷

𝑐𝑜𝑠 𝜃+1
= 2𝐶𝑎0.5                                           (2.14)  

The Wilhelmy plate configuration was used in Bracke’s experiment to obtain the date of 

𝜃𝐷 and U. The correlation model was also verified with other experiments data source 

from different measurement configurations with different organic liquid systems. Bracke 

confirms Eq. (2.14) as well as Eq. (2.10) is comparable for small capillary numbers. It is 

also presented that the correlation is applicable for clean and dry plates as the rate of 

wetting is much faster for the prewetted plate. Similar to Jiang’s model, Bracke’s model 

shows the correlation is valid for small Bo number when the gravity effect can be ignored. 
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The model can also be applied for small drop spreading on a solid, as verified with 

experiments from other sources (Bracke, 1989). 

2.4.4 Seebergh’s Correlation Model 

 

The previous empirical correlation models are limited by the capillary number, namely 

they are valid for 𝐶𝑎 < 0.01. The universal function can be expressed as: 

𝐻 =
𝑐𝑜𝑠 𝜃 −𝑐𝑜𝑠 𝜃𝐷

𝑐𝑜𝑠 𝜃+1
= 𝐴𝐶𝑎𝐵                                              (2.15) 

For low and high capillary numbers, Hoffman’s data deviate from the models presented 

by Jiang et al. (1979). By studying the acid-based experiments, Seebergh et al. (1992) 

obtained a more universal correlation model as: 

𝑐𝑜𝑠 𝜃 −𝑐𝑜𝑠 𝜃𝐷

𝑐𝑜𝑠 𝜃+1
= 2.24𝐶𝑎0.54; 10−3 ≤ 𝐶𝑎 < 0.01               (2.16) 

 

𝑐𝑜𝑠 𝜃 −𝑐𝑜𝑠 𝜃𝐷

𝑐𝑜𝑠 𝜃+1
= 4.47𝐶𝑎0.42; 𝐶𝑎 ≤ 10−3                             (2.17) 

It is noticed that for the larger capillary number regime, Seeburgh’s model is comparable 

to Bracke’s model. However, as the capillary number reduces, different constants are 

used to fit the experiment data.  
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(a) 

 

(b) 

Fig. 2.9 (a) Comparison between empirical correlations and Hoffman’s data for 𝐶𝑎 >

10−3 (Seebergh et al., 1992), (b) Comparison between Seeburgh’s model and all the low 

capillary number data (Seebergh et al., 1992) 

2.4.5 Blake’s Molecular Model 

By applying the molecular kinetic theory, ignoring the hydrodynamic effects such as 

viscous dissipation near the wetting line (Blake et al., 1995), the molecular-kinetic 
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models take the solid-surface characteristics into account. In this type of model, the 

contact line motion is determined by the statistical dynamics of the molecules at the triple 

line location (Eral et al., 2013). Two important fitting parameter factors are introduced 

here: 𝜅0, the equilibrium frequency of the random molecular displacements occurring at 

the triple line location, and 𝜆, the average distance between the adsorption/desorption 

sites on the solid surface, see Equ. (2.18 and 2.19).  It is assumed that the dynamic 

contact angle velocity is depending on the disturbance of the liquid adsorption 

equilibrium and the changes in the local surface tension when the wetting line moves 

across the solid surface (Eral et al., 2013).  Therefore, the driving force for the triple line 

motion is expressed as: 

𝐹𝑤 = 𝛾𝐿𝑉(𝑐𝑜𝑠 𝜃 −𝑐𝑜𝑠 𝜃𝐷)                                    (2.18) 

The resulting from the driving force relationship between contact angle and the wetting 

velocity is: 

𝑈(𝜃) = 2𝜅0𝜆 sinh[ 𝛾𝐿𝑉(𝑐𝑜𝑠 𝜃 −𝑐𝑜𝑠 𝜃𝐷)𝜆2/2𝑘𝐵𝑇]              (2.19) 

where 𝑘𝐵 is the Boltzmann constant, and T is the absolute temperature. Eq. (2.19) can 

also be expressed as: 

𝑐𝑜𝑠 𝜃𝐷 = 𝑐𝑜𝑠 𝜃 −
2𝑘𝐵𝑇

𝛾𝐿𝑉𝜆2 𝑠𝑖𝑛ℎ−1(
𝑈

2𝜅0𝜆
)                           (2.20) 

2.5 Near-reactive (molten metal) case: CAB Technology description 
 

Liquid metal wetting and spreading is essential for many technological processes, e.g., 

spreading of the solder/braze over/between the substrate materials. It is customary to 
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specify that the contact angle must be below 90° for metal bonding (Eustathopoulos et al., 

1999). The triple line movement, defined as a movement of the locus of points between 

solid-liquid-gas phases, is the central phenomenon in the manifestation of the kinetics of 

a wetting process in liquid metal systems. The mechanical strength and durability of a 

solder/braze joint directly rely on the wetting and spreading kinetics process over the 

mating surfaces that precede solidification.  The wetting (the ability of a liquid to 

maintain contact with a solid surface) and spreading (the ability of a liquid to spread on 

another liquid or solid) processes in the liquid metal systems mostly involve reactive 

interaction across the liquid/solid interface, and the kinetics of the process is not only a 

function of viscosity, density, species composition, surface properties, such as roughness, 

porosity and electric charges, but also of diffusion, dissolution, convection, deoxidation, 

and interfacial reaction (Eustathopoulos et al., 1999; Meier et al., 1999; Saiz et al., 1998; 

Contreras et al., 2003; Meier et al., 1998; Rado et al., 2000). The empirical models are 

established in most cases by fitting experimental data on triple line movement distance as 

a function of time r(t) (Mortensen et al., 1997; Bailey et al., 1951; Li et al., 1992), or 

time dependent contact angle  θ(t)  (Dezellus et al., 2002). Common experimental 

methods are known as sessile drop experiments, wetting balance technique 

(Eustathopoulos et al., 1999) and hot stage microscopy experiments (Thorsen et al., 1984). 

In the manufacturing process, in order to prevent the formation of the oxide layers on the 

surface of liquid metals, inert gaseous environment is generally required in the process 

setups. For aluminum brazing, the wetting in the inert gaseous (usually nitrogen) 

environment is known as the controlled atmosphere brazing process (CAB process). 

Figure 2.10 offers an illustration of the CAB facility used in this study. 
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Fig. 2.10 Transparent high temperature CAB laboratory furnace system 

To accomplish the CAB process, the aluminum surface is normally deposited with a layer 

of flux consisting of potassium fluoro-aluminate compounds (KAlF4) to break down the 

aluminum oxide layer, so that the molten clad metal driven by the capillary force can be 

drawn into the joint area (Zhao, 2005). Certain other criteria have to be met for the CAB 

process. These include primarily: (i) the oxygen content in the controlled atmosphere has 

to be lower than 100 ppm and (ii) the dew point less than -40°C (Zhao, 2005). In contrast 

to the CAB, in the vacuum-brazing technology, Mg is added in the clad alloy and/or 

exposed to the background vacuum atmosphere (Mg as “getter”) so that the evaporated 

magnesium at elevated temperatures can interfere with the formation of the oxide layers 

on the molten metal. Although the flux could be eliminated in the vacuum-brazing 

process, the requirement for the specialized vacuum equipment imposes a higher demand 

which increases the cost and maintenance. Thanks to the CAB technology, production 

savings are possible for mass production manufacturers, and the CAB technology is 
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considered as the state-of-the-art manufacturing process for high-volume mass 

production of most automobile heat exchanger assemblies process (Sekulic, 2013). This 

is the reason why this material system and this materials processing technology are 

considered in this work. So, the CAB technology can achieve the continuous flow for the 

high volume at lower costs with less limits on the dimensions of the product, see Fig. 

2.11.  

 

Fig. 2.11 CAB continuous production line (SECO/WARWICK GROUP, 

http://www.secowarwick.com/en/products/cab-controlled-atmosphere-brazing-furnaces/  

(accessed on Sept.5th, 2015)) 

As the brazing technology is evolving, flux loadings have been reduced for the CAB 

process. Self-fluxing (that is, flux is not eliminated but it is added to the clad, (Ogilvy et 

al., 2014)) brazing of aluminum has also currently being developed some earlier solutions 

in this direction were also subject of development and applications (James G et al., 1968; 

http://www.secowarwick.com/en/products/cab-controlled-atmosphere-brazing-furnaces/
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Humpston et al., 1995), but will not be considered here. By adopting the self-fluxing 

technology, the cost and maintenance for CAB process technology can be further reduced, 

making the CAB play an even more important role in the growing market for brazed 

aluminum condensers in the heating, ventilation, air conditioning and refrigeration sector 

(Sekulic, 2013).  By modifying the brazing sheet, clad metal and flux material 

compositions, the self-fluxing material has been developed by Sapa Group (Ogilvy et al., 

2014). Three different brazing systems have been considered in our work: 1. Surface-

modified brazing sheet; 2. Filler (clad) metal alloy modifications and 3. Composite filler 

(clad) metal-flux materials (Sekulic, 2013). The surface-modified brazing systems are 

close to the traditional systems where the flux is applied to the components. Ogilvy et al. 

(2014) has produced the self-fluxing composite filler metal-flux materials by spray 

forming the composite that can be further fabricated into a liner plate for cladding onto 

brazing sheet. The alloy used is a eutectic Al-Si filler with finely dispersed flux particles 

within the alloy matrix.  Sapa AB and Sandvik Osprey invented this metal matrix 

composite consisting of a eutectic aluminum-silicon alloy within which small particles of 

potassium alumino-fluoride salt are dispersed (Sekulic, 2013; Ogilvy et al., 2014). The 

use of the composite materials for brazing is registered as TrilliumTM Technology 

(Sekulic, 2013). At elevated temperatures, the added salt melts within the molten metal 

clad (Fig. 2.12). The fluxing action is initiated from within the clad layer and acts on the 

interface between the clad and the oxide. The fluxing activity starts when the clad filler 

metal starts to melt and the molten salt segregates towards the surface. Before the melting, 

the oxide prevents the flux from reacting with the atmosphere and other surface 

contaminants. After melting, the molten flux disrupts and/or detaches the oxide from the 
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clad to allow the molten clad to wet and spread and flow into the void spaces by surface 

tension force to form the joints upon cooling. The differential scanning calorimetry tests 

indicate the salt endotherm of 550°C (Sekulic, 2013; Ogilvy et al., 2014) while the 

eutectic of aluminum-silicon alloy endotherm of 577°C (Sekulic, 2013; Ogilvy et al., 

2014).  

 

Fig. 2.12 Schematic of composite-clad brazing sheet (TrilliumTM) brazing process 

It is reported (Yu et al, 2013) that the TrilliumTM clad brazing sheet has much greater 

resilience to increased oxygen levels and humidity content than traditional clad brazing 

sheet coated with brazing flux.  

2.5.1 Sessile drop experiment 

The sessile drop experiment is a simple and most common method to study the wetting 

behavior at elevated temperatures for both reactive and non-reactive systems.  In general, 
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the experiment is designed to permit a drop of liquid to spread over a horizontal solid 

substrate until the equilibrium state is reached, see Fig. 2.13.  

 

Fig. 2.13 Schematic of the profiles as the solid cube melts to wet and spread during the 

sessile drop experiment 

The rate of the liquid front (triple line location) advances over the substrate is the 

characteristic of the kinetics of the liquid metal wetting to study. Liquid surface tension 

𝛾𝐿𝑉 can also be evaluated from the sessile drop experiments (Keene et al., 1993; Anson et 

al., 1999, Fu et al., 2013). To measure the accurate contact angle, smaller sizes of the 

drops are recommended, while the surface tension measurement requires larger drops so 

that the gravitational force would have impact on the shape of the drop. For the sessile 

drop experiment, different forms of the experiment setups could apply, but the common 

requirements include the horizontal stage, a furnace chamber to provide either vacuum or 

controlled atmosphere condition, heating facility and the measurement facility 

(Eustathopoulos, 1999). In order to prevent the oxide layer formation at the elevated 

temperature, the test furnace chamber normally is gas tight, so that the chamber can be 
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purged with inert gas or be vacuumed to required level.  The common inert gases purged 

include helium, nitrogen or argon, and the oxygen level contained is normally lower than 

20 ppm. Hydrogen gas might be mixed in the inert gas to further reduce the oxide layer 

formation. As mentioned earlier, as long as the key requirement is met for the sessile 

drop experiment, different forms of setups can achieve the same goal to measure triple 

line growth, contact angles or surface tensions, see Fig. 2.14. 

 

Fig. 2.14 Methods of sessile drop experiments: (a) traditional method, (b) in situ 

formation of the alloy, (c) dispensed drop, (d) transferred drop, (e) double substrate, (f) 

tilted plate (Eustathopoulos et al., 1999) 

A typical sessile drop experimental setup is shown in Fig. 2.15 of the boron nitride and 

molten aluminum system and Fig. 2.16 of aluminum wetting on sapphire. An optical 
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contact angle analyzer with the furnace is also a typical sessile drop experiment setup (Fu 

et al., 2013; Fu et al., 2016), see Section 4.2 in this thesis manuscript for more details. 

 

Fig. 2.15 Sessile drop experiment setup schematic diagram for the boron nitride and 

molten aluminum system (Fujii et al., 1993) 

 

 

Fig. 2.16 Sessile drop experiment setup schematic diagram for aluminum wetting on 

sapphire (Weirauch et al., 1990) 
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The spherical drop volume 𝑣 can be calculated based on the following equation 

(Eustathopoulos et al., 1999) : 

𝑣 =
𝜋𝑅3

3

(2−3𝑐𝑜𝑠𝜃+𝑐𝑜𝑠3𝜃)

𝑠𝑖𝑛3𝜃
                                            (2.21) 

where R is the radius of the drop, 𝜃 is the contact angle. 

Since R has to be measure after the experiment is completed, alternatively, one can also 

use the Bashforth and Adams tables (1883) to calculate the volume as: 

𝑣 = 𝜋𝑅2 (
2𝑏

𝛽
−

2𝑏2𝑠𝑖𝑛𝜃

𝑥90𝛽
+ 𝐻); 

𝛽 =
𝑏2𝜌𝑔

𝛾𝐿𝑉
                                                  (2.21) 

where H is the drop height, 𝜌 is the liquid density, 𝑔 is the gravitational force, 𝛾𝐿𝑉 is the 

surface tension and 𝑥90 is the constant from Bashforth and Adams tables. 

The wetting kinetics can be presented from the sessile drop experiments by measuring the 

triple line locations and time relationships (Fu et al., 2013; Fu et al., 2016). Further 

discussion will be made in later chapters.  

2.5.2 Wetting balance experiment 

The wetting balance experiment is referring to the pulling or inserting an object into the 

liquid surface to measure the surface tension (Eustathopoulos et al., 1999), corresponding 

the Wilhelmy plate configuration in the non-reactive experiments. As was described by 

Chappius et al. (1982), the wetting balance method consists of continuously monitoring 

the force acting on a solid, cylinder or blade, moving into and out of a liquid bath during 
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an immersion-emersion cycle (Eustathopoulos et al., 1999). High temperature study 

apparatus was developed by Rivollet et al. (1990), see Fig. 2.17. 

 

Fig. 2.17 Schematic diagram of the wetting balance experiment (Rivollet et al., 1990) 

The experimental setup consists of a furnace chamber, a pumping system, a translation 

system providing the displacement of the crucible at a constant rate and the electronic 

microbalance. This method allows the simultaneous measurement of the surface tension 

of the liquid and the contact angles. Both advancing and receding contact angles can be 

measured from the immersion and emersion process.  It is recommended the force 

inserted into the liquid to be “infinitely” slow, so that the force f is equal to the weight of 

the meniscus and the buoyancy force: 

𝑓 = 𝑤𝑚 + 𝛺𝜌𝑔𝑧𝑏; 

𝑤𝑚 = 𝑃𝛾𝐿𝑉 cos 𝜑                                              (2.22) 
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where 𝑤𝑚 is the weight of the meniscus, 𝛺 is the solid base area, 𝜌 is the liquid density, 

𝑔 is the gravitational acceleration, P is the liquid base perimeter, 𝜑 is the joining angle of 

the liquid meniscus on the solid surface, defined by the tangent to the liquid surface at the 

triple line location (Eustathopoulos et al., 1999), 𝛾𝐿𝑉 is the surface tension and 𝑧𝑏 is the 

solid based height from the liquid horizontal surface of the liquid. It should be noted that 

∅ is only equal to contact angles at certain points when the force is in and out of the 

liquid process, referring to the immersion-emersion curve f(𝑧𝑏) (Eustathopoulos et al., 

1999), namely, when the solid is completely into the liquid, ∅ is equal to the contact 

angles, see Fig.2.18. The wetting balance technique is not only used as a method to 

measure the dynamic contact angles, but also as a method to study the liquid kinetics of 

the spreading.  

 

Fig. 2.18 Schematic diagram of meniscus formed with the immersed vertical plate for (a) 

wetting and (b) non-wetting liquid 
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2.5.3 Optical hot stage microscopy 

The controlled atmosphere or vacuum optical hot stage microscopy is a direct method to 

study the spreading kinetics of the molten liquid on a solid substrate. Thorsen et al.(1984) 

reported the experiment setup in the 80s, see Fig.2.19. Dusan Sekulic’s lab at University 

of Kentucky also published multiple experiment results using the optical hot stage 

microscopy apparatus; see Fig. 2.20 (Zhao et al., 2006; Zhao et al., 2009; Liu et al., 2011; 

Liu et al., 2012) and Fig. 2.21. 

 

 

Fig. 2.19 Leitz hot stage 1750 (Thorsen et al., 1984) 
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Fig. 2.20 Linkam THMS 600 hot stage system (Zhao et al., 2009) 

 

Fig. 2.21 Linkam THMS 600 hot stage installed on an Oplympus BX51M optical 

microscopy system 

The optical hot stage microscopy system normally consists of the hot stage providing 

high temperatures, an observation chamber providing controlled atmosphere or vacuum 

condition, a cooling system for rapid quench and an optical microscope connected to data 

acquisition systems. Due to the miniature size of the chamber, it’s possible to apply very 
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fast heating rate and cooling at fast recording speed. It has been reported the heating rate 

can reach to 100°C/min and the cooling ramp of 80°C/min (Zhao et al., 2009). Inert gas 

can be purged into the test chamber or vacuum condition. Due to its small volume, 

multiple gas volume replacement can take place in a certain period of time. Since the real 

time video can be captured by the video camera mounted on the microscope, wetting 

kinetics can be investigated frame by frame with professional image analysis software. 

Such experiment setup is used to study the molten metal fast spreading process in a short 

period of time, and offers the direct understanding of kinetics features for different 

molten metal systems. The surface roughness impact on wetting was also investigated 

(Wen et al., 2012). The contact angles cannot be measured in this method (the field of 

vision is from the top). It is also not recommended to study a non-wetting/spreading 

molten metal on a solid substrate.  

2.6 Wetting kinetics theories and models at elevated temperatures 

The near non-reactive wetting of molten metals and oxides on molybdenum was studied 

by Saiz et al. (2007) as an initial step to analyze more complex reactive systems. Without 

interfacial reactions, the spreading is dominated by dissipation at the triple line location 

caused by the much stronger atomic interactions compared to organic liquids at low 

temperatures. As investigated by Voytovych et al. (2007), at high temperatures, the 

reactive wetting is controlled by compound formation at the interface. Lee et al. (2003) 

also pointed out that wetting is impacted by both the interfacial reactions and the 

compound formation at the interface. The spreading can be categorized into three regimes: 

(i) impact, (ii) inertial and (iii) capillary regime. In the impact regime, the drop hits the 

substrate (if impacting the substrate at the onset of spreading) and the subsequent flow is 
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driven by the dynamic pressure and resisted by inertia. In the inertial regime, the flow is 

driven by the capillary force and retarded by the inertia force. In the capillary regime, the 

kinetics is controlled by the kinetic energy of the drop, viscosity and surface tension (Saiz 

et al., 2007). For the high temperature non-reactive systems, stronger interatomic forces 

cause the increased role of triple line friction and viscous dissipation in the liquid.  

For the reactive wetting and spreading at elevated temperatures, common reaction is 

expected to be observed in the process. As is studied by many (Saiz et al., 1998; Meier et 

al., 1999; Dezellus et al., 2002; Eustathopoulos et al., 2005; Fu et al., 2016), in the 

reactive wetting process, not only surface tension and viscosity are dominating, but also 

more importantly several other physical phenomena, such as chemical reaction, ridging, 

inter-diffusion, de-oxidation and dissolution of the solid substrate by the molten metal, 

are also playing significant roles, especially at the triple line location (Eustaphopoulos et 

al., 1998; Saiz et al., 1998; Saiz et al., 2005; Benhassine et al., 2009; Champion et al., 

1969; Drevet et al., 2012). It was pointed out by Eustaphopoulos (1998) that the reactive 

systems of metal/ceramic or metal/metal systems feature either linear or non-linear 

spreading, corresponding to reaction-controlled or diffusion-controlled regimes, 

respectively. Factors like interfacial reaction at the triple line location should be taken 

into consideration. As shown in Fig. 2.22, the Al-Mg alloy droplet on SiC substrate 

involves multiple physical phenomena, including dissolution of metal/metal systems, 

interaction between Al and Si in the interface for metal/ceramic systems, SiO2 layer 

forming known as the halo, Mg evaporation off the droplet, Mg and Al diffusion across 

the surface oxide layer on the SiC as well as chemical reaction between Al and SiC as: 

4𝐴𝑙 + 3𝑆𝑖𝐶 → 𝐴𝑙4𝐶3 + 3𝑆𝑖    ∆𝐺𝜃 = −88.5 𝑘𝐽/𝑚𝑜𝑙 
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Because of the mass change during the spreading process, the real contact angle should 

be reduced to the new final contact angle as 𝜃𝐹, see Fig. 2.23. 

 

Fig. 2.22 Schematic diagram of interaction mechanism for Al-Mg alloy droplet on SiC 

substrate (Candan et al., 2011) 

 

Fig. 2.23 Schematic representation of Al-Mg alloy droplet final contact angle 𝜃𝐹 on 

reactive substrate compared to unreactive substrate contact angle 𝜃0 (Dezellus et al., 2010) 
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As is pointed out by Dezellus et al. (2010), at elevated temperatures for the reactive 

wetting, spreading kinetics is not limited by viscous dissipation but by the rate of 

interfacial reaction at the triple line location. The interfacial reaction rate is controlled by 

the slower of two successive phenomena that happen in the reaction process: diffusive 

transport of reacting species to or from the triple line location and local reaction kinetics 

at the triple line location (Dezellus et al., 2010). The new compound formed at the 

interfacial layer due to reaction can either improve wetting or reduce wetting, depending 

on wettability by molten metal of new compound compared to the wettability of the 

initial solid substrate.  

2.6.1 Diffusion-controlled wetting of metal/ceramic systems model 

In a sessile drop experiment configuration on metal/ceramic systems, the metal drop 

forms on a solid substrate, and when starts deforming rapidly controlled by viscous force, 

the initial contact angle 𝜃𝐷 equals the same contact angle of the liquid on the original 

unreacted substrate. Then as the droplet spreads with the reaction proceeding between 

metal and the substrate, the final contact angle 𝜃𝐹 will form after a longer period of time. 

During the spreading process, a reactive penetration of species normally occurs (Saiz et 

al., 1998). As was pointed out by Saiz et al. (2005), the formed ridge at the triple line 

location, formed due to local diffusion or solution precipitation, can hinder the spreading 

of the triple line. It is known that the final contact angle is not related to capillary force 

dominated spreading, but rather to the reaction product layer formed and droplet volume. 

Namely, the reaction at the triple line location (Dezellus et al., 2002) a key process. Two 

spreading regimes can be observed during the process, known as the first linear regime 

and the second diffusion dominated non-linear regime. For the wetting of metal/ceramic 
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systems without dissolution, Mortensen et al. (1997) modeled the diffusion-controlled 

wetting. According to the model, the isothermal spreading kinetics is proportional to the 

dynamic contact angle: 

𝑑𝑅

𝑑𝑡
=

2𝐷𝐹(𝑡)

𝑒𝑛𝑣
(𝐶0 − 𝐶𝑒)𝜃𝐷                                        (2.23) 

where D is the diffusion coefficient in the liquid, 𝑛𝑣 is the number of moles of reactive 

solute per unit volume of the reaction product, 𝑒 is the reaction product thickness at the 

triple line location, 𝐹(𝑡) is a function of time which can be considered as a constant of 

0.04 for most sessile drop experiments, 𝐶0  is the nominal drop reactive solute 

concentration, 𝐶𝑒 is the concentration of reactive solute in equilibrium with the reactive 

product, R is the perimeter of the droplet and 𝜃𝐷 is the dynamic contact angle (Mortensen 

et al., 1997).  

The isothermal spreading by metal/ceramic systems limited by solute diffusion at the 

triple line location showed good agreement with experimental results for AgCuSn-Ti/Cu 

systems (Dezellus et al., 2010). For Cu-Cr/Cu systems, certain modification to the contact 

angle is needed for the validity of Eq. (2.23) (Dezellus et al., 2010).  

2.6.2 Dissolutive wetting model 

Similar to the metal/ceramic systems, wetting for the metal/metal systems is controlled 

by compound formation at the interface (Voytovych et al., 2007). Four stages of wetting 

in metal/metal systems can be observed (Yin et al., 2009). The first stage is the initial 

regime where the liquid spreads with no obvious reaction dominated by the capillary 

force; the second stage is a highly reactive regime where reaction and the morphological 

and chemical changes can take place at the liquid and solid interface; the third stage is a 
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kinetic roughening regime where a solid phase grows the interface between solid and 

liquid; the fourth stage is the last time regime where the interface equilibrates by solid 

state diffusion (Yin et al., 2009). For the molten metal spreading on a metal substrate, 

inter-diffusion can cause partial dissolution of the substrate and/or formation of 

intermetallic phases (Warren et al., 1998). Warren et al. (1998) proposed an isothermal 

diffusion/fluid flow analysis to kinetics of the triple line location for the metal/metal 

systems spreading as: 

𝑑𝑅

𝑑𝑡
= −

𝐷𝐶′

𝐶

𝑡𝑎𝑛𝜃𝑡+𝑡𝑎𝑛𝜃𝑏

𝑡𝑎𝑛𝜃𝑏
                                      (2.24) 

where R is the perimeter of the droplet, 𝜃𝑡 and 𝜃𝑏 are the upper and lower liquid contact 

angles, see Fig. 2.24, D is the diffusion coefficient in the liquid, C is the triple line 

location concentration and  𝐶′ is the derivative of the triple line location concentration 

with respect to droplet height.  

 

Fig. 2.24 Schematic diagram of the sessile drop final contact angle with relationship to 

the upper and lower liquid contact angles (Warren et al., 1998) 
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The dissolution spreading process can also be relevant in some metal/ceramic systems 

such as AuNi/ZrB2 (Voytovych et al., 2007) and Ni/C systems (Eustaphopoulos, 1999).  

A quasi-linear reactive stage empirical correlation is also modeled by Dezellus et al. 

(2002). This correlation is valid for the triple line location kinetics that is controlled by 

the process of atom transfer occurring at the substrate/liquid alloy interface. The 

correlation is as follows: 

𝑈

𝐹(𝜃𝐷)
= 𝑘 (

3𝑣

𝜋
) (𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃𝐷); 

𝐹(𝜃𝐷) =
𝑐𝑜𝑠𝜃(2−3𝑐𝑜𝑠𝜃𝐷+𝑐𝑜𝑠3𝜃𝐷)−𝑠𝑖𝑛4𝜃𝐷

𝑠𝑖𝑛𝜃𝐷(2−3𝑐𝑜𝑠𝜃𝐷+𝑐𝑜𝑠3𝜃𝐷)4/3                            (2.25) 

where 𝑈 is the triple line movement velocity, 𝑣 is the droplet volume, 𝑘 is the constant 

proportional to the kinetics constant of the dissolution process and to the driving force of 

the dissolution process, 𝜃𝐷 is the dynamic contact angle, 𝜃 is the contact angle. This type 

of empirical model was well verified by Calderon et al. (2010) using experimental data 

for Al-Si alloys on carbon substrates. The spreading kinetics increases with temperature 

and Si content in the alloy, and it is sensitive to the carbon substrate structure (Calderon 

et al., 2010). However, this model is not valid for the later stage of the spreading kinetics 

which is limited by the diffusion of reactive species in the reactive layer.  

This dissolution spreading model has a good agreement for the Sn/Bi system (Calderon et 

al., 2010), however, more work and study are needed to have a systematic understanding 

of this type of reactive wetting in the future.  
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CHAPTER 3: BENCHMARK STUDY OF THE KINETICS ON A 

CAPILLARY FLOW OF NON-REACTIVE LIQUID SYSTEMS 

 

In order to establish the reproducibility of the methods used for the experimental data 

collection of Al-Si (Trillium) systems, a series experiments with non-reactive systems 

(water and silicon oil on a glass) has been performed. This data were also used to verify 

the validity of numerical phase field modeling conducted in the collaborative project. 

3.1 Overview 

In this chapter, the non-reactive wetting experimental procedure is developed for optical 

evaluation of the contact angle in order to generate empirical data sets needed for 

theoretical modeling as a benchmark reference involving the reactive wetting evaluation 

at elevated temperatures.  Two types of liquid systems, namely water and silicone oil, at 

ambient temperature are investigated by developing the wedge-tee configuration 

spreading. The wedge tee pre-cleaned glasses forming a Wilhelmy-type plate 

configuration (a single substrate in contact with the pool of liquid). Both equilibrium 

states of the triple line location and the triple line kinetics are studied for verification of 

the empirical correlation form derived by various sources, corresponding to Washburn’s 

Law (Washburn, 1921) type of power law. The surface tension driven spreading, retarded 

by viscosity, at the ambient temperature is considered to be wetting without chemical 

reactions. The experimental data and procedures are validated by comparing to the 

theoretical triple line spreading height (upon reaching the equilibrium state), as well as 

empirical spreading kinetics correlations. This chapter provides a benchmark foundation 
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upon which later chapters involving molten metal reactive spreading kinetics can be 

based.  

This chapter consists of two parts, (i) the static study of the triple line equilibrium spread, 

and (ii) the kinetics study of triple line spreading. The static contact angle of both liquid 

systems was proved to obey the theoretical prediction (Seebergh et al., 1992) of the 

equilibrium triple line location. The Neumann (1972) theoretical prediction based on 

Young’s equation confirms the agreement with data excellently. In the second part of this 

chapter, the kinetics of the triple line prediction are verified by different empirical 

correlations using the capillary number and dynamic contact angle. The dynamic contact 

angle and capillary number of silicone oil system agree with the existing correlation 

models, however, the water on glass system showed the deviations to a certain degree 

from those known models. A new correlation model was established for the water on 

glass system. The liquids wetting on the vertical slides also showed the Washburn flow 

pattern in the initial capillary-viscous stage. Hence the wetting was initially driven by 

surface tension and retarded by viscosity. The subsequent stage showed a clearly 5th 

power law relationship, thus surface tension and viscosity showed a less dramatic impact 

on the wetting process. 

3.2 Experimental setup and procedure 

3.2.1 Material preparation 

In order to study the spreading process of non-reactive liquid, the Wilhelmy plate 

configuration is adopted in this investigation. Two types of liquids are chosen for the 

study of the kinetics of non-reactive liquid systems: deionized water (DI water) and 

silicone oil. The properties of the liquids can be found in Table 3.1.  
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Two microscope glass slides perpendicular to each other are used as the Wilhelmy plate 

configuration, see Fig. 3.1. The substrates are 25×75×1mm, pre-cleaned manufactured 

by Thermo Scientific (Thermo Scientific, #2950-001) (Thermo Scientific Website). The 

gap between two slides is set initially to be 1mm±0.5mm before the vertical plate starts to 

move down to the liquid surface.  

 

Fig. 3.1 Glass slides Wilhelmy plate configuration with the fixed horizontal plate and 

moving vertical plate 

Table 3.1 Properties of Liquids 

Liquids Density 

(kg/m3) 

Surface Tension 

(N/m) 

Dynamic 

Viscosity  

(Pa∙s) 

Apparent Contact 

Angle on 

Horizontal Glass 

Substrate (deg) 

DI water 

(25°C ) 

(Song, 2009) 

997 0.07197 0.0008937 0 

Silicone Oil 

S159-500 

(25°C) 

960 0.02089 0.0096 0 
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Fig. 3.2 3D scanning image of topography of Thermo Scientific, #2950-001 microscope 

glass, measured by Zygo New View TM 7300 3D Optical Surface Profiler, (from blue to 

red color, the level increases) 

 

Fig. 3.3 3D scanning intensity map of topography of Thermo Scientific, #2950-001 

microscope glass, measured by Zygo New View TM 7300 3D Optical Surface Profiler 
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The surface can be considered as smooth, see Fig. 3.2. The surface roughness of the glass 

substrate was measured by Zygo New View TM 7300 3D Optical Surface Profiler. A 

total of 20 measurements were conducted at random locations on the substrate leading to 

the average roughness of 0.0014 ± 0.0009 µm (hence considered as perfectly smooth), 

see Table 3.2. In order to eliminate any potential contamination of the wetted surface and 

to eliminate the related impact on the kinetics of the liquids, for each test, a new virgin 

glass plate is used for both vertical and horizontal plates in each test run.  

Table 3.2 Thermo Scientific, #2950-001 microscope glass surface roughness 

measurement data 

Measurement 

 

Surface Area 

(mm2) 

Surface Roughness 

Ra (µm) 

Average Surface Roughness 

Ra (µm) 

1 0.0121 0.002  

2 0.0121 0.001  

3 0.0121 0.002  

4 0.0121 0.002  

5 0.0121 0.001  

6 0.0121 0.002  

7 0.0121 0.003  

8 0.0121 0.002  

9 0.0121 0.002  

10 0.0121 0.002 0.0014 ± 0.0009 

11 0.0121 0.001  

12 0.0121 0  

13 0.0121 0.003  

14 0.0121 0.001  

15 0.0121 0.001  

16 0.0121 0.001  

17 0.0121 0  

18 0.0121 0.001  

19 0.0121 0  

20 0.0121 0  
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3.2.2 Experiment configuration 

As is introduced previously in Section 2.2.3, the Wilhelmy plate configuration is used in 

the experiment study. This study has been performed to verify the phase field modeling 

formulation (to be addressed later) before it is implemented in the simulation of the liquid 

metal triple line kinetics. All tests were conducted under the lab environmental conditions 

(air at 22°C ± 2°C and humidity less than 60%). In the benchmark testing, the non-

reactive liquid layers of different thicknesses were formed on the horizontal surface to 

form the surface tension driven meniscus in the wedge-tee corner upon levering the 

vertical substrate, see Fig. 3.1. In the benchmark testing, the non-reactive liquid layers of 

different thicknesses were formed on the horizontal surface to form the surface tension 

driven meniscus in the wedge-tee corner. The vertical glass slide was held on an 

adjustable clamp which was fixed on an optical mounting post with the precisely 

adjustable laboratory jack. The adjustable laboratory jack was controlled manually to 

provide a slow motion of the vertical plate moving towards the liquid layer, see Fig. 3.4. 

It should be added that the considered subsequent wetting phenomenon has the time scale 

of the multiple orders of magnitude faster vs. the vertical plate surface movement at the 

onset of a test; consequently that experimentation feature has negligible impact on the 

results involving kinetics of the triple line movement. The movement impact will be 

discussed in later sections. The vertical glass maintained the vertical position of 1 ± 0.5 

mm above the horizontal glass slide for the purpose of executing experimental runs with 

different thicknesses of liquid layers, see Fig. 3.5. 
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Fig. 3.4 Schematic diagram of the non-reactive liquid kinetics experiment configuration 

 

(a)                                                                     (b) 

 

Fig. 3.5 (a) Wedge-tee glass slides configuration (Wilhelmy plate configuration) and (b) 

triple line location on both left side (Yl) and right side (Yr) 

As is shown in Fig. 3.5 (b), when the vertical plate inserts into the liquid surface, a 

meniscus forms along two sides of the vertical plate. The kinetics of the to be formed 

meniscus and its evolution was triggered after a gradual downward movement of the 

vertical glass slide at a very low speed until the edge of the vertical glass slide intrudes 
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the surface of the liquid layer. A halogen back-light source was lit to provide the counter-

light for the high-speed imaging. The meniscus formation process was captured by a high 

speed analog camera (Kodak, EktaPro) at 1000 frames per second for water and 500 

frames per second for silicone oil, well within the range of time instants needed for 

capturing instantaneous frames over the meniscus formation period. The analog signals 

were captured by the analog high speed imaging processor (Kodak, EktaPro Hi-Spec 

Processor) and eventually converted to digital high speed video files on the controlling 

computer. The videos were decomposed into multiple frames of images and analyzed 

using the Image-Pro© software for image data acquisition. As is shown in Fig. 3.5 (b), the 

meniscus profile can be presented clearly, and the triple line locations for both left side 

and right sides can be identified and measured. The length calibration during each 

measurement provides the proper length vs. time scales.  

3.2.3 Experiment procedures 

In this benchmark experiments, both water and silicone oil on glass systems are tested 

using Wilhelmy plate configuration. The initial experiment is to verify the relationship 

between the contact angle and vertical triple line location in the equilibrium state. The 

follow-up experiment is to record the triple line as well as contact angle kinetics. In order 

to ensure reaching the equilibrium state of the water meniscus, after the vertical glass 

slide slowly advanced to the horizontal plate to form the liquid meniscus on the 

vertical/horizontal substrate, each video was recorded for a total of 5 minutes, well after 

the triple line location movement was completed. The extended period of time was 

imposed to identify also whether liquid evaporation impacts the process. No impact of the 

phase change was identified. At least three identical experiments (under the same 
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conditions) were executed for both water and silicone oil systems. Each test was 

performed with a new set of pre-cleaned glass substrates. It was found that the already 

used glass features surface conditions that may impact the kinetics of the process 

regardless of an implemented cleaning treatment in the previous preliminary tests. The 

liquid meniscuses of both water and silicone oil were formed well within 2 seconds. As 

the videos of the kinetics of both water and silicone oil were recorded by the high speed 

camera, images of different frames from the video can be exported to Image-Pro© to 

measure the instantaneous dynamic contact angle and the triple line location, see Fig.3.6. 

In the case of the water system, the whole kinetics process lasts for the order of 

magnitude of 103 ms, whereas the process lasts a bit longer (the same order of magnitude, 

2x 103 ms) in the case of the silicone oil system. For each experiment measurement, a 

new calibration of the meareument is required in Image-Pro© before a new measurement.  
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Fig. 3.6 Water meniscus formation process profile 
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Fig. 3.7 Screenshot of Image-Pro© tracking object measurement method 

Different frames of images are imported to Image-Pro©, and the “tracking object” 

function is used to track triple line location and dynamic contact angle in each and single 

frame manually, Fig. 3.7. The measured triple line location and dynamic contact angle 

can be exported to the Excel file for further analysis. 

As shown in Fig. 3.8 and Fig. 3.9, the water kinetics profiles are overlapped so that the 

triple line location changes are shown in the same scale.  
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Fig. 3.8 Experimental water meniscus growth lengths profiles in 9 time frames  

  

Fig. 3.9 Experimental water meniscus growth lengths profiles in 5 time frames 

For the water on glass system, different thicknesses of water layers are tested, see Table 

3.3. The thicknesses were measured from the middle point of the vertical plate cross 

section vertically to the bottom of the water layer. After the video was converted to 

individual frame images, each image constitutes the time data point of 1ms. The 

meniscus of the water evolves and the triple line on the surfaces of the vertical glass slide 

in 20ms. A thinner layer point on the horizontal water layer was observed in the process 

as the triple line location grows vertically. The thinnest horizontal liquid layer free 

surface location spreads out away from the vertical glass slide (see Fig. 3.6). The similar 
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processes are observed in all other cases of different initial (steady) thicknesses of the 

water layers. As seen in Table 3.3, 9 independent different silicone oil layer thicknesses, 

and 3 repeating measurements were applied to each layer thickness. Three of those tests 

are chosen randomly for kinetics analysis with three repeating measurements for each 

layer thickness. 

Table 3.3 Different initial thicknesses of water layer data 

Experiment Thickness (mm) Standard Deviation (mm) 

a 0.528 0.028 

b 0.542667 0.028501 

c 0.495333 0.043753 

d 0.457333 0.028501 

e 0.263 0.026 

f 0.306667 0.0306 

g 0.324 0.015588 

h 0.666667 0.015588 

i 0.667 0.066425 

 

For the silicone oil on glass system, the images were extracted from different frames 

from the video, see Fig. 3.10. The same experimental and measurement procedures are 

used for the determining the equilibrium contact angle and the instantaneous triple line 

locations as well as the kinetics of triple line location.  

Table 3.4 Different initial thicknesses of silicone oil layer data 

Experiment Thickness (mm) Standard Deviation (mm)  

a 0.2451 0.044909 

b 0.342667 0.042336 

c 0.324 0.042226 

d 0.416667 0.027502 

e 0.357667 0.014434 

f 0.119333 0.015011 

g 0.127667 0.025502 
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As is shown in Table 3.4, 7 independent, different silicone oil layer thickness, and 3 

repeating measurements were applied in each layer thickness. Three of those tests are 

chosen for kinetics analysis with three repeating measurements for each layer thickness.  

 

Fig. 3.10 Silicone oil meniscus formation process profile 
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3.3 Experiment results and discussion 

3.3.1 Validation of the equilibrium relationship between the contact angle and 

the triple line location 

In order to verify the measurement of the equilibrium contact angle in the subsequent 

experiments, a theoretical relationship between the triple line location and the contact 

angle is compared to the experiment data. The solution is based on the model developed 

by Neumann (1972) who employed the capillary rise of a liquid in contact with the 

heterogeneous surface, see Fig. 3.11. The relationship between the contact angle 𝜃 and 

the triple line location 𝑦 in equilibrium can be expressed as: 

𝑦 = ±√
2𝛾LG

𝜌𝑔
(1 − sin𝜃),       (3.1) 

where a positive value of y corresponds to 0 ≤ 𝜃 ≤ 90° and a negative value to 90° ≤

𝜃 ≤ 180°.  𝛾LV is the liquid-gas surface tension, 𝜌 is the liquid mass density (gas mass 

density is neglected), and  g is the gravitational acceleration. 

 

Fig. 3.11 Meniscus triple line location height and contact angle 

Meniscus 
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As was mentioned earlier, in order to ensure reaching the equilibrium state of the water 

meniscus, after the vertical glass slide slowly advanced to the horizontal plate to form the 

liquid meniscus on the vertical/horizontal substrate, each video was recorded for a total of 

5 minutes, well after the triple line location movement was completed. As shown in Fig. 

3.12, a total of 9 experiments are conducted with measurements of 3 times each.  

 

Fig. 3.12 Water layer thickness and vertical distance relationship with error bars 

comparison 

Fig. 3.12 shows that water triple line location is independent of the water layer thickness, 

given enough water for the triple line to grow. Both left and right sides of the meniscus 

are measured for the same set of experiment. It can be seen from the figure that for the 

same set of experiments, both left and right locations have very close values of the triple 
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line equilibrium location height. The average triple line height at equilibrium state is 

2.758 mm ± 0.016mm. It should be noted that if the liquid layer is not enough to form the 

fully grown meniscus, the triple line location height will be lower than the measured data, 

what did not happen. Hence, the data set is valid. 

 

Fig. 3.13 Theoretical prediction and experimental comparison of the contact angle and 

triple line location relationship in water on glass system 

Both left and right triple line location with equilibrium contact angle are measured with 

an assessment of the associated error bars. The result is plotted against the theoretical line 

from Equation 3.1, see Fig. 3.13. It can be seen that both left and right triple line location 

and equilibrium contact angle are close to each other in the same experiment set. 

Between different experiments of different water initial layer thicknesses, the data points 

are clustered. The result shows a good agreement with the theoretical prediction from 

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5 4

C
o

n
ta

ct
 A

gn
le

 (
°)

Triple Line Location (mm)

Theoretical Triple Line Location

Triple Line Location on Left Side

Triple Line Location on Right Side



64 
 

Neumann (1972). The average equilibrium contact angle for water is 26.3°±1.7°. The 

water equilibrium correlation between contact angle and triple line location proves that 

the current experiment configuration and experiment procedures for studying the near-

reactive liquid spreading on the wedge-tee joint configuration is valid and applicable.  

In a similar way, silicone oil S159-500 system (Fischer Scientific, LOT 116611) was 

chosen to extend the triple line location benchmarking testing. Seven sets of experiments 

with the same procedures as for the water experiments were conducted, and 3 of those are 

chosen for the kinetics study. After the vertical plate immerges into the silicone oil 

surface, the meniscus forms within 2 seconds at the wedge-tee joint area. The video stops 

recording after 5 minutes when the equilibrium of the triple line location is ensured to be 

reached. Images of the whole process are imported to Image-Pro© for analysis.  

 

Fig. 3.14 Silicone oil layer thickness and vertical distance relationship with error bars 

comparison 
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The thickness and triple line location equilibrium height are plotted in Fig. 3.14. The 

average triple line location height is 1.34 mm±0.14 mm with the average thickness of 

0.28 mm±0.12 mm. The similar result for silicone oil can also be observed as both left 

and right triple line location heights are very close to each. Therefore, the menisci on 

both sides can be considered as symmetric. Within the range of 0.1mm to 0.45mm 

silicone oil thickness, the triple line location heights are very close with a small deviation. 

This result shows that for the enough silicone oil liquid provided, the layer thickness does 

not impact the triple line location height. A slight tendency of the triple line location 

decreases with the decrease of the silicone oil thickness. 

 

Fig. 3.15 Theoretical prediction and experimental comparison of the contact angle and 

triple line location relationship in silicone oil on glass system 
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As shown in Fig. 3.15, the equilibrium triple line location height and the equilibrium 

contact angle are plotted with error bars against the Equation 3.1 (a theoretical prediction 

line). All the experimental data from 7 sets of experiments are mostly clustered in the 

approximately same area. The average contact angle is 31.6°±2.6°. The experiment result 

for silicone oil, therefore, shows a good agreement with the correlation by Neumann 

(1972) in Equation 3.1.  

 

Fig. 3.16 Water and silicone oil systems comparison of theoretical prediction with 

experiment data for contact angle and triple line location correlation 

In Fig. 3.16, a comparison between the two liquid systems made with both experiments 

data and the theoretical prediction lines. It can be seen that in equilibrium, the liquid 
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systems fully agree with the traditional Young-Neumann theory and verify fully the 

agreement with the experimental data. Note again that multiple experiments were 

conducted in each system case on both left and right sides of the joint zone, and multiple 

measurements were taken to minimize the errors potentially caused during the 

measurement procedure. The generated data sets show the consistency regardless of 

different liquid layer thicknesses with small standard deviations. Hence, the theoretical 

and experimental results agreement is satisfactorily verified and the validity of the 

measurements of the contact angle and the triple line location has been established.  

3.3.2 Dynamic contact angle experimental correlation  

As mentioned in Chapter 2, many sources have reported the relationships between 

dynamic contact angle and the capillary number (𝐶𝑎 =
𝜇𝑈

𝛾
 , µ is the liquid viscosity, 𝛾 is 

the liquid surface tension and U is the triple line movement speed). Jiang et al. (1979) 

proposed an empirical, universal function for the model, applicable for silicone type of 

liquid at the ambient temperature: 

𝑐𝑜𝑠 𝜃 −𝑐𝑜𝑠 𝜃(𝑡)

𝑐𝑜𝑠 𝜃+1
= 𝑡𝑎𝑛ℎ(4.96𝐶𝑎0.702)                                   (3.2) 

where 𝜃 is the static contact angle, 𝜃(𝑡) is the dynamic contact angle. 

Similar empirical models were also reported by Brake et al. (1973) and Seeberg et al. 

(1992). Seebergh et al. (1992) found that the models have a good agreement for high 

capillary numbers (10−3 ≤ 𝐶𝑎 ≤ 3 ∙ 10−2), but not for low capillary numbers. In our 

case, the water system capillary number is low enough to be considered as the capillary 

number. The functions are expressed as follows (Seebergh et al., 1992): 
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𝑐𝑜𝑠 𝜃 −𝑐𝑜𝑠 𝜃(𝑡)

𝑐𝑜𝑠 𝜃+1
= 2.24𝐶𝑎0.54                                     (3.3a) 

for 𝐶𝑎 ≤ 10−3, 
𝑐𝑜𝑠 𝜃 −𝑐𝑜𝑠 𝜃(𝑡)

𝑐𝑜𝑠 𝜃+1
= 4.47𝐶𝑎0.42                        (3.3b) 

Due to the fact that both left and right side of the menisci are close to each other, see Fig. 

3.16, presenting a symmetric trend, to clearly show the total set of experiment data, both 

of left side and the right side of the two menisci were chosen to compare with the 

empirical correlations. The linear scale comparison of the experiment data and Jiang’s 

(1979) empirical correlation shows good agreement. As shown in Fig. 3.17, the 

experiment data only presents dynamic contact angle from 20° to 60°, this is only 

partially covered in the empirical correlation. This result can be explained by the 

limitation of the current Wilhelmy plate configuration, see Fig. 3.18. The last dynamic 

contact angle is always larger than the equilibrium contact angle of the specific liquid 

system, whereas the initial contact angle is never larger than 90°.  
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Fig. 3.17 Experiment and empirical correlation comparison of dynamic contact angle and 

capillary number relationship for silicone oil system in linear scale 

 

Fig. 3.18 Schematic screenshot of the initial dynamic contact angle 𝜃𝐷1 and the last 

dynamic contact angle 𝜃𝐷𝑛 in Wilhelmy plate configuration 
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Fig. 3.19 Silicone oil dynamic contact angle correlation models and experimental data 

comparison in log-log scale 

With both empirical correlations from Jiang et al. (1979) and Seeberg et al. (1992), an 

average of 3 sets of experiments with error bars are shown in Fig. 3.19. The experimental 

results show that for silicone oil on glass system, the result agrees well with Jiang’s 

universal function model prediction and Seebergh’s correlation. For different empirical 

correlation models, a deviation can be observed starting from the early stage. The 

experiment data land within the range of both models.  
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Fig. 3.20 Water dynamic contact angle correlation models and experimental data 

comparison in log-log scale 

As mentioned by Seebergh (1992), his correlation model doesn’t apply for low capillary 

numbers, and the same is true for Jiang’s (1979) correlation model. Therefore, since 

water has a lower capillary number-lower than 10−3, their empirical correlation models 

don’t match with experiment data, see Fig. 3.20. Six independent sets of experiments 

with error bars for the dynamic contact angle and capillary number relationship are 

plotted against the two models by Seebergh et al. (1992) and Jiang et al. (1979). The 

experiment data are generally in linear line dependence in the log-log scale, however, the 

experiment data land in between the two empirical models with deviation from both 

models. It should be noticed that in Seebergh’s experiments, the water was spreading on 
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mica with static contact angle as 5°. In our experiments, the water was spreading on a 

glass slide with static contact angle as 0°. Therefore, the surface state/properties play(s) a 

role impacting the dynamic contact angle. Based on the water on glass system 

experimental data, a modified Seebergh correlation of the square fit of the data yields: 

cos θ −cos θ(t)

cos θ+1
= 2.44𝐶𝑎0.5                                               (3.4) 

 

Fig. 3.21 Modified empirical correlation and water on glass system experiment data 

comparison 

The fitting equation matches the experimental data as is shown in Fig. 3.21 with an R 

square value of 0.94. The current function shows the same form as Equation 3.3a 



73 
 

developed by Seebergh (1992), however the constants are modified to better represent the 

dynamic contact angle behavior of the water on glass system. 

3.3.3 Kinetics of two liquid systems 

Three sets of triple line kinetics experiments for each liquid system were conducted 

following the established experimental procedures. Data for the triple line location vs. 

time taken randomly from one side of the wedge-tee joint were compared since the left 

and right side of the kinetics are relatively close to each other.  

 

Fig. 3.22 Averaged water and silicone oil systems triple line kinetics comparison with 

error bars 

As shown in Fig. 3.22, both water and silicone oil systems triple line kinetics are plotted 

against each other for comparison. Due to a much higher viscosity for silicone oil system, 
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the surface tension driven kinetics is more impacted by the viscosity, thus causing a 

lower kinetics process (by a factor 2, 2 seconds for silicone oil and 1 second for water). It 

can be seen that for both water and silicone oil systems, the initial rate is higher due to 

inertia force, and subsequently driven by surface tension, retarded by viscosity in the rest 

of the process.  

Based on Neumann and Good 1972, in the equilibrium state, the vertical distance of the 

triple line location has a relationship with the contact angle as follows: 

𝐿𝐸,𝑖 = ± (
2𝛾𝐿𝑉,𝑖

ρ0,i𝑔
)

1
2⁄

(1 − 𝑠𝑖𝑛𝜃𝑖)1/2                                   (3.7) 

Where 𝜃𝑖 is the equilibrium contact angle of the triple line location of liquid i. 

Based on the experiments, the right side of the contact angles (Fig. 3.5 for water and Fig. 

3.9 for silicone oil) are: 𝜃𝑠𝑖𝑙𝑖𝑐𝑜𝑛𝑒 𝑜𝑖𝑙 =31.6°, and 𝜃𝑤𝑎𝑡𝑒𝑟 =26.1°. The measured triple line 

equilibrium heights on the right side are: 𝐿𝐸,𝑠𝑖𝑙𝑖𝑐𝑜𝑛𝑒 𝑜𝑖𝑙 =1.37mm and 𝐿𝐸,𝑤𝑎𝑡𝑒𝑟 =2.80mm. 

Therefore, the characteristic time can be calculated from Eq. (3.6) as 𝑡 𝑠𝑖𝑙𝑖𝑐𝑜𝑛𝑒 𝑜𝑖𝑙 =0.2112 

s for silicone oil and 𝑡 𝑤𝑎𝑡𝑒𝑟 =8.2562 s for water. 

The triple line location divided by the final triple line location height can normalize the 

triple line location height, with time divided by  𝑡𝑖 in Eq. 3.6 to the scaled time 𝑡/𝑡𝑖, a 

new log-log scale can also be plotted in Fig. 3.23. 
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Fig. 3.23 Silicone oil and water scaled time kinetics 

It should be noted that the kinetics experiment measurement of triple line location and the 

equilibrium triple line location are slightly different, see Fig. 3.22, because for water 

system, the kinetics measurement ends at 1 second for water, and 2 seconds for silicone 

oil. However, after 1 second for water and 2 seconds for silicone oil, the triple line 

location still increases slightly in the next a few hundreds of seconds. The equilibrium 

triple line location height is assumed to be reached earlier than after 5 minutes (when the 

equilibrium height is considered to be reached). The terminal period of growth of the 

triple line location, it is assumed, doesn’t impact the triple line spreading kinetics since 

the last stage has passed the capillary-viscous-asymptotic stage (Liu et al., 2011).  
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Fig. 3.24 Linear scale of silicone oil and water kinetics with triple line location and 

dynamic contact angle 

In Fig. 3.24, the linear scale of triple line kinetics and dynamic contact angle for both 

water and silicone oil in the non-reactive systems is plotted. It can be seen that the water 

system has shorter and faster spreading kinetics, and the triple line location height is 

higher for water with lower dynamic contact angles. Due to higher viscosity, the kinetics 

process time is longer for silicone oil.  

The model for kinetics of liquid spreading on a solid surface was previously presented by 

Washburn (1921) as follows, 

l2 = (
γLV

μ

cos θ

2
) rt                                                 (3.8) 
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Where l is triple line growth distance, 𝜃 is the static contact angle, 𝛾𝐿𝑉  is the surface 

tension between liquid and vapor, 𝜇 is the liquid viscosity and r is radius of capillary tube.  

It can be noticed that the triple line location is a function of square root of time as: 

l2 = (
γLV

μ

cos θ

2
) At                                                (3.9) 

Where A is a constant related to geometric shape of the configuration.  

If A is taken as 1m, we have  

l2 = (
γLV

μ

cos θ

2
) t                                               (3.10) 

 

(a) 



78 
 

 

(b) 

Fig. 3.25 (a) Silicone oil triple line location dynamics experimental data and Washburn 

theoretical prediction and (b) water triple line location dynamics experimental data and 

Washburn theoretical prediction 

For both water and silicone oil systems, the constant A is calculated to be 1 m. It can be 

seen from Fig. 3.25 (a) and (b) that Eq. 3.10 has good agreement in both water and 

silicone oil systems in the first capillary-viscous stage before the deviation after 500 ms 

for silicone oil and 40 ms for water. The first stage can be considered as the capillary-

viscous stage (Wen et al., 2011) dominated by the balance between surface tension and 

viscosity, and it covers majority of the spreading on the vertical slide. The square root of 

time relationship in Eq. 3.10 is obeyed in this stage for both water and silicone oil cases. 

However, the subsequent stage, known as capillary-viscous-asymptotic stage apparently 

shows a different power law relationship, see Fig. 3.26(a) and (b). This stage features the 

𝑥~𝑡1/𝑛 relation with n~5. In this stage, the surface tension and viscosity impact on the 
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spreading of the liquid becomes less dominating and eventually is taken over by other 

factors that are beyond the scope of this study. 

 

(a) 
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(b) 

Fig. 3.26 Triple line location kinetics for silicone oil (a) and water (b) in log-log scales 

In Fig.3.26, the experiment data are plotted and it can be noticed that the 5th power law 

correlation well agrees with the experimental data. The physical explanation of the exact 

separating point from the two different stages is not clear, therefore the current separating 

domain size is based strictly on curve fitting shown in Fig. 3.26. The results show that for 

the silicone oil on glass system, the Washburn type flow spans from the beginning to the 

700 ms, however, in the water on glass system, the Washburn type flow lasts from the 

beginning to 40ms. Both of the systems show that Washburn type flow is the major flow-

mode in the spreading on the glass solid surface. The later capillary-viscous-asymptotic 
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stage has a longer time period, but the triple line location spreading contribution is not 

major compared to previous Washburn type flow.  

 

Fig. 3.27 Silicone oil and water triple line kinetics comparison with error bars in log scale 

A comparison plot between silicone oil and water is shown in Fig.3.27. The capillary-

viscous stage and the later capillary-viscous-asymptotic stage are clearly shown. The 

capillary-viscous stage obeys Washburn’s law of 2nd power law correlation, and the 

process is dominated by surface tension and retarded by viscosity. The latter capillary-

viscous stage obeys the 5th power law correlation, and the process is tending to reach 

equilibrium.  
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3.4 Summary 

In this chapter, the benchmark experiments of non-reactive liquid wetting systems at low 

temperatures are presented in a process of designing the experimental methodology for 

experiments on reactive wetting at elevated temperatures. The benchmark experiment 

results also serve the purpose of a tool to verify the numerical simulation that is funded 

by the same collaborative NSF project with the team at the Washington State University 

(Grant CBET # 1234581 and 1235759).  

Two common non-reactive liquid-substrates are used. The liquids spread over the glass 

wedge-tee configuration to simulate the joint formation configuration to be used for the 

reactive wetting at elevated temperatures.  To establish the reliable database for the non-

reactive wetting kinetics, a wetting experiment is adopted to validate the experiment 

configuration and procedures. In the wetting experiment, the contact angle and the 

equilibrium triple line location relationship was verified and compared with theoretical 

results. The experiment data show good agreement with the theoretical prediction for 

both water and silicone oil systems. The experiment result also shows at a certain given 

range of liquid layer thicknesses, the triple line location equilibrium height is independent 

from the liquid thickness. In the kinetics segment of experiments, silicone oil dynamic 

contact angle and capillary length can agree with the theoretical correlation. The water 

dynamic contact angle and triple line location correlation feature a deviation when 

compared to some existing correlations developed earlier and reported in literature. A 

new modified correlation for water dynamic contact angle and capillary number 

correlation was established for the water on glass system. The liquid systems wetting also 

obey the classic Washburn flow model in the capillary-viscous stage, showing the initial 
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wetting is mainly impacted by surface tension and viscosity. The subsequent capillary-

viscous-asymptotic stage shows that for these two liquid systems, a 5th power law 

correlation can easily be identified. The experiment data error analysis is performed (see 

associated Appendix A) to explore the potential main causes of data dispersion. The 

result shows the vertical plate movement of the Wilhelmy plate configuration is having 

little impact on the triple line kinetics experiment data. The measurement error 

contributes to a smaller degree to the overall error level compared to the experimental 

conditions, namely the glass plate surface condition variations and environmental 

conditions.  
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CHAPTER 4: EXPERIMENTAL EQUIPMENT AND 

PROCEDURES FOR THE HIGH TEMPERATURE CAPILLARY 

FLOW STUDY 

 

4.1 Overview 

Chapter 4 is mainly focused on the experiment preparation, equipment and procedures for 

the reactive wetting at elevated temperatures.  As mentioned in Chapter 2, sessile drop 

experiment method is a major method to investigate the liquid spreading and wetting 

phenomena due to its simplicity and yet thoroughly coverage of both contact angle and 

triple line location behavior. The experiment preparation and procedures introduced in 

this chapter offer general guidelines of the preparation method and procedures for 

experiments presented in later chapters. Various experiments will involve different 

sample designs, preparations and procedures, but the overall intention of all the 

experiments is to generate data for a study of the molten metal spreading at high 

temperatures with the same experiment equipment and its accessories.  

The Optical Contact Angle Analyzer (OCA) is the main piece of equipment used in the 

molten metal spreading research. It is assembled in the Brazing, soldering and heat 

exchangers research laboratory at the Institute of Sustainable Manufacturing at 

University of Kentucky. Other experiment facilities include scanning electron microscope 

(SEM), optical surface profiler, and differential scanning calorimeter (DSC) at University 

of Kentucky.  

Typical sample design and preparation examples will be illustrated in this chapter along 

with the corresponding general experiment procedures. Post-experiment samples 
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handling following the solidification of the molten metal and analysis will also be 

included along with brief SEM result.  

4.2 Experiment Configuration 

Most of the experimental data obtained in this segment of the research plan are from the 

customized Optical Contact Angle Analyzer. The high temperature contact angle 

measurement facility is a unique system, manufactured by DATA PHYSICS, a 

combination of OCA-15 LHT and HTFC 1200 and subsequently customized in-house for 

being able to be supplied by the background controlled atmosphere (in this case, ultra-

high purity Nitrogen, 99.999) and equipped with an enhanced temperature measurements 

capability, see Figs. 4.1 and 4.2. The hot zone system is positioned on an optical table 

and it is fully controlled by a dedicated computer system, including the hot zone/sample 

temperature measurements, the heating rate and the peak temperature control, followed 

by the image processing.  The hot zone in the Joule-heating driven cylindrical furnace 

can be rotated around the vertical axis for up to 90 degrees via the dedicated clamp at the 

base for a secure loading of the samples. A Dee-Tubing 96% purity alumina purchased 

from Coorstek was placed in the furnace chamber for the purpose of stabilizing the 

sample platform. The furnace is positioned so that the camera, hot zone axis and light 

source are all in a perfect horizontal alignment. Two hot zone end ports are sealed with 

specially designed water cooled flanges, hence sealing the ceramic tube in the heating 

zone while at the same time being cooled through jacketed heat exchange flange 

chambers. Thus, the water cooling system provides the specified temperature levels of the 

quartz glass windows, imbedded into the end port flanges. The additional cooling system, 

external to the hot zone interior, prevents the exterior of the furnace from heating up 
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extensively. The hot zone atmosphere is strictly controlled in the process to eliminate 

oxidation, an issue causing wetting restrictions (Eustathopoulos et al., 2005). Ultra-high 

purity nitrogen (99.999% N2) is connected through the flange’s gas inlet ports with the 

hot zone chamber space. The outlet of the Nitrogen with any eventual effluents’ stream is 

connected to a trace oxygen analyzer made by Teledyne Analytical Instruments. The K-

type thermocouple is extended through a flange to the data acquisition system including 

National Instruments DAQ-9172 module connected to the LabView data acquisition 

software support installed on the control functions dedicated computer. The hot zone and 

the CCD camera are controlled by SCA20 software from FDS Corp, see Fig. 4.3. Images 

and videos are handled by SCA20 as well as VirtualDub. 

 

Fig. 4.1 High temperature contact angle measurement system’s schematic diagram 
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Fig. 4.2 OCA system facility 

1-CCD camera 2-Bubble level 3-Frame 4-Quartz glass window (Left)  5-Purging gas 

inlet valve  6-External thermocouple 7 -Flange water cooling inlet (Left)  8-Flange water 

cooling outlet (Left) 9-Thermally conductive ceramics tube 10-Furnace top cover water 

cooling outlet 11-Furnace 12-Hot zone/Sample location (Inside) 13-Furnace rotation 

knob 14-Furnace top cover water cooling inlet 15-Flange water cooling outlet (Right) 16 

-Flange water cooling inlet (Right) 17-Exhaust gas outlet pipe 18-Quartz glass window 

(Right) 19-Halogen light 20-External USB ports 21-Built-in thermocouple 

As shown in Fig. 4.2, the high temperature furnace (designation 11, operational up to 

1700 K) has the inner diameter of 35 mm and length of 300 mm so that it can easily 

accommodate a single test sample at a time. The hot zone (12) is visually unobstructed in 

the axial direction (4-18) except for the presence of the test specimen and its supporting 

structure. A halogen light source (19) delivers a homogeneous visible light flux and is 

located on one side (a far-end) of the hot zone to illuminate the ceramic inner tube space, 

obstructed from the field of vision of the front camera only by a test sample contour. So, 
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the sample’s side shade view is visible from the opposite side of the hot zone as a black 

contour image on a white background. Additional ports for the background atmosphere 

gas supply and exhaust exits are included (5 and 17). Transparent side windows allow on 

one side an access to the light source illuminating the hot zone, and on the other side to a 

telescope (1) for digital camera recording of the shadow image. The two flanges are 

sealing the ceramic tube of the heating zone and are also cooled by the water cooling 

system (7.8 and 15, 16).  This cooling system prevents the exterior of the oven, as well as 

the lateral windows ports, from an excessive heating. The temperature ramping speed can 

be controlled by SCA20 by setting different temperature ramps, see Fig. 4.4. The 

maximum temperature ramp can be reached by the hot zone is 40°C/min. It should be 

noted that SCA20 doesn’t have the limit of temperature information. Thus by setting the 

temperature heating rate higher than 40°C/min could only result in 40°C/min of heating 

rate in the physical heat zone by the heaters. The default heating rate by the system is also 

40°C/min as tested by various experiments.  



89 
 

 

Fig. 4.3 Operation screenshot of SCA20 software 

 

Fig. 4.4 Temperature settings screenshot of SCA20 software 
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4.3 Sample preparation 

As mentioned in Chapter 2, the “fluxless” material (i.e., the material that has the flux 

imbedded, not added over the surface) has many advantages over the traditional brazing 

fillers. Thus the self-fluxing material developed by Sapa Group (Ogilvy et al., 2014) and 

registered as TrilliumTM is used in this research. Trillium is a patented (proprietary) Al-Si 

alloy (AA4045) with 9 to 11 wt% Si mixed with approximately 2 to 3 wt % potassium-

fluoro-aluminate as inorganic salt (Ogilvy et al., 2014; Hawksworth et al., 2015). The 

substrate and the vertical plate are both made of AA3003, including 1wt%-1.5 wt% Mn. 

Based on the TrilliumTM material, various samples are designed and prepared for the 

reactive wetting at elevated temperatures. Generally, for the kinetics study of the reactive 

wetting process, the wedge-tee type of sample configuration is adopted with different 

material configurations with various thicknesses, so that the joint formation kinetics can 

be both visually and analytically studied with the aid of the SCA20 software. For the 

surface tension and contact angle study, the classic sessile drop configuration is used in 

the experiment for both wetting and non-wetting cases. All raw materials, i.e., clad 

brazing sheet, AA3003 sheet, and pure aluminum wires or stainless steel wires, were first 

manually cleaned with soap water ultrasonically for ~ 2 minutes, then with water 

ultrasonically for ~ 2 minutes and with 95% ethanol ultrasonically for ~ 2 minutes in 

order to eliminate oil and/or chemical residues. The materials were dried in air for 

subsequent use. The K-type thermocouple is normally placed close to the point of interest 

within 15 mm radius, but not affected by the liquid flow during the experiment, see Fig. 

4.6 
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4.3.1 Wedge-tee type of sample preparation 

The wedge-tee type of sample design is made in order to simulate the real heat exchanger 

configuration of two pieces of aluminum perpendicular to each other. The test sample 

consists of two mating surfaces: (1) an Al alloy vertical surface (a AA3003 sheet), and (2) 

an TrilliumTM clad over an AA3003 core surface (a brazing sheet), see Fig. 4.5 and Fig. 

4.6 for the sample assembly configuration.  

 

Fig. 4.5 Wedge-tee sample 3-D configuration of 0.03 thickness TrilliumTM clad metal 
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Fig. 4.6 XY plane view of wedge-tee sample configuration of 0.03 thickness TrilliumTM 

clad metal 

The typical wedge-tee configuration samples in this research as shown in above figures 

have the base stainless sheet of  40 × 76 × 1.1 𝑚𝑚, which is used to fix the location in 

the furnace for the clad substrate with dimensions of 37 × 20 × 0.31 𝑚𝑚. The vertical 

piece is AA3003 sheet with dimensions of 15 × 15 × 0.4 𝑚𝑚. The vertical piece is fixed 

on the substrate by using two stainless steel wires of a diameter of 0.3mm. As mentioned 

earlier, all these materials are pre-cleaned before assembled into the wedge-tee 

configuration. The sample is positioned in the furnace chamber in such a way that the 

clad brazing sheet is horizontal with a deviation of up to 1.5°. The angle (Fig. 4.7) 

between vertical AA3003 piece and the horizontal clad brazing sheet is controlled to be 

90° ± 1.5°.  Each sample was positioned in the furnace chamber so that the brazing sheet 

level deviates by up to maximum 1.5° from the horizontal. Consequently, it is assumed 
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that a small geometrical deviation of the verticality has a minimal impact on the kinetics 

of the triple line movement, as well as on the overall evolution of the molten metal joint 

fillet formation.  

 

Fig. 4.7 Configuration of the vertical piece and clad substrate 

An SEM image of the AA3003 vertical sheet surface is shown in Fig. 4.8 (a). A cross-

section through the horizontal brazing sheet is given in Fig. 4.8(b). The roughness of the 

AA3003 sheet is 0.43 ± 0.08µm, measured by Zygo New View TM 7300 3D Optical 

Surface Profiler, see Table 4.1. Measurements are performed at 20 different locations on 

the sheet. It can be observed that the AA3003 surface of the vertical sheet features a 

pattern of multiple microgrooves formed during the sheet manufacturing (the hot rolling 

traces). These microgrooves do not feature a high ridges and deep valleys topography to 

be able to impact the spreading. Moreover, the surface features have a uniform, 

directional distribution and in this case would not act as capillary channels (as verified by 

the performed tests). Placing an AA3003 mating surface with more pronounced 

microgrooves perpendicular to the horizontal substrate may, in principle, significantly 

enhance the spreading (as opposed to the case with micro grooves parallel to the 
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substrate). The related research (Liu et al., 2012) implies no groove impact in the present 

case. Still, the microgrooves pattern of the AA3003 sheet was adjusted so that the 

directional topographical features are oriented perpendicularly to the horizontal substrate.   

 

(a)                                                                (b) 

 

(c) 
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Fig. 4.8 (a) The surface topography of the AA3003 substrate measured by Hitachi S-

3200-N Scanning Electron Microscope; (b) 3D scanning image of topography of AA3003 

substrate measured by Zygo New View TM 7300 3D Optical Surface Profiler;  (c) 

Brazing sheet cross section structure (horizontal mating surface, Fig. 4.5) 

Table 4.1 Surface roughness of AA3003 

Measurement 

Surface Area 

(mm2) 

Surface Roughness 

Ra (µm) 

Average Surface 

Roughness 

Ra (µm) 

1 0.1936 0.41  

2 0.1936 0.293  

3 0.1936 0.292  

4 0.1936 0.317  

5 0.1936 0.449  

6 0.1936 0.449  

7 0.1936 0.358  

8 0.1936 0.395  

9 0.1936 0.392  

10 0.1936 0.369 0.43 ± 0.08 

11 0.1936 0.508  

12 0.1936 0.538  

13 0.1936 0.515  

14 0.1936 0.557  

15 0.1936 0.481  

16 0.1936 0.456  

17 0.1936 0.571  

18 0.1936 0.448  

19 0.1936 0.46  

20 0.1936 0.425  

 

Compared to the 0.03 thickness TrilliumTM clad metal wedge-tee configuration, a similar 

wedge-tee configuration is also used for the kinetics of molten metal spreading study, see 

the comparison in Fig. 4.9.  
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(a)                                                                    (b) 

Fig. 4.9 Aluminum alloy spreading test samples. (a) 0.03 mm thickness TrilliumTM clad 

configuration, (b) 0.4 mm thickness Trillium configuration 

As shown in Fig. 4.9, the other wedge-tee configuration design is intended for the thicker 

TrilliumTM clad metal.  

4.3.2 Sessile drop sample preparation (non-wetting case) 

In order to study physical properties of the TrilliumTM clad metal, the sessile drop 

experiment is designed. Different from previous AA3003 substrate, a non-wetting 

substrate of alumina is used in the sessile drop experiment. The alumina substrates are of 

a 96% purity and they are of an excellent planarity quality (with artifact scratches less 

than 0.0005cm depth) and a superior surface finish (camber<0.003mm/mm). The alumina 

substrate samples were acquired from Coorstek in size of 114mm×114mm× 1.1mm. 

The ceramic sheet was cut by a laser cutter from the Workshop and Digital Fabrication 

Lab in College of Design of University of Kentucky into 38mm×114mm×1.1mm 

substrate in order to fit into the furnace. TrilliumTM clad metal in this type of experiment 

is cut into cubes so that it can be positioned on the alumina substrate for melting purpose. 

The materials are soaked into soap water, washed with water and 95% ethanol in 

ultrasonic pool for 2 minutes respectively. 
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Fig. 4.10 The surface topography of the alumina substrate scanned by Hitachi S-3200-N 

Scanning Electron Microscope 

An SEM image of the alumina substrate surface (Fig. 4.10) is obtained by the Hitachi S-

3200-N Scanning Electron Microscope from The Electron Microscopy Center of the 

University of Kentucky. The surface composition was also analyzed by EDS (Energy 

Dispersive Spectrometer), see Fig. 4.11 and Fig. 4.12. 
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Fig. 4.11 The surface topography of the alumina substrate measured by Hitachi S-3200-N 

Scanning Electron Microscope for EDS analysis area 

 

Fig. 4.12 Alumina substrate area spectra from Fig. 4.11 
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As shown in Fig. 4.12, the alumina surface represents a composition of AlO2 as specified.  

The roughness of the alumina surface is measured by Zygo New View TM 7300 3D 

Optical Surface Profiler, see Table 4.2. The average surface roughness (Ra) of the 

alumina is 5.679 µm ±0.736 µm. 20 measurements are taken at different random 

locations of the alumina plate surface. The 3D scanning image of topography of alumina 

substrate measured by Zygo New View TM 7300 3D Optical Surface Profiler is shown 

Fig. 4.13 (a). The scanning intensity map of the topography of alumina surface is shown 

in Fig. 4.13 (b).  

  

(a)                                                                   (b) 

Fig. 4.13 3D scanning image of topography of alumina substrate measured by Zygo New 

View TM 7300 3D Optical Surface Profiler; (b) 3D scanning intensity map of topography 

of alumina substrate measured by Zygo New View TM 7300 3D Optical Surface Profiler 
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Table 4.2 Surface roughness of alumina 

Measurement 

 

Surface Area 

(mm2) 

Surface Roughness 

Ra (µm) 

Average Surface Roughness 

Ra (µm) 

1 0.0484 4.816  

2 0.0484 4.95  

3 0.0484 5.671  

4 0.0484 6.657  

5 0.0484 6.6  

6 0.0484 6.61  

7 0.0484 7.199  

8 0.0484 6.071  

9 0.0484 5.006  

10 0.0484 5.205 5.679±0.736 

11 0.0484 5.175  

12 0.0484 6.02  

13 0.0484 6.042  

14 0.0484 6.215  

15 0.0484 5.003  

16 0.0484 6.014  

17 0.0484 5.21  

18 0.0484 4.802  

19 0.0484 4.766  

20 0.0484 5.548  

 

4.4 Experiment procedures 

4.4.1 Wedge-tee configuration and sessile drop experiment  

In the wedge-tee configuration of kinetics experiments, as shown in Fig. 4.1 and Fig. 4.2, 

a sample assembly is placed in the center of the ceramic tube on the Dee shape tube 

platform within the hot zone after the sample is cleaned and assembled. Before the start 

of an experiment as well as during and after   heating, the hot zone is purged with ultra-

high purity nitrogen (99.999% N2). The furnace chamber was purged with ultra-high 

purity nitrogen for no less than 2 hours with a flow rate of 1.3810-5  0.0610-5 kg/s. 

Thus, with the constant flow rate, in 2-hour time frame, the volume of the hot zone in the 
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ceramic tube can be replaced for up to ~30 times. Tests were not triggered until the 

oxygen level in the furnace chamber has reached below 80 ppm. During the entire 

process of the joint formation, the oxygen level is below 80 ppm and continuously 

recorded by the oxygen sensor. The data collection of the temperature vs. time starts from 

the onset of the heating process. The CCD camera starts to record the joint formation at 

the temperature of 570℃ and ends at the temperature of 590℃. During the test time 

period, the wedge-tee joint will start to form primarily within the 120 seconds of the 

video recording. The controlled temperature does not have an appreciable effect on the 

kinetics of the joint formation. The CCD camera records the joint formation process with 

a frame rate of 5 f/s before the measured sample temperature reaches the melting point of 

the clad. Hence, the whole period of the kinetics of the T-Joint formation process is 

recorded. After the heating time is completed, the hot zone cools down by natural 

convection.  

Similar to non-reactive spreading kinetics process method, the recorded video is extracted 

to different frames of process before being imported to Image-Pro© for measurement. 

 

(a)                                                                     (b) 

Fig. 4.14 (a) Joint domain configuration and (b) vertical/horizontal length of the joint 

Steel 

wire 
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As shown in Fig. 4.14 (a) and (b), the vertical direction of both left and right (Yl and Yr) 

as well as the horizontal direction of both left and right (Xl and Xr) are all measured in 

the frames for triple line location and dynamic contact angles.  

 

Fig. 4.15 A selection of image sequences decomposed from a recorded movie indicating 

the evolution of joint formation with time (0.03mm thickness TrilliumTM of experiment 

091212) 

Image-Pro© provides the Tracking Objects function for tracking the distance of the 

targeted object in a given time. Once the starting point is chosen, the tracking point could 

travel with the growth of T-Joint formation manually, and the accumulated distances can 

be recorded accordingly. The data can be exported to the spreadsheet for analysis. This 

method is efficient for a large quantity of images, easily increasing the sample data 

population. The starting point location would not change once it’s chosen, thus reducing 

the measurement errors. An example of the Image-Pro© screenshot is shown in Fig. 4.16.  
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Fig. 4.16 Tracking objects method (experiment 091212) 

In the sessile drop experiment, the similar procedure is conducted. In order to keep the 

TrilliumTM at the molten state, the temperature is gradually increased to 620°C. The cube 

metal melted at 600°C to form the spherical shape. The oxygen level is kept below 70 

ppm. The temperature span during the measurement was from 603.8°C to 606.6°C, with a 

temperature ramp rate of 0.028°C/s. After the image frames are exported from the video, 

ImageJ is used to calculate the sessile drop contact angle and the capillary constant c (𝑐 =

∆𝜌 ∙ 𝑔/𝛾 , m-2), which was implemented as a Java plug-in for the ImageJ software, see 

Fig. 4.17. 

The calculation of the surface tension was based on Dorsey method (Dorsey, 1928; 

Anson, 1999).  
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Fig. 4.17 ImageJ low-bond axisymmetric drop shape analysis sample 

4.4.2 OCA furnace FLIR infrared camera temperature phenomenology  

In order to verify the temperature distribution uniformity for the wedge-tee configuration 

samples in a qualitative manner, a dummy sample is made (Fig. 4.18) so that the infrared 

camera can be used to visualize the temperature distribution within the interested area. 

Aluminum 1100 rod with diameter of 3.15 mm and length of 10 mm was prepared in the 

configuration shown in Fig. 4.18. The aluminum 1100 rod and the clad substrate were 

first manually cleaned with 95% ethanol and then ultrasonically cleaned with 95% 

ethanol for ~ 2 minutes in order to eliminate oil or chemical residues prior to the 

experiment. 
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Fig. 4.18 Dummy sample configuration 

AFLIR SC640 infrared camera was fixed at the z-axis 0.5 m away from the furnace 

entrance so that the infrared images of the wedge-tee joint location can be taken, see Fig. 

4.19. Due to the presence of the reflection impacting the IR imaging from the terminal 

glass window at the front entrance of the furnace, the experiment was run under 

atmosphere conditions without glass blocking the front view. The target temperature was 

set to 595℃. The images were taken at time intervals of 20 seconds. The IR images were 

calibrated based on the measured thermocouple temperature with the associated FLIR 

software. 5 images selected at temperatures of 577℃ , 580℃ , 585℃  and 590℃ 

(measured by the thermocouple) were analyzed by the IR camera. The infrared images 

are shown in Fig. 4.20.  
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Fig. 4.19 Infrared camera setup in the OCA system 

 

Fig. 4.20 IR Image of the temperature distribution of the wedge-tee joint formation 
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Fig. 4.21 Symmetric temperature distribution of the wedge-tee joint region 

The temperature distributions of the wedge-tee configuration at/above clad metal melting 

point are mostly symmetric except for the thermocouple location where the temperature 

is higher due to more heat conducted from thermocouple to the thermocouple location. 

However the distance between the thermocouple and the joint formation interested region 

justifies the fact that the slight temperature difference caused by the thermocouple does 

not affect the temperature distribution of the interested area (see Fig. 4.21). The interested 

region of the wedge-tee joint location has a symmetric temperature distribution as shown 

in Fig. 4.21. 

4.5 Summary 

In this chapter, the main OCA equipment is presented along typical sample preparation 

and experiment procedures. For different experiment purposes, different experiments 

needed to be designed and conducted. The general procedure introduced in this chapter is 

established and was available for studies presented in the following chapters.  

Two major experiment studies for reactive wetting at elevated temperatures are 

introduced: the uniquely designed wedge-tee configuration and the classic sessile drop 
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experiment. The description of the first type of the experiment includes the general 

configuration of the wedge-tee shape for all the studies in the later chapter. The latter 

(non-wetting over Alumina surface) experiment is design to study the physical properties 

of the interested patented material, namely the surface tension and contact angle of 

TrilliumTM. Similarities and differences are introduced between these two experiment 

setups and procedures. The data analysis processing are explained in the last section of 

this chapter. The validation of the uniform temperature distribution of the wedge-tee 

sample configuration is illustrated in the last section, showing the OCA furnace capable 

of providing the environment for the wetting study at elevated temperatures.  

Chapter 5 will focus on the wetting process based on sessile drop experiment, and 

Chapter 6 will discuss the wedge-tee sample configuration of wetting kinetics study at 

elevated temperatures.  
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CHAPTER 5: WETTING OF MOLTEN CLAD METAL ON 

WETTED AND NON-WETTED SURFACES 

 

5.1 Overview 

This chapter mainly focuses on the experimental study of the molten clad metal, namely 

TrilliumTM wetting on either wetting surface or the non-wetting surface. 

Phenomenological observation, data analysis and the reviewed literature validation will 

be discussed here. As the general experiment facility, preparation and procedures have 

been introduced in the previous chapter, only specific difference of the experiment 

preparation and procedure will be commented on in this chapter. 

The wetting of molten TrilliumTM on wetting surface and non-wetting surface was studied 

with the Optical Contact Angle Analyzer (OCA), see Chapter 4 for details. The sessile 

drop experiment configuration was adopted to study the physical properties of the molten 

clad metal at elevated temperatures needed for modeling in latter stages of this project 

work (see Appendix E). In the wetting surface case, the substrate used is the same 

material (AA3003) that will be used in studies in the following chapter. Thus studying 

the simple sessile drop spreading on the wetting surface gives the preliminary insight into 

the physical characteristics of the molten clad metal at elevated temperatures.  In the non-

wetting surface case, alumina substrate was used in the sessile drop experiment 

configuration for the molten clad metal to form the spherical liquid metal shape to 

facilitate measuring the unknown surface tension as well as its contact angle based on the 

low-bond axisymmetric drop shape analysis (LBADSA) (Stalder et al., 2010). Note that 

the molten metal considered represents a novel alloy (composite) and literature data for 

surface tension were considered a priori non reliable for this case. The molten sample 
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cross section images were analyzed by SEM and EDS to confirm the eventual liquid 

penetration and dissolution of the substrate (existing in the wetting case), and more 

complicated de-oxidation, chemical reaction and inter-diffusion phenomena shown in the 

non-wetting case. The measured value of surface tension for the new material (namely 

TrilliumTM) was validated by comparing evaluated surface tension data to the known 

experiment values from multiple different literature sources of similar metal alloy 

systems. 

5.2 Experimental study of the molten clad metal at elevated 

temperatures 

As mentioned earlier, the sessile drop configuration was adopted to study the 

phenomenological analysis of the molten clad metal wetting process. The prepared 

samples were placed on the Dee shape tubing, so that the heating chamber can be purged 

with ultra-high purity nitrogen (99.999% N2) for more than 2 hours with a flow rate of 

1.3810-5  0.0610-5 kg/s. Tests were not triggered until the oxygen level in the 

furnace chamber has reached below 60 – 80 ppm. The CCD camera starts to record when 

the clad metal TrilliumTM is melting at its melting temperature of  580 ± 5℃. The frame 

rate of the recoding CCD camera was 25 frames/s. The recorded video was extracted into 

Image-Pro© as well as ImageJ for measurement of surface tension and contact angle.  

5.2.1 Molten clad metal wetting on the wetting surface – preliminary tests 

To ensure the equilibrium state of the liquid clad metal under nearly isothermal state at 

the peak temperature, the molten metal, formed from a solid alloy sample, initially cut 

into a 0.1979 g cube, was positioned on the AA3003 substrate. The run lasted 
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approximately 45 minutes before the video ended recording. The gas condition was kept 

within 100 ppm during the whole process. During the recording time, the temperature 

profile of the molten clad metal is shown in Fig. 5.1. 

 

Fig. 5.1 Temperature profile of the sessile drop in the experiment of the wetting surface 

As seen in Fig. 5.1, after the clad metal has melted, to avoid potential solid clad metal 

existing in the sample, the temperature continues to rise to over 605 °C while the sample 

is maintained in the near isothermal state. Images were taken at the so established 

isothermal state for data analysis.  
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Fig. 5.2 A snake-based approach to the measurement of the contact angle 

The snake-based approach was used in the ImageJ to measure the contact angle of the 

molten TrilliumTM on the wetting substrate of AA3003. Both left and right sides were 

measured from 604℃ to 607.9℃ when the molten liquid has virtually reached its stable 

(equilibrium) state. The average measured contact angle is 6.9°±2.7°, see Table 5.1. The 

measured experimental contact angles will be used for theoretical analysis discussed in 

the Appendix B and C.  
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Table 5.1 Contact angle measurement results of wetting surface 

T(°C) time (s) 

Contact 

Angle left 

(°) 

Contact 

Angle right 

(°) 

Measured 

times 

607.9 2615 6.1 4.8 1 

    9.3 4.4 2 

    2.8 2.4 3 

606 1351 8.2 4.8 1 

    10.0 4.8 2 

    6.1 9.1 3 

605 1186 9.0 14.0 1 

    8.4 10.0 2 

    4.4 9.0 3 

604 1056 6.1 6.0 1 

    7.7 7.6 2 

    4.3 6.4 3 

Total 

Average   6.9 6.9   

Standard 

Deviation   2.26 3.15   

 

5.2.2 Molten clad metal surface tension review 

Multiple literature sources involving surface tension of aluminum and aluminum alloys 

data were reviewed and summarized in this section to compare with the measured surface 

tension value of the molten clad metal. 

Experimental data for the aluminum alloys’ and pure aluminum’s surface tensions were 

identified in a number of literature sources, but the surface energy γsvand the crystal-melt 

interfacial energy γsl were only available (to the best knowledge of the authors at the 

present time) from the stimulation models (Aqra et al., 2012), see Appendix C. The most 

referred to and the most frequently used aluminum surface tension data was from Keene 

(1993). The data summarized by Keene (1993) were considered to be a set of the 

recommended aluminum surface tension values. The mean surface tension of pure 
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aluminum at the melting point of 660°C is 871 mNm-1(Keene,1993). Without the 

presence of oxygen, the value tends to be a bit higher of the order of magnitude of 1050-

1100 mNm-1(Sarou-Kanian et al., 2003) (oxygen would decrease the magnitude of the 

surface tension). From the existing experimental data, the surface tension may be 

considered as having a linear relationship with temperature.  

The experimental surface tension measurement result has been compared to the literature 

data, as shown in Fig. 5.3. Multiple measurements were taken in two independent tests in 

current experiments. As shown in Fig. 5.3, both theoretical values are drawn as two 

straight lines from Keene (1993) and Egry et al. (2001). Keene (1993) used curve fitting 

from previous experiments to get the empirical equation for the surface tension of 

aluminum prediction. The solid line in Keene (1993) is predicting the value from 660 °C 

to 710 °C with his experimental values. The dashed line of Keene (1993) is below 660 °C 

with the assumption that the surface tension obeys the linear trajectory below 660 °C. The 

linearity assumption is further verified by Egry’s (2003) theoretical dotted line with his 

temperature range from 620 °C -1150 °C. Other literature references of the aluminum and 

its alloys surface tensions at 660 °C and 700 °C are plotted in the figure. The surface 

tension ranges from 0.7 N/m to 1 N/m. 
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Fig. 5.3 TrilliumTM surface tension experimental result comparison 

Within the predicted linear range, our experimental results from both tests show the 

surface tensions in the acceptable range vs. the previous literature values.  

5.3 Analysis of the sessile drop triple line region 

The sessile drops on the non-wetting surface (aluminum on alumina), and the case of the 

wetting surface (aluminum on aluminum) were both tested and the cross sections of both 

drops were prepared for the optical imaging as well as SEM analysis. Eustathopoulos et 

al. (1974) stated that for the reactive wetting, continuous layers of a new compound can 

be formed leading to better wettability by the liquid metal than is the initial substrate. In 

the non-wetting case, the liquid aluminum alloy (TrilliumTM) over alumina substrate (Fig. 
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5.4 and a zoomed in Fig. 5.5) show that at the triple line location, a dark colored 

formation was present as a separate region.  

 

Fig. 5.4 Non-wetting sessile drop triple line region on alumina 

 

Fig. 5.5 Non-wetting sessile drop triple line region on alumina 

SEM Image 

Location 
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Three major element compositions can be seen in the optical images: the brighter 

aluminum silicone alloy (clad metal), the darker potassium-fluoro-aluminate (flux) at the 

triple line region, and the dark gray alumina. It is assumed that the molten clad/flux salt 

was accumulated at that location during the spreading of the molten clad metal drop since 

this aluminum alloy is doped with potassium-fluoro-aluminate flux that melts before the 

Al-Si only alloy. To clarify that assumption, an SEM image was taken by SEM 3200 at 

the triple line area of the non-wetting sessile drop. The SEM image was taken at the 

region where three major compositions exist, see Fig. 5.6. 5 spots in the SEM image were 

taken for EDS analysis for the chemical analysis to represent the present elements. The 

result is shown in Table 5.2 and Fig. 5.7. 

 

Fig. 5.6 SEM image of non-wetting sessile drop triple line region 

 

 

 50 µm 

A 

B 

C 
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Table 5.2 Chemical composition for different points in the triple line (refer to Fig. 5.6) 

 

Al (wt%) Si (wt%) K (wt%) F (wt%) O (wt%) 

A 97 1 2 

  
B 72 25 2 

  
C 13 31 50 5 

 
D 30 2 59 9 

 
E 90 

   

10 

 

 

Fig. 5.7  Chemical composition at different locations in the triple line region 

Point A represents the domain of an alpha phase of the re-solidified aluminum alloy 

featuring 97% Aluminum. This is fully in agreement with the re-solidified microstructure 

formation that corresponds to the alpha phase. However, multiple lighter stripes are 

noticed in the clad metal area and the point B shows that there is up to 25 wt% Si in the 

area. These domains represent the re-solidified needle-like phase domain close to the 
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eutectic or, more precisely above the eutectic composition. The white phase area, C, 

features a rich potassium domain of 51% of K, with the lowest Al content (13%) and the 

highest Si content (31%). Yet another domain, point D features the highest potassium 

level of 59 wt%. The surface of alumina as represented by point E shows that the 

composition for the alumina surface didn't change during the spreading or the re-

solidification process of the molten clad metal drop. The porous configuration of the 

alumina surface shown in Fig. 5.6 has verified the roughness of the surface configuration. 

As assumed, the result verifies that the first dark region is composed of aluminum-

silicone alloy with minor potassium. The middle region where the triple line region is 

positioned (both C and D) features a large amount of potassium which corresponds to the 

potassium-fluoro-aluminate flux. The bottom region is proven to be alumina shown as E 

in the table, see Fig. 5.6.  

Based on the EDS result, it can be stated that during the spreading of the sessile drop (due 

to the lower melting point of the brazing flux of potassium fluoride, as well as silicon 

contained in the clad metal), a layer of liquid flux is formed on the surface of the liquid 

molten clad metal preventing oxidation. A large amount of the flux accumulates at the 

triple line region. It is speculated that the molten clad metal spreads primarily across the 

exposed alumina surface, and in the process squeezes the liquid accumulation of the flux 

in the triple line area, forming complex multilayered phases observed in Fig. 5.6. 

In the wetting case, the triple line region is relatively simple (based on the images taken 

by the optical camera, see Fig. 5.8 and Fig. 5.9). The clear alpha phase aluminum and 

eutectic phase can be observed at the intersection area between the TrilliumTM and the 
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substrate AA3003. A larger amount of silicone contained alloy (re-solidified eutectic Al-

Si) is above/between the alpha phase aluminum. Erosion can also be observed at the 

AA3003 surface. Therefore, the image verifies that in the wetting case of the molten clad 

metal spreading, viscosity and surface tension are not necessarily the only influential 

factors. Other phenomena such as inter-diffusion, dissolution and corrosion should also 

be considered (Fu et al., 2016).  

 

Fig. 5.8 Wetting of the molten clad metal sessile drop triple line on AA3003 
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Fig. 5.9 Zoomed-in image of wetting of the molten clad metal sessile drop triple line on 

AA3003 

5.4 Summary 

Sessile drop experiment method is adopted to investigate the molten metal spreading 

features on both wetting and non-wetting substrates. The result verifies the spreading at 

elevated temperatures for the clad metal TrilliumTM in both wetting and non-wetting 

cases involves more complicated physical phenomena than only viscosity and surface 

tension driven spreading phenomenon.  

The molten clad metal spreadings in both wetting and non-wetting cases are largely 

isothermal. Key physical properties of the surface tension and contact angle of the new 

material TrilliumTM have been measured for further study on the material and details are 

presented in the appendix. The surface tension of the TrilliumTM has been measured and 
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compared to multiple references (see Appendix). Based on the theoretical predictions 

from both Keene (1993) and Egry et al. (2001), the measured surface tension falls in the 

expected range of aluminum alloy surface tension. The measured surface tension of the 

new flux-less aluminum alloy serves a critical role in the study. 

The triple line region of the sessile drop on the non-wetting and wetting substrates are 

further analyzed after its re-solidification. In the non-wetting case, the triple line regime 

presents a more complicated phenomenon. The molten flux, the potassium-fluoro-

aluminate contained in the clad metal forms a layer on top of the molten clad metal 

preventing metal beneath from oxidation. However, flux accumulated at the triple line 

region forms a ridge. Other phenomena, such as inter-diffusion and erosion can also be 

observed in the non-wetting spreading of the clad metal. In the wetting case, based on the 

optical image of the molten metal on AA3003 after re-solidification, the alpha phase 

aluminum can be seen at the intersection between TrilliumTM and AA3003 and the 

silicone rich eutectic phase separates at the top of the drop. During the spreading process, 

surface tension and viscosity are no longer the dominating forces in this region, hence 

more complicated phenomena such as inter-diffusion and erosion and liquid penetration 

can clearly be seen in those images.  

.  
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CHAPTER 6: WEDGE-TEE CONFIGURATION KINETICS OF 

THE CAPILLARY FLOW OF MOLTEN CLAD 

 

6.1 Overview 

This chapter discusses the experimental study of a specific configuration of mating 

surfaces (a wedge-tee). The near reactive wetting kinetics at elevated temperatures is 

considered. The specific configuration is similar to the Wilhelmy plate configuration in 

the non-reactive wetting studies reported above. In the current configuration, both 

vertical and horizontal plates are fixed to each other before brazing without any 

movement. This simulates the joint area formed by the extended surfaces on substrates 

like the fins in heat exchangers. The sample preparation is introduced in Chapter 4. While 

Chapter 3 addresses the similar configuration for a non-reactive spreading, serving as the 

benchmark reference.  

Different clad metal forms were investigated in the wedge-tee configuration by changing 

the clad metal layer thickness. The 2-D configurations of the observed clad metal liquid 

joint zone formation at elevated temperatures during a time evolution of the molten metal 

free surface spreading are captured via the Optical Contact Angle Analyzer (OCA) 

system. It is found that the triple line kinetics features a sequence of multiple spreading 

phases. These phases of the joint formation are identified and the influential parameters 

are assessed (Fu et al., 2013). An empirical power law relationship based on the kinetics 

of the triple line is established for different configurations of the wedge-tee joints.  

Different clad metal layer thickness and the substrate surface wetting properties, lead to 

different equilibrium height of the triple line location. It can be observed, due to a change 
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in the availability of the molten clad metal at the joint location, that liquid rise greatly 

depends on an availability of liquid in the pool if the quantity of liquid becomes smaller 

than some pre-defined quantity related to the total volume of liquid in the joint, formed 

with an unrestricted flow up to the equilibrium location of the triple line.. The final result 

of the wedge-tee joint formation kinetics has been compared to the benchmark tests 

investigated in previous chapters. Numerical analysis also confirms the experimental 

procedures as well as the experimental results. It can be concluded that in the wedge-tee 

configuration spreading at elevated temperatures, surface tension and viscosity are not the 

only controlling factors. Physical phenomena such as inter-diffusion, erosion and liquid 

metal penetration along the grain boundaries are all taking place at the same time during 

the process evolution.  

6.2 Experimental study of the molten clad metal spreading kinetics in a 

wedge-tee configuration at elevated temperatures 

6.2.1 Molten clad metal kinetics study methodology 

The wedge-tee sample preparation and experimental procedure have been introduced in 

Chapter 4. Three clad metal layer thicknesses have been investigated in the wedge-tee 

joint configuration. These include, 0.03mm, 0.4mm and 0.8mm thickness of clad metal 

TrilliumTM, see Fig. 6.1. In these configurations, the vertical plate AA3003 has 

dimensions of 10×10×0.4 mm (in a, b and c configurations), TrilliumTM clad metal sheet 

(horizontal) has dimensions of 10×37×0.32 mm with 0.03 mm thickness TrilliumTM clad 

on the top (configuration a), the AA3003 substrate is 10×37×0.4 mm and the Trillium 
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filler metal has the dimension of 10×10×0.4 mm (configuration b) or 10×10×0.8 mm 

(configuration c). 

 

(a)  

(b)  

(c) 

 

Fig. 6.1 Wedge-tee configuration of TrilliumTM clad metal with various thicknesses on 

wetting substrate of AA3003: (a) 0.03 mm thickness TrilliumTM clad; (b) 0.4 mm 

thickness TrilliumTM foil-formed filler; (c) 0.8 mm thickness TrilliumTM foil-formed filler 
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In each experiment with a different clad layer thickness, the sample was placed in the 

center of the ceramic tube in the heating zone. Before the start of an experiment and after 

it, the heating zone is purged with ultrahigh purity nitrogen gas. The data collection of 

temperature starts to record from the beginning of the heating process and the CCD 

camera starts to record at the temperature of 560℃ and ends at the temperature of 590℃. 

During the overall time sequence, the wedge-tee joint starts to form during up to 120 

seconds included in the video record. The control temperature doesn’t have an 

appreciable effect on the kinetic of the joint formation. The CCD camera records the joint 

formation process with a frame rate of 5 f/s before the measured sample temperature 

reaches the melting point of the clad in order to capture the whole period of the T-Joint 

formation process. After the overall heating time is completed, the heating zone cools 

down by natural convection, under the atmospheric conditions. 

To establish the methodology, the 0.03 mm thickness clad metal configuration has been 

investigated as a benchmark for the following tests. Detailed experimental methodology 

is discussed here for the 0.03 mm thickness clad metal configuration.  

As shown in Fig. 6.2, the temperature profile of the wedge-tee joint formation process 

has a ramp-up, dwell and quench phases. The joint formation process can be considered 

as being executed under the quasi-isothermal state conditions. The relevant temperature 

span during that process is characterized by temperature changes of 0.17 °C/s. The 

formation of the joint finishes within the time domain of 120 seconds.  
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Fig. 6.2 Temperature profiles for joint formation process with recordings of every 10 

seconds (experiment 102612) 

 

Fig. 6.3 Oxygen level in the joint formation process (experiment 102612) 

During the joint formation process, the oxygen level is kept below 100 ppm after more 

than 2 hours purging with a flow rate of 1.3810-5  0.0610-5 kg/s, see Fig. 6.3. Thus the 
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oxygen concentration should play a negligible influence on the molten clad metal 

spreading. As introduced in Chapter 4, both horizontal and vertical directions of the joint 

extend are measured on both left and right sides for the comparison, but rigorously 

speaking only the vertical location can be interpreted as a triple line location..  

 

Fig. 6.4 Schematic diagram of triple line location at wedge-tee joint area with molten clad 

metal 

The symmetric configuration of the wedge-tee joint configuration is shown in Fig. 6.4. 

Both left and right sides in the vertical direction at the top of the meniscus are 

representing the triple line location. Thus either right or left could be selected for the 

triple line location kinetics analysis. The horizontal end location of the meniscus, 

however, features the meeting of the locus of points of the liquid and gas (no solid 

substrate), thus it is not triple line location. After being extracted from the video, an 

example sequence of images of the triple line location progress is shown in Fig. 6.5.  
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Fig. 6.5 A sequence of images decomposed from a recorded movie indicating the 

evolution of the joint meniscus formation as a function of time (0.03mm thickness 

TrilliumTM) (Test 091212) 

The individual frames were extracted from the recorded video at the frequency of 1 

image per second, starting right before the onset of the formation of the joint (hence, a 

120 seconds long video has 120 images). The complete joint formation would end 

seconds before an expiration of 120 seconds (see Fig. 6.5). Both vertical and horizontal 

directions menisci kinetics were measured by extracting data from the images. The 

normalized data (each location data value is scaled with the maximum distance of the 

triple line established upon reaching the steady state) are plotted in Fig. 6.6 (a). As shown 

in Fig. 6.6 (a), it can be observed that the vertical direction triple line location is slightly 

smaller than the horizontal line. The reason for this discrepancy may be attributed to the 
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impact of gravity and different physical parameters, regardless of a small Bond number 

of Bo = 0.015. Note that the conditions of liquid phase “withdraw” on horizontal and 

spreading on vertical surfaces differ due to the fact that horizontal surface represents the 

brazing sheet and the vertical surface a non-clad substrate. Hence liquid metal produced 

at the onset of melting may impact the location of the horizontal joint extend in a 

different way than the triple line climbing the vertical surface (including reaction and 

gravity) (Fu et al., 2013). Consequently, only vertical direction of the spreading will be 

further studied. An average of 7 times repeated test,  normalized by the spreading 

distances in the vertical direction for the 0.03 mm thickness TrilliumTM, (with the 

corresponding error bars), are shown in Fig.6.6 (b). 

 

(a) 
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(b) 

Fig. 6.6 (a) Normalized spreading distance in both horizontal (X) and vertical (Y) 

directions and (b) normalized spreading distance in y direction with standard error bars, 

(an average of 7 times repeated experiment of the 0.03 mm thickness TrilliumTM clad 

metal) 

To further study the triple line location kinetics, the averaged kinetics data of the triple 

line location as a function of time is plotted in Fig. 6.7. The log-log plot of Fig. 6.7 shows 

that there are at least two regimes, periods/phases during the joint formation evolution of 

the triple line kinetics. In the first phase, from the time instant of 2 seconds to the time 

instant of 30 seconds, the slope was fitted well with 1/n= 1.07. In the second phase, from 
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the time instant of 30 to 100 seconds, the slope was fitted with 1/n=0.51. Therefore, the 

~0.5 power law relationship matches in the second region the experimental data.   

 

Fig. 6.7 Triple line location kinetics plot in two stages 

It can be hypothesized that in the second region the trade-off between surface tension and 

the viscosity controls the kinetics of the molten liquid metal spreading even when 

secondary reaction/interface phenomena (see Fig. 6.8) are happening at the same time. 

Figure 6.8 testifies that the substrate interactions are mild and the reaction would be 

better characterized as near-reactive flow. Moreover, we note that the front of formed 

liquid spreads through the randomly formed channels between micro asperities over the 

real (rough) surface, i.e., the enhanced topographical alterations formed during melting in 
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situ. An optical cross section image of the joint formation after re-solidification is shown 

in Fig. 6.8. Silicon diffusion into the horizontal substrate and depletion of the liquid Si 

content at the interface contributes to alpha phase formation in the Al-Si alloy at the 

horizontal substrate interface (Gao et al., 2002). The mild erosion can be observed in the 

figure to prove a presence of more complicated interface phenomena other than surface 

tension and viscosity are also controlling the spreading kinetics of the molten clad metal. 

These interface phenomena are much more pronounced on the vertical surface, 

significantly corroded away from the triple line in the zone of the bulk liquid alloy during 

joint formation. So, this interaction is attributed to the period of time following the triple 

line movement up to the near equilibrium state. This hypothesis, however, requires a 

thorough study which is beyond current scope of the study. 

 

Fig. 6.8 Joint formation cross-section after re-solidification image 

6.2.2 Molten clad metal kinetics under deteriorated background atmosphere 

As mentioned earlier, the above experiments are done with the background atmosphere 

having oxygen concentration level below 100 ppm. An additional series of oxygen 
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concentration level experiments are also studied for establishing the impact that such 

change would have on the kinetics of the joint formation. Two higher oxygen 

concentration levels, namely 200 ppm and 500 ppm, are analyzed using the same 

methodology introduced in the previous section. Both left and right sides of the triple line 

location on the vertical surface are measured at 1 data point per second. Fig. 6.9 and 6.10 

offer data points every 3 seconds (both, triple line actual height and the normalized triple 

line height). The oxygen concentrations were 70 ppm, 200 ppm and 500 ppm. Total of 11 

experiments were done with the 70 ppm oxygen concentration level and the averaged 

data are plotted with standard deviation bars. For higher oxygen concentrations, 3 

experiments were done respectively with averaged data and standard deviation plotted in 

the figures. For better comparison, the triple line locations are also normalized-dividing 

the triple line location by its maximum heights.  
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Fig. 6.9 Triple line kinetics of the joint formation with different oxygen concentration 

levels 

 

Fig. 6.10 Normalized triple line kinetics of the joint formation with different oxygen 

concentration levels 
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Based on the results, it is noted that with higher oxygen content in the controlled brazing 

atmosphere, the time consumed for the finishing joint formation is longer. However the 

final height doesn’t have the dramatic difference compared to the 70 ppm oxygen level. It 

can be seen that in these three oxygen level experiments, the initial kinetics behaviors are 

close to each other. The deviation of the kinetics starts after initial 15 seconds with the 

lowest triple line location in the 500 ppm oxygen level. To form the same joint area, 70 

ppm oxygen level is clearly the optimal atmosphere condition for the triple line kinetics. 

In terms of the final triple line location height, the difference between 200 ppm and 500 

ppm is not dramatic with the standard deviation bars. No clear distinction between the 

200 and 500 ppm’s can be identified.  This may be an artifact of the relatively small 

number of tests performed. The clear distinction between these two deteriorated cases vs. 

70 ppm is, however, obvious.  

6.2.3 Molten clad metal kinetics with different clad layer thicknesses 

As mentioned earlier, the 0.03 mm thickness clad metal sample configuration is the 

benchmark for further investigation on the clad metal thickness impact. Two more clad 

metal thicknesses (0.4 mm and 0.8 mm) are also considered, see Fig. 6.1 (b) and (c). A 

sample of 0.4 mm thickness TrilliumTM clad configuration is shown in Fig. 6.11. 
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Fig. 6.11 0.4 mm thickness TrilliumTM kinetics study sample configuration 

In the 0.4 mm thickness clad metal configuration, a similar heating cycle is implemented 

in the three independent tests, with heating rate of 0.17 °C/s from the melting point to the 

end of joint formation of 120 seconds. The results are plotted in Fig. 6.12 with the 

dynamic contact angle.  

 

Fig. 6.12 Linear scale representation of 0.4mm thickness TrilliumTM clad metal kinetics 

with triple line location and dynamic contact angle (Fu et al., 2016) 
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The result of the 0.4 mm thickness TrilliumTM clad metal kinetics is also compared with 

the 0.03 mm thickness TrilliumTM clad metal as well as the non-reactive systems of water 

and silicone oil, see Fig. 6.13. A logarithmic scale plot of the triple line kinetics with 

standard deviation error bars and power law correlations are shown.  

 

Fig. 6.13 Log scale of (i) silicone oil, (ii) water, (iii) 0.03 mm thickness TrilliumTM and 

(iv) 0.4 mm thickness TrilliumTM kinetics comparison with Washburn’s equation, Eq. 

3.10 i.e., the power law correlations 

It can be seen from Fig. 6.13 that in the silicone oil and water systems, Eq. 3.10 fit (t ~ l2) 

is featured by the first capillary-viscous stage (Liu et al., 2012) of the kinetics.  The 5th 

power law relationship (t~l5) of the triple line location and time can be observed in the 

subsequent capillary-viscous-asymptotic stage (Liu et al., 2012). For the weak reactive 
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wetting case of TrilliumTM clad metal, a linear power law correlation ( t~l) can be 

observed in experiments of both 0.03 mm thickness and 0.4 mm thickness liquid clad 

metal. A 2nd power law correlation can be fitted in the second stage (Fu et al., 2013). 

Equation 3.10 (with only viscosity and surface tension as dominating factors) would not 

be adequate to explain the two-stage phenomenon. This is because additional physical 

phenomena (such as chemical reaction, ridging, inter-diffusion and de-oxidation of the 

liquid Trillium as well as dissolution of TrilliumTM on aluminum substrate) also play 

significant roles in the process (Saiz et al., 1998; Saiz et al., 2005; Saiz et al., 2007; 

Benhassine et al., 2009; Champion et al., 1969; Drevet et al., 2012), especially at the 

triple line location. 

To further study the triple line kinetics impact factors, 0.8 mm thickness clad metal 

configuration (Fig. 6.1) is used as well, with a higher heating rate of 0.22 °C/s (from the 

melting point to the end of joint formation of 120 seconds). Two independent tests are 

done, and the averaged values of the triple line location with standard deviation error bars 

are shown in the linear scale in Fig. 6.14 and the log scale in Fig. 6.15. 
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Fig. 6.14 Linear scale of 0.03 mm thickness TrilliumTM, 0.4 mm thickness TrilliumTM and 

0.8 mm thickness TrilliumTM kinetics comparison 

It can be seen from both Fig. 6.14 and Fig. 6.15 that the final triple line height in the 0.8 

mm clad metal thickness is higher than those of thinner thickness clad metal. This can be 

explained by the available amount of molten clad metal at the joint area during the 

brazing process. The kinetics behavior can be observed in the log scale figure in Fig. 6.15. 

In the thinner thicknesses, both 0.03 mm and 0.4 mm thicknesses show the similar trend 

of a linear (in the log scale) progress initially with a slower trend in the second stage. 

However, the 0.8 mm thickness clad metal shows a higher slope initially and a sudden 

change in the end of the slope. The last stage of the 0.8 mm thickness is relatively flat as 

opposed to the previous two cases.  
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Fig. 6.15 Log scale of 0.03 mm thickness TrilliumTM, 0.4 mm thickness TrilliumTM and 

0.8 mm thickness TrilliumTM kinetics comparison 

6.2.4 Molten clad metal kinetics on non-wetting surface 

In order to further investigate the maximum height of the triple line location, a case is 

considered with non-wetting substrate (horizontal mating surface made of alumina) with 

a vertical mating surface prone to wetting (aluminum). Due to the non-wettability of the 

horizontal substrate, it is hypothesized that the molten clad metal would be spreading 

only on the vertical plate forming gravity-surface tension controlled liquid envelope. The 

experiment is done following the same procedure and process methodology as the 

previous experiments with 0.22 °C/s from the melting point to the end of joint formation 

of 120 seconds. The configuration is shown in Fig. 6.16. 
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Fig. 6.16 TrilliumTM filler metal on non-wetting alumina horizontal surface configuration 

with thicker filler metal of 0.8mm 

 

Fig. 6.17 Molten clad metal spreading on vertical AA3003 plate with non-wetting 

horizontal surface (Experiment 05052015) 

The sample configuration is shown in Fig. 6.16. A final configuration of the equilibrium 

state at 120 second from the beginning of the melting is shown in Fig. 6.17. As was 

predicted, a volume of 0.8 mm thickness clad metal melts and the molten clad metal 

spreads onto the vertical AA3003 plate with no obvious molten clad metal left on the 

horizontal substrate. The kinetics of this process is measured from the extracted 
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individual frames from the video taken during spreading. A total of three independent 

experiments were executed. The kinetics this spreading process is plotted in Fig. 6.18.  

 

Fig. 6.18 Kinetics of 0.03 mm thickness TrilliumTM, 0.4 mm thickness TrilliumTM, 0.8 

mm thickness TrilliumTM, all on wetting horizontal surface, and 0.8 mm thickness 

TrilliumTM on non-wetting horizontal but wetting vertical 

It can be seen that given enough available molten clad metal at the horizontal substrate, 

the triple line location height can reach up to approximately 9 mm. A kinetics trend 

comparison between these four experiments is also shown in a log scale in Fig. 6.19. 
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Fig. 6.19 Kinetics of 0.03 mm thickness TrilliumTM, 0.4 mm thickness TrilliumTM, 0.8 

mm thickness TrilliumTM and 0.8 mm thickness TrilliumTM on non-wetting horizontal 

substrate but wetting vertical substrate 

It can be seen from the log scale, Fig. 6.19 that in these different thicknesses experiments, 

the initial kinetics is similar, regardless of its horizontal substrate surface properties. A 

quasi linear correlation (in a log-log coordinate system) can be fitted in all those 

experiments. The non-wetting horizontal substrate surface experiments feature the 

longest spreading regime. The shortest triple line height is for the 0.03 mm thickness clad, 

as expected. The triple line location height is largely controlled by the available clad 

metal amount, and the initial kinetics of the triple line is not impacted by the clad metal 

volume. The post linear stages (log-log) in these experiments are not all the same. It can 
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be interpreted that after the linear kinetics stage (log-log), the molten clad metal quantity 

is not sufficient to support the linear (log-log) spreading process. 

6.3 Phase-field model analysis of the molten clad metal kinetics  

The results of this section have been published by Fu et al., 2016 and Dehsara et al., 2016. 

A brief introduction of the phase field model is presented in Appendix E. The diffuse 

interface (phase-field) model is used to analyze the triple line movement. The triple line 

movement is described in terms of a local surface diffusion of fluid. In the computational 

model, a 2-D wedge-tee joint configuration was considered. The phase field model 

parameters are related to the physical parameters (density, viscosity interface energies, 

kinetic barrier for surface diffusion), and the computational parameters. The non-reactive 

benchmark experiments of silicone oil and water spreading on glass provided the 

sufficient support before the model is implemented on the molten clad metal spreading. 

Excellent agreement is achieved with both benchmark experiments and 0.4 mm thickness 

clad metal experiments. The experimental data and simulation data are plotted against 

each other in Fig. 6.20. It is assumed that the surface roughness is also an important 

factor in the wetting process, but the study is beyond the scope of the current research.  
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Fig. 6.20 The comparison between experimental data and phase field modeling 

6.4 Summary 

In this chapter, the kinetics of molten clad metal at elevated temperatures spreading at the 

wedge-tee joint area is studied comparatively both experimentally and numerically. A 

thinner clad metal sample configuration is firstly established for the initial experiment 

methodology. The result shows a slower triple line kinetics process compared to previous 

non-reactive spreading process. Following the benchmark methodology, two additional 

clad metal thicknesses are designed for experiments. The result shows the triple line 

location height is impacted by the available amount of the molten clad metal at elevated 

temperatures. Another non-wetting substrate is used as the ideal maximum amount 

molten clad metal provided at the joint area. The result further confirms the triple line 

location height is impacted by the molten clad metal volume. The comparative study also 

shows the initial stages of these different configurations obey a similar quasi-linear 
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kinetics process regardless of its horizontal surface properties and its clad metal volumes. 

With larger amount of the molten clad metal, the quasi-linear kinetics process in the log-

log scale lasts longer.  

In the numerical analysis based on the result from Washington State University, a phase 

field model of wetting based on modified Navier-Stokes equations, incompressibility 

condition and the 4th order Cahn-Hilliard diffusion equation for the conserved phase field 

is developed combining multiphase flow and contact line dynamics of a diffusive 

boundary interface. The model provides a solid background for an accurate theoretical 

description of the wetting phenomena for both non-reactive and reactive wetting at 

elevated temperatures. The numerical model results are compared with the non-reactive 

benchmark experiment results, and the results have an excellent agreement. Due to the 

generality and thermodynamics nature of the model, this model can be extended to 

complex problems with chemical reactions and diffusion of components, such as the 

molten clad metal kinetics process. The numerical model successfully predicted the 

evolution of the meniscus and triple line kinetics process for both non-reactive and 

reactive systems.  
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

This chapter summarizes this dissertation. Contributions to the knowledge about kinetics 

of spreading phenomena are addressed first. Suggestions regarding future study are 

discussed next.  

7.1 Main conclusions from the current study 

The kinetics of non-reactive and reactive spreading for both ambient temperature systems 

and the elevated temperature systems have been studied experimentally and compared to 

numerically obtained data from a simultaneously performed collaborative study 

constituting jointly a work within the NSF sponsored research under Grant # 1234581 

and # 1235759. The kinetics of molten clad metal spreading is defined as the movement 

of the triple line of the advancing front of the liquid metal driven by surface tension into 

the joint area of two melting metal surfaces. This phenomenon is important for 

Controlled Atmosphere Brazing (CAB) among multiple other technological applications. 

Based on the experiment findings, the spreading kinetics at the wedge-tee joint area can 

be well predicted via analytical empirical and semi-empirical correlations. The numerical 

solutions for both non-reactive and reactive spreading has been obtained following a 

development of the phase-field theory of the liquid front advances (that segment of work 

is beyond the scope of the dissertation effort), except as data base for comparison.  

The non-reactive spreading systems involved water on glass and silicone oil on glass. The 

empirical data from these experiments were used to verify the analytical and the semi-

empirical solutions, as well as later numerical analysis.  

The spreading kinetics at elevated temperatures features an Al-Si alloy system combined 

with addition of KxFyAlz system on Al substrate.  
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The result of the non-reactive systems’ spreading has confirmed that the kinetics of 

the triple line is controlled by surface tension and viscous force. An empirical constant 

based on the Washburn’s law is established for both water and silicone oil systems. The 

equilibrium height of the triple line location and contact angle relation from the 

experiment data were both well predicted by the analytical solution derived from 

Young’s and Laplace equation. Seebergh and Jiang’s empirical correlation well fitted in 

the experimental data of spreading kinetics of capillary number and dynamic contact 

angle in the silicone oil/glass systems. A modified Seebergh empirical correlation is also 

developed to predict the capillary number and dynamic contact angle relationship from 

the benchmark experiment in water/glass systems. The later capillary-viscous-asymptotic 

stage is also discovered in both water/glass and silicone oil/glass systems. The later stage 

obeys a 5th power law relationship consistently. 

The sessile drop experiments for the molten clad metal spreading at elevated 

temperatures have been designed to investigate the molten clad metal properties. The 

system used is a new brazing clad metal material TrilliumTM, a patented Al-Si alloy with 

embedded salt content so a self-fluxing process occurs during CAB brazing. The sessile 

drop experiments were conducted with the Optical Contact angle Analyzer (OCA) 

facility. The surface tension of the molten clad metal system has been experimentally 

determined. The experimental data on kinetics of the molten metal triple line movement 

were compared with kinetics trends from various literature sources. The re-solidification 

images and SEM/EDS results indicating the structures at the interface zone within the 

triple line region prove that the molten clad metal spreading at elevated temperatures 

involves more complicated physical phenomena, such as inter-diffusion and dissolution. 
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Still, the interaction may be considered as mild if the dwell at the peak temperature is 

brief.   

Various clad metal thicknesses (before melting – hence offering various liquid pool 

quantities during spreading) were considered in the experiments to determine the joint 

formation size. The linear log-log kinetics correlation is identified in the experiment data, 

and a 2nd power law correlation is observed in the later stage. A non-wetting alumina 

horizontal substrate and vertical AA3003 plate system was studied as well to establish 

kinetics of the triple line on the vertical Al3003 surface. The results re-emphases that clad 

liquid metal initial volume impacts the final triple line location height. The initial log-log 

kinetics relationship is established, but the larger the clad metal volume, the longer the 

linear log-log trend lasts. The later stages of the kinetics are not all the same due to 

complex controlling factors. 

Supported by the experimental results from both non-reactive and reactive systems, a 

phase field model was established in a simultaneous study, beyond the scope of the 

Thesis work (that one is executed at the Washington State University). Based on 

Lowengrub et al. (1998) analysis and the initial model from Jacqmin (2000), the 

governing equations of the incompressible model were offered. These consist of the 

modified Navier-Stokes equations, the incompressibility condition and the 4th order 

Cahn-Hilliard diffusion equation. The numerical model is simulated by using Comsol 

MultiPhysics 3.5a/4.3 software. The simulated meniscus well verifies the experimental 

meniscus in both non-reactive and reactive systems. The numerical results have excellent 

agreement with the triple line kinetics in water/glass, silicone/glass and 0.4 mm molten 

clad metal on AA3003. Besides the surface tension and viscous force dominating the 
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non-reactive systems, it is assumed that diffusion controlled concentration changes do not 

significantly affect the fluid viscosity in the reactive systems at elevated temperatures, 

and that their effect on the TPL mobility can be phenomenologically included in the 

model through the triple line mobility parameter without explicitly modeling the changes 

in diffusion and concentration of molten clad metal. 

7.2 Future work 

Further study is necessary to better understand the physical/chemical nature of the 

spreading process of liquid metal over metal substrate. 

In the non-reactive ambient temperature benchmark study, two liquid systems are 

investigated to support the surface tension and viscous force driven theory and the 

numerical model verified the experimental results. More liquid species spreading would 

be helpful to identify the later stages of the spreading kinetics phenomena. The initial 

stage of the non-reactive spreading can be identified as the Washburn type spreading, but 

the process ending point to the later stage is still ambiguous. An empirical relationship of 

the transition between Washburn type spreading and the capillary-viscous-asymptotic 

stage should be established either from experimental analysis or numerical analysis. 

The clad metal sessile drop kinetics needs to be studied further in the current 

experimental setup in both non-wetting and wetting substrates. It is noticed that in the 

current experiments the spreading process is controlled by different physical phenomena 

in these two types of substrates. Dissolution, inter-diffusion and are dominant in the case 

of the wetting Al substrate.  
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The exact triple line location height at equilibrium state needs to be confirmed with liquid 

molten clad metal on the wetting substrate not limited.  

Surface topography has been an important factor impacting the spreading kinetics. In 

current study, smooth surfaces are considered in both non-reactive and reactive spreading 

kinetics study. Surface roughness should be identified as another variable in the future 

study. 

Temperature heating rate impact on the kinetics of the spreading at elevated temperatures 

has been noticed in several experiments that are not reported here. Smaller heating rate 

corresponds to the slower triple line growth with smaller value in the spreading kinetics 

correlation slope. The correlation between the heating rate and the diffusion of the mobile 

elements in the aluminum alloy should be further identified. To what extent the heating 

rate is impacting the kinetics of spreading should be investigated.  
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APPENDICES 

 

Appendix A 

Experiment data error analysis (non-reactive case, Water and Silicon oil) 

The triple line kinetics data shows an expected dispersion of data to be described by the 

certain range of incurred measurement variations. It is important to establish whether the 

dispersion is a consequence of experimental errors inherent to data collection, or that 

there is another source of deviation caused by an influential parameter not identified so 

far. Hence, the deviation could be a result of (i) a measurement error or (ii) a presence of 

the variations in experimental conditions. As an example, an experimental run 012814a 

was selected for the example of the measurement error analysis. Both right and left side 

of the vertical surface data for the triple line locations were measured 3 times and plotted 

in Fig. A1 and Fig. A2 for averaged measured plot. 

  

Fig. A1 Average measurement of triple line location of experiment 012814a 
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Fig. A2 Average measurement of triple line location of experiment 012814a with error 

bars 

From Fig. A1 one may see that for the experiment considered, the measurement 

deviations of 0.064mm on the left side and 0.037mm on the right side are established (on 

average). Therefore, it can be seen that the measurement error appears not to be a main 

contribution to the deviation (i.e., the dissipation expressed by the error bars is smaller 

than the dispersion of data for different experiments data). The triple line location 

deviation identified for two sides appears to play a more important role in the triple 

location dispersion. The dispersion of data on both sides of the triple line location is 

shown in Fig.A1 for a single test with different measurements.  

Now, we may consider how to estimate an impact of another factor contributing to the 

triple line location deviation: the experimental conditions including in particular the state 
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of the substrate’s surface. Although, the experiments were done at the same temperature 

(22±2°C), humidity in the ambient (relative humidity less than 60%) and the surface 

conditions (manufacturer pre-cleaned – each experiment conducted with a new virgin 

glass substrate), the final (equilibrium) triple line location has a maximum deviation of 

0.52 mm (on right side). For the kinetics analysis, the experiments data are extracted 

from those with water thickness range from 0.46mm to 0.67mm to ensure the adequate 

amount of water to form the equilibrium state was provided. Different experiments of the 

triple line location deviations can be seen in Fig. A3 for left side and Fig. A4 for right 

side. The averaged triple line locations with error bars can be seen in Fig. A5 for left side 

and Fig.A6 for right side. 

 

Fig. A3 Triple line location of different experiments on left side 
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Fig. A4 Triple line location of different experiments on right side 

 

Fig. A5 Average triple line location of different experiments on right side with error bars 
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Fig. A6 Average triple line location of different experiments on left side with error bars 

Therefore, it can be seen from the above figures that experimental condition, namely the 

glass surface condition variation can cause a larger data deviation than the measurement 

error. Also for the same set of experiments on both sides, a deviation between the right 

and the left can be observed, causing the error. However, for the kinetics analysis, only 

one side of the kinetics data is considered, thus the geometric error was eliminated.  

Finally, as the experiment configuration is known as Wilhelmy plate configuration, thus 

the real execution required the vertical plate to move slowly down to the water surface. 

The vertical plate movement might potentially impose an impact on the experiment data 

result. Therefore, the speed of the vertical plate movement is analyzed to compare with 

the experiment data for triple line kinetics, see Fig. A7 and Fig. A8. 
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Fig. A7 Average triple line location of different experiments on left side with error bars 

and vertical plate speed 

 

Fig. A8 Average triple line location of different experiments on left side with error bars 

and vertical plate speed in the first 150ms 
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In Fig. A7 and Fig. A8, one set of experiment from water on glass system is analyzed 

with the speed of the vertical plate. The average vertical plate speed is shown in Fig. 3.33. 

It can be seen that most of the movement takes place in the first 150 milliseconds. The 

vertical plate initially moves towards the water layer for the contact. The movement of 

the vertical plate is not uniform and but is still neglected. The zoomed-in plot in Fig. A8 

shows that in the first 150 milliseconds, the vertical plate movement doesn’t have an 

impact on the triple line location kinetics (no significant changes in the slope of the 

kinetics curve corresponding to that time range. The largest speed of the vertical surface 

in these experiments was 0.016 mm/ms (0.016m/s) in the experiment 012814d, and the 

absence of an impact of the speed is shown in Fig. A9. 

 

Fig. A9 Experiment 012814d triple line location kinetics and vertical plate speed in the 

first 150ms 

  From Fig. A9, the movement of the plate imposed on the liquid surface doesn’t have the 

obvious impact on the triple line kinetics. Therefore, based on the above analysis, given 

enough water volume (water layer thickness between 0.46 mm and 0.67mm), the 
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deviation of the triple line kinetics most likely is caused by the glass plate surface 

condition variations (in spite of consistent use of virgin plates for each test). 

Appendix B 

Molten clad metal wetting on the non-wetting surface 

In the non-wetting surface case, the alumina surface substrate was used for the liquid 

molten clad metal to spread. The surface characteristics are discussed in Chapter 4. A 

solid TrilliumTM was cut into 1.5173g cube. The sample and the alumina substrate 

preparation has followed the procedures described in Section 4.2.2. The sample was 

heated above its melting point of 577 °C (Ogilvy et al., 2014). The recording started from 

the temperature of 577 °C and ended after at least 45 minutes when the complete 

spherical shape of the droplet was formed and maintained its shape for enough time in the 

isothermal state, see Fig. B1.  

 

Fig. B1 Temperature profile of the sessile drop in the experiment of the non-wetting 

surface 
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Only a few selected images were taken in the isothermal state domain shown in Fig. B1. 

The temperature ramp rate in the isothermal regime is less than 0.028 °C/s. During the 

whole process, the oxygen level was maintained lower than 53 ppm.  

The main purpose of the sessile drop experiment on the non-wetting surface is to 

determine the surface tension of the new material, TrilliumTM. The surface tension of the 

clad metal, liquid-vapor (γlv) may be interpreted as a measurable force existing at the 

triple line along the liquid-gas surface (Paddy, 1968). Among all of the surface tension 

measurement methods, sessile drop method was the most frequently used (Fig. B2 

illustrated the configuration and offers the variables symbolism). Between the three 

surface tension components γlv, γsl and γsv, only γlv is measurable in the present work. 

The other measurable quantity is the contact angle θ (Kwok et al., 2000).  

 

Fig. B2 Sessile drop surface tension 

The equilibrium contact angle and surface tensions obey the relation of  

cos 𝜃 =
𝛾𝑠𝑙−𝛾𝑠𝑣

𝛾𝑙𝑣
                                                 (B1) 

where 𝛾𝑙𝑣  is the surface tension between liquid and vapor, 𝛾𝑠𝑣  is the surface energy 

between solid and vapor, 𝛾𝑠𝑙  is the surface energy between solid and liquid. Surface 

tension = 𝛾𝑙𝑣can also be related to the pressure difference across the surface and the radii 

of curvature (𝑅1 and 𝑅2) at any point on the drop, based on the Laplace-Young equation: 
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∆𝑃 = 𝛾 (
1

𝑅1
−

1

𝑅2
)                                              (B2) 

There are several correlations to determine the surface tension from the profile of a 

sessile drop. One of the most well established and most frequently used is the Bashforth 

and Adams equations (Anson et al., 1999): 

γ = gρb2/β                                                    (B3) 

where γ (= 𝛾𝑙𝑣) is the surface tension , g is the gravitational acceleration, ρ is the liquid 

density, b is the radius of the curvature at the apex O (Fig. B3) and β is a shape factor or 

Bond number which is dimensionless and represents the deviation of the drop profile 

from a sphere (Stalder et al., 2010). This equation assumes that gravity is a non-

negligible force exerted by the droplet mass over the substrate. 

 

Fig.B3 Sessile drop apex point O 

Given a horizontal and homogeneous substrate surface, the drop may be considered to be 

axisymmetric (Stalder et al., 2010).  Anson et al. (1999) also used Dorsey equation to 

simplify the Bashforth and Adams calculations, by calculating the surface tension from 

an empirical equation. However, it is necessary to notice the limitation of the Dorsey 

equation for the liquid aluminum alloy sessile drop surface tension calculation. Namely, 

the accuracy of Dorsey equation highly depends on the size of the drop (it should be large 

enough) and contact angle should be larger than 90° (Paddy, 1968) (non-wetting case). 

The method to determine the contact angle and the capillary constant c (𝑐 = ∆𝜌 ∙ 𝑔/𝛾 , m-
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2) is based on the on the low-bond axisymmetric drop shape analysis (LBADSA) (Stalder 

et al., 2010). The method is implemented as a Java plug-in for the ImageJ software as 

mentioned in Chapter 4. It needs to be pointed out that LBADSA method can only be 

applied to small quasi-spherical drops whose diameter is of the order of magnitude of 

millimeters as used in our tests. The ImageJ measurements were conducted multiple 

times by using the region energy optimization option in the plug-in for the calculation of 

the capillary constant value with a comparison between the values obtained from other 

references (Anson et al., 1999; Guicoechea et al., 1992). The measured contact angle of 

the molten clad metal on the alumina non-wetting surface is 131 °± 0.5 °. The measured 

capillary constant is 6.42 × 104 m-2. 

The surface tension of the molten clad metal was tested by applying Dorsey equation 

(Anson et al., 1999). The empirical relation, Dorsey's equation (Dorsey 1928), was 

applied to calculate the surface tension of the clad metal alloy (Iida et al., 1988) (see Fig. 

B4): 

γlv = gρX2 (
0.0520

f
− 0.1227 + 0.0481f)                                 (B4) 

where 𝛾𝑙𝑣 is the surface tension, 𝑔 is the gravitational acceleration, 𝜌 is the density of the 

liquid alloy, 𝑋 and 𝑌 are the experimental geometric parameters shown in Fig. B4, and 

the Dorsey factor f is given by  

𝑓 =
𝑌

𝑋
− 0.4142 
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The liquid alloy density ρ is not accurately known for many common alloys and is 

sometimes a major source of error (Anson et al., 1999). For silicon concentration from 0 

to 15 wt%, the density (𝑔/𝑐𝑚3) of liquid alloy is given by Anson et al. (1999): 

𝜌 = (0.3970 + 4.0924 × 10−5𝑇 − 1.04 × 10−3𝐶𝐿)−1                       (B5) 

where T is in degrees Celsius and CL is the weight percent silicon. 

 

  

Fig. B4 Surface tension measurement of sessile drop for molten clad metal over an Al2O3 

surface using Dorsey method 
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Fig. B5 Measured surface tensions of the clad metal at different temperatures 

The measured surface tensions are plotted in Fig. B5 with standard deviation bars. It can 

be seen that from 603.5 °C to 607 °C, the surface tension variation is relatively small. 

The measured average surface tension of the clad metal was 0.849 N/m ± 0.042 N/m.  

A repeated sessile drop experiment was conducted to verify the measured surface tension 

result. A sizably larger drop formation on the non-wetting alumina surface was captured 

by the video recorded. A screenshot comparison between the two tests is shown in Fig. 

B6. A solid TrilliumTM of 2.73 g was cut into a cube to allow the spherical shape to form 

on the non-wetting alumina substrate. The same procedure was followed with a higher 

ending temperature and longer dwell time on the substrate. 
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Fig. B6 Sessile drop on non-wetting surface tests comparison 

The second test drop sample is 33% larger than the first time. The measured surface 

tension of the second time is 0.870 N/m±0.021 N/m, compared to the previous value of 

0.849 N/m±0.042 N/m.  

Appendix C 

Surface tension literature review 

It is well known that the surface tension decreases as the temperature increases. Although 

different forms of the relationship may be identified in different reports, Keene et al. 

(1993) established the relationship of surface tension with temperature as 𝛾 = 871 −

0.155(𝑇 − 660°𝐶) mNm-1. Mills et al. (2006) updated the relationship as 𝛾 = 875 −

0.18(𝑇 − 660°𝐶) mNm-1 for the case of the presence of oxygen in the background 

atmosphere.  

Another approach to the surface tension value determination of the molten aluminum was 

based on a theory developed to allow one to calculate the surface tension of nonionic 

solids (Skapski et al., 1956), such as the Skapski model, Eyring Model and Schoutens 
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model, etc. The theoretical consideration is based on a classical statistical 

thermodynamics formulation of Skapski et al. (1956), and Eyring and his coworkers 

(Aqra et al., 2012). Based on these models, several modified version were developed. The 

calculated values were of the order of 1000 mNm-1.The calculated values are higher than 

the experimental values. The deviations in the experimental values lead to a decrease of 

the surface tension due to the oxygen contamination. Since γsv and γsl were calculated 

based on the definition of the contact angle (Kwok et al., 2000), and it is necessary to 

point out that the methodology was actually applicable for a low temperature, non-metal 

surface tension calculations. The situation for metals may be different, with the 

continuous non-equilibrium state in molten metal in a presence of oxygen. Aqra et al. 

(2012) compared their calculated results with the data reported from experiments (γlv) or 

calculations (γsv), giving a surface tension relationship with temperature as  γ = 985 −

0.275(T − 660°C) mJm-2 in the range of 660 to 927 °C. It should be noted that a 

comprehensive calculation for aluminum alloys surface tension γlv, surface energy 

γsvand crystal-melt interfacial energy γsl are still not available, although single surface 

tension γlv calculation for alloys was often reported (Su et al., 2005). The surface 

tensions of alumina and its alloys from various literature sources are listed in Table C1. 

Table C1 (Continued) Surface tension 𝛾lv of aluminum and aluminum alloys 

Metal 

Type 

𝜸𝐥𝐯 

(mN/m)  T (°C) 

Gas 

Condition Method Year Reference 

Al  713±11 1650 N/A   Sessile Drop 1997 

 Naidich et al., 
1998 

Al  846 800  N/A  Sessile Drop 1999 

Anson et al., 
1999 

Al  870 660 Vacuum Sessile Drop 1974 

 Eustathopoulos 

et al., 1974 

Al  520 700-820 N/A  Capillary 1914  Flint et al., 
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1965 

Al  300 ~700 Ar 

MBP 

(Maximum 

Bubble 

Pressure) 1936 

 Eustathopoulos 

et al., 1974 

Al  502 712 N/A   Detachment 1937 

 Eustathopoulos 

et al., 1974 

Al  500 660 Ar MBP 1937 

 Zhivov et al., 
1937 

Al  914 660 N2 MBP  1948 

 Eustathopoulos 

et al., 1974 

Al  860 725 Ar MBP 1960 

  Eustathopoulos, 

1974 

Al  865 660 Vacuum Large Drop 1961 

  Eustathopoulos 

et al., 1974 

Al  825 660 Ar MBP 1963 

 Eustathopoulos 

et al., 1974 

Al  760 660 Vacuum Sessile Drop 1970 

  Eustathopoulos 

et al., 1974 

Al  915 660 Ar Sessile Drop 1971 

  Eustathopoulos 

et al., 1974 

Al  855 660 Ar MBP 1973 

 Martins et al., 
1988 

Al-AlF3 ~650 1000 Electrolyte Sessile Drop 1985 

 Utigard et al., 
1985 

Al (12 

wt%) 847 700 N/A   MBP 1992 

 Goiceochea et 

al., 1992 

A356 845 700 Ar MBP 1992 

Goiceochea et 

al., 1992 

A356 790 712 Ar Sessile Drop 1993 

 Anson et al., 
1999 

A356 

(Sr) 640 712 Ar Sessile Drop 1993 

 Anson et al., 
1999 

A356 889±25 630 Vacuum Sessile Drop 1999 

 Anson et al., 
1999 

A356 874±27 630 Hydrogen Sessile Drop 1999 

 Anson et al., 
1999 

A356 

(Sr) 844±32 630 Vacuum Sessile Drop 1999 

 Anson et al., 
1999 

A356 

(Sr) 801±7 630 Hydrogen Sessile Drop 1999 

 Anson et al., 
1999 

Al–In 

(0.13 at% 

In) 577.6 650–700 Vacuum Large Drop 2003 

Alchagirov et 

al., 2003 

Al 1050 660 CO2 

Surface 

Oscillation 2003 

 Sarou-Kanian et 

al., 2003 

Al (1 

wt% Pb) 662 750 N2 Infiltration 1993 

 Alonso et al., 
1993 
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Al 863 750 N2 Infiltration 1993 

 Alonso et al., 
1993 

Al 861 700  N/A  N/A   1984 

 Hatch et al., 
1984 

Al (1% 

Mg) 658 700 N/A   N/A   1984 

 Hatch et al., 
1984 

Al (5% 

Mg) 601 700 N/A   N/A   1984 

 Hatch et al., 
1984 

Al (5% 

Zn) 846 700 N/A   N/A   1984 

 Hatch et al., 
1984 

Al (5% 

Si) 808 700 N/A   N/A   1984 

 Hatch et al., 
1984 

Al 914 660 N/A    N/A  1988 

 T. Iida et al., 
1988 

Al 

948-

0.202T 

(K) 770-817 Vacuum Sessile Drop 1970 

 Rhee et al., 
1970 

Al 690 N/A   N/A   

Linear 

Interpolatio

n 1957 

 Rhee et al., 
1970 

Al 780  N/A  N/A   

Linear 

Interpolatio

n 1957 

 Rhee et al., 
1970 

Al 720 N/A   N/A   

Linear 

Interpolatio

n 1957 

 Rhee et al., 
1970 

Al 650  N/A  N/A   

Linear 

Interpolatio

n 1957 

 Rhee et al., 
1970 

Al (11.8 

wi % Si) 817  N/A   N/A  N/A   2001 

 Hashim et al., 
2001 

Al 865 660 N/A   Sessile Drop 1979 

 Goumiri et al., 
1979 

Al 866 660 N/A   Sessile Drop 1968 

 ES Levin et al., 
1968 

Al 865 660 N/A   Sessile Drop 1938 

 Andreas et al., 
1938 

Al 930 660 N/A   Sessile Drop 1975 

 Popel et al., 
1975 

Al 740 1500 N/A   Sessile Drop 1971  Keene, 1993 

Al 880 660 N/A   Sessile Drop 1977  Keene, 1993 

Al 815 1000  N/A  Sessile Drop 1969  Keene, 1993 

Al 825 660 N/A   MBP 1963  Keene, 1993 

Al 1100 800 N/A   MBP 1986  Keene, 1993 

Al 865 800 N/A   MBP 1986  Keene, 1993 

Al 865 660 N/A   Sessile Drop 1974  Keene, 1993 

Al 868 660 N/A   MBP 1977  Keene, 1993 
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Al 865 660 N/A   Sessile Drop 1972  Keene, 1993 

Al 913 660 N/A   MBP 1949  Keene, 1993 

Al 1050 700 N/A   Sessile Drop 1982  Keene, 1993 

Al 870 660 N/A   Sessile Drop 1974  Keene, 1993 

Al 868 660 N/A   MBP 1974  Keene, 1993 

Al 873 660 N/A   Sessile Drop 1969  Keene, 1993 

Al 1090 700 N/A   MBP 1984  Keene, 1993 

Al 868 700 

Saturated 

with O2 MBP 1984  Keene, 1993 

Al (O 

saturated) 

871 - 

0.155∙(t - 

660)  N/A  N/A   

Curve 

Fitting 1993  Keene, 1993 

Al 

985 

(Model 

Value) 660 N/A   

Eyring 

Model 2012 

 Aqra et al., 
2012 

Al 

1045 

(Model 

Value) 660  N/A  

Modified 

Skapski 

Model 2009  Iida et al., 2009 

Al  

881-

0.2∙(t - 

660) 620-1150 

O2 

contaminati

on Large Drop 2001 

 Egry et al., 
2001 

Al 

868-

0.25∙(t - 

660) 697-897 

O2 

contaminati

on 

Draining 

Crucible 2005 

 Mills et al., 
2006 

Al 1100 800 No O2 MBP 1986 

 Goicoechea et 

al., 1992 

Al 1050 700 No O2 Sessile Drop 1982 

 Goumiri et al., 
1982 

Al 1090 700 No O2 MBP 1984 

Pamies et al., 
1984 

Al 

1024-

0.274∙(t - 

660) 

1517-

1897 No O2 Large Drop 2003 

 Sarou-Kanian et 

al., 2003 

Al 

1031 

(Model 

Value) 660  N/A  

Modified 

Skapski 

Model 2005 Lu et al., 2005 
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Appendix D 

Wedge-tee joint meniscus curvature 

In the 0.4 mm thickness clad metal configuration at the joint area after formation, a final 

image is taken and shown in Fig. D1.  

 

Fig. D1 0.4mm thickness clad metal triple line meniscus at 120 second, experiment 

08142014 

The right side of the meniscus can be fitted as a polynomial function of y = -0.0609x5 + 

0.5925x4 - 1.8034x3 + 2.7841x2 - 2.8853x + 1.6347, with R² = 0.9993, see Fig. D2. The 

curvature was calculated from the equation of curvature: 

𝜅 =
𝑑2𝑦

𝑑𝑥2

[1+(
𝑑𝑦

𝑑𝑥
)

2
]

3/2                                         (D1) 



172 
 

 

Fig. D2 0.4mm thickness Trillium meniscus polynomial fitting on the right side 

The curvature can be plotted in Fig. D3. 

 

Fig. D3 0.4mm thickness clad metal meniscus of the right side curvature vs. y(x) 
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Appendix E 

Phase field model analysis (Fu et al., 2016, Dehsara et al., 2016) 

In the non-reactive spreading case, surface tension and viscosity play a decisive role in 

controlling the kinetics of the triple line. Phase-field models for multi-phase flows require 

that mass density be a function of the phase variable. The phase field model for capillary 

flow presented here is largely based on Lowengrub (1998) analysis. The model from 

Jacqmin (2000) provides a seamless and consistent diffusional motion of the triple line 

and it’s a part of the overall formulation.  

The phase field model is developed in order to verify the behavior of the non-reactive 

systems and the reactive systems at elevated temperatures Al-Si alloy complemented with 

particles of potassium-fluoroaluminate salts. The non-reactive isothermal wetting phase 

field model is built following Jacqmin (2000). In this case, two fluids are considered: 

liquid L and gas G, both incompressible with respective mass densities of 𝜌𝐿and 𝜌𝐺 with 

viscosities of 𝜇𝐿 and 𝜇𝐺. The boundary of the domain consists of the solid-fluid interface 

S and the far-field fluid boundary A, see Fig. E1.  
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Fig. E1 Illustration of the domain and its boundary for wedge-tee joint area 

The liquid and gas are distinguished by the phase-field variable ( ) x , which takes value 1 

in the liquid, and value 0 in the gas. The values between 0 and 1 represent a thin interface 

layer between two fluids. The free energy density of the two-phase system (liquid and gas) 

can be combined and expressed as: 

𝜔(𝜙, ∇𝜙) = 𝑓(𝜙) +
1

2
𝜅(∇𝜙)2                                     (E1) 

where ( )f   is a double-well potential illustrated in Fig. E2 

 

 

Fig. E2 Double-well potential featuring the energetic barrier 

For immiscible fluids the only relevant parameter is the height of the energetic barrier f . 

The material properties: viscosity ( )  , mass density ( )   and fluid-solid interface 

energy ( )  , are interpolated between the known quantities for the liquid and gas phases 

as: 

𝜇(𝜙) = 𝜇𝐿𝜓
0
(𝜙) + 𝜇𝐺𝜓

1
(𝜙); 

𝜌(𝜙) = 𝜌𝐿𝜓
0
(𝜙) + 𝜌𝐺𝜓

1
(𝜙); 

𝛾(𝜙) = 𝛾𝐿𝜓
0
(𝜙) + 𝛾𝐺𝜓

1
(𝜙).                                     (E2) 
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The interpolation functions must satisfy 

𝜓0(𝜙) + 𝜓1(𝜙) = 1;𝜓0(𝜙 ≤ 0) = 0; 𝜓0(𝜙 ≥ 1) = 1              (E3) 

The governing equations of the incompressible model consist of the modified Navier-

Stokes equations, the incompressibility condition and the 4th order Cahn-Hilliard 

diffusion equation for the conserved phase field (Fu et al., 2016) as: 

𝜌
𝐷𝐯

𝐷𝑡
= 𝜌𝐠 + ∇ ∙ [𝜇(𝐯∇ + ∇𝐯)] − ∇𝜋 + 𝑀∇𝜙;        ∇ ∙ 𝐯 = 0; 

𝐷𝜙

𝐷𝑡
= 𝐵∇2𝑀;                𝑀 =

𝑑𝑓

𝑑𝜙
− 𝜅∇2𝜙.                                        (E4) 

where ( )v x is velocity, ( ) x is incomplete pressure (including capillary and non-capillary 

portions), B is the interface mobility, ( ) x is the phase field, D Dt is the material 

derivative, g  is the gravitational acceleration, and the dyadic 𝐯∇ is a rank-2 tensor with 

components (𝐯∇)𝑖𝑗 = 𝜕𝑣𝑖 𝜕𝑥𝑗⁄ . The total pressure can be computed as: 

𝑝 = 𝜋 − 𝑓 −
1

6
𝜅(∇𝜙)2                                               (E5) 

The parameters   and f  are computed from the interface energy between the fluids   

and the chosen width of the fluid-fluid interface (phase-field transition) h :   

 

𝜅 =
3

2
ℎ,   Δ𝑓 =   

3

4
 ℎ⁄  ,                                           (E6) 

where ℎ is chosen to be much smaller than the smallest expected radius of curvature of 

the fluid-fluid interface. In simulations, interface mobility B range should be first defined, 

so that the results are insensitive to the order-of-magnitude changes in B. The capillary 

stress tensor field is as follows: 

𝛔 = (𝜔 − 𝑀𝜙)𝚰 − 𝜅∇𝜙∇𝜙,                                      (E7) 



176 
 

when integrated across the fluid-fluid interface, gives the surface tension   and the 

portion of the pressure jump across a curved interface (the other potion is contained in 

 ). 

On the interface between the solid and the two fluids, the triple line motion is described 

by the diffusive boundary condition (Jacqmin, 2000): 

 

𝜕𝜙/𝜕𝑡 = −𝑏(𝜅𝐧 ∙ ∇𝜙 + 𝑑𝛾/𝑑𝜙)                                  (E8) 

where unit interface normal n  points away from the fluids.  

 

Fig. E3 Schematic of the wedge-tee joint domain 

The phase field model formulation has been implemented in both Comsol MultiPhysics 

3.5a and Comsol MultiPhysics 4.3. The schematic of the model is shown in Fig. E3. The 

2-D model of water with unstructured triangular mesh is generated by the adaptive mesh 
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method with interfacial refinement for raising the triple line, see Fig. E4. The interface 

thickness and the minimum element size are 0.1mm and 9×103mm, respectively.  

 

 

Fig. E4 The final (equilibrium) triangular mesh generated by adaptive mesh method 

(water). 

 

Based on Fig. E3, the boundary conditions can be summarized as: 

𝐯 = 0,  at right and bottom 

𝜕𝜙

𝜕𝑡
= −𝑏 (𝜅𝐧 ∙ ∇𝜙 +

𝑑𝛾

𝑑𝜙
),  at right side and bottom 

𝑛 ∙ 𝐵∇2𝑀 = 0,  at all boundaries 

𝐧 ∙ ∇𝜙 = 0, at left side and top side 

𝐧 ∙ [𝜇(𝐯∇ + ∇𝐯)] = 0,
𝜕𝜋3

𝜕𝑦
= −𝜌(𝜙(𝑦))g, at left side 

𝐧 ∙ ∇𝐯 = 0, π = 0 at top 

The simulation reproduces the triple line kinetics from experiments, as shown in Fig. E5. 

As analyzed in Chapter 3, water flows to the joint area quickly until the water film is 

depleted, and surface tension with viscous force dominates the triple line kinetics. Both 

experiment and simulation results show the expected process in Fig. E5. 
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(a) 

 

 

(b) 

Fig. E5 The formation of the wave in the water pool following the initial surge of the 

triple line (a) Experimental (19ms); (b) Computational (20ms) 

The triple line mobility b is fitted to the initial velocity of the triple line.  In this particular 

experimental setup, the initial motion of the triple line is unimpeded by inertia and 

viscosity, so that the initial triple line velocity is only dependent on the parameter b.  The 

rest of the motion serves at the benchmark for the computational kinetics. The 

equilibrium shape of the meniscus can be determined analytically (neglecting the mass 

density of the gas). The kinetics simulation results for both water and silicone oil 

compared with experiments are shown in Fig. E6. The simulation results show excellent 

agreement with the experimental results. 
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(a) 

 

(b) 

Fig. E6 Triple line kinetics for (a) water, and (b) Silicone oil comparison between 

numerical results and experimental result. The triple line mobility b is fitted to the initial 

slope 
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In the reactive spreading at elevated temperatures for the molten clad metal on aluminum 

AA3003 (Al-Si alloy in nitrogen atmosphere), it is assumed that diffusion controlled 

concentration changes do not significantly affect the fluid viscosity, and that their effect 

on the TPL mobility can be phenomenologically included in the model through the triple 

line mobility parameter, although the diffusion and concentration changes are not 

explicitly modeled. The equilibrium contact angle is taken into the numerical analysis 

from the experiments regardless of the concentration in phases meeting at the triple line 

location. The simulation meniscus shape and the experimental meniscus comparison can 

be seen in Fig. E7.  

 

(a)                                                             (b) 

Fig. E7 (a) Optical Contact Analyzer image Trillium wedged-tee joint formed at 600oC at 

120 second (08142014), (b) Equilibrium shape of trillium meniscus with viscosity 1 mPa-

s at 200s. 
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