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ABSTRACT OF DISSERTATION

Data-Driven Adaptive Reynolds-Averaged Navier-Stokes k -ω Models for Turbulent
Flow-Field Simulations

The data-driven adaptive algorithms are explored as a means of increasing the
accuracy of Reynolds-averaged turbulence models. This dissertation presents two
new data-driven adaptive computational models for simulating turbulent flow, where
partial-but-incomplete measurement data is available. These models automatically
adjust (i.e., adapts) the closure coefficients of the Reynolds-averaged Navier-Stokes
(RANS) k -ω turbulence equations to improve agreement between the simulated flow
and a set of prescribed measurement data.

The first approach is the data-driven adaptive RANS k -ω (D-DARK) model.
It is validated with three canonical flow geometries: pipe flow, the backward-facing
step, and flow around an airfoil. For all 3 test cases, the D-DARK model improves
agreement with experimental data in comparison to the results from a non-adaptive
RANS k -ω model that uses standard values of the closure coefficients.

The second approach is the Retrospective Cost Adaptation (RCA) k -ω model.
The key enabling technology is that of retrospective cost adaptation, which was devel-
oped for real-time adaptive control technology, but is used in this work for data-driven
model adaptation. The algorithm conducts an optimization, which seeks to minimize
the surrogate performance, and by extension the real flow-field error. The advantage
of the RCA approach over the D-DARK approach is that it is capable of adapting to
unsteady measurements. The RCA-RANS k -ω model is verified with a statistically
steady test case (pipe flow) as well as two unsteady test cases: vortex shedding from
a surface-mounted cube and flow around a square cylinder. The RCA-RANS k -ω
model effectively adapts to both averaged steady and unsteady measurement data.
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Chapter 1 Introduction

1.1 Overview of turbulence simulation

Turbulence, which remains one of the greatest unsolved problems in physics, is a nat-

ural phenomenon that appears within solutions of the Navier-Stokes equations, the

governing equations of fluid motion. Although analytically investigated for centuries,

the uniqueness of solutions in three dimensions has yet to be proven. Despite these

mathematical curiosities, the Navier-Stokes equations have proven to be of immense

practical use and numerical solutions, in the form of computational fluid dynamics

(CFD), have allowed simulation of a wide range of fluid behavior, including turbu-

lence.

The simulation of turbulence has progressed considerably over the last few decades

with three approaches gaining prominence: direct numerical simulation (DNS), large

eddy simulation (LES), and closure of the Reynolds-averaged Navier-Stokes (RANS)

equations through phenomenological models. DNS has proven to provide accurate so-

lutions but requires that the computational grid is resolved down to the Kolmogorov

dissipation scale at which scale the linear viscous dissipation force overwhelms the

nonlinear inertial force. At the other end of the spectrum, the simulations must also

resolve the largest coherent structures within the turbulence, reflected in the integral

scale. The ratio between these disparate scales is O(Re3/4) where Re is the Reynolds

number which, for this problem, is formed from the integral scale, a velocity scale

proportional to the square root of the kinetic energy of the turbulence, and the kine-

matic viscosity of the fluid. Three-dimensional DNS of turbulence therefore requires

O(Re9/4) grid points to resolve from the integral scale down to the Kolmogorov scale.

In addition, for time accurate simulation cases, the time step size should be small

1



enough for the Courant-Friedrichs-Lewy (CFL) condition to be smaller than or equal

to 1. Thus, the time step size is proportional to the grid size. Thus, a critical draw-

back of DNS is the computational cost, as it is still intractable for many practical flows

of interest, where Re > O(105). Hence, DNS for high Re is beyond the capability of

even the most advanced supercomputers.

In contrast to DNS, LES and RANS do not try to resolve all details of the turbu-

lence but instead use mathematical models to incorporate the effects of turbulence on

the large-scale flow features. LES filters the high-frequency and high-wave-number

fluctuations and replaces them with a closure model to incorporate the effect of dissi-

pated kinetic energy from the subgrid scale motions. LES requires modeling part of

the inertial subrange and into the beginning of the dissipation scales, and the total

number of flops is a function of Re2. Although LES is higher fidelity than RANS

approach, the computational cost of LES is still high when compared to RANS.

RANS models the influence of the turbulent fluctuations on the mean flow. This

is done through the Reynolds-averaging procedure, which introduces additional un-

knowns into the equations of motion, creating what is referred to as the ‘closure

problem’. Thus, closure models are introduced to capture the impact of the turbu-

lent fluctuations on the mean flow, which is reflected through the so-called Reynolds

stress. The closure models include non-universal coefficients referred to as ‘closure

coefficients’, and modelers often have to calibrate these closure coefficients using ei-

ther known solutions to the Navier-Stokes equations or empirical results. The impact

of the closure coefficients is a reduction in accuracy of the simulations. However,

because RANS requires fewer computational resources, It is commonly used to solve

applied problems.
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1.2 Motivation of the present work

Turbulence commonly appears in transport systems, ranging from the flow through

pipes to jet engines and vehicle aerodynamics. One turbulent flow which can impact

public safety is through the role of turbulence in the transport of the chemical, biolog-

ical, radiological, or nuclear material generated by modern industries. For example,

thousands of lives could be threatened, in the event of an unplanned leakage, which

could appear in the form of toxic smoke from a warehouse fire or gaseous chem-

icals released during a transportation accident. The ability to forecast or predict

the dispersion of toxic gases in order to provide safe evacuation routes is important

for disaster mitigation. In these instances, dispersion of these toxic gases from the

Earth’s surface to the atmosphere is driven by the turbulence within the atmospheric

boundary layer. Useful forecasting of this dispersion must be accurate, but obtaining

accurate forecasts is hampered by the rapid change in turbulent behavior which can

arise due to changing meteorological conditions, or due to the complex influences of

terrain topology.

Using measurements to produce a sufficiently detailed flow map for predicting

toxic material dispersion in turbulence is challenging due to the multi-scale nature

of turbulence. It would require a prohibitively dense spatial resolution of sensors.

Dispersion predictions based on empirical correlations and limited measurements are

possible. However, these correlation approaches become increasingly inaccurate as the

complexity of the surroundings increase. A numerical simulation could provide more

details, but obtaining accurate simulations requires knowledge of appropriate turbu-

lence model coefficients and boundary conditions, which in an evolving atmospheric

turbulent flow over complex terrain can be a significant hurdle.

Therefore there is a potential benefit in adapting computational flow-field sim-

ulations to match limited measurement information in order to provide a real-time

flow-field estimation for predicting airborne pollutant dispersion. By adapting com-
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putational simulations to match limited measurements, the simulations become more

accurate, and their detail provides improved prediction of the dispersion of a toxic

plume: its direction, how fast it will go, how large of a range it will cover, what the

concentrations are, and whether it will threaten people’s health.

A long-term objective of this research is to develop a flow-field estimation method,

which utilizes turbulence measurements to novel update an adaptive computational

flow-field model. The proposed data-driven adaptive RANS model is shown schemat-

ically in Fig. 1.1. In this model, flow-field measurements are used to update the

boundary conditions and closure coefficients used by the RANS model. There are

two primary parts in this flow-field estimation system, namely, a cyber system and a

physical system. The physical system is the flow field of interest where some measure-

ments are made [6, 7, 8, 9]. The cyber system consists of a computational turbulence

model, and a data-driven model aptation algorithm.

Turbulent
flow field

Measurements

Predicted
flow field

RANS
turbulence

model

Data-driven
model adap-

tation

Coefficients
adjustment

Simulated
flowfield
data

Model error
Boundary data

F low-field
data

Physical System Cyber System

Figure 1.1: Prediction of turbulent flow field using simulation and measurements.

This dissertation provides a first step in producing such a cyber system by devel-

oping and implementing two different model adaptation approaches within a numer-
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ical simulation. As the objective is to eventually achieve near real-time simulations,

these adaptation approaches are implemented using RANS k -ω turbulence model.

However, the data-driven model adaptation approaches in this dissertation used in

conjunction with other RANS models provided that the model has parameters that

need to be tuned. The data-driven model adaptation algorithms automatically adjust

or adapts model parameters, specifically here the k -ω closure coefficients, to improve

agreement between the simulated flow field and measured data, which are at spatially

separated locations in the flow field.

The first approach developed is termed the data-driven adaptive RANS k -ω (D-

DARK) and is implemented in combination within a compressible CFD solver. The

second approach is called a retrospective cost adaptive RANS (RCA-RANS) k -ω ap-

proach and is implemented in combination with an incompressible CFD solver. For

both approaches verification and validation results are presented using several canon-

ical flow-field geometries. The validation results demonstrate that the adaptation

improves agreement with experimental data, at least in comparison to the results

from a non-adaptive RANS k -ω model using the standard values of the k -ω closure

coefficients [10].

Chapter 2 presents mathematical fundamentals for turbulence modelling. Chapter

3 describes the CFD solvers being used for the simulations. Chapter 4 presents and

validates the D-DARK approach with the RCA-RANS k -ω approach presented and

validated in Chapter 5. The final summary, conclusions, and future work are provided

in Chapter 6.

Original contributions The primary original contributions of this dissertation

are the D-DARK model in Chapter 4 and the RCA-RANS k -ω model in Chapter 5.

Chapter 4 presents a new data-driven adaptive computational model for simulat-

ing turbulent flow, where partial-but-incomplete measurement data is available. The

model automatically adjusts the closure coefficients of the Reynolds-averaged Navier-
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Stokes (RANS) k -ω turbulence equations to improve agreement between the simu-

lated flow and the measurements. This data-driven adaptive RANS k -ω (D-DARK)

model is validated with three canonical flow geometries: pipe flow, backward-facing

step, and flow around an airfoil. For all test cases, the D-DARK model improves

agreement with experimental data in comparison to the results from a non-adaptive

RANS k -ω model that uses standard values of the closure coefficients. For the pipe

flow, adaptation is driven by mean stream-wise velocity data from 42 measurement lo-

cations along the pipe radius, and the D-DARK model reduces the average error from

5.2% to 1.1%. For the 2-dimensional backward-facing step, adaptation is driven by

mean stream-wise velocity data from 100 measurement locations at four cross-sections

of the flow. In this case, D-DARK reduces the average error from 40% to 12%. For

the NACA 0012 airfoil, adaptation is driven by surface-pressure data at 25 measure-

ment locations. The D-DARK model reduces the average error in surface-pressure

coefficients from 45% to 12%.

In Chapter 5, A real-time adaptive control technology, called retrospective cost

adaptation (RCA), is applied to automatically adjust the closure coefficients of the un-

steady Reynolds-averaged Navier-Stokes (URANS) k -ω turbulence equations. RCA

approach has been successfully validated on numerous control applications that have

significant transient behavior, which suggests that RCA is well suited for adapta-

tion with unsteady flows. The RCA-URANS k -ω model is verified by a statistically

steady test case (pipe flow) as well as two unsteady test cases: vortex shedding from

a surface-mounted cube and flow around a square cylinder. The results of all cases

demonstrate that the k -ω closure coefficients can be updated to match the measure-

ment data. Specifically, the periodicity in the simulated unsteady flow is in good

agreement with the phase-averaged experimental data. It is therefore concluded that

the RCA-URANS k -ω model is able to improve the original k -ω model results by

adapting to measurement data for both averaged steady and unsteady turbulent flows.
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Chapter 2 Theoretical Fundamentals of

Turbulence Modelling

In this chapter, the governing equations for the fluid motion are introduced. These

include the mass, momentum, and energy conservation equation for both compressible

and incompressible flow conditions. RANS, LES, and DNS approaches to solve these

governing equations are also reviewed along with a description of the RANS k -ω

model, which is used throughout this dissertation.

2.1 Governing equations

Except in very few situations, such as the atmosphere at very high altitude, fluid

obeys the continuum hypothesis, and we assume that it is a continuous field of fluid

properties and treat its behavior at the molecular scale in an average sense. In

addition, most fluids can also be treated as Newtonian, and we can assume that

there is a linear relationship between stress and rate of strain. Finally, it is common

practice to discriminate between compressible flow, where density is a variable and

treated as an unknown, and incompressible flow, where density is a known constant,

and pressure is treated as the unknown.

The governing equations of the fluid motion are formed from the requirement that

they conserve mass, obey a momentum balance, and conserve energy. The partial

differential equations governing transport for compressible Newtonian flow are

∂ρ

∂t
+∇ · (ρu) =0, (2.1)

∂(ρu)

∂t
+∇ · (ρuu) =−∇p+∇ · τ , (2.2)

∂(ρE)

∂t
+∇ · (ρEu) =−∇ · (pu) +∇ · (u · τ )−∇ · q, (2.3)
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where Eq. (2.1) is conservation of mass, and Eqs. (2.2) and (2.3) are the momentum

balance and conservation of energy. Note that body forces (e.g., gravity) have been

neglected but can easily be included. The symbol · indicates an inner product, and

uu is an outer product. Vectors and tensors are indicated in bold, with tensors

generally denoted using capital letters or Greek symbols, although this convention is

used loosely.

The vector x indicates the position in Cartesian coordinates. In addition, t is

time, u(x, t) is the velocity vector, p(x, t) ∈ R is the pressure, q(x, t) is the heat flux

vector, and τ (x, t) is deviatoric stress tensor. For Newtonian fluids, the deviatoric

stress tensor is given by

τ , 2µS, (2.4)

where µ(x, t) ∈ R is the dynamic viscosity, and S(x, t) is the rate of the strain tensor,

which is given by

S , −1

3
(∇ · u)I +

1

2
(∇u+ (∇u)T). (2.5)

The superscript T indicates the transpose operator, and I is the identity tensor. The

stagnation energy per unit mass is E(x, t) ∈ R, which is

E = e+
1

2
u · u, (2.6)

where e(x, t) ∈ R is the internal energy per unit mass.

For gaseous flow at very low speed or liquid flows having low compressibility,

density is nearly constant and can be treated as being incompressible. The governing

equations used to describe the incompressible flow are different from those used for

compressible fluids. For incompressible flow without a body force applied, the energy

conservation equation (2.3) is not necessary. The time term derivative ∂e/∂t of the

mass conservation equation (2.1) is equal to zero, and the mass conservation equation

is simplified to the divergence-free equation. The governing equations without body
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forces for viscous incompressible flow are

∇ · u =0, (2.7)

∂u

∂t
+∇ · (uu) =

1

ρ
(−∇p+∇ · τ ). (2.8)

For incompressible flow, since there is the divergence-free condition, the rate of the

strain tensor is

S ,
1

2
(∇u+ (∇u)T). (2.9)

2.2 Turbulence and its length scales

Simulation of turbulent flows remains an important problem in modern fluid dynam-

ics. The Navier-Stokes equations are nonlinear partial differential equations with the

Reynolds number (Re) as the bifurcation parameter. The Reynolds number is the

ratio of inertial force to viscous force, and if it is small (i.e., Re << 1), then the

Navier-Stokes equations display linear behavior because the nonlinear advective term

becomes small relative to the viscous terms. At slightly higher Re, inertial forces

become increasingly important, but there is still sufficient viscosity to damp out non-

linear instabilities of the governing equations. For even larger Re, inertial forces

exceed the viscous forces and dominate fluid motion, producing chaotic behavior and

instabilities. This chaotic behavior appearing through the formation of short-lived

coherent motions within the fluid is commonly referred to as eddies. These eddies

lack formal definition, but turbulence follows a cascade process where larger eddies

break into successively smaller eddies, decreasing in length scale and kinetic energy

as they do so. When eddies reach sufficiently small scale, their inertia is unable to

overcome the stabilizing effect of viscosity, and their kinetic energy dissipates into

internal energy. Note that this description of the cascade process is not wholly ac-

curate. For example, it has been demonstrated that there also exists backscatter of

energy from small eddies towards the larger eddies [11]. Regardless, nonlinearities
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and chaotic behaviors cause the simulation of turbulence to be more challenging than

laminar flow.

From observation, we know the turbulence is a multi-scale flow [12]. In general,

there are four main scales, which are used to describe turbulence:

1. the largest scales, sometimes described as permanent eddies, typically on the

order of the domain;

2. the large energy containing motions, often described through the integral-length

scale or `, typically on the order of the largest geometrical features in the do-

main;

3. the Taylor micro-scale, which is an intermediate scale, that has been connected

to the largest dimension of the dissipative eddies;

4. the Kolmogorov scale, which describes the smallest dynamically important ed-

dies, and describes the scale of motions at which kinetic energy dissipates to

internal energy.

Thus, to accurately simulate turbulent flow, a simulation must resolve from the

largest scales to the smallest scales at a temporal resolution capable of fully capturing

their chaotic evolution. This is the approach taken in direct numerical simulation

(DNS) which, as a result, requires very fine computational grids that are resolved

down to the Kolmogorov dissipation scale. If we use a Reynolds number defined by

the integral scale and the typical velocity of the turbulent motions, then the ratio

of the Kolmogorov scale to the integral scale is O(Re3/4). Thus, a three-dimensional

grid resolving all turbulent scales requires as many as O(Re9/4) grid points. The

computational costs associated with this resolution causes DNS to be impractical for

the Re associated with most engineering flows. Being a balance between fidelity and

efficiency, large-eddy simulation is, therefore, a valuable approach.
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2.3 Large-eddy simulation

Large eddy simulation (LES) is still a focus of development [13, 14, 15]. In partic-

ular, several new models have recently been proposed to introduce spatial and time

dependence into the model coefficients. These developments include the dynamic

Smagrinsky model [16, 17], and mixed models [18]. Other LES subgrid-scale models

include Deardorff’s model [19] and Vreman’s model [20]. However, it was Smagorin-

sky [21] who was the first to propose LES in 1963 with Deardorff [22] advancing it

further in 1970.

u(x, t) = ũ(x, t) + u′(x, t) , (2.10)

where u(x, t) ∈ L2(Ω) × C1(0, tf ), u
′(x, t) is called the subgrid-scale part, and ũ

is the large-scale, or resolved, part. Symbol ˜means the large scale of the original

variable after filtering. The large scale part is defined as

ũ(x, t) ,
∫

Ωi

Gs(x|ξ)u(ξ, t)dξ , (2.11)

where Gs(x|ξ) is the filter kernel [23]. Common filters include Gaussian or Pade

filters. The filter width is chosen to be a few multiples of the discretized length; Ωi

is a subdomain of the solution domain Ω.

The LES decomposition can also be represented in the Hilbert space by Fourier

representation,

u(x, t) =

fc∑
|f |>0

af (t)ϕf (x) +
∞∑

|f |=fc+1

af (t)ϕf (x) , (2.12)

where, fc is the cutoff wavenumber caused by discretization of the governing equa-

tions, af (t) is the Fourier coefficient, and ϕf (x) is being a complete (in L2), orthogonal

basis. This demonstrates the reason high-wavenumber parts of the solution need to be

modeled. LES modeling of the high wavenumber range relies on Kolmogorov’s univer-

sal equilibrium theory, which assumes that the high wavenumber component of tur-
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bulence obeys universal behavior and can be divided into an inertial subrange, where

viscosity is unimportant, and the dissipation range described by the Kolmogorov scale

where viscosity is transferring kinetic energy to internal energy. Typically LES mod-

els are designed to model wavenumbers above an fc in the inertial subrange. The

computations of LES is around O(Re2) and it is thus more efficient than DNS, which

requires directly resolving close to the Kolmogorov scale and requires computations

of O(Re3).

If (2.10) is substituted into the governing equation and the properties ˜̃u 6= ũ and

ũ′ 6= 0 are applied, then we obtain the classical and well-known LES form

∇ · ũ = 0 , (2.13a)

ũt +∇ · (ũũ) = −∇p̃+ ν∆ũ−∇ · τsgs , (2.13b)

with

τsgs = ũu− ũũ = Li,j + Ci,j +Ri,j , (2.14)

Li,j , ũiuj − uiuj, Ci,j , ũiu′j + ũju′i, Ri,j , ũ′iu
′
j , (2.15)

where Li,j is the Leonard stress, Ci,j is the cross stress, Ri,j is the Reynolds stress. The

subgrid-stress (SGS) is a Galilean invariant with the sum of Li,j or Ci,j is a Galilean

invariant, although neither Li,j or Ci,j is a Galilean invariant. If τsgs → 0 as h → 0

(or fc →∞), it is clear that (2.13) converges to the Navier-Stokes equations and LES

is equivalent to DNS. Actually, the term τsgs is similar to the artificial dissipation

widely employed for shock capturing in compressible flow simulations.

The traditional way of modeling the subgrid-scale stress τsgs falls into three cat-

egories [24]: eddy-viscosity models, similarity models, and so-called mixed models.

Eddy-viscosity models are based on the Boussinesq hypothesis, which is also exten-

sively applied in RANS models, and is given

τsgs = −2νsgsS̃ , (2.16)
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where S̃ is the large-scale strain-rate tensor; νsgs is an eddy viscosity; and τsgs is the

subgrid-scale stress tensor. In the eddy-viscosity category, the Smagorinsky model

[21] is the most widely used model. The eddy viscosity is constructed from the

multiplication of the filter width, “Smagorinsky” constant and S̃, which is analogous

to the mixing length formulation of the earliest turbulence modeling approaches.

The Smagorinsky model and its various forms can estimate small-scale dissipation

and perform well for flow far from solid boundaries. However, the problem is that

this kind of model only accounts for the energy transferring from large scales to

small scales; the phenomena of “backscatter” of energy from small to large scales is

not considered. There are models that consider backscatter, such as the dynamical

model [25] derived from the Germano identity [26]. However, the negative viscosities

make the governing equation mathematically ill-posed, and they allow aliasing to

supply the backscatter. It is worth noting that eddy-viscosity LES models are widely

used in some commercial software [27].

Similarity models calculate backscatter in a more natural way [28, 29]. The scale

similarity method treats the behavior of the lowest wavenumbers of the unresolved

part similar to that of the highest wavenumbers of the resolved part. It approximates

the subgrid-scale stress tensor with the stress tensor obtained from the resolved field

by filtering the originally resolved field with the filter width equal to or larger than

discretization length. However, the characteristic length scales do not match with the

exact subgrid stress fields. Also, the subgrid stress dissipation is under-estimated by

the model of Bardina et al. [28], which leads to its unreliability of simulating mean

and root-mean-squared quantities of the turbulent flow field.

Mixed models [30] combine eddy viscosity and similarity expressions. In this case,

the hope is to achieve the good dissipative features of eddy-viscosity models and the

good predictive capabilities of similarity models for correlations. However, the accu-

racy is not highly improved, and the dependence of the models on a filter introduces
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an additional complication. Hence, mixed models are not widely accepted [11].

In addition to the more traditional methods mentioned above, additional ap-

proaches to LES have also been developed. For example, the “implicit” LES approach

proposed by Fureby and Grinstein [31]. It directly solves the governing equation

and introduces numerical dissipation to replace physical dissipation. In this method,

the filter is the computational grid together with the low-pass characteristics of the

discrete difference operators. Another alternative approach to LES was proposed

by Stolz and Adams [32]. This approximate deconvolution model approximates a

non-filtered field through a truncated series expansion of the inverse-filter operator.

Deconvolution has been found to be more stable than the scale-similarity method.

Other approaches directly estimate the subgrid-scale variables [33, 34], such as the

linear-eddy models and one-dimensional turbulence models [35, 36]. The linear eddy

model combines a one-dimensional heat equation with a stochastic mixing process to

simulates the subgrid-scale dissipation. It estimates both dissipation and nonlinear

interactions and is a kind of synthetic-velocity model which has improved numerical

stability due to its dissipation. Other models that estimate the subgrid-scale fluc-

tuation directly are [37, 38], and these can produce good results. Structure models

evaluate eddy viscosity or subgrid-scale stress directly according to flow structures,

such as through deconvolution methods and synthetic velocity methods [39, 40, 41].

Zeng, et al. [42, 43] developed a low-order subgrid-scale model for modeling turbulent

combustion in the context of LES, which improved computational efficiency, however,

it also decreased solution accuracy at a center extent since the low-order model was

implemented.

2.4 Favre- and Reynolds-averaged equations for turbulent flows

The earliest, and most computationally efficient, approaches to simulations are usu-

ally based on Reynolds averaging for incompressible flows, or Favre averaging for
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compressible flows. Compared with LES and DNS, the Reynolds-Averaged Navier-

Stokes (RANS) method, which is based on Reynolds decomposition, is widely used

in the simulation of turbulence in industrial problems. As RANS approaches rely

heavily on modeling the impact of turbulence on the mean flow, rather than resolving

the turbulence directly, it is much less computationally expensive than DNS and LES.

2.4.1 Favre- and Reynolds-averaging

A formal approach to the statistical analysis of turbulence was first developed by

Osborne Reynolds in 1894 [44] and is thus referred to as Reynolds decomposition and

Reynolds averaging. Reynolds’ work subsequently led to some of the earliest attempts

at turbulence modeling in the form of the Boussinesq hypothesis and Prandtl’s mixing

length theory [45, 46]. For compressible flow, this approach was extended in a process

referred to as Favre decomposition and averaging. To review these processes, we let

f : R3 × [0,∞)→ Rn be a fluid property exhibiting turbulent behavior.

The time average of the turbulent variables is given as

f(x) ,
1

t0

∫ t0

0

f(x, t)dt. (2.17)

Note that f(x) is independent of time. Next, f ′(x, t) is defined as

f ′(x, t) , f(x, t)− f(x), (2.18)

and note that f(x, t) = f(x) + f ′(x, t) is referred to as the Reynolds decomposi-

tion of f(x, t), where f(x) and f ′(x, t) represent the time-averaged and time-varying

components of f , respectively.

In compressible flow, the Reynolds average of some variables, such as momentum,

is related to fluctuations in density as well. Let ρ : R3× [0,∞)→ Rn be density, and

define the density-weighted small-scale time-averaged value of f by

f̃(x) ,
ρ(x, t)f(x, t)

ρ(x)
. (2.19)
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From this point forward, the symbol˜will be used to represent the density-weighted

time average, rather than the large-scale part of LES decomposition as used previ-

ously. Next, f ′′(x, t) is defined as

f ′′(x, t) , f(x, t)− f̃(x), (2.20)

and note that f̃(x) + f ′′(x, t) is the Favre decomposition of f(x, t), where f̃(x) and

f ′′(x, t) represent the density-weighted time-averaged and time-varying components

of f , respectively. Note that the following identities are given in [47]

ρf̃ = ρf̃ = ρf, (2.21)

f = f̃ + f ′′ = f̃ + f ′′, (2.22)

f ′′ = f ′′ − f ′, (2.23)

ρf ′′ = ρf̃ ′′ = 0, (2.24)

f ′ = f̃ ′′ = 0, (2.25)

f ′′ = −ρ
′f ′

ρ
= −ρ

′f ′′

ρ
= −f̃ ′. (2.26)

However, f̃ ′ and f ′′ are not necessarily zero. In the compressible case, mean stream-

lines are tangent to density weighted average velocity vector, but not to the Reynolds-

averaged velocity vector [48].

2.5 Favre- and Reynolds-averaged governing equations

To use these concepts to develop governing equations for turbulent flow, the Reynolds-

and Favre-averaging processes are applied to the Navier-Stokes equations.

2.5.1 Favre-averaged governing equations for compressible flow

Starting first with the more general case of compressible fluid flow, and taking the

density-weighted time-average of the mass conservation equation (2.1) and using ρ =
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ρ+ ρ′′ yields

∂ρ

∂t
+
∂ρ′′

∂t
+∇ · (ρu) = 0, (2.27)

where the derivative of time-average density is zero. The time-varying component

of the primitive variables fluctuates around the average value. Thus, the density-

weighted average and the time derivative are commutative. Using identities Eqs. (2.21)

and (2.25) yields

∇ · (ρũ) = 0. (2.28)

Taking the density-weighted average of momentum and energy equation and using

identities Eq. (2.21) and (2.25), it can be shown that the time terms of momentum

and energy equation are equal to zero. Thus, the momentum equation (2.2) yields,

on a term-by-term basis,

∇ · (ρuu) = −∇p+∇ · τ . (2.29)

Using u = ũ+ u′′, Eqs. (2.21) and (2.25) yields

∇ · (ρuu) = ∇ · (ρ(ũ+ u′′)(ũ+ u′′)) (2.30)

= ∇ · (ρũũ+ 2ρũu′′ + ρu′′u′′) (2.31)

= ∇ · (ρũũ) + 2∇ · (ρũu′′) +∇ · (ρu′′u′′) (2.32)

= ∇ · (ρũũ) + 2∇ · (ρũu′′) +∇ · (ρu′′u′′) (2.33)

= ∇ · (ρ ˜̃uũ) + 2∇ · (ρ˜̃uu′′) +∇ · (ρũ′′u′′) (2.34)

= ∇ · (ρũũ) + 2∇ · (ρũũ′′) +∇ · (ρũ′′u′′) (2.35)

= ∇ · (ρũũ)−∇ ·R, (2.36)

where R(x) is the Reynolds stress tensor, which is given by

R , −ρũ′′u′′. (2.37)

Through substitution of Eq. (2.36) into Eq. (2.29), Eq. (2.29) can be rewritten as

∇ · (ρũũ) = −∇p+∇ · (τ +R). (2.38)
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By applying the density-weighted average, the energy equation (2.3) becomes

∇ · (ρEu) = −∇ · (pu) +∇ · (u · τ )−∇ · q, (2.39)

Substituting p = p̃+ p′′ and u = ũ+ u′′ into ρEu+ pu, and using Eq. (2.21) yields

ρEu+ pu = ρEu+ pu (2.40)

= ρ
˜

(Ẽ + E ′′)(ũ+ u′′) + (ũ+ u′′)p (2.41)

= ρ
˜

(Ẽũ+ Ẽu′′ + E ′′ũ+ E ′′u′′) + pũ+ u′′p (2.42)

= ρ(Ẽũ+ Ẽ ′′u′′) + pũ+ u′′p. (2.43)

Substituting Eq. (2.43) into Eq. (2.39), and using Eqs. (2.21) and (2.22) yields

∇ · (ρẼũ) +∇ · (pũ) = ∇ · (uτ )−∇q −∇ · (ρẼ ′′u′′)−∇ · (pu′′), (2.44)

where

Ẽ = ẽ+
ũ · ũ

2
+
ũ′′ · u′′

2
. (2.45)

The turbulent kinetic energy k(x) ∈ R can be defined as

k ,
ũ′′ · u′′

2
. (2.46)

After applying Favre averaging, the fluid governing equations are no longer closed.

The following assumptions are used to simplify the Favre decomposition:

(A1) The fluid is an ideal gas is its temperature. Thus,

E +
p

ρ
= cpT. (2.47)

where T (x, t) ∈ R.

(A2) ‖τ̃‖L2 >> ‖τ ′′‖L2 >, where ‖ · ‖L2 > is L2 norm.

(A3) ‖∇T̃‖L2 >> ‖∇T ′′‖L2 >.
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(A4) Boussinesq [49] postulated that the turbulent transfer of momentum by eddies

occurs in a gradient-transport manner analogous to the action of molecular

viscosity in laminar flow. Based on the Boussinesq hypothesis, the Reynolds

stress tensor, is a function of the mean rate of strain tensor S̃, and can be

written as

R = 2µtS̃ −
2

3
ρkI, (2.48)

where µt is the turbulent eddy viscosity tensor. It’s common practice for eddy

viscosity to be assumed to be isotropic and simplified to a scalar, µt(x, t) ∈ R.

(A5) Turbulent transport of heat cpρu′′T is modeled by a gradient approximation for

the turbulent heat-flux.

(A6) ρu′′u′′·u′′
2

− u′′ · τ , which relates to turbulent transport and molecular diffusion

of turbulent kinetic energy, is approximated by the turbulent kinetic energy

gradient as

ρu′′u′′ · u′′
2

− u′′ · τ = − (µ+ µtσk)∇k, (2.49)

where σk is a model constant.

(A7) The turbulent kinetic energy is much less than the average internal energy, that

is, k << cpT̃ .

Using (A1), Eq. (2.45), and Eqs. (2.21) – (2.25), it follows that

ρũ′′E ′′ + pu′′ = ρu′′(
p

ρ
+ E ′′) (2.50)

= ρu′′(
p

ρ
+ E − Ẽ) (2.51)

= ρu′′(cpT +
u · u

2
− ẽ− ũ · ũ

2
− k) (2.52)

= ρu′′(cpT +
(ũ+ u′′) · (ũ+ u′′)

2
− cvT̃ −

ũ · ũ
2
− k) (2.53)

= ρu′′(cpT + u′′ · ũ+
u′′ · u′′

2
+
ũ · ũ

2
− cvT̃ −

ũ · ũ
2
− k) (2.54)
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= ρu′′cpT + ρu′′(u′′ · ũ) + ρu′′
u′′ · u′′

2
− ρu′′cvT̃ − ρu′′k (2.55)

= cpρu′′T + ũ · (ρu′′u′′) +
ρu′′u′′ · u′′

2
(2.56)

= cpρu′′T + ũ ·R+
ρu′′u′′ · u′′

2
. (2.57)

Using (A2), Eq. (2.21), and Eq. (2.25), it follows that

τ = τ̃ , (2.58)

and

u · τ = (ũ+ u′′) · τ (2.59)

= ũ · (τ̃ + τ ′′) + u′′ · τ (2.60)

= ũ · τ̃ + u′′ · τ . (2.61)

Using (A3), q can be rewritten as

q = −cp
µ

Pr
∇T̃ − cp

µ

Pr
∇T ′′ (2.62)

= −cp
µ

Pr
∇T̃ , (2.63)

where Prandtl number Pr is a fluid property constant. Using (A5), cpρu′′T can be

rewritten as

cpρu′′T = −cp
µt
Prt
∇T̃ , (2.64)

where Prt is the turbulent Prandtl number, usually equal to 0.9. From (A6), the tur-

bulent transport and molecular diffusion of turbulent kinetic energy terms ρu′′u′′ · u′′/2−

u′′τ can be rewritten using the gradient of the turbulent kinetic energy. This term is

small when compared to the diffusive energy and convective energy, as demonstrated

in DNS simulations [50]. Therefore, it is neglected in the energy equation with the

assumption as

ρu′′u′′ · u′′
2

− u′′τ = 0. (2.65)
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Thus substituting Eqs. (2.48) and (2.58) into Eq. (2.38), and substituting Eqs. (2.48),

(2.57), (2.58), (2.61), (2.63), (2.64) and (2.65) into Eq. (2.44), we obtain the steady-

state Favre-averaged governing equations, which are

∇ · (ρũ) = 0, (2.66)

∇ · (ρũũ) = −∇p+∇ · (R+ τ̃ ), (2.67)

∇ · (ρẼũ) = −∇ · (pũ) +∇ · [ũ · (R+ τ̃ )]−∇ ·
[
cp∇T̃ (

µ

Pr
+

µt
Prt

)

]
, (2.68)

where

R+ τ̃ = 2(µ+ µt)S̃ −
2

3
ρkI. (2.69)

To add time-dependence back into the equations, we can assume that turbulent

fluctuations occur at a small time scale, t1. Applying time-averaging over a time scale

t1 yields a set of steady-state governing equations. However, on a longer time scale

t2, where t2 >> t1, the fluid flow may still be unsteady (for example, as in the case

of large-scale vortex shedding). The scales are illustrated in Fig. 2.1,

Figure 2.1: Turbulence time scale t1 compare with average time scale t2.

For a condition where t2 >> t1, Favre-averaging is assumed to statistically con-

verge at time scale t1, but over time scales t2, the flow field is changing only gradually,

thus the time-derivative can be re-introduced into the equation to allow for some form

of unsteadiness. In this case, the unsteady Favre-averaged governing equations be-
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come

∂ρ

∂t
+∇ · (ρũ) = 0, (2.70)

∂(ρũ)

∂t
+∇ · (ρũũ) = −∇p+∇ · (R+ τ̃ ), (2.71)

∂(ρẼ)

∂t
+∇ · (ρẼũ) = −∇ · (pũ) +∇ · [ũ · (R+ τ̃ )]−∇ ·

[
cp∇T̃ (

µ

Pr
+

µt
Prt

)

]
,

(2.72)

where

Ẽ = cvT̃ +
ũ · ũ

2
+ k = cpT̃ +

ũ · ũ
2

+ k − p

ρ
, (2.73)

S̃ = −1

3
∇ · ũI +

1

2
(∇ũ+ (∇ũ)rmT ), (2.74)

R = 2µtS̃ −
2

3
ρkI, (2.75)

τ̃ = 2µS̃. (2.76)

In these equations, assuming that µt is provided by some form of the model,

there are five variables, which are average velocity ũ, average pressure p, and average

temperature T̃ .

2.5.2 Reynolds-averaged governing equations for incompressible flow

For incompressible flow, the density gradients over time and space are both zero. For

convenience, the continuity and momentum equations of incompressible flow are

∇ · u =0, (2.77)

∂u

∂t
+∇ · (uu) =− ∇p

ρ
+

1

ρ
∇ · (τ ). (2.78)

Reynolds decomposing u into a time-averaged part ū and time-varying part u′, and

then time-averaging the divergence-free equation (2.77) yields

∇ · ū = 0. (2.79)
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turbulence kinetic viscosity (m2/s) The same process can be followed for the mo-

mentum equation (2.78). However, unlike for the divergence free equation, and like

the compressible flow equation, Reynolds decomposing and averaging the nonlinear

convective term produces the Reynolds stress tensor

∇ · (uu) = ∇ · (ūū)− 1

ρ
∇ ·R. (2.80)

Thus, following Reynolds decomposition and averaging Eq. (2.78) yields

∇ · (ūū) = −∇p̄
ρ

+
1

ρ
∇ · (τ̄ +R). (2.81)

As with the Favre-averaged form, for slowly evolving unsteady flows, the time de-

pendent terms can be retained. Thus, the governing equations in Reynolds-averaged

form are

∇ · ū = 0, (2.82)

∂ū

∂t
+∇ · (ūū) = −∇p̄

ρ
+

1

ρ
∇ · (τ̄ +R), (2.83)

R = 2µtS̄ −
2

3
ρkI, (2.84)

τ̄ = 2µS̄, (2.85)

S̄ =
1

2
(∇ū+ (∇ū)T). (2.86)

Note that here the first term on the right hand side of the S̄ equation is retained

for consistency with the Favre-averaged equations, even though it is zero due to the

divergence-free condition. Also, note that for incompressible flows, the turbulent

kinetic energy is defined as

k ,
u′ · u′

2
. (2.87)

In these equations, assuming that µt is provided by some form of model, there are

four variables, which are average velocity ū and average pressure p̄.
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2.5.3 Derivation of the k - ω model equations

RANS models are required to model the Reynolds stress, typically by finding an ex-

pression for µt. Among these models, the k -ω model has become a mature and reliable

RANS eddy-viscosity model. Here, the derivation is presented for the compressible

form of the model, but the primary difference between compressible and incompress-

ible forms is simply through whether Favre- or Reynolds-averaging is employed. To

derive the k -ω turbulence model, the following assumptions are needed:

(A8) The trace of Reynolds stress tensor is proportional to the turbulent kinetic

energy per unit volume, that is

tr(R) = −2ρk, (2.88)

where tr is the trace.

(A9) tr
(

1
2
ρu′′u′′u′′ + ũ′′p′′I

)
= −µtσk∇k.

(A10) Dissipation rate ε(x, t) ∈ R is a function of turbulent kinetic energy and tur-

bulent length scale ` ∈ R [51], expressed by ε = β∗k3/2/`, where β∗ is a model

constant.

(A11) For subsonic flow and incompressible flow,

tr

(
1

3
u′′∇ · µ(∇ · u′′I)− p′′∇u′′

)
= 0. (2.89)

The momentum equations(2.2) times u′′ yields

u′′(
∂ρu

∂t
+∇ · (ρuu) +∇p−∇ · τ ) = 0, (2.90)

which is rearranged as

u′′
∂ρu

∂t
+ u′′∇ · (ρuu) + u′′∇p− u′′∇ · τ = 0. (2.91)
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Using u = ũ + u′′ and Eqs. (2.21)–(2.25), the unsteady term in Eq. (2.91) can be

expressed as

u′′
∂ρu

∂t
=u′′

∂ρ(ũ+ u′′)

∂t
(2.92)

=u′′
∂ρũ+ ρu′′

∂t
(2.93)

=ũ′′
∂ρũ

∂t
+ u′′

∂ρu′′

∂t
(2.94)

=u′′
∂ρu′′

∂t
(2.95)

=
1

2

∂ρu′′u′′

∂t
(2.96)

=− 1

2

∂R

∂t
. (2.97)

The convective term in Eq. (2.91) can be expressed as

u′′∇ · (ρuu) = u′′∇ · [ρ(ũ+ u′′)(ũ+ u′′)] (2.98)

= u′′∇ · (ρũũ+ u′′ũ+ ũu′′ + u′′u′′) (2.99)

= u′′∇ · (ρũũ) + u′′∇ · (ρu′′ũ) + u′′∇ · (ρũu′′) + u′′∇ · (ρu′′u′′)

(2.100)

= 0 + u′′∇ · (ρu′′ũ) + u′′((ρu′′ · ∇)ũ+ ũ(∇ · ρu′′)) + u′′∇ · (ρu′′u′′)

(2.101)

=
1

2
∇ · (ρu′′u′′ũ) + u′′(ρu′′ · ∇)ũ+

1

2
∇ · (ρu′′u′′u′′) (2.102)

= −1

2
∇ · (Rũ)− (R · ∇)ũ+

1

2
∇ · (ρu′′u′′u′′). (2.103)

The pressure gradient term in Eq. (2.91) can be expressed as

u′′∇p =u′′∇(p̃+ p′′) (2.104)

=u′′∇p′′ (2.105)

=∇ · (p′′u′′I)− p′′∇u′′. (2.106)

The viscous term in Eq. (2.91) can be expressed as

u′′∇ · τ =u′′∇ · µ
[
−2

3
∇ · uI +∇u+ (∇u)T

]
(2.107)
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=u′′∇ · µ
[
−2

3
∇ · (ũ+ u′′)I +∇(ũ+ u′′) + (∇(ũ+ u′′))T

]
(2.108)

=−2

3
u′′∇ · µ(∇ · u′′I) + u′′∇ · (µ∇u′′) + u′′∇ · µ(∇u′′)T (2.109)

=
1

3
u′′∇ · µ(∇ · u′′I) + u′′∇ · (µ∇u′′) (2.110)

=
1

3
u′′∇ · µ(∇ · u′′I) +∇ · µ(u′′∇u′′)− (µ∇u′′ · ∇)u′′ (2.111)

=
1

3
u′′∇ · µ(∇ · u′′I) +

1

2
ν4(ρu′′u′′)− (µ∇u′′ · ∇)u′′ (2.112)

=
1

3
u′′∇ · µ(∇ · u′′I)− ν4R

2
− (µ∇u′′ · ∇)u′′, (2.113)

where ν(T ) ∈ R is the kinematic viscosity equal to µ/ρ, and the symbol 4 means

∇ · ∇. Thus, substituting Eqs. (2.97)–(2.113) into Eq. (2.91) yields

−1

2

∂R

∂t
− 1

2
∇ · (Rũ)− (R · ∇)ũ+

1

2
∇ · (ρu′′u′′u′′) +∇ · (u′′p′′I)− 1

3
u′′∇ · µ(∇ · u′′I)

(2.114)

−p′′∇u′′ + 1

2
ν4R+ (µ∇u′′ · ∇)u′′ = 0. (2.115)

Using (A8) and rearrangement, Eq. (2.115) yields

∂ρk

∂t
+∇ · (ρkũ) = R · ∇ũ− µ(∇u′′) · (∇u′′)+∇ · (µ∇k − tr(1

2
ρu′′u′′u′′ + ũ′′p′′I))

(2.116)

+tr(
1

3
u′′∇ · µ(∇ · u′′I)− p′′∇u′′).

(2.117)

Using (A9), Eq. (2.117) can be rewritten as:

∂ρk

∂t
+∇ · (ρkũ) = R · ∇ũ−µ(∇u′′) · (∇u′′) +∇ · ((µ+ µtσk)∇k) (2.118)

+tr(
1

3
u′′∇ · µ(∇ · u′′I)− p′′∇u′′). (2.119)

The term µ(∇u′′) · (∇u′′) is the rate of dissipation of turbulent kinetic energy per

unit mass, ε(x, t). Within the k -ω model a new variable ω(x, t) ∈ R is introduced,
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referred to as the specific dissipation rate, which has a dimension of 1/t. Using (A10),

the dissipation term can be rewritten as

µ(∇u′′) · (∇u′′) = ρε = ρβ∗kω. (2.120)

Using (A10), Eq. (2.119) can be written into turbulent kinetic energy equation as

∂(ρk)

∂t
+∇ · (ρkũ) = ∇ · ((µ+ µtσk)∇k) + Sk, (2.121)

where

Sk = Pk −Dk, (2.122)

Pk = R · ∇ũ, (2.123)

Dk = ρβ∗ωk. (2.124)

In order to close this turbulent model, an equation describing specific dissipation rate

ω must be established. Unlike k, there is no formal governing equation which can be

derived for ω, so it is assumed it follows similar transport behavior as k. Following

the form of turbulent kinetic energy equation, the ω equation should also have an

unsteady term, a convective term, a viscous term and a source term. Kolmogorov

[52] first presented a simple form of such a transport equation for ω. After much

improvement [51], the ω equation has evolved to

∂(ρω)

∂t
+∇ · (ρωũ) = ∇ · ((µ+ µtσω)∇ω) + Sω, (2.125)

where α, β, and σω are constants, and

Sω = Pω −Dω, (2.126)

Pω = α
ω

k
Pk, (2.127)

Dω = βρω2. (2.128)

Assuming that eddy viscosity can be expressed by turbulent kinetic energy k and

turbulent length scale, `, then it is assumed

µt = ρk1/2`. (2.129)
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According to the dimensions of ω, this implies that the eddy viscosity should take

the form

µt = ρ
k

ω
(2.130)

which allows for determination of the eddy viscosity from k and ω, which themselves

are found through simultaneous solution of their respective transport equations with

the RANS equation.

Thus, the Favre-averaged compressible governing equations including the k -ω

turbulence model are

∂ρ

∂t
+∇ · (ρũ) = 0, (2.131)

∂(ρũ)

∂t
+∇ · (ρũũ) = −∇p+∇ · (R+ τ̃ ), (2.132)

∂(ρẼ)

∂t
+∇ · (ρẼũ) = −∇ · (pũ) +∇ · [ũ · (R+ τ̃ )]−∇ ·

[
cp∇T̃ (

µ

Pr
+

µt
Prt

)

]
,

(2.133)

∂(ρk)

∂t
+∇ · (ρkũ) = ∇ · ((µ+ µtσk)∇k) + Sk, (2.134)

∂(ρω)

∂t
+∇ · (ρωũ) = ∇ · ((µ+ µtσω)∇ω) + Sω, (2.135)

µt = ρ
k

ω
, (2.136)

where

Ẽ = cvT̃ +
ũ · ũ

2
+ k = cpT̃ +

ũ · ũ
2

+ k − p

ρ
, (2.137)

S̃ = −1

3
∇ · ũI +

1

2
(∇ũ+ (∇ũ)T), (2.138)

R = 2µtS̃ −
2

3
ρkI, (2.139)

τ̃ = 2µS̃, (2.140)

Sk = Pk −Dk, (2.141)

Pk = R · ∇ũ, (2.142)

Dk = ρβ∗ωk, (2.143)
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Sω = Pω −Dω, (2.144)

Pω = α
ω

k
Pk, (2.145)

Dω = βρω2. (2.146)

The turbulence model given by Eqs. (2.131)–(2.136) has 5 closure coefficients,

which are σk, σω, β∗, β, and α.

2.6 Adaptation methods currently applied in turbulence simulation

The concept of adaptation has been employed in a variety of ways to improve the

accuracy of turbulent flow simulations. Most commonly, adaptation of the solution

mesh is used to improve solution accuracy and reduce computational cost. This is

done by dividing or merging cells to better resolve areas of complex flow and reduce

resolution in regions of near uniformity (e.g., [53, 54]). However, in some cases, the

turbulence models themselves also include some form of adaptation. Several adaptive

RANS approaches have been proposed. Larsson, et al. [55] proposed an algorithm

using a hybrid LES/RANS method through feedback to find the appropriate forcing

amplitude which could greatly increase the accuracy of the solution and reduce the

calculation cost at the same time. Knopp, et al. [56] used a grid and flow adaptive

wall-function method on the Spalart-Allmaras and SST k -ω RANS models to improve

the accuracy of turbulence simulation. Menter, et al. [57, 58] introduced an adjustable

length-scale into the turbulence scale equation. By adjusting length-scale, unsteady

RANS could get a better unsteady solutions. Menter and his colleagues [59, 60] also

applied this method to the SST model and RANS/LES hybrid methods. Magagnato

and Gabi [61] split the turbulent kinetic energy and dissipation rate of RANS k-ε

model into resolved and unresolved subgrid parts and evaluated the subgrid part by

a new k-τ equation. This new model produced good results for rotating machinery.

Medic et al. [62] applied adaptive wall functions developed for the flow over a flat
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plate and got good accuracy on coarse grids. Wakers and colleagues [63] applied

an adaptive grid refinement method in a RANS model to investigate forces on the

surface of the ship. Based on the coarse grid solution, the grid refinement procedure

can adaptively refine regions where velocity gradients change dramatically. Ralf, et

al. [64] did similar grid-refinement on the k -ω model. Winkler, et al. [65] applied

a scale adaptive simulation turbulence model based on the SST turbulence model by

adding a source term into the dissipation rate equation. This source term accounts for

unsteadiness in the flow. Results were similar to the delayed detached-eddy simulation

method in isotropic turbulence as well as predicted aerodynamic metrics. Orkun

Temel, et al. [66, 67] propose several sets of adapted value of closure coefficients of

RANS turbulence model based on the Monin–Obukhov similarity theory, which could

improve the accuracy of atmospheric boundary layer in numerical weather weather

prediction. Gauthier, et al. [68] applied a scale-adaptive turbulence modeling on

oscillating-foil turbines and compared the result with Spalart-Allmaras model. It was

shown that in 3-D the two models do not have a big difference. However, the scale

adaptive simulation model obtains finer wake structures.

The above adaptive approaches are often implemented with RANS models and

use the current iteration of the simulated flow for adaptation. Conversely, data as-

similation has long been implemented with non-RANS models to improve flow-field

reconstruction or prediction (e.g., [69, 70, 71]). The most common application is me-

teorology, although it is also used in other areas such as training simple fluid models

to produce realistic-looking computer generated scenes in real time [72]. In meteo-

rological modeling, measurement data can be incorporated in a computational fluid

dynamics model using approaches ranging from simple interpolation to direct incor-

poration in the governing equations [73]. For example, V. Perez-Munnuzuri, et al.

[74] uses a nonlinear forecasting method, which is based on the reconstruction of a

chaotic strange attractor, to predict the behavior of cloud coverage based on data
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from previous years. As another example, Y. Lee, et al. [75] apply a multi-scale data

assimilation method, which is based on stochastic superparameterization, to forecast

the turbulent signals at different levels of scale.

An adjoint method [76, 77, 78, 79, 80] is also applied for optimizing the parame-

ters that exists inside mechanical or aerodynmic designs, and energy transportation

systems. Instead of using complex differentiation [81], an automatic differentiation

procedure [82] is applied together with the adjoint method. However, due to the

computational cost of the adjoint method, this approach is unsuitable for turbulence

modeling [83, 84].

Recently, data-driven and data-assimilation approaches have begun to be used

with RANS models. For example, [85] uses machine learning tools, such as arti-

ficial neural networks and Gaussian process regression, to produce a model for an

intermittency parameter introduced into the k -ω equations to better predict bypass

transition in boundary layers. [86] uses high-fidelity simulation and experimental

data with a new machine learning method, multiscale Gaussian process regression, to

develop more accurate turbulence model closure. The result highlight the potential

of machine learning method as a data-driven modeling tool. They also apply this new

data-driven method to transitional modeling [87]. Foures et al. [88] do not employ

a closure model but instead replace the Reynolds stress term in the RANS equation

with a forcing function and adapt that function.

In the case where some measurement information is available, data-driven ap-

proaches can be used to calibrate closure coefficients. For example, [89] uses a

database of high-fidelity LES to calibrate a mixing-length turbulence model to re-

duce the computational cost of simulating the flow in wind farms.
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Chapter 3 KATS Solver

The KATS [90, 91, 92, 93, 94] computing framework is used to implement the CFD

governing equations. KATS uses the CGNS format of computational grid and takes

advantage of parallel computing through domain decomposition through ParMETIS [95]

and OpenMPI [96]. It also utilizes the PETSc library [97, 98, 99], which uses flexi-

ble generalized minimal residual method (FGMRES) to solve large and sparse linear

systems.

KATS, uses a finite-volume approach to solve governing equations. These equa-

tions are cast in a conservative form

∂Q

∂t
+∇ · (F −Fd) = Sv, (3.1)

where Q represent the conservative quantities, F the advective flux, Fd the diffusive

flux, and Sv the source terms. This equation is then integrated over each cell volume

V of the mesh to give∫
V

∂Q

∂t
dV =

∫
V

∇ · (Fd −F) dV +

∫
V

Sv dV. (3.2)

The divergence theorem can be applied to the second term of this equation to yield∫
V

∂Q

∂t
dV =

∫
A

(Fd −F) · n dA+

∫
V

Sv dV, (3.3)

where n = (nx, ny, nz) represents normal vector of the boundary face A. Assuming

that all quantities are constant over cell V , and over the the boundaries of the cell,

the integral form equation becomes

V
∂Q

∂t
=
∑
face

(Fd −F) · nA+ SvV. (3.4)

To facilitate and optimize the evaluation of flow properties, KATS uses primitive

variables in the numerical scheme. In order to do so while preserving the conservative
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form of the equations, the vector of primitive variable P , is introduced. First, vector

R is defined

R ,
∑
face

(Fd −F) · nA+ SvV, (3.5)

and the Jacobian ∂Q/∂P is introduce. Equation (3.3) can thus be written as

V
∂Q

∂P

∂P

∂t
= R. (3.6)

This approach also enables preconditioning by only modifying specific terms in Jaco-

bian ∂Q/∂P . Discretizing Eq. (3.6) in time using first order implicit Euler formula-

tion, yields

(P n+1 − P n)

∆t

(
∂Q

∂P

)n
V = Rn+1. (3.7)

The right hand side Rn+1 can be linearised using first order Taylor expansion

(P n+1 − P n)

∆t

(
∂Q

∂P

)n
V = Rn +

(
∂R
∂P

)n (
P n+1 − P n

)
. (3.8)

By defining

∆P , P n+1 − P n, (3.9)

and rearranging Eq. (3.8), we obtain an expression for ∆P[
V

∆t

(
∂Q

∂P

)n
−
(
∂R

∂P

)n]
∆P = Rn. (3.10)

Therefore, the primitive varaibles at time n+ 1 are obtained by simply applying

P n+1 = P n + ∆P . (3.11)

In the following sections, the discretization process necessary to incorporate the

governing equations in the KATS framework is carried out both for compressible

solver and incompressible solver. Then, the boundary conditions, the computation of

the numerical gradient for non-uniform structured grid and the domain decomposition

and parallelization procesesses are described.
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3.1 Discretization of compressible governing equation

In the current approach, the compressible governing equations, Eq. (2.131) to (2.135),

are split into two groups, and each group is solved independently and sequentially.

The first group contains the flow field equations, which are the conservation of mass,

momentum and energy, respectively Eqs. (2.131), (2.132) and (2.133). The second

group contains the RANS equations, which are the equation for the transport of k and

ω, respectively Eq. (2.134) and (2.135). Both groups of equations can be cast under

the general conservative form used by KATS, Eq.(3.1), and thus can be discretized

according to Eq.(3.10).

3.1.1 Discretization of mass, momentum and energy equation

The flow field conservation equations were derived in the previous section using Favre

averaging. The primitive variables like ũ, p, T̃ are thus time-averaged values. In

order to simplified the notation, the time-averaging notation is dropped, and u, p, T

is used to represent ũ, p, T̃ respectively. Also, the velocity vector u can be expressed

by (u, v, w), where u(x, t) ∈ R, v(x, t) ∈ R, w(x, t) ∈ R are the speed in the x, y, z

directions of Cartesian coordinates.

For the flow-field governing equations, the vector of primitive variables P , con-

servative variables Q, source term Sv, advective flux F , and diffusive flux Fd are

thus

P =



p

u

v

w

T


. Q =



ρ

ρu

ρv

ρw

ρẼ


, Sv =



0

0

0

0

0


,
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F =



ρu ρv ρw

ρu2 + p ρuv ρuw

ρvu ρv2 + p ρvw

ρwu ρwv ρw2 + p

(ρẼ + p)u (ρẼ + p)v (ρẼ + p)w


,

Fd =



0 0 0

2(µ+ µt)S̃11 − 2
3
ρk 2(µ+ µt)S̃12 2(µ+ µt)S̃13

2(µ+ µt)S̃21 2(µ+ µt)S̃22 − 2
3
ρk 2(µ+ µt)S̃23

2(µ+ µt)S̃31 2(µ+ µt)S̃32 2(µ+ µt)S̃33 − 2
3
ρk

ζ1 ζ2 ζ3


,

ζ1 =(µ+ µt)(S̃11u+ S̃12v + S̃13w)− 2

3
ρku− cp

∂T

∂x

(
µ

Pr
+

µt
Prt

)
, (3.12)

ζ2 =(µ+ µt)(S̃21u+ S̃22v + S̃23w)− 2

3
ρkv − cp

∂T

∂y

(
µ

Pr
+

µt
Prt

)
, (3.13)

ζ3 =(µ+ µt)(S̃31u+ S̃32v + S̃33w)− 2

3
ρkw − cp

∂T

∂z

(
µ

Pr
+

µt
Prt

)
, (3.14)

where

S̃ =


S̃11 S̃12 S̃13

S̃21 S̃22 S̃23

S̃31 S̃32 S̃33

 =
1

2


2∂u
∂x
− 2

3
∇ · u ∂u

∂y
+ ∂v

∂x
∂u
∂z

+ ∂w
∂x

∂v
∂x

+ ∂u
∂y

2∂v
∂y
− 2

3
∇ · u ∂v

∂z
+ ∂w

∂y

∂w
∂x

+ ∂u
∂z

∂w
∂y

+ ∂v
∂z

2∂w
∂z
− 2

3
∇ · u

 .

In the mass, momentum, and energy conservation equations, the Jacobian of the

conservative variable Q with respect to primitive variable P is

∂Q

∂P
=



∂ρ

∂p
0 0 0

∂ρ

∂T

u
∂ρ

∂p
ρ 0 0 u

∂ρ

∂T

v
∂ρ

∂p
0 ρ 0 v

∂ρ

∂T

w
∂ρ

∂p
0 0 ρ w

∂ρ

∂T

h
∂ρ

∂p
− 1 ρu ρv ρw ha

∂ρ

∂T
+ ρcp


,
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where

ha = cpT +
u · u

2
+ k. (3.15)

To evaluate the term ∂R/∂P in Eq. (3.10), it is necessary to calculate ∂(F ·n)/∂P

and ∂(Fd · n)/∂P . Advective fluxes through face F · n are calculated according to

the flux vector splitting method AUSM+-up [100]. The Jacobian of the advective flux

through the normal of the face, which are F · n, with respect to the component of

vector P are

∂(F · n)

∂p
=



(nxu+ nyv + nzw)
∂ρ

∂p

nx + (nxu
2 + nyuv + nzuw)

∂ρ

∂p

ny + (nxvu+ nyv
2 + nzvw)

∂ρ

∂p

nz + (nxwu+ nywv + nzw
2)
∂ρ

∂p

(nxuH + nyvH + nzwH)
∂ρ

∂p


.

∂(F · n)

∂u
=



ρnx

2ρunx + ρvny + ρwnz

ρvnx

ρwnx

(ρh+ ρuu)nx + ρuvny + ρuwnz


.

∂(F · n)

∂v
=



ρny

ρuny

ρunx + 2ρvny + ρwny

ρwny

ρvunx + (ρh+ ρvv)ny + ρvwny


.
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∂(F · n)

∂w
=



ρnz

ρunz

ρvnz

ρunx + ρvny + 2ρwnz

ρwunx + ρwvny + (ρh+ ρww)nz


.

∂(F · n)

∂T
=



(nxu+ nyv + nzw)
∂ρ

∂T

(nxu
2 + nyuv + nzuw)

∂ρ

∂T

(nxvu+ nyv
2 + nzvw)

∂ρ

∂T

(nxwu+ nywv + nzw
2)
∂ρ

∂T

(nxu+ nyv + nzw)cp
∂ρ

∂T


.

The diffusive flux are simpler to evaluate since they are not subjected to a flux

splitting methodology. This is achieve by using a system of coordinates based on

the face-normal direction n, and the tangential face directions l = (lx, ly, lz) and

m = (mx,my,mz), which redefines the velocity vector as (un,ul,um). The diffusive

flux in the face-normal direction using the new coordinates becomes

Fdn , Fd · n =



0

(µ+ µt)
4
3
∂un
∂n

(µ+ µt)
∂ul
∂n

(µ+ µt)
∂um
∂n

(µ+ µt)(
4
3
∂un
∂n
un + ∂ul

∂n
ul + ∂um

∂n
um)− cp ∂T∂n ( µ

Pr
+ µt

Prt
)


.

In this expression the turbulent kinetic energy and the tangential direction derivatives

are neglected. This expresion can be further simplified by defining a property matrix
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M and the variable vector Vn

M =



0 0 0 0 0

0 4
3
(µ+ µt) 0 0 0

0 0 (µ+ µt) 0 0

0 0 0 (µ+ µt) 0

0 4
3
(µ+ µt)u (µ+ µt)v (µ+ µt)w cp(

µ
Pr

+ µt
Prt

)


,

Vn =



ρ

un

ul

um

T


,

which leads to the the following expression for the normal diffusive flux

Fdn = M
∂Vn
∂n

= M
VnR − VnL

∆n
, (3.16)

where VnR and VnL represent transport properties on right and left side of the face,

and ∆n is the normal distance. A rotation matrix Rx can be used to map the original

coordinates to face-normal coordinates, defined as

Rxn =



1 0 0 0 0

0 nx ny nz 0

0 lx ly lz 0

0 mx my mz 0

0 0 0 0 1


,R−1

xn =



1 0 0 0 0

0 nx lx mx 0

0 ny ly my 0

0 nz lz mz 0

0 0 0 0 1


.

Therefore, the face-normal diffusive fluxes becomes

Fdn =
M

∆n
Rxn(VR − VL) =

M

∆n
Rxn

∂V

∂P
(PR − PL), (3.17)
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where PR and PL represents the primitive variable vectors on the right and left side

of the face, V is vector Vn rotated back into the original coordinates system

V =



ρ

u

v

w

T


.

Therefore, ∂V /∂P is defined as

∂V

∂P
=



∂ρ
∂p

0 0 0 ∂ρ
∂T

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


,

and Fd becomes

Fd = R−1
xnFdn = R−1

xn

M

∆n
Rxn

∂V

∂P
(PR − PL), (3.18)

The Jacobian matrix of diffusive flux also need to be defined

∂Fd

∂PR
= R−1

xn

M

∆n
Rxn

∂V

∂P
, (3.19)

∂Fd

∂PL
= −R−1

xn

M

∆n
Rxn

∂V

∂P
. (3.20)

Including all of these definition, Eq. (3.10) can be rewritten as(
V

4t
∂Q

∂P
−
∑
face

(
∂Fd

∂PR
K − ∂Fd

∂PL
K) +

∑
face

∂(F · n)

∂P
A− ∂Sv

∂P
V

)
4P = Rn+1, (3.21)

where

K =
A(n · lr)
‖lr‖2

, (3.22)

lr is vector from left cell center to right cell center. In this expression, K represen

the projection of face area A along lr.
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3.1.2 Discretization of k - ω equation

The k -ω equations can also be cast under a conservative form. The conservative

vector, flux matrices and source term vector are Eq. (3.1).

Q =

ρk
ρω

 ,

F =

ρku ρkv ρkw

ρωu ρωv ρωw

 ,

Fd =

(µ+ µtσk)
∂k
∂x

(µ+ µtσk)
∂k
∂y

(µ+ µtσk)
∂k
∂z

(µ+ µtσω)∂ω
∂x

(µ+ µtσω)∂ω
∂y

(µ+ µtσω)∂ω
∂z

 ,

Sv =

Pk −Dk

Pω −Dω

 .

For this system of equations, the vector of primitive variables P is

P =

k
ω

 .

The iterative form of k -ω follow the same form as Eq. (3.21). For convenience, it is

shown again here(
V

4t
∂Q

∂P
−
∑
face

(
∂Fd

∂PR
K − ∂Fd

∂PL
K) +

∑
face

∂(F · n)

∂P
A− ∂Sv

∂P
V

)
4P = Rn, (3.23)

where

∂Q

∂P
=

ρ 0

0 ρ

 ,
∂(F · n)

∂P
=

ρ(unx + vny + wnz) 0

0 ρ(unx + vny + wnz)

 ,

∂Fd

∂PR
=

 (µ+µt)σk
∆n

0

0 (µ+µt)σω
∆n

 ,
∂Fd

∂PL
= −

 (µ+µt)σk
∆n

0

0 (µ+µt)σω
∆n

 ,

∂Sv
∂P

=

−β∗ρω − 2
3
(∇ · ρu) −β∗ρk

−αρ
µt

(2
3
∇ · ρu) −2βρω

 .
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3.2 Discretization of incompressible governing equation

Numerically, pressure cannot be calculated directly from governing equations above.

In order to couple the pressure and velocity in the momentum equation, a class of

Navier-Stokes equation solution procedures – the projection method [101, 102] is

implemented. The projection method is based on Helmholtz decomposition [103].

In particular, here we use the finite volume projection method [104] which is based

on Gresho projection-1 method [105]. Although the second-order projection method

of [106] for the incompressible flow was also investigated. It solves the governing

equation in two steps [107]. First, the momentum equation without pressure is solved,

and an intermediate velocity field is obtained. Then the pressure field is calculated

with the intermediate velocity and is used to correct the intermediate velocity to

satisfy the divergence free condition. In order to efficiently solve the incompressible

Reynolds-averaged Navier-Stokes equation, the divergence-free condition, Eq. (2.82),

is not solved simultaneously with the other equations but is enforced by using a

finite volume projection [101] based on the Gresho projection-1 method [105]. For

convenience, the Reynodls-averaging notation, as shown in Eq. (2.82) and (2.83) is

dropped, and u, p is used to represent ū, p̄ respectively. Also, the velocity vector

u can be expressed by (u, v, w), where u(x, t) ∈ R, v(x, t) ∈ R, w(x, t) ∈ R are the

speed in the x, y, z directions of Cartesian coordinates. Eq. (2.83), is thus re-cast

as two equations that are solved sequentially: the pressure-less momentum transport

equation, Eq. (3.24), and the pressure Poisson equation, Eq. (3.25). Therefore, the

real equations solved are

u∗ − un

∆t
=−∇ · (unun) +∇ · (τ +R), (3.24)

∇p∗ =
ρ(u∗ − un+1)

∆t
. (3.25)

un+1 = u∗ −∆tOp, (3.26)

∂k

∂t
+∇ · (kun+1) = ∇ · ((ν + νtσk)∇k) +

Sk
ρ
, (3.27)
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∂ω

∂t
+∇ · (ωun+1) = ∇ · ((ν + νtσω)∇ω) +

Sω
ρ
, (3.28)

νt =
k

ω
, (3.29)

In these equations, un and un+1 are the velocity vector at time step n and n + 1,

respectively; u∗ is the intermediate velocity vector before projecting to the divergence-

free field; ∆t is time step; and p∗ is the pseudo-pressure, which has order of ∆t error

relative to the actual pressure.

The momentum transport and the closure equations can take the form of Eq. (3.1)

and can solve simultaneously. Thus, Eq. (3.24), Eq. (2.134), and Eq. (2.135) can be

re-arrange

P =



u

v

w

k

ω


, S =



0

0

0

R · ∇u− β∗ωk

αω
k
R · ∇u− βω2


, (3.30)

F =



u2 vu wu

uv v2 wv

uw vw w2

ku kv kw

ωu ωv ωw


, Fd =


R+ τ

(ν + νtσk)∇k

(ν + νtσω)∇ω


. (3.31)

This system of equation is thus discretized using Eq. (3.21), and solved according to

the numerical procedure described earlier.

The pressure Poisson equation, Eq. (3.25), cannot be cast in the form of Eq. (3.10),

and therefore must be solved independently. This is achieved by taking the divergence

of Eq. (3.25) and applying the divergence free condition, Eq. (2.82), on the velocity

field to obtain:

∇ · ∇p =
ρ∇ · u∗

∆t
. (3.32)
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By integrating Eq. (3.32) over volume V , we obtain∫
V

∇ · ∇pdV =

∫
V

ρ∇ · u∗

∆t
dV (3.33)∮

∇p · ndA =
ρ∇ · u∗

∆t
Vcell (3.34)

Numerically, this equation can be represented as a summation over all faces of the

discrete cell volume Vcell:

∑
j ∈ face

pl − pr
‖lr‖2 lr · nj Aj =

ρ∇ · u∗

∆t
Vcell , (3.35)

where lr is the vector from the left cell center to the right cell center of face Aj.

Applying this to the mesh stencil, this becomes a linear system of equations that

can be solved for p everywhere. A biconjugate gradient method is used to solve this

sparse system of linear equations, using a Neuman condition for inlet, symmetry and

wall boundaries, and a Dirichlet condition for outlet boundaries.

3.3 Numerical gradient for non-uniform structured the grid

In order to solve the governing equations, the finite volume method for non-uniform

structured grids is applied. Calculating the gradient for such a grid is not necessarily

trivial. In order to illustrate the method used in KATS, the two-dimensional example

shown in Fig. 3.1 is used. rotation matrix x-direction term of gradient vector y-

direction term of gradient vector z-direction term of gradient vector n-direction term

of gradient vector l-direction term of gradient vector m-direction term of gradient

vector

As an example, the gradient of an arbitrary quantity ξ is used

G = ∇ξ.

Therefore, the gradient at cell 0 is calculated using neighbor cells 1 through 4. The

component calculated from cell 1 and cell 2 is in the n = (nx, ny, nz) direction, and the
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Figure 3.1: 2-D example of gradient calculation

one from cell 3 and cell 4 is in the m = (mx,my,mz) direction. In three-dimensional

space, there would be an additional direction l = (lx, ly, lz).

A rotation matrix RG is needed to transform the gradient (Gn, G`, Gm) expressed

using the cells (e.i. in the nml directions) in the gradient (Gx, Gy, Gz) aligned with

the reference axis

RG =


nx ny nz

lx ly lz

mx my mz

 .

This leads to the following relation

RG


Gx

Gy

Gz

 =


nx ny nz

lx ly lz

mx my mz



Gx

Gy

Gz

 =


Gn

Gl

Gm

 .

Therefore the gradient (Gn, Gl, Gm) can easily be calculated from each pair of neighbor

cells. As an example, the explicit gradient of quantity ξ would be
Gx

Gy

Gz

 = R−1
G


Gn

Gl

Gm

 = R−1
G


ξ1−ξ2
|x1|−|x2|

ξ5−ξ6
|x5|−|x6|

ξ3−ξ4
|x3|−|x4|

 .
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3.4 Boundary conditions

In order to simplify the boundary settings, ghost cells, which are the mirror image

points of the cells on the other side of the boundary, are created. At every time step,

the value in the ghost cells should be updated according to the boundary type. ratio

of specific heats total pressure (Pa) total temperature (K)

For an inlet boundary, the simplest condition is to impose the total pressure pt

and total temperature Tt. The pressure and temperature is therefore calculated as

T = Tt −
(γ − 1)

γR
(u2 + v2 + w2)

2
, (3.36)

p =
pt

(1 + u2+v2+w2

2RT )
, (3.37)

where γ is the ratio of specific heats, and R is the specific gas constant. This

condition is much preferred to, say, a constant inlet velocity. This type of boundary

condition causes stability issues since, at the corner of the inlet, where a non-slip

wall boundary should be present, the velocity on the solid wall becomes non-zero

and generates a non-physical solution. This, in turns, will decrease the density and

influence the whole flow field. If a velocity inlet condition is needed, there exist

two primary methods to avoid the non-physical conditions added. The first involves

adding a small length, extending the inlet boundary with symmetry boundary. The

second use a physical velocity profile, which means velocity decreases gradually until

it is zero on the solid wall.

For the outlet boundary, all ghost cell variables are set equal to the value of

boundary cell. For a symmetry boundary condition, the velocity vector is set as

being symmetric. This leads to the sum of normal components of both side of the

boundary to be zero, and the component parallel to the boundary face, equal on both

sides. This ensures flow rate across the surface is zero.
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turbulent intensity distance from point to wall wall roughness shear velocity shear

stress non-dimensional roughness maximum bound of ω

In order to the solve k -ω equation, values for the turbulent intensity It and

turbulent viscosity µt are needed [108]. This allows to directly compute k and ω at

the boundary, and set them in the inlet ghost cells, using

k =
3

2
I2
t (u2 + v2 + w2), (3.38)

ω =
ρk

µt
. (3.39)

At the outlet and symmetry boundary, k and ω in the ghost cells are set equal to

value at the boundary cells. At the non-slip solid wall, the turbulent kinetic energy

is suppressed [109] which means k is equal to 0. Since the distance of nearest cell to

the wall is different for every simulation, specific dissipation rate ω is set based on

distance ∆y from the nearest cell center to the wall. For smooth wall, if the nearest

cell is in log layer, which means the non-dimensional distance ∆y+ > 30, specific

dissipation rate is calculated according to

ωlog =
uτ

κ
√
β∗∆y

∆y+ > 30, (3.40)

where κ is von Karman constant, equal to 0.41. If the nearest cell is in viscous layer,

which means the non-dimensional distance ∆y+ ≤ 5, the specific dissipation rate is

calculated as

ωvis =
6µ

ρβ∆y2
. (3.41)

If the nearest cell is in buffer layer, which means the non-dimensional distance 5 <

∆y+ < 30, specific dissipation rate is calculated by blending specific dissipation rate

of the viscous layer and log layer.

ωbuf =
√
ω2
vis + ω2

log 5 < ∆y+ ≤ 30. (3.42)
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For non-smooth wall with a roughness height 4h, specific dissipation at the wall

can be calculated from

ω =
u2
τ SR, (3.43)

where

SR =

(
50

kR

)2

kR < 25, (3.44)

SR =
100

kR
kR ≥ 25, (3.45)

kR =max(1.0,
uτ4h
ν

), (3.46)

uτ =

√
τw
ρ
. (3.47)

uτ is shear velocity, τw is shear stress, kR is the non-dimensional roughness. The kr

parameter needs to be bounded since, at the beginning of the calculation, the friction

velocity uτ is inaccurate and likely too big.

3.5 Domain decomposition and parallelization

Use of multiple processors can greatly increase calculation speed. KATS uses domain

decomposition (ParMETIS [95]) to split domains into several smaller ones. Then, the

sub-domains use OpenMPI [96] to communicate together.

For each new boundary created by the partitioning scheme, ghost cells are cre-

ated at each boundary cell. These ghost cells hold the information of the neighboring

cell they would have if the domain was treated as a whole. After each time step,

MPI threads exchanges primitive in the ghost cells are updated using their corre-

sponding cells from the other domain. In order to illustrate this process, a simple

two-dimensional domain is used, as shown in Fig. 3.2.
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Figure 3.2: Domain decomposition at 2-D.

3.6 Verification and validation of KATS solver

3.6.1 Compressible solver verification – pipe flow

A code to code comparison was performed to verify the numerical implementation.

The commercial code ANSYS Fluent was used for comparison as it has a k -ω model

implemented. To conduct the verification, the same case are used for both KATS and

Fluent. A pipe flow was selected as an initial verification test using the quarter pipe

mesh shown in Fig. 3.3.

The pipe diameter was 0.022 m and pipe length was 20 times the diameter. The

distance of first node to the wall was 1× 10−6m. The stagnation pressure at the inlet

boundary was 103, 000 Pa, the static pressure at the outlet boundary was 101, 325

Pa, and temperature was 288 K everywhere. The value of the parameters used for

the k -ω model are listed in Table(3.6.1).

The results of the axial velocity in the radial direction for both codes are presented
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(a) (b)

Figure 3.3: Computational mesh used for the pipe-flow verification.

Table 3.1: Parameter settings of Fluent and KATS

σk σω β β∗ α Transitional Shear corrections
0.5 0.5 0.072 0.09 0.52 false false

in Fig. 3.4. The results are identical, indicating that the k -ω model was successfully

implemented in KATS.

3.6.2 Compressible solver validation – backward-facing step

Following the code-to-code verification, a validation test-case was performed using

the compressible k -ω model. The geometry chosen is the 2D backward-facing step,

a benchmark case from the Turbulence Model Benchmarking Working Group. The

experimental data was obtained in Ref. [2, 3], and can be downloaded from a NASA

Turbulence Modelling Resources website[110]. In the experiment, the reference Mach

number was 0.128, and the reference temperature 298.33 K. Using the step height as
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(a) Linear scale (b) Semi-logarithmic scale

Figure 3.4: Axial velocity profile along the radius of the pipe using the k -ω model
with Re=72, 000

the reference length, the Reynolds number of the experiment was 36, 000.

In the KATS simulation, the step height h was fixed at 0.01 m, and the at 298.33

K. In order to match the reference Mach number, the reference velocity was set to

Uref = 43 m/s. Total pressure at the inlet boundary was set to pt = 102, 325 Pa, the

total temperature at Tt = 299.3109 K, and the static pressure at outlet boundary was

set to p = 101, 325 Pa. The grid of the backward facing step case show as Fig. 3.5.

Five different grids are provided by the Turbulence Model Benchmarking Working

Group, with the finest grid at 1, 282, 500 cells. The grid used here had 19, 968 cells.

Zone 1 has 65×65 cells, zone 2 has 25×65 cells, zone 3 has 97×113 cells, zone 4 has

33×113 cells.

The results of the simulation are shown in Fig. 3.6 to 3.10. Fig. 3.6 shows

the mean stream-wise velocity profile non-dimensional profile along the vertical line

at x equal to -4h. Fig. 3.7 shows the velocity profile at x equal to h. The flow

separates from the backward step and forms a recirculation region. There is 4.5%

error between the measurements and simulation results. These results demonstrate

prove that the k -ω model works well. To improve the accuracy of the simulation, the
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k -ω closure coefficients, θ, can be further adjusted through trial and error. However

which direction to adjust the parameters to make the simulation more accurate is

a challenge. If there is an automated way to adjust the parameters, it will help us

to obtain more accurate flow field. The next chapter will present an adaptive way

approach adjust the closure coefficients of k -ω model and improve agreement with

known measurements.

Figure 3.5: Computational mesh of the backward-facing step case.
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Figure 3.6: Velocity of backward-facing step case in the x-direction at x/h=-4 for
KATS compressible solver validation
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Figure 3.7: Velocity of backward-facing step case in the x-direction at x/h=1 for
KATS compressible solver validation
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Figure 3.8: Velocity of backward-facing step case in the x-direction at x/h=4 for
KATS compressible solver validation

3.6.3 Incompressible solver validation – pipe flow

The incompressible solver was also validated using the same pipe-flow test case as

the one used for the compressible solver (see Fig. 3.3). Although the mesh used was

the same, the pipe radius was scaled to 0.06 m and pipe length was 20 times the

diameter. This also changed the the distance of the first node from the wall, which
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Figure 3.9: Velocity of backward-facing step case in the x-direction at x/h=6 for
KATS compressible solver validation
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Figure 3.10: Velocity of backward-facing step case in the x-direction at x/h=10 for
KATS compressible solver validation

ended being 5.45 × 10−6m. The velocity at the inlet boundary was set at 9.1 m/s,

and the parameters used for the k -ω model are listed in Table(3.6.3).

Table 3.2: Parameter settings of Fluent and KATS

σk σω β β∗ α Transitional Shear corrections
0.5 0.5 0.072 0.09 0.52 false false
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The experiment results used to compare the numerical results were taken from

Ref. [1]. These consists of 42 measured points along the radius R at a location where

the pipe flow is considered to be fully developed. The numerical velocity profile

in the radial direction r is compared with experimental result in Fig. 3.11. The

results almost collapse on each other indicating that the incompressible solver was

successfully implemented in KATS.
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Figure 3.11: Mean axial velocity profile along the radius at z = 0.8L cross section of
the pipe for KATS incompressible solver validation.
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Chapter 4 Data-Driven Adaptive RANS k - ω

Model

This chapter presents a new data-driven adaptive computational model for simulat-

ing turbulent flow, where partial-but-incomplete measurement data is available. The

model automatically adjusts the closure coefficients of the Reynolds-averaged Navier-

Stokes (RANS) k -ω turbulence equations to improve agreement between the simu-

lated flow and the measurements. This data-driven adaptive RANS k -ω (D-DARK)

model is validated with three canonical flow geometries: pipe flow, backward-facing

step, and flow around an airfoil. For all test cases, the D-DARK model improves

agreement with experimental data in comparison to the results from a non-adaptive

RANS k -ω model that uses standard values of the closure coefficients. For the pipe

flow, adaptation is driven by mean stream-wise velocity data from 42 measurement lo-

cations along the pipe radius, and the D-DARK model reduces the average error from

5.2% to 1.1%. For the 2-dimensional backward-facing step, adaptation is driven by

mean stream-wise velocity data from 100 measurement locations at four cross-sections

of the flow. In this case, D-DARK reduces the average error from 40% to 12%. For

the NACA 0012 airfoil, adaptation is driven by surface-pressure data at 25 measure-

ment locations. The D-DARK model reduces the average error in surface-pressure

coefficients from 45% to 12%. The result of this chapter is published in [111].

4.1 Introduction

Turbulent flow arises in a vast array of engineering technologies ranging from aerospace

vehicles to biomedical devices. Thus, computational techniques for accurate turbulent-

flow simulation can advance numerous technologies. Direct numerical simulation
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(DNS) is effective for turbulent flow; however, DNS with complex geometry or high

Reynolds number requires significant computing resources. Turbulence models such

as large-eddy simulation (LES), detached-eddy simulation (DES), and Reynolds-

averaged Navier-Stokes (RANS) are employed to reduce computational cost about

DNS. However, these turbulence models, particularly RANS, contain model coeffi-

cients which may not necessarily be universal. The best values for the model coef-

ficients are generally problem dependent and often determined using trial-and-error

calibration, which relies on experimental data or higher-fidelity numerical results.

The concept of adaptation has been employed in a variety of ways to improve

the accuracy of turbulent flow simulations. For example, scale-adaptive simulations

[112, 113, 58, 114] use the von Kármán length scale to adapt the turbulence model

to the scale of the mesh. Alternatively, wall functions, which compensate for the

simulation cell center nearest to a surface, can also be adapted depending on the

local Reynolds number [115] or estimated location relative to the logarithmic layer

[116, 117].

The above adaptive approaches are often implemented with RANS models and

use the current iteration of the simulated flow for adaptation. Conversely, data as-

similation has long been implemented with non-RANS models to improve flow-field

reconstruction or prediction (e.g., [69, 70, 71]). The most common application is me-

teorology, although it is also used in other areas such as training simple fluid models

to produce realistic-looking computer generated scenes in real time [72]. In meteo-

rological modeling, measurement data can be incorporated in a computational fluid

dynamics (CFD) model using approaches ranging from simple interpolation to di-

rect incorporation in the governing equations [73]. For example, Pérez-Muñuzuri and

Gelpi [74] use a nonlinear forecasting method, which is based on the reconstruction

of a chaotic strange attractor, to predict the behavior of cloud coverage based on

data from previous years. As another example, Lee and Majda [75] apply a multi-
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scale data assimilation method, which is based on stochastic superparameterization,

to forecast the turbulent signals on different levels of scale.

Recently, data-driven and data-assimilation approaches have been used with RANS

models. For example, Duraisamy et al. and Singh and Duraisamy [87, 118] use

an adjoint-driven inversion procedure combining with artificial neural networks and

Gaussian process regression to adjust the intermittency parameter and other closure

coefficients of a turbulence model to better predict the flow field of turbulent bound-

ary layer undergoing bypass transition to turbulence. Foures et al. [88] do not employ

a closure model but instead replace the Reynolds stress term in the RANS equation

with a forcing function. This forcing function is then determined using measurement

data through a variational formulation and Lagrange-multiplier approach.

In the case where some measurement information is available, data-driven ap-

proaches can be used to calibrate closure coefficients. For example, Iungo et al. [89]

use a database of high-fidelity LES to calibrate a mixing-length turbulence model to

reduce the computational cost of simulating the flow in wind farms.

This chapter presents a new data-driven adaptive CFD model for simulation of

turbulent flow, where partial-but-incomplete flow-field information is available. The

approach uses a RANS k−ω turbulence model and is thus termed data-driven adap-

tive RANS k − ω (D-DARK). This method automatically adjusts or adapts model

parameters, specifically, the k−ω closure coefficients, to improve agreement between

the simulated flow field and measured data, which are at spatially separated locations

in the flow field. The data-driven adaptive algorithm is implemented in combination

with a compressible CFD solver. This chapter also presents D-DARK model vali-

dation results with several canonical flow-field geometries: pipe flow, the backward-

facing step, and flow around an airfoil. These validation results demonstrate that the

D-DARK model improves agreement with experimental data in comparison to the

results from a non-adaptive RANS k − ω model that uses the standard values of the
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k − ω closure coefficients, which are given in Ref. [10].

4.2 Range of k - ω closure coefficients

To ensure that the closure coefficients do not adapt to unrealistic values, we define

physically possible ranges for each of the closure coefficients. To do this, we follow

the arguments of Wilcox [119] in establishing his recommended values.

In the transport equations, σk and σω adjust the contribution of the diffusion due

to turbulence relative to viscous effects. Therefore we let,

σk ∈ [0, 1], σω ∈ [0, 1] (4.1)

The standard value for both σk and σω is 0.5, established by comparison of model

results to experimental data.

Next, Wilcox [119] shows that for homogeneous isotropic turbulence the equations

of turbulent kinetic energy conservation and specific dissipation rate conservation can

be reduced to an expression related to the ratio β∗/β, which is given by

k ∼ t−β
∗/β. (4.2)

Using Refs. [120], [121], and [122, p. 160], a range for this ratio can be provided as

β∗/β ∈ [0.9, 2.5] (4.3)

which encompasses values for homogeneous isotropic turbulence in both the initial

period of decay, where β∗/β is empirically observed to be approximately 1.3, and

final period of decay, where it can found be from self-similar solution of the Kármán-

Howarth equation to be 5/2.

To find a suitable range for β∗ we examine the logarithmic layer of a high-

Reynolds-number turbulent boundary layer, where the turbulent kinetic energy is

generated and dissipated rapidly, the diffusion caused by molecular viscosity is much
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smaller than that associated with the Reynolds stress. In this region, the mean ve-

locity U is assumed to be parallel to the wall direction x and is assumed to vary

logarithmically with the distance y from the wall. Under these assumptions, the

steady-state conservation equations can be solved for the velocity profile

u =
uτ
κ

ln

(
uτyρ

µ

)
, (4.4)

and for the turbulent kinetic energy

k =
u2
τ√
β∗
, (4.5)

where κ is the von Kármán constant, and uτ =
√
τw/ρ is the friction velocity with τw

the shear stress at the wall. See Ref. [119] for more details. However, the approach in

Ref. [119] imposes a constraint between the von Kármán constant κ and the closure

coefficients, which is given by

α =
β

β∗
− σωκ

2

√
β∗
, (4.6)

where κ ∈ [0.37, 0.42] [123].

The experimental results presented in [124], which were performed in different

flow regimes, show a range in the ratio of Reynolds shear stress, τ ∗, to k of

τ ∗

k
∈ [0.19, 0.41] , (4.7)

where τ ∗ is the streamwise/wall-normal shear stress in the Reynolds stress tensor. In

the logarithmic region of high Reynolds number turbulent boundary layers, typical

ranges observed for the ratio between uτ and τ ∗ are

u2
τ

τ ∗
∈ [0.9, 1.1] , (4.8)

as shown in Townsend [124]. Thus, the combination of (4.5), (4.7), and (4.8) imply

that

β∗ ∈ [0.029, 0.20] , (4.9)
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which, assuming the range of β∗/β for homogeneous isotropic turbulence holds ap-

proximately for anisotropic, inhomogeneous turbulence, can be combined with (4.3)

to yield a condition on β, which is given by β ∈ [0.012, 0.23]. Note that this condition

on β is not sufficient to ensure (4.3) but rather provides an approximation for a range

of physically possible parameters β.

To obtain bounds for α, note that it is the coefficient assigned to the production

term of the conservation equation for the dissipation rate, which implies that α ≥ 0.

Since α ≥ 0, it follows from (4.1), (4.3), and (4.6) that

α ∈ [0, 1.1]. (4.10)

Thus, to ensure physically reasonable values of the closure coefficients, the adapted

coefficients produced by the data-driven algorithm described in the next section up-

dates the k -ω closure coefficients subject to the constraints described by (4.1), (4.3),

(4.9), and (4.10).

4.3 Data-driven adaptation

The D-DARK model relies on known flow-field measurements (e.g., mean velocities,

or pressure) at N locations in the physical flow to adapt the k -ω closure coefficients

θ = [α β β∗ σk σω ]T. (4.11)

We use the term ‘measurement’ to describe information about the flow field that is

known a priori at N locations.

For i = 1, . . . , N , let φm,i ∈ R`i denote the ith flow-field measurement, that is, the

flow-field measurement at the ith location, and let φi(θ) ∈ R`i denote the simulated

flow-field values at the ith location that are obtained with k -ω closure coefficients

θ. We use the difference between the simulated φi(θ) and measured φm,i values to
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adapt θ. In particular, we seek to minimize the cost function

J(θ) ,
N∑
i=1

[φi(θ)− φm,i]
T W i [φi(θ)− φm,i] , (4.12)

where W1, . . . ,WN are symmetric positive-definite weighting matrices, which reflect

the relative importance of the N measurements as well as the relative importance of

the elements of each measurement. For example, if the ith weighting matrix is W i =

diag(wi,1, wi,2, wi,3 . . .), where diag(·) is a diagonal matrix whose diagonal elements

are given by the arguments of the operator, then wi,j > 0 is the weight associated

with the jth element of the ith measurement. If each element of the ith measurement

has equal weight, then the weighting matrix can be expressed as

W i = wiI, (4.13)

where wi > 0 reflects the relative importance of the ith measurement. As an example,

the weight wi in (4.13) can be selected to normalize each term in the cost (4.12). In

this case, the weight is wi = 1/‖φm,i‖2, where ‖·‖ is the Euclidean norm. This weight

yields a cost (4.12) that reflects an approximately equal importance of minimizing

the error ‖φi(θ)− φm,i‖ for each i = 1, . . . , N independent of the magnitude ‖φm,i‖

of each measurement. In this chapter, we adopt a variation on the normalized weight,

where we also impose upper and lower bounds wmax > 0 and wmin > 0 on the weight

wi. Specifically, for i = 1, . . . , N , the weight is

wi = min

{
max

{
1

‖φm,i‖2
, wmin

}
, wmax

}
. (4.14)

The selection of the upper wmax and lower wmin bounds is discussed in the examples.

In general, (4.12) is a nonlinear function of θ without a known analytic expres-

sion. Thus, it is not feasible to compute the analytic gradient of J with respect to

θ; however, this gradient can be approximated numerically. To approximate the gra-

dient, let `θ denote the number of entries in the vector θ. For a single set of k -ω
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closure coefficients as shown in (4.11), it follows that `θ = 5. However, if different

closure coefficients are used at different spatial locations in the flow, then `θ > 5.

Section 4.6.2 demonstrates that segmenting the flow (i.e., using different k -ω closure

coefficients at different spatial locations) can improve performance. Next, let ε0 << 1

be positive, and define the approximate gradient

Γ(θ) ,


J(θ + ε0e

T
1 θe1)− J(θ)

ε0eT
1 θ
...

J(θ + ε0e
T
`θ
θe`θ)− J(θ)

ε0eT
`θ
θ

 ∈ R`θ , (4.15)

where for j = 1, . . . , `θ, let ej ∈ R`θ is the jth column of the `θ × `θ identity matrix.

For sufficiently small ε0 > 0, ΓT(θ) approximates the gradient of J with respect to

θ, that is, ΓT(θ) ≈ ∂J(θ)/∂θ. Furthermore, (4.15) can be computed numerically by

perturbing each element of θ and computing the change in the cost J .

The approximate gradient (4.15) indicates the direction in which θ should be

adjusted to reduce the difference between φi(θ) and φm,i. To develop an adaptive

law for θ, let θ0 ∈ R`θ denote the initial value for the vector of k -ω closure coefficients.

For example, θ0 can be the closure coefficients proposed in [47]. Then, at each step

n ∈ N , {0, 1, 2, . . .}, the updated parameter θn+1 is determined from the adaptive

law

θn+1 = θn − ξnΓ(θn), (4.16)

where ξn > 0 is the adaptive step size.

To determine the adaptive step size, let θ∗ ∈ R`θ denote a local minimizer of J .

Note that the local minimizer θ∗ is assumed to exist but is not necessarily a global

minimizer of J and is not necessarily unique. Next, for all n ∈ N, consider the cost

function

Jn(ξn) , ‖θn+1 − θ∗‖2 − ‖θn − θ∗‖2 . (4.17)
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We seek to determine a step size ξn such that Jn(ξn) < 0, which implies that θn gets

closer to the minimizer θ∗ at each step n. For each n ∈ N, define the optimal step

size

ξopt,n ,
2 [J(θn)− J(θ∗)]

‖Γ(θn)‖2 . (4.18)

The following result demonstrates that if Γ is equal to the transpose of the gradient,

and φi is affine in θ, then the optimal step size ξopt,n minimizes the cost Jn. The

proof is in Appendix A.

Theorem 1. Consider the adaptive law (4.16), and assume that the following

conditions are satisfied:

(A1) For all n ∈ N, Γ(θn) 6= 0.

(A2) For all n ∈ N, Γ(θn) = (∂J(θ)/∂θ|θ=θn
)T.

(A3) For i = 1, . . . , N , there exists Φi ∈ R`i×`θ and ψi ∈ R`i such that φi(θ) =

Φiθ +ψi.

Then, for all n ∈ N, Jn(ξn) < 0 if and only if 0 < ξn < 2ξopt,n. Furthermore, for all

n ∈ N, ξn = ξopt,n minimizes Jn(ξn).

Theorem 1 imposes the assumption that φi is affine in θ. While this assumption

is most likely not valid globally in θ, it is reasonable to assume that φi can be

approximate locally as an affine function of θ.

Theorem 1 shows that under simplifying assumptions the optimal step size ξopt,n

minimizes Jn; however, ξopt,n is not implementable because θ∗ and thus J(θ∗) are

unknown. Nevertheless, if we assume that J(θ∗) is small (i.e., J(θ∗) ≈ 0), then we

can consider the approximately optimal step size

ξ∗,n ,
2J(θn)

‖Γ(θn)‖2 , (4.19)

which is implementable. Thus, ξ∗,n is the maximum allowable step size; however, we

also aim to select a step size that is small enough to ensure that the cost J does not
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increase and that the k -ω closure coefficients do not change more than a user-selected

threshold percentage p̄ > 0. Therefore, for each step n ∈ N, the adaptive step size is

given by

ξn ,

(
1

2

)γn
ηn, (4.20)

where

ηn , min

{
min

j=1,...,`θ
10−2p̄

∣∣∣∣∣ eT
j θn

eT
j Γ(θn)

∣∣∣∣∣ , ξ∗,n
}
, (4.21)

and where γn is the smallest nonnegative integer such that

J

(
θn −

(
1

2

)γn
ηnΓ(θn)

)
≤ J(θn), (4.22)

and θn − (1/2)γnηnΓ(θn) satisfies the constraints (4.1), (4.3), (4.9), and (4.10).

If ξ∗,n ≤ minj=1,...,`θ 10−2p̄|eT
j θn/(e

T
j Γ(θn))| and γn = 0, then the step size is

ξn = ξ∗,n. However, if the approximately optimal step size ξ∗,n yields an updated

closure coefficient that is more than p̄ percent from its current value, then (4.21)

implies that ηn < ξ∗,n, and it follows from (4.20) that ξn < ξ∗,n. In this case, if γn = 0

satisfies (4.22) and the constraints (4.1), (4.3), (4.9), and (4.10), then the step size

is ξn = ηn = minj=1,...,`θ 10−2p̄|eT
j θn/(e

T
j Γ(θn))|. If, on the other hand, this step size

violates (4.1), (4.3), (4.9), (4.10), or (4.22), then the integer γn is increased (i.e., ηn

is bisected) until (4.1), (4.3), (4.9), (4.10), and (4.22) are satisfied.

4.4 Implementation

The D-DARK approach is illustrated in Fig. 4.1. We assume that the measurements

φm,1,. . ., φm,N are obtained a priori. Next, a numerical simulation is conducted with

the initial closure coefficients θ0, and a solution is obtained through convergence of

(3.10), which yields the initial simulation results φ1(θ0), . . . ,φN(θ0). The initial cost

J(θ0) is constructed using the measurements φm,i and the simulation data φi(θ0).

The weighting matrices W i used to compute the cost J are given by (4.13) and
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Figure 4.1: Flow chart for D-DARK model. Note that ε1 > 0 and ε2 > 0 are the
convergence thresholds for the primitive variables and adaptation cost, respectively.

(4.14). The upper and lower bounds in (4.14) are

wmax =
102

φ2
av

, wmin =
1

φ2
av

, (4.23)

where φav ∈ R is either the far-field mean stream-wise velocity or the far-field

mean pressure depending on the measurement type. Thus, for each i = 1, . . . , N ,

if ‖φm,i‖ > |φav|, then the weight is wi = wmin, and if ‖φm,i‖ < |φav|/10, then

the weight is wi = wmax. If, on the other hand, ‖φm,i‖ ∈ [|φav|/10, |φav|], then the

weight is wi = 1/‖φm,i‖2. Thus, the minimum weight is used for measurements with

magnitude greater than the far-field mean value, while larger weights are used for

measurements with magnitude less than the far-field mean value. This selection of

the weights normalizes the cost J and helps to account for measurements with dif-
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ferent magnitudes. In the following sections, the values for φav are provided in each

example.

For each adaptation step n, the approximate gradient Γ(θn) is calculated by indi-

vidually perturbing each element of θn and simulating the flow-field response. If the

positive perturbation ε0 << 1 is sufficiently small, then Γ(θn) approximates the gra-

dient. In this work, ε0 = 10−7, which was determined through numerical testing. If

ε0 < 10−7, then the perturbation is less than the numerical accuracy of KATS. After

perturbing the jth element of θn, a numerical simulation is performed to compute the

perturbed cost J(θ + ε0e
T
j θej). Note that each closure coefficient is perturbed indi-

vidually, which implies that `θ perturbations and numerical simulations are required

to calculate Γ(θn). However, each simulation requires relatively few computational

steps to converge because the perturbation ε0 is small. In addition, the results in

the following sections suggest that for certain flow geometries, relatively few (e.g.,

n ≤ 20) adaptive steps are needed for the cost J to converge.

The closure coefficients are updated according (4.16), where the step size ξn is

determined from (4.20)–(4.22), where the approximately optimal step size ξ∗,n is given

by (4.19). The maximum allowable percent change is p̄ = 10, which was determined by

numerical testing. If p̄ > 10, then numerical testing shows that for many adaptation

steps n, the nonnegative integer γn must be greater than zero to satisfy (4.22). In

this case, an additional simulation is required each time that γn is increased.

4.5 D-DARK model verification with pipe flow

The D-DARK model and its numerical implementation are verified using the test case

of air flow through a pipe. This test case is solved on a 3-dimensional mesh with cell

clustering near the wall as shown in Fig. 3.3. The mesh is refined in the near-wall

region to ensure smooth mesh transition from the wall to the center of the pipe. The

computational mesh consists of 106, 080 cells, and produces grid-independent results
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as determined through comparison with results from a similar mesh with 225, 000 cells.

For this test case, the pipe’s radius and length are R = 0.06 m and L = 2.4 m.

The total temperature Tt = 288.025 K and total pressure pt = 101, 427.5 Pa are

specified at the inlet. A static pressure boundary condition p = 101, 325 Pa is applied

at the outlet. The reference velocity is the area-averaged velocity at the inlet, which

is approximate Uref = 12 m/s. The Reynolds number based on pipe diameter and

reference velocity is approximate ReD = 100, 000. The turbulence intensity and

eddy-viscosity-to-molecular-viscosity ratio at the inlet are It = 0.01 and µt/µ = 0.1.

The upper and lower bounds (4.23) for the cost-function weights are computed using

φav = 11.32 m/s, which is the far-field mean stream-wise velocity.

For this verification, a numerical solution is first obtained using standard values of

the k -ω closure coefficients [10], which are in Table 4.1. This solution is used as the

‘measurement’, where each cell is a ‘measurement’ location, that is, N = 106, 080,

and for each i = 1, . . . , N , the ‘measurement’ φm,i has 3 elements, which are the

components u, v, and Uz of flow velocity at the ith location. The D-DARK model

is initialized with closure coefficients θ0 that are different from the standard values

used to obtain the ‘measurement.’ The D-DARK model adapts the closure coefficients

until the cost J converges, which occurs after nf = 4 steps. The initial θ0 and adapted

θnf
closure coefficients are also given in Table 4.1.

Table 4.1: D-DARK closure coefficients for the pipe-flow verification.

σk σω β β∗ α

Initial 0.4000 0.6000 0.06200 0.08500 0.4500
Adapted 0.4001 0.6000 0.06700 0.08201 0.4501
Measurement 0.5000 0.5000 0.07200 0.09000 0.5200

Figure 4.2 shows the fully-developed mean stream-wise velocity Uz profile at the

stream-wise location z = 0.8L. The figure shows the ‘measurement’ results and

the D-DARK model results with the initial θ0 and adapted θnf
closure coefficients.

The difference between the ‘measurement’ and the numerical results with the initial
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θ0 closure coefficients is noticeable, particularly in the near-wall and outer layers

of the flow. However, after convergence, the D-DARK solution coincides with the

‘measurement’. The maximum percent error in the overlap and outer layers (i.e.,

(R − r)/R > 10−2) decreases from 2.45% with the initial θ0 closure coefficients to

0.033% with the adapted θnf
closure coefficients.
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Figure 4.2: Mean stream-wise velocity Uz profile for the pipe-flow verification at the
z = 0.8L cross section. Results are shown for the D-DARK model with the initial
and adapted closure coefficients, and for the ‘measurement’.

As shown in Table 4.1, the improvement occurs following less than 8.1% change

in the value of the closure coefficients, demonstrating the sensitivity of the results to

the closure coefficients. Note also that the adapted closure coefficients are not equal
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to the closure coefficients used to produce the ‘measurement’, which suggests that the

cost J has multiple local minima. Thus, the data-driven adaptation algorithm may

be sensitive to the initial value θ0. Nevertheless, the adaptation improved agreement

with the ‘measurement’ by an average of 95%. These results demonstrate that the

D-DARK model can adapt the flow-field solution to improve agreement with a set of

known ‘measurements’, which could be physical measurements, an analytic flow-field

solution, or results from another numerical simulation.

4.6 Validation

This section presents validation results, where the D-DARK model is applied to 3

test cases: pipe flow, the backward-facing step, and flow around an airfoil. For each

test case, experimental data is used as the measurement for model adaptation.

4.6.1 Pipe flow

For the pipe-flow validation, we use experimental data published in [1], which provides

fully-developed mean stream-wise velocity data at 42 different locations along the

radius of a pipe. These experimental data are used as the measurement, that is,

N = 42 and for each i = 1, . . . , N , the measurement φm,i ∈ R is the mean stream-

wise velocity at the ith location.

The simulation domain and boundary conditions are defined to match those of

the experiment except the pipe length L = 2.4 m, which was found to be sufficiently

long for the mean velocity to approximate fully-developed flow conditions. The pipe

radius is R = 0.06 m, and the reference velocity is the area-averaged velocity at the

inlet, which is approximate Uref = 10.8 m/s; both of which match the experimental

conditions. The Reynolds number based on pipe diameter and reference velocity is

approximately ReD = 89, 000. The computational mesh consists of 225, 000 cells, and

produces grid-independent results as determined through comparison with results
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from a similar mesh with 106, 080 cells. The computational mesh as well as the

measurement locations are shown in Fig. 4.3.

(a) (b)

Figure 4.3: Computational mesh used for the pipe-flow validation. The measurement
locations are shown as the dots.

The inlet boundary conditions are Tt = 288.025 K and pt = 101, 404 Pa, and the

pressure boundary condition at the outlet is p = 101, 325 Pa, which together match

the experimental pressure gradient. The turbulence intensity and eddy-viscosity-to-

molecular-viscosity ratio at the inlet are It = 0.01 and µt/µ = 0.1. The upper and

lower bounds (4.23) for the cost-function weights are computed using φav = 9.71 m/s,

which is the far-field mean stream-wise velocity.

The D-DARK model is initialized with standard values for the k -ω closure coef-

ficients [10], and the model adapts the closure coefficients until the cost J converges,

which occurs after nf = 4 steps. The initial and adapted closure coefficients are in

Table 4.2. The closure coefficients change significantly more than in the pipe-flow
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verification. Specifically, β increases by 19%, and β∗ decreases by 8.1%, while the

remaining closure coefficients change by less than one-tenth of a percent.

Table 4.2: D-DARK closure coefficients for the pipe-flow validation.

σk σω β β∗ α

Initial 0.5000 0.5000 0.07200 0.09000 0.5200
Adapted 0.5002 0.4999 0.08563 0.08269 0.5201

Figure 4.4 shows the fully developed mean stream-wise velocity Uz profile at

the stream-wise location z = 0.8L. The figure shows the experimental data and

the D-DARK model results with the initial and adapted closure coefficients. The

difference between the data and numerical results with the initial closure coeffi-

cient is noticeable. Figure 4.5 shows the normalized mean stream-wise-velocity error

|(φi(θn)−φm,i)/φm,i| at each location i with the initial (i.e., n = 0) and adapted (i.e.,

n = nf) closure coefficients. Note that the blue lines in Figs. 4.4 and 4.5 correspond to

a D-DARK model with two sets of adaptive k -ω closure coefficients; this segmented-

flow case is discussed in the next section. As shown in Fig. 4.5, the initial closure

coefficients result in an average error of approximately 5.2% in the overlap and outer

layers (i.e., (R− r)/R > 10−2), and a peak error of approximately 46%, which occurs

at (R−r)/R = 0.0050. In contrast, the adapted closure coefficients (with one region)

result in an average error of approximately 3.3% in the outer layer, and a peak error

of approximately 35%, which occurs at (R− r)/R = 0.0021. Both of these represent

an improvement relative to the results with the initial closure coefficients. As shown

in Fig. 4.6, the cost J is reduced by approximately 80% on the first adaptation step,

while the additional adaptation steps result in minimal additional reduction to the

cost J . Despite this reduction in cost, the adapted D-DARK model over predicts

mean velocity near the wall and under predicts mean velocity near the center line.
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Figure 4.4: Mean stream-wise velocity Uz profile for the pipe-flow validation at the
z = 0.8L cross section. Results are shown for the D-DARK model with the initial
and adapted closure coefficients (1 and two segmentation regions), and for the mea-
surement data, which are stream-wise velocities at 42 locations [1]. For the 2-region
case, the segmentation threshold is Gst = 15.

4.6.2 Improving accuracy by flow segmentation

This section considers using different adaptive closure coefficients in different spatial

locations of the flow to reduce the error between the adapted D-DARK model and

the measurement data and to account for possibly different turbulent phenomenon in

different regions of the flow. Assuming that phenomenological differences are partially

captured by the relative magnitude of velocity gradient, the flow is segmented using

72



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10−3 10−2 10−1 100

|(φφ φ
i
−
φφ φ

m
,i
)/
φφ φ

m
,i
|

(R− r)/R

Initial
Adapted (1 region)

Adapted (2 regions)

Figure 4.5: Normalized mean stream-wise-velocity error between the D-DARK model
and the measurement data, which are stream-wise velocities at 42 locations [1]. Re-
sults are shown for the D-DARK model with the initial and adapted closure coef-
ficients (1 and two segmentation regions). For the 2-region case, the segmentation
threshold is Gst = 15.
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Figure 4.6: Cost J as a function of adaptation step n for the pipe-flow validation.
For the 2-region case, the segmentation threshold is Gst = 15.

the magnitude of a dimensionless velocity gradient relative to Reynolds number, which
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is defined as

G ,
106

Re

(
||∇U || `

Uref

)
, (4.24)

where ` is a suitably selected characteristic length of the flow, Uref is a characteristic

velocity, and Re is the Reynolds number based on ` and Uref . Note that 106 is a

scaling factor. selected characteristic length

To examine the effect of segmentation regions, we perform a parametric study

using the pipe flow described above using the area averaged inlet velocity and R

to define G and to vary the number of regions and the segmentation thresholds for

G. The k -ω closure coefficients for each region are adapted independently by the

D-DARK model, thus increasing the dimension `θ of θn.

Figure 4.7 shows the converged cost J(θnf
) as a function of the segmentation

threshold Gst for the dimensionless gradient G. If Gst ∈ (10, 103), then the converged

cost J(θnf
) with 2 regions is approximately 70% lower than that with one region.

Moreover, Fig. 4.7 suggests that the converged cost is minimized by Gst in the interval

(10, 20); thus, we consider Gst approximately equal to 15. Figure 4.6 shows that 2-

region segmentation, where Gst = 15, reduces the cost J relative to one region;

however, the D-DARK model with two regions requires more adaptation steps for the

cost J to converge. Specifically, nf = 20 steps with 2 segmentation regions, where

Gst = 15.

To investigate further flow segmentation, we set a first segmentation threshold at

15 and conduct a parametric study where a second segmentation threshold is varied

across eight orders of magnitude. As shown in Fig. 4.7, the converged cost J(θnf
) with

3-region segmentation is not significantly lower than that with 2-region segmentation.

These results suggest that 2-region segmentation can lead to significant improvement

in cost, whereas 3-region segmentation may be unnecessary for certain flows.

Figures 4.4 and 4.5 show that the converged D-DARK model with two regions,

where Gst = 15, improves agreement with the measurement relative to the case with
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Figure 4.7: Cost J as a function of segmentation threshold for the pipe-flow validation.
For the 3-region case, the first segmentation threshold is 15.

one region. Although 2-region segmentation results in minimal improvement near the

wall, Fig. 4.5 shows that the adapted closure coefficients (with 2 regions) result in

an average error of approximately 1.1% in the outer layer, which is an improvement

relative to the case with the initial closure coefficients and the case with one region,

which have average outer-layer errors of 5.2% and 3.3%, respectively. Note that flow

segmentation can result in discontinuities in the adapted closure coefficients between

different regions. However, the values of k, ω, and µt for the converged solution

remain continuous across different regions.

The initial and adapted closure coefficients are in Table 4.3. The improvement

with 2 regions appears to be a result primarily of the differences in the converged

β and β∗ for the high- and low-gradient regions. For this test case, the adapted

coefficients were within the constraints provided by (4.1), (4.3), (4.9), and (4.10) for

each step of the adaptation (without bisecting the adaptive step size). As shown in

Fig. 4.8, the solutions for k and ω are continuous even though the values of the closure

coefficients are discontinuous at the interface between the two segmentation regions.
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Table 4.3: D-DARK closure coefficients for the pipe flow with segmentation.

σk σω β β∗ α

Initial 0.5000 0.5000 0.07200 0.09000 0.5200
Adapted (G > Gst) 0.5001 0.4990 0.08496 0.07967 0.5159
Adapted (G ≤ Gst) 0.5002 0.4999 0.05088 0.1062 0.5201

dimensionless velocity gradient threshold of segmentation dimensionless velocity

gradient

4.6.3 Backward-facing step

This section considers a 2-dimensional backward-facing step in order to test the D-

DARK model for flows containing both free shear and wall-bounded shear. For this

case, we use experimental data published in [2, 3], which provides mean stream-wise

velocity data at N = 100 measurement locations. Thus, for each i = 1, . . . , N , the

measurement φm,i ∈ R is the mean stream-wise velocity at the ith location.

The experiment in [2, 3] was conducted with a reference Mach number of 0.128

and a reference temperature of 298.33 K. The height of the step was H = 0.01 m, and

the free-stream reference velocity was Uref = 43 m/s. Thus, the Reynolds number

based on height and reference velocity is approximately ReH = 28, 000. The simula-

tion domain and boundary conditions are defined to match those of the experiment.

Specifically, the flow field is initialized using free-stream conditions of 298.33 K and

101, 325 Pa. The inlet boundary conditions are Tt = 299.3109 K and pt = 102, 350 Pa,

and the pressure boundary condition at the outlet is p = 101, 325 Pa. The turbulence

intensity and eddy-viscosity-to-molecular-viscosity ratio at the inlet are It = 6.1×10−4

and µt/µ = 0.009. The upper and lower bounds (4.23) for the cost-function weights

are computed using φav = 40.85 m/s, which is the far-field mean stream-wise velocity.

The computational mesh for this test case is that distributed by NASA [125].

This mesh consists of 23, 216 cells and produces grid-independent results as deter-

mined through comparison with results from a similar mesh with 81, 280 cells. The
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(a) Solution for k

(b) Solution for ω

Figure 4.8: Radial solution of the k and ω variables at z = 0.8L obtained using the
1-region model (blue) and the 2-region segmentation model (red). For the latter case,
the solution is smooth.

computational mesh as well as the measurement locations are shown in Fig. 4.9.

Note that measurement locations near the wall are not shown because of the density

of these measurement locations.

The D-DARK model is initialized with standard values for the k -ω closure coef-

ficients [10], and the model adapts the closure coefficients until the cost J converges,

which occurs after nf = 4 steps. The initial and adapted closure coefficients are in

Table 4.4. The coefficient β decreases by 6.5%, and β∗ increases by 2.2%, while the
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(a) Entire computational domain

(b) Zoom-in view of the measurements points in
the flow

(c) Zoom-in view of the measurement points
near the step

Figure 4.9: Computational mesh used for the backward-facing step, with he measure-
ment locations shown as the dots.

remaining closure coefficients changed by approximately one-tenth of a percent.

Table 4.4: D-DARK closure coefficients for the backward-facing step.

σk σω β β∗ α

Initial 0.5000 0.5000 0.07200 0.09000 0.5200
Adapted 0.5004 0.4995 0.06732 0.09188 0.5206

The near-step flow using the initial closure coefficients is illustrated in Fig. 4.10 (a),

where Ωz is the z component of vorticity normalized by Uref and H. This figure shows

that the simulation captures important features of the flow, including flow separation

after the step and reattachment at x/H ≈ 6, which produces a large primitive recir-

culation region and a smaller counter-rotating secondary recirculation region close to

the step. Fig. 4.11 shows that the results with the initial closure coefficients agree with

the measurements near the far wall, but fail to capture near-wall features of the flow.

In particular, Fig. 4.11 (b) shows that the result with the initial closure coefficients

fails to capture the signature flow reversal in the x/H = 1 recirculation region. How-
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(a) Initial

(b) Adapted (1 region)

(c) Adapted (2 regions)

Figure 4.10: Vorticity contours and streamlines for the backward-facing step. Results
are shown for the D-DARK model with (a) the initial closure coefficients, (b) the
adapted closure coefficients with one region, and (c) the adapted closure coefficients
with two segmentation regions. For the 2-region case, the segmentation threshold is
Gst = 15.

ever, Fig. 4.11 shows that the adapted D-DARK model (with one region) improves

agreement with the measurement relative to the results with the initial closure coef-
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(c) x/H = 4
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Figure 4.11: Mean stream-wise velocity Ux profiles for the backward-facing step at 4
cross sections: (a) x/H = −4, (b) x/H = 1, (c) x/H = 4, and (d) x/H = 6. Results
are shown for the D-DARK model with the initial and adapted closure coefficients (1
and two segmentation regions), and for the measurement data, which are stream-wise
velocities at 100 locations [2, 3]. For the 2-region case, the segmentation threshold is
Gst = 15.

ficient. Notably, the flow profile at x/H = 1, shown in Fig. 4.11 (b), for the adapted

D-DARK model captures the flow reversal. Comparing Fig. 4.10 (b) to Fig. 4.10 (a),

we note that the adapted D-DARK model produces a longer recirculation region than

the initial model, where the re-attachment is at approximately x/H ≈ 6.5 rather than

x/H ≈ 6. In addition, the secondary recirculation near the face of the step is also

larger. These topological differences between the initial and adapted D-DARK model
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flows are reflected in the modeled surface-pressure coefficient

Cp =
p− pref

0.5ρU2
ref

, (4.25)

and surface-friction coefficient

Cf =
τw

0.5ρU2
ref

, (4.26)

where pref = 101.325 Pa is the reference pressure taken at the location of Uref . refer-

ence pressure Figure 4.12 shows the initial and adapted surface pressure and surface

friction on the wall (at y/H = 0 or y/H = 1) for the D-DARK model. In addi-

tion, Fig. 4.12 shows experimental surface-pressure and surface-friction data, which

is published in [2, 3]. These surface-pressure and surface-friction data are distinct

from the mean stream-wise velocity data φm,1, . . . ,φm,100 used by the adaptation al-

gorithm; however, all data is from the same experiment. Figure 4.12 shows that the

adapted D-DARK model improves agreement with the data relative to the initial

model. Specifically, the improvement from adaptation is noticeable in the surface

pressure downstream of the reattachment point and, importantly, downstream of the

last measurement location. Furthermore, adaptation improves agreement in the wall

shear stress throughout the domain.

Figure 4.13 shows that the cost with the initial closure coefficients is J(θ0) = 1.07,

whereas the cost with the adapted closure coefficients (with one region) is J(θnf
) =

0.96. Thus, adaptation reduces the cost by approximately 10%.

Next, we investigate using different adaptive closure coefficients in different spatial

locations of the flow to reduce the error between the adapted D-DARK model and the

measurement data. We segment the flow using the magnitude of the dimensionless

velocity gradient G given by (4.24). As shown in Fig. 4.14, segmenting the flow into

2 regions with the segmentation threshold Gst of approximately 15 minimizes the

converged cost, with similar behavior as observed for pipe flow.
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Figure 4.12: Surface-pressure coefficient and surface-friction coefficient for the
backward-facing step. Results are shown for the D-DARK model with the initial
and adapted closure coefficients (1 and two segmentation regions). The experimental
surface-pressure and surface-friction data are published in [2, 3]. For the 2-region
case, the segmentation threshold is Gst = 15.

To investigate further flow segmentation, we set a first segmentation threshold at

15 and conduct a parametric study where a second segmentation threshold is varied

across 8 orders of magnitude. As shown in in Fig. 4.14, the converged cost with 3-

region segmentation is not significantly lower than that with 2-region segmentation;

this trend is also similar to that observed with the pipe flow.

For the 2-region segmentation results, the D-DARK model is initialized with stan-

dard values for the closure coefficients [10] in both regions, and the model adapts the
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Figure 4.14: Cost J as a function of segmentation threshold for the backward-facing
step. For the 3-region case, the first segmentation threshold is 15.

closure coefficients until the cost J converges, which occurs after nf = 12 steps. The

initial and adapted closure coefficients are in Table 4.5. On step n = 9, the constraint

(4.3) was enforced by bisecting the adaptive step size; see (4.20)–(4.22) for details.

On this step, the unconstrained ratio β∗/β was less than 0.9; however, bisecting the
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Figure 4.15: Normalized mean stream-wise-velocity error between the D-DARK
model and the measurement data, which are stream-wise velocities at 100 loca-
tions [2, 3]. Results are shown for the D-DARK model with the initial and adapted
closure coefficients (1 and 2 segmentation regions) at 4 cross sections: (a) x/H = −4,
(b) x/H = 1, (c) x/H = 4, and (d) x/H = 6. For the 2-region case, the segmentation
threshold is Gst = 15.

adaptive step size enforced the constraint (4.3). Moreover, on step n = nf = 12, the

constraints (4.1), (4.3), (4.9), and (4.10) were satisfied without bisecting the adaptive

Table 4.5: D-DARK closure coefficients for the backward-facing step with segmenta-
tion.

σk σω β β∗ α

Initial 0.5000 0.5000 0.07200 0.09000 0.5200
Adapted (G > Gst) 0.5004 0.4995 0.08868 0.07982 0.5206
Adapted (G ≤ Gst) 0.5002 0.4998 0.06843 0.09231 0.5186
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step size.

The flow topology for the converged D-DARK model with 2-region segmentation,

where Gst = 15, is shown in Fig. 4.10 (c). Together, Figs. 4.10 (b) and (c) illustrate

relatively few differences between the converged D-DARK model with one region

and the converged D-DARK model with 2 regions. However, the mean stream-wise

velocity profiles in Fig. 4.11 show that the converged D-DARK model with 2 regions

improves agreement with the measurement—both in the recirculation region and in

the bulk flow region of the channel. Two-region segmentation also improves agreement

between the measured and modeled Cp and Cf as shown in Fig. 4.12.

Figure 4.15 shows the normalized mean stream-wise-velocity error |(φi(θn) −

φm,i)/φm,i| at each location i with the initial (i.e., n = 0) and adapted (i.e., n = nf)

closure coefficients with 1-region and 2-region segmentation. As shown in Fig. 4.15,

the initial closure coefficients result in an average normalized error of approximately

40% between the measured and simulated mean velocities. In contrast, the adapted

closure coefficients with 1-region and 2-region segmentation result in average normal-

ized errors of approximately 24% and 12%, respectively.

Figure 4.13 shows that the converged cost with 2-region segmentation is J(θnf
) =

0.76. Note that 2-region segmentation for the backward-facing step reduces the con-

verged cost by a factor of 21% relative to the 1-region converged cost. In contrast,

the 2-region segmentation for the pipe flow reduces the converged cost by a factor of

87% relative to the 1-region converged cost. Thus, the flow segmentation provided

less improvement for the more complex geometry of the backward-facing step.

The D-DARK model (both 1-region and 2-region) reduces the cost J and in the

process, captures key features of the measurement, specifically, within the reversed

flow region downstream of the step, which are not captured by the standard k -

ω closure coefficients proposed in [10]. This results in improved agreement in the

derived pressure and friction coefficients, although the accuracy of the friction factor
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of the segmented D-DARK simulation is reduced in the pressure recovery region.

4.6.4 NACA 0012 airfoil

The pipe-flow and backward-facing-step examples use the mean velocity to construct

the D-DARK cost function. The backward-facing-step example demonstrates an im-

provement agreement in the surface-pressure and surface-friction coefficients even

though adaptation is based on mean velocity. Frequently, surface parameters are the

only available measurement data. To demonstrate D-DARK in such a situation, we

consider a validation case in which the cost is constructed using surface-pressure data

around a NACA 0012 airfoil. For this case, we use experimental data published in [4],

which provides surface-pressure data at N = 25 measurement locations around the

airfoil. Thus, for each i = 1, . . . , N , the measurement φm,i ∈ R is the surface pressure

at the ith location.

The experiment in [4] was conducted with a reference Mach number of 0.15 and

an airfoil cord c = 1 m. Thus, the Reynolds number based on chord length is ap-

proximately Rec = 3 × 106. The boundary conditions are defined to match those

of the experiment. Note that this validation case includes both laminar and turbu-

lent regions of the flow field, which increases the complexity of the example. The

upper and lower bounds (4.23) for the cost-function weights are computed using

φav = 101, 325 Pa, which is the far-field mean pressure. The turbulence intensity

and eddy-viscosity-to-molecular-viscosity ratio at the inlet are It = 5.2 × 10−4 and

µt/µ = 0.009.

The computational mesh for this test case is that distributed by NASA [125].

This mesh consists of 57, 344 cells, and produces grid-independent results as deter-

mined through comparison with results from a similar mesh with 230, 529 cells. The

computational mesh as well as the measurement locations are shown in Fig. 4.16.

The far-field boundary is 500c from the airfoil, which minimizes the influence of the
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far-field boundary on the flow near the airfoil.

Figure 4.16: Computational mesh used for the NACA 0012 airfoil. The measurement
locations are shown as the dots.

The D-DARK model implements 2-region segmentation, where the segmentation

threshold is Gst = 15, which is the approximately optimal threshold for the previous

2 validation cases. The model is initialized with standard values for the k -ω closure

coefficients [10] in both regions, and the model adapts the closure coefficients until the

cost J converges, which occurs after nf = 10 steps. The initial and adapted closure

coefficients are in Table 4.6. The flow fields using the initial and adapted closure

coefficients are illustrated in Fig. 4.17, where Ωz is the z component of vorticity

non-dimensionalized using c and Uref . Differences are evident in the boundary layer

development between the results using the initial and adapted closure coefficients.

Specifically, the boundary layer and separated wake are noticeably thicker in the

adapted case. For this test case, the constraints (4.1), (4.3), (4.9), and (4.10) were

satisfied on each step of the adaptation without bisecting the adaptive step size.

Table 4.6: D-DARK closure coefficients for the NACA 0012 airfoil.

σk σω β β∗ α

Initial 0.5000 0.5000 0.07200 0.09000 0.5200
Adapted (G > Gst) 0.5003 0.4998 0.1383 0.1258 0.5186
Adapted (G ≤ Gst) 0.5004 0.4995 0.1038 0.1328 0.5206

Figure 4.18 shows the surface-pressure coefficient calculated from the experimental

data and the surface-pressure coefficient calculated from the D-DARK model results
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(a) Initial

(b) Adapted (2 regions)

Figure 4.17: Vorticity contours and streamlines for the NACA 0012 airfoil. Results
are shown for the D-DARK model with (a) the initial closure coefficients and (b)
the adapted closure coefficients with 2 segmentation regions, where the segmentation
threshold is Gst = 15.

with the initial and adapted closure coefficients. The difference between the data

and the D-DARK results with the initial closure coefficients is noticeable, whereas

the results with the adapted closure coefficients improves agreement with the data.

For the i = 1, . . . , 25 measurement locations, Fig. 4.19 shows the normalized error

between the surface-pressure coefficient Cp,m,i calculated from the experimental data

and the the surface-pressure coefficient Cp,i calculated from the D-DARK results.

As shown in Fig. 4.19, the initial closure coefficients result in an average error of

approximately 45% over the airfoil, but as large as 170% at the leading edge and

210% at the trailing edge. In contrast, the adapted closure coefficients result in an
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average error of approximately 12% over the airfoil, and peak errors of 95% at the

leading edge and 32% at the trailing edge. Thus, the average normalized error in the

surface-pressure coefficient reduces by approximately 73%.
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Figure 4.18: Surface-pressure coefficient for the NACA 0012 airfoil along the (a) x
direction and (b) y direction. Results are shown for the D-DARK model with the
initial and adapted closure coefficients (2 segmentation regions with Gst = 15.), and
for the measurement data, which are surface pressures at 25 locations [4].

Figure 4.20 shows the normalized mean pressure error |(φi(θn) − φm,i)/φm,i| at

each location i with the initial (i.e., n = 0) and adapted (i.e., n = nf) closure co-

efficients. As shown in Fig. 4.20, the initial closure coefficients result in an average

normalized error of approximately 0.10%, whereas the adapted closure coefficients
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result in average normalized error of approximately 0.043%. Thus, the average nor-

malized error in the absolute surface pressure reduces by approximately 57%. This

case therefore demonstrates that the D-DARK model can improve agreement between

measured and simulated results for cases where only surface parameters are available.

Note that the k -ω turbulence model does not necessarily predict transition to

turbulence. However, the D-DARK model does recover the effects of transition as it

adapts the coefficients to the measurement, whether transition effects are present or

not.

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

|(C
p
,i
−
C

p
,m
,i
)/
C

p
,m
,i
|

x/c

Initial
Adapted (2 regions)

Figure 4.19: Normalized surface-pressure-coefficient error between the D-DARK
model and the measurement data, which are surface-pressure coefficients calculated
from absolute surface pressure data at 25 locations [4]. Results are shown for the D-
DARK model with the initial and adapted closure coefficients (2 segmentation regions
with Gst = 15.).

4.7 Conclusions

The data-driven adaptive RANS k -ω (D-DARK) model is a new technique for sim-

ulating turbulent flow, where partial-but-incomplete measurement data is available.

The D-DARK model automatically adapts the k -ω closure coefficients to improve
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Figure 4.20: Normalized surface-pressure error between the D-DARK model and
the measurement data, which are surface pressures at 25 locations [4]. Results are
shown for the D-DARK model with the initial and adapted closure coefficients (2
segmentation regions with Gst = 15.).

accuracy of the CFD solution in comparison to the measurement data. For the three

validation cases in this chapter, the D-DARK model improves agreement with experi-

mental data in comparison to the results from a non-adaptive RANS k -ω model that

uses standard values of the closure coefficients. Results from these validation cases

suggest that the D-DARK model cost function and thus the accuracy of the adapted

D-DARK solution is most sensitive to two of the k -ω closure coefficients, namely, β

and β∗.

The D-DARK model is an alternative to high-resolution numerical simulations

such as DNS, which require significant computing resources. The D-DARK method

has potential application to pollution-dispersion prediction and the operation of wind-

turbine fields, where the boundary conditions will be difficult to replicate exactly

within simulation, but overall results can still be improved by model adaptation.

The D-DARK model presented here uses the k -ω closure model, and is therefore

subject to its assumptions and limitations, such as the requirement of extensive mesh
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refinement near the wall. The algorithm also relies on the calculation of an approx-

imate gradient which increases the computation time when using complex closure

equations, such as the k -ω model. However, the approach is not specific to the k–ω

model and could be used in conjunction with other turbulence models or even other

fluid physics that have coefficients to adapt [126]. Moreover, the D-DARK method

can potentially be implemented in unsteady simulations, thus broadening its range of

application.
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Chapter 5 Retrospective Cost Adaptive k - ω

Model

A real-time adaptive control technology, called retrospective cost adaptation (RCA),

is applied to automatically adjust the closure coefficients of the unsteady Reynolds-

averaged Navier-Stokes (URANS) k -ω turbulence equations. RCA approach has been

successfully validated on numerous control applications that have significant transient

behavior, which suggests that RCA is well suited for adaptation with unsteady flows.

The RCA-URANS k -ω model is verified by a statistically steady test case (pipe flow)

as well as two unsteady test cases: vortex shedding from a surface-mounted cube and

flow around a square cylinder. The results of all cases demonstrate that the k -ω

closure coefficients can be updated to match the measurement data. Specifically,

the periodicity in the simulated unsteady flow is in good agreement with the phase-

averaged experimental data. It is therefore concluded that the RCA-URANS k -ω

model is able to improve the original k -ω model results by adapting to measurement

data for both averaged steady and unsteady turbulent flows. Unless otherwise stated,

all notation in this chapter is defined with in this chapter and specific to this chapter.

5.1 Introduction

The phenomenon of turbulence is innate to natural and engineered systems and, as

a result, accurate modeling of its impact on fluid systems is critical for numerous

engineering problems. Thus, turbulence simulation within the framework of com-

putational fluid dynamics (CFD) has become an important tool for the design and

analysis of fluid systems, especially with the improvement in availability and power

of computational resources.
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Among the most commonly used CFD approaches to turbulence, direct numerical

simulation (DNS) produces the most accurate results, but still remains computation-

ally expensive for high Reynolds number problems, with computational cost increas-

ing as ∼ O(Re3). Large-eddy simulation (LES), Reynolds-averaged Navier-Stokes

(RANS), and their hybrid method, detached-eddy simulation (DES), are alternatives

to DNS; being less computationally expensive, but require some form of turbulence

model to either account for inadequate resolution or to close the system of equations.

The RANS and LES equations are obtained from applying averaging and filtering

processes, respectively, to the original Navier-Stokes equation. Although they use

different derivation methods, the resulting formulas are similar with an additional

dissipative term, referred to as the Reynolds stress (for RANS) or sub-grid scale

stress (for LES) that introduce additional unknowns and therefore require additional

equations to close the system of equations. Many different models have been proposed

to achieve closure, with the models attempting to accurately determine the impact

of the unresolved scales of turbulence on the resolved scales or mean flow. Common

to these Reynolds stress, or sub-grid scale, models is that all of them introduce semi-

empirical closure coefficients. Although certain assumptions and simplifications allow

experimental data to be applied to estimate these coefficients, they tend to produce

good results only in cases similar to the original experiments. When applied to more

complex geometries or conditions which deviate from the canonical case, the accuracy

of the simulation decreases correspondingly.

The goal of the current work is to provide an approach which allows applying

limited experimental data towards identifying closure coefficients which will then

accurately reconstruct the unmeasured portion of the flow field. For example, there

are many instances where measurement data can be obtained from a finite number of

discrete points inside the fluid domain. Rather than use this information to simply

verify the simulation results, we present an approach which will autonomously identify
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the closure coefficients that will provide the best agreement with the measurements.

To to achieve this objective, we build on prior work [111] and employ a data-driven

model adaptation approach. Numerous other applications for adaptation and data-

driven methods have previously been identified to improve the simulating accuracy

of the turbulence models. For example, scale-adaptive simulations [112, 113, 58, 114]

apply the von Kármán length scale to adapt the turbulence model to the scale of

the mesh. Adaptive wall functions, which compensate for the simulation at the cell

center nearest to the surface, have also be produced to adapt the wall function using

the local Reynolds number [115] or the estimated location relative to the logarithmic

layer [127, 117].

These approaches utilize the simulation results as a measure for driving the adap-

tation. However, instead of using simulated flow information for adaptation, data

assimilation has long been implemented with non-RANS models to improve flow-field

reconstruction or prediction (e.g., [69, 70, 71]). In meteorological modeling, measure-

ment data from different locations and times can be assimilated into the computa-

tional fluid dynamics (CFD) model [73, 74]. As another example, [75] applies a multi-

scale data assimilation method, which is based on stochastic super-parameterization,

to predict different scales of turbulence fluctuations.

Recently, data-driven and data-assimilation approaches have also begun to be

used with RANS models. For example, Duraisamy et al.[85] use machine learning

tools, such as artificial neural networks and Gaussian process regression, to produce

a model for an intermittency parameter introduced into the k -ω equations to better

predict bypass transition in boundary layers. More recently high fidelity simula-

tion and experimental data has been coupled with a new machine learning method,

termed multiscale Gaussian process regression, to develop more accurate closure for

the turbulence model [86]. The results highlight the potential of the machine learning

method as a data-driven modeling tool. They also apply this new data-driven method
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to transitional modeling [87]. Foures et al. [88] do not employ a closure model, but in-

stead replace the Reynolds stress term in the RANS equation with a forcing function,

and use the data to implement the forcing.

In this chapter, we apply the retrospective cost adaptive (RCA) method to deter-

mine the closure coefficients of the k -ω RANS model. The RCA method was initially

designed to control linear systems but has been extended to treat nonlinear systems.

One important benefit of RCA is that it does not require knowledge of the details

of the system, in this case the RANS equations and boundary conditions which are

producing the solution. Instead, it measures the response to an impulse introduced

into the system and uses this information to tune the adaptation [128]. Although

not utilized in the present work, RCA can also be applied to multi-input and multi-

output systems [129]. The main benefit of the approach for finding closure coefficients

is its ability to be applied to transient processes; this allows it to be implemented in

unsteady simulations.

In addition to offering improved performance over the similar approaches which

have been developed [111], the method can be applied to unsteady flow fields. The

RCA method was initially designed for system control [130, 129, 131] and has here

been adapted to determine the closure coefficients of the standard k -ω RANS model

by minimizing a performance parameter that is built using information from prior

time steps and limited measurement information. In the present work, we use either

velocity or pressure measurements, extracted from either a baseline simulation or

an experiment, to adapt the closure coefficients of an unsteady Reynolds-averaged

Navier-Stokes (RANS) simulation. Here, closure coefficients of the k -ω two equation

turbulence model are adapted, although the RCA approach is readily extended to

other turbulence models.
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5.2 Data-driven retrospective cost adaptation

The RCA-RANS k -ω model relies on known flow-field measurements (e.g., known

values of velocity or pressure) at N locations in the flow to adapt the k -ω closure

coefficients, which are required to solve Eqs. (3.28) and (3.29), and are given by

θ(n) = [α(n) β(n) β∗(n) σk(n) σω(n) ]T ∈ Rlθ . (5.1)

Note that the closure coefficients θ(n) are a function of the time step n, and subject

to the constraints described by (4.1), (4.3), (4.9), and (4.10). We use the term

measurement to describe information about the flow field that is known a priori at

N locations.

For i = 1, · · · , N , let φm,i(n) ∈ Rli denote the ith flow-field measurement, that

is, the flow-field measurement at the ith location, and let φs,i(n) ∈ Rli denote the

simulated flow-field value at the ith location. For all n ∈ N , {0, 1, 2, 3, · · · }, we

define

Φm(n) ,


φm,1(n)

...

φm,N(n),

 ∈ RlΦ , Φs(n) ,


φs,1(n)

...

φs,N(n),

 ∈ RlΦ , (5.2)

where lΦ ,
∑N

i=1 li. We also define the performance

ζ(n) , Φs(n)− Φm(n), (5.3)

which is used to adapt θ(n).

Let f(n) ∈ Rlf denote the feedback, that is, a vector of the simulated flow-field

results (e.g., mean velocities, or pressure coefficients), which serve as external drivers

for θ(n). For all n ∈ N, the closure coefficients are given by

θ(n) =
nc∑
i=1

Mi(n)θ(n− i) +
nc∑
i=1

Ni(n)f(n− i) + L(n), (5.4)

where nc is a positive integer, Mi(n) ∈ Rlθ×lθ , Ni(n) ∈ Rlθ×lf , and L(n) ∈ Rlθ . We

initialize Eq. (5.4) with Mi(0)=0, Ni(0)=0, and L(0) ∈ Rlθ as the initial vector of the
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k -ω closure coefficients. For example, L(0) can be the closure coefficients proposed

in [10]. Next, Eq. (5.4) can be written as

θ(n) = Q(n)ψ(n), (5.5)

where

Q(n) =

[
N1(n) · · · Nnc(n) M1(n) · · · Mnc(n) L(n)

]
∈ Rlθ×[nc(lf+lθ)+1], (5.6)

ψ(n) =



f(n− 1)

...

f(n− nc)

θ(n− 1)

...

θ(n− nc)

1



∈ Rnc(lf+lθ)+1. (5.7)

To derive an update equation for the parameters Q(n), which govern the closure

coefficients, we define the retrospective performance

ζr(n) = ζ(n) +
nr∑
i=0

Hi[Q(n)−Q(n− i)]ψ(n− i) (5.8)

where nr is a positive integer, and Hi ∈ RlΦ×lθ is the ith impulse response coefficient

from θ to ζ. It follows from Eq. (5.8) that the retrospective performance ζr(n) is

a surrogate measure for the performance ζ(n). More specifically, if the adaptive

parameter Q(n) is constant, then Q(n− i) ≡ Q(n) and Eq. (5.8) implies that ζr(n) ≡

ζ(n).

Next, Eq. (5.8) can be expressed as

ζr(n) =ζ(n) +
nr∑
i=0

[
ψT(n− i)⊗Hi

]
q(n)−

nr∑
i=0

Hiθ(n− i) (5.9)

=ζ(n)−
nr∑
i=0

ΨT(n)q(n) +Hiθ(n− i), (5.10)
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where

q(n) ,vecQ(n) ∈ Rlθ[nc(lf+lθ)+1], (5.11)

Ψ(n) ,
nr∑
i=0

ψ(n− i)⊗HT
i ∈ Rlθ[nc(lf+lθ)+1]×lΦ , (5.12)

where vecQ(n) is the vector formed by stacking the columns of Q(n), and ⊗ denotes

the Kronecker product.

Define the retrospective cost

J(n) ,
n∑
i=0

ζT
r (i)ζr(i) + (q(n)− q(0))TΓ(q(n)− q(0)), (5.13)

where Γ ∈ Rlθ[nc(lf+lθ)+1]×lθ[nc(lf+lθ)+1] is symmetric and positive definite. For each

n ∈ N, the retrospective cost J is minimized by

q(n+ 1) =q(n)− P (n)Ψ(n)Ω(n)−1ζr(n), (5.14)

P (n+ 1) =P (n)− P (n)Ψ(n)Ω(n)−1ΨT(n)P (n), (5.15)

where P (0) = Γ and

Ω(n) , I + ΨT(n)P (n)Ψ(n). (5.16)

Then, Q(n+ 1) is computed as

Q(n+ 1) = vec−1q(n+ 1) ∈ Rlθ×[nc(lf+lθ)+1], (5.17)

where vec−1 is the inverse vec operator, that is, vec−1vecQ(n) =Q(n). Note that

Eqs. (5.15) to (5.16) are a recursive-least-squares algorithm. In summary, the RCA

algorithm is given by Eqs. (5.5), (5.10) to (5.12), and (5.14) to (5.17).

If for any n ∈ N, the closure coefficients θ(n) lie outside of the ranges given by

Section 4.2, then θ(n) is projected to the boundary of the ranges given by Section 4.2.

However, in all results presented in this chapter, the closure coefficients θ(n) never

leave the ranges given by Section 4.2. For more information on projection of θ(n),

see [132].

99



In practice, the RCA algorithm will not drive the performance ζ(n) exactly to

zero. In other words, there is generally residual difference between the measurement

Φm(n) and the simulation Φs(n) due to factors such as noise in the measurements,

noise in the numerics, and the inability of a RANS k -ω model to match experimental

data perfectly. However, if ζ(n) does not converge to zero, then Eq. (5.14) suggests

that the parameter q(n), which determines the closure coefficients θ(n), will continue

to adapt, which can potentially lead to drift in both q(n) and θ(n). Parameter drift

is a well-known problem with adaptation algorithms [133].

To eliminate drift, we adopt a deadzone approach. Define the modified retrospec-

tive performance

ζ ′r(n) ,


ζr(n), if d(n) ≥ ε0,

0, if d(n) < ε0,

(5.18)

where

d(n) ,
Nd∑
i=0

∣∣||ζr(n− i)||2 − ||ζr(n− i− 1)||2
∣∣ , (5.19)

where Nd is a nonnegative integer, and ε0 > 0 is the threshold value. The deadzone

Eq. (5.18) relating ζr(n) to ζ ′r(n) is shown in Figure 5.1, where the width of the

Figure 5.1: Dead zone illustration.

deadzone is determined from Eq. (5.19). Thus, the RCA algorithm used in this
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chapter is given by Eqs. (5.5), (5.10) to (5.12), (5.18), (5.19), and

q(n+ 1) = q(n)− P (n)Ψ(n)Ω(n)−1ζ ′r(n), (5.20)

where P (n) and Ω(n) are given by Eqs. (5.15) and (5.16).

5.3 Verification and validation for steady flow

5.3.1 Verification for pipe flow

The RCA-RANS k -ω model is verified using the test case of air flow through a

pipe. The radius of the pipe is R = 0.06 m, length of the pipe is L = 2.4 m, and the

streamwise velocity at the inlet boundary is 9.1 m/s. The resulting Reynolds number,

formed from the area-averaged velocity and pipe diameter, is approximately 80, 000.

The quarter-pipe grid used for the simulation is comprised of 225, 000 cells, and

is shown in Figure 5.2. The grid-independence of the solution is determined through

comparison with a 106, 080 cell grid. To avoid a situation where two specified mea-

surement points are in the same cell, the finer grid is used. The turbulence intensity

and eddy viscosity ratio of It = 0.01 and νt/ν = 0.1, respectively, are used for the

initial condition of the whole domain as well as at the inlet. The gauge pressure of

the outlet boundary is 0 Pa. A no-slip boundary condition is applied at the wall, a

symmetry boundary condition is applied to the two azimuthal surfaces, and a zero-

velocity gradient condition is applied at the outlet. Within this simulated flow field,

‘measurement’ points are selected at z = 0.8L, consisting of the N = 24 locations

shown in Figure 5.2 spaced in the radial, r direction.

The selected measurement φm,i(n) for this case is the streamwise velocity Uz at

the ith measurement point, taken from a simulation using a ‘baseline’ set of closure

coefficients, provided in Table 5.1. The corresponding simulated value φs,i(n), is the

streamwise velocity Uz at the ith measurement point of a simulation starting from

the converged solution found using the ‘initial’ set of closure coefficients provided in
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(a) (b)

Figure 5.2: Computational mesh used for the pipe-flow verification and validation.
The measurement locations are shown as red dots.

Table 5.1. Since the measurement points are not in the cell center where the value can

be obtained directly from the solver, interpolation is needed. The cell-center value

of cell containing the measurement points and the gradient are used to calculate the

simulated value of the measurement points. This set of simulated value φs,i(n) is also

used as the feedback, which means f(n) = Φs(n). Thus, lΦ = 24, lf = 24, and lθ = 5.

Before implementing the RCA-RANS k -ω model, the impulse-response coeffi-

cients H0,H1,· · · ,Hnr at the measured points are determined. A steady simulation is

performed using an initial set of closure coefficients and allowed to converge. Then,

we impulse the closure coefficients, that is each closure coefficient is increased to

unity for one-time step and returns back to the original value on the following time

step. This process is performed on each closure coefficient independently. The differ-

ence between streamwise velocity Uz at the time steps following the impulse and the

streamwise velocity Uz prior to the impulse is used to determine the response of the

system and the impulse response coefficients H0, H1, · · · , Hnr at each of the N = 24

measurement locations. Figure 5.3 shows sample impulse response of streamwise ve-
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locity at every third measurement points. Following approximately 60 time-steps, the

flow field returned to its unperturbed condition. Note that the impulse response of β

and β∗ is larger than that of the other three coefficients.

0

−0.40

−0.20

0.20
Point 1

0

−1.40

−0.70

0.70
Point 4

0

−0.93

−0.47

0.47
Point 7

0

−0.33

−0.17

0.17
Point 10

0

−0.08

0.08

0.17
Point 13

0

−0.12

0.12

0.23
Point 16

0

−0.12

0.12

0.23
Point 19

0

−0.14

−0.07

0.07
Point 21

0

−0.12

−0.06

0.06

0 20 40 60 80 100

Point 24

H
n

H
n

H
n

H
n

H
n

H
n

H
n

H
n

H
n

Time step n
σk σω β β∗ α

Figure 5.3: Streamwise velocity impulse response Hn of pipe flow case at selected
radial locations. Location of measurement indicated in upper right of each subfigure.

From this impulse-response data, we select nr = 7, which is a sufficient number
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of steps to determine the initial direction of the impulse response.

The RCA algorithm is implemented with nc = 1, and the initial conditions

M1(0) = 0, N1(0) = 0, L(0) = [0.4500, 0.4500, 0.08300, 0.07600, 0.4500]T, and

P (0) = 10−20

145∑
i=1

eie
T
i + 10−5

150∑
i=146

eie
T
i (5.21)

where ei ∈ R150 is the ith column of the identity matrix. The last five diagonal

elements of Γ are equal to 10−5, which corresponds to L(n). This value dictates how

each coefficient can change for one adaptation step. If those five elements are too

large, the adaptation will be underdamped and oscillate, if too small the adaptation

will be overdamped and convergence times will be overly long.

As noted above, to test the RCA-RANS k -ω approach, a simulation is conducted

in which the target flow field, the baseline case, is generated using a standard set

of closure coefficients [10]. An additional simulation is run using the second set of

closure coefficients, which is allowed to converge. These are then referred to as the

‘Initial’ conditions for the adaptation. The adaptation is then initiated, and allowed

to converge to a third set of closure coefficients. The results following adaptation are

referred to as the ‘Adapted’ case. The closure coefficients for the baseline simulation

are compared to the initial value used, as well as the value of the closure coefficients

following adaptation in Table 5.1.

Table 5.1: RCA-RANS k -ω model closure coefficients for the pipe-flow verification.

σk σω β β∗ α

Baseline 0.5000 0.5000 0.07200 0.09000 0.5200
Initial 0.4500 0.4500 0.08300 0.07600 0.4500
Adapted 0.4500 0.4502 0.07351 0.09215 0.4504

The results show that two of the adapted coefficients, β and β∗, approached, but

did not return to the baseline values. Interestingly, the other three coefficients are

almost unaffected by the adaptation, demonstrating the coupling between coefficients
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Figure 5.4: Mean streamwise velocity Uz profile for the pipe-flow verification at z =
0.8L cross section.

and suggesting that multiple combinations of closure coefficient values may achieve

the same result.

The agreement between the adapted and baseline simulations is demonstrated in

Figure 5.4, which compares the profiles of streamwise velocity Uz normalized by the

average velocity Uref = 9.1 m/s. The profiles shown are from streamwise location

z = 0.8L and are those produced from the simulations using the initial closure co-

efficients and adapted closure coefficients. These velocity profiles are compared to

the measurement points extracted from the baseline simulation. The improvement in

agreement introduced by adaptation is clear, whereas the initial coefficients produce

higher velocities near the wall relative to the measurements, and lower velocities in

the free stream, the adapted coefficients are found to produce excellent agreement

over 99% of the flow field, with only a slight overshoot in velocity near the wall.

The resulting improvement can be seen from the overall error of 0.00434% found be-

tween the adapted simulation and baseline simulation, while the corresponding error

between the initial simulation and baseline simulation is 1.16%.

The ratio of closure coefficient value to its original value are shown as a function
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Figure 5.5: Curves of (a) ratio of closure coefficients to their initial value as a function
of time step, and (b) performance to adaptation steps for pipe verification case.

of time step in Figure 5.5(a). This figure shows that, whereas σk, σω and α have very

little change, most of the improvement of the solution is through adaptation of β and

β∗. These two coefficients change more than 10%, adjusting monotonically towards

their final values. Figure 5.5 (b) shows the corresponding performance of the adap-

tation as measured through the averaged 2-norm of performance value, ‖ζ(n)‖/N .

Through adaptation, the performance value drops from 0.1058 to 3.845× 10−4.
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Figure 5.6: Mean streamwise velocity Uz profile for the pipe-flow verification at z =
0.5L cross section.
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Figure 5.6 shows the mean streamwise velocity Uz profile at z = 0.5L cross section.

Although this location is not used for adaptation, the adaptation improves agreement

relative to the initial coefficient values initial result. To get a sense of the global

improvement offered by the adaptation, the difference between the volume-averaged

stream-wise velocity drops to 9.42×10−2 m/s from 2.07×10−1 m/s and the difference

in maximum streamwise velocity drops from 1.75 m/s to 0.22 m/s. This improvement

reflects that the quality of agreement is not limited to the measurement location.

These results thus demonstrate how the RCA-RANS k -ω model can successfully

adapt the closure coefficient values to autonomously improve the simulation of steady

flow fields when a measurement is available. Although the target coefficient values

are not recovered completely, the approach does find values which reproduce the

measured flow field.

5.3.2 Validation for pipe flow

The RCA-RANS k -ω model is validated using the same pipe flow case as Sec. 5.3.1.

Again, the radius of the pipe is R = 0.06 m, length of the pipe is L = 2.4 m, and

the streamwise velocity at the inlet boundary is 9.1 m/s. Reynolds number based

on area-averaged flow rate and pipe diameter is approximately 80, 000, and the same

boundary conditions used as described in Sec. 5.3.1. However, for the validation

case, we used the experimental fully-developed pipe flow data of Ref. [1] at a set

of i = 1 to 24 points as the measurement φm,i; and we used simulated streamwise

velocity Uz at the ith point retrieved from a simulation initiated with with the closure

coefficients of [10] as φs,i. The simulated value is also used as the feedback, which

means f(n) = Φs(n). Thus, lΦ = 24, lf = 24, and lθ = 5.

Since the coordinate points are not changed, the impulse response dataH0, H1, · · · ,

Hnr are the same as in Figure 5.3 at each of the N = 24 measurement locations. From

the impulse-response data, we select nr = 7.
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The RCA algorithm is implemented with nc = 1, and the initial conditions

M1(0) = 0, N1(0) = 0, L(0) = [0.5000, 0.5000, 0.07200, 0.09000, 0.5200]T, which are

the standard [10] k -ω closure coefficients, and

P (0) = 10−20

145∑
i=1

eie
T
i + 10−4

150∑
i=146

eie
T
i (5.22)

where ei ∈ R150 is the ith column of the identity matrix. These last five diagonal val-

ues are bigger than that of the verification case, which resulted in the parameter values

having more fluctuations during adaptation. The standard closure coefficients[10] are

used as the initial closure coefficients

At the beginning of the adaptation, the closure coefficients are set equal to the

initial values provided in Table 5.2 and the solution allowed to converge. Also shown

in Table 5.2 are the converged values of the coefficients as a result of adaptation. As

with the verification case, σk, σω and α had only small changes during adaptation,

whereas β and β∗ change by more than 5%, and appear to be more sensitive than

other closure coefficients. For this case, the ratio of β∗ and β changes from 1.25 to

around 1.08.

Table 5.2: RCA-RANS k -ω closure coefficients for the pipe-flow validation.

σk σω β β∗ α

Initial 0.5000 0.5000 0.07200 0.09000 0.5200
Adapted 0.5001 0.5000 0.07630 0.08219 0.5204

Despite this relatively small change in the coefficient values, there is a measur-

able improvement in the agreement between the simulation and measurement values.

Figure 5.7 compares the streamwise velocity at z = 0.8L determined from the initial

and adapted closure coefficients at the 0.8L cross-section to the experimental data

normalized by the average velocity Uref = 9.1 m/s.

The results show how the adaptation improves agreement with the measurement

data, particularly in the outer layer and most notably near the pipe centerline. There
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Figure 5.7: Mean stream-wise velocity Uz profile for the pipe-flow validation at z =
0.8L cross section.

is still some over-prediction of velocity within the overlap region, although near the

wall the adapted solution again improves agreement with measurements. It is found

that additional gains in agreement could be achieved by further subdividing the flow

field into two separate regions of adaptation (as done in Ref. [111]). However, this

additional improvement is beyond the scope of the present chapter. We note that

even without this additional step the adaptation process is able to produce a 35%

improvement between measured and simulated velocities from only a 5% adjustment

in closure coefficients.

The evolution of the the different closure coefficients as a function of the time step

is shown in Figure 5.8(a). The corresponding improvement in the averaged 2-norm

of performance is provided in Figure 5.8(b), which shows how the error between

the experimental data and simulated velocity, ‖ζ(n)‖/N , changes with time step.

After convergence, the adaptive process is stopped resulting in a 35% performance

improvement. Also, the impact of reducing the diagonal elements of Γ is that the

performance oscillates mildly for the first 100 time steps before slowly converging

to the final values. Note, however, that 75% of the improvement in performance
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occurs within the first few time steps. Thus adaptation could have been halted much

earlier in the simulation while preserving considerable gains in agreement between

measurements and the simulation.
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Figure 5.8: Curves of (a) percentage of closure coefficients to the original value and
(b) performance to adaptation steps for pipe validation case.

5.4 Verification and validation for unsteady flow

5.4.1 Verification for flow over a surface-mounted cube in a channel

One advantage of the RCA-RANS k -ω approach is that it is readily applied to un-

steady flows, provided that an unsteady measurement is available for adaptation.

To demonstrate this capability, we apply RCA-RANS k -ω to the simulation of a

three-dimensional surface-mounted cube in a fully-developed channel flow.

A sketch of this geometry is provided in Figure 5.9. This domain is divided into

364, 021 cells, with grid convergence verified through conducting a simulation using

a similar grid with 562, 349 cells. The geometry and flow conditions are selected to

match that of Ref. [5]. Thus the height of the cube is h = 0.025 m, and the average

streamwise velocity at the inlet boundary is 23 m/s. The Reynolds number formed

from h and mean inlet velocity is therefore approximately 40, 000. The inlet velocity
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is uniform with boundary conditions set to be that of turbulence intensity It = 0.04

and eddy viscosity ratio νt/ν = 10 respectively. The gauge pressure at the outlet

boundary is 0 Pa. Solid surfaces are set with no-slip boundary conditions, with the

left and right sides being symmetry boundary conditions. A zero-normal-velocity

gradient condition is applied at the outlet.

Figure 5.9: Sketches of top and side views of surface-mounted cube geometry adapted
from Ref. [5]. Measurement points are indicated by numbered red dots.

For this geometry complex, three-dimensional, vortex shedding forms within the

wake of the cube. Although complex, this shedding tends to occur at a fixed frequency

resulting in a periodic flow field, making this problem suitable for unsteady RANS.

Nine points are chosen inside the fluid domain as measurement locations. These

points are indicated in Figure 5.9 and are separated by 1h in the spanwise direction

at the mid-point of the channel, 2h downstream of the back face of the cube. The

selected ’measurement’ value, φm,i(n), is the Z-axis velocity Uz at ith point of a

simulation using the ‘baseline’ set of closure coefficients shown in Table 5.4. The

simulated value φs,i(n) is the value of Uz at the ith point of a simulation initiated
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using the ‘initial’ closure coefficients given in Table 5.4 and allowed to converge. The

simulated value is also used for feedback, which means f(n) = Φs(n). Thus, N = 9,

lΦ = 9, lf = 9, and lθ = 5.

Figure 5.10 shows the impulse-response H0, H1, · · · , Hnr of Uz the ith the mea-

surement point. The process of getting impulse-response coefficients is identical to

that used for pipe flow. Unlike the steady case, the impulse-response coefficients of

the unsteady case show strong evidence of the periodicity intrinsic to the flow. The

impulse-response coefficients do not disappear even after 12, 000 time steps, reflect-

ing the sensitivity of the phase of the vortex shedding to the closure coefficients.

Moreover, after the closure coefficients are impulsed, the phase of vortex shedding

adjusts. Nevertheless, periodicity is recovered after 6, 000 time steps. From the

impulse-response data, we select nr = 8000. The impulse-response coefficients for β

and β∗ are larger than those of the other three closure coefficients. Thus, we can

expect that the flow field will be more sensitive to changes in β and β∗. The RCA al-

gorithm is implemented with nc = 1, and the initial conditions M1(0) = 0, N1(0) = 0,

L(0) = [0.4000, 0.4500, 0.06200, 0.08000, 0.4500]T, and

P (0) = 10−20

70∑
i=1

eie
T
i + 10−6

75∑
i=71

eie
T
i (5.23)

where ei ∈ R75 is the ith column of the identity matrix.

As with the simulations of Sec. 5.3.1, we performed a simulation employing stan-

dard closure coefficients, and refer to this as the baseline case. The simulation is then

repeated with a different set of closure coefficients (referred to as the initial values).

Once the solution with the initial values converged, the adaptation is turned on, using

the values of Uz of the ‘baseline’ case at the measurement locations as the target for

adaptation.

The closure coefficients are presented in Table 5.3. As with the steady simulation,

σk, σω and α only changed slightly during adaptation whereas most of the influence on
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Figure 5.10: Impulse response of Uz for the 9 measured points used for the surface-
mounted cube case.

the flow field is through modifications made to β and β∗. These coefficients changed

by 7.2% and 7.1% respectively.
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Table 5.3: Closure coefficients for the surface-mounted cube case.

σk σω β β∗ α

Baseline 0.5000 0.5000 0.07200 0.09000 0.5200
Initial 0.4000 0.4500 0.06200 0.08000 0.4500
Adapted 0.4003 0.4482 0.05754 0.07431 0.4513

Figure 5.11 shows the time series of Uz for the initial closure coefficients at each of

the nine measurement locations. The development of the velocities at these locations

during adaptation, as well as the measurement values, are also shown in Figure 5.11.

The RCA method is started at the 40, 000th time step with one adaptation occur-

ring at every ten-time steps. Following initiation of the adaptation, it took approx-

imately 30, 000 time steps for the closure coefficients to approach their final values.

During this time, the solution demonstrated large-scale oscillations. However, once

the closure coefficients converged, the time series of velocity produced by the adapted

simulation is very close to the measurement time series, with the phases of the vor-

tex shedding synchronized. Note that, in Figure 5.11, Point 5 appears to have more

discrepancy than other points, but this is due to the low value of the velocity in

the middle of the wake. Hence this point did not have much contribution to the

performance. The remaining points are found to produce a near perfect fit between

the adapted results and the measurement. The overall error between the baseline

simulation and the adapted simulation dropped to around 0.25% of the the average

streamwise velocity at the inlet, while the corresponding error between the baseline

simulation and the initial simulation is 2.26%.

The evolution of the closure coefficients is provided in Figure 5.13(a). As expected,

the majority of the adaptation is through β and β∗. In this case, although their

final values are not far from their initial values, they demonstrated large oscillations

during the initial phase of adaptation; eventually settling down to their final converged

values. The result of the solution is apparent in the averaged 2-norm of performance

‖ζ(n)‖/N , which is shown in Figure 5.13(b). This metric shows that the error dropped
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relatively quickly. However, following this initial decrease, it took significantly longer

for the adaptation to eliminate the phase shift between the measurement and the

adapted velocities, apparent in the high-frequency oscillations of ‖ζ(n)‖/N . Thus,

much of the convergence time is taken up correcting this phase difference.

Figure 5.12 compares the power spectrum of the Uz velocity at measurement point

4 in the surface-mounted cube case. The main frequencies of ’Initial’, ’Measurement’,

and ’Adapted’ cases are all equal to 51.23 Hz. However, the ’Initial’ case has secondary

frequency around 100 Hz. After adaptation, not just the secondary frequency is

disappeared, the magnitude is also equal to the ’Measurement’.

This verification case shows that the RCA-RANS k -ω model can be applied to

unsteady simulations. It can adapt the solution to match the magnitude and phase

of the periodicity of the measurement. However, to precisely match the phase and

amplitude of the oscillating flow, it took significantly more computational time than

for the steady simulations.

5.4.2 Validation for flow over a square cylinder

To validate the capability of RCA-RANS k -ω model for unsteady simulation, we con-

sider the case of a two-dimensional, square-cross-section, cylinder which results in the

periodical shedding of von Kármán vortices. The geometry used for this simulation is

presented in Figure 5.14(a), along with the flow characteristics designed to match the

experimental conditions of Ref. [134]. Each edge of the cylinder is h = 0.03 m, and

the average stream-wise velocity of the air at the inlet of the domain is uniform and

set to 9 m/s. The Reynolds number based on this length and velocity is, therefore,

18, 000. The computational grid used is comprised of 81, 932 cells, as shown in Figure

5.14(b), and grid-independence is verified by comparison to a 123, 524 cell mesh.

The inlet conditions for turbulence intensity and eddy viscosity ratio are respec-

tively It = 0.01 and νt/ν = 1. As shown in Figure 5.14, a no-slip boundary condition
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Figure 5.11: Comparison of simulation results for initial and adapted closure coeffi-
cients to corresponding measurement values.

is applied to all the solid surfaces, a symmetry boundary conditions are applied to

the upper and lower boundary, and a zero normal-velocity gradient is applied to the
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Figure 5.12: Fourier transform of Uz velocity at point 4 in surface-mounted cube case.
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Figure 5.13: Curves of (a) percentage of closure coefficients to the original value, and
(b) performance to adaptation steps for the surface-mounted cube case.

outlet. The gauge pressure at the outlet boundary is set to 0 Pa.

Two measurement points are selected, located centrally in the top and bottom

faces, as indicated in Figure 5.14(a). At these locations, the phase-averaged pressure

measurements of Ref. [134] are used to generate the target measurement conditions.

This phase-averaged result, combined with the measured vortex shedding frequency,

is used to reconstruct unsteady time series of pressure coefficient

CP =
p− pref

0.5ρU2
ref

, (5.24)
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(a)

(b)

Figure 5.14: (a) Sketch of square-cylinder geometry and (b) corresponding detail of
simulation mesh. The red points in (a) are the location of the measurement points.

where p is the local static pressure, ρ is the fluid density, free-stream static pressure

pref = 0 Pa, and the free-stream average velocity Uref is 9 m/s. These pressure

coefficient time series at two locations, i = 1 to 2 on the top and bottom surface of

the cylinder respectively, are used as the measurement values of the adaptation φm,i.

The simulated value, φs,i, are then the time series of CP retrieved from a simulation

starting with initial closure coefficients. The simulated values are also use as feedback,

which means f(n) = Φs(n). Thus, N = 2, lΦ = 2, lf = 2, and lθ = 5.

Figure 5.15 shows the impulse-response coefficients H0, H1, · · · , Hnr of CP for

6, 000 time steps at the measurement points, where impulse-response coefficients are

the difference between pressure coefficient after the impulse is introduced and the

pressure coefficient prior to the impulse at ith point. The impulse-response coefficients
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of β and β∗ are again found to be higher than those of σk, σω and α. Figure 5.15

also shows that the impulse caused a phase relative to the pre-impulse state. After

2, 500 time steps, the magnitude of fluctuations did not change. Thus, nr = 2, 500 is

deemed necessary for determining the RCA-RANS k -ω model conditions.
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Figure 5.15: Impulse response Hn of pressure coefficients for 2 measured points of
square-cylinder case.

The RCA algorithm is implemented with nc = 1, and the initial conditions

M1(0) = 0, N1(0) = 0, L(0) = [0.5000, 0.5000, 0.07200, 0.09000, 0.5200]T, and

P (0) = 10−20

35∑
i=1

eie
T
i + 10−6

40∑
i=36

eie
T
i (5.25)

where ei ∈ R40 is the ith column of the identity matrix.

As with the prior validation case, the initial values of the closure coefficients are

set to the standard values shown in Table 5.4. The RCA method is then initiated at

the 40, 000th time step. One adaptation is performed every ten-time steps. Following

adaptation, the closure coefficients converged on the values presented in Table 5.4. As

in the previous cases, σk, σω and α only adapt a small amount, whereas most of the

influence on the flow field is exerted through β and β∗. In this case β changes from

0.07200 to 0.08307 and β∗ changes from 0.09000 to 0.08626 and the ratio between β∗

and β changes from 1.25 to 1.04.

119



Table 5.4: RCA-RANS k -ω closure coefficients for the square-cylinder validation.

σk σω β β∗ α

Initial 0.5000 0.5000 0.07200 0.09000 0.5200
Adapted 0.5000 0.5002 0.08307 0.08626 0.5199

The evolution of the closure coefficients and averaged 2-norm of performance dur-

ing adaptation, as measured through ‖ζ(n)‖/N , are shown as Figure 5.16(a) and

(b) respectively. Here, ‖ζ(n)‖/N is the error between measured pressure coefficients

and simulated pressure coefficients. After adaptation, performance drops from 0.56

to around 0.05 and fluctuated at a small range. Following convergence, some oscil-

lations remained in the performance, suggesting adaptation is not able to eliminate

the phase shift, unlike for the surface mounted cube case. However, the majority of

improvements in performance occurred in just 2500 time steps, which corresponds to

the largest change in β. β∗, conversely, adapts much more slowly and shows some

oscillations during convergence.
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Figure 5.16: Performance and closure coefficients of verification case for applying
RCA-RANS k -ω model on square-cylinder case.

The time series of CP for the top and bottom faces of the cylinder are presented in

Figure 5.17. In this figure, the reconstructed experimental time series of CP alongside

time series produced by the simulation with the initial closure coefficients as well as
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the final adapted simulation are presented. There is a significant difference between

the initial simulation and the measurement, with the initial simulation producing

pressure oscillations almost double that of the measurement. The most likely reason

for this being that the two-dimensional simulation is unable to capture the modulation

of the shedding cycle due to three-dimensional effects [135]. However, as shown in

Figure 5.17, the adaptation compensates for this difference after the first 2500 time

steps of adaptation. The agreement between the simulation and measurement, in

both the magnitude and phase, improves significantly, and once fully converged, only

a slight difference in magnitude remains.
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Figure 5.17: Compare the time series of 2 measured points of square-cylinder case.

The initial flow field after 45, 000 time steps is illustrated in Figure 5.18(a), and the

adapted results at the same time step is shown in Figure 5.18(b). This figure shows an

overall view of the periodic vortex-shedding flow field reproduced by simulation. Even

though their time step is the same, their phase and magnitude are both different. The

phase angle of the initial case is around 135◦ while the phase angle of the adapted

result is around 180◦. The magnitude of CP for the initial result is found to be

significantly larger than the measurement at the same phase of shedding. After

adaptation, the magnitude of CP is very close to the measured one.
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(a)

(b)

Figure 5.18: Isocontours of pressure coefficients CP of the square-cylinder case, shown
at the 45, 000th time steps for the (a) initial case, and (b) adapted case.

The power spectra determined through Fourier transform of the time series of

CP extracted from measurement point 1 are compared in Figure 5.19. The spectra

confirm that although the initial simulation captured the frequency of the pressure

fluctuations correctly at 4.08 Hz, it over-predicted the magnitude of these fluctuations.

In addition, the initial simulation contained peaks at higher harmonic frequencies that

are not present in the measurement. Following adaptation, the power spectrum of

the simulated CP almost exactly matched that of the measured CP .

5.5 Conclusions

The RCA-RANS k -ω model is a new data-driven adaptive technique for steady and

unsteady simulation of turbulence, where partial-but-incomplete measurement data
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Figure 5.19: Fourier transform of Cp velocity at point 1 in square cylinder case.

is available. It can automatically adapt the closure coefficients of the k -ω model

to improve the accuracy of the CFD solution in comparison to the measurement

data. This model is verified and validated both on steady turbulence case and phase-

averaged periodical turbulence flow in this chapter; the RCA-RANS k -ω model can

decrease the error of experimental data in comparison to the results from a RANS

k -ω model with standard closure coefficients. Results from these verification and

validation cases suggest that the RCA-RANS k -ω model is most sensitive to two of

the k -ω closure coefficients, namely, β and β∗. It proves that the periodicity of the

turbulence can be controlled by the closure coefficients of the k -ω model.

The RCA-RANS k -ω model is an alternative to high-resolution numerical simu-

lations such as DNS, which require significant computing resources. The RCA-RANS

k -ω model has potential application to airborne pollution-dispersion prediction and

the operation of wind-turbine fields, where the boundary conditions will be difficult

to replicate exactly within the simulation, but overall results can still be improved

by model adaptation. The RCA-RANS k -ω model can be implemented in unsteady

simulations, thus broadening its range of application.
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Chapter 6 Final Summary and Conclusions

6.1 Summary

In this dissertation, a research work on prediction of fluid field using simulation and

sparse measurements is carried out. Two kinds of data-driven adaptive approaches

are implemented combining with k -ω turbulence model; One is numerical gradient

adaptive data-driven approach, another one is retrospective cost adaptive data-driven

approach. The following work has been done,

• The derivation of RANS equation from the compressible governing equation and

the incompressible governing equation is described. The process of getting the

conservation equation of turbulent kinetic energy and specific dissipation rate

is also given out.

• The compressible Reynolds-averaged Navier-Stokes equation and standard k -ω

turbulence model has been discretized and solved in KATS solver.

• The incompressible Reynolds-averaged Navier-Stokes equation and pressure Pois-

son equation has been discretized and solved in KATS solver.

• Trivial but important parts of KATS solver are also detailed, which includes

parallelization using MPI and domain decomposition.

• Code to code verification and experiments validation is carried out both for the

compressible solver and incompressible solver. Pipe-flow case under compress-

ible KATS solver is run and compared with fluent. A backward-facing step

benchmark case is also run with compressible KATS solver. Another pipe-flow

case under incompressible KATS solver is run and compared with measure-
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ments. These prove that both the compressible solver and incompressible solver

works correctly.

• D-DARK model which is based on numerical gradient adaptive RANS k -ω

model has been applied, and code to code verification and experiment validation

is carried out for pipe flow, a backward facing step flow and NACA 0012 airfoil.

• To give the governing equation more flexibility, the flow region can be divided

into difference regions by some threshold, such as distance to the wall, velocity

gradient. Every region has different parameter value. According to our test,

non-dimensional velocity gradient is a nice variable to distinguish turbulent

phenomena. A threshold value is found which could be more appropriate to

divide the regions.

• An RCA data-driven k -ω model which could adjust its closure coefficients ev-

ery time step. It can be applied to unsteady simulation. The retrospective cost

adaptation (RCA), which was developed for real-time adaptive control technol-

ogy but is used in this work for data-driven model adaptation. RCA has been

successfully validated on numerous control applications that have significant

transient behavior, which suggests that RCA is well suited for adaptation with

the unsteady flow. The RCA-RANS k -ω model is verified with a statistically

steady test case (pipe flow) as well as two unsteady test cases: vortex shedding

from a surface-mounted cube and flow around a square cylinder.

6.2 Conclusions

Both the D-DARK model and RCA-RANS k -ω model are using an adaptive algo-

rithm to improve the simulation result based on the sparsely measured result. They

both can automatically adjust the closure coefficients of k -ω turbulent model.
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The D-DARK model is validated with three canonical flow geometries: pipe flow,

the backward-facing step, and flow around an airfoil. The adaptive model parameters

are found to improve agreement with the measurement points about the simulation

using non-adapted closure coefficients.

The RCA-RANS k -ω model is suitable for steady simulation as well as for simulat-

ing unsteady simulation. The model can automatically adjust the closure coefficients

at every time step. The RCA-RANS k -ω model is verified on a statistically steady

test case (pipe flow) as well as two unsteady test cases: vortex shedding from a

surface-mounted cube and flow around a square cylinder. All cases demonstrate that

the k -ω closure coefficients can be updated to match the measurement data.

The D-DARK model can only deal with the steady simulation, while RCA-RANS

k -ω model can deal with both steady and unsteady simulation. D-DARK model

needs longer time to response after numerical perturbation, while RCA-RANS k -ω

model theoretically can adjust the parameter value every time step. Thus, RCA-

RANS k -ω model should be faster than D-DARK model. However, the RCA-RANS

k -ω model need to calculate the impulse response data at every measured point,

which also cost extra time and calculations. Thus, both methods have their advan-

tages and disadvantages.

Copyright c© Zhiyong Li, 2017.
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Appendix A: Proof of Theorem 1

Proof. It follows from (4.12) and (A3) that

J(θ) =
N∑
i=1

(Φiθ +ψi − φm,i)
T W i (Φiθ +ψi − φm,i) , (6.1)

which implies that

∂J(θ)

∂θ
= 2

N∑
i=1

(Φiθ +ψi − φm,i)
T W iΦi. (6.2)

Since θ∗ is a minimizer of J , it follows that

∂J(θ)

∂θ

∣∣∣∣
θ=θ∗

= 2
N∑
i=1

(Φiθ∗ +ψi − φm,i)
T W iΦi = 0. (6.3)

Next, define θ̃n , θn − θ∗, and it follows from (6.1)–(6.3) that

J(θn)− J(θ∗) =
N∑
i=1

(
Φiθ̃n + Φiθ∗ +ψi − φm,i

)T

W i

× (Φiθn +ψi − φm,i)

−
N∑
i=1

(Φiθ∗ +ψi − φm,i)
T W i

× (Φiθ∗ +ψi − φm,i)

=
N∑
i=1

θ̃T
nΦT

i W i (Φiθn +ψi − φm,i)

+
N∑
i=1

(Φiθ∗ +ψi − φm,i)
T W iΦiθ̃n

=
1

2

(
∂J(θ)

∂θ

∣∣∣∣
θ=θn

+
∂J(θ)

∂θ

∣∣∣∣
θ=θ∗

)
θ̃n

=
1

2

(
∂J(θ)

∂θ

∣∣∣∣
θ=θn

)
θ̃n,

which combined with (4.17) implies that

ξopt,n =

(
∂J(θ)/∂θ|θ=θn

)
θ̃n

‖Γ(θn)‖2
. (6.4)
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Therefore, assumption (A2) implies that

ξopt,n =
θ̃T
nΓ(θn)

‖Γ(θn)‖2
. (6.5)

Next, it follows from (4.16) and (4.17) that

Jn(ξn) = −2ξnθ̃
T
nΓ(θn) + ξ2

n‖Γ(θn)‖2. (6.6)

Since (A1) implies that Γ(θn) 6= 0, it follows from (6.6) that Jn(ξn) < 0 if and only

if

0 < ξn <
2θ̃T

nΓ(θn)

‖Γ(θn)‖2
= 2ξopt,n, (6.7)

which confirms the first statement of the theorem.

To show the last statement of the theorem, note that (6.6) is quadratic in ξn.

Since, in addition, Γ(θn) 6= 0, it follows that Jn(ξn) is minimized by ξn such that

dJn(ξ)/ dξ|ξ=ξn = 0. Thus, (6.5) implies that Jn(ξn) is minimized by ξn = ξopt,n.

128



Bibliography

[1] M. Hultmark, S. C. C. Bailey, A. J. Smits, Scaling of near-wall turbulence
in pipe flow, Journal of Fluid Mechanics 649 (2010) 103–113. doi:10.1017/

S0022112009994071.

[2] D. M. Driver, H. L. Seegmiller, Features of a reattaching turbulent shear layer
in divergent channel flow, AIAA Journal 23 (2) (1985) 163–171. doi:10.2514/
3.8890.

[3] S.-W. Kim, Calculation of reattaching shear layers in divergent channel with
a multiple-time-scale turbulence model, in: 28th Aerospace Sciences Meeting,
AIAA Paper 90-0047, Reno, NV, 1990. doi:10.2514/6.1990-47.

[4] N. Gregory, C. L. O’reilly, Low-speed aerodynamic characteristics of NACA
0012 aerofoil section, including the effects of upper-surface roughness simulat-
ing hoar frost, Reports and Memoranda 3726, Aeronautical Research Council
(January 1970).
URL http://naca.central.cranfield.ac.uk/reports/arc/rm/3726.pdf

[5] D. Lakehal, W. Rodi, Calculation of the flow past a surface-mounted cube
with two-layer turbulence models, Journal of Wind Engineering and Industrial
Aerodynamics 67 (1997) 65–78. doi:10.1016/S0167-6105(97)00063-9.

[6] H. Grant, R. Stewart, A. Moilliet, Turbulence spectra from a tidal channel,
Journal of Fluid Mechanics 12 (02) (1962) 241–268.

[7] F. Payne, J. Lumley, One dimensional spectra derived from an airborne hot-wire
anemometer, Quarterly Journal of the Royal Meteorological Society 92 (393)
(1966) 397–401.

[8] C. M. Sheih, H. Tennekes, J. Lumley, Airborne hot wire measurements of the
small scale structure of atmospheric turbulence, Physics of Fluids 14 (2) (1971)
201–215. doi:10.1063/1.1693416.

[9] S. Thorpe, T. Osborn, J. Jackson, A. Hall, R. Lueck, Measurements of tur-
bulence in the upper ocean mixing layer using autosub, Journal of Physical
Oceanography 33 (1) (2003) 122–145.

[10] D. C. Wilcox, A complete model of turbulence revisited, in: 22nd Aerospace
Sciences Meeting, AIAA Paper 84-0176, Reno, NV, 1984. doi:10.2514/6.

1984-176.

[11] J. McDonough, Introductory lectures on turbulence physics, mathematics and
modeling.

129

http://dx.doi.org/10.1017/S0022112009994071
http://dx.doi.org/10.1017/S0022112009994071
http://dx.doi.org/10.2514/3.8890
http://dx.doi.org/10.2514/3.8890
http://dx.doi.org/10.2514/6.1990-47
http://naca.central.cranfield.ac.uk/reports/arc/rm/3726.pdf
http://naca.central.cranfield.ac.uk/reports/arc/rm/3726.pdf
http://naca.central.cranfield.ac.uk/reports/arc/rm/3726.pdf
http://naca.central.cranfield.ac.uk/reports/arc/rm/3726.pdf
http://dx.doi.org/10.1016/S0167-6105(97)00063-9
http://dx.doi.org/10.1063/1.1693416
http://dx.doi.org/10.2514/6.1984-176
http://dx.doi.org/10.2514/6.1984-176


[12] P. Sagaut, S. Deck, M. Terracol, Multiscale and multiresolution approaches
in turbulence: LES, DES and hybrid RANS/LES methods: applications and
guidelines, World Scientific, 2013.

[13] C. Winkler, S. L. Rani, Relative importance of the lift force on heavy particles
due to turbulence driven secondary flows, Powder Technology 190 (3) (2009)
310–318.

[14] S.-E. Kim, Large eddy simulation using unstructured meshes and dynamic
subgrid-scale turbulence models, in: 34th AIAA Fluid Dynamics Conference
and Exhibit, AIAA Paper 2004-2548, Portland, OR, 2004. doi:10.2514/6.

2004-2548.

[15] C. Pantano, D. I. Pullin, P. E. Dimotakis, G. Matheou, LES approach for high
reynolds number wall-bounded flows with application to turbulent channel flow,
Journal of Computational Physics 227 (21) (2008) 9271–9291.

[16] M. Germano, U. Piomelli, P. Moin, W. H. Cabot, A dynamic subgrid scale
eddy viscosity model, Physics of Fluids 3 (7) (1991) 1760–1765. doi:10.1063/
1.857955.

[17] C. Meneveau, P. Sagaut, Large eddy simulation for incompressible flows: an
introduction, Springer Science and Business Media, 2006.

[18] J. Bardino, J. H. Ferziger, W. C. Reynolds, Improved turbulence models based
on large eddy simulation of homogeneous, incompressible turbulent flows, Stan-
ford Univ. Report 1.

[19] J. W. Deardorff, Numerical investigation of neutral and unstable planetary
boundary layers, Journal of the Atmospheric Sciences 29 (1) (1972) 91–115.

[20] A. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow:
Algebraic theory and applications, Physics of Fluids 16 (10) (2004) 3670–3681.
doi:10.1063/1.1785131.

[21] J. Smagorinsky, General circulation experiments with the primitive equations:
I. the basic experiment*, Monthly Weather Review 91 (3) (1963) 99–164.

[22] J. W. Deardorff, A numerical study of three-dimensional turbulent channel flow
at large reynolds numbers, Journal of Fluid Mechanics 41 (02) (1970) 453–480.

[23] W. Deconinck, Design and application of discrete explicit filters for large eddy
simulation of compressible turbulent flows, Ph.D. thesis (2008).

[24] J. A. Domaradzki, E. M. Saiki, A subgrid-scale model based on the estimation
of unresolved scales of turbulence, Physics of Fluids (1994-present) 9 (7) (1997)
2148–2164.

130

http://dx.doi.org/10.2514/6.2004-2548
http://dx.doi.org/10.2514/6.2004-2548
http://dx.doi.org/10.1063/1.857955
http://dx.doi.org/10.1063/1.857955
http://dx.doi.org/10.1063/1.1785131
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