
University of Kentucky
UKnowledge

Theses and Dissertations--Mechanical Engineering Mechanical Engineering

2017

ADVANCES IN MULTI-AGENT FLOCKING:
CONTINUOUS-TIME AND DISCRETE-
TIME ALGORITHMS
Brandon Wellman
University of Kentucky, bjwell3@g.uky.edu
Author ORCID Identifier:

https://orcid.org/0000-0001-5643-5466
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.400

Click here to let us know how access to this document benefits you.

This Doctoral Dissertation is brought to you for free and open access by the Mechanical Engineering at UKnowledge. It has been accepted for inclusion
in Theses and Dissertations--Mechanical Engineering by an authorized administrator of UKnowledge. For more information, please contact
UKnowledge@lsv.uky.edu.

Recommended Citation
Wellman, Brandon, "ADVANCES IN MULTI-AGENT FLOCKING: CONTINUOUS-TIME AND DISCRETE-TIME
ALGORITHMS" (2017). Theses and Dissertations--Mechanical Engineering. 99.
https://uknowledge.uky.edu/me_etds/99

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu
https://uknowledge.uky.edu/me_etds
https://uknowledge.uky.edu/me
https://orcid.org/0000-0001-5643-5466
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been
given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright
permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-
party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not
permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-
free license to archive and make accessible my work in whole or in part in all forms of media, now or
hereafter known. I agree that the document mentioned above may be made available immediately for
worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in future
works (such as articles or books) all or part of my work. I understand that I am free to register the
copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of
the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we
verify that this is the final, approved version of the student’s thesis including all changes required by the
advisory committee. The undersigned agree to abide by the statements above.

Brandon Wellman, Student

Dr. Jesse B. Hoagg, Major Professor

Dr. Haluk E. Karaca, Director of Graduate Studies

ADVANCES IN MULTI-AGENT FLOCKING:
CONTINUOUS-TIME AND DISCRETE-TIME ALGORITHMS

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for the
degree of Doctor of Philosophy in the

College of Engineering at the
University of Kentucky

By
Brandon J. Wellman
Lexington, Kentucky

Director: Dr. Jesse B. Hoagg, Professor of Mechanical Engineering
Lexington, Kentucky 2017

Copyright c© Brandon J. Wellman 2017

ABSTRACT OF DISSERTATION

ADVANCES IN MULTI-AGENT FLOCKING:
CONTINUOUS-TIME AND DISCRETE-TIME ALGORITHMS

We present multi-agent control methods that address flocking in continuous-time and
discrete-time settings. The method is decentralized, that is, each agents controller
relies on local sensing to determine the relative positions and velocities of nearby
agents. In the continuous-time setting, each agent has double-integrator dynamics. In
the discrete-time setting, each agent has the discrete-time double-integrator dynamics
obtained by sampling the continuous-time double integrator and applying a zero-order
hold on the control input. We demonstrate using analysis, numerical simulations,
and experimental demonstrations that agents using the flocking methods converge to
flocking formations and follow the centralized leader (if applicable).

KEYWORDS: flocking, multi-agent system, consensus algorithm, formation control,
sampled-data control, motion-capture system

Author’s signature: Brandon J. Wellman

Date: September 21, 2017

ADVANCES IN MULTI-AGENT FLOCKING:
CONTINUOUS-TIME AND DISCRETE-TIME ALGORITHMS

By
Brandon J. Wellman

Director of Dissertation: Jesse B. Hoagg

Director of Graduate Studies: Haluk E. Karaca

Date: September 21, 2017

ACKNOWLEDGMENTS

Difficult projects cannot be done alone, and my work is no exception. In order

to accomplish this, I have relied heavily on friends, family, and colleagues to help

me along the way. I first thank God for blessing me with the mind, strength, and

perseverence to earn this degree. I also want to thank my parents for their love and

support, particularly in providing me so many opportunities to succeed. My sister has

encouraged and helped me as only she can, and my grandmother has been a rock to

lean on when I was discouraged.

In addition to my family, my friends have also supported me. My friends have been

there to soothe my wounds and encourage me to achieve greatness. I thank them for

what they have taught me and hope it was mutual.

Finally, I would like to thank my colleagues and advisors. I have benefitted greatly

from conversations with my lab mates, notably Shaoqian Wang, Xingye Zhang, Daniel

Poston, Thomas Kirven, Zack Lippay, Chris Heinz, Alireza Moosavi, Mohammadreza

Kamaldar, Zahra Abbasi, and Roshan Chavan. I also appreciate the advice and

guidance from my committee members Michael Seigler, Suzanne Smith, and James

Lumpp. Even more so, I’m thankful for my advisor Jesse Hoagg for the many hours

he has dedicated to mold me into a professional researcher.

iii

TABLE OF CONTENTS

Acknowledgments . iii

Table of Contents . iv

List of Figures . vi

List of Tables . ix

Chapter 1 Introduction and Motivation . 1
1.1 Literature Review . 3
1.2 Introduction to Consensus Algorithms 6
1.3 Flocking Problem Formulation . 8
1.4 Summary of Contributions . 10

Chapter 2 Continuous-Time Flocking and Destination Seeking 12
2.1 Introduction . 12
2.2 Problem Formulation . 14
2.3 Review of Algorithm 1 from [1] . 15
2.4 Flocking and Destination Seeking . 16
2.5 Flocking Analysis . 21
2.6 Destination-Seeking Analysis . 24
2.7 Numerical Examples . 27
2.8 Conclusions . 30
2.9 Proof of Proposition 2 . 32
2.10 Proof of Theorem 1 . 33
2.11 Proof of Lemma 1 . 39
2.12 Proof of Theorems 2 and 3 . 39

Chapter 3 Discrete-Time Flocking . 43
3.1 Introduction . 43
3.2 Problem Formulation . 45
3.3 Motivation . 46
3.4 Discrete-Time Flocking . 49
3.5 Flocking Analysis . 52
3.6 Motivating Example Revisited . 55
3.7 Numerical Examples . 56
3.8 Conclusions . 59
3.9 Proof of Proposition 3 . 60
3.10 Proof of Lemmas 2 and 3 . 61
3.11 Proof of Theorems 4 and 5 . 66
3.12 Propositions 4 and 5 used in the proof of Proposition 3 71

iv

Chapter 4 Experimental Demonstrations of Discrete-Time Flocking Using Ro-
torcraft . 76

4.1 Introduction . 76
4.2 Approximate Dynamics for an Attitude-Stabilized Quadcopter 76
4.3 Discrete-Time Flocking . 79
4.4 Description of Experimental Setup 83
4.5 Results and Discussion . 87

Demonstration 1: Rotorcraft Flock Without a Leader 88
Demonstration 2: Rotorcraft Flock and Approach a Stationary Leader 89
Demonstration 3: Rotorcraft Follow a Leader With a Helical Trajectory 92
Demonstration 4: Rotorcraft Follow a Mouse-Driven Leader 95
Summary of Results and Discussion 97

4.6 Conclusion . 101

Chapter 5 Conclusions and Future Work . 103

Bibliography . 105

Vita . 112

v

LIST OF FIGURES

1.1 A configuration of 7 agents based on a position-formation cohesion method 4
1.2 A configuration of 7 agents based on a distance-formation cohesion method 5
1.3 The graph G(I, E1) has 7 vertices and 8 edges. 6

2.1 An example µ : [0,∞)→ [0, 1] that satisfies (M1)–(M3). 18
2.2 A plot of ν, which is in the destination-seeking control 19
2.3 A plot of κ, which is in the damping control 19
2.4 Four types of equilibria for n = 2 . 25
2.5 Trajectories of n = 3 agents for γ = 2 m/s2 and 9 m/s2 28
2.6 Speed and magnitude of control for the trajectory shown in Figure 2.5 . 28
2.7 A group of n = 6 agents that flock before they reach their destinations . 29
2.8 The minimum interagent distance and maximum control magnitude for

the trajectory shown in Figure 2.7 . 29
2.9 A group of n = 20 agents that flock before they reach their destinations . 30
2.10 The minimum interagent distance and maximum control magnitude for

the trajectory shown in Figure 2.9 . 31
2.11 A group of n = 20 agents that flock before they reach their destinations . 31
2.12 The minimum interagent distance and maximum control magnitude for

the trajectory shown in Figure 2.11 . 32

3.1 A trajectory of the closed-loop dynamics (3.1), (3.2), and (3.5). The agents
asymptotically oscillate towards and away from each other. 48

3.2 The distance ||q2 − q1|| between agents and the magnitude of the relative
velocity ||p2 − p1|| for a trajectory of the closed-loop dynamics (3.1), (3.2),
and (3.5). The distance between agents oscillates about d asymptotically,
and the relative velocity oscillates asymptotically. 49

3.3 The distance ||q2 − q1|| between agents and the magnitude of the relative
velocity ||p2 − p1|| for a trajectory of the closed-loop dynamics (3.1), (3.2),
and (3.5). The agents start near a flocking configuration; however, the
agents do not stay in a flocking configuration. 50

3.4 A trajectory of the closed-loop system (3.1), (3.2), and (3.15) overlaid on
the trajectory from Figure 3.1, which uses the control [1, Alg. 1]. The
agents using (3.15) flock asymptotically. 56

3.5 The distance ||q2 − q1|| between agents and the magnitude of the relative
velocity ||p2−p1|| for a trajectory of the closed-loop system (3.1), (3.2), and
(3.15) overlaid on the plot from Figure 3.2, which uses the control [1, Alg.
1]. Using (3.15), the distance between the agents converges to d, and the
relative velocity converges to 0. 57

vi

3.6 Trajectories of n = 3 agents that follow a leader whose position and velocity
are qg(k) ≡ 0 and pg(k) ≡ 0. In one trajectory, agents use the control
(3.15), which contains the FCTG term; in the other, agents use the control
(3.15), where the FCTG term is omitted. The step kf ∈ N is such that
qi(kf + 1) ≈ qi(kf). 58

3.7 The distances between n = 3 agents that follow the leader agent whose
position is qg(k) ≡ 0 and whose velocity is pg(k) ≡ 0. In one trajectory,
agents use the control (3.15), which contains the FCTG term; in the other,
agents use the control (3.15), where the FCTG term is omitted. The agents
using the FCTG term converge to d apart, whereas the agents that do not
use the FCTG term converge to a distance less than d apart. 59

3.8 A group of n = 3 agents with no leader that flock. The agents form a flock,
where all agents have the same velocity and are d apart from one another.
The line between agents shows that agents are approximately d apart. . 60

3.9 A group of n = 3 agents that flock and follow a leader. The line between
agents shows that agents are approximately d apart. 61

3.10 A group of n = 10 agents that flock and follow a leader. The line between
agents shows that agents are approximately d apart. 62

4.1 The position of the ith quadcopter’s center of mass oi relative to oE is ~ri.
The orientation of Fi relative to FE is O(ψi), where ψi is the yaw angle,
which is the angle from ı̂e to ı̂i. 77

4.2 The Parrot Rolling Spider quadcopter is attitude-stabilized by Parrot’s
proprietary inner-loop controller. 78

4.3 A picture of the Rolling Spider quadcopter with 4 attached markers for
motion capture. 83

4.4 The 6 OptiTrack Prime 13 cameras are mounted on tripods, arranged in a
circular configuration, pointed towards the test-flight volume, and angled
slightly downward. 84

4.5 The Rolling Spider uses onboard sensing with input vi for inner-loop control
and the motion-capture system’s sensing with input qg and pg for outer-loop
control. 86

4.6 Setup of discrete-time flocking control demonstration for n = 3 rotorcraft. 87
4.7 The trajectory of n = 3 rotorcraft that flock without a leader. 89
4.8 The distance and norm of the velocity difference between each pair of

rotorcraft. 90
4.9 The rotorcraft-averaged velocity is approximately constant. 91
4.10 The trajectory of n = 3 rotorcraft that flock and follow a stationary leader. 92
4.11 The distance and norm of the velocity difference between pairs of rotorcraft. 93
4.12 The rotorcraft-averaged position and velocity approximately follow the

leader’s position and velocity. 94
4.13 The trajectory of n = 3 rotorcraft that flock and follow a leader with a

helical trajectory. 96
4.14 The distance and norm of the velocity difference between pairs of rotorcraft. 97

vii

4.15 The rotorcraft-averaged position and velocity approximately follow the
leader’s position and velocity. 98

4.16 The trajectory of n = 3 rotorcraft that flock and follow a leader that
follows a mouse’s position. 99

4.17 The distance and norm of the velocity difference between each pair of
rotorcraft. 99

4.18 The rotorcraft-averaged position and velocity approximately follow the
leader’s position and velocity. 100

viii

LIST OF TABLES

4.1 Summary of the steady-state results from Demonstrations 1–4 compared
to the theoretical results in Chapter 3. 101

ix

Chapter 1 Introduction and Motivation

A simple look around the world demonstrates that there is a multitude of life
interacting with one another from the smallest bacteria to the largest whale. No
animal lives in isolation from one another, and in fact, all life is interconnected. In
the sciences, much attention has been paid to the study of a single animal. From this
important work we have gleaned major insights into the anatomy, physiology, and
psychology of all living beings. By studying how animals move and work, biology has
given us not only insight into how nature does things but also inspiration to do it for
ourselves. We watch flying birds and swimming fish, coveting the abilities ourselves.
While all this knowledge is beautiful and worth studying, there comes a point when a
single fish becomes humdrum and a single bird mundane.

At this point, we become keenly aware, however, that animals do not live in
isolation. Indeed, animals depend on one another, whether predator or prey, big or
small. Humans also depend on one another as well as machines to perform tasks. And
why do we depend on each other? Because our ambitions are bigger than any one
person. Thus, we need to study how animals, humans, machines, satellites, and other
single agents can work together.

Example multi-agent systems include animal behavior [2], economic markets [3],
reputation systems on websites such as Amazon or Ebay [4], biological systems [5],
and computer networks [6]. With reputation systems, people read others’ experiences
buying from a seller and determine whether a seller is trustworthy or not. Other
examples of multi-agents systems include sports teams designing game plans that
accentuate their teams’ strengths while exploiting the opponent’s weaknesses, dancers
and performers performing dangerous stunts and expecting their partners to help
them land safely, employees obeying their boss’ decisions, and solving a distributed
consensus problem efficiently [7].

Multi-agent systems for vehicles have many exciting applications related such as
distributed sensing, formation flying, cooperative surveillance, and point-to-point mail
delivery. For example, autonomous aircraft or spacecraft can fly in formations for
distributed sensing [8–10]. Coordinated aircraft could be used in a forest-fire scenario
to measure wind velocities and thus, predict fire movement. In the agricultural
industry, coordinated aircraft could conduct crop surveys. All of these applications
require decentralized methods for coordinating and controlling groups of autonomous
agents [11].

Problems in multi-agent systems utilize multiple decision-making agents that may
either cooperate or compete with one another. A didactic multi-agent example is the
prisoner’s dilemma in which 2 criminals commit a crime together but are caught soon

1

after [12]. The police put the criminals into 2 separate rooms, where they attempt to
elicit information from each criminal about the other. Three outcomes can occur: (1)
if neither criminal incriminates the other, then they both serve 1 year; (2) if only one
criminal incriminates the other, then that criminal receives no penalty while the other
serves 3 years; and (3) if both criminals incriminate the other, then they both serve 2
years. Neither criminal is allowed to know what the other chooses before making their
own decision. Thus, each criminal decides what’s in their best interest with limited
information.

The prisoner’s dilemma illustrates several pivotal aspects of multi-agent systems.
Each agent (criminal) makes its own decision independent of the other. However, the
consequence of that decision affects both. In addition, each agent bases their decision
on limited information, which means that agents may make a bad choice from the
viewpoint of someone with more knowledge.

The focus of this dissertation is cooperative control, which is a subset of multi-
agent systems, where agents work together to achieve goals that may be difficult or
impossible for a single agent to achieve. Three examples of cooperative control systems
are RoboCup, complex structures, and the point-to-point passenger transport problem.
RoboCup competitors design teams of robots that play one another in soccer [13]. In
this case, the environment is dynamic, states change in real time, agents do not have
incomplete information, robots sense the environment, and each robot uses its own
control, that is, this is a distributed control problem [13].

Building complex structures is another application of cooperative control. For
example, a group of robots build a house together. Each robot uses a master set
of instructions and determine its own list of tasks, which could include grabbing
more materials, helping another robot carry a heavy beam, or holding a beam while
another robot secures it. Because robots do not require an atmosphere and other harsh
environments, such as those with high solar radiation, humans can rely on robots to
help us colonize Mars or other planets. For example, robots can prepare sites on Mars
before humans arrive or perform maintenance and repairs on equipment that may be
difficult for a human to reach or fix [14].

In point-to-point passenger-transport problems, a large number of people in dis-
tributed locations need to be transported to a set of distributed destinations. We
consider 2 approaches: a single large bus, and multiple smaller buses. Using a single
bus big enough to transport all the passengers, the bus has to visit every passenger
and every destination, which takes a long time even with an efficient route plan.
Moreover, if the bus breaks down, then nobody gets to their destination. Using
multiple smaller buses, each bus picks up fewer people at a time and transports them
to their destinations in a timely manner. Moreover, if one bus breaks down, then
the remaining buses can pick up the slack. Thus, by using multiple, smaller vehicles,
people reach their destination quicker, and the transportation system does not stop
when a vehicle breaks down.

In this dissertation, we focus on formation-control algorithms, which induce con-
figurations of agents that are beneficial to the group in some way. For example, one
car may draft off the car ahead of it to reduce wind resistance and save energy, and
additional cars drafting in a line leads to platoons of vehicles [15]. Flocking algorithms

2

derive their name from groups of birds that fly together in a giant cluster or a specific
formation such as a “V”. Flocking algorithms generalize birds to a broad range of
vehicles such as cars, rotorcraft, aircraft, underwater vehicles, and spacecraft, and
force vehicles to move into a desired configuration. The three characteristics of flocking
are collision avoidance, velocity consensus, and cohesion [16]. Collision avoidance
prevents birds colliding with one another. Velocity consensus causes the birds to fly
at the same velocity as one another, and cohesion causes birds to be close to another.
Flocking algorithms induce formations of vehicles in which the vehicles do not collide,
maintain desired inter-agent distance, and have the same velocity.

1.1 Literature Review

Two papers in particular sparked the revolution in multi-agent formation control.
In [17], agents have discrete-time dynamics with position-like and velocity-like states.
Furthermore, the velocity-like state has constant magnitude, and the heading is
updated using the average heading of nearby agents. In this case, agents approach
the same heading angle using feedback of neighboring agents’ heading angles. In [16],
agents follow the rules of flocking: collision avoidance, velocity matching, and flock
centering (staying near other agents).

For coordinated control, each agent relies on sensing to determine the relative
positions and velocities of nearby agents. Then, each agent uses these measurements
combined with other information to accomplish tasks, which can include: cohesion,
collision avoidance, velocity matching, and guidance. Cohesion attracts an agent to
nearby agents, whereas collision avoidance repels an agent from nearby agents or
obstacles. Velocity matching causes nearby agents to approach a consensus velocity,
and guidance causes an agent or agents to follow a leader agent or approach a desired
destination.

Cohesion and collision avoidance are often addressed simultaneously. Two common
cohesion methods are position-formation methods [18–20] and distance-formation meth-
ods [1, 21–28]. A survey of formation methods is presented in [29]. Position-formation
approaches force agents into a configuration by designing desired relative positions
between pairs of agents. These approaches require prescribing the desired formation
a priori and may be implemented using a linear control. Figure 1.1 demonstrates a
configuration based on a position-formation cohesion method.

In contrast, distance-formation methods induce a configuration using only a desired
distance between adjacent agents. In this case, the agents autonomously determine
their configuration based on the desired interagent distance and initial conditions.
Distance-formation approaches do not require prescribing the configuration a priori
and are typically implemented with nonlinear controls. Figure 1.2 demonstrates a
configuration based on a distance-formation cohesion method. The distance between
all pairs of adjacent agents, that is, agents that are connected by a line, is the same.
Note that in contrast to the position-formation configuration in Figure 1.1, the agents
in Figure 1.2 are not labeled because the configuration depends on initial conditions.

A common approach for distance formation is to use potential functions that create
attractive forces when nearby agents are too far away and repulsive forces when nearby

3

q1 q2

q3

q4

q5

q6

q7

Figure 1.1: A configuration of 7 agents based on a position-formation cohesion
method. The ith agent’s position is qi, and the dashed line denotes that agents can
sense one another.

agents are too close [1, 21–27]. Potential functions are typically designed so that
the potential decreases with respect to time and so that the minimum values of the
potential have desired properties. For example, in formation control the minimum
value often corresponds to the desired formation. Potential functions can also be
designed for destination seeking [30], collision avoidance [1, 8, 22,24–27,30–32], and
maintaining communication [26]. In [26], if agents are less than a certain distance
apart, then the potential function is infinity. In this case, since the potential function
is designed to be nonincreasing, it follows that for any initial condition such that
the potential function is finite, the distance between agents is always lower bounded,
which prevents collisions. Similarly, if agents are greater than a certain distance apart,
then the potential function is infinity, which ensures cohesion. However, in this case,
the gradient of the potential function, which is often in the control, may be unbounded
so implementing this control may not be practical.

Potential functions that create attractive and repulsion forces are similar to artificial
potential functions that are used for navigation (e.g., [33]). However, eliminating
undesired local minima is an open problem [33]. In the context of formation control,
undesired local minima may correspond to undesired formations. For example, when
flocking and following a leader, agents may form a compressed formation around the
leader.

Consensus algorithms [17, 34–56] can be used for multiple purposes in formation-
control algorithms. The next section addresses consensus algorithms in depth.
Formation-control algorithms often use consensus-like algorithms to achieve velocity
matching [9,18,34,45,57–59]. In addition, some consensus algorithms can be extended
to address formation control [46–48,57,58,60]. However, these approaches are position-
formation methods that force agents into a configuration using desired relative-position
vectors between pairs of agents. Approaches that use distance-formation methods
for cohesion and collision avoidance, and consensus for velocity matching lead to
formations called flocks [1, 24–28,61].

In addition to flocking, agents may also use guidance to accomplish external ob-
jectives such as following a leader agent, destination seeking, locating targets, and
avoiding obstacles. Combining flocking with external objectives increases the com-

4

Figure 1.2: A configuration of 7 agents based on a distance-formation cohesion
method. The distance between each pair of adjacent agents, that is, agents that are
connected by a line, is the same. Each circle represents an agent’s position, and the
dashed line denotes that agents are adjacent to and can sense one another.

plexity of the problem. For example, if agents are flocking and see an obstacle on
the horizon, an agent who overprioritizes flocking may not be able to safely avoid an
obstacle, whereas an agent who overprioritizes avoiding the obstacle may leave the
flock. Thus, flocking with obstacle avoidance, and more generally flocking with any
external objective(s), is difficult.

Two common forms of guidance are leader-follower methods [1,9,19,21–26,58,60,62]
and destination-seeking methods [20,63–65]. Leader-follower approaches, which are
known as formation-tracking problems in [29], rely on a centralized leader, who can
be an actual or virtual member of the formation and whose real-time position and
velocity are known by all agents [1, 22–26] or at least by some [9, 19, 21]. Each
agent uses knowledge of the centralized leader and measurements of nearby agents to
induce a formation and follow the leader. In contrast, destination-seeking methods
(e.g., [20, 63–65]) cause agents to approach desired destinations.

Agent dynamics affect both the analysis and implementation of formation-control
algorithms. Formation-control algorithms are commonly implemented using single-
integrator dynamics [8, 42,66,67], double-integrator dynamics [1, 24,25,27,28,30–32,
36,42,66–68], unicycle-like dynamics [9, 22,69], and linear dynamics [18, 34,35,45,57–
59,70, 71]. In particular, some algorithms for linear dynamics apply to heterogeneous
vehicles [35, 45, 58], that is, vehicles with non-identical dynamics. In addition, the
approaches in [1, 6, 9, 19, 20, 22, 24–27, 30, 58, 66, 68, 72, 73] consider continuous-time
dynamics, whereas [34, 35, 37–42, 44, 46, 49, 57, 60, 62, 74–76] consider discrete-time
dynamics. Formation-control algorithms may be designed using continuous-time
dynamics, but implementing these algorithms requires sampled data. The results
in [77] demonstrate several examples, where a control designed for continuous-time
dynamics and implemented in a sampled-data setting fails.

In this dissertation, we provide experimental demonstration of the discrete-time
flocking algorithm. Experimental demonstrations of formation-control algorithms
are in [22,23,78–80]. Of these, only [79,80] consider quadcopters, but [79,80] use a
position-formation algorithm for cohesion, whereas the experimental demonstrations
in this dissertation use a distance-formation approach.

5

1.2 Introduction to Consensus Algorithms

Consensus algorithms cause agents to agree upon a value and are the basis of many
formation-control algorithms. In this section, we present graph-theoretic material
related to consensus algorithms, specifically the Laplacian matrix. Furthermore, we
demonstrate how consensus algorithms use the Laplacian matrix.

Let n be a positive integer and define I , {1, 2, . . . , n}. The elements of I are called
vertices, and I is the vertex set. Define E , {{i, j} : i, j ∈ I and i 6= j}. The elements
of E are called edges and E is called the edge set. Consider the graph G(I, E1), where
E1 ⊆ E . Since the elements of E are distinct and {i, j} ∈ E implies i 6= j, the graph
G(I, E1) does not contain any self loops or multiple edges between any 2 nodes. For all
{i, j} ∈ E , we call wi,j = wj,i ≥ 0 the weight of {i, j}. Furthermore, for all {i, j} ∈ E1,
wi,j > 0; and for all {i, j} 6∈ E1, wi,j = 0. Thus, wi,j = 0 is equivalent to {i, j} not
being an edge in the graph G(I, E1). We say that the graph G(I, E1) is connected if
for all i, j ∈ I such that i 6= j, there exists a potentially null sequence i1, . . . , il ∈ I
such that {i, i1}, {i1, i2}, {i2, i3}, . . . , {il−1, il}, {il, j} ∈ E1.

Graphs may be represented visually. The following example provides a visual
representation of a graph.

Example 1. Let n = 7, and let

E1 = {{1, 2}, {1, 3}, {2, 4}, {3, 4}, {4, 5}, {4, 6}, {5, 7}, {6, 7}}.

Figure 1.3 is a visual representation of the graph G(I, E1). 4

1 2

3

4

5

6

7

w1,2

w1,3

w2,4

w3,4

w4,5

w5,7

w6,7

w4,6

Figure 1.3: The graph G(I, E1) has 7 vertices and 8 edges.

The adjacency matrix of the graph G(I, E1) is

A(G) ,




0 w1,2 · · · w1,n

w2,1 0
...

...
. . . wn−1,n

wn,1 · · · wn,n−1 0


 ∈ Rn×n;

6

the degree matrix of the graph G(I, E1) is

D(G) ,




∑
j∈I\{1}w1,j 0 · · · 0

0
∑

j∈I\{2}w2,j
...

...
. . . 0

0 · · · 0
∑

j∈I\{n}wn,j



∈ Rn×n;

and the Laplacian matrix of the graph G(I, E1) is

L(G) , D(G)− A(G).

It follows from [81] that L(G) is positive semidefinite. Furthermore, L(G) has exactly
1 eigenvalue at 0 if and only if G(I, E1) is connected.

To develop consensus algorithms, we define the states of n agents. For all i ∈ I,
let xi(`) ∈ R be the ith agent’s state at time `. In this dissertation, we consider
both continuous-time and discrete-time algorithms. For continuous time, we use
` = t ∈ [0,∞). For discrete time, we use ` = k ∈ {0, 1, 2, . . . }. We say that the agents
in I reach consensus if for all {i, j} ∈ E ,

lim
`→∞

[xj(`)− xi(`)] = 0.

For all i ∈ I, define the neighbor set

Ni , {j ∈ I : {i, j} ∈ E1},

which is the set of vertices with an edge that is connected to the ith vertex. In
the following examples, we demonstrate continuous-time and discrete-time consensus
algorithms.

Example 2. For all i ∈ I, consider the continuous-time dynamics given by

ẋi(t) = ui(t), (1.1)

where t ≥ 0, and xi(t) ∈ R and ui(t) ∈ R are the ith agent’s state and control. For all
i ∈ I, consider the control ui : R× · · · × R→ R defined by

ui(x1, . . . , xn) ,
∑

j∈Ni
wi,j[xj − xi]. (1.2)

Then, it follows from (1.1) and (1.2) that the closed-loop dynamics are



ẋ1(t)

...
ẋn(t)


 = −L(G)



x1(t)

...
xn(t)


 .

If G(I, E1) is connected, then [6, Lemma 1] implies that the agents in I reach consensus.
4

7

Example 3. For all i ∈ I, consider the discrete-time dynamics given by

xi(k + 1) = xi(k) + ui(k), (1.3)

where k ∈ {0, 1, . . . }, and xi(k) ∈ R and ui(k) ∈ R are the ith agent’s state and
control. For all i ∈ I, consider the control ui : R× · · · × R→ R defined by

ui(x1, . . . , xn) ,
∑

j∈Ni
wi,j[xj − xi]. (1.4)

Then, it follows from (1.3) and (1.4) that the closed-loop dynamics are


x1(k + 1)

...
xn(k + 1)


 = [I − L(G)]



x1(k)

...
xn(k)


 .

If for all i ∈ I,
∑

j∈Ni wi,j < 1, then [6, Theorem 2] implies that the agents in I reach
consensus. 4

The above introduction considers the consensus problem for n agents in one dimen-
sion. Extensions of the above the results to arbitrary dimension is possible, for example
in [18]. Consensus algorithms are also designed using directed graphs, where the edge
set is defined using ordered pairs of elements [67]. Other research in consensus includes
time-varying communication topologies [36, 71, 82] and time delays [35, 67, 70, 82].
Results for time-varying communication topologies and time delays rely on having a
connected communication topology at all times and a bounded delay.

1.3 Flocking Problem Formulation

Let the positive integer n be the number of agents, and let I , {1, 2, . . . , n} be the
agent index set. Let the positive integer m be the spatial dimension. Let qi(`) ∈ Rm

and pi(`) ∈ Rm be the ith agent’s position and velocity at time `, respectively. In
this dissertation, we consider both continuous-time and discrete-time algorithms. For
continuous time, we use ` = t ∈ [0,∞). For discrete time, we use ` = k ∈ {0, 1, 2, . . . }.

Let P , {(i, j) ∈ I × I : i 6= j} be the set of ordered pairs, and let δc > 0 be
the the minimum acceptable distance between agents. Let || · || be the 2-norm. If
||qj(`)− qi(`)|| ≤ δc, then the agents collide. The rules of flocking based on [16] are:

(F1) [Collision avoidance] For all (i, j) ∈ P and all `, ||qj(`)− qi(`)|| > δc.

(F2) [Velocity consensus] For all (i, j) ∈ P , limk→∞[pj(k)− pi(k)] = 0.

(F3) [Cohesion] There exists b > 0 and exists `0 ∈ [0,∞) such that for all ` ≥ `0,
max(i,j)∈P ||qj(`)− qi(`)|| ≤ b.

Condition (F1) states that there are no collisions. Condition (F2) states that agents
asymptotically have the same velocity. Condition (F3) states that the maximum
distance between agents is bounded asymptotically.

8

In addition to flocking, agents may have external objectives such as approaching a
set of destinations, following a leader, and avoiding obstacles, which are accomplished
with guidance. The additional objectives from guidance may conflict with flocking.
For example, if each agent has a unique destination, then agents must decide whether
it’s better to stay in a flocking configuration or to leave the configuration and approach
the destination. The combined problem of flocking and guidance, specifically following
a leader, is considered more difficult than flocking by itself [29].

To address flocking and guidance, let rc > δc be the communication radius. If
||qj(`) − qi(`)|| < rc, then the ith agent can detect the jth agent’s relative position
and relative velocity at time ` and use the relative position and relative velocity in
feedback, and vice versa. Define the neighbor set

Ni(`) , {j ∈ I \ {i} : ||qj(`)− qi(`)|| < rc},

which is the set of agents that the ith agent can detect.
We address cohesion and collision avoidance together. Both position-formation and

distance-formation methods induce configurations of agents that achieve cohesion and
collision avoidance. Position-formation methods specify the desired configuration a
priori by choosing the desired relative position between pairs of agents. For each
(i, j) ∈ P, let δji ∈ Rm be the desired relative position from the ith to the jth agent.
Consider the ith agent’s position-formation control Pi : Rmn → Rm defined by

Pi(q) ,
∑

j∈Ni
α[qj − qi − δji], (1.5)

where α > 0 is the position-formation gain and

q(`) ,



q1(`)

...
qn(`)


 .

Note that Pi(q) is an affine function of position.
In contrast to position-formation methods, distance-formation methods specify

the desired distance between pairs of agents. The following example demonstrates
a distance-formation method for cohesion. Let d ∈ (δc, rc) be the desired distance
between pairs of agents. Let φ : [0,∞)→ R be a continuous function such that: for
all η ∈ [0, d), φ(η) < 0; for all η ∈ (d,∞), φ(η) > 0; and φ(d) = 0. Consider the ith
agent’s distance-formation control Di : Rmn → Rm defined by

Di(q) ,
∑

j∈Ni
φ(||qj − qi||)[qj − qi], (1.6)

which is nonlinear.
To achieve velocity consensus, consider the ith agent’s velocity-consensus control

Vi : Rmn → Rm defined by

Vi(p) ,
∑

j∈Ni
β[pj − pi], (1.7)

9

where β > 0 is the velocity-consensus gain and

p(`) ,



p1(`)

...
pn(`)


 .

The velocity-consensus control uses a consensus algorithm to cause the ith agent to
approach a weighted average of its own and its neighbors’ velocities.

To follow a leader agent, let qg ∈ Rm and pg ∈ Rm be the leader’s position and
velocity. Consider the ith agent’s guidance control Li : Rm × Rm × Rm × Rm → Rm

defined by
Gi(qi, pi, qg, pg) , γ1[qg − qi] + γ2[pg − pi], (1.8)

where γ1 > 0 and γ2 > 0.
To achieve (F1)–(F3) and guidance, flocking controls typically contain a summation

of collision-avoidance, velocity consensus, cohesion, and guidance terms; and the
collision-avoidance and cohesion terms are often combined. More specifically, the ith
agent’s flocking control typically has the form

ui(`) , Ci(`) + Vi(`) +Gi(`), (1.9)

where Ci(`) is the collision-avoidance and cohesion term, Vi(`) is the velocity-consensus
term, and Gi(`) is the guidance term. The flocking algorithms in [46–48, 57, 58, 60]
use Ci(`) ≡ Pi(q(`)) to achieve (F3). If for all (i, j) ∈ P, δji = 0, then (1.5) is a
consensus algorithm that causes all agents to converge to the same position. The
flocking algorithms in [1, 21–27] use Ci(`) ≡ Di(q(`)) to achieve (F3).

In this dissertation, we develop and analyze flocking algorithms that cause agents to
approach a set of destinations and follow a leader using distance-formation methods.
The flocking algorithms we design have provable properties related to the configuration
of agents, such as collision-free trajectories and bounded flock size. We also provide
sufficient conditions such that agents reach their destinations and follow a leader.

1.4 Summary of Contributions

Chapter 2 presents a new multi-agent control method that addresses the combined
problem of flocking and destination seeking. The method is completely decentralized,
that is, each agent’s controller relies on local sensing to determine the relative positions
and velocities of nearby agents but does not rely on a centralized flock leader. Each
agent has double-integrator dynamics and a potentially unique destination (i.e.,
position) that the agent must reach. We demonstrate that the flocking-and-destination-
seeking control method accomplishes 2 objectives: if an agent is far from its destination,
then that agent flocks with nearby agents, and if an agent is close to its destination,
then that agent approaches its destination. The flocking-and-destination-seeking
algorithm is demonstrated with several numerical examples. The novelty of the
algorithm in this chapter is the combination of competing objectives, that is, flocking
and destination seeking. Flocking algorithms typically consider only a centralized

10

leader that the agents follow, but in practical applications agents may have other
objectives that are independent of other agents. The algorithm in this chapter allows
agents to have an objective of which other agents do not have knowledge. The results
of this research are published in [61].

Chapter 3 presents a new multi-agent control method that addresses flocking in
discrete time. The method is decentralized. Each agent has the discrete-time double-
integrator dynamics obtained by sampling the continuous-time double integrator and
applying a zero-order hold on the control input. The method can use a centralized
flock leader for guidance. We use a novel flock-correction-to-guidance term that
prevents formations from collapsing around the leader. We demonstrate with analysis
that agents using the discrete-time flocking method converge to a set of flocking
formations. Notably, the flocking analysis relies on logarithmic potential functions.
We also provide simulations demonstrating that agents using the discrete-time flocking
method converge to a set of flocking formations and follow the centralized leader (if
applicable). The results of this research are published in [83].

Chapter 4 validates the discrete-time flocking control method by implementing the
control on rotorcraft. We present several experimental demonstrations of flocking with
and without a leader. We compare the experimental demonstrations with applicable
results in Chapter 3. The results demonstrate that in every case, the rotorcraft tend to
a flocking configuration and do not collide with one another. In addition, the velocity
difference between rotorcraft is bounded, and the rotorcraft approximately follow the
leader with delay.

11

Chapter 2 Continuous-Time Flocking and Destination Seeking

We present a multi-agent control method that addresses the combined problem of
flocking and destination seeking. The method is completely decentralized, that is,
each agent’s controller relies on local sensing to determine the relative positions and
velocities of nearby agents but does not rely on a centralized flock leader. Each agent
has double-integrator dynamics and a potentially unique destination (i.e., position)
that the agent must reach. We demonstrate that the flocking-and-destination-seeking
control method accomplishes 2 objectives: (i) if an agent is far from its destination,
then that agent flocks with nearby agents, and (ii) if an agent is close to its destination,
then that agent approaches its destination. The flocking-and-destination-seeking
algorithm is demonstrated with several numerical examples.

2.1 Introduction

Multi-agent systems have many exciting applications such as distributed sensing,
formation flying, cooperative surveillance, and point-to-point mail delivery. For
example, autonomous aircraft or spacecraft can fly in formations for distributed sensing
[8, 9]. Coordinated aircraft could be used in a forest-fire scenario to measure wind
velocities and thus, predict fire movement. In the agricultural industry, coordinated
aircraft could conduct crop surveys. All of these applications require decentralized
methods for coordinating and controlling groups of autonomous agents [11].

For coordinated control, each agent relies on sensing to determine the relative
positions and velocities of nearby agents. Then, each agent uses these measurements
combined with other information such as mission objectives to accomplish tasks, which
can include: cohesion, collision avoidance, velocity matching, and guidance. Cohesion
attracts an agent to nearby agents, whereas collision avoidance repels an agent from
nearby agents (or obstacles). Velocity matching causes nearby agents to approach a
consensus velocity, and guidance causes an agent or agents to follow a leader agent or
approach a desired destination.

Cohesion and collision avoidance can be addressed using position-formation methods
[18–20] or distance-formation methods [1, 21–28]. Position-formation approaches force
agents into a configuration using desired relative-position vectors between pairs of
agents. In contrast, distance-formation methods induce a configuration using only
a desired distance between adjacent agents. In this case, the agents autonomously
determine their configuration based on the desired interagent distance and initial
conditions. A common approach for distance formation is to use potential functions
that create attractive forces when nearby agents are too far away and repulsive

12

forces when nearby agents are too close [1, 21–27]. A survey of multi-agent formation
methods is presented in [29]. Consensus algorithms [42,67,68,71] are used to achieve
velocity matching. Approaches that use distance-formation methods for cohesion and
collision avoidance, and consensus for velocity matching lead to formations called
flocks [1, 24–28].

Agent guidance is often addressed using leader-follower methods [1, 9, 19, 21–26]
or destination-seeking methods [20, 63–65]. Leader-follower approaches rely on a
centralized leader, who can be an actual or virtual member of the formation and
whose real-time position and velocity are known by all agents [1, 22–26] or at least by
some [9,19,21]. Each agent uses knowledge of the centralized leader and measurements
of nearby agents to induce a formation and follow the leader. In contrast, destination-
seeking methods (e.g., [20, 63–65]) cause agents to approach desired destinations.
The flocking algorithms with leader-follower guidance in [1, 19,21–26] do not address
destination seeking, and the destination-seeking methods in [20,63–65] do not address
flocking. In contrast to [1,9,18–29,63–65], this chapter addresses the combined problem
of flocking and destination seeking.

The flocking-and-destination-seeking control objective is twofold—if an agent is
far from its destination, then it flocks with nearby agents, but ultimately each agent
approaches its destination. The flocking-and-destination-seeking algorithm in this
paper uses a distance-formation approach for cohesion and collision avoidance, a
consensus algorithm for velocity matching, and a destination-seeking method for
guidance. The main analytic results in this chapter examine the formation properties
of agents and provide sufficient conditions for agents to converge to their destinations.
Flocking and destination seeking is also considered in [30]; however, the analysis in [30]
considers only a single destination and does not examine formation properties.

The flocking-and-destination-seeking algorithm that we present is completely de-
centralized, namely, each agent’s controller does not incorporate a centralized leader
and relies on only local sensing to determine the relative positions and velocities
of nearby agents. Each agent has knowledge of its own destination but does not
require knowledge of other agents’ destinations. The controller in this chapter achieves
multiple objectives, that is, flocking and destination seeking, and thus, extends the
work of [1, 9, 18–30,63–65].

The combined flocking-and-destination-seeking problem has applications such as
point-to-point passenger transport and point-to-point mail delivery. For example,
consider a group of autonomous ground vehicles on a highway, where each vehicle has
a unique destination that it needs to reach. While traveling to the destination, it is
beneficial for a vehicle to reduce wind resistance and energy expenditure by drafting off
neighboring vehicles. When a vehicle gets close to its destination, it leaves the flock and
approaches the destination. The remaining vehicles then form a new flock and repeat
the process until all vehicles reach their destinations. Example 5 in Section 2.7 applies
the flocking-and-destination-seeking algorithm to a vehicles-on-a-highway problem.

13

2.2 Problem Formulation

Let the positive integer n be the number of agents, and define I , {1, 2, . . . , n},
which is the agent index set. For each i ∈ I, consider the double-integrator dynamics

q̇i(t) = pi(t), (2.1)

ṗi(t) = ui(t), (2.2)

where t ≥ 0; qi(0) and pi(0) are the initial conditions; and qi(t) ∈ Rm, pi(t) ∈ Rm, and
ui(t) ∈ Rm are the position, velocity, and control of the ith agent, respectively. Define
P , {(i, j) ∈ I × I : i 6= j}, which is the set of ordered pairs, and let || · || denote the
Euclidean norm.

Let δc ≥ 0 be the collision radius, which is the desired minimum separation distance
between agents. The rules for flocking are that agents stay close to one another, avoid
collisions, and match velocities [16]. We use these rules to define flocking. Let T be a
connected subset of [0,∞). Then, the agents in I flock with radius d > δc over the
interval T if the following conditions hold:

(F1) For all (i, j) ∈ P and all t ∈ T ,

||qi(t)− qj(t)|| > δc.

(F2) For all (i, j) ∈ P and all t ∈ T ,

||pj(t)− pi(t)|| ≈ 0.

(F3) For all i ∈ I and all t ∈ T ,

max
j∈I\{i}

||qj(t)− qi(t)|| ≤ d(n− 1).

(F4) For all i ∈ I and all t ∈ T ,

min
j∈I\{i}

||qj(t)− qi(t)|| ≈ d.

Condition (F1) states that there are no collisions. Condition (F2) states that all
agents have approximately the same velocity. Condition (F3) states that each agent is
at most a distance d(n− 1) away from its farthest neighbor. Condition (F4) states
that each agent maintains a distance of approximately d from its nearest neighbor.

We address not only flocking but also destination seeking. For all i ∈ I let ξi ∈ Rm

be the ith agent’s destination. Let rβ ≥ 0, and for each i ∈ I and each t ≥ 0 we say
the ith agent is far from its destination if ||ξi− qi(t)|| > rβ. Assume there exists tf > 0
such that for all t ∈ [0, tf) the agents in I are far from their destinations. In this case,
we consider 2 objectives:

(O1) Flocking: The agents in I flock with radius d > 0 over a connected subset of
[0, tf).

14

(O2) Destination seeking: For all i ∈ I, limt→∞ qi(t) = ξi and limt→∞ pi(t) = 0.

Objective (O1) states that if agents are far from their destinations, then they
flock. Objective (O2) states that each agent approaches its destination asymptotically.
Unless otherwise stated, all statements in this chapter that involve the subscript i are
for all i ∈ I.

2.3 Review of Algorithm 1 from [1]

We review Algorithm 1 from [1], which is a flocking method for agents with double-
integrator dynamics. Let ε > 0, and consider || · ||ε : Rm → [0,∞) defined by

||x||ε ,
1

ε

(√
1 + ε||x||2 − 1

)
. (2.3)

Note that || · ||ε is continuously differentiable on Rm, but || · ||ε is not a norm on Rm.
Define σε : Rm → Rm by

σε(x) ,

(
∂

∂x
[||x||ε]

)T

=
x

1 + ε||x||ε
. (2.4)

Next, let h ∈ (0, 1), and define ρh : [0,∞)→ [0, 1] by

ρh(η) ,





1, if η ∈ [0, h),
1

2
+

1

2
cosπ

η − h
1− h, if η ∈ [h, 1],

0, if η ∈ (1,∞),

(2.5)

which decreases from 1 to 0 as η increases from 0 to ∞, and the rate of change of ρh
depends on h. Let b ≥ a > 0, define c , (b− a)/

√
4ab, and consider φ : R→ (−b, a)

defined by

φ(η) ,
1

2

[
(a+ b)(η + c)√

1 + (η + c)2
+ (a− b)

]
, (2.6)

which is a sigmoidal function.
Next, let rc > 0 be the communication radius, which is the maximum distance at

which an agent can sense another agent’s relative position and relative velocity. For
all t ≥ 0, define the neighbor set Ni(t) , {j ∈ I \ {i} : ||qj(t)− qi(t)|| < rc}, which is
the set of agents whose distance to the ith agent is no greater than the communication
radius rc at time t. Let d ∈ (δc, rc] be the flock radius, which is the desired distance
between agents in the flock.

For all t ≥ 0, define

q(t) ,



q1(t)

...
qn(t)


 , p(t) ,



p1(t)

...
pn(t)


 .

15

Then, [1, Algorithm 1] considers the control ui(t) ≡ vi(q(t), p(t)), where

vi(q, p) ,
∑

j∈Ni
ρh

(||qj − qi||ε
||rc||ε

)
φ(||qj − qi||ε − ||d||ε)σε(qj − qi)

︸ ︷︷ ︸
Flock attraction and repulsion

+
∑

j∈Ni
ρh

(||qj − qi||ε
||rc||ε

)
[pj − pi]

︸ ︷︷ ︸
Velocity consensus

. (2.7)

For each t ≥ 0 and each j ∈ Ni(t), the flock-attraction-and-repulsion term in (2.7)
is such that the ith agent is attracted to the jth agent if ||qj(t) − qi(t)|| > d, and
repelled from the jth agent if ||qj(t)− qi(t)|| < d. The velocity-consensus term in (2.7)
attempts to match the ith agent’s velocity with a weighted average of the velocities of
all agents in the neighbor set.

The parameters in the control (2.7) are ε, h, a, and b. Increasing ε decreases the
strength of the flock-attraction-and-repulsion term relative to the strength of the
velocity-consensus term. Increasing h increases the rate of change of ρh. Increasing a
increases the strength of attraction relative to the strength of repulsion and velocity
consensus. Increasing b increases the strength of repulsion relative to the strength of
attraction and velocity consensus.

Theorem 1 of [1] provides conditions such that the agents with dynamics (2.1), (2.2)
and control ui = vi form at least one flock. However, the control ui = vi can cause
fragmentation, that is, ui = vi can result in multiple flocks rather than a single flock.
Thus, the control ui = vi may violate (F3). In contrast, [1, Algorithm 2] is shown to
force the agents in I to flock without fragmentation. However, [1, Algorithm 2] relies
on a centralized flock leader whose position and velocity are known by each agent and
is used in each agent’s control. Neither [1, Algorithm 1] nor [1, Algorithm 2] address
destination seeking and thus cannot be used to achieve (O2).

2.4 Flocking and Destination Seeking

We present a control that combines flock-attraction-and-repulsion and velocity-
consensus terms with additional terms to achieve (O1) and (O2). For all t ≥ 0, define
the attraction set

Ai(t) , {j ∈ I \ {i} : d ≤ ||qj(t)− qi(t)|| < rc} ⊆ Ni(t),

which is the set of agents whose distances from the ith agent are between the flock
and communication radii. Define

Ai(q) ,
∑

j∈Ai
ρh

(||qj − qi||ε
||rc||ε

)
φ(||qj − qi||ε − ||d||ε)σε(qj − qi), (2.8)

which has the same form as the flock-attraction-and-repulsion term in (2.7) except
that the neighbor set Ni is replaced by the attraction set Ai. Next, for all t ≥ 0,

16

define the repulsion set

Ri(t) , {j ∈ I \ {i} : ||qj(t)− qi(t)|| < d} ⊆ Ni(t),
which is the set of agents whose distances to the ith agent are less than the flock
radius. Define

Ri(q) ,
∑

j∈Ri
ρh

(||qj − qi||ε
||rc||ε

)
φ(||qj − qi||ε − ||d||ε)σε(qj − qi), (2.9)

which has the same form as the flock-attraction-and-repulsion term in (2.7) except that
the neighbor set Ni is replaced by the repulsion set Ri. For all t ≥ 0, Ai(t) ∪Ri(t) =
Ni(t), and Ai(q) +Ri(q) is equal to the flock-attraction-and-repulsion term in (2.7).
Next, define

Ci(q, p) ,
∑

j∈Ni
ρh

(||qj − qi||ε
||rc||ε

)
[pj − pi], (2.10)

which is the velocity-consensus term in (2.7). Therefore, vi(q, p) = Ai(q) + Ri(q) +
Ci(q, p).

Let rα ∈ [0, rβ], and for all t ≥ 0, we say that the ith agent is close to its destination
if ||ξi − qi(t)|| ≤ rα. Let µ : [0,∞)→ [0, 1] be a continuous function that satisfies the
following properties:

(M1) If η ≥ rβ, then µ(η) = 1.

(M2) If η < rα, then µ(η) = 0.

(M3) ∂µ(||x||)/∂x is continuous on Rm.

If rβ > rα ≥ 0, then an example µ that satisfies (M1)–(M3) is

µ(η) =





0, if η ≤ rα,

1

2
+

1

2
cosπ

r2β − η2
r2β − r2α

, if rα < η < rβ,

1, if η ≥ rβ,

(2.11)

which is shown in Figure 2.1. Note that if rα = rβ = 0, then (M1) implies that µ = 1.
For all t ≥ 0, define zi(t) , ξi − qi(t), which is the vector from the ith agent to its

destination. If the ith agent is far from its destination, then the ith agent’s objective
is to flock with nearby agents. In contrast, if the ith agent is close to its destination,
then the ith agent’s objective is not to flock but rather to reach its destination.

The following result considers a control that consists of the flock attraction µ(||zi||)Ai(q),
flock repulsion Ri(q), and velocity consensus µ(||zi||)Ci(q, p). The result is confirmed
by direct calculation.

Proposition 1. Consider (2.1) and (2.2), where for all t ≥ 0,

ui(q(t), p(t), zi(t)) = µ(||zi(t)||)Ai(q(t)) +Ri(q(t)) + µ(||zi(t)||)Ci(q(t), p(t)). (2.12)

Then, the following statements hold:

17

0 rα rβ

0

1

η

µ

Figure 2.1: An example µ : [0,∞)→ [0, 1] that satisfies (M1)–(M3).

(a) If ||zi(t)|| ≥ rβ, then ui(q(t), p(t), zi(t)) = vi(q(t), p(t)).

(b) If ||zi(t)|| < rα, then ui(q(t), p(t), zi(t)) = Ri(q(t)).

(c) ui(q, p, zi) is continuously differentiable on Rmn × Rmn × Rm.

Part (a) states that if the ith agent is far from its destination, then (2.12) is
equivalent to (2.7). Part (b) states that if the ith agent is close to its destination,
then (2.12) consists of only flock repulsion. Thus, if ||zi(t)|| < rα, then the ith agent
is neither attracted to nor matches velocities with nearby agents.

We now describe two additional desired properties for the agents in I. Let r2 > r1 >
0. If ||zi(t)|| > r2, then we want the ith agent’s speed ||pi(t)|| to tend to the flocking
speed pf > 0. In contrast, if ||zi(t)|| ≤ r1, then we want the ith agent to approach its
destination. Specifically, if ||zi(t)|| ≤ r1, then we want qi to satisfy the differential
equation

ÿi(t) + 2ζωnẏi(t) + ω2
nyi(t) = ω2

nξi, (2.13)

where yi(t) ∈ Rm, ωn > 0, and ζ > 0.
To achieve these properties, we consider a control that includes destination-seeking

and damping terms. Let γ ∈ (0, ω2
nr1), and consider ν : [0,∞)→ (0, ω2

n] defined by

ν(η) ,





ω2
n, if η ≤ r1,

1

2

(
ω2
n +

γ

η

)
− 1

2

(
ω2
n −

γ

η

)
cosπ

r22 − η2
r22 − r21

, if r1 < η < r2,

γ

η
, if η ≥ r2,

(2.14)

which is continuously differentiable on [0,∞) and shown in Figure 2.2. We use the
destination-seeking control ν(||zi||)zi to attract the ith agent to its destination.

18

0 r1 r2

0

γ/r2

ω2
n

η

κ

Figure 2.2: A plot of ν : [0,∞) → (0, ω2
n], which is continuously differentiable on

[0,∞). For all η ≤ r1, ν(η) = ω2
n, and for all η ≥ r2, ν(η) = γ/η.

Next, consider κ : [0,∞)→ (−∞, 0) defined by

κ(η) ,





−2ζωn, if η ≤ r1,

−1

2

(
2ζωn +

γ

pf

)
− 1

2

(
2ζωn −

γ

pf

)
cosπ

r22 − η2
r22 − r21

, if r1 < η < r2,

− γ
pf
, if η ≥ r2,

(2.15)

which is continuously differentiable on [0,∞) and shown in Figure 2.3. We use the
damping control κ(||zi||)pi to oppose the velocity pi.

0 r1 r2

−2ζωn

−γ/pf
0

η

κ

Figure 2.3: A plot of κ : [0,∞) → (−∞, 0), which is continuously differentiable on
[0,∞). For all η ≤ r1, κ(η) = −2ζωn, and for all η ≥ r2, κ(η) = −γ/pf .

19

Define

ξ ,



ξ1
...
ξn


 .

The following result demonstrates that a control composed of destination seeking
ν(||zi||)zi and damping κ(||zi||)pi forces the ith agent’s position qi to converge asymp-
totically to its destination ξi.

Proposition 2. Consider (2.1) and (2.2), where for all t ≥ 0,

ui(zi(t), pi(t)) = ν(||zi(t)||)zi(t) + κ(||zi(t)||)pi(t). (2.16)

Then, the following statements hold:

(a) (q(t), p(t)) ≡ (ξ, 0) is a globally asymptotically stable equilibrium of (2.1), (2.2),
and (2.16).

(b) There exists t1 > 0 such that for all t ≥ t1, ||zi(t)|| ≤ r1 and qi(t) satisfies

q̈i(t) + 2ζωnq̇i(t) + ω2
nqi(t) = ω2

nξi.

(c) Assume ||zi(0)|| > r2. Then, there exists t0 > 0 such that for all t ∈ [0, t0),

ui(zi(t), pi(t)) =
γ

||zi(t)||
zi(t)−

γ

pf
pi(t).

(d) ui(zi, pi) is continuously differentiable on Rm × Rm.

Part (b) states that there exists a time after which an agent approaches its destination
with the dynamics (2.13) of a damped oscillator. If an agent’s initial position is greater
than r2 from its destination, then part (c) provides an expression for the destination-
seeking-and-damping control.

If ||zi(t)|| > r2, then (2.14) and (2.15) imply that (2.16) is equivalent to ui(zi(t), pi(t)) =
γzi(t)/||zi(t)|| − γpi(t)/pf . In this case, it follows from (2.2) that pi(t) satisfies

ṗi(t) = − γ
pf
pi(t) +

γ

||zi(t)||
zi(t), (2.17)

which can be viewed as a linear time-invariant differential equation with the bounded
input γzi(t)/||zi(t)||. If the destination ξi is infinitely far from the position qi (i.e.,
||zi|| = ∞), then zi/||zi|| is a constant unit vector. In this case, (2.17) implies that
pi(t) tends toward pfzi(t)/||zi(t)||, and the speed ||pi(t)|| tends toward pf . Thus, if
||zi(t)|| is sufficiently large, then the ith agent has forces that drive its speed ||pi(t)||
toward pf .

We now combine the flock-attraction, flock-repulsion, velocity-consensus, destination-
seeking, and damping terms to form the control

ui(q, p, zi) = µ(||zi||)Ai(q)︸ ︷︷ ︸
Flock attraction

+ Ri(q)︸ ︷︷ ︸
Flock

repulsion

+µ(||zi||)Ci(q, p)︸ ︷︷ ︸
Velocity
consensus

20

+ ν(||zi||)zi︸ ︷︷ ︸
Destination
seeking

+κ(||zi||)pi︸ ︷︷ ︸
Damping

. (2.18)

Since (2.18) is the sum of the controllers in Propositions 1 and 2, it follows that (2.18)
is continuously differentiable on Rmn × Rmn × Rm. In addition, we note that flock
attraction, flock repulsion, and destination seeking are bounded.

The parameters of ui are ε, h, a, b, rα, rβ, µ, r1, r2, γ, pf , ζ, and ωn, where the first
6 parameters and the function µ apply to the flock-attraction, flock-repulsion, and
velocity-consensus terms, and the latter 6 parameters apply to the destination-seeking
and damping terms. Note that ε, h, a, and b are discussed in Section 2.3. We now
discuss rα, rβ, µ, r1, r2, γ, pf , ζ, and ωn.

The radii rα, rβ, r1, and r2 determine the ith agent’s control behavior for specific
distances from its destination ξi. If ||zi(t)|| > rβ, then the ith agent and nearby agents
attempt to flock. If ||zi(t)|| ≤ rα, then the ith agent is repelled from nearby agents
but does not attempt to flock. If ||zi(t)|| > r2, then the ith agent has forces that drive
its speed ||pi(t)|| toward pf . If ||zi(t)|| ≤ r1, then the ith agent has forces that make it
behave like the damped oscillator. While r1 = rα and r2 = rβ is an intuitive choice,
this is not required.

The function µ determines the strength of flock attraction and velocity consensus
relative to flock repulsion, destination seeking, and damping. If µ(||zi(t)||) = 1, then
the combination of flock-attraction, flock-repulsion, and velocity-consensus terms
in (2.18) is equal to the combination of flock-attraction-and-repulsion and velocity-
consensus terms in (2.7). As µ(||zi(t)||) decreases, the strength of flock attraction
and velocity consensus decreases relative to flock repulsion, destination seeking, and
damping. If µ(||zi(t)||) = 0, then the flock-attraction and velocity-consensus terms
are zero.

For ||zi(t)|| ≥ r2, γ is the magnitude of the destination-seeking term ν(||zi(t)||)zi(t).
In this case, increasing γ increases the ith agent’s attraction to its destination. For
||zi(t)|| ≥ r2, increasing γ also increases the rate at which the ith agent’s speed ||pi(t)||
tends to pf . The flocking speed pf , which is the desired speed of agents, can be chosen
for a variety of reasons such as fuel or time constraints.

Finally, ζ and ωn are the damping ratio and natural frequency of the dynamics
(2.13) that govern the desired behavior of an agent when it’s near its destination.

2.5 Flocking Analysis

In this section, we analyze the flocking behavior of agents with control (2.18). Since
(2.18) is designed to drive each agent to its destination, the agents flock over at most
a finite time interval before approaching their destinations. To analyze flocking, we
impose assumptions on the destinations so that we can use asymptotic analysis to
examine flocking. In particular, we impose assumptions that preclude agents from
reaching their destinations, and thus allow us to demonstrate flocking with asymptotic
analysis.

21

To analyze asymptotic flocking, we could consider destinations ξ1, . . . , ξn that are
infinitely far from the initial positions q1(0), . . . , qn(0). However, in this case, zi = ξi−qi
is not well defined. Instead, we impose the following assumptions regarding the agents’
destinations:

(A1) All agents have the same destination, and this destination moves with constant
velocity χ ∈ Rm, where ||χ|| = pf .

(A2) For all t ≥ 0, ||zi(t)|| > max {rβ, r2}.

These assumptions are used for flocking analysis only and apply only to this
section of the chapter. We refer to (A1) as the moving-destination assumption.
Assumption (A2) combined with (M1), (2.14), and (2.15) implies that µ(||zi(t)||) = 1,
ν(||zi(t)||)zi(t) = γzi(t)/||zi(t)||, and κ(||zi(t)||) = −γ/pf . Thus, (A2) implies that
the control (2.18) depends on the direction zi(t)/||zi(t)|| but not the distance ||zi(t)||.
Therefore, the control (2.18) with the moving-destination assumption (A1) is equivalent
to the control (2.18) with a non-moving destination that is infinitely far from the
initial positions. Thus, (A1) and (A2) are in some sense equivalent to an infinitely far
non-moving destination. Asymptotic flocking under (A1) and (A2) suggests that if the
initial positions q1(0), . . . , qn(0) are sufficiently far from the destinations ξ1, . . . , ξn, and
the destinations are sufficiently close together relative to the distances ||z1||, . . . , ||zn||,
then the agents flock over a finite time interval.

It follows from (A1) that the destination dynamics are ξ̇i(t) = χ, where ξi(t) ∈ Rm is
the ith agent’s destination, ξi(0) ∈ Rm is the initial position, and ξ1(0) = · · · = ξn(0).
For all t ≥ 0, define wi(t) , żi(t) = χ− pi(t). Thus, (2.1) and (2.2) imply that for all
t ≥ 0,

żi(t) = wi(t), (2.19)

ẇi(t) = − ui(t). (2.20)

For all t ≥ 0, define

z(t) ,



z1(t)

...
zn(t)


 , w(t) ,



w1(t)

...
wn(t)


 .

We use Lyapunov-like analysis to examine the asymptotic properties of (2.1), (2.2),
and (2.18) under (A1) and (A2). Consider ψ : [0,∞)→ [0,∞) defined by

ψ(η) ,
∫ η

||d||ε
ρh

(
s

||rc||ε

)
φ(s− ||d||ε)ds. (2.21)

If η = ||d||ε, then ψ(η) = 0; otherwise, ψ(η) > 0. Furthermore, consider ψs : Rmn →
[0,∞) defined by

ψs(q) ,
1

2

∑

(i,j)∈P
ψ(||qj − qi||ε). (2.22)

22

If for all (i, j) ∈ P , ||qj − qi|| = d, then ψs(q) = 0; otherwise, ψs(q) > 0. Consider the
Lyapunov-like function W : Rmn × Rmn → [0,∞) defined by

W (z, w) , ψs(z) +

[∑

i∈I
γ||zi|| −

γ

pf
χTzi

]
+

1

2
||w||2. (2.23)

Since ||χ|| = pf , it follows that

∑

i∈I
γ||zi|| −

γ

pf
χTzi ≥

∑

i∈I
γ||zi|| −

γ

pf
||χ|| ||zi|| = 0.

Since, in addition, ψs ≥ 0, it follows that for all (z, w) ∈ Rmn × Rmn, W (z, w) ≥ 0.
If for all (i, j) ∈ P, ||zj − zi|| = d, χTzi = pf ||zi||, and wi = 0, then W (z, w) = 0;
otherwise, W (z, w) > 0.

The following result provides sufficient conditions such that the agents do not
collide; all agents match velocity; the maximum distance between any 2 agents is
asymptotically bounded by d(n− 1); and the derivative of ψs along the trajectories of
(2.18)–(2.20) tends to 0. The proof is in Section 2.10.

Theorem 1. Consider the closed-loop system (2.18)–(2.20), where the initial con-
ditions are zi(0) ∈ Rm and wi(0) ∈ Rm. Assume (A1) and (A2) hold. Then, the
following statements hold:

(a) If W (z(0), w(0)) < ψ(||δc||ε), then for all (i, j) ∈ P and all t ≥ 0, ||qj(t)−qi(t)|| >
δc.

(b) limt→∞ pi(t) = χ.

(c) Assume rc is such that for all (i, j) ∈ P and all t ≥ 0, ||rc||ε > ||qj(t)− qi(t)||ε/h.
Then, for all δ > 0 there exists t1 ≥ 0 such that for all t ≥ t1, max(i,j)∈P ||qj(t)−
qi(t)|| ≤ d(n− 1) + δ.

(d) limt→∞
∂ψs(z)

∂z

∣∣∣∣
z=z(t)

= 0.

(e) limt→∞ ui(q(t), p(t), zi(t)) = 0.

(f) limt→∞[Ai(q(t)) +Ri(q(t))] = 0.

(g) limt→∞
zi(t)

||zi(t)||
=
χ

pf
.

Part (a) states that if W (z(0), w(0)) < ψ(||δc||ε), then there are no collisions, which
implies (F1). Part (b) states that every agent’s velocity tends to χ. Therefore, the
difference in velocity between any 2 agents tends to zero, which implies (F2). Part
(c) states that if the communication radius rc is sufficiently large, then the maximum
distance between any 2 agents is asymptotically bounded by d(n− 1), which implies
(F3). Part (d) states that the derivative of ψs along the trajectories of (2.18)–(2.20)

23

tends to 0. Thus, the asymptotic configuration of agents is a critical point of ψs.
Furthermore, [1, Lemma 3] shows that if rc/d is sufficiently small and the asymptotic
configuration of the agents in I minimizes ψs, then that configuration satisfies (F4).
Part (e) states that the control tends to 0. Part (f) states that the sum of flock
attraction and flock repulsion of each agent tends to 0. Part (g) states that the
direction of zi(t) tends to the direction of the destination velocity χ.

Part (a) of Theorem 1 provides a sufficient condition on z(0) and w(0) such that
there are no collisions. If q(0) is close to a flocking formation (i.e., a minimum of
ψs), p(0) is close to the destination velocity χ (i.e., w(0) ≈ 0), and χTzi ≈ pf ||zi||,
then W (z(0), w(0)) is close to its minimum. In this case, W (z(0), w(0)) tends to
satisfy W (z(0), w(0)) < ψ(||δc||ε), and part (a) of Theorem 1 implies that there are
no collisions. We note that the upper bound ψ(||δc||ε) in part (a) tends to increase
as the repulsion parameter b increases. Numerical testing suggests that for initial
conditions z(0) and w(0), where W (z(0), w(0)) is not near its minimum, selecting the
repulsion parameter b sufficiently large tends to result in W (z(0), w(0)) and ψ(||δc||ε)
that satisfy W (z(0), w(0)) < ψ(||δc||ε); in this case, part (a) implies that there are no
collisions. We also note that W (z(0), w(0)) < ψ(||δc||ε) is a sufficient-but-not-necessary
condition such that there are no collisions. In fact, numerical testing suggests that for
many initial conditions z(0) and w(0), where W (z(0), w(0)) ≥ ψ(||δc||ε), there are no
collisions.

2.6 Destination-Seeking Analysis

In this section, we analyze the asymptotic properties of (2.1), (2.2), and (2.18)
without (A1) and (A2). We provide a sufficient condition such that agents approach
a subset of the closed-loop equilibria of (2.1), (2.2), and (2.18). We also provide
a sufficient condition such that agents approach their destinations asymptotically.
Define

u(q, p) ,



u1(q, p, ξ1 − q1)

...
un(q, p, ξn − qi)


 ,

where ui is given by (2.18).
The set of closed-loop equilibria of (2.1), (2.2), and (2.18) is

E , {(qe, pe) ∈ Rmn × Rmn : pe = 0 and u(qe, 0) = 0}.

Figure 2.4 shows 4 types of equilibria for n = 2. In Figure 2.4(a), q(t) ≡ ξ, and all
terms in u are zero. In Figure 2.4(b), the sum of flock attraction and destination
seeking is zero, that is, µ(||zi||)Ai(q) + ν(||zi||)zi = 0, and all other terms in u are
zero. In Figure 2.4(c) and 2.4(d), the sum of flock repulsion and destination seeking is
zero, that is, Ri(q) + ν(||zi||)zi = 0, and all other terms in u are zero. For n ≥ 2, the
closed-loop system (2.1), (2.2), and (2.18) has equilibria that consist of combinations
of the 4 types shown in Figure 2.4.

24

q1=ξ1 q2=ξ2

(a) qi = ξi

q1 q2ξ1 ξ2
ν(||z1||)z1 µ(||z1||)A1 µ(||z2||)A2 ν(||z2||)z2

(b) µ(||zi||)Ai(q) + ν(||zi||)zi = 0

q1 q2 ξ1ξ2
R1 ν(||z1||)z1 ν(||z2||)z2 R2

(c) Ri(q) + ν(||zi||)zi = 0

q1 q2ξ1 ξ2
R1 ν(||z1||)z1 ν(||z2||)z2 R2

(d) Ri(q) + ν(||zi||)zi = 0

Figure 2.4: Four types of equilibria for n = 2. Agents are shown by ©s, and
destinations are shown by×s. In (a), q(t) ≡ ξ, and all terms in u are zero. In (b),
the sum of flock attraction and destination seeking is zero, and all other terms in u
are zero. In (c) and (d), the sum of flock repulsion and destination seeking is zero,
and all other terms in u are zero.

Figure 2.4 shows that (ξ, 0) is not the only closed-loop equilibria of (2.1), (2.2), and
(2.18). In fact, (ξ, 0) may not be in E . Define

rγ ,





d, if rα ∈ (0, d],

rα, if rα ∈ (d, rc),

rc, if rα ∈ {0} ∪ [rc,∞).

(2.24)

The radius rγ is such that if all agents are at their destinations and the destinations
are at least rγ apart, then flock attraction, flock repulsion, and velocity consensus are
0. The following result provides a sufficient condition such that (ξ, 0) ∈ E . The proof
is in Section 2.11.

Lemma 1. If for all (i, j) ∈ P , ||ξj − ξi|| ∈ {d} ∪ [rγ,∞), then (ξ, 0) ∈ E .

The following result provides a sufficient condition such that all agents asymptotically
approach their destinations. This result is a consequence of Proposition 2, and the
proof is in Section 2.12.

25

Theorem 2. Consider the closed-loop system (2.1), (2.2), and (2.18), where for all
(i, j) ∈ P, ||ξj − ξi|| ≥ rγ, and define rδ , 1

2
(min(i,j)∈P ||ξj − ξi|| − d) ≥ 0. Assume

there exists t0 ≥ 0 such that for all t ≥ t0 and all i ∈ I, at least one of the following
conditions holds:

(a) For all j ∈ I \ {i}, ||qj(t)− qi(t)|| > rc.

(b) ||zi(t)|| < min {rα, rδ}.

Then, limt→∞ q(t) = ξ and limt→∞ p(t) = 0.

Theorem 2 states that if there exists a time after which all agents are greater than
rc apart from other agents or less than min {rα, rδ} from their destinations, then all
agents asymptotically approach their destinations. The assumption that there exists
a time such that all agents are sufficiently far from other agents or sufficiently close
to their destinations precludes agents from converging to equilibria, where nonzero
flock attraction or repulsion cancel nonzero destination seeking. Examples of these
types of equilibria are shown in Figure 2.4(b)–(d). If flock attraction is sufficiently
small relative to destination seeking, then numerical simulations suggest that the
assumption of Theorem 2 holds. To decrease flock attraction relative to destination
seeking, we decrease a or increase γ and ωn.

We now use Lyapunov-like analysis to examine the asymptotic properties of (2.1),
(2.2), and (2.18) without the assumption that for sufficiently large t ≥ 0 all agents are
greater than rc apart from other agents or less than min {rα, rβ} from their destinations.
Consider the Lyapunov-like function V : Rmn × Rmn → [0,∞) defined by

V (q, p) , ψs(q) +
∑

i∈I

∫ ||ξi−qi||

0

λν(λ)dλ+
1

2
||p||2. (2.25)

If for all (i, j) ∈ P, ||ξj − ξi|| = d, qi = ξi, and pi = 0, then V (q, p) = 0; otherwise,
V (q, p) > 0. Note that V (q, p) has multiple minimizers.

The following result provides a sufficient condition such that (q(t), p(t)) ≡ (ξ, 0) is a
locally asymptotically equilibrium of (2.1), (2.2), and (2.18), and the agents do not
collide. This result also shows that (q(t), p(t)) converges to a subset of E . The proof
is in Section 2.12.

Theorem 3. Consider the closed-loop system (2.1), (2.2), and (2.18), and let
rα = rβ = 0. Then, the following statements hold:

(a) Assume that for all (i, j) ∈ P, ||ξj − ξi|| > rc. Then, (q(t), p(t)) ≡ (ξ, 0) is a
locally asymptotically stable equilibrium of (2.1), (2.2), and (2.18).

(b) For all q(0) ∈ Rmn and all p(0) ∈ Rmn, (q(t), p(t)) converges to the set M ,
{(q, p) ∈ E : V (q, p) ≤ V (q(0), p(0))}.

(c) If V (q(0), p(0)) < ψ(||δc||ε), then for all (i, j) ∈ P and all t ≥ 0, ||qj(t)−qi(t)|| >
δc.

26

Part (a) states that if all destinations are at least rc apart from one another, then
(q(t), p(t)) ≡ (ξ, 0) is a locally asymptotically stable equilibrium of (2.1), (2.2), and
(2.18). Part (b) states that, for all initial conditions, (q, p) converges to M, which is
a subset of E . Therefore, all agents tend to zero velocity and zero control. Part (c)
states that if V (q(0), p(0)) < ψ(||δc||ε), then there are no collisions. Part (c) provides
a sufficient condition such that there are no collisions. The condition in part (c) is
not necessary.

2.7 Numerical Examples

In this section, we present examples that demonstrate the control (2.18). Unless
otherwise stated, δc = 0.5 m, d = 15 m, rc = 30 m, rα = r1 = 25 m, rβ = r2 = 50 m,
a = 0.33, b = 3.5, h = 0.2, ε = 0.1, ωn = 0.5 rad/s, pf = 20 m/s, γ = 5 m/s2, and µ is
given by (2.11). Let êk ∈ R1×m be the kth row of the m×m identity matrix.

Example 4. This example shows the effect of γ. Consider n = 3 agents, where m =
2, q1(0) = [0 8]T m, ξ1 = [1500 50]T m, q2(0) = [0 0]T m, ξ2 = [2600 20]T

m, q3(0) = [0 −24]T m, ξ3 = [2700 −55]T m, and p1(0) = p2(0) = p3(0) =
[0 0]T m/s. We consider 2 cases: γ = 2 m/s2 and γ = 9 m/s2. Figures 2.5 and 2.6
show that as γ decreases from 9 m/s2 to 2 m/s2, the agents are close together over a
longer distance, take longer to approach their destinations, and tend to pf = 20 m/s
more slowly. In both cases, for all time the minimum interagent distance is above the
collision threshold, that is, for all t ≥ 0, min(i,j)∈P ||qj(t)− qi(t)|| > δc = 0.5 m. Thus,
the agents achieve (O1) and (O2). 4

Example 5. This example considers a group of autonomous vehicles on a highway.
Consider n = 6 agents, where m = 2, rc = 70 m, and a = 0.8. Each agent starts
with 0 velocity, and the control (2.18) is turned on once another agent is less than
0.75rc away. Figure 2.7 shows the trajectories of each agent, where the time next
to each agent’s initial position indicates the time at which it starts moving. While
agents are far from their destinations, they flock with neighboring agents. As agents
approach their destinations, they leave the flock, and the remaining agents form a
new flock. Figure 2.8 shows the minimum interagent distance min(i,j)∈P ||qj − qi|| and
the maximum control magnitude maxi∈I ||ui||. The minimum interagent distance is
always greater than the collision radius δc and reaches a minimum of approximately
d = 15 m. The maximum control magnitude reaches a maximum of approximately
6 m/s2 at t = 40 s. 4

Example 6. Consider n = 20 agents, where m = 2, the initial velocities are all
0, and 10 agents are distributed near [0 300]T m, while the other 10 agents are
distributed near [0 −300]T m. Figure 2.9 shows that initially 2 flocks are formed.
Then, each flock splits into 2 flocks based on agents’ destinations. Next, 2 of the
flocks cross without collisions or fragmentation. Finally, all agents exit the flocks and
approach their destinations. Figure 2.10 shows that the minimum interagent distance

27

0 1300 2600

−60

0

60

ê1qi (m)

ê 2
q i

(m
)

γ = 2 m/s2

γ = 9 m/s2

Initial Position Destination

Figure 2.5: Trajectories of n = 3 agents for γ = 2 m/s2 and 9 m/s2. As γ decreases
from 9 m/s2 to 2 m/s2, agents are close together over a longer distance. The agents
achieve (O1) and (O2).

0

20

||p
i||

(m
/s
)

i = 1 i = 2 i = 3

0 70 140
0

12

t (s)

||u
i||

(m
/s

2
)

0 70 140

t (s)

γ = 2 m/s2

γ = 9 m/s2

0 70 140

t (s)

Figure 2.6: Speed and magnitude of control of n = 3 agents for γ = 2 m/s2 and 9
m/s2. As γ decreases from 9 m/s2 to 2 m/s2, agents takes longer to approach their
destinations and tend to pf = 20 m/s more slowly. The agents achieve (O1) and (O2).

28

0 200 400 600 800 1000 1200

−60

0

60

t = 0 s

t = 14 s

t = 28 s

t = 64 s

t = 54 s

ê1qi (m)

ê 2
q i

(m
)

Figure 2.7: A group of n = 6 agents that flock before they reach their destinations.
Each agent starts with 0 velocity, and the control (2.18) is applied once another agent
is less than 0.75rc away. The time next to each agent’s initial position indicates the
time at which it starts moving. While agents are far from their destinations, they
flock with neighboring agents. As agents approach their destinations, they leave the
flock, and the remaining agents form a new flock.

0

15

40

m
in

(i
,j
)∈

P
||q

j
−
q i
||
(m

)

Collision radius δc = 0.5 m

0 70 140
0

6

t (s)

m
ax

i∈
I
||u

i||
(m

/s
2
)

Figure 2.8: For the trajectory shown in Figure 2.7, the minimum interagent distance
min(i,j)∈P ||qj−qi|| is always greater than the collision radius δc and reaches a minimum
of approximately d = 15 m, and the maximum control magnitude maxi∈I ||ui|| reaches
a maximum of approximately 6 m/s2 at t = 40 s.

29

is always greater than the collision radius δc and is at a minimum of approximately 1 m
at t = 0 s, and the maximium control magnitude is at a maximum of approximately
of 44 m/s2 at t = 0 s. Thus, the agents achieve (O1) and (O2). 4

0 900 1800

−400

0

400

t = 0 s t = 73 s t = 150 s

ê1qi (m)

ê 2
q i

(m
)

Destination

Figure 2.9: A group of n = 20 agents that flock before they reach their destinations.
Initially 2 flocks are formed. Then, each of those flocks splits into 2 flocks based on
the agents’ destinations. Next, 2 of the flocks cross without collisions or fragmentation.
Finally, all agents exit the flocks and approach their destinations. Thus, the agents
achieve (O1) and (O2).

Example 7. Consider n = 20 agents, where m = 3, all agents are distributed near
[0 0 200]T m, and the initial velocities are distributed near 0 m/s. Figure 2.11
shows that the agents flock by t = 26 s. Then, the agents exit the flock and approach
their destinations. Figure 2.12 shows that the minimum interagent distance is always
greater than the collision radius δc and is at a minimum of approximately 4.4 m at
t = 0 s, and the maximum control magnitude reaches a maximum of approximately
46 m/s2 at t = 0.6 s. Thus, the agents achieve (O1) and (O2). 4

2.8 Conclusions

We presented the flocking-and-destination-seeking control (2.18) for a set of n agents
with double-integrator dynamics and potentially unique destinations. The control

30

0

15

m
in

(i
,j
)∈

P
||q

j
−
q i
||
(m

)

Collision radius δc = 0.5 m

0 70 140
0

40

t (s)

m
ax

i∈
I
||u

i||
(m

/s
2
)

Figure 2.10: For the trajectory shown in Figure 2.9, the minimum interagent distance
is always greater than the collision radius δc and is at a minimum of approximately 1 m
at t = 0 s, and the maximium control magnitude is at a maximum of approximately
44 m/s2 at t = 0 s.

0
200

400
600

800

−200
0

200
0

200

t = 0 s

t = 8.5 s

t = 26 s
t = 95 s

ê1qi (m)
ê2qi (m)

ê 3
q i

(m
)

Figure 2.11: A group of n = 20 agents that flock before they reach their destinations.
The agents flock by t = 26 s. Then, the agents exit the flock and approach their
destinations. The agents achieve (O1) and (O2). The dots indicate agent positions,
while the lines connecting dots indicate that the 2 agents are approximately d = 15 m
apart.

31

0

30
m
in

(i
,j
)∈

P
||q

j
−
q i
||
(m

)
Collision radius δc = 0.5 m

0 40 80
0

40

t (s)

m
ax

i∈
I
||u

i||
(m

/s
2
)

Figure 2.12: For the trajectory shown in Figure 2.11, the minimum interagent distance
is always greater than the collision radius δc and is at a minimum of approximately
4.4 m at t = 0 s, and the maximium control magnitude reaches a maximum of
approximately 46 m/s2 at t = 0.6 s.

(2.18) includes terms that induce flocking as well as terms that drive each agent
towards its destination. The control is decentralized and does not require a centralized
flock leader. The control accomplishes 2 objectives: (i) if an agent is far from its
destination, then that agent flocks with nearby agents, and (ii) if an agent is close to
its destination, then that agent approaches its destination.

2.9 Proof of Proposition 2

Proof of Proposition 2. To show (a), consider the Lyapunov function V1 : Rmn×
Rmn → [0,∞) defined by

V1(q, p) ,
∑

i∈I

∫ ||ξi−qi||

0

λν(λ)dλ+
1

2
||p||2,

which is radially unbounded in q and p. If q = ξ and p = 0, then V1(q, p) = 0;
otherwise, V1(q, p) > 0. The derivative of V1(q, p) along the trajectories of (2.1), (2.2),
and (2.16) is

V̇1(q, p) ,
∑

i∈I

∂V1(q, p)

∂qi
pi +

∂V1(q, p)

∂pi
ui(zi, pi)

=
∑

i∈I

(
∂

∂qi

[∫ ||ξi−qi||

0

λν(λ)dλ

]
+ ν(||zi||)zTi + κ(||zi||)pTi

)
pi.

32

Define ν ′(η) , ν(
√
η), and it follows that

∫ ||ξi−qi||

0

λν(λ)dλ =
1

2

∫ ||ξi−qi||2

0

ν ′(τ)dτ,

where τ = λ2 and dτ = 2λdλ. Thus,

∂

∂qi

[∫ ||ξi−qi||

0

λν(λ)dλ

]
=

∂

∂qi

[
1

2

∫ ||ξi−qi||2

0

ν ′(τ)dτ

]

= − ν(||ξi − qi||)[ξi − qi]T

= − ν(||zi||)zTi .

Therefore, V̇1(q, p) =
∑

i∈I κ(||zi||)pTi pi, which is nonpositive because κ < 0.

Define S , {(qs, ps) ∈ Rmn × Rmn : V̇1(qs, ps) = 0}. Since V̇1(q, p) = 0 implies
that p = 0, it follows that S = {(qs, ps) ∈ Rmn × Rmn : ps = 0}. Define Ei ,
[0m×m(i−1) Im 0m×m(n−i)] ∈ Rm×mn, where 0l1×l2 is the l1× l2 matrix of zeros, and
Im is the m × m identity matrix. Let q̃ : [0,∞) → Rmn and p̃ : [0,∞) → Rmn be
such that for all t ≥ 0, (q̃(t), p̃(t)) ∈ S, and q̃i(t) , Eiq̃(t) and p̃i(t) , Eip̃(t) satisfy
(2.1), (2.2), and (2.16). Since for all t ≥ 0, (q̃(t), p̃(t)) ∈ S, it follows that p̃(t) ≡ 0.
Furthermore, since zi = ξi − qi, it follows from (2.2) and (2.16) that

0 ≡ ˙̃pi(t) ≡ p̃i(t) + ui(ξi − q̃i(t), p̃i(t)) ≡ ν(||ξi − q̃i(t)||)[ξi − q̃i(t)],
which implies that q̃i(t) ≡ ξi because ν > 0. Thus, (q̃(t), p̃(t)) ≡ (ξ, 0) is the only
solution of (2.1), (2.2), and (2.16) such that for all t ≥ 0, (q̃(t), p̃(t)) ∈ S. Therefore,
[84, Corollary 4.2] implies that (q(t), p(t)) ≡ (ξ, 0) is a globally asymptotically stable
equilibrium of (2.1), (2.2), and (2.16), which confirms (a).

To show (b), since (q(t), p(t)) ≡ (ξ, 0) is a globally asymptotically stable equilibrium
of (2.1), (2.2), and (2.16), it follows that there exists t1 > 0 such that for all t ≥ t1,
||zi(t)|| ≤ r1. Thus, (2.1), (2.2), and (2.14)–(2.16) imply that for all t ≥ t1, qi(t)
satisfies q̈i(t) + 2ζωnq̇i(t) + ω2

nqi(t) = ω2
nξi, which confirms (b).

To show (c), assume ||zi(0)|| > r2. Therefore, there exists t0 > 0 such that for
all t ∈ [0, t0), ||zi(t)|| > r2, and it follows from (2.14)–(2.16) that for all t ∈ [0, t0),
ui(qi(t), pi(t)) = γzi(t)/||zi(t)|| − γpi(t)/pf , which confirms (c).

Part (d) follows from direct calculation.

2.10 Proof of Theorem 1

Proof of Theorem 1. Since (A2) holds, it follows from (M1) that for all t ≥ 0,
µ(||zi(t)||) = 1, which implies that the derivative of W (z, w) along the trajectories of
(2.18)–(2.20) is

Ẇ (z, w) ,
∂W (z, w)

∂z
w − ∂W (z, w)

∂w
g(q, p, z)

=
∑

i∈I

(
∂

∂zi

[∑

k∈I
γ||zk|| −

γ

pf
χTzk

]
+
∂ψs(z)

∂zi
− AT

i (q)−RT
i (q)

33

− CT
i (q, p)− ν(||zi||)zTi − κ(||zi||)pTi

)
wi, (2.26)

where g(q, p, z) , [uT1 (q, p, z1) · · · uTn (q, p, zn)]T, where ui is given by (2.18).
Since (A1) holds, it follows that for all (i, j) ∈ P, qj − qi = zi − zj, which implies

that ψ(||qj − qi||ε) = ψ(||zi − zj||ε) and hence, ψs(q) = ψs(z). Thus, using (2.4), (2.8),
(2.9), (2.21), and (2.22), we obtain that for all i ∈ I,

∂ψs(z)

∂zi
= −∂ψs(q)

∂qi
= − ∂

∂qi

[
n−1∑

k=1

n∑

j=k+1

ψ(||qj − qk||ε)
]

= −
∑

j∈I\{i}

∂ψ(||qj−qi||ε)
∂qi

=
∑

j∈I\{i}
ρh

(||qj − qi||ε
||rc||ε

)
φ(||qj − qi||ε − ||d||ε)σε(qj − qi)

= AT
i (q) +RT

i (q). (2.27)

Define

D , {(z, w) ∈ Rmn × Rmn : for all i ∈ I, ||zi|| > r2, where z = [zT1 · · · zTn]T},

and it follows from (2.14) and (2.15) that for all (z, w) ∈ D and all i ∈ I,
(
∂

∂zi

[∑

k∈I
γ||zk|| −

γ

pf
χTzk

]
− ν(||zi||)zTi − κ(||zi||)pTi

)
wi

=

[
γ

||zi||
zi −

γ

pf
χ

]T
wi −

γ

||zi||
zTi wi +

γ

pf
pTi wi

= − γ
pf
||wi||2. (2.28)

Since for all (i, j) ∈ P , zi− zj = qj − qi and wi−wj = pj − pi, it follows from (2.10)
that for all (z, w) ∈ D,

∑

i∈I
CT
i (q, p)wi =

∑

i∈I

∑

j∈I\{i}
ρh

(||qj − qi||ε
||rc||ε

)
[wT

i wi − wT
j wi]

=
∑

i∈I

n∑

j=i+1

ρh

(||qj − qi||ε
||rc||ε

)
[wT

i wi − wT
j wi + wT

j wj − wT
i wj]

=
1

2

∑

(i,j)∈P
ρh

(||zi − zj||ε
||rc||ε

)
||wj − wi||2. (2.29)

Substituting (2.27)–(2.29) into (2.26) yields that for all (z, w) ∈ D,

Ẇ (z, w) = − γ
pf
||w||2 − 1

2

∑

(i,j)∈P
ρh

(||zi − zj||ε
||rc||ε

)
||wj − wi||2, (2.30)

34

which is nonpositive.
To show (b), note that for all t ≥ 0, (z(t), w(t)) ∈ D. Therefore, (2.23) and

(2.30) imply that for all t ≥ 0, W (z(t), w(t)) ≥ 0 and Ẇ (z(t), w(t)) ≤ 0. Thus,
limt→∞W (z(t), w(t)) exists. Since for all (i, j) ∈ P, ψ(||zj − zi||ε) ≤ ψs(z), it follows
from (2.23) that for all (z, w) ∈ D and all (i, j) ∈ P, W (z, w) ≥ ψ(||zj − zi||ε) +
||w||2/2 ≥ 0. Since for all t ≥ 0, W (z(t), w(t)) is bounded, it follows that for all
(i, j) ∈ P and all t ≥ 0, zj(t) − zi(t) and w(t) are bounded, which implies that
qj(t)− qi(t) and pi(t) are bounded. Therefore, (2.8)–(2.10), (2.14), (2.15), and (2.18)
imply that for all t ≥ 0, g(q(t), p(t), z(t)) is bounded. Note that for all (z, w) ∈ D,

Ẅ (z, w) ,
∂Ẇ (z, w)

∂z
w − ∂Ẇ (z, w)

∂w
g(q, p, z)

= − 1

4||rc||ε
∑

(i,j)∈P

dρh(η)

dη

∣∣∣∣
η=||zj−zi||ε/||rc||ε

||wj − wi||2σT
ε (zi − zj)[wi − wj]

+
∑

(i,j)∈P
[uj(q, p, zj)− ui(q, p, zi)]T[wj − wi] +

2γ

pf
gT(q, p, z) w.

Since dρh(η)/dη and σε are bounded and for all t ≥ 0, g(q(t), p(t), z(t)) and w(t)
are bounded, it follows that for all t ≥ 0, Ẅ (z(t), w(t)) is bounded, which implies
that Ẇ (z(t), w(t)) is uniformly continuous. Since limt→∞W (z(t), w(t)) exists and
Ẇ (z(t), w(t)) is uniformly continuous, Barbalat’s lemma [84, Lemma 8.2] implies that
limt→∞ Ẇ (z(t), w(t)) = 0. Thus, (2.30) implies that limt→∞w(t) = 0, or equivalently,
limt→∞ pi(t) = χ, which confirms (b).

To show (e), note that for all (z, w) ∈ D and all (i, j) ∈ P , ρh(||zj − zi||ε/||rc||ε) = 1
and dρh(η)/dη|||zj−zi||ε/||rc||ε = 0. Since, in addition, µ = 1, it follows from (2.18) that
for all (z, w) ∈ D,

u̇i(q, p, zi) ,
∂ui(q, p, zi)

∂q
p+

∂ui(q, p, zi)

∂p
g(q, p, z) +

∂ui(q, p, zi)

∂zi
wi

=
∑

j∈I\{i}

(
dφ(η)

dη

∣∣∣∣
η=||qj−qi||ε−||d||ε

σε(qj − qi)σT
ε (qj − qi) +

φ(||qj − qi||ε − ||d||ε)
1 + ε||qj − qi||ε

Im

− εφ(||qj − qi||ε − ||d||ε)
(1 + ε||qj − qi||ε)3

[qj − qi][qj − qi]T
)

[pj − pi] + uj(q, p, zj)

− γ

||zi||3
(ziz

T
i)wi +

γ

||zi||
wi −

(
n− 1 +

γ

pf

)
ui(q, p, zi). (2.31)

Since for all t ≥ 0, ||zi(t)|| > r2; and pi(t), ui(t), wi(t), and qj(t)− qi(t) are bounded,
it follows from (2.3) and (2.4) that for all t ≥ 0, ||qj(t)− qi(t)||ε, σε(qj(t)− qi(t)), and
−(γ/||zi(t)||3)[(zi(t)zTi (t))wi(t)] + (γ/||zi(t)||)wi(t) are bounded. Since, in addition,
φ and dφ(η)/dη are bounded, (2.31) implies that for all t ≥ 0, u̇i(q(t), p(t), zi(t)) is
bounded. Therefore, ui(q(t), p(t), zi(t)) is uniformly continuous. Since limt→∞ pi(t)
exists and ṗi(t) = ui(q(t), p(t), zi(t)) is uniformly continuous, [84, Lemma 8.2] implies
that limt→∞ ui(q(t), p(t), zi(t)) = 0, which confirms (e).

35

To show (g), note that for all (i, j) ∈ P, ||qj − qi||ε = ||qi − qj||ε and σε(qj − qi) =
−σε(qi−qj); and (2.8)–(2.10) imply that for all (q, p) ∈ Rmn×Rmn,

∑
i∈I Ai(q)+Ri(q)+

Ci(q, p) = 0. Since, in addition, for all t ≥ 0, ||zi(t)|| > r2, limt→∞ ui(q(t), p(t), zi(t)) =
0, and limt→∞ pi(t) = χ, it follows from (2.14), (2.15), and (2.18) that

0 = lim
t→∞

(∑

i∈I
ui(q(t), p(t), zi(t)) + κ(||zi(t)||)[χ− pi(t)]

)

= lim
t→∞

∑

i∈I

[
γ

||zi(t)||
zi(t)−

γ

pf
χ

]
,

which implies that limt→∞
∑

i∈I zi(t)/||zi(t)|| = nχ/pf . Since ||χ|| = pf , it follows
that limt→∞

∑
i∈I z

T
i (t)χ/(||zi(t)||pf) = n. Assume for contradiction that there ex-

ists k ∈ I such that limt→∞ zTk (t)χ/(||zk(t)||pf) 6= 1. Let δ1 > 0 be such that for
all t ≥ 0, there exists t1 ≥ t such that |zTk (t1)χ/(||zk(t1)||pf) − 1| > δ1. Since
limt→∞

∑
i∈I z

T
i (t)χ/(||zi(t)||pf) = n, it follows that there exists t2 ≥ 0 such that for

all t ≥ t2, |
∑

i∈I z
T
i (t)χ/(||zi(t)||pf)− n| < δ1. Since limt→∞ zTk (t)χ/(||zk(t)||pf) 6= 1,

it follows that there exists t3 ≥ t2 such that |zTk (t3)χ/(||zk(t3)||pf) − 1| > δ1, which
implies that zTk (t3)χ/(||zk(t3)||pf) < 1 − δ1 because zTk χ/(||zk||pf) ≤ 1. Since for all
i ∈ I \ {k}, zTi (t3)χ/(||zi(t3)||pf) ≤ 1 and zTk (t3)χ/(||zk(t3)||pf) < 1 − δ1, it follows
that

∑

i∈I

zTi (t3)χ

||zi(t3)||pf
=

zTk (t3)χ

||zk(t3)||pf
+
∑

i∈I\{k}

zTi (t3)χ

||zi(t3)||pf
< 1− δ1 + n− 1 = n− δ1,

or equivalently, |∑i∈I z
T
i (t3)χ/(||zi(t3)||pf)− n| > δ1, which is a contradiction. Thus,

for all i ∈ I, limt→∞ zTi (t)χ/(||zi(t)||pf) = 1, which implies that

lim
t→∞

∣∣∣
∣∣∣ 1

||zi(t)||
zi(t)−

1

pf
χ
∣∣∣
∣∣∣
2

= 2− 2 lim
t→∞

zTi (t)χ

||zi(t)||pf
= 0.

Therefore, limt→∞ zi(t)/||zi(t)|| = χ/pf , which confirms (g).
To show (f), since for all t ≥ 0, ||zi(t)|| > r2, limt→∞ pi(t) = χ, and limt→∞ zi(t)/||zi(t)||

= χ/pf , it follows from (2.10), (2.14), and (2.15) that limt→∞Ci(q(t), p(t)) = 0 and
limt→∞[ν(||zi(t)||)zi(t)+κ(||zi(t)||)pi(t)] = 0. Since, in addition, limt→∞ ui(q(t), p(t), zi(t)) =
0, it follows from (2.18) that

0 = lim
t→∞

[ui(q(t), p(t), z(t))− Ci(q(t), p(t))− ν(||zi(t)||)zi(t)− κ(||zi(t)||)pi(t)]
= lim

t→∞
[Ai(q(t)) +Ri(q(t))],

which confirms (f).
To show (d), it follows from (2.27) that ∂ψs(z)/∂zi = AT

i (q) +RT
i (q), which implies

limt→∞ ∂ψs(z)/∂zi|z=z(t) = limt→∞[AT
i (q(t)) +RT

i (q(t))] = 0, which confirms (d).
To show (c), assume rc is such that for all (i, j) ∈ P and all t ≥ 0, ||rc||ε >
||qj(t) − qi(t)||ε/h. Define f : (d,∞) → (0,∞) by f(η) , φ(||η||ε − ||d||ε)σε(η) =

36

φ(||η||ε − ||d||ε)η/(1 + ε||η||ε). For all η ∈ (d,∞), φ(||η||ε − ||d||ε) > 0, which implies
that for all η ∈ (d,∞),

df(η)

dη
=

dφ(η1)

dη1

∣∣∣∣
η1=||η||ε−||d||ε

d||η||ε
dη

η

1 + ε||η||ε
+ φ(||η||ε − ||d||ε)

d

dη

(
η

1 + ε||η||ε

)

=
a+ b

2(1 + (||η||ε − ||d||ε + c)2)3/2

(
η

1 + ε||η||ε

)2

+
φ(||η||ε − ||d||ε)

(1 + ε||η||ε)3
> 0.

Let δ > 0, and define υδ , f(d(n− 1) + δ). Let t1 ≥ 0 be such that for all t ≥ t1,
||Ai(q(t)) + Ri(q(t))|| ≤ υδ/n, which exists because limt→∞[Ai(q(t)) + Ri(q(t))] = 0.
Let t2 ≥ t1, and it follows that

||Ai(q(t2)) +Ri(q(t2))|| ≤
υδ
n
. (2.32)

For all (i, j) ∈ P, define Q(i, j) , qj(t2) − qi(t2). Assume for contradiction that
there exists (i, j) ∈ P such that ||Q(i, j)|| > d(n − 1) + δ. Let (α, β) ∈ P be such
that ||Q(α, β)|| = max(i,j)∈P ||Q(i, j)||. Since ||Q(α, β)|| > d(n − 1) + δ and for all
η ∈ (d,∞), df(η)/dη > 0, it follows that

υδ = f(d(n− 1) + δ) < f(||Q(α, β)||). (2.33)

Let l1, l2, . . . , ln ∈ I be such that: (i) l1 = α and ln = β; (ii) for all (i, j) ∈ P , li 6= lj ;
and (iii) for all i ∈ I \ {n}, QT(li, li+1)Q(α, β) ≥ 0. Since ||Q(α, β)|| > d(n− 1) + δ,
it follows from (iii) that

(d(n− 1) + δ) ||Q(α, β)|| < ||Q(α, β)||2

=
n−1∑

i=1

QT(li, li+1)Q(α, β)

≤ (n− 1) max
i∈I\{n}

QT(li, li+1)Q(α, β),

which implies that there exists ω ∈ I \ {n} such that
(
d+

δ

n− 1

)
||Q(α, β)|| < QT(lω, lω+1)Q(α, β). (2.34)

Define I1 , {l1, . . . , lω} and I2 , {lω+1, . . . , ln}, which are nonempty. It follows from
(iii) that for all (i, j) ∈ P such that i < j,

QT(li, lj)Q(α, β) =

j−1∑

k=i

QT(lk, lk+1)Q(α, β) ≥ 0.

Thus, for all i ∈ I1, QT(i, lω)Q(α, β) ≥ 0, and for all j ∈ I2, QT(lω+1, j)Q(α, β) ≥ 0.
Therefore, for all (i, j) ∈ I1 × I2,

0 ≤ QT(i, lω)Q(α, β) +QT(lω+1, j)Q(α, β) = QT(i, j)Q(α, β)−QT(lω, lω+1)Q(α, β),

37

which implies that QT(lω, lω+1)Q(α, β) ≤ QT(i, j)Q(α, β). Thus, it follows from (2.34)
that for all (i, j) ∈ I1 × I2,

(
d+

δ

n− 1

)
||Q(α, β)|| < QT(i, j)Q(α, β) ≤ ||Q(i, j)|| ||Q(α, β)||,

which implies that QT(i, j)Q(α, β) > 0 and ||Q(i, j)|| > d. Therefore, (2.4) and (2.6)
imply that for all (i, j) ∈ I1×I2, φ(||Q(i, j)||ε−||d||ε) > 0 and σT

ε (Q(i, j))Q(α, β) > 0,
which implies that

φ(||Q(i, j)||ε − ||d||δ)σT
ε (Q(i, j))Q(α, β) > 0. (2.35)

Since for all (i, j) ∈ P and all t ≥ 0, ||rc||ε > ||qj(t) − qi(t)||ε/h, or equivalently,
||qj(t)− qi(t)||ε/||rc||ε < h, it follows from (2.5) that for all (z(t2), w(t2)) ∈ D and all
(i, j) ∈ P , ρh(||Q(i, j)||ε/||rc||ε) = 1. Since, in addition, for all (i, j) ∈ P , ||Q(i, j)||ε =
||Q(j, i)||ε and σε(Q(i, j)) = −σε(Q(j, i)), it follows from (2.8) and (2.9) that

∑

i∈I1
Ai(q(t2)) +Ri(q(t2)) =

∑

i∈I1

∑

j∈I\{i}
φ(||Q(i, j)||ε − ||d||δ)σε(Q(i, j))

=
∑

i∈I1

∑

j∈I2
φ(||Q(i, j)||ε − ||d||δ)σε(Q(i, j)).

Furthermore, since α = l1 ∈ I1 and β = ln ∈ I2, it follows from (2.32), (2.33), and
(2.35) that

υδ||Q(α, β)|| < f(||Q(α, β||)||Q(α, β)||
= φ(||Q(i, j)||ε − ||d||δ)σT

ε (Q(i, j))Q(α, β)

≤
∑

i∈I1

∑

j∈I2
φ(||Q(i, j)||ε − ||d||δ)σT

ε (Q(i, j))Q(α, β)

=
∑

i∈I1
[Ai(q(t2)) +Ri(q(t2))]

TQ(α, β)

≤
∑

i∈I1
||Ai(q(t2)) +Ri(q(t2))|| ||Q(α, β)||

≤
∑

i∈I1

υδ
n
||Q(α, β)||

< υδ||Q(α, β)||,
which is a contradiction. Thus, for all t ≥ t1, max(i,j)∈P ||qj(t)− qi(t)|| ≤ d(n− 1) + δ,
which confirms (c).

To show (a), assume W (z(0), w(0))<ψ(||δc||ε). Let (i, j) ∈ P. Since for all t ≥ 0,
ψ(||zj(t)− zi(t)||ε) ≤ ψs(z(t)) ≤ W (z(t), w(t)) and Ẇ (z(t), w(t)) ≤ 0, it follows that
for all t ≥ 0,

ψ(||zj(t)− zi(t)||ε) ≤ W (z(t), w(t)) ≤ W (z(0), w(0)) < ψ(||δc||ε).
Therefore, for all t ≥ 0, ||zi(t)−zj(t)||ε > δc, which implies ||qj(t)− qi(t)||ε > δc, which
confirms (a).

38

2.11 Proof of Lemma 1

Proof of Lemma 1. Assume that for all (i, j) ∈ P, ||ξj − ξi|| ∈ {d} ∪ [rγ,∞).
Let t0 ≥ 0, and assume q(t0) = ξ and p(t0) = 0. Since qi(t0) = ξi, it follows that
for all (i, j) ∈ P, ||qj(t0)− qi(t0)|| ∈ {d} ∪ [rγ,∞). We consider 2 cases: rα = 0 and
rα > 0. First, assume rα = 0, and it follows from (2.24) that rγ = rc. Thus, for
all (i, j) ∈ P, ||qj(t0) − qi(t0)|| ∈ {d} ∪ [rc,∞), which implies that Ai(t0) = {j ∈
I \ {i} : ||qj(t0) − qi(t0)|| = d}. Therefore, (2.6) and (2.8) imply that Ai(q(t0)) = 0.
Next, assume rα > 0, and since zi(t0) = 0, (M2) implies that µ(||zi(t0)||) = 0.
Thus, for rα ≥ 0, it follows that µ(||zi(t0)||)Ai(q(t0)) = 0. Since for all (i, j) ∈ P,
||qj(t0) − qi(t0)|| ≥ min {d, rγ} = d, it follows that Ri(t0) = ∅, which implies from
(2.9) that Ri(q(t0)) = 0. In addition, since q(t0) = ξ and p(t0) = 0, it follows
that Ci(q(t0), p(t0)) = 0, ν(||zi(t0)||)zi(t0) = 0, and κ(||zi(t0)||)pi(t0) = 0. Therefore,
u(q(t0), 0) = 0, which implies that (ξ, 0) = (q(t0), p(t0)) ∈ E .

2.12 Proof of Theorems 2 and 3

Proof of Theorem 2. Let i ∈ I, and assume that for all t ≥ t0 (a) or (b) hold.
Let t1 ≥ t0, and it follows that for t = t1, (a) or (b) hold.

First, assume that for t = t1 (a) holds, and it follows that Ai(t1) = Ri(t1) = Ni(t1) =
∅, which implies from (2.8)–(2.10) that Ai(q(t1)) = Ri(q(t1)) = Ci(q(t1), p(t1)) = 0.

Next, assume that for t = t1, (b) holds and (a) does not hold. Thus, ||zi(t1)|| <
min {rα, rδ} ≤ rδ. Let j ∈ Ni(t1), which exists because (a) does not hold. Since
||qj(t1)− qi(t1)|| < rc, it follows from the assumption of Theorem 2 that ||zj(t1)|| <
min {rα, rδ} ≤ rδ. Since ||zi(t1)|| < rδ and ||zj(t1)|| < rδ, it follows that

d = min
(k,l)∈P

||ξl − ξk|| − 2rδ

≤ ||ξj − ξi|| − 2rδ

= ||zj(t1)− zi(t1) + qj(t1)− qi(t1)|| − 2rδ

≤ ||zj(t1)||+ ||zi(t1)||+ ||qj(t1)− qi(t1)|| − 2rδ

< ||qj(t1)− qi(t1)||.
Therefore, Ri(t1) = ∅, which implies from (2.9) that Ri(q(t1)) = 0. Since, in addition,
||zi(t1)|| < min{rα, rδ} ≤ rα, it follows from (M2) that µ(||zi(t1)||) = 0, which implies
that µ(||zi(t1)||)Ai(q(t1)) = µ(||zi(t1)||)Ci(q(t1), p(t1)) = 0.

Thus, combining cases yields that

µ(||zi(t1)||)Ai(q(t1)) +Ri(q(t1)) + µ(||zi(t1)||)Ci(q(t1), p(t1)) = 0.

Therefore, for all t ≥ t0, ui(q(t), p(t), zi(t)) = ν(||zi(t)||)zi(t) + κ(||zi(t)||)pi(t). Thus,
part (b) of Proposition 2 implies that there exists t2 ≥ t0 such that for all t ≥
t2, q̈i(t) + 2ζωnq̇i(t) + ω2

nqi(t) = ω2
nξi, which implies that limt→∞ qi(t) = ξi and

limt→∞ pi(t) = 0.

Proof of Theorem 3. Since rα = rβ = 0, it follows from (M1) that µ = 1, which
implies that the derivative of V (q, p) along the trajectories of (2.1), (2.2), and (2.18)

39

is

V̇ (q, p) ,
∂V (q, p)

∂q
p+

∂V (q, p)

∂p
u(q, p)

=
∑

i∈I

(
∂ψs(q)

∂qi
+

∂

∂qi

[∫ ||ξi−qi||

0

λν(λ)dλ

]
+ AT

i (q)

+RT
i (q) + CT

i (q, p) + ν(||zi||)zTi + κ(||zi||)pTi

)
pi. (2.36)

Since for all (k, j) ∈ P, ||qj − qk||ε = ||qk − qj||ε, it follows that ψ(||qj − qk||ε) =
ψ(||qk− qj||ε). Therefore, (2.4), (2.8), (2.9), (2.21), and (2.22) imply that for all i ∈ I,

∂ψs(q)

∂qi
=

∂

∂qi

[
n−1∑

k=1

n∑

j=k+1

ψ(||qj − qk||ε)
]

=
∑

j∈I\{i}

∂ψ(||qj − qi||ε)
∂qi

= −
∑

j∈I\{i}
ρh

(||qj − qi||ε
||rc||ε

)
φ(||qj − qi||ε − ||d||ε)σT

ε (qj − qi)

= − AT
i (q)−RT

i (q). (2.37)

Define ν ′(η) , ν(
√
η), and it follows that

∫ ||ξi−qi||

0

λν(λ)dλ =
1

2

∫ ||ξi−qi||2

0

ν ′(τ)dτ,

where τ = λ2 and dτ = 2λdλ. Thus,

∂

∂qi

[∫ ||ξi−qi||

0

λν(λ)dλ

]
=

∂

∂qi

[
1

2

∫ ||ξi−qi||2

0

ν ′(τ)dτ

]

= − ν(||ξi−qi||)[ξi−qi]T

= − ν(||zi||)zTi . (2.38)

For all (i, j) ∈ P such that ||qj − qi|| < rc, it follows that j ∈ Ni. Furthermore, it
follows from (2.5) that for all (i, j) ∈ P such that ||qj−qi|| ≥ rc, ρh(||qj−qi||ε/||rc||ε) =
0. Therefore, (2.10) implies that

∑

i∈I
CT
i (q, p)pi =

1

2

∑

i∈I

∑

j∈I\{i}
ρh

(||qj − qi||ε
||rc||ε

)
[−pTi pi + pTj pi]

= − 1

2

∑

(i,j)∈P
ρh

(||qj − qi||ε
||rc||ε

)
||pj − pi||2. (2.39)

40

Substituting (2.37)–(2.39) into (2.36) yields

V̇ (q, p) = −1

2

∑

(i,j)∈P
ρh

(||qj − qi||ε
||rc||ε

)
||pj − pi||2 +

∑

i∈I
κ(||zi||)||pi||2, (2.40)

and since κ < 0, it follows that V̇ (q, p) ≤ 0.

To show (b), it can be shown that
∫ ||ξi−qi||
0

λν(λ)dλ is radially unbounded in qi,
which implies that V (q, p) is radially unbounded. Since for all (q, p) ∈ Rm × Rm,
V̇ (q, p) ≤ 0, it follows that for all t ≥ 0, V̇ (q(t), p(t)) ≤ 0, which implies that

V (q(t), p(t)) = V (q(0), p(0)) +

∫ t

0

V̇ (q(τ), p(τ))dτ ≤ V (q(0), p(0)).

Since V (q, p) is positive semidefinite, radially unbounded, and for all t ≥ 0, V (q(t), p(t)) ≤
V (q(0), p(0)), it follows that q and p are bounded.

Define
Ω , {(q, p) ∈ Rmn × Rmn : V (q, p) ≤ V (q(0), p(0))},

which is compact and positively invariant with respect to (2.1), (2.2), and (2.18).
Furthermore, define

Ω1 , {(q, p) ∈ Ω: V̇ (q, p) = 0} = {(q, p) ∈ Ω: p = 0}.

Since p = 0 implies that ṗ = u(q, p) = 0, it follows thatM is the largest set contained in
Ω1 that is invariant with respect to (2.1), (2.2), and (2.18). Thus, LaSalle’s invariance
theorem [84, Theorem 4.4] implies that, for all q(0) ∈ Rmn and p(0) ∈ Rmn, (q(t), p(t))
converges to M, which confirms (b).

To show (a), assume that for all (i, j) ∈ P, ||ξj − ξi|| > rc. Therefore, there exists
δ > 0 such that for all (i, j) ∈ P , ||ξj − ξi|| > rc + δ. Define

D ,

{
(q, p) ∈ Rmn × Rmn : ||ξ − q|| < δ

2

}
,

which implies that for all (q, p) ∈ D,

||zi|| ≤
(∑

i∈I
||zi||2

)1/2

= ||ξ − q|| < δ

2
.

Thus, for all (q, p) ∈ D and all (i, j) ∈ P ,

rc < ||ξj − ξi|| − δ
= ||zj − zi + qj − qi|| − δ
≤ ||zj||+ ||zi||+ ||qj − qi|| − δ

<
δ

2
+
δ

2
+ ||qj − qi|| − δ

= ||qj − qi||,

41

which implies that ||qj − qi||ε/||rc||ε > 1. Hence, it follows from (2.5) and (2.21) that

ψ(||qj − qi||ε) =

∫ ||rc||ε
||d||ε

ρh

(
s

||rc||ε

)
φ(s− ||d||ε)ds,

which combined with (2.22) implies that

ψs(q) =
n(n− 1)

2

∫ ||rc||ε
||d||ε

ρh

(
s

||rc||ε

)
φ(s− ||d||ε)ds.

Consider the candidate Lyapunov function V1 : D → R defined by

V1(q, p) , V (q, p)− n(n− 1)

2

∫ ||rc||ε
||d||ε

ρh

(
s

||rc||ε

)
φ(s− ||d||ε)ds.

It follows from (2.25) that V1(ξ, 0) = 0. Since ν > 0, it follows that for all qi ∈ Rm\{ξi},∫ ||ξi−qi||
0

λν(λ)dλ > 0. Therefore, (2.25) implies that for all (q, p) ∈ D \ {(ξ, 0)},
V1(q, p) > 0.

The derivative of V1(q, p) along the trajectories of (2.1), (2.2), and (2.18) is

V̇1(q, p) ,
∂V1(q, p)

∂q
p+

∂V1(q, p)

∂p
u(q, p) = V̇ (q, p).

Define

S , {(q, p) ∈ D : V̇1(q, p) = 0} = {(q, p) ∈ D : p = 0},
Ei , [0m×m(i−1) Im 0m×m(n−i)] ∈ Rm×mn,

where 0l1×l2 is the l1 × l2 matrix of zeros, and Im is the m×m identity matrix. Let
q̃ : [0,∞) → Rmn and p̃ : [0,∞) → Rmn be such that for all t ≥ 0, (q̃(t), p̃(t)) ∈ S
and for all i ∈ I, q̃i(t) , Eiq̃(t) and p̃i(t) , Eip̃(t) satisfy (2.1), (2.2), and (2.18).
Thus, p̃(t) ≡ 0. Since S ⊂ D, it follows that for all (i, j) ∈ P and all t ≥ 0,
||q̃j(t) − q̃i(t)|| > rc, which implies that ρh(||q̃j(t) − q̃i(t)||ε/||rc||ε) ≡ 0. Therefore,
(2.8)–(2.10) imply that Ai(q̃(t)) ≡ Ri(q̃(t)) ≡ Ci(q̃(t), p̃(t)) ≡ 0. Since, in addition,
p̃(t) ≡ 0, it follows from (2.2) and (2.18) that

0 ≡ ˙̃pi(t) ≡ ui(q̃(t), p̃(t), ξi − q̃i(t)) ≡ ν(||ξi − q̃i(t)||)[ξi − q̃i(t)],

which implies that q̃i(t) ≡ ξi because ν > 0. Thus, (q̃(t), p̃(t)) ≡ (ξ, 0) is the
only solution to (2.1), (2.2), and (2.18) such that for all t ≥ 0, (q̃(t), p̃(t)) ∈ S.
Therefore, [84, Corollary 4.1] implies that (q(t), p(t)) ≡ (ξ, 0) is a locally asymptotically
equilibrium of (2.1), (2.2), and (2.18), which confirms (a).

Finally, to show (c), assume V (q(0), p(0)) < ψ(||δc||ε). Since for all (i, j) ∈ P,
ψ(||qj − qi||ε) ≤ ψs(q) ≤ V (q, p) and V̇ (q, p) ≤ 0, it follows that for all t ≥ 0,
ψ(||qj(t)− qi(t)||ε) ≤ V (q(t), p(t)) ≤ V (q(0), p(0)) < ψ(||δc||ε). Thus, for all (i, j) ∈ P
and all t ≥ 0, ||qi(t) − qj(t)||ε > ||δc||ε, which implies ||qj(t) − qi(t)|| > δc, which
confirms (c).

42

Chapter 3 Discrete-Time Flocking

We present a multi-agent control method that addresses flocking in discrete time.
The method is decentralized, that is, each agent’s controller relies on local sensing to
determine the relative positions and velocities of nearby agents. Each agent has the
discrete-time double-integrator dynamics obtained by sampling the continuous-time
double integrator and applying a zero-order hold on the control input. The method can
use a centralized flock leader for guidance. We use a novel flock-correction-to-guidance
term that prevents formations from collapsing around the leader. We demonstrate
with analysis that agents using the discrete-time flocking method converge to a set
of flocking formations. Notably, the flocking analysis relies on logarithmic potential
functions. We also provide simulations demonstrating that agents using the discrete-
time flocking method converge to a set of flocking formations and follow the centralized
leader (if applicable).

3.1 Introduction

Multi-agent systems have many exciting applications such as distributed sensing,
formation flying, and cooperative surveillance. For example, autonomous aircraft
or spacecraft can fly in formations for distributed sensing [8,9]. These applications
require decentralized methods for coordinating and controlling groups of autonomous
agents [11].

For coordinated control, each agent relies on sensing to determine the relative
positions and velocities of nearby agents. Then, each agent uses these measurements
combined with other information such as mission objectives to accomplish tasks, which
can include: guidance, velocity matching, collision avoidance, and cohesion. Guidance
causes an agent or agents to follow a leader agent or leader trajectory, or approach a
desired destination. Velocity matching causes nearby agents to approach a consensus
velocity; collision avoidance repels an agent from nearby agents (or obstacles); and
cohesion attracts an agent to nearby agents.

Agent guidance is often achieved using leader-follower methods [1,9,19,21–26,58,
60,62], which rely on a centralized leader, who can be an actual or virtual member
of the formation and whose real-time relative position and relative velocity are
known by all agents [1, 22–26] or at least by some [9, 19, 21]. Consensus algorithms
[17,34–53,53–56,85] are used to achieve velocity matching.

Some consensus algorithms can be extended to address formation control [46–48,
57,58,60]. These approaches are position-formation methods that force agents into
a configuration using desired relative-position vectors between pairs of agents. In

43

contrast, distance-formation methods induce a configuration using only a desired
relative distance between adjacent agents. In this case, the agents autonomously
determine their configuration based on the desired interagent distance and initial
conditions. One approach for distance formation is to use potential functions that
create attractive forces when nearby agents are too far away and repulsive forces when
nearby agents are too close [1, 21–27,61]. Flocking methods such as [1, 21–27,61] use
distance-formation algorithms for cohesion and collision avoidance, and consensus
algorithms for velocity matching. A survey of multi-agent formation methods is
presented in [29]. In addition, many flocking methods include a centralized leader for
flock guidance.

The majority of the formation-control literature focuses on algorithms for agents
with continuous-time dynamics (e.g., [1, 8, 9, 11,19,21–27,61]). However, a controller
that stabilizes a continuous-time dynamic system may not stabilize the discrete-time
dynamic system obtained from sampling and holding the continuous system because
of sampled-data effects [77]. To address sampled-data effects, formation-control
approaches for agents with discrete-time dynamics are given in [46,47,57,58,60,83].
These methods include velocity consensus as well as cohesion and collision avoidance,
but only [83] is a distance-formation algorithm.

In this chapter, we present a discrete-time distance-formation flocking algorithm.
This distance-formation algorithm is decentralized, but it can also incorporate a
centralized leader. We use a discrete-time flocking algorithm, where the parameters of
the algorithm depend on the number of agents and the sample time. The algorithm
contains a novel flock-correction-to-guidance term that prevents formations from
collapsing around the leader. The objective of this flocking algorithm is to induce
a formation of agents, where all agents have the same velocity, do not collide with
one another, and form a single group of agents, that is, the flock is not fragmented.
Our analysis uses a logarithmic potential function, which is similar to a logarithmic
Lyapunov-like function [86–91].

This chapter has several contributions that extend the current literature. In contrast
to [83], we provide sufficient conditions such that the agent-averaged position and
velocity converge to the leader’s position and velocity. In addition, we demonstrate
with an example that if agents follow a leader and use flock correction to guidance,
then the agents converge to the same flocking configuration as without flock correction
to guidance; and if agents follow a leader and do not use flock correction to guidance,
then the flocking configuration collapses around the leader.

The discrete-time distance-formation algorithm has applications in distributed
sensing, formation flying, and cooperative surveillance. This discrete-time algorithm
is beneficial for applications with slow sampling rates. As shown in Sections 3.3 and
3.6, the discrete-time flocking algorithm can yield improved performance relative to
continuous-time algorithms when implemented with sampled-data systems.

44

3.2 Problem Formulation

Let the positive integer n be the number of agents, and define I , {1, 2, . . . , n},
which is the agent index set. For each i ∈ I, consider the discrete-time dynamics

qi(k + 1) = qi(k) + Tspi(k) +
1

2
T 2
s ui(k), (3.1)

pi(k + 1) = pi(k) + Tsui(k), (3.2)

where k ∈ N , {0, 1, 2, . . . }; Ts > 0 is the sample time; qi(k) ∈ Rm, pi(k) ∈ Rm, and
ui(k) ∈ Rm are the position, velocity, and control of the ith agent; and qi(0) and
pi(0) are the initial conditions. Note that (3.1) and (3.2) are the discrete-time double-
integrator dynamics obtained by sampling the continuous-time double integrator
with sample time Ts and applying a zero-order hold on the control input. Define
P , {(i, j) ∈ I × I : i 6= j}, which is the set of ordered pairs, and let || · || denote the
Euclidean norm.

Let δc ≥ 0 be the collision radius, which is the minimum acceptable distance between
agents. The rules for flocking are that agents stay close to one another, avoid collisions,
and match velocities [16]. We use these rules to define asymptotic flocking. The agents
in I flock with interagent distance d > 0 if the following conditions hold:

(F1) For all (i, j) ∈ P and all k ∈ N, ||qj(k)− qi(k)|| > δc.

(F2) For all (i, j) ∈ P , limk→∞[pj(k)− pi(k)] = 0.

(F3) There exists k0 ∈ N such that for all k ≥ k0, max(i,j)∈P ||qj(k)−qi(k)|| ≤ d(n−1).

Condition (F1) states that there are no collisions. Condition (F2) states that all
agents approach the same velocity. Condition (F3) states that asymptotically each
agent is at most a distance d(n− 1) away from its farthest neighbor; this condition is
flock cohesion.

We present a discrete-time flocking algorithm that accomplishes (F1)–(F3). In
addition, this algorithm can force the flock to follow a virtual leader, whose dynamics
are

qg(k + 1) = qg(k) + Tspg(k)+
1

2
T 2
s ug(k), (3.3)

pg(k + 1) = pg(k) + Tsug(k), (3.4)

where qg(k) ∈ Rm and pg(k) ∈ Rm are the position and velocity of the leader; qg(0)
and pg(0) are the initial conditions; and ug : N → Rm is an external forcing signal.
The leader dynamics (3.3) and (3.4) take the form of a discrete-time double integrator
and thus match the agent dynamics (3.1) and (3.2).

Unless otherwise stated, all statements in this chapter that involve the subscript
i are for all i ∈ I, and all statements that involve the subscripts i and j are for all
(i, j) ∈ P . Also, for ` = 1, . . . ,m, we let e` ∈ R1×m denote the `th row of Im.

45

3.3 Motivation

To motivate discrete-time flocking, we examine the effect of discretization (i.e.,
sample and zero-order hold) on a continuous-time flocking controller, specifically, [1,
Alg. 1]. We consider the discrete-time double-integrator dynamics (3.1) and (3.2),
where ui is determined by discretizing the continuous-time controller [1, Alg. 1] with
sample time Ts and applying a zero-order hold. In this section, we adopt the notation
of [1]. Unless otherwise stated, the notation from this section is not used in other
sections of this chapter. In this section, we focus on flocking without a leader.

Let d > 0 be the desired distance between agents. The attraction parameter is
a > 0, and the repulsion parameter is b ≥ a. Let ε > 0, and define || · ||σ : Rm → [0,∞)
and σε : Rm → Rm by ||x||σ , (

√
1 + ε||x||2 − 1)/ε and σε(x) , (1/(1 + ε||x||σ))x.

In this section, we assume that the communication radius r > d is sufficiently large
such that for all k ∈ N, ρh(||qj(k)− qi(k))||σ/||r||σ) = 1, where ρh : [0,∞)→ [0, 1] be
given by [1, Eq. (9)]. We also assume a = b. Then, [1, Algorithm 1] is

ui(k) ,
∑

j∈I\{i}
φ(||qj(k)− qi(k)||σ − ||d||σ)σε(qj(k)− qi(k)) + pj(k)− pi(k), (3.5)

where φ : R→ R is given by φ(η) = aη/
√

1 + η2.
First, we consider the case with n = 2 agents. In this case, it follows from (3.1),

(3.2), and (3.5) that for all k ∈ N,

δq(k + 1) , q2(k + 1)− q1(k + 1) = f1(δq(k), δp(k)), (3.6)

δp(k + 1) , p2(k + 1)− p1(k + 1) = f2(δq(k), δp(k)), (3.7)

where

f1(δq, δp) ,

(
1− T 2

s φ(||δq||σ − ||d||σ)

1 + ε||δq||σ

)
δq + Ts(1− Ts)δp, (3.8)

f2(δq, δp) ,
−2Tsφ(||δq||σ − ||d||σ)

1 + ε||δq||σ
δq + (1− 2Ts)δp. (3.9)

Define
δE , {(δqe, δpe) ∈ Rm × Rm : ||δqe|| = d and δpe = 0 },

which is the set of equilibria of the closed-loop system (3.6)–(3.9) such that the
agents are d apart and have the same velocity. Note that (δq(k), δp(k)) ≡ (0, 0) is an
equilibrium of (3.6)–(3.9), but (0, 0) 6∈ δE .

Let (δqe, δpe) ∈ δE , and it follows from (3.8) and (3.9) that

A ,

[
∂f1(δq,δp)

δq
∂f1(δq,δp)

δp
∂f2(δq,δp)

δq
∂f2(δq,δp)

δp

]

(δq,δp)=(δqe,δpe)

=

[
Im − T 2

s a
1+εd2

δqeδq
T
e Ts(1− Ts)Im

− 2Tsa
1+εd2

δqeδq
T
e (1− 2Ts)Im

]
.

(3.10)
The following result describes the locations of the eigenvalues of A. The proof is in

Section 3.9.

46

Proposition 3. The matrix A given by (3.10) has m−1 eigenvalues at 1 and m−1
eigenvalues at 1− 2Ts. Furthermore, the following statements hold:

(a) Both of the remaining eigenvalues are inside the open unit disk if and only if
Ts < min {1, 2(1 + εd2)/(ad2)}.

(b) At least one of the remaining eigenvalues is outside the closed unit disk if and
only if Ts > min {1, 2(1 + εd2)/(ad2)}.

The following results describe the stability properties of the equilibria of (3.6)–(3.9).
These results are an immediate consequence of Proposition 3 and Lyapunov’s indirect
method.

Corollary 1. If m = 1 and Ts < min {1, 2(1 + εd2)/(ad2)}, then every element of
δE is a locally asymptotically stable equilibrium of (3.6)–(3.9).

Corollary 2. If Ts > min {1, 2(1 + εd2)/(ad2)}, then every element of δE is an
unstable equilibrium of (3.6)–(3.9).

Corollary 2 implies that if the continuous-time flocking controller [1, Alg. 1] is
discretized with a sample time Ts that is not sufficiently small, then the closed-loop
system (3.6)–(3.9) is unstable. The following example demonstrates that the instability
described in Corollary 2 is such that the agents approach a limit cycle, where they
oscillate about the desired flocking distance d.

Example 8. Let m = 2, a = b = 5, ε = 0.1, d = 12, and Ts = 0.05 s. Thus,
Ts = 0.05 s > 0.04 s = min {1, 2(1 + εd2)/(ad2)}, and Corollary 2 implies that every
element of δE is an unstable equilibrium of (3.6)–(3.9). The initial positions q1(0)
and q2(0) are randomly distributed about 0. The initial velocity p1(0) is randomly
distributed about 0, and p2(0) = [20 0]T − p1(0), which makes the average initial
velocity [10 0]T. Figure 3.1 shows the trajectory of the closed-loop dynamics (3.1),
(3.2), and (3.5), and Figure 3.2 shows the time histories of ||q2 − q1|| and ||p2 − p1||.
The agents asymptotically oscillate towards and away from one another. The relative
distance asymptotically oscillates about d, and the relative velocity asymptotically
oscillates. Thus, neither (F2) nor (F3) are satisfied. 4

Corollary 1 states that if m = 1 and Ts is sufficiently small, then every element
of δE is a locally asymptotically stable equilibrium of (3.6)–(3.9). For m > 1 and
Ts sufficiently small, Proposition 3 implies that A has at least one eigenvalue at
1. In this case, Lyapunov’s indirect method cannot be applied to determine local
stability. Numerical simulations suggest that for n = 2 and m > 1, the condition
Ts < min {1, 2(1+ εd2)/(ad2)} may be sufficient to ensure that every element of δE is a
locally semistable equilibrium. However, a proof of this conjecture is open. See [92, pp.
194–195] for the definition of discrete-time local semistability.

The above analysis and example are for n = 2 agents. For n > 2 agents, the
condition Ts < min {1, 2(1 + εd2)/(ad2)} is not sufficient to achieve (F1)–(F3). For
n > 2, numerical testing suggests that the bound on Ts depends not only on a, b, ε,
and d, but also n. The following example for n = 3 agents shows a trajectory of (3.1),

47

0 20 40

−4

0

4

e1qi

e 2
q i

Figure 3.1: A trajectory of the closed-loop dynamics (3.1), (3.2), and (3.5). The
agents asymptotically oscillate towards and away from each other.

(3.2), and (3.5), where Ts < min {1, 2(1 + εd2)/(ad2)}. In this example, the agents
start near a flocking configuration but diverge from this configuration.

Example 9. Let n = 3, m = 2, a = b = 0.2, ε = 0.1, d = 12, and Ts = 0.7 s. Thus,
Ts = 0.7 s < 1 s = min {1, 2(1 + εd2)/(ad2)}. The initial positions are q1(0) = [0 0]T,
q2(0) = [d 0]T, and q3(0) = [0.5d 0.865d]T, which implies that all pairs of agents are
approximately d apart. The initial velocities are pi(0) = 0. Thus, the agents start
near a flocking configuration. Figure 3.3 shows the distance ||q2 − q1|| between agents
and the magnitude of the relative velocity ||p2 − p1||. The agents do not stay in a
flocking configuration. In fact, ||q2 − q1|| and ||p2 − p1|| grow without bound. Neither
(F2) nor (F3) are satisfied. 4

The analysis and examples in this section demonstrate that continuous-time flocking
algorithms may not perform well in sampled-data settings particularly for large sample
times or for a large number of agents. Discretizing these algorithms with sufficiently
small sample times may yield the desired flocking formations. However, for n > 2
agents, it is unclear how to determine an upper bound on the sample time required
to obtain stable formations. In this chapter, we present a new discrete-time flocking
algorithm that is designed to guarantee stability properties for arbitrary sample time
Ts, number of agents n, and spatial dimension m.

48

0

6

12

||q
2
−
q 1
||

150 250 350

11.7
12

12.3

0 150 300
0

5

10

k

||p
2
−
p 1
||

Figure 3.2: The distance ||q2 − q1|| between agents and the magnitude of the relative
velocity ||p2 − p1|| for a trajectory of the closed-loop dynamics (3.1), (3.2), and (3.5).
The distance between agents oscillates about d asymptotically, and the relative velocity
oscillates asymptotically.

3.4 Discrete-Time Flocking

Let rc > δc be the communication radius, which is the maximum distance at which
an agent can sense another agent’s relative position and relative velocity. For all
k ∈ N, define the neighbor set Ni(k) , {j ∈ I \ {i} : ||qj(k) − qi(k)|| < rc}, which
is the set of agents whose distance to the ith agent is less than the communication
radius rc. Let d ∈ (δc, rc) be the flock radius, which is the desired distance between
adjacent agents in the flock. For all k ∈ N, define the attraction set Ai(k) , {j ∈
I \ {i} : d ≤ ||qj(k)− qi(k)|| < rc} ⊆ Ni(k), which is the set of agents whose distances
from the ith agent are between the flock and communication radii, and define the
repulsion set Ri(k) , {j ∈ I \ {i} : ||qj(k)− qi(k)|| < d} ⊆ Ni(k), which is is the set
of agents whose distances to the ith agent are less than the flock radius. Note that for
all k ∈ N, Ni(k) = Ai(k) ∪Ri(k).

For each k ∈ N, let q̂i(k) ∈ Rm be an estimate of qi(k + 1), that is, q̂i(k) is an
estimate of the ith agent’s position at step k+ 1. We discuss how to design q̂i(k) later
in this section. Let n̄ ≥ n and T̄s ≥ Ts. We assume n̄ and T̄s are known; however,
n and Ts need not be known. If n and Ts are known, then n̄ = n and T̄s = Ts are
appropriate choices.

49

0

25

50

||q
2
−
q 1
||

0 40 80
0

3000

6000

k

||p
2
−
p 1
||

Figure 3.3: The distance ||q2 − q1|| between agents and the magnitude of the relative
velocity ||p2 − p1|| for a trajectory of the closed-loop dynamics (3.1), (3.2), and (3.5).
The agents start near a flocking configuration; however, the agents do not stay in a
flocking configuration.

To develop the flocking controller, let

α1 ∈ (0,∞), α2 ∈
(

0,
4(α1 + 1)

n̄T̄ 2
s

)
, (3.11)

and consider φ : [0,∞)→ [α2/(α1 + 1)− α2/α1, α2/(α1 + 1)) defined by

φ(η) ,
α2

α1 + 1
− α2

α1 + η2/d2
. (3.12)

Note that φ(d) = 0; for all η ∈ [0, d), φ(η) < 0; and, for all η ∈ (d,∞), φ(η) > 0.
Next, let

β ∈
[

α2T̄s
2(α1 + 1)

,
2

n̄T̄s

)
, (3.13)

where this interval exists because α2 < 4(α1 + 1)/(n̄T̄ 2
s).

Let

γ1 ∈
[
0,

2

T̄ 2
s

)
, γ2 ∈

[
T̄sγ1

2
,

1

T̄s

)
, (3.14)

50

where the interval for γ2 exists because γ1 < 2/T̄ 2
s . For all k ∈ N, define

q(k) ,

[
q1(k)

...
qn(k)

]
, p(k) ,

[
p1(k)

...
pn(k)

]
, q̂(k) ,

[
q̂1(k)

...
q̂n(k)

]
.

Thus, we consider the discrete-time flocking control ui : Rmn×Rmn×Rmn×Rm×Rm →
Rm defined by

ui(q, p, q̂, qg, pg) =
∑

j∈Ai
φ(||q̂j − q̂i||)[qj − qi]

︸ ︷︷ ︸
Flock attraction

+
∑

j∈Ri
φ(||q̂j − q̂i||)[qj − qi]

︸ ︷︷ ︸
Flock repulsion

+
∑

j∈Ni
β[pj − pi]

︸ ︷︷ ︸
Velocity consensus

+ γ1[qg − qi] + γ2[pg − pi]︸ ︷︷ ︸
Guidance

−
(∑

j∈Ni

γ1
card(Ni) + 1

[qj − qi] +
γ2

card(Ni) + 1
[pj − pi]

)

︸ ︷︷ ︸
Flock correction to guidance

, (3.15)

where card(Ni) is the cardinality of Ni.
The flock-attraction term in (3.15) is such that for all j ∈ Ai, the ith agent is

attracted to the jth agent. The flock-repulsion term is such that for all j ∈ Ri, the ith
agent is repelled from the jth agent. The velocity-consensus term attempts to match
the ith agent’s velocity with the average velocity of all agents in the neighbor set Ni.
The guidance terms cause the ith agent to be attracted to the leader’s position and
attempt to match its velocity. The flock-correction-to-guidance term is such that for
all j ∈ Ni, the ith agent experiences corrective forces that repel it from the jth agent
and prevents configurations from collapsing around the leader for a large number n of
agents. This collapsing effect has been noted as an issue in [29].

The parameters in the control (3.15) are α1, α2, β, γ1, and γ2. Decreasing α1

increases flock repulsion relative to flock attraction, which helps prevent collisions.
Increasing α2 increases the magnitude of φ and thus, the flock-attraction and flock-
repulsion forces. Increasing β increases the magnitude of the velocity-consensus force.
Numerical simulations suggest that choosing β closer to its upper bound 2/(n̄T̄s) tends
to yield better performance. Positive γ1 causes the ith agent to be attracted to the
leader’s position, whereas positive γ2 causes the ith agent to attempt to match the
leader’s velocity.

The estimate q̂i can be chosen in multiple ways. The analysis in the next section
uses the estimate q̂i(k) ≡ qi(k) + Tspi(k) + (T 2

s /2)ui(k) ≡ qi(k + 1). This choice of the

51

estimate q̂i(k) depends on ui(k), which can make this estimate difficult to implement.
However, we present an iterative algorithm for implementing q̂i(k) ≡ qi(k + 1) at
the end of the next section. In contrast, the estimate q̂i(k) ≡ qi(k) + Tspi(k) is easy
to implement. In addition, for bounded ui and sufficiently small Ts, the estimate
q̂i(k) ≡ qi(k) + Tspi(k) is approximately equal to qi(k + 1). The simulations in
Section 3.7 use the estimate q̂i(k) ≡ qi(k) + Tspi(k).

3.5 Flocking Analysis

In this section, we analyze the closed-loop dynamics (3.1)–(3.4) and (3.15). Let

Ei ,
[

0m×m(i−1) Im 0m×m(n−i)
]
∈ Rm×mn,

and define Q , {q ∈ Rmn : for all (i, j) ∈ P, ||[Ej − Ei]q|| < rc}, which is the set of
agent positions such that all agents can communicate with one another. The flocking
analysis in this section relies on the following assumptions:

(A1) q̂(k) ≡ q(k + 1).

(A2) rc is sufficiently large such that for all k ∈ N, q(k) ∈ Q.

At the end of this section, we present an iterative numerical approach for imple-
menting q̂(k) ≡ q(k + 1) and thus satisfying (A1). Assumption (A2) states that the
communication radius is sufficiently large such that all agents communicate with one
another. Theorem 5 in this section provides a sufficient condition such that (A2) is
satisfied.

Define qa , −qg+
∑

i∈I qi/n and pa , −pg+
∑

i∈I pi/n, which are the agent-averaged
position and velocity relative to the leader’s position and velocity. Then, it follows
from (3.1)–(3.4) and (3.15) that for all k ∈ N,

qa(k + 1) = qa(k) + Tspa(k) +
1

2
T 2
s ua(q(k), p(k), qg(k), pg(k), ug(k)), (3.16)

pa(k + 1) = pa(k) + Tsua(q(k), p(k), qg(k), pg(k), ug(k)), (3.17)

where ua : Rmn × Rmn × Rm × Rm × Rm → Rm is defined by

ua(q, p, qg, pg, ug) , − ug +
1

n

∑

i∈I
ui(q, p, q̂, qg, pg), (3.18)

which is the agent-averaged control relative to ug. We call (3.16)–(3.18) the agent-
averaged dynamics.

Next, define qji , qj − qi and pji , pj − pi. Then, it follows from (3.1), (3.2), and
(3.15) that for all k ∈ N,

qji(k + 1) = qji(k) + Tspji(k) +
1

2
T 2
s uji(q(k), p(k), q̂(k)), (3.19)

pji(k + 1) = pji(k) + Tsuji(q(k), p(k), q̂(k)), (3.20)

52

where uji : Rmn × Rmn × Rmn → Rm is defined by

uji(q, p, q̂) , uj(q, p, q̂, qg, pg)− ui(q, p, q̂, qg, pg). (3.21)

We call (3.19)–(3.21) the interagent dynamics. Note that the interagent dynamics
do not depend on the leader’s position qg or velocity pg. Thus, (3.1)–(3.4) and (3.15)
can be decomposed into 2 parts: the agent-averaged dynamics (3.16)–(3.18) and the
interagent dynamics (3.19)–(3.21).

The following result provides sufficient conditions such that the agent-averaged
position and velocity converge to the leader’s position and velocity. The proof is in
Section 3.10. We let ⊗ denote the Kronecker product.

Lemma 2. Consider the closed-loop dynamics (3.1)–(3.4) and (3.15), and the
associated agent-averaged dynamics (3.16)–(3.18), where (A1) and (A2) are satisfied
and ug(k) ≡ 0. Then, for all q(0) ∈ Q, p(0) ∈ Rmn, qg(0) ∈ Rm, and pg(0) ∈ Rm, the
following statements hold:

(a) If γ1 = 0 and γ2 ∈ (0, 1/T̄s), then pa satisfies

pa(k + 1) = (1− Tsγ2)pa(k), (3.22)

and limk→∞ pa(k) = 0.

(b) If γ1 ∈ (0, 2/T̄s
2
) and γ2 ∈ (T̄sγ1/2, 1/T̄s), then qa and pa satisfy

[
qa(k + 1)
pa(k + 1)

]
=

([
1− 1

2
T 2
s γ1 Ts(1− 1

2
Tsγ2)

−Tsγ1 1− Tsγ2.

]
⊗ Im

)[
qa(k)
pa(k)

]
, (3.23)

and limk→∞ qa(k) = 0 and limk→∞ pa(k) = 0.

To analyze the combined agent-averaged dynamics (3.16)–(3.18) and the interagent
dynamics (3.19)–(3.21), consider ψ : [0,∞)→ [0,∞) defined by

ψ(η) , 2α2

∫ η

d

σ

α1 + 1
− σ

α1 + σ2/d2
dσ

= α2

[
η2 − d2
α1 + 1

+ d2 ln
α1 + 1

α1 + η2/d2

]
. (3.24)

Note that ψ(d) = 0 and for all η ∈ [0,∞) \ {d}, ψ(η) > 0. Consider the logarithmic
potential function V : Q× Rmn → [0,∞) defined by

V (q, p) ,
∑

(i,j)∈P
ψ(||[Ej − Ei]q||) + λ||[Ej − Ei]p||2, (3.25)

where λ , 1/n − Tsβ/2, which is positive because β < 2/(n̄T̄s) ≤ 2/(nTs). If
||[Ej − Ei]q|| = d and [Ej − Ei]p = 0, then V (q, p) = 0; otherwise, V (q, p) > 0.

Define the Lyapunov-like difference ∆V (k) , V (q(k + 1), p(k + 1))− V (q(k), p(k)).
The following result shows that V (q(k), p(k)) is nonincreasing along the trajectories
of (3.1), (3.2), and (3.15). The proof is in Section 3.10.

53

Lemma 3. Consider the closed-loop dynamics (3.1)–(3.4), and (3.15), where (A1)
is satisfied. Let k0 ∈ N, and assume q(k0) ∈ Q. Then, ∆V (k0) ≤ 0. Furthermore,
∆V (k0) = 0 if and only if qji(k0 + 1) = qji(k0).

Define

E , {(qe, pe) ∈ Q× Rmn : for all (i, j) ∈ P , uji(qe, pe, qe) = 0 and [Ej − Ei]pe = 0 }
= {(qe, pe) ∈ Q× Rmn : for all (i, j) ∈ P , uji(qe, 0, qe) = 0 and [Ej − Ei]pe = 0 },

(3.26)

which is the set of agent positions and velocities such that all agents communicate
with one another and have the same velocity and control.

The following result provides sufficient conditions for flocking and is the main result
of this chapter. The proof is in Section 3.11.

Theorem 4. Consider the closed-loop dynamics (3.1)–(3.4) and (3.15), where
(A1) and (A2) are satisfied. Then, for all q(0) ∈ Q, p(0) ∈ Rmn, qg(0) ∈ Rm, and
pg(0) ∈ Rm, the following statements hold:

(a) If V (q(0), p(0)) < 2ψ(δc), then for all k ∈ N, ||qji(k)|| > δc.

(b) limk→∞ pji(k) = 0.

(c) For all δ > 0 there exists kδ ∈ N such that for all k ≥ kδ, max(i,j)∈P ||qji(k)|| ≤
d(n− 1) + δ.

(d) (q(k), p(k)) converges to the set {(qe, pe) ∈ E : V (qe, pe) ≤ V (q(0), p(0))}.

(e) For all i ∈ I, limk→∞
∑

j∈Ni(k) φ(||q̂j(k)− q̂i(k)||)qji(k) = 0.

(f) If γ1 = γ2 = 0, then
∑

j∈I pj(k) ≡∑j∈I pj(0) and limk→∞ pi(k) =
∑

j∈I pj(0)/n.

(g) If γ1 ∈ [0, 2/T̄s
2
), γ2 ∈ (T̄sγ1/2, 1/T̄s), and ug(k) ≡ 0, then limk→∞ pi(k) = pg(0).

(h) If γ1 ∈ (0, 2/T̄s
2
), γ2 ∈ (T̄sγ1/2, 1/T̄s), and ug(k) ≡ 0, then limk→∞ qa(k) = 0.

Part (a) states that if V (q(0), p(0)) < 2ψ(δc), then there are no collisions, which
implies (F1). Part (b) states that all agents converge to the same velocity, which
implies (F2). Part (c) states that the relative position between agents is asymptotically
bounded by d(n− 1), which implies (F3). Thus, parts (a)–(c) imply that the agents
in I achieve (F1)–(F3), and thus flock with radius d > 0.

Part (d) states that agents converge to a subset of E , which implies that agents
converge to the same velocity and control. Part (e) states the sum of attraction
and repulsion of the ith agent converges to 0. Part (f) states that if γ1 = γ2 = 0,
then the ith agent’s velocity converges to the agent-averaged initial velocity. Part (g)

states that if γ1 ∈ [0, 2/T̄s
2
), γ2 ∈ (T̄sγ1/2, 1/T̄s), and ug(k) ≡ 0, then the ith agent’s

velocity converges to the leader’s initial velocity. Part (h) states that if γ1 ∈ (0, 2/T̄s
2
),

γ2 ∈ (T̄sγ1/2, 1/T̄s), and ug(k) ≡ 0, then the agent-averaged position converges to the
leader’s position.

54

Assumption (A2) requires that rc is sufficiently large such that for all k ∈ N,
q(k) ∈ Q. The following result provides a sufficient condition for (A2). The proof is
in Section 3.11.

Theorem 5. Consider the closed-loop dynamics (3.1)–(3.4) and (3.15), where (A1)
is satisfied. Assume q(0) ∈ Rmn and p(0) ∈ Rmn are such that V (q(0), p(0)) < 2ψ(rc).
Then, for all k ∈ N, q(k) ∈ Q, and parts (a)–(h) of Theorem 4 hold.

The analyses in this section use the estimate q̂(k) ≡ q(k + 1), which can be difficult
to implement because q̂(k) depends on u(k). The following iterative algorithm provides
a process to compute an estimate q̂(k) on each step k such that ||q̂(k)− q(k + 1)|| < ε
for an arbitrarily small ε > 0.

Algorithm 1.Consider the closed-loop dynamics (3.1)–(3.4) and (3.15), where (A2)
is satisfied. Let ε > 0 be the required accuracy of the estimate q̂(k) of q(k + 1). For
each step k ∈ N, consider the estimator of q(k + 1) given by the difference equation

zk(l + 1) = q(k) + Tsp(k) +
1

2
T 2
s u(q(k), p(k), zk(l), qg(k), pg(k)), (3.27)

where l ∈ N, zk(l) ∈ Rmn, and zk(0) is the initial estimate of q(k + 1). For each step
k ∈ N, the estimate q̂(k) is obtained using the following algorithm:

Step 1: Initialize l to 0, and select zk(0) ∈ Rmn, which is the initial estimate of q(k+1).

Step 2: Compute zk(l + 1) using (3.27). If ||zk(l + 1)− zk(l)|| < ε, then go to Step 3;
otherwise, increment l by 1 and repeat this step.

Step 3: The estimate of q(k + 1) is q̂(k) = zk(l). 4

For each k ∈ N, one possible choice for the initial estimate is zk(0) = q(k) + Tsp(k).
Note that Algorithm 1 can be implemented decentrally for each agent using feedback
q(k) and p(k). In numerical testing with ε = 10−13 and different values of q(k), p(k),
qg(k), pg(k), α1, α2, β, γ1, γ2, n, m, Ts, and d, we observed that after a sufficient
number of iterations ||zk(l + 1)− zk(l)|| < ε. In practice, the tolerance ε > 0 would
be selected based on the computational resources and the acceptable amount of time
to iterate on each step k. In fact, Algorithm 1 can be easily modified to impose
a maximum number of iterations, which would be determined based on practical
constraints.

3.6 Motivating Example Revisited

We now reconsider Example 8 in Section 3.3, where instead of using the control
given by [1, Alg. 1], we use the control (3.15). Let Ts, d, and rc = r be the same as
in Section 3.3. The initial positions q1(0) and q2(0), and initial velocities p1(0) and
p2(0) are the same as in Example 8. Let α1 = 0.01, α2 = 3, β = 3.3, and γ1 = γ2 = 0,
which are the parameters of (3.15) and are selected to satisfy (3.11), (3.13), and

55

(3.14). We use the estimate q̂(k) obtained from Algorithm 1, where ε = 10−13 and
zk(0) = q(k) + Tsp(k).

Figure 3.4 shows the trajectory of the closed-loop dynamics (3.1), (3.2), and (3.15)
overlaid on Figure 3.1, and Figure 3.5 shows the time histories of ||q2 − q1|| and
||p2−p1|| overlaid on Figure 3.2. Using the control (3.15), the distance between agents
converges to d without oscillations and the agents approach the same velocity. Thus,
the agents flock asymptotically, and this flocking behavior contrasts the asymptotic
oscillations observed in Figures 3.1 and 3.2, where the control is given by [1, Alg. 1].

If, in the above example, we use the control (3.15) with the estimate q̂(k) ≡
q(k) + Tsp(k) instead of the estimate obtained from Algorithm 1, then the response
(solid lines) is indistinguishable from the response shown in Figures 3.4 and 3.5.

0 20 40

−4

0

4

e1qi

e 2
q i [1, Alg. 1]

Control (3.15)

Figure 3.4: A trajectory of the closed-loop system (3.1), (3.2), and (3.15) overlaid on
the trajectory from Figure 3.1, which uses the control [1, Alg. 1]. The agents using
(3.15) flock asymptotically.

3.7 Numerical Examples

In this section, we present examples that demonstrate the discrete-time flocking
control (3.15). For all examples, we let Ts = 0.05 s, δc = 2 m, d = 12 m, α1 = 0.01
α2 = 3, and β = 3.3. We use the estimate q̂(k) ≡ q(k) + Tsp(k).

The following example demonstrates that the flock-correction-to-guidance (FCTG)
term helps prevent the agents’ configuration from collapsing around the leader, which

56

0

6

12
||q

2
−
q 1
||

[1, Alg. 1] Control (3.15)

150 250 350

11.7
12

12.3

0 150 300
0

5

10

k

||p
2
−
p 1
||

Figure 3.5: The distance ||q2 − q1|| between agents and the magnitude of the relative
velocity ||p2 − p1|| for a trajectory of the closed-loop system (3.1), (3.2), and (3.15)
overlaid on the plot from Figure 3.2, which uses the control [1, Alg. 1]. Using (3.15),
the distance between the agents converges to d, and the relative velocity converges to
0.

in turn helps prevent collisions.

Example 10. Let n = 3 agents, m = 2, and rc = 100 m. The initial positions are
q1(0) = [9 0]T, q2(0) = [−2 7]T, and q3(0) = [−5 −3]T; and the initial velocities are
p1(0) = p2(0) = p3(0) = 0. In addition, let γ1 = 50 and γ2 = 10, and consider the
leader dynamics (3.3) and (3.4), where qg(k) ≡ 0, pg(k) ≡ 0, and ug(k) ≡ 0. Thus, the
leader agent is stationary. Figure 3.6 shows the trajectory of agents using the control
(3.15), which includes the FCTG term, and the control (3.15), where the FCTG term
is omitted. Figure 3.7 shows that the distances between agents using the control (3.15)
with FCTG converges to d, whereas the agents whose controls do not contain the
FCTG term converge to a distance less than d apart. 4

The remaining numerical examples demonstrate formations of agents with and
without a leader.

Example 11. Let n = 3 agents, m = 2, and rc = 100 m. Assume there is no
leader (i.e., γ1 = γ2 = 0). The initial positions q1(0), q2(0), and q3(0) are randomly
distributed about 0; and the initial velocities p1(0) and p2(0) are randomly distributed
about 0, and p3(0) = [30 0]T − p1(0)− p2(0), which makes the average initial velocity
[10 0]T. Figure 3.8 shows that the agents form a flock, where all agents have the

57

−10 0 10 20

−10

0

10

20

e1qi

e 2
q i

qi(0)
qi(kf) with FCTG
qi(kf) without FCTG
qg(k) ≡ 0
With FCTG
Without FCTG

Figure 3.6: Trajectories of n = 3 agents that follow a leader whose position and
velocity are qg(k) ≡ 0 and pg(k) ≡ 0. In one trajectory, agents use the control (3.15),
which contains the FCTG term; in the other, agents use the control (3.15), where the
FCTG term is omitted. The step kf ∈ N is such that qi(kf + 1) ≈ qi(kf).

same velocity and are d apart from all other agents. Furthermore, for all k ∈ N,
||qj(k)− qi(k)|| > δc, which implies that there are no collisions. In this example, we
use the estimate q̂(k) ≡ q(k)+Tsp(k) ≈ q(k+1), whereas Theorem 4 uses the estimate
q̂(k) ≡ q(k + 1). Figure 3.8 shows that with this approximation, the agents in I flock
with radius d. 4

The asymptotic configurations in Example 10 (with FCTG) and Example 11 are
both such that limk→∞ ||qj(k)− qi(k)|| = d. Therefore, in these cases, agents converge
to this d-apart configuration independent of whether or not there is a leader.

Example 12. Let n = 3 agents, m = 2, and rc = 100 m. Let γ1 = 3 and γ2 = 6,
and consider the leader dynamics (3.3) and (3.4), where qg(0) = 0, pg(0) = [10 0]T,
and

ug(k) =

[
0

−e2qg(k) + 50 sin θk − 2e2pg(k) + 100θ cos θk

]
,

and ω = 0.025 rad. Thus, the leader has a constant velocity in the e1 direction and
a sinusoidal velocity in the e2 direction. The initial conditions q(0) and p(0) are
randomly distributed about 0. Figure 3.9 shows that the agents flock and follow the
leader. 4

58

0 60 120
0

0.38d

d

k

||q
j
−
q i
||

With FCTG Without FCTG

Figure 3.7: The distances between n = 3 agents that follow the leader agent whose
position is qg(k) ≡ 0 and whose velocity is pg(k) ≡ 0. In one trajectory, agents use the
control (3.15), which contains the FCTG term; in the other, agents use the control
(3.15), where the FCTG term is omitted. The agents using the FCTG term converge
to d apart, whereas the agents that do not use the FCTG term converge to a distance
less than d apart.

Example 13. Let n = 10 agents, m = 3, and rc = 100 m. Let γ1 = 3 and γ2 = 6,
and consider the leader dynamics (3.3) and (3.4), where qg(0) = 0, pg(0) = [5 0 0]T,
and

ug(k) =




0
0

−e3qg(k) + 50 sin θk − 2e3pg(k) + 100θ cos θk


 ,

where ω = 0.025 rad. Thus, the leader has a constant velocity in the e1 and e2
directions and a sinusoidal velocity in the e3 direction. The initial conditions q(0) and
p(0) are randomly distributed about 0. Figure 3.10 shows that the agents flock and
follow the leader. 4

3.8 Conclusions

We presented a discrete-time distance-formation control (3.15) that addresses flock-
ing for agents with the sampled-data double-integrator dynamics, which are obtained
by sampling the continuous-time double integrator and applying a zero-order hold

59

0 30 60 90

−20

0

20

k = 0 k = 50 k = 100 k = 150

e1qi

e 2
q i

Figure 3.8: A group of n = 3 agents with no leader that flock. The agents form a
flock, where all agents have the same velocity and are d apart from one another. The
line between agents shows that agents are approximately d apart.

on the control input. The control (3.15) includes flock-attraction, flock-repulsion,
velocity-consensus, guidance, and flock-correction-to-guidance terms. We demon-
strated with analysis and simulation that discretizing (i.e., sample and zero-order
hold) a continuous-time flocking algorithm (specifically [1]) can lead to instabilities.
In contrast, we demonstrated with analysis and simulation that the discrete-time
flocking method in this chapter causes agents to flock, that is, avoid collisions, match
velocities, and achieve a cohesive formation.

3.9 Proof of Proposition 3

Proof of Proposition 3. Let S ∈ Rm×m be an orthogonal matrix such that Sδqe =
deT1 , which exists because ||δqe|| = d. Let P ∈ R2m×2m be the permutation of the
2m × 2m identity matrix, where the second and (m + 1)th columns are switched.
Define

Ã , P

[
S 0m×m

0m×m S

]
A

[
ST 0m×m

0m×m ST

]
P−1

=




M 02×(m−1) 02×(m−1)
0(m−1)×2 Im−1 Ts(1− Ts)N
0(m−1)×2 0(m−1)×(m−1) (1− 2Ts)Im−1


 , (3.28)

60

0 200

−50

0

50

k = 0 k = 200 k = 400

e1qi

e 2
q i

qg

Figure 3.9: A group of n = 3 agents that flock and follow a leader. The line between
agents shows that agents are approximately d apart.

where

M ,

[
1− T 2

s ad
2

1+εd2
Ts(1− Ts)

−2Tsad2

1+εd2
1− 2Ts

]
∈ R2×2,

N ,

[
0(m−2)×1 Im−2

1 01×(m−2)

]
∈ R(m−1)×(m−1).

Since the eigenvalues of A coincide with those of Ã, and Ã is upper block triangular,
it follows from (3.28) that A has m − 1 eigenvalues at 1 and m − 1 eigenvalues at
1− 2Ts, and the 2 remaining eigenvalues of A are the eigenvalues of M .

It follows from Proposition 4 in Section 3.12 that the eigenvalues of M are in
the open unit disk if and only Ts = f < min {1, 2/g} = min {1, 2(1 + εd2)/(ad2)},
which confirms (a). Similarly, it follows from Proposition 5 in Section 3.12 that
at least one of the eigenvalues of M is outside the closed unit disk if and only
Ts = f > min {1, 2/g} = min {1, 2(1 + εd2)/(ad2)}, which confirms (b).

3.10 Proof of Lemmas 2 and 3

Proof of Lemma 2. Assumption (A2) implies that for all k ∈ N, ||qji(k)|| < rc.
Since, in addition, ug(k) ≡ 0, it follows from (3.18) that for all k ∈ N,

ua(q(k), p(k), qg(k), pg(k), ug(k)) = −γ1qa(k)− γ2pa(k),

61

0
100

200−20

0

20

−40

0

40

k = 0
k = 250 k = 400

e1qi
e2qi

e 3
q i

qg

Figure 3.10: A group of n = 10 agents that flock and follow a leader. The line
between agents shows that agents are approximately d apart.

which substituted into (3.16) and (3.17) yields (3.23).
To show (a), assume that γ1 = 0 and γ2 ∈ (0, 1/T̄s), and it follows from (3.23)

that for all k ∈ N, pa(k) satisfies (3.22). Since γ2 ∈ (0, 1/T̄s) ⊆ (0, 1/Ts), it follows
that all the eigenvalues of (1 − Tsγ2)Im are inside the open unit disk. Therefore,
limk→∞ pa(k) = 0, which confirms (a).

To show (b), assume γ1 ∈ (0, 2/T̄s
2
) and γ2 ∈ (T̄sγ1/2, 1/T̄s), and define

B ,

[
1− 1

2
T 2
s γ1 Ts(1− 1

2
Tsγ2)

−Tsγ1 1− Tsγ2

]
.

Since γ1 > 0 and γ2 ∈ (T̄sγ1/2, 1/T̄s) ⊆ (Tsγ1/2, 1/Ts), it follows that detB =
1 + T 2

s γ1/2− Tsγ2 > T 2
s γ1/2 > 0 and detB < 1. Thus, 0 < detB < 1.

Since γ1 > 0, it follows that trB = 2−Tsγ2−T 2
s γ1/2 = 1+detB−Tsγ21 < 1+detB.

Since detB > 0, it follows that | trB| < |1 + detB| = 1 + detB.
Finally, since | detB| < 1 and | trB| < 1 + detB, it follows from [93, Fact 11.21.1]

that the eigenvalues of B are in the open unit disk. Thus, the eigenvalues of B ⊗ Im
are in the open unit disk, and it follows from (3.23) that limk→∞ qa(k) = 0 and
limk→∞ pa(k) = 0, which confirms (b).

62

Proof of Lemma 3. It follows from (3.24) and (3.25) that

∆V (k0) =
∑

(i,j)∈P
α2
||qji(k0 + 1)||2 − ||qji(k0)||2

α1 + 1

+ α2d
2 ln

(
α1 + ||qji(k0)||2/d2

α1 + ||qji(k0 + 1)||2/d2
)

+ λ||pji(k0 + 1)||2 − λ||pji(k0)||2

=
∑

(i,j)∈P
α2
||qji(k0 + 1)||2 − ||qji(k0)||2

α1 + 1

+ α2d
2 ln

(
1 +

(||qji(k0)||2 − ||qji(k0 + 1)||2)/d2
α1 + ||qji(k0 + 1)||2/d2

)

+ λ||pji(k0 + 1)||2 − λ||pji(k0)||2. (3.29)

Since for all η > 0, ln η ≤ η − 1, it follows from (3.12) and (3.29) that ∆V (k0) ≤ W1,
where

W1 ,
∑

(i,j)∈P
α2
||qji(k0 + 1)||2 − ||qji(k0)||2

α1 + 1

+ α2
||qji(k0)||2 − ||qji(k0 + 1)||2
α1 + ||qji(k0 + 1))||2/d2

+ λ||pji(k0 + 1)||2 − λ||pji(k0)||2

=
∑

(i,j)∈P
φ(||qji(k0 + 1)||)

(
||qji(k0 + 1)||2 − ||qji(k0)||2

)

+ λ||pji(k0 + 1)||2 − λ||pji(k0)||2. (3.30)

Define q̂ji(k0) , q̂j(k0)− q̂i(k0), and it follows from (A1), (3.19), and (3.20) that

W1 = Ts

[∑

(i,j)∈P
2φ(||q̂ji(k0))||)qTji(k0)pji(k0)

+ Tsφ(||q̂ji(k0)||)qTji(k0)uji(q(k0), p(k0), q̂(k0))
+ 2λpTji(k0)uji(q(k0), p(k0), q̂(k0))

+ Tsφ(||q̂ji(k0)||)
∥∥∥∥pji(k0) +

1

2
Tsuji(q(k0), p(k0), q̂(k0))

∥∥∥∥
2

+ Tsλ||uji(q(k0), p(k0), q̂(k0))||2
]
. (3.31)

Note that all terms in (3.31) are at time step k0. For notational convenience, we
omit the argument k0 from this point forward. Since (3.12) and (3.13) imply that
supη≥0 φ(η) = α2/(α1 + 1) ≤ 2β/Ts, it follows from (3.31) that W1 ≤ W2, where

W2 , Ts

[∑

(i,j)∈P
2φ(||q̂ji||)qTjipji

63

+ Tsφ(||q̂ji||)qTjiuji(q, p, q̂)
+ 2λpTjiuji(q, p, q̂)

+ 2β

∥∥∥∥pji +
1

2
Tsuji(q, p, q̂)

∥∥∥∥
2

+ Tsλ||uji(q, p, q̂)||2
]
. (3.32)

Next, define

L1 ,




n− 1 −1 · · · −1

−1 n− 1
...

...
. . . −1

−1 · · · −1 n− 1


⊗ Im ∈ Rmn×mn,

and

Lφ ,




∑
j∈N1

φ(||q̂j1(k0)||) −φ(||q̂21(k0)||) ··· −φ(||q̂n1(k0)||)

−φ(||q̂12(k0)||)
∑
j∈N2

φ(||q̂j2(k0)||)
...

...
... −φ(||q̂n(n−1)(k0)||)

−φ(||q̂1n(k0)||) ··· −φ(||q̂(n−1)n(k0)||)
∑

j∈Nn
φ(||q̂jn(k0)||)



⊗ Im ∈ Rmn×mn,

and note that

∑

(i,j)∈P
φ(||q̂ji||)qTjipji = 2qTLφp,

∑

(i,j)∈P
φ(||q̂ji||)qTjiuji(q, p, q̂) = 2qTLφu(q, p, q̂),

∑

(i,j)∈P
pTjiuji(q, p, q̂) = 2pTL1u(q, p, q̂),

∑

(i,j)∈P
||pji+

1

2
Tsuji(q, p, q̂)||2 = 2

[
p+

1

2
Tsu(q, p, q̂)

]T
L1

[
p+

1

2
Tsu(q, p, q̂)

]
,

∑

(i,j)∈P
||uji(q, p, q̂)||2 = 2uT(q, p, q̂)L1u(q, p, q̂),

where

u(q, p, q̂) ,



u1(q, p, q̂, 0, 0)

...
un(q, p, q̂, 0, 0)


 .

Thus, it follows from (3.32) that

W2 = 4Tsq
TLφp+ 2T 2

s q
TLφu(q, p, q̂)

64

+ 4Tsλp
TL1u(q, p, q̂)

+ 4Tsβ

[
p+

1

2
Tsu(q, p, q̂)

]T
L1

[
p+

1

2
Tsu(q, p, q̂)

]

+ 2T 2
s λu

T(q, p, q̂)L1u(q, p, q̂). (3.33)

Next, let 1n×n ∈ Rn×n denote the n× n matrix of ones, and define 1̂ , 1n×n ⊗ Im ∈
Rmn×mn. Since (1/n)L1 − Imn = −(1/n)1̂, it follows from (3.15) and (A2) that

u(q, p, q̂) = − Lφq − βL1p+
γ1
n
L1q +

γ2
n
L1p− γ1q − γ2p

= − Lφq − βL1p−
γ1
n

1̂q − γ2
n

1̂p. (3.34)

Since L11̂ = 0mn×mn and Lφ1̂ = 0mn×mn, it follows from (3.33) and (3.34) that

W2 = 2T 2
s q

TLφ

[
−Imn +

1

n
L1

]
Lφq

+ 2Tsq
TLφ

[
2Imn − 2

(
Tsβ +

2

n

)
L1 +

2Tsβ

n
L2
1

]
p

+ 2Tsβp
T

[
2L1 −

(
Tsβ +

2

n

)
L2
1 +

Tsβ

n
L3
1

]
p.

Furthermore, since (1/n)L1 − Imn = −(1/n)1̂ and L2
1 = nL1, it follows that

Lφ

[
−Imn +

1

n
L1

]
= − 1

n
Lφ1̂ = 0mn×mn,

Lφ

[
2Imn − 2

(
Tsβ +

1

n

)
L1 +

2Tsβ

n
L2
1

]
=

2

n
Lφ1̂ = 0mn×mn,

2L1 −
(
Tsβ +

2

n

)
L2
1 +

Tsβ

n
L3
1 = 0mn×mn,

which implies that W2 = 0. Therefore, ∆V (k0) ≤ W1 ≤ W2 = 0.
To prove that ∆V (k0) = 0 if and only if qji(k0 + 1) = qji(k0), first assume that

qji(k0 + 1) = qji(k0). Thus, it follows from (3.29) and (3.30) that ∆V (k0) = W1.
Furthermore, it follows from (3.19) that pji(k0) + (Ts/2)uji(q(k0), p(k0), q̂(k0)) = 0,
and (3.31) and (3.32) imply that W1 = W2. Thus, ∆V (k0) = W1 = W2 = 0.

Conversely, assume that ∆V (k0) = 0. Since 0 = ∆V (k0) ≤ W1 ≤ W2 = 0, it follows
that W1 = W2. Therefore, (3.31) and (3.32) imply that

∑

(i,j)∈P
(2β − Tsφ(||q̂ji(k0)||))

∥∥∥∥pji(k0) +
1

2
Tsuji(q(k0), p(k0), q̂(k0))

∥∥∥∥
2

= 0.

Since (3.12) and (3.13) imply that for all η ≥ 0, Tsφ(η) < Tsα2/(α1+1) ≤ 2β, it follows
that 2β − Tsφ(||q̂ji(k0)||)) > 0. Therefore, pji(k0) + (Ts/2)uji(q(k0), p(k0), q̂(k0)) = 0,
and (3.19) implies that qji(k0 + 1) = qji(k0).

65

3.11 Proof of Theorems 4 and 5

Proof of Theorem 4. To show (a), assume q(0) and p(0) are such that V (q(0), p(0)) <
2ψ(δc). It follows from (A1) and Lemma 3 that for all k ∈ N, ∆V (k) ≤ 0. Thus,
(3.25) implies that for all k ∈ N,

2ψ(||qji(k)||) ≤ V (q(k), p(k)) ≤ V (q(0), p(0)) < 2ψ(δc).

Since ψ(||qji(k)||) < ψ(δc) and ψ is strictly decreasing on [0, δc], it follows that for all
k ∈ N, ||qji(k)|| > δc, which confirms (a).

To show (d), let q̂∗ : Q× Rmn × Rm × Rm → Rmn satisfy

q̂∗(q, p, qg, pg) = q + Tsp+
1

2
T 2
s u(q, p, q̂∗(q, p, qg, pg), qg, pg),

where

u(q, p, q̂, qg, pg) ,



u1(q, p, q̂, qg, pg)

...
un(q, p, q̂, qg, pg)


 .

Note that (3.1) and (A1) imply that for all k ∈ N,

q̂∗(q(k), p(k), qg(k), pg(k)) = q(k + 1) = q̂(k). (3.35)

Also note that (3.15) implies that for all (q, p, qg, pg) ∈ Rmn × Rmn × Rm × Rm,

[Ej − Ei]q̂∗(q, p, qg, pg) = [Ej − Ei]q̂∗(q, p, 0, 0). (3.36)

Next, consider DV : Rmn × Rmn → R defined by

DV (q, p) , V (q̂∗(q, p, 0, 0), p+ Tsu(q, p, q̂∗(q, p, 0, 0), 0, 0))− V (q, p),

and define

Rc , {(q, p) ∈ Q× Rmn : V (q, p) ≤ V (q(0), p(0)) and DV (q, p) = 0 }.

It follows from (3.19), (3.20), (3.35), and (3.36) that DV (q(k), p(k)) = ∆V (k). Thus,
it follows from (3.35), (3.36), and Lemma 3 that

Rc = {(q, p) ∈ Q× Rmn : V (q, p) ≤ V (q(0), p(0)) and [Ej − Ei][q̂∗(q, p, 0, 0)− q] = 0 }.
(3.37)

Let Mc ⊆ Rc be the largest invariant set with respect to (3.19)–(3.21) that is
contained in Rc. Let q̃ : N → Q and p̃ : N → Rmn be such that (q̃(0), p̃(0)) ∈ Mc,
and qji(k) ≡ [Ej − Ei]q̃(k) and pji(k) ≡ [Ej − Ei]p̃(k) satisfy the difference equations
(3.19)–(3.21). Thus, for all k ∈ N, (q̃(k), p̃(k)) ∈ Mc ⊆ Rc. For all k ∈ N, define
q̃ji(k) , [Ej − Ei]q̃(k) and p̃ji(k) , [Ej − Ei]p̃(k), and it follows from (3.35)–(3.37)
that q̃ji(k + 1) ≡ q̃ji(k). Thus, (3.20) and (3.19) imply that for all k ∈ N,

p̃ji(k + 1) = p̃ji(k) + Tsuji(q̃(k), p̃(k), q̃(k + 1))

66

= p̃ji(k) +
2

Ts
[q̃ji(k + 1)− q̃ji(k)− Tsp̃ji(k)]

= − p̃ji(k). (3.38)

Next, (3.15) and (3.21) imply that for all k ∈ N,

uji(q̃(k), 0, q̃(k + 1) = uji(q̃(k + 1), 0, q̃(k + 2)). (3.39)

Furthermore, (3.19) implies that for all k ∈ N, p̃ji(k) = −(Ts/2)uji(q̃(k), p̃(k), q̃(k+1)),
which combined with (A2), (3.15), and (3.21) implies that for all k ∈ N,

p̃ji(k) = −1

2
Tsuji(q̃(k), 0, q̃(k + 1)) +

1

2
Tsnβp̃ji(k). (3.40)

Therefore, using (3.40) followed by (3.39), (3.40), and (3.38) yields that for all k ∈ N,

(
1− 1

2
Tsnβ

)
p̃ji(k) = − 1

2
Tsuji(q̃(k), 0, q̃(k + 1))

= − 1

2
Tsuji(q̃(k + 1), 0, q̃(k + 2))

=

(
1− 1

2
Tsnβ

)
p̃ji(k + 1)

= −
(

1− 1

2
Tsnβ

)
p̃ji(k),

which implies that p̃ji(k) = 0 because β < 2/(n̄T̄s) ≤ 2/(nTs). Since q̃ji(k+ 1) ≡ q̃ji(k)
and p̃ji(k) ≡ 0, it follows from (3.19) that uji(q̃(k), p̃(k), q̃(k + 1)) ≡ 0. Next, since
q̃ji(k + 1) ≡ q̃ji(k), it follows from (3.15) and (3.21) that uji(q̃(k), p̃(k), q̃(k)) ≡
uji(q̃(k), p̃(k), q̃(k + 1)) ≡ 0. Therefore, Mc ⊆ Ec , {(qe, pe) ∈ E : V (qe, pe) ≤
V (q(0), p(0))}.

Finally, it follows from Lemma 3 that for all (q, p) ∈ Q × Rmn, DV (q, p) ≤ 0.
Since, in addition, Mc ⊆ Ec is the largest invariant set contained in Rc, it follows
from [92, Theorem 13.3] that (q(k), p(k)) converges to Mc ⊆ Ec. Thus, (q(k), p(k))
converges to Ec, which confirms (d).

To show (b), let ε > 0. Since (q(k), p(k)) converges to Ec, let kε ∈ N be such that
for all k ≥ kε,

inf
(qe,pe)∈Ec

‖p(k)− pe‖ <
ε√
n
.

Since, in addition, for all (qe, pe) ∈ Ec, [Ej − Ei]pe = 0, it follows that for all k ≥ kε,

||pji(k)|| = ||[Ej − Ei]p(k)||
= inf

(qe,pe)∈Ec
||Ej[p(k)− pe]− Ei[p(k)− pe]||

≤ inf
(qe,pe)∈Ec

||Ej[p(k)− pe]||+ ||Ei[p(k)− pe]||

≤ inf
(qe,pe)∈Ec

∑

l∈I
||El[p(k)− pe]||

67

≤ √n inf
(qe,pe)∈Ec

√∑

l∈I
||El[p(k)− pe]||2

=
√
n inf

(qe,pe)∈Ec
||p(k)− pe||

< ε.

Therefore, limk→∞ pji(k) = 0, which confirms (b).
To show (e), it follows from (3.20) that Tsuji(q(k), p(k), q(k+1)) ≡ pji(k+1)−pji(k),

and since limk→∞ pji(k) = 0, it follows that limk→∞ uji(q(k), p(k), q(k + 1)) = 0.
Next, note that (A2) implies that uji(q(k), 0, q(k + 1)) ≡ uji(q(k), p(k), q(k + 1)) +
nβpji(k). Since, in addition, limk→∞ pji(k) = 0 and limk→∞ uji(q(k), p(k), q(k+1)) = 0,
it follows that limk→∞ uji(q(k), 0, q(k + 1)) = 0. Consider Fi : N → Rm defined
by Fi(k) ,

∑
j∈Ni(k) φ(||qji(k + 1)||)qji(k), and note that

∑
j∈I Fj(k) ≡ 0. Thus,

Fi(k) ≡ Fi(k) −∑j∈I Fj(k) ≡ ∑
j∈I\{i} uij(q(k), 0, q(k + 1)). Since, in addition,

limk→∞ uji(q(k), 0, q(k + 1)) = 0, it follows that limk→∞ Fi(k) = 0, which confirms (e).
To show (c), let δ > 0, and let δ1 ∈ (0, δ). Since limk→∞ Fi(k) = 0, let k1 ∈ N be

such that for all k ≥ k1,

||Fi(k)|| ≤ φ(d+ δ1/(n− 1)) (d+ δ1/(n− 1))

n
. (3.41)

Next, let δ2 , δ− δ1. Since limk→∞ pji(k) = 0 and limk→∞ uji(q(k), p(k), q(k+ 1)) = 0,
let k2 ≥ k1 be such that for all k ≥ k2,

max
(i,j)∈P

∥∥∥∥Tspji(k) +
1

2
T 2
s uji(q(k), p(k), q(k + 1))

∥∥∥∥ ≤
δ2

n− 1
. (3.42)

Assume for contradiction that there exists kδ ≥ k2 such that max(i,j)∈P ||qji(kδ)|| >
d(n − 1) + δ. Define Q(j, i) , qji(kδ), P (j, i) , pji(kδ), Q̂(j, i) , qji(kδ + 1), and
U(j, i) , uji(q(kδ), p(kδ), q(kδ + 1)). Let (l1, ln) ∈ P be such that ||Q(ln, l1)|| =
max(i,j)∈P ||Q(j, i)||, and let l2, . . . , ln−1 ∈ I be such that: for all (i, j) ∈ P, li 6= lj;
and for all j ∈ I \ {n},

QT(lj+1, lj)Q(ln, l1) ≥ 0. (3.43)

To show that l2, . . . , ln−1 exist, we consider 2 cases. First, assume for contradiction
that there exists l0 ∈ I \ {l1, ln} such that QT(l0, l1)Q(ln, l1) < 0. Since ||Q(ln, l1)|| =
max(i,j)∈P ||Q(j, i)||, it follows that

||Q(ln, l1)||2 = QT(ln, l0)Q(ln, l1) +QT(l0, l1)Q(ln, l1)

≤ ||Q(ln, l1)||2 +QT(l0, l1)Q(ln, l1)

< ||Q(ln, l1)||2,

which is a contradiction. Therefore, l0 does not exist. Second, assume for contra-
diction that there exists ln+1 ∈ I \ {l1, ln} such that QT(ln+1, ln)Q(ln, l1) > 0. Since
||Q(ln, l1)|| = max(i,j)∈P ||Q(j, i)||, it follows that

0 < QT(ln+1, ln)Q(ln, l1) + ||Q(ln, l1)||2 − ||Q(ln, l1)||2

68

= QT(ln+1, l1)Q(ln, l1)− ||Q(ln, l1)||2
≤ ||Q(ln, l1)||2 − ||Q(ln, l1)||2
= 0,

which is a contradiction. Therefore, ln+1 does not exist. Thus, l2, . . . , ln−1 exist.
Next, it follows from (3.43) that for all (li, lj) ∈ P such that li < lj,

QT(lj, li)Q(ln, l1) =

j−1∑

o=i

QT(lo+1, lo)Q(ln, l1) ≥ 0. (3.44)

Since ||Q(ln, l1)|| > d(n− 1) + δ, it follows from (3.44) that

(d(n− 1) + δ)||Q(ln, l1)|| < ||Q(ln, l1)||2

=
n−1∑

j=1

QT(lj+1, lj)Q(ln, l1)

≤ (n−1) max
j∈I\{n}

QT(lj+1, lj)Q(ln, l1),

which implies that there exists ω ∈ I \ {n} such that

(
d+

δ

n− 1

)
||Q(ln, l1)|| < QT(lω+1, lω)Q(ln, l1). (3.45)

Define I1 , {l1, . . . , lω} and I2 , {lω+1, . . . , ln}. Since for all (i, j) ∈ I1 × I2,
i ≤ lω < lω+1 ≤ j, it follows from (3.44) that QT(lω+1, lω)Q(ln, l1) ≤ QT(j, i)Q(ln, l1).
Thus, (3.45) implies that for all (i, j) ∈ I1 × I2,

d+
δ

n− 1
<
QT(j, i)Q(ln, l1)

||Q(ln, l1)||
≤ ||Q(j, i)||. (3.46)

Since δ = δ1 + δ2, using (3.42) followed by (3.46) yields that for all (i, j) ∈ I1 × I2,

||Q(j, i)|| −
∥∥∥∥TsP (j, i) +

1

2
T 2
s U(j, i)

∥∥∥∥ ≥ ||Q(j, i)|| − δ2
n− 1

> d+
δ1

n− 1
,

which implies from (3.19) that for all (i, j) ∈ I1 × I2,

||Q̂(j, i)|| =
∥∥∥∥Q(j, i) + TsP (j, i) +

1

2
T 2
s U(j, i)

∥∥∥∥

≥
∣∣∣∣||Q(j, i)|| −

∥∥∥∥TsP (j, i) +
1

2
T 2
s U(j, i)

∥∥∥∥
∣∣∣∣

> d+
δ1

n− 1
.

69

Furthermore, since φ(d) = 0 and φ is a strictly increasing function, it follows that for
all (i, j) ∈ I1 × I2, 0 < φ(d + δ1/(n − 1)) < φ(||Q̂(j, i)||). Since, in addition, for all
(i, j) ∈ I1 × I2, i < j, it follows from (3.44) that for all (i, j) ∈ I1 × I2,

φ(||Q̂(j, i)||)QT(j, i)Q(ln, l1) > 0. (3.47)

Finally, it follows from (3.46) followed by (3.47) that

φ

(
d+

δ1
n− 1

) (
d+

δ1
n− 1

)
||Q(ln, l1)|| < φ(||Q̂(ln, l1)||)||Q(ln, l1)||2

≤
∑

i∈I1

∑

j∈I2
φ(||Q̂(j, i)||)QT(j, i)Q(ln, l1).

(3.48)

Since
∑

i∈I1
∑

j∈I1\{i} φ(||Q̂(j, i)||)Q(j, i) = 0, it follows from (A2) that
∑

i∈I1

∑

j∈I2
φ(||Q̂(j, i)||)Q(j, i) =

∑

i∈I1
Fi(kδ).

Thus, it follows from (3.48) followed by (3.41) that

φ

(
d+

δ1
n− 1

) (
d+

δ1
n− 1

)
||Q(ln, l1)|| <

∑

i∈I1
FT
i (kδ)Q(ln, l1)

≤
∑

i∈I1
||Fi(kδ)|| ||Q(ln, l1)||

≤
∑

i∈I1

1

n
φ

(
d+

δ1
n− 1

)(
d+

δ1
n− 1

)
||Q(ln, l1)||

< φ

(
d+

δ1
n− 1

) (
d+

δ1
n− 1

)
||Q(ln, l1)||,

which is a contradiction. Therefore, for all k ≥ k2, max(i,j)∈P ||qji(k)|| ≤ d(n− 1) + δ,
which confirms (c).

To show (f), assume γ1 = γ2 = 0, and it follows from (3.15) that
∑

j∈I uj(q, p, q̂, qg, pg) =
0. Therefore, (3.2) implies that

∑

j∈I
pj(k + 1) ≡

∑

j∈I
pj(k) + Tsuj(q(k), p(k), q̂(k), qg(k), pg(k)) ≡

∑

j∈I
pj(k).

Thus,
∑

j∈I pj(k) ≡ ∑
j∈I pj(0). Moreover, pi(k) ≡ ∑

j∈I [pj(k) − pji(k)]/n ≡∑
j∈I [pj(0) − pji(k)]/n, and since limk→∞ pji(k) = 0, it follows that limk→∞ pi(k) =∑
j∈I pj(0)/n, which confirms (f).

To show (g), assume γ1 ∈ [0, 2/T 2
s), γ2 ∈ (Tsγ1/2, 1/Ts), and ug(k) ≡ 0. Therefore,

Lemma 2 implies that limk→∞ pa(k) = 0. Since ug(k) ≡ 0, it follows from (3.4)
that pg(k) ≡ pg(0). Since pa(k) +

∑
j∈I pji(k)/n ≡ pg(k) − pi(k) ≡ pg(0) − pi(k),

limk→∞ pa(k) = 0, and limk→∞ pji(k) = 0, it follows that pg(0) − limk→∞ pi(k) = 0,
which confirms (g).

To show (h), assume γ1 ∈ (0, 2/T 2
s), γ2 ∈ (Tsγ1/2, 1/Ts), and ug(k) ≡ 0. Therefore,

part (b) of Lemma 2 implies that limk→∞ qa(k) = 0, which confirms (h).

70

Proof of Theorem 5. To show that for all k ∈ N, V (q(k), p(k)) < 2ψ(rc), we use
induction on k. First, since V (q(0), p(0)) < 2ψ(rc), it follows that for k = 0,
V (q(k), p(k)) < 2ψ(rc). Next, let k1 ∈ N, and assume that V (q(k1), p(k1)) < 2ψ(rc).
It follows from (3.24) and (3.25) that ψ(||qji(k1)||) ≤ V (q(k1), p(k1)), which implies
that ψ(||qji(k1)||) < ψ(rc). Since, in addition ψ is strictly increasing on [rc,∞), it
follows that ||qji(k1)|| < rc, which implies that q(k1) ∈ Q. Thus, Lemma 3 implies that
∆V (k1) ≤ 0, which implies that V (q(k1 + 1), p(k1 + 1)) ≤ V (q(k1), p(k1)) < 2ψ(rc).
Therefore, for all k ∈ N, V (q(k), p(k)) < 2ψ(rc).

Since for all k ∈ N, V (q(k), p(k)) < 2ψ(rc), it follows from (3.24) and (3.25) that for
all k ∈ N, ψ(||qji(k1)||) ≤ V (q(k), p(k))/2 < ψ(rc). Thus, for all k ∈ N, ||qji(k)|| < rc,
which implies that q(k) ∈ Q. Therefore, the assumptions of Theorem 4 are satisfied,
which implies that parts (a)–(h) of Theorem 4 hold.

3.12 Propositions 4 and 5 used in the proof of Proposition 3

The following section is independent of the rest of the chapter. The proofs of the
following 2 results are after the statement of the second result.

Proposition 4. Let f > 0 and g > 0, and define

M ,

[
1− f 2g f − f 2

−2fg 1− 2f

]
∈ R2×2.

Then, both eigenvalues of M are in the open disk if only if f < min {1, 2/g}.

Proposition 5. Let f > 0 and g > 0, and define

M ,

[
1− f 2g f − f 2

−2fg 1− 2f

]
∈ R2×2.

Then, at least 1 of the eigenvalues of M is outside the closed unit disk if and only if
f > min {1, 2/g}.

Proof of Proposition 4. Define

r1 , 1− f − 1

2
f 2g − f

√(
1 +

1

2
fg

)2

− 2g ∈ C, (3.49)

r2 , 1− f − 1

2
f 2g + f

√(
1 +

1

2
fg

)2

− 2g ∈ C, (3.50)

which are the eigenvalues of A, and note that

(
1 +

1

2
fg

)2

− 2g =
g2

4

(
f +

2

g
−
√

8

g

)(
f +

2

g
+

√
8

g

)
. (3.51)

Assume f < min {1, 2/g}. We consider 3 cases: (i) g ≤ 2 and f ≥
√

8/g − 2/g; (ii)

g ≤ 2 and f <
√

8/g − 2/g; and (iii) g > 2. Assume (i) g ≤ 2 and f ≥
√

8/g − 2/g.

71

Since g ≤ 2, it follows that f < min {1, 2/g} = 1. Since f ≥
√

8/g − 2/g, it
follows from (3.49)–(3.51) that r1 and r2 have 0 imaginary parts and r1 ≤ r2. Since
f
√

(1 + fg/2)2 − 2g < f(1 + fg/2), it follows from (3.50) that r2 < 1. Since f < 1,
it follows that


f
√(

1 +
1

2
fg

)2

− 2g




2

= f 2

(
1 + fg +

1

4
f 2g2 − 2g

)

=
1

4
f 4g2 + f 3g + f 2 − 2f 2g

<
1

4
f 4g2 + f 3g + f 2 − 2f 2g − 4f + 4

=

(
2− 1

2
f 2g − f

)2

. (3.52)

Since a < 1 and g ≤ 2, it follows that 2− f 2g/2− f > 0. Therefore, (3.52) implies
that

f

√(
1 +

1

2
fg

)2

− 2g < 2− 1

2
f 2g − f,

which implies from (3.49) that

r1 = 1− f − 1

2
f 2g − f

√(
1 +

1

2
fg

)2

− 2g > −1.

Thus, −1 < r1 ≤ r2 < 1, which implies that both eigenvalues of M are in the open
unit disk.

Next, assume (ii) g ≤ 2 and f <
√

8/g − 2/g. Since g ≤ 2, it follows that

f < min {1, 2/g} = 1. Since f <
√

8/g−2/g, it follows from (3.49)–(3.51) that r1 and
r2 have nonzero imaginary parts and |(1 + fg/2)2− 2g| = 2g− (1 + fg/2)2. Therefore,
(3.49) and (3.50) imply that

|r1|2 = |r2|2

=

(
1− f − 1

2
f 2g

)2

+ f 2

∣∣∣∣∣

(
1 +

1

2
fg

)2

− 2g

∣∣∣∣∣

= 1 + f 2 +
1

4
f 4g2 − 2f − f 2g + f 3g + 2f 2g − f 2 − f 3g − 1

4
f 4g2

= 1− 2f + f 2g. (3.53)

Since, in addition, f < 1 and g ≤ 2, it follows from (3.53) that |r1| = |r2| < 1. Thus,
both eigenvalues of M are in the open unit disk.

Next, assume (iii) g > 2, which implies that f < min {1, 2/g} = 2/g. Since f < 2/g
and 2 < g, it follows that (1 + fg/2)2 < 4 < 2g, which implies from (3.49) and (3.50)
that r1 and r2 have nonzero imaginary parts. Since, in addition, f < 2/g, it follows

72

from (3.53) that |r1| = |r2| < 1. Therefore, the eigenvalues of M are in the open unit
disk.

Conversely, assume both eigenvalues of M are in the open unit disk. We consider
3 cases: (iv) g < 2 and f <

√
8/g − 2/g; (v) g < 2 and f ≥

√
8/g − 2/g; and (vi)

g ≥ 2. Assume (iv) g < 2 and f <
√

8/g − 2/g. Thus, f < supg∈(0,2)
√

8/g − 2/g =
1 = min {1, 2/g}.

Next, assume (v) g < 2 and f ≥
√

8/g−2/g. Since f ≥
√

8/g−2/g, it follows from
(3.49) and (3.51) that r1 has 0 imaginary part. Since, in addition, both eigenvalues of
M are in the open unit disk, it follows that −1 < r1. Thus, it follows from (3.49) that

1

4
f 4g2 + f 3g + f 2 − 2f 2g =


f
√(

1 +
1

2
fg

)2

− 2g




2

<

(
2− 1

2
f 2g − f

)2

=
1

4
f 4g2 + f 3g + f 2 − 2f 2g − 4f + 4,

which implies that f < 1. Since g < 2, it follows that 1 = min {1, 2/g}. Therefore,
f < min {1, 2/g}.

Finally, assume (vi) g ≥ 2. Assume for contradiction that f ≥
√

8/g − 2/g.
Thus, (3.49) and (3.51) imply that r1 has 0 imaginary part. Since, in addition, both
eigenvalues of M are in the open unit disk, it follows that r1 > −1. Therefore, it
follows from (3.49) that

0 ≤ f

√(
1 +

1

2
fg

)2

− 2g

< − 1

2
f 2g − f + 2

= − g

2

(
f − 1 +

√
1 + 4g

g

)(
f − 1−√1 + 4g

g

)
,

and thus, f < (
√

1 + 4g − 1)/g. Since
√

8/g − 2/g ≤ f < (
√

1 + 4g − 1)/g, it follows
that

√
8g < 1 +

√
1 + 4g. Squaring both sides yields that 8g < 2 + 4g + 2

√
1 + 4g, or

equivalently, 2g − 1 <
√

1 + 4g. Squaring both sides again yields that 4g2 − 4g + 1 <
1 + 4g, or equivalently, g < 2, which is a contradiction because g ≥ 2. Thus,
f <

√
8/g− 2/g. Therefore, it follows from (3.49)–(3.51) that r1 and r2 have nonzero

imaginary parts. Since, in addition, both eigenvalues of M are in the open unit
disk, it follows from (3.53) that 1− 2f + f 2g = |r1|2 = |r2|2 < 1, which implies that
f < 2/g = min {1, 2/g} because g ≥ 2.

Proof of Proposition 5. Define

r1 , 1− f − 1

2
f 2g − f

√(
1 +

1

2
fg

)2

− 2g ∈ C, (3.54)

73

r2 , 1− f − 1

2
f 2g + f

√(
1 +

1

2
fg

)2

− 2g ∈ C, (3.55)

which are the eigenvalues of M , and note that

(
1 +

1

2
fg

)2

− 2g =
g2

4

(
f +

2

g
−
√

8

g

)(
f +

2

g
+

√
8

g

)
. (3.56)

Assume f > min {1, 2/g}. We consider 2 cases: (i) f ≥
√

8/g − 2/g, and (ii)

f <
√

8/g − 2/g. First, assume (i) f ≥
√

8/g − 2/g, and it follows from (3.56) that
r1 and r2 have 0 imaginary parts. Since, in addition, f > 1, it follows that


f
√(

1 +
1

2
fg

)2

− 2g




2

= f 2

(
1 + fg +

1

4
f 2g2 − 2g

)

=
1

4
f 4g2 + f 3g + f 2 − 2f 2g

>
1

4
f 4g2 + f 3g + f 2 − 2f 2g − 4f + 4

=

(
2− 1

2
f 2g − f

)2

,

which implies from (3.54) that

r1 = 1− f − 1

2
f 2g − f

√(
1 +

1

2
fg

)2

− 2g < −1.

Thus, an eigenvalue of M is outside the closed unit disk.
Next, assume (ii) f <

√
8/g − 2/g, and it follows from (3.56) that r1 and r2 have

nonzero imaginary parts. Therefore, it follows from (3.54) and (3.55) that

|r1|2 = |r2|2

=

(
1− f − 1

2
f 2g

)2

+ f 2

∣∣∣∣∣

(
1 +

1

2
fg

)2

− 2g

∣∣∣∣∣

= 1 + f 2 +
1

4
f 4g2 − 2f − f 2g + f 3g + 2f 2g − f 2 − f 3g − 1

4
f 4g2

= 1− 2f + f 2g. (3.57)

Since f > 2/g, it follows that f 2g − 2f > 0, which implies that |r1| = |r2| > 1. Thus,
an eigenvalue of M is outside the closed unit disk.

Conversely, assume at least 1 eigenvalue of M is outside the closed unit disk. We
consider 2 cases: (iii) f ≥

√
8/g − 2g, and (iv) f <

√
8/g − 2g. Assume (iii)

f ≥
√

8/g − 2g, and it follows from (3.54)–(3.56) that r1 and r2 have 0 imaginary

parts and r1 ≤ r2. Since
√

(1 + fg/2)2 − 2g < 1 + fg/2, it follows from (3.55) that

74

r2 ≤ 1. Since, in addition, at least 1 eigenvalue of M is outside the closed unit disk, it
follows that r1 < −1, which implies from (3.54) that

1

4
f 4g2 + f 3g + f 2 − 2f 2g =


f
√(

1 +
1

2
fg

)2

− 2g




2

>

(
2− 1

2
f 2g − f

)2

=
1

4
f 4g2 + f 3g + f 2 − 2f 2g − 4f + 4.

Thus, f > 1. Assume for contradiction that g ≥ 2, and, since f > 1 it follows that

−g
2

(
f − 1 +

√
1 + 4g

g

)(
f − 1−√1 + 4g

g

)
= −1

2
f 2g − f + 2 < 0,

which implies that f < (
√

1 + 4g − 1)/g. Since
√

8/g − 2/g ≤ f < (
√

1 + 4g − 1)/g,
it follows that

√
8g <

√
1 + 4g + 1. Squaring both sides yields that 8g < 2 + 4g +

2
√

1 + 4g, which implies that 2g− 1 <
√

1 + 4g. Squaring both sides again yields that
4g2 − 4g + 1 = (2g − 1)2 < 1 + 4g, which implies that g < 2, which is a contradiction.
Therefore, g < 2, which implies that f > 1 = min {1, 2/g}.

Finally, assume (iv) f <
√

8/g−2g, and it follows from (3.54)–(3.56) that r1 and r2
have nonzero imaginary parts. Since, in addition, at least 1 eigenvalue of M is outside
the closed unit disk, it follows from (3.57) that 1 < |r1|2 = |r2|2 = 1− 2f + f 2g, which
implies that f > 2/g. Since 2/g < f <

√
8/g − 2/g, it follows that 16/g2 = (4/g)2 <

(
√

8/g)2 = 8/g or equivalently, g > 2. Therefore, f > 2/g = min{1, 2/g}.

75

Chapter 4 Experimental Demonstrations of Discrete-Time Flocking Us-
ing Rotorcraft

We present results from experiments that use a group of three rotorcraft and
the discrete-time flocking control in Chapter 3. We use a motion-capture system
to sense each rotorcraft’s position. In addition, we use a centralized computer to
calculate each rotorcraft’s control and transmit the control to the rotorcraft. The
centralized computer is not required by the discrete-time flocking control but is used
to simplify implementation. These experiments show that the rotorcraft tend to a
flocking configuration both with and without a centralized leader. Furthermore, these
experiments show that the rotorcraft approximately follow a leader (if applicable).

4.1 Introduction

Chapter 3 provides discrete-time flocking results and simulations showing that
agents converge to a flocking configuration whether or not a leader agent is present.
However, the results presented in Chapter 3 are based on simplified agent dynamics
(i.e., discrete-time double-integrator dynamics) and do not account for real-world
challenges such as sensor noise and time delay.

In this chapter, we examine the performance of the discrete-time flocking control in
experiments with three rotorcraft. Implementing the discrete-time flocking control on
rotorcraft allows us to analyze aspects of the control that are harder to analyze math-
ematically such as asynchronous sampling, measurement noise, and communication
delays and dropouts.

Experimental demonstrations of formation-control algorithms are in [22,23,78–80].
Of these, [79,80] consider quadcopters, but [79,80] use a position-formation algorithm
for cohesion, whereas this chapter uses a distance-formation approach.

In this chapter, we implement the discrete-time flocking control presented in Chap-
ter 3. In order to implement the discrete-time flocking control in Chapter 3, we
review pertinent aspects of the algorithm, and we describe the experimental setup.
We present results of experiments where rotorcraft flock with and without a virtual
leader agent.

4.2 Approximate Dynamics for an Attitude-Stabilized Quadcopter

Let the positive integer n be the number of rotorcraft, and define I , {1, 2, . . . , n},
which is the rotorcraft index set. Unless otherwise stated, all statements that involve
the subscript i are for all i ∈ I.

76

Let FE be the Earth frame, which is assumed to be an inertia frame and has
orthogonal unit vectors ı̂E, ̂E, and k̂E. The origin oE of FE is any point on the Earth’s
surface, and the ı̂E–̂E plane is parallel to the Earth’s surface, which is assumed to be
flat. Let Fi be a frame whose origin oi is fixed to the quadcopter’s center of mass and
has orthogonal unit vectors ı̂i, ̂i, and k̂i, where ı̂i is directed through the nose (i.e.,
front) of the ith quadcopter and where k̂i = k̂E. Let ψi ∈ (−π, π] be the angle from
ı̂E to ı̂i as shown in Figure 4.1. Note that ψi is the yaw angle of the ith quadcopter.
Thus, the direction cosine matrix of Fi relative to FE is

O(ψi) ,




cosψi sinψi 0
− sinψi cosψi 0

0 0 1


 .

The position of oi relative to oE is denoted by ~ri as shown in Figure 4.1. The velocity

of oi relative to oE with respect to FE is denoted by
E·
~ri. The position and velocity are

resolved in the Earth frame as qc,i , ~ri|E and pc,i ,
E·
~ri|E.

oE

FE

̂E

ı̂E

oi

~ri

ı̂E

̂i

ı̂i (front)Fi

ψi

Figure 4.1: The position of the ith quadcopter’s center of mass oi relative to oE is ~ri.
The orientation of Fi relative to FE is O(ψi), where ψi is the yaw angle, which is the
angle from ı̂E to ı̂i. Note that k̂E = k̂i is directed out of the page.

The rotorcraft used in our experiments are Parrot Rolling Spider quadcopters, and
each one is attitude-stabilized by Parrot’s proprietary inner-loop controller, which
is implemented on each quadcopter’s onboard processor. Note that we do not alter
this inner-loop controller in any way. This inner-loop controller accepts an external
force command vc,i(t) ∈ R3, where the 3 elements of vi are directed in the ı̂i-, ̂i-,

and k̂i-direction, respectively. The inner-loop controller also accepts an external yaw
command; however, the yaw command is constant in all experiments in this chapter.
These external commands can be provided a user operating a smartphone-simulated
joystick or by an outer-loop controller, which is the method used in our experiments.
Thus, the dynamics of each attitude-stabilized quadcopter are approximated by the
double integrator

q̇c,i(t) = pc,i(t), (4.1)

77

ṗc,i(t) = uc,i(t), (4.2)

where uc,i ∈ R3 is the external force command resolved in the Earth frame, which is
determined from an outer-loop flocking controller; and qc,i(0) and pc,i(0) are the initial
conditions. Thus,

vc,i(t) = O(ψi(t))uc,i(t)

is the force command for the inner-loop controller as shown in Figure 4.2.

vc,i = O(ψi)uc,i
Inner-loop
controller

Quadcopter
dynamics

uc,i vc,i Quadcopter
position qc,i
and velocity pc,i

Onboard
sensors

Attitude-Stabilized Quadcopter Dynamics

Figure 4.2: The Parrot Rolling Spider quadcopter is attitude-stabilized by Parrot’s
proprietary inner-loop controller. The attitude-stabilized quadcopter dynamics are
approximated by the double integrator (4.1) and (4.2).

In this chapter, we implement a modified version of the discrete-time flocking control
from Chapter 3 in experiments with n = 3 rotorcraft. To implement the sampled-data
controller, we sample the position qc,i(t) and velocity pc,i(t) with sample time Ts > 0
and apply a zero-order hold on the control input uc,i(t). Thus, for all k ∈ N, the
sampled position and velocity are qi(k) , qc,i(kTs) and pi(k) , pc,i(kTs). Furthermore,
for all k ∈ N and all t ∈ [kTs, (k + 1)Ts), uc,i(t) = ui(k), where ui : N → Rm is the
control and m = 3 is the spatial dimension. In this case, we obtain the discrete-time
dynamics

qi(k + 1) = qi(k) + Tspi(k) +
1

2
T 2
s ui(k), (4.3)

pi(k + 1) = pi(k) + Tsui(k), (4.4)

where k ∈ N, and qi(0) = qc,i(0) and pi(0) = pc,i(0) are the initial conditions.
We also consider a flock leader, which is a virtual member of the flock, whose

discrete-time dynamics are

qg(k + 1) = qg(k) + Tspg(k) +
1

2
T 2
s ug(k), (4.5)

pg(k + 1) = pg(k) + Tsug(k), (4.6)

where k ∈ N; qg(k) ∈ Rm and pg(k) ∈ Rm are the position and velocity of the leader;
qg(0) and pg(0) are the initial conditions; and ug : N → Rm is an external forcing
signal. The leader dynamics (4.5) and (4.6) take the form of a sampled-data double
integrator and thus match the sampled-data dynamics (4.3) and (4.4).

78

4.3 Discrete-Time Flocking

Define P , {(i, j) ∈ I × I : i 6= j}, which is the set of ordered pairs, and let || · ||
denote the Euclidean norm. Let δc ≥ 0 be the collision radius, which is the desired
minimum separation distance between rotorcraft. The rules for flocking are that
rotorcraft stay close to one another, avoid collisions, and match velocities [16]. We
use these rules to define asymptotic flocking. The rotorcraft in I flock with radius
d > 0 if the following conditions hold:

(F1) For all (i, j) ∈ P and all k ∈ N,

||qj(k)− qi(k)|| > δc.

(F2) For all (i, j) ∈ P ,
lim
k→∞

[pj(k)− pi(k)] = 0.

(F3) There exists k1 ≥ 0 such that for all k ≥ k1 and all i ∈ I,

max
j∈I\{i}

||qj(k)− qi(k)|| ≤ d(n− 1).

Condition (F1) states that there are no collisions. Condition (F2) states that all
rotorcraft approach the same velocity. Condition (F3) states that asymptotically each
rotorcraft is at most a distance d(n− 1) away from its farthest neighbor.

In these experiments, we use n = 3 rotorcraft. In this case, it is possible to a achieve
a formation where each rotorcraft is d apart from all other rotorcraft. So, we also
consider the condition:

(F4) For all (i, j) ∈ P ,
lim
k→∞
||qj(k)− qi(k)|| = d.

Condition (F4) states that the distance between pairs of rotorcraft tends to d. For
n > 4 rotorcraft, (F4) is not possible.

Next, we describe a modified version of the discrete-time flocking algorithm presented
in Chapter 3. Let rc > δc be the communication radius, which is the maximum
distance at which a rotorcraft can sense another rotorcraft’s relative position and
relative velocity. For all k ∈ N, define the neighbor set

Ni(k) , {j ∈ I \ {i} : ||qj(k)− qi(k)|| < rc},

which is the set of rotorcraft whose distance to the ith rotorcraft is less than the
communication radius rc. Let d ∈ (δc, rc) be the flock radius, which is the desired
distance between adjacent rotorcraft in the flock. For all k ∈ N, define the attraction
set

Ai(k) , {j ∈ I \ {i} : d ≤ ||qj(k)− qi(k)|| < rc} ⊆ Ni(k),

79

which is the set of rotorcraft whose distances from the ith rotorcraft are between the
flock and communication radii, and define the repulsion set

Ri(k) , {j ∈ I \ {i} : ||qj(k)− qi(k)|| < d} ⊆ Ni(k),

which is is the set of rotorcraft whose distances to the ith rotorcraft are less than the
flock radius. Note that for all k ∈ N, Ni(k) = Ai(k) ∪Ri(k).

For each k ∈ N, let q̂i(k) ∈ Rm be an estimate of qi(k + 1), that is, q̂i(k) is an
estimate of the ith rotorcraft’s position at the next sample time. Let n̄ ≥ n and
T̄s ≥ Ts. We assume n̄ and T̄s are known; however, n and Ts need not be known. For
the experiments in this chapter, both n and Ts are known. Thus, we let n̄ = n and
T̄s = Ts.

To develop the flocking controller, let

α1 ∈ (0,∞), α2 ∈
(

0,
4(α1 + 1)

n̄T̄ 2
s

)
, (4.7)

and consider φ : [0,∞)→ [α2/(α1 + 1)− α2/α1, α2/(α1 + 1)) defined by

φ(η) ,
α2

α1 + 1
− α2

α1 + η2/d2
=

α2(η
2/d2 − 1)

(α1 + 1)(α1 + η2/d2)
. (4.8)

Note that φ(d) = 0; for all η ∈ [0, d), φ(η) < 0; and, for all η ∈ (d,∞), φ(η) > 0.
Next, let

β ∈
[

α2T̄s
2(α1 + 1)

,
2

n̄T̄s

)
, (4.9)

where the interval exists because α2 < 4(α1 + 1)/(n̄T̄ 2
s).

Let

γ1 ∈
[
0,

2

T̄ 2
s

)
, γ2 ∈

[
T̄sγ1

2
,

1

T̄s

)
, γ3 ≥ 0, γ4 ≥ 0, (4.10)

where the interval for γ2 exists because γ1 < 2/T̄ 2
s .

For all k ∈ N, define

q(k) ,



q1(k)

...
qn(k)


 , p(k) ,



p1(k)

...
pn(k)


 , q̂(k) ,



q̂1(k)

...
q̂n(k)


 .

Let e` ∈ R1×3 be the `th row of 3×3 identity matrix. Consider the discrete-time flocking
control with additional altitude guidance ui : Rmn × Rmn × Rmn × Rm × Rm → Rm

defined by

ui(q, p, q̂, qg, pg) ,
∑

j∈Ai
φ(||q̂j − q̂i||)[qj − qi]

︸ ︷︷ ︸
Flock attraction

+
∑

j∈Ri
φ(||q̂j − q̂i||)[qj − qi]

︸ ︷︷ ︸
Flock repulsion

+
∑

j∈Ni
β[pj − pi]

︸ ︷︷ ︸
Velocity consensus

+ γ1[qg − qi] + γ2[pg − pi]︸ ︷︷ ︸
Guidance

80

+ γ3e
T
3 e3[qg − qi] + γ4e

T
3 e3[pg − pi]︸ ︷︷ ︸

Additional altitude guidance

−
(∑

j∈Ni

γ1
card(Ni) + 1

[qj − qi] +
γ2

card(Ni) + 1
[pj − pi]

)

︸ ︷︷ ︸
Flock correction to guidance

, (4.11)

where card(Ni) is the cardinality of Ni. Thus, for all k ∈ N and all t ∈ [kTs, (k+ 1)Ts),
the command to the quadcopter’s inner-loop controller is

vc,i(t) = vi(q(k), p(k), q̂(k), qg(k), pg(k), ψi(kTs)),

where vi : Rmn × Rmn × Rmn × Rm × Rm × (−π, π]→ Rm is defined by

vi(q, p, q̂, qg, pg, ψi) , O(ψi)ui(q, p, q̂, qg, pg). (4.12)

If γ3 = 0 and γ4 = 0, then (4.11) is identical to the discrete-time flocking control
in Chapter 3. However, if γ3 = 0 and γ4 = 0, then the rotorcraft may move into a
formation, where one rotorcraft is above another. In this case, the downwash from
the higher-altitude rotorcraft may cause an undesirable disturbance on the lower-
altitude rotorcraft. If γ3 > 0 and γ4 > 0, then the rotorcraft prioritize matching the
leader’s altitude more than its lateral position. In this case, the rotorcraft tend to a
configuration that is parallel to the ground, that is, in the ı̂E–̂E plane.

The estimate q̂i can be chosen in multiple ways. In this chapter, we use the estimate

q̂i(k) ≡ qi(k) + Tspi(k),

which uses the sampled position and velocity of the current step to estimate the position
at the next time step. It follows from (4.3) that for bounded ui and sufficiently small
Ts, the estimate q̂i(k) ≡ qi(k) + Tspi(k) is approximately equal to qi(k + 1).

In this chapter, we compare our experimental results with the theoretical results
in Theorem 6. We repeat the main result from Chapter 3 to make this chapter self
contained. Consider ψ : [0,∞)→ [0,∞) defined by

ψ(η) , 2α2

∫ η

d

σ

α1 + 1
− σ

α1 + σ2/d2
dσ = α2

[
η2 − d2
α1 + 1

+ d2 ln
α1 + 1

α1 + η2/d2

]
,

and consider the logarithmic potential function V : Q× Rmn → [0,∞) defined by

V (q, p) ,
∑

(i,j)∈P
ψ(||[Ej − Ei]q||) + λ||[Ej − Ei]p||2,

where

λ ,
1

n
− 1

2
Tsβ.

The following contains results related to the asymptotic flock configuration as well as
the rotorcraft-averaged position and velocity are related to those of the leader.

81

Theorem 6. Consider the closed-loop dynamics in (4.3)–(4.6) and (4.11), where
γ3 = γ4 = 0. Define Q , {q ∈ Rmn : for all (i, j) ∈ P , ||qj − qi|| < rc, where q =

[qT1 ... qTn]T}. Assume that for all k ∈ N, q̂i(k) = qi(k + 1) and q(k) ∈ Q. Then, for all
q(0) ∈ Q, p(0) ∈ Rmn, qg(0) ∈ Rm, and pg(0) ∈ Rm, the following statements hold:

(a) If V (q(0), p(0)) < 2ψ(δc), then for all k ∈ N, ||qji(k)|| > δc.

(b) limk→∞[pj(k)− pi(k)] = 0.

(c) For all δ > 0 there exists kδ ∈ N such that for all k ≥ kδ,

max
(i,j)∈P

||qj(k)− qi(k)|| ≤ d(n− 1) + δ.

(d) For all i ∈ I, limk→∞
∑

j∈Ai(k)∪Ri(k) φ(||q̂j(k)− q̂i(k)||)[qj(k)− qi(k)] = 0.

(e) If γ1 = γ2 = 0, then for all k ∈ N,
∑

i∈I
pi(k) =

∑

i∈I
pi(0),

and

lim
k→∞

pi(k) =
1

n

∑

j∈I
pj(0).

(f) If γ2 ∈ (T̄sγ1/2, 1/T̄s), and ug(k) ≡ 0, then limk→∞ pi(k) = pg(0).

(g) If γ1 ∈ (0, 2/T̄s
2
), γ2 ∈ (T̄sγ1/2, 1/T̄s), and ug(k) ≡ 0, then

lim
k→∞

[
−qg(k) +

1

n

∑

i∈I
qi(k)

]
= 0.

Note that Theorem 6 invokes 2 key assumptions: the estimate q̂i(k) of the position at
step k+ 1 equals the position qi(k+ 1), and the communication radius rc is sufficiently
large such that all agents communicate with each other at all times.

Part (a) implies that if V (q(0), p(0)) < 2ψ(δc), then there are no collisions, which
implies (F1). Part (b) implies that the rotorcraft converge to the same velocity,
which implies (F2). Part (c) implies that the relative position between agents is
asymptotically bounded by d(n− 1), which implies (F3). Thus, parts (a)–(c) imply
that the rotorcraft flock with radius d.

Part (d) implies that the sum of flock attraction and repulsion of each rotorcraft
tends to 0. Numerical simulations suggest that for n = 3 and m = 3, if the sum of
flock attraction and repulsion of each rotorcraft tends to 0, then the agents tend to a
configuration, where each agent is d apart from other agents, which implies (F4).

Part (e) implies that if there is no leader, then the sum of velocities is constant.
Furthermore, all rotorcraft tend to the average initial velocity. Part (f) implies that if
the rotorcraft follow a leader and the leader has constant velocity, then each rotorcraft’s
velocity tends to the leader’s velocity. Part (g) implies that if the rotorcraft follow
and leader and the leader has constant velocity, then the rotorcraft-averaged position
tends to the leader’s position.

82

4.4 Description of Experimental Setup

In this section, we describe the hardware setup for implementing the discrete-time
flocking control (4.11). The experimental hardware includes: rotorcraft, a motion-
capture system, a desktop computer, and Android devices.

We use n = 3 Parrot Rolling Spider quadcopters. These quadcopters have 4
propellers whose thrust vectors point downward. By increasing or decreasing the
thrust of all propellers, the quadcopter can move up and down. By increasing or
decreasing the thrust of some propellers relative to the others, the quadcopter changes
its orientation, which causes it to move laterally. Thus, quadcopters may move in
approximately any direction.

Each Rolling Spider has a removable axle that we attach. The axle attaches to
wheels, which serve as propeller guards, but we do not attach the wheels because they
reduce mobility and battery life. We tape 4 infrared-reflective markers (specifically,
Optitrack’s 6.9 mm markers with M3 base) to each Rolling Spider–one on the nose,
one near the tail above the battery, and one on each end of the axle. All 4 markers
are visible from the top of the Rolling Spider but not the bottom. The markers form
a planar diamond configuration on the Rolling Spider as shown in Figure 4.3. The
marker placement on each Rolling Spider is unique so that the motion-capture system
can identify the Rolling Spiders based solely on the marker placement.

Figure 4.3: A picture of the Rolling Spider quadcopter with 4 attached markers for
motion capture. The markers are arranged in a planar diamond configuration.

The quadcopters’ positions are tracked using an Optitrack motion-capture system
that uses a combination of cameras, markers, and software to determine rigid-body
positions and attitude. We use 6 OptiTrack Prime 13 cameras, which emit and receive
infrared light to track objects. The cameras are arranged in a circular configuration,

83

pointed towards the test-flight volume, and angled slightly downward, as shown in
Figure 4.4. The cameras are mounted on tripods and are approximately 3 m off the
ground, and the collective tracking volume of the cameras is approximately 3 m by
4 m by 3 m. The cameras emit infrared light towards the infrared-reflective markers
on the Rolling Spider quadcopters. Then, the cameras sense the light reflected from
the infrared-reflect markers and send the pixel coordinates of all reflected light to the
desktop computer for processing. All the cameras are connected to a switch using
CAT6 cables, and the switch is connected to a desktop computer using a CAT6 cable.

Figure 4.4: The 6 OptiTrack Prime 13 cameras are mounted on tripods, arranged in
a circular configuration, pointed towards the test-flight volume, and angled slightly
downward.

The attached desktop computer runs Motive:Tracker, which is proprietary software
developed by Optitrack for the motion-capture system. We use Motive:Tracker to
build rigid bodies composed of the 4 markers on each Rolling Spider. Motive:Tracker
tracks and streams position and attitude for each rigid body, but it does not calculate
translational or angular velocity estimates. For each k ∈ N \ {0}, we define the
translational velocity estimate

p̂i(k) =
1

Ts
[qi(k)− qi(k − 1)], (4.13)

where p̂i(0) = 0 is the initial estimate. The velocity estimator (4.13) uses the
backward-Euler rule. Thus, the control is vi(q(k), p̂(k), q̂(k), qg(k), pg(k), ψi(kTs)),

where p̂(k) , [p̂T1 (k) ··· p̂Tn (k)]T and vi is defined by (4.12).
The discrete-time flocking control (4.11) allows each rotorcraft to compute its control

independently; however, we use a centralized implementation for simplicity. In a cen-
tralized setting, computing each rotorcraft’s control independently is computationally

84

inefficient. We can reduce the number of redundant calculations by computing every
agent’s control simultaneously. Consider the graph G = (I,D), where I is the vertex
set and D , {{i, j} ∈ I × I : i 6= j} is the set of unordered edges [94]. Define the
unweighted Laplacian matrix associated with G

L1(G) ,




n− 1 −1 . . . −1

−1 n− 1
...

...
. . . −1

−1 . . . −1 n− 1


 ∈ Rn×n,

and the weighted Laplacian matrix associated with G

Lφ(G) ,




∑
j∈N1

φ(||q̂j−q̂1||) −φ(||q̂2−q̂1||) ... −φ(||q̂n−q̂1||)

−φ(||q̂1−q̂2||)
∑
j∈N2

φ(||q̂j−q̂2||)
...

...
... −φ(||q̂n (n−1)||)

−φ(||q̂1−q̂n||) ... −φ(||q̂(n−1)n||)
∑

j∈Nn
φ(||q̂j−q̂n||)



∈ Rn×n.

The following example shows L1(G) and Lφ(G) for n = 3 and Ni = I \ {i}, which are
the values used in the experiments.

Example 14. Let n = 3 rotorcraft, and assume Ni = I \ {i}, which implies that
all rotorcraft communicate with one another. Then,

L1(G) =




2 −1 −1
−1 2 −1
−1 −1 2


 ,

and

Lφ(G) =

[
φ(||q̂2−q̂1||)+φ(||q̂3−q̂1||) −φ(||q̂2−q̂1||) −φ(||q̂3−q̂1||)

−φ(||q̂2−q̂1||) φ(||q̂2−q̂1||)+φ(||q̂3−q̂2||) −φ(||q̂3−q̂2||)
−φ(||q̂3−q̂1||) −φ(||q̂3−q̂2||) φ(||q̂3−q̂1||)+φ(||q̂3−q̂2||)

]
. 4

Let ⊗ denote the Kronecker product, and define L1(G) , L1(G)⊗ Im and Lφ(G) ,
Lφ(G)⊗ Im. Thus, the discrete-time flocking control with additional altitude guidance
can be written as


u1(q, p̂, q̂, qg, pg)

...
un(q, p̂, q̂, qg, pg)


 = −Lφ(G)q︸ ︷︷ ︸

Flock attraction
and repulsion

−βL1(G)p̂︸ ︷︷ ︸
Velocity
consensus

+ γ1[1n ⊗ qg − q] + γ2[1n ⊗ pg − p̂]︸ ︷︷ ︸
Guidance

+ γ1[In ⊗ eT3 e3][1n ⊗ qg − q] + γ2[In ⊗ eT3 e3][1n ⊗ pg − p̂]︸ ︷︷ ︸
Additional altitude guidance

85

+
(

diag
{

1
card(N1)+1

, . . . , 1
card(Nn)+1

}
⊗ Im

)
L1(G)[γ1q + γ2p̂]

︸ ︷︷ ︸
Flock correction

to guidance

,

(4.14)

where 1n ∈ Rn is the vector of ones.Then, vi is computed from (4.12) using ui and ψi.
After we compute each Rolling Spider’s discrete-time flocking control vi on the

centralized computer, we relay the control vi to the Rolling Spider. Note that it is
possible to send the Rolling Spider control signals directly from the computer, but
Android devices send control signals with less lag due to software optimization. Thus,
we send the control signals vi to n = 3 Android devices running a custom application
that links each Android device to a Rolling Spider. The application receives the
control vi from Matlab and sends it to the linked Rolling Spider.

Figure 4.5 provides a block diagram of the control architecture. The Rolling Spider
relies on inner- and outer-loop controllers. The inner-loop controller uses onboard
sensing and input vi. The onboard sensing of the rotorcraft uses sensor fusion of a
3-axis gyroscope, 3-axis accelerometer, vertical camera, and pressure sensor.

The outer-loop control uses the motion-capture cameras, velocity estimator, and
inputs qg and pg. The motion-capture cameras use marker data to sense the position qi
and yaw angle ψi of each rotorcraft. The velocity estimator uses the current position
qi(k) and previous position qi(k − 1) to estimate the velocity at the current step p̂i(k).

Discrete-time
flocking control

vi = O(ψi)ui Hold
Inner-loop

control
Rotorcraft
dynamics

qg, pg
ui vi

Motor
commands Outputs

Onboard
sensors

Motion-capture
cameras

Motion of other rotorcraft

Velocity
estimator {qi}i∈I

{p̂i}i∈I
{ψi}i∈I

Figure 4.5: The Rolling Spider uses onboard sensing with input vi for inner-loop
control and the motion-capture system’s sensing with input qg and pg for outer-loop
control. The on-board sensing of the rotorcraft uses sensor fusion of a 3-axis gyroscope,
3-axis accelerometer, vertical camera, and pressure sensor. The motion-capture
cameras use marker data to sense the position qi and yaw angle ψi of each rotorcraft.
The velocity estimator uses the current position qi(k) and previous position qi(k − 1)
to compute the velocity estimate p̂i(k).

Figure 4.6 provides a data-flow diagram for the experiments. Figure 4.6 shows that
there are 4 types of hardware used in the experimental demonstrations.

86

Rotorcraft
• Stabilize vehicle

• Apply control input

OptiTrack: Prime 13 Camera (6X)
• Emits infrared light

• Senses markers from infrared reflections
• Sends marker data to desktop computer

Desktop Computer
• Receive marker data from cameras
• Compute 3D positions of markers

• Compute rigid-body positions and orientations
• Estimates rotorcraft velocity

• Computes discrete-time flocking control ui
• Transforms ui into body-fixed control vi

Android Device (3X)
• Receives vi via WiFi
• Sends vi via Bluetooth

Infrared reflectionsInfrared light

Marker data

v1 v2 v3

v3

v2

v1

Figure 4.6: Setup of discrete-time flocking control demonstration for n = 3 rotorcraft.
The boxes represent pieces of hardware, and the arrows denote what is sent from one
piece of hardware to the next. The cameras emit infrared light that is reflected by the
rotorcraft. The cameras send the marker data to the desktop computer. The computer
transforms the marker data into rigid bodies and computes the velocity estimate p̂i
and discrete-time flocking control in the body-fixed frame vi for each rotorcraft. The
Android devices receive the respective controls and send the control to the rotorcraft,
which closes the loop.

4.5 Results and Discussion

In this section, we present results from experiments using n = 3 rotorcraft, where
the discrete-time flocking algorithm (4.11) and (4.12) is implemented in a multi-loop
control architecture as described in the previous section. We use Ts = 0.055 s for all
demonstrations. Unless stated otherwise, the parameters for the discrete-time flocking

87

control are α1 = 0.001, α2 = 0.024, β = 0.032, γ1 = 0.080, γ2 = 0.056, γ3 = 0.140,
γ4 = 0.076, δc = 200 mm, d = 550 mm, and rc = 5000 mm. We use the estimate
q̂i(k) ≡ qi(k) + Tspi(k).

We developed a series of calibration experiments to determine values for the param-
eters α1, α2, β, γ1, γ2, γ3, γ4, d, and rc. First, we determined a safe distance between
rotorcraft so that, outside that distance, the rotorcraft do not experience interaction
forces from each other’s propeller thrust. In order to avoid multiple mid-flight colli-
sions that could damage the rotorcraft, we conducted a grounded experiment with
2 rotorcraft and determined that 200 mm apart is a safe minimum distance. Thus,
we let δc = 200 mm. We set rc = 5000 mm so that the rotorcraft detect one another
in the test-flight volume. To determine d, α1, α2, β, γ1, γ2, γ3, and γ4, we initialized
the values to arbitrarily small or large numbers depending on what makes the control
gains small and the rotorcraft less like to crash. Specifically, we started with large
values of d, β, γ2, and γ4, and small values of α1, α2, γ1, and γ3. After initializing
the values, we analyzed the performance of the discrete-time flocking control on the
rotorcraft. If the rotorcraft crashed, we decreased α1, α2, and γ1, and increased β,
γ2, and γ4. If the rotorcraft slowly flocked and followed a leader, we increased α2, γ1,
and γ3. If the rotorcraft saturated the control, then we decreased parameters. If the
rotorcraft flocked well, then we decreased d. The listed set of parameters represents a
balance of fast convergence rate to a flocking configuration, fast convergence rate to
the leader, small d, and no collisions.

We implement the discrete-time flocking control (4.11) and (4.12) with p̂i(k) ≡ pi(k).
Note that for all k ∈ N, qc,i(kTs) = qi(k). Thus, we plot sampled-data positions and
estimated velocities at times t = kTs, where k ∈ N.

In the following demonstrations, the rotorcraft start in grounded positions distributed
around the motion-capture volume. When the rotorcraft take off, we set ui(k) = 0 for
approximately 3 seconds. The space between rotorcraft is chosen so that there are no
collisions when the rotorcraft takeoff. Once the rotorcraft take off and are hovering in
place, Matlab begins recording the positions and velocities of rotorcraft and computes
and sends the control signals. Unless otherwise specified, all positions are measured in
millimeters, and all velocities are measured in millimeters per second.

Demonstration 1: Rotorcraft Flock Without a Leader

Let γ1 = γ2 = γ3 = γ4 = 0, which implies that the rotorcraft do not try to follow the
leader’s position or match the leader’s velocity. Thus, the rotorcraft do not attempt
to go to the same altitude. Figure 4.7 shows the trajectory of the n = 3 rotorcraft.
Figure 4.7 demonstrates that by t = 3.5 s, the rotorcraft are flocking and maintain their
configuration for the remainder of the experiment, which lasts for t = 20 s. Figure 4.8
shows that the distance between each pair of rotorcraft tends to approximately d,
which agrees with parts (c) and (d) of Theorem 6. In addition, Figure 4.8 shows that
the velocity difference between each pair of rotorcraft is stays close to 0 in steady
state, whereas part (b) of Theorem 6 implies that the velocity difference between each
pair of rotorcraft tends to 0.

We examine the last 10 seconds of the experiment to quantify the steady-state

88

results. Over all pairs of rotorcraft and over the last 10 seconds of the experiment, the
average distance between each pair of rotorcraft is 557 mm with standard deviation
52.8 mm, and the average norm of the velocity difference is 185 mm/s with standard
deviation 100 mm/s. The standard deviation of the steady-state norm of the velocity
difference is approximately double that of the of distance, which we suspect is because
the velocity estimate uses 2 sampled positions.

Figure 4.9 shows that the rotorcraft-averaged velocity is approximately constant,
which agrees with part (e) of Theorem 6. Because the rotorcraft-averaged velocity is
approximately constant, the rotorcraft tend to drift approximately in the direction of
the rotorcraft-averaged initial velocity. The standard deviation of the average velocity
over all sampled points is [68.3 62.0 60.7] mm/s.

0 1250 25000

1750

3500

0

1400

t = 3.5 s

t = 20 s

e1qi (mm)

e2qi (mm)

e 3
q i

(m
m
)

qi(0)

Figure 4.7: The trajectory of n = 3 rotorcraft that flock without a leader. The
rotorcraft start from random positions in a hover maneuver with approximately 0
velocity. By t = 3.5 s, the rotorcraft are flocking and keep their configuration for the
remainder of the experiment, which lasts for t = 20 s.

Demonstration 2: Rotorcraft Flock and Approach a Stationary Leader

This experiment shows that for a stationary leader, the rotorcraft move into a
flocking configuration around the leader. The initial conditions of the leader are

qg(0) =




200
−1000
1000


 , pg(0) =




0
0
0


 , ug(k) ≡




0
0
0


 .

Since pg(0) = 0 and ug(k) ≡ 0, it follows from (4.5) and (4.6) that qg(k) ≡ qg(0).
Figure 4.10 shows an abbreviated trajectory of the rotorcraft and leader from t = 2.4 s

89

0

1200

2400

||q
j
−
q i
||
(m

m
) d δc

0 10 20
0

800

1600

t (s)

||p
j
−
p i
||
(m

m
/s
)

Figure 4.8: The distance and norm of the velocity difference between each pair of
rotorcraft. The distance between each pair of rotorcraft tends to approximately d,
and the norm of the velocity difference between each pair of rotorcraft stays close to 0
in steady state.

to t = 20 s. The first 2.4 s are omitted for clarity of the plot. Figure 4.11 shows that
the distance between each pair of rotorcraft tends to approximately d, which agrees
with parts (c) and (d) of Theorem 6. Figure 4.12 shows that the rotorcraft-averaged
position and velocity tend approximately to the leader’s position and velocity, which
agrees with parts (f) and (g) of Theorem 6.

We examine the last 10 seconds of the experiment to quantify the steady-state
results. Over all pairs of rotorcraft and over the last 10 seconds of the experiment,
the average distance between each pair of rotorcraft is 544 mm the average norm of
the velocity difference is 191 mm/s, the average norm of the difference between the
rotorcraft-averaged position and the leader’s position is 40.0 mm, and the average norm
of the difference between the rotorcraft-averaged velocity and the leader’s velocity
is 75.2 mm/s. The standard deviation of the norm of the difference between the
rotorcraft-averaged position and the leader’s position is 25.4 mm, and the standard
deviation of the norm of the difference between the rotorcraft-averaged velocity and
the leader’s velocity is 32.0 mm/s.

90

0

1500

3000

∑ i∈
I

e 1
q i n

(m
m
)

0

1500

3000

∑ i∈
I

e 2
q i n

(m
m
)

0

1500

3000

∑ i∈
I

e 3
q i n

(m
m
)

−400

0

400

∑ i∈
I

e 1
p i n

(m
m
/s
)

−400

0

400

∑ i∈
I

e 2
p i n

(m
m
/s
)

0 10 20

−400

0

400

t (s)

∑ i∈
I

e 3
p i n

(m
m
/s
)

Figure 4.9: The rotorcraft-averaged velocity is approximately constant.

91

800
1300

1800

0

750

1500
0

600

1200

e1qi (mm)e2qi (mm)

e 3
q i

(m
m
)

qi(40) qg(k) qi(ke)

Figure 4.10: The trajectory of n = 3 rotorcraft that flock and follow a stationary
leader. The plot of the trajectory starts at t = 2.4 s (k = 40) and shows that the
rotorcraft flock around the leader. The time step ke ∈ N is the last measured step in
the experiment.

Demonstration 3: Rotorcraft Follow a Leader With a Helical Trajectory

This experiment examines rotorcraft following a leader with a helical trajectory.
The initial conditions of the leader are

qg(0) =




790
−500
800


 , pg(0) =




0
475
50


 .

Define

A1 ,

[
1 Ts
0 1

]
∈ R2×2, B1 ,

[
1
2
T 2
s

Ts

]
∈ R2,

and note that (A1, B1) is controllable. Therefore, [95, Theorem 2.17] implies that the
eigenvalues of A1 +B1K1, where K1 ∈ R1×2, can be arbitrarily assigned. Let exp be
the exponential function and  ,

√
−1. Let k1, · · · , k4 ∈ R be such that A1+B1 [k1 k2]

has eigenvalues ± exp /30 and A1 +B1 [k3 k4] has eigenvalues ± exp /100. Let

K ,



k1 0 0 k2 0 0
0 k1 0 0 k2 0
0 0 k3 0 0 k4


 ∈ R3×6, (4.15)

and consider the external forcing signal

ug(qg, pg) = K

[
qg
pg

]
. (4.16)

Then, it follows from (4.5), (4.6), and (4.16) that qg and pg satisfy the closed-loop
dynamics [

qg(k + 1)
pg(k + 1)

]
= Ã

[
qg(k)
pg(k)

]
, (4.17)

92

0

1500

3000

||q
j
−
q i
||
(m

m
)

d δc

0 10 20

0

600

1200

t (s)

||p
j
−
p i
||
(m

m
/s
)

Figure 4.11: The distance and norm of the velocity difference between pairs of
rotorcraft. The distance between each pair of rotorcraft tends to approximately d,
and the norm of the velocity difference between each pair of rotorcraft is bounded.

where
Ã , A1 ⊗ Im + (B1 ⊗ Im)K. (4.18)

The closed-loop leader dynamics (4.17) and (4.18) are linear and time invariant.
Moreover, Ã is similar to

diag{A1 +B1 [k1 k2] , A1 +B1 [k1 k2] , A1 +B1 [k3 k4]}.

Thus, all the eigenvalues of Ã have magnitude 1, and the repeated eigenvalues are
semisimple. Therefore, (qg(k), pg(k)) ≡ (0, 0) is a Lyapunov stable equilibrium of
(4.17). Moreover, the free response of (4.17) to nonzero initial conditions is sinusoidal.

Figure 4.13 shows the trajectory of the rotorcraft and leader. In particular, the top
plot displays snapshots of the trajectory from t = 0 s to t = 15 s and corresponds to the
leader ascending the helix. The bottom plot displays snapshots of the trajectory from
t = 18 s to t = 45 s and corresponds to the leader descending the helix. Figure 4.14
shows that the distance between each pair of rotorcraft tends to approximately d,
which is the expected result based on parts (c) and (d) of Theorem 6. Figure 4.15

93

0

750

1500

∑ i∈
I

e 1
q i n

(m
m
)

∑
i∈I

e1qi
n

e1qg

0

750

1500

∑ i∈
I

e 2
q i n

(m
m
)

∑
i∈I

e2qi
n

e2qg

0

750

1500

∑ i∈
I

e 3
q i n

(m
m
)

∑
i∈I

e3qi
n

e3qg

−600

0

600

∑ i∈
I

e 1
p i n

(m
m
/s
)

∑
i∈I

e1pi
n

e1pg

−600

0

600

∑ i∈
I

e 2
p i n

(m
m
/s
)

∑
i∈I

e2pi
n

e2pg

0 10 20

−600

0

600

t (s)

∑ i∈
I

e 3
p i n

(m
m
/s
)

∑
i∈I

e3pi
n

e3pg

Figure 4.12: The rotorcraft-averaged position and velocity approximately follow the
leader’s position and velocity.

94

shows that the rotorcraft-averaged position and velocity approximately follow the
leader’s position and velocity.

To quantify the steady-state results, we examine the last 10 seconds of the experiment.
Over all pairs of rotorcraft and over the last 10 seconds of the experiment, the average
distance between each pair of rotorcraft is 549 mm, the average norm of the velocity
difference is 103 mm/s, the average norm of the difference between the rotorcraft-
averaged position and the leader’s position is 116 mm, and the average norm of
the difference between the rotorcraft-averaged velocity and the leader’s velocity is
88.5 mm/s.

In these experiments, the rotorcraft-averaged position and leader follow the leader
with delay. We quantify this delay using a least-squares approach. Let ke ∈ N be
the last sample time. Note that there are 182 samples in the last 10 seconds of the
experiment (because Ts = 0.055 s/sample and 10/Ts ≈ 182 samples). The delay during
the last 10 seconds of the experiment is estimated as

kd , arg min
k∗∈{0,...,ke−181}

ke∑

k=ke−181

∣∣∣∣
∣∣∣∣
[
−qg(k − k∗) + 1

n

∑
i∈I qi(k)

−pg(k − k∗) + 1
n

∑
i∈I pi(k)

]∣∣∣∣
∣∣∣∣
2

, (4.19)

which yields kd = 2 time steps, or equivalently 0.11 s.

Demonstration 4: Rotorcraft Follow a Mouse-Driven Leader

This experiment examines rotorcraft following a leader whose position and velocity
are determined by moving a computer mouse. The initial conditions of the leader are

qg(0) =




486
2745
1000


 , pg(0) =




0
−173

0


 .

The leader’s position corresponds to the mouse’s position, but there is no mea-
surement of velocity. Instead, for all k ∈ N, we estimate the leader’s velocity as

pg(k) =
1

Ts
[qg(k)− qg(k − 1)]. (4.20)

Since we move the mouse to determine the leader’s position and velocity, we do not
directly design the external signal ug.

Figure 4.16 shows the trajectory of the rotorcraft and leader. Figure 4.17 shows that
the distance between each pair of rotorcraft tends to approximately d, which agrees
with parts (c) and (d) of Theorem 6. Figure 4.18 shows that the rotorcraft-averaged
position and velocity approximately follow the leader’s position and velocity.

To quantify the steady-state results, we examine the last 10 seconds of the experiment.
Over all pairs of rotorcraft and over the last 10 seconds of the experiment, the average
distance between each pair of rotorcraft is 543 mm, the average norm of the velocity
difference is 113 mm/s, the average norm of the difference between the rotorcraft-
averaged position and the leader’s position is 164 mm, and the average norm of the
difference between the rotorcraft-averaged velocity and the leader’s velocity is 306 mm.

95

0

25000 3400

600

1200

t = 0 s

t = 3.8 s
t = 8.2 s

t = 15 s

e1qi (mm)e2qi (mm)

e 3
q i

(m
m
)

qi(k) qg(k)

0

25000 3400

600

1200

t = 18 s

t = 23 s

t = 29 s

t = 33 s

t = 45 s

e1qi (mm)e2qi (mm)

e 3
q i

(m
m
)

qi(k) qg(k)

Figure 4.13: The trajectory of n = 3 rotorcraft that flock and follow a leader with
a helical trajectory. For all times after t = 3.8 s, the rotorcraft are in a flocking
configuration. The top plot displays snapshots of the trajectory from t = 0 s to
t = 15 s and corresponds to the leader ascending the helix. The bottom plot displays
snapshots of the trajectory from t = 18 s to t = 45 s and corresponds to the leader
descending the helix. The dashed line denotes the leader’s trajectory.

96

0

1250

2500

||q
j
−
q i
||
(m

m
) d δc

0 30 60
0

800

1600

t (s)

||p
j
−
p i
||
(m

m
/s
)

Figure 4.14: The distance and norm of the velocity difference between pairs of
rotorcraft. The distance between each pair of rotorcraft tends to approximately d,
and the norm of the velocity difference between each pair of rotorcraft is bounded.

In these experiments, the rotorcraft-averaged position and leader follow the leader
with delay. Using (4.19), the delay is estimated as kd = 10 time steps, or equivalently
0.55 s.

Summary of Results and Discussion

Table 1 shows that in every demonstration the average inter-rotorcraft distance
tends to approximately d. The average inter-rotorcraft speed in every demonstration
is greater than 100 mm/s, whereas we expect 0 mm/s based on part (b) of Theorem 6.
We suspect that the error in velocity is primarily due to the approximation. To improve
inter-rotorcraft velocity matching, we could improve the estimate of the velocity. For
example, we could implement a discrete-time low-pass filter into the velocity estimates.
In addition, Motive:Tracker samples the rotorcraft’s position at a higher rate than
we send control signals. In this case, we could use the extra position measurements,
which we ignore in the current implementation, to improve the velocity estimate.

In Demonstration 2, the steady-state rotorcraft-averaged position and velocity
relative the leader’s position and velocity are 40.0 mm and 75.2 mm/s, whereas we
expect 0 mm and 0 mm/s based on parts (f) and (g) of Theorem 6. The standard
deviation of the rotorcraft-averaged position relative to the leader is 25.4 mm, which

97

−1200

0

1200

2400

∑ i∈
I

e 1
q i n

(m
m
)

∑
i∈I

e1qi
n

e1qg

−1200

0

1200

2400

∑ i∈
I

e 2
q i n

(m
m
)

∑
i∈I

e2qi
n

e2qg

−1200

0

1200

2400

∑ i∈
I

e 3
q i n

(m
m
)

∑
i∈I

e3qi
n

e3qg

−2000

0

2000

∑ i∈
I

e 1
p i n

(m
m
/s
)

∑
i∈I

e1pi
n

e1pg

−2000

0

2000

∑ i∈
I

e 2
p i n

(m
m
/s
)

∑
i∈I

e2pi
n

e2pg

0 30 60

−2000

0

2000

t (s)

∑ i∈
I

e 3
p i n

(m
m
/s
)

∑
i∈I

e3pi
n

e3pg

Figure 4.15: The rotorcraft-averaged position and velocity approximately follow the
leader’s position and velocity.

98

0
1200

2400
0

1500

3000

0

1200

t = 0 s

t = 9 s

t = 17 s

t = 34 s

e1qi (mm)

e2qi (mm)

e 3
q i

(m
m
)

qi(k) qg(k)

Figure 4.16: The trajectory of n = 3 rotorcraft that flock and follow a leader that
follows a mouse’s position. The rotorcraft tend to a flocking configuration and follow
the leader. The dashed line denotes the leader’s trajectory.

0

1400

2800

||q
j
−
q i
||
(m

m
) d δc

0 18 36
0

800

1600

t (s)

||p
j
−
p i
||
(m

m
/s
)

Figure 4.17: The distance and norm of the velocity difference between each pair of
rotorcraft. The distance between each pair of rotorcraft tends to approximately d,
and the norm of the velocity difference between each pair of rotorcraft is bounded.

99

0

1400

2800

∑ i∈
I

e 1
q i n

(m
m
)

∑
i∈I

e1qi
n

e1qg

0

1400

2800

∑ i∈
I

e 2
q i n

(m
m
)

∑
i∈I

e2qi
n

e2qg

0

1400

2800

∑ i∈
I

e 3
q i n

(m
m
)

∑
i∈I

e3qi
n

e3qg

−4000

−2000

0

2000

∑ i∈
I

e 1
p i n

(m
m
/s
)

∑
i∈I

e1pi
n

e1pg

−4000

−2000

0

2000

∑ i∈
I

e 2
p i n

(m
m
/s
)

∑
i∈I

e2pi
n

e2pg

0 18 36
−4000

−2000

0

2000

t (s)

∑ i∈
I

e 3
p i n

(m
m
/s
)

∑
i∈I

e3pi
n

e3pg

Figure 4.18: The rotorcraft-averaged position and velocity approximately follow the
leader’s position and velocity.

100

Table 4.1: Summary of the steady-state results from Demonstrations 1–4 compared
to the theoretical results in Chapter 3. The results show that the rotorcraft tend
to approximately the same average inter-rotorcraft distance as predicted.

Demo 1 Demo 2 Demo 3 Demo 4 Theorya

Average inter-rotorcraft
distance (mm)

557 544 549 543 550

Average inter-rotorcraft
relative speedb (mm/s)

185 191 103 113 0

Rotorcraft-averaged
distance to leader (mm)

— 40.0 116 164 0c

Rotorcraft-averaged speed
relative to leaderb (mm/s)

— 75.2 88.5 306 0c

Delay (time steps) — — 2 10 —

a Chapter 3 with the following assumptions that differ from the experiments:
γ3 = γ4 = 0 and q̂i(k) ≡ qi(k + 1)

b That is, the average of the norm of the velocity difference
c The value 0 additionally assumes ug(k) ≡ 0 in Chapter 3 and thus, only

applies to Demonstration 2, where the leader has constant velocity.

implies that the average is within 2 standard deviations from 0. The standard deviation
of the rotorcraft-averaged velocity relative to the leader is 32.0 mm/s, which implies
that the average is greater than 2 standard deviations from 0. Thus, just as the
distance between rotorcraft tends to converge to d better than the inter-rotorcraft
velocity tends to 0, the rotorcraft-averaged position tends to converge to the leader’s
position better than the rotorcraft-averaged velocity converges to the leader’s velocity.

The discrete-time flocking control (4.11) uses the position and velocity of the leader
but does not include a feedforward term that predicts where the leader will be. Thus, if
the leader has non-constant velocity as in Demonstrations 3 and 4, then the rotorcraft
follow the leader with delay. In Demonstration 4, the leader uses more aggressive
maneuvers and thus, has higher delay than Demonstration 3.

In these demonstrations, we use the estimate q̂i = qi + Tspi. However, the results
in Theorem 6 rely on the estimate q̂i = qi + Tspi + (T 2

s /2)ui. The control with the
estimate q̂i = qi+Tspi+(T 2

s /2)ui has provable stability properties and is implementable;
however, it is more difficult to implement because ui is implicitly defined in this case.

4.6 Conclusion

In this chapter, we implemented the discrete-time flocking control on three rotorcraft
and used a motion-capture system to determine rotorcraft positions and attitude. We
presented four experimental demonstrations of the discrete-time flocking control. The
demonstrations showed that the discrete-time flocking control caused the rotorcraft

101

to go to a flocking configuration, where the rotorcraft are approximately a desired
distance apart from one another, which matches the theoretical results. Moreover,
this configuration is independent of the leader’s dynamics. We also demonstrated that
if a leader is present, then the rotorcraft-averaged position and velocity approximately
follow the leader’s position and velocity.

102

Chapter 5 Conclusions and Future Work

We presented multi-agent control methods that address flocking in continuous-time
and discrete-time settings. The multi-agent control methods are decentralized and
cause agents to work together to accomplish goals that may be difficult or impossible for
a single agent to achieve. All the algorithms developed in this dissertation implement a
distance-formation method for cohesion that induces configurations based on a desired
distance. Distance-formation methods cause an agent to be repelled from all other
agents that are too close and thus, prevent collisions. In addition, the configurations
induced by distance-formation methods are not labeled, that is, the exact configuration
is not specified a priori, and can be used for a small or large number of agents.

In the continuous-time setting we presented a flocking-and-destination-seeking
algorithm, where each agent has a potentially unique destination that it wants to
reach. If the an agent is far from its destination, then it attempts to flock with nearby
agents; otherwise, it approaches its destination. We provide analysis that demonstrates
if an agent is far from its destination, then it flocks with nearby agents; and if it is close
to its destination, then it exits the flock and approaches its destination. The algorithm
and analysis techniques in this chapter can be expanded to address the point-to-point
passenger and mail transport problems. The techniques developed in this chapter can
also be extended to address a broader class of multi-agent, multi-objective problems
such as building complex building structures.

In the discrete-time setting we presented a discrete-time flocking control that induces
flocking configurations. We demonstrated with analysis and examples that agents
implementing the discrete-time flocking control converge to flocking configurations
and can follow a leader. The discrete-time flocking algorithm in this dissertation
is particularly useful in settings where sampled-data effects are significant. For
example, many space applications use slow update rates so the sampled-data effects
are significant. In addition, unmanned vehicles with vision-based systems may require
computationally heavy image analysis to track objects, which may be computationally
intensive. Thus, these vehicles can use the discrete-time flocking algorithm to update
the vehicle at a lower sampling rate.

The multi-agent control methods in this dissertation can be extended to address
open questions in cooperative control. Some applications of multi-agent control require
multiple types of vehicles, such as unmanned aerial vehicles interacting with unmanned
ground vehicles. For example, trucks that deliver the mail may drive to a certain
location and release unmanned aerial vehicles to deliver mail to the surrounding area.
In this case, the multi-agent control method would require agents that have different
sets of dynamics. Other applications of multi-agent control require human interaction.

103

For example, robotic assistants could grab and carry heavy objects for a person. In
this case, agents would need to interact with humans to understand what they want as
well as interact with objects. Multi-agent control is also useful for distributed sensing.
For example, multiple unmanned vehicles can be deployed in the atmosphere to study
and predict weather patterns. As humans prepare to colonize Mars, we will likely
need multi-vehicle systems to survey terrain and find optimal habitable locations.

Multi-agent systems have numerous applications beyond controlling vehicles. For
example, multiple power plants generate electricity and distribute it to multiple
locations. These applications require power plants to coordinate with another in
order to deliver the optimal amount of power to each location. Mass production of
consumable goods such as soft drinks requires large distribution networks to deliver the
goods to consumers. By understanding these applications and others as multi-agent
systems, we can devise new solutions to improve the world around us.

104

Bibliography

[1] R. Olfati-Saber. Flocking for multi-agent dynamic systems: algorithms and theory.
IEEE Trans. Autom. Contr., 51(3):401–420, 2006.

[2] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin. Effective leadership and
decision-making in animal groups on the move. Nature, 433(7025):513–516, 2005.

[3] T. Lux and M. Marchesi. Scaling and criticality in a stochastic multi-agent model
of a financial market. Nature, 397(6719):498–500, 1999.

[4] T. D. Huynh, N. R. Jennings, and N. R. Shadbolt. An integrated trust and
reputation model for open multi-agent systems. Autonomous Agents and Multi-
Agent Sys., 13(2):119–154, 2006.

[5] W. Pan, Z. Wang, H. Gao, Y. Li, and M. Du. On multistability of delayed
genetic regulatory networks with multivariable regulation functions. Mathematical
Biosciences, 228(1):100–109, 2010.

[6] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in
networked multi-agent systems. Proc. IEEE, 95(1):215–233, 2007.

[7] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging. Sys. &
Contr. Letters, 53(1):65–78, 2004.

[8] G. Punzo, P. Karagiannakis, D. J. Bennet, M. Macdonald, and S. Weiss. Enabling
and exploiting self-similar central symmetry formations. IEEE Trans. Aerosp.
Electron. Syst., 50(1):689–703, 2014.

[9] D. M. Stipanović, G. Inalhan, R. Teo, and C. J. Tomlin. Decentralized overlapping
control of a formation of unmanned aerial vehicles. Automatica, 40(8):1285–1296,
2004.

[10] C. Sabol, R. Burns, and C. A. McLaughlin. Satellite formation flying design and
evolution. J. Spacecraft and Rockets, 38(2):270–278, 2001.

[11] R. M. Murray. Recent research in cooperative control of multivehicle systems. J.
Dynam. Syst., Measure., Contr., 129(5):571–583, 2007.

[12] W. Poundstone. Prisoner’s Dilemma. Doubleday, 1992.

[13] RoboCup Federation. Robocup. http://www.robocup.org.

105

[14] T. Huntsberger, G. Rodriguez, and P. S. Schenker. Robotics challenges for robotic
and human mars exploration. In Robotics 2000, pages 340–346, 2000.

[15] D. Swaroop and J. K. Hedrick. String stability of interconnected systems. IEEE
Trans. Autom. Contr., 41(3):349–357, 1996.

[16] C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.
Computer Graphics (SIGGRAPH ’87 Conf. Proc.), 21(4):25–34, 1987.

[17] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase
transition in a system of self-driven particles. Phys. Rev. Lett., 75:1226–1229,
1995.

[18] J. A. Fax and R. M. Murray. Information flow and cooperative control of vehicle
formations. IEEE Trans. Autom. Contr., 49(9):1465–1476, 2004.

[19] G. Lafferriere, A. Williams, J. Caughman, and J. J. P. Veerman. Decentralized
control of vehicle formations. Syst. Contr. Lett., 54(9):899–910, 2005.

[20] M. Guo, M. M. Zavlanos, and D. V. Dimarogonas. Controlling the relative
agent motion in multi-agent formation stabilization. IEEE Trans. Autom. Contr.,
59(3):820–826, 2014.

[21] Y. Cao and W. Ren. Distributed coordinated tracking with reduced interaction
via a variable structure approach. IEEE Trans. Autom. Contr., 57(1):33–48, 2012.

[22] R. Vidal, O. Shakernia, and S. Sastry. Following the flock. IEEE Robot. Automat.
Mag., 11(4):14–20, 2004.

[23] D. Gu and Z. Wang. Leader-follower flocking: Algorithms and experiments. IEEE
Trans. Contr. Syst. Tech., 17(5):1211–1219, 2009.

[24] H. Su, X. Wang, and Z. Lin. Flocking of multi-agents with a virtual leader. IEEE
Trans. Autom. Contr., 54(2):293–307, 2009.

[25] H. Shi, L. Wang, and T. Chu. Flocking of multi-agent systems with a dynamic
virtual leader. Int. J. Contr., 82(1):43–58, 2009.

[26] M. M. Zavlanos, M. B. Egerstedt, and G. J. Pappas. Graph-theoretic connectivity
control of mobile robot networks. Proc. IEEE, 99(9):1525–1540, 2011.

[27] H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Flocking in fixed and switching
networks. IEEE Trans. Autom. Contr., 52(5):863–868, 2007.

[28] J. Park, H. J. Kim, and S. Ha. Cucker-Smale flocking with inter-particle bonding
forces. IEEE Trans. Autom. Contr., 55(11):2617–2623, 2010.

[29] Y. Cao, W. Yu, W. Ren, and G. Chen. An overview of recent progress in
the study of distributed multi-agent coordination. IEEE Trans. Ind. Informat.,
9(1):427–438, 2013.

106

[30] H. G. Tanner. Flocking with obstacle avoidance in switching networks of inter-
connected vehicles. In Proc. IEEE Int. Conf. Robot. Automat., pages 3006–3011,
2004.

[31] Z. Jingyuan and L. Xiang. Flocking of discrete-time multi-agent systems with
predictive mechanisms. Proc. IFAC, pages 5669–5674, 2011.

[32] Z. Jingyuan and L. Xiang. Flocking of multi-agent systems via model predictive
control based on position-only measurements. IEEE Trans. Industrial Informatics,
9(1):377–385, 2013.

[33] E. Rimon and D. E. Koditschek. Exact robot navigation using artificial potential
functions. IEEE Trans. Robot. Automat., 8(5):501–518, 1992.

[34] K. You and L. Xie. Coordination of discrete-time multi-agent systems via relative
output feedback. Int. J. Robust Nonlinear Contr., 21(13):1587–1605, 2011.

[35] C. Tan and G. Liu. Consensus of discrete-time linear networked multi-agent
systems with communication delays. IEEE Trans. Autom. Contr., 58(11):2962–
2968, 2013.

[36] J. Qin and H. Gao. A sufficient condition for convergence of sampled-data
consensus for double-integrator dynamics with nonuniform and time-varying
communication delays. IEEE Trans. Autom. Contr., 57(9):2417–2422, 2012.

[37] L. Moreau. Stability of multiagent systems with time-dependent communication
links. IEEE Trans. Autom. Contr., 50(2):169–182, 2005.

[38] S. Martin, A. Girard, A. Fazeli, and A. Jadbabaie. Multiagent flocking under
general communication rule. IEEE Trans. Contr. Networked Syst., 1(2):155–166,
2014.

[39] P. Lin and Y. Jia. Consensus of second-order discrete-time multi-agent systems
with nonuniform time-delays and dynamically changing topologies. Automatica,
45(9):2154–2158, 2009.

[40] Z. Li, Z. Duan, and G. Chen. Consensus of discrete-time linear multi-agent
systems with observer-type protocols. CoRR, 2011.

[41] G. Gu, L. Marinovici, and F. L. Lewis. Consensusability of discrete-time dynamic
multiagent systems. IEEE Trans. Autom. Contr., 57(8):2085–2089, 2012.

[42] F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Trans. Autom.
Contr., 52(5):852–862, 2007.

[43] E. Canale, F. Dalmao, E. Mordecki, and M. O. Souza. Robustness of Cucker &
Smale flocking model. IET Contr. Theory Applications, 9(3):346–350, 2015.

[44] J. Zhou and Q. Wang. Distributed discrete-time nonlinear consensus protocols.
In Proc. IEEE Conf. Decision and Contr., pages 4759–4764, 2009.

107

[45] T. Okajima, K. Tsumura, T. Hayakawa, and H. Ishii. Adaptive consensus of
discrete-time heterogeneous multi-agent systems. In Proc. SICE Annu. Conf.,
pages 2237–2242, 2011.

[46] Y. Cao and W. Ren. Sampled-data formation control under dynamic directed
interaction. In Proc. American Contr. Conf., pages 5186–5191, 2009.

[47] T. Hayakawa, T. Matsuzawat, and S. Harat. Formation control of multi-agent
systems with sampled information — relationship between information exchange
structure and control performance. In Proc. IEEE Conf. Decision and Contr.,
pages 4333–4338, 2006.

[48] G. Mohanarajah and T. Hayakawa. Formation stability of multi-agent systems
with limited information. In Proc. IEEE American Contr. Conf., pages 704–709,
2008.

[49] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile
autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Contr.,
48(6):988–1001, 2003.

[50] W. Yu, W. X. Zheng, G. Chen, W. Ren, and J. Cao. Second-order consensus
in multi-agent dynamical systems with sampled position data. Automatica,
47(7):1496–1503, 2011.

[51] G. Wen, Z. Duan, W. Yu, and G. Chen. Consensus of multi-agent systems with
nonlinear dynamics and sampled-data information: a delayed-input approach.
Int. J. Robust and Nonlinear Contr., 23(6):602–619, 2013.

[52] Z. W. Liu, Z. H. Guan, X. Shen, and G. Feng. Consensus of multi-agent networks
with aperiodic sampled communication via impulsive algorithms using position-
only measurements. IEEE Trans. Autom. Contr., 57(10):2639–2643, 2012.

[53] Y. Gao and L. Wang. Sampled-data based consensus of continuous-time
multi-agent systems with time-varying topology. IEEE Trans. Autom. Contr.,
56(5):1226–1231, 2011.

[54] Y. Zhang and Y. P. Tian. Consensus of data-sampled multi-agent systems with
random communication delay and packet loss. IEEE Trans. Autom. Contr.,
55(4):939–943, April 2010.

[55] G. Xie, H. Liu, L. Wang, and Y. Jia. Consensus in networked multi-agent systems
via sampled control: Fixed topology case. In Proc. IEEE American Contr. Conf.,
pages 3902–3907, 2009.

[56] G. Xie, H. Liu, L. Wang, and Y. Jia. Consensus in networked multi-agent systems
via sampled control: Switching topology case. In Proc. IEEE American Contr.
Conf., pages 4525–4530, 2009.

108

[57] K. You and L. Xie. Network topology and communication data rate for con-
sensusability of discrete-time multi-agent systems. IEEE Trans. Autom. Contr.,
56(10):2262–2275, 2011.

[58] J. Wang, X.-H. Nian, and H.-B. Wang. Consensus and formation control of
discrete-time multi-agent systems. J. Central South Univ. Tech., 18(4):1161–1168,
2011.

[59] I. Okoloko. Path planning for multiple spacecraft using consensus with LMI
avoidance constraints. In IEEE Aerosp. Conf., pages 1–8, 2012.

[60] Y. Cao and W. Ren. Multi-vehicle coordination for double-integrator dynamics
under fixed undirected/directed interaction in a sampled-data setting. Int. J.
Robust Nonlinear Contr., 20(9):987–1000, 2010.

[61] B. J. Wellman and J. B. Hoagg. A flocking algorithm with individual agent
destinations and without a centralized leader. Systems & Control Letters, 102:57–
67, 2017.

[62] B. Xu, L. Gao, Y. Zhang, and X. Xu. Leader-following consensus stability of
discrete-time linear multiagent systems with observer-based protocols. In Abstr.
Applied Anal., volume 201. Hindawi Publishing Corporation, 2013.

[63] D. Panagou, D. M. Stipanović, and P. G. Voulgaris. Distributed coordination
control for multi-robot networks using Lyapunov-like barrier functions. IEEE
Trans. Autom. Contr., 61(3):617–632, 2016.

[64] D. V. Dimarogonas, M. M. Zavlanos, S. G. Loizou, and K . J. Kyriakopoulos.
Decentralized motion control of multiple holonomic agents under input constraints.
In Proc. IEEE Conf. Decision and Contr., volume 4, pages 3390–3395, 2003.

[65] D. V. Dimarogonas, S. G. Loizou, K. J. Kyriakopoulos, and M. M. Zavlanos. A
feedback stabilization and collision avoidance scheme for multiple independent
non-point agents. Automatica, 42(2):229–243, 2006.

[66] Y.-K. Zhu, X.-P. Guan, and X.-Y. Luo. Finite-time consensus for multi-agent
systems via nonlinear control protocols. Int. J. of Automation and Computing,
10(5):455–462, 2014.

[67] W. Ren, R. W. Beard, and E. M. Atkins. Information consensus in multivehicle
cooperative control. IEEE Contr. Syst., 27(2):71–82, 2007.

[68] W. Ren. On consensus algorithms for double-integrator dynamics. IEEE Trans.
Autom. Contr., 53(6):1503–1509, 2008.

[69] P. Panyakeow and M. Mesbahi. Deconfliction algorithms for a pair of constant
speed unmanned aerial vehicles. IEEE Trans. Aerosp. Electron. Syst., 50(1):456–
476, 2014.

109

[70] W. Wang and J.-J.E. Slotine. Contraction analysis of time-delayed communi-
cations and group cooperation. IEEE Trans. Autom. Contr., 51(4):712–717,
2006.

[71] W. Ni and D. Cheng. Leader-following consensus of multi-agent systems under
fixed and switching topologies. Syst. Contr. Lett., 59(3–4):209–217, 2010.

[72] W. Liu, S. Zhou, S. Yan, and Q. Wu. Lqr-based consensus algorithms of muti-agent
systems with a prescribed convergence speed. pages 868–873, 2014.

[73] A. Chapman and M. Mesbahi. Semi-autonomous consensus: Network measures
and adaptive trees. IEEE Trans. Autom. Contr., 58(1):19–31, 2013.

[74] Y. Liu and Y. Jia. Formation control of discrete-time multi-agent systems by
iterative learning approach. Int. J. Contr., Automat. Syst., 10(5):913–919, 2012.

[75] E. G. Hernandez-Martinez, J. J. Flores-Godoy, and G. Fernandez-Anaya. De-
centralized discrete-time formation control for multirobot systems. Discrete
Dynamics in Nature and Society, 2013:8, 2013.

[76] D.E. Hernandez-Mendoza, G.R. Pealoza-Mendoza, and E. Aranda-Bricaire.
Discrete-time formation and marching control of multi-agent robots systems.
In Electrical Engineering Computing Science and Automatic Control (CCE), 2011
8th International Conference on, pages 1–6, 2011.

[77] D. Nesic and A. R. Teel. A framework for stabilization of nonlinear sampled-data
systems based on their approximate discrete-time models. IEEE Trans. Autom.
Contr., 49(7):1103–1122, 2004.

[78] Y. Gu, B. Seanor, G. Campa, M. R. Napolitano, L. Rowe, S. Gururajan, and
S. Wan. Design and flight testing evaluation of formation control laws. IEEE
Trans. Contr. Sys. Tech., 14(6):1105–1112, 2006.

[79] M. Turpin, N. Michael, and V. Kumar. Trajectory design and control for aggressive
formation flight with quadrotors. Autonomous Robots, 33(1–2):143–156, 2012.

[80] S. Mao, W. K. Tan, and K. H. Low. Autonomous formation flight of indoor uavs
based on model predictive control. In AIAA Infotech@ Aerospace, page 515. 2016.

[81] R. Merris. Laplacian matrices of graphs: A survey. Linear Algebra and Its
Applications, 197–198:143–176, 1994.

[82] R. Olfati-Saber and R.M. Murray. Consensus problems in networks of agents with
switching topology and time-delays. IEEE Trans. Autom. Contr., 49(9):1520–1533,
2004.

[83] B. J. Wellman and J. B. Hoagg. A discrete-time flocking algorithm for agents
with sampled-data double-integrator dynamics. In Proc. IEEE American Contr.
Conf., 2017.

110

[84] H. K. Khalil. Nonlinear Systems. Prentice Hall PTR, 2002.

[85] Y. Joo, R. Harvey, and Z. Qu. Cooperative control of heterogeneous multi-agent
systems in a sampled-data setting. In Proc. IEEE Conf. Decision and Contr.,
pages 2683–2688, 2016.

[86] J. B. Hoagg, M. A. Santillo, and D. S. Bernstein. Discrete-time adaptive command
following and disturbance rejection with unknown exogenous dynamics. IEEE
Trans. Autom. Contr., 53:912–928, 2008.

[87] J. B. Hoagg and D. S. Bernstein. Retrospective cost model reference adaptive
control for nonminimum-phase systems. J. Guid. Contr. Dyn., 35(6):1767–1786,
2012.

[88] T. Hayakawa, W. M. Haddad, and A. Leonessa. A Lyapunov-based adaptive con-
trol framework for discrete-time non-linear systems with exogenous disturbances.
Int. J. Contr., 77:250–263, 2004.

[89] S. Akhtar and D. S. Bernstein. Logarithmic Lyapunov functions for direct adaptive
stabilization with normalized adaptive laws. Int. J. Contr., 77:630–638, 2004.

[90] R. Johansson. Lyapunov functions for adaptive systems. In Proc. IEEE Conf.
Decision and Contr., pages 449–454, San Antonio, TX, 1983.

[91] R. Johansson. Global Lyapunov stability and exponential convergence of direct
adaptive control. Int. J. Contr., 50:859–869, 1989.

[92] W. M. Haddad and V. Chellaboina. Nonlinear dynamical systems and control: a
Lyapunov-based approach. Princeton University Press, 2008.

[93] D. S. Bernstein. Matrix Mathematics: Theory, Facts, and Formulas (Second
Edition). Princeton reference. Princeton University Press, 2009.

[94] R. Merris. Algebraic Graph Theory. Wiley, 2000.

[95] G. E. Dullerud and F. Paganini. A course in robust control theory: a convex
approach, volume 36. Springer Science & Business Media, 2013.

111

Vita

Brandon Wellman studied mechanical engineering at the University of Kentucky,
where he received a bachelor’s and master’s degrees in mechanical engineering in 2011
and 2013 with a focus in mechanical control systems. His current research interest is
in the control of multi-agent systems.

112

	University of Kentucky
	UKnowledge
	2017

	ADVANCES IN MULTI-AGENT FLOCKING: CONTINUOUS-TIME AND DISCRETE-TIME ALGORITHMS
	Brandon Wellman
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction and Motivation
	1.1 Literature Review
	1.2 Introduction to Consensus Algorithms
	1.3 Flocking Problem Formulation
	1.4 Summary of Contributions

	2 Continuous-Time Flocking and Destination Seeking
	2.1 Introduction
	2.2 Problem Formulation
	2.3 Review of Algorithm 1 from olfatisaber2006
	2.4 Flocking and Destination Seeking
	2.5 Flocking Analysis
	2.6 Destination-Seeking Analysis
	2.7 Numerical Examples
	2.8 Conclusions
	2.9 Proof of Proposition 2
	2.10 Proof of Theorem 1
	2.11 Proof of Lemma 1
	2.12 Proof of Theorems 2 and 3

	3 Discrete-Time Flocking
	3.1 Introduction
	3.2 Problem Formulation
	3.3 Motivation
	3.4 Discrete-Time Flocking
	3.5 Flocking Analysis
	3.6 Motivating Example Revisited
	3.7 Numerical Examples
	3.8 Conclusions
	3.9 Proof of Proposition 3
	3.10 Proof of Lemmas 2 and 3
	3.11 Proof of Theorems 4 and 5
	3.12 Propositions 4 and 5 used in the proof of Proposition 3

	4 Experimental Demonstrations of Discrete-Time Flocking Using Rotorcraft
	4.1 Introduction
	4.2 Approximate Dynamics for an Attitude-Stabilized Quadcopter
	4.3 Discrete-Time Flocking
	4.4 Description of Experimental Setup
	4.5 Results and Discussion
	Demonstration 1: Rotorcraft Flock Without a Leader
	Demonstration 2: Rotorcraft Flock and Approach a Stationary Leader
	Demonstration 3: Rotorcraft Follow a Leader With a Helical Trajectory
	Demonstration 4: Rotorcraft Follow a Mouse-Driven Leader
	Summary of Results and Discussion

	4.6 Conclusion

	5 Conclusions and Future Work
	Bibliography
	Vita

