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ABSTRACT OF THESIS 

SIMULATION OF HORSE-FENCE CONTACTAND INTERACTION AFFECTING 
ROTATIONAL FALLS IN THE SPORT OF EVENTING

Rotational falls, or somersault falls, have led to serious and fatal injuries during 

the cross-country phase of Eventing competitions. Research to improve the safety of the 

sport began in 2000 after five fatal injuries occurred in the 1999 Eventing season. These 

efforts led to safety devices such as air jackets, improved helmets, and frangible/

deformable fences. The focus of this thesis is to develop a more complete understanding 

of the horse-fence interaction as the approach motion transitions to a rotational fall. To 

achieve this, a large distribution of inertial properties was compiled through the

development of a cylinder-based inertia approximation and a citizen science effort 

to gather equine geometrical measurements through a survey distributed by the 

United States Eventing Association (USEA). Furthermore, fundamental kinematic 

properties of the horse and rider were gathered from the literature. These distributions 

were used to conduct a Monte Carlo analysis to examine if the approach conditions of 

the horse and rider would result in a transition to a rotational fall upon horse-fence 

contact. Through the analysis the sensitivity of the main control parameters was 

explored to determine the dominant variables in the transition. 

KEYWORDS: Rotational Falls, Somersault Falls, Eventing, Equestrian, Cross-Country 

Eventing, Equine Inertia 
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Chapter 1: Introduction 

The origins of the sport of Eventing date back to 1902 when the first Eventing 

competition that resembled the current sport took place at the Championnat du Cheval 

d’Armes in France [42].  Ten years later Eventing was brought to the Olympics when 

Count Clarence von Rosen, Master of the Horse to the King of Sweden, planned the 

event at the 1912 Summer Olympic Games. The objective of the competition was to test 

military officers and horses on any challenge that could occur on and off duty. Originally, 

competitions were limited to military officers but the restriction was lifted in 1951 in time 

to allow women to compete in the 1952 Helsinki Olympic games [25]. The most recent 

change to the sport was the implementation of the short format for all Three-Day Events 

that took place in 2004 and 2005. The short format shortened the Cross-Country Test by 

removing the Roads and Tracks, and Steeplechase phases [13]. 

In recent years the sport has focused major efforts on combating high-risk injuries 

through rule changes and safety devices.  One major cause for serious and fatal injuries 

for both the rider and horse is a rotational fall. A rotational fall is defined as a horse fall 

in which the horse somersaulted before landing [30]. Rotational falls are rare and have 

been steadily decreasing over the past decade, likely as a result of the safety efforts. 

According to the Fédération Equestre Internationale (FEI) 2005-2016 Statistics Report 

the percentage of starters that suffered a rotational fall in 2015 was 0.19% [17]. In 

comparison, in 2005 the percentage of starters that suffered a rotational fall was 0.45%. 
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 Even though rotational falls are rare they can be deadly. A study funded by Rural 

Industries Research & Development Corporation (RIRDC) and the Equestrian Federation 

of Australia (EFA) found that during the time span between May 1997 and September 

2007 25 rider deaths occurred around the world in the sport of Eventing. Of the 25 rider 

fatalities, 18 were a result of rotational falls [32]. To date, introduction of safety measures 

such as collapsible fences [27] and air jackets [7] have been undertaken to decrease the 

risk of rotational falls. However, a foundational analysis of the motion during rotational 

falls has yet to be undertaken and therefore is the focus of this thesis. 

1.1 Goals and Objectives 

The United States Eventing Association (USEA) initiated an effort in 2015 

focused on developing a more complete understanding of the motion and forces related to 

the horse-fence interaction as approach motion transitions to a rotational fall. This 

knowledge would explain proper use of existing frangible devices, provide understanding 

of benefits of geometric safety designs, and allow new deformable and resettable fence 

designs to be developed. The effort was divided into five tasks: 

1) Phased development of validated horse-fence interaction analyses to define key

parameters for rotational motion prevention

2) Revisit British Eventing (BE) on-course contact data analysis to complete publication

of the initial results and extract more detailed information of contact angle and force

for Task 1



3 

3) Video analysis of rotational fall videos to extract motion information for use in

validating the analyses of Task 1 

4) Expand previous literature review conducted by Katie Kahmann in 2009-2010 for all

information available on motion for validation of analyses of Task 1 

5) Review annual safety statistics in comparison with original published statistics to

evaluate performance effectiveness of currently available designs to see if a gap exists 

indicating the potential for implementation improvements with the results of this 

project 

1.2 Thesis Outline 

In this thesis, Chapter 2 presents not only a timeline of the major safety efforts to 

date, but also an overview of research with key significance to understanding the 

underlying mechanisms that occur in a rotational fall. Chapter 3 reports on the 

development of the cylinder-based mass moment of inertia approximation and its 

implementation to create a large database of geometric and inertial parameters. Chapter 4 

outlines the phenomenological model designed to capture the fundamental mechanics of 

the horse-fence interactions. Chapter 5 summarizes the results from the sensitivity study 

to determine the dominant control variables of the motion that occurs in rotational falls. 

Lastly, Chapter 6 recaps the efforts of this thesis, providing the major conclusions of this 

safety effort along with future work. 
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Chapter 2: Background and Literature Review 

2.1 Introduction 

Research regarding rotational falls in the sport of Eventing primarily dates from 

1999 with the deaths of five riders in the United Kingdom during the cross-country phase 

of Eventing competitions [30]. As a reaction to the deaths, the first International Eventing 

Safety Committee was established to review the sport and make recommendations [39].  

Prompted by the recommendations and the desire by the Eventing community to provide 

a safer sport environment several projects were undertaken. During the same period, 

several studies in the literature also focused on horses jumping obstacles. Internal forces 

such as moments and mechanical energy were examined focused on the hind limbs [12, 

3]. Measurement of kinematic quantities such as horse strides prior to jumps, jumping 

form, rider effects, and time characteristics have also received attention over the last two 

decades [8, 29, 34, 35]. 

Other published studies focus on quantifying key parameters such as equine 

inertial properties [43, 5, 31]. Human inertial properties were measured in studies 

performed for the aerospace field [6, 38]. In addition to providing a general timeline of 

safety efforts related to rotational falls in the sport of Eventing, this chapter highlights 

results of prior research that significantly contribute to this thesis. 
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2.2 Timeline of Safety Efforts 

Even though the sport of Eventing dates back to 1902, focused policy and 

research efforts on rotational falls did not commence until the year 2000. These efforts 

were driven by the deaths of five eventers in the cross-country phase of Eventing 

competitions held in the United Kingdom. In April 2000 as a response to the deaths, the 

British Horse Trials Association (BHTA) and the Fédération Equestre Internationale 

(FEI) jointly convened the 1st International Eventing Safety Committee. The Committee 

later released The International Eventing Safety Committee Report in April 2000 [39] 

also referred to as the “Hartington Report”. In the report the Committee outlined 

recommendations to the FEI and the BHTA, including the establishment of an FEI 

Annual Report to cover at least the following seven areas: 1) Medical, 2) Veterinary,

3) Training of Riders and Horses, 4) Cross Country Course Design, 5) Training and

Appraisal of Officials, 6) Rules and Tests, and 7) Statistics. Furthermore, specific 

recommendations were made in the following eight areas: 1) Statistics, 2) Riders, 3) 

Training and Qualifications, 4) Officials, 5) Medical, 6) Equipment, 

7) Veterinary, and 8) Cross Country.

Among the recommendations was the formation of a worldwide statistical 

database regarding injuries to riders and horses along with any relevant details of the 

cross-country phase. The statistics were to be reviewed and published annually by the 

FEI with necessary actions taken to mediate any trends. 
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Another recommendation was an immediate investigation into helmets to 

establish the highest possible international specification for the sport. The Committee 

also requested an International Standard for Body Protectors. These recommendations 

along with others outlined by the Committee provided a direction for the sport to start 

addressing the safety of Eventing. 

A study that commenced prior to the 1st International Eventing Safety Committee 

and was mentioned in the Statistics section of the report was the study performed by Jane 

Katherine Murray at the University of Liverpool. The focus of this study was to conduct 

an epidemiological analysis of the risk factors associated with falls, both equine and 

rider, in the sport of Eventing [30]. The study collected data for 180 jumping efforts that 

resulted in a fall of the horse during the cross-country phase of Eventing competitions in 

the United Kingdom during 2001 and 2002. In Murray’s dissertation, which was 

published in 2004, two variable sets associated with increased risk were identified in two 

or more multivariable models. The first multivariable set was associated with the 

competitive nature of a rider. The variables included in this set were the rider’s 

knowledge of their position, previous refusals on the cross-country course, and cross-

country tuition (instruction or coaching) received by the rider. The second multivariable 

set was related to the fence and ground: 1) fences with a take-off or landing in water, 2) 

non-angled fences with a spread of two meters or greater, 3) angled fences and fences 

with a drop landing. 



7 

A study that ran concurrently with Jane Murray’s was conducted by the Transport 

Research Laboratory (TRL) based in the United Kingdom [40]. The TRL focused on the 

use of “Frangible Fence” technology as a method of improving safety in Eventing 

competitions. In their initial safety study, Incident Report Forms were distributed to allow 

the reporting of falls in the year 2000. Out of 45,000 cross-country starters, 853 forms 

revealed rider injuries to be 1 fatal, 20 serious, 134 slight, 597 uninjured, and 101 

unknown. TRL also conducted video analysis of falls to determine the nature of the fall 

related to rider injury. From this video analysis they determined two main findings that 

led to significant risk: 1) a landing angle (defined as the angle between the ground and 

the longitudinal axis running through the horse) greater than 90° and 2) if the location of 

the horse-fence contact occurred in the forearm (antebrachium) of the horse between its 

knee and elbow. If the contact was below the antebrachium the horse was able to safely 

go over the fence, and if it was higher the horse would remain behind the fence. 

Additionally, TRL designed and built a horse simulator impact tester (shown in 

Figure 2.1). The 475-kg tester was named New Equestrian Dummy (NED). NED was 

designed based on measurements taken at the University of Liverpool of mass, geometry, 

and center of mass (COM) from a post-mortem equine specimen. A rail system was

designed to provide the designated approach velocity and NED-fence contact point. The 

approach velocity was fixed at 6 m/s for all tests. The contact point was fixed at 150 mm 

below the elbow joint [1]. NED was then used to investigate four variables: critical 

vertical load, critical horizontal load, rail mass, and energy absorption. 
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Figure 2.1 Image of NED, a horse simulator impact tester created by TRL [1]

The critical vertical and horizontal loads were found to be 30 kN and 3.7 kN, 

respectively. A safety factor of two was then applied to the critical loads resulting in 

vertical and horizontal load limits of 15 kN and 1.85 kN, respectively. The rail mass was 

also explored in a freely supported post and rail fence. It was found that the maximum 
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rail mass before NED overturned was 300 kg. The last variable was energy absorption 

and it was found that this variable did not prevent rotational falls. 

Subsequently, TRL constructed and tested frangible pins that were designed to 

fail at the critical loads that were determined by the NED horse simulator impact tester 

under sponsorship of British Eventing. The frangible pins were trialed through the 2002 

season at 13 British Eventing competitions, and 14 FEI events across three continents 

[37]. The pins broke twice in the 2002 season at Weston Park Prelim and at the Boekolo 

CCI***. Frangible pins are still in use. 

In 2007, the FEI created the Safety Sub-Committee, which met in June in London, 

England [26]. The Committee’s mission was defined by four tasks: 1) identify all areas of 

concern, 2) investigate or trigger specific investigations, 3) manage all issues related to 

Eventing safety by recommending rule updates and policy changes in the sport, and 4) 

communicate on all findings. 

The following year, the FEI took two major steps. First, the World Safety Summit 

was held at Copenhagen, Denmark on January 26, 2008. Second, as part of the FEI 

Eventing Safety Program, national federations appointed Eventing Safety Officers who 

met for the first time on January 24th and 25th in Hartpury, England.  

Also in 2007, a new effort began at the University of Bristol. The objective of the 

effort was to gain a better understanding of loads applied to the obstacles along with the 

dynamic behavior of the horse at collision. The Bristol student team designed and built 
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the Bristol Equine Safety Subject (BESS) to model the horse’s body and front leg. The 

geometry was formed using 50 mm mild steel box sections and designed to be one third 

of the horse mass. The muscle stiffness of the horse was approximated by using a 

covering for the leg composed of a combination of fabric and foam. The material 

combination was selected because it matched the horse muscle stiffness measured by a 

myotonometer. The Bristol team measured a horse muscle stiffness of 4 N/mm while 

conducting measurement on horses available at the University of Bristol Veterinary 

department. A frame from the video recordings of the BESS impact test can be seen in 

Figure 2.2. 

Figure 2.2  Image of BESS during an impact test [24] 
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Approach conditions for the testing performed with BESS were as follows: 

approach speed equal to 2.5 m/s, mass held constant at 150 kg, BESS-fence contact point 

fixed at 150 mm below the elbow, and synthetic muscle stiffness set at 2 N/mm. A high 

speed camera that could measure 500 frames per second was used to record the tests [24]. 

The tests were conducted using BESS to strike different fence setups at the prescribed 

conditions. From the tests it was found that the rail configuration that reduced the initial 

angular rotation the greatest was the reverse pin setup with the rail on the opposite side of 

the posts from the direction BESS was approaching. 

The Bristol team also conducted field testing using fence load cells. The load cells 

were placed on two post and rail fences at the Belton Horse Trials. Along with the Force 

measurements, the Bristol team also took high-speed video of the attempts. Out of the 

120 horses that completed the course there were no horse falls or rider falls. The team did 

measure forces from minor contacts. 

The Bristol Study continued in 2008, with further impact testing. BESS was used 

to conduct tests on both solid and frangible fences at three different velocities 

(2.2 m/s, 2.8 m/s, 3.3 m/s). From the findings it was hypothesized that the frictional force 

was a significant component of the measured horizontal force. To test the hypothesis a 

rotating rail was designed with a single steel shaft spanning its length and brackets on the 

posts. The rotating fence was tested in three configurations: 1) rotating fence on frangible 
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pins, 2) rotating fence on solid pins, and 3) rotating fence on solid pins that were 

constrained to prevent rotation. The three configurations were tested at two different 

approach velocities: 2.2 m/s and 3.3 m/s. In the tests of the rotational fence with frangible 

pins it was found that no critical rotations occurred. After the frangible pins failed from 

the impact the rail began to rotate, reducing the frictional component of the horizontal 

force and thus the angular velocity. However, the Bristol team was not able to decouple 

the effects of the reduced stiffness of the rotating rail and the decrease of friction. 

That same year (2008) a sports engineering consultant company named 

Competitive Measure Sports Engineering constructed a fence to take impact 

measurements during actual Eventing competitions [9, 10, 11]. The fence was sponsored 

by Goodyear and therefore named the Goodyear Safety Research Fence. The project 

continued in 2009 under the sponsorship of British Eventing. The British Eventing Safety 

Research Fence varied in geometry from the 2008 Goodyear Safety Research Fence. The 

results from this study were directly used for this thesis and are further explained in 

Section 2.4. 

In 2008 an effort was also conducted at the University of Kentucky under 

sponsorship of the United States Equestrian Federation (USEF) and the United States 

Eventing Association (USEA) [27]. The main goal of the project was the evaluation of 

Eventing safety designs. Furthermore, the project had four sub-objectives: 1) to survey 

the current state of research and available safety design within the sport, 2) to create a 

safety design evaluation and validation process, 3) to apply the evaluation process to 
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existing designs, and 4) to determine the process’s applicability to the wide range of 

safety designs within the sport. As part of the evaluation of frangible and deformable 

safety fence devices the University of Kentucky team conducted Monte Carlo computer 

simulations to study variable interactions on a hinged gate. Then a full-size hinged gate 

was build and tested. Also a scale-model resettable collapsible table jump was developed 

and constructed. 

In 2012, FEI released the standard for frangible devices [19] that was developed 

in 2011 with advice from academic and private industry leaders. The standards for 

frangible/deformable obstacles were implemented on January 01, 2013 for international 

competitions [18]. Six devices were approved for use: 1) MIM NewERA system MIM 

Clip, 2) MIM NewERA Safety MIM Pin, 3) BE Frangible Pin – Short, 4) BE Frangible 

Pin – Long, 5) MIM NewERA system MIM Wall Kit (not approved for Ponies), and 6) 

MIM NewERA system MIM Table Kit (not approved for ponies).  

Later, the 2015 FEI Eventing Risk Management Seminar took place in Madrid, 

Spain [16]. In the FEI report from the seminar it was announced that statistics reports 

from 2015 forward would include a 10 year period. Also in the report were statistical 

results that made evaluation of the effectiveness of air jackets difficult. The results 

showed that in 2013, 30% of serious injuries occurred even though the rider used an air 

jackets while in 2014 the number rose to 71%. 
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On the 26th of July 2016, a report prepared by Charles Barnett for the FEI was 

released [2]. The report dealt with the collection of data, safety, riders and their 

qualifications, and the appeal of the sport and its future.  Included in the report was a 

study titled “Analysis of horse falls related to jumping efforts during the cross country 

test of FEI Eventing competitions” and was prepared by Dr. Nia Huws, Dr. Jane Murray, 

and Dr. Ellen Singer. The study analyzed data from 2008-2014 for variables that either 

increased or decreased the risk of horse falls. There were five findings from this study. 

One key finding was that frangible fences had an increased risk. In the study, it was 

found that for 94% (118/125) of horse falls at frangible fences the frangible device had 

not activated. The team was not able to obtain comparative data relating to the number of 

frangible devices that were activated in the absence of a horse fall or unseated rider. 

Therefore, it was not possible to explore whether frangible fences had prevented any 

horse falls. 

To further illustrate the safety efforts in Eventing a timeline was created in Figure 

2.3. The figure does not include all the events, but tries to create a concise picture for the 

reader. 
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Figure 2.3 Timeline of Eventing safety efforts
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2.3 Inertial Properties 

Inertial quantities for horses and riders include mass and density, and 

combinations of these with geometry to produce center of mass (COM) and moment of 

inertia (MOI). For rotational motion, a key property among these is the moment of 

inertia. This property can either be calculated as a composite body, measured, or 

determined via a combination of measurement and composite-body calculations. Due to 

the complex composition and geometry of both the horse and the rider, both empirical 

measurements and calculations alone are extremely difficult to perform. Therefore, a 

combination of experimental measurements and composite-body methods has been the 

optimal way to obtain moment of inertia. 

Three prior studies determined equine inertial properties [43 31, 5]. All three used 

horse cadavers that were divided into a specified set of segments. Two of the three 

studies were performed at Utrecht University. The earlier of the two was performed on 

ponies as part of a computer model of equine locomotion [43]. The second study used 

Dutch Warmblood cadavers [5]. The final was performed on limb segments of various 

breeds [31]. Cadaver segment mass, density and volume was also measured by Kubo et al 

in a fourth study [28]. All four will be discussed in the following paragraphs arranged by 

the order of importance to the current thesis. 

The most complete study of horse inertial properties is the Inertial Properties of 

Dutch Warmblood Horses [5]. Six Dutch Warmblood cadavers were each dissected into 

26 segments. Average values for mass, density, segment COM, and the inertia tensor 
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were determined. In addition, regression equations were provided for selected properties 

of specific segments. Additionally, measurements for each of the six horses were 

obtained directly from the author for this thesis, but only three of the horses had full 

measurements available [4].   

Both experimental measurements and geometrical approximations of inertial 

properties were determined for five ponies [43]. Each of the five ponies were dissected 

into 25 segments. The average segment CG, segment mass moment of inertia about the 

sagittal plane of motion, and segment mass were tabulated in the dissertation. Regression 

equations for the moment of inertia for some segments were also provided. Resulting 

regression equations are functions of a reference length and segment mass. Additionally, 

photographs of the horses enabled a geometrical approximation via digitized photographs 

to calculate segment volume, volume moment of inertia, and volume center. These 

volume inertial parameters were transformed to their mass counterparts through the use 

of multiplication factors that were optimized using measurements from the cadavers.  

The researchers of the most recent study adopted a different approach [31]. Rather 

than selecting a specific breed of horse the researchers measured the inertial properties of 

various breeds. Furthermore the researchers did not measure inertial properties for the 

entire horse, but focused only on the limbs. Segment mass, segment COM, and mass 

moment of inertia were measured for 38 horses of different breeds and sizes. Various 

breeds were classified by their morphotype and temperament (cold-blooded, hot-blooded, 

and warm-blooded horses). Key findings are that the mass distribution of the limbs was 
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constant with size for animals under 600 kg. Also, no direct correlations exist between 

the inertial properties and a specific morphotype. The authors believed that differences 

observed in previous studies regarding inertial properties were based on segmentation 

technique rather than on body type and size. 

In the final of these, the researchers did not measure mass moment of inertia, but 

did measure segment mass, segment volume, and segment density [28]. The researchers 

conducted measurements on three frozen thoroughbreds that were dissected into 20 

segments. Researchers did provide both the individual measurements and average values 

for the three horses.  

Studies of human inertial properties are typically more abundant in the literature 

[15]. In March 1975 the Aerospace Medical Research Laboratory focused on measuring 

mass, COM, principal moments of inertia, and volume of six cadavers [6]. The Federal 

Aviation Agency effort focused on determining the COM of a man in various positions 

[38].   

The more useful study concerning human inertial properties was the Investigation 

of Inertial Properties of the Human Body that was conducted by researchers at the 

Aerospace Medical Research Laboratory [6]. The researchers focused on providing 

inertial properties for humans for use in the design and testing of impact protective 

systems. The researchers took measurements of six male cadavers. Cadaver weights, 

COMs, and moments of inertia were measured prior to dissection. Cadavers were then 
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each segmented into fourteen segments and segment mass, COM, moment of inertia and 

volume were measured for each. 

The second study for the Federal Aviation Agency focused on determining the 

CG of an adult male in various body positions [38]. The researchers took measurements 

of five men in 67 different positions. The subjects varied greatly in height and weight. 

The position that was selected as being the most similar to that of riders in equestrian 

events was that of a pilot operating controls with back erect, seat 90° to back, legs 50° to 

thighs, and both hands on overhead control. It should be noted that the COM of males 

does vary from females. However, no study was available to provide measurement of 

female COM in a position similar to that measured in the study. 

2.4 Kinetic properties of horses while jumping 

Kinetic properties that the competitors (horse and rider) exhibit during jumps will

be key to conducting any analysis. Researchers used a 16 mm motion picture camera to 

record Obstacle 15 at the 1990 Stockholm World Equestrian Games Three-Day Event 

[29]. An aerial sketch illustrates the shape of the obstacle that was the focus of the study 

and is reproduced as Figure 2.4.  The Obstacle referred to as the “Dog Kennel” or 

“Hundgarden” required a jump of 0.96m downward from a 3.12 m wide face across a 

1.98 m wide open space. The main purpose of the analysis was to characterize the 

variables for leads and temporal patterns of ground contact variables. Furthermore, as 

part of the study velocities at the approach stage were determined for 60 horses. A 

distribution of these measurements can be seen in the histogram in Figure 2.5 which was 
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constructed from the reported data. The range of velocities recorded was 4.59 m/s – 

6.92 m/s. It should be noted that the velocity used for the TRL NED impact tester (6 m/

s) occurs within this range.

Figure 2.4 Aerial sketch of Obstacle 15 called the “Dog Kennel” or the “Hundgarden” 

[29]
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Figure 2.5 Velocities of 60 horses during the approach phase  using data form [29])

Another measured quantity was the airborne time. The researchers found that 

airborne times during the jumps were shorter for the higher placed horses. The top 

quartile of competitors had an airborne time of 0.282±0.019 seconds. Conversely, the 

bottom quartile had an airborne time of 0.355 ±0.020 seconds. 
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Time motion characteristics for different competition levels in show jumping 

were also researched in a separate study. Videographic recordings measured both the 

airborne time and time between fences. It was found that even tough speed did not vary 

between levels the time was progressively decreased from preliminary (80.8 seconds), 

intermediate (75.0 seconds), and open (67.5 seconds) [8]. One key observation of this 

study was the difference in airborne times between this study that focused on the sport of 

show jumping, compared to the study performed on the cross-country phase in the sport 

of Eventing [27]. 

Equine jumping form and the effects of riders were studied with a focus on the 

techniques used by untrained horses during loose jumping. The study consisted of Super-

VHS (Super Video Home System) video recordings of 31 untrained horses. The horses 

jumped a 1 m high by 0.5 m wide fence. Using qualitative evaluation, the horses were 

divided into two groups: good and poor. The good group consisted of 18 horses while the 

poor group consisted of 13 horses. After analyzing 20 kinematic variables significant 

variations were found between the two groups. The main differences were in the 

horizontal velocity at the last approach stride (Good: 5.7 ±0.80 m/s; Poor: 6.42± 0.95 

m/s), relative carpal angles at take off, height of the COM over the center of the fence, 

horizontal velocity at landing (Good: 5.26 ±0.92 m/s; Poor: 6.27± 0.84 m/s), and angle

of the COM to the ground at landing [34].  
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The authors also considered effects of the rider on the jumping horse. This study 

took SVHS video recordings of eight horses jumping a vertical 1 m high fence in two 

conditions, loose and ridden. Loose riding was defined as the horse jumping the obstacle 

without the rider. Furthermore, once the videos were digitized, the rider’s digitized data 

was removed to provide a new condition of just the horse to be analyzed. Results from 

this study showed that the effect of the riders are primarily due to behavioral changes in 

the horses motion rather than inertial changes [35]. 

Similarly, equine kinematic properties were considered for horses jumping the 

wall at an international Puissance competition. Sagittal plane SVHS video recording 

(50 Hz frame rate) were used to measure six kinematic variables at take-off. Nine horses 

attempted the first fence in the competition at a fence height of 1.8 m. Two horses 

attempted the final round with a fence height at 2.27 m. The results of the study indicated 

that the body position at take-off was the most important aspect when jumping high 

fences [33]. 

Contact forces on the fence were measured during the cross-country phase of 

multiple Eventing competitions using adjustable transportable instrumented fences. No 

rotational falls were measured in the study. In 2008, featuring a single instrumented rail 

the Goodyear Safety Research Fence was used to measure the forces as shown in Figure 

2.6. In 2009, the British Eventing fence included two instrumented rails in an oxer 

configuration as seen in Figure 2.7. Forces were measured using load cells oriented both 



24 

horizontally and vertically at each end of the rails. Furthermore, all jump attempts were 

recorded using a high-speed camera. 

Competitive Measure, who constructed the fences and conducted the testing, 

provided the top 60 impacts in the 2008 data set and the top 229 impacts in the 2009 data 

set for further analysis. The contacts for the 2008 data set were separated into two 

categories using notes accompanying the experimental records: front leg contacts, and 

back leg contacts, resulting in only four front leg impacts in the data set. These results 

can be seen in Figure 2.8 plotted as a rose plot. The rose plot combines the number of 

occurrence and the contact vector direction. The frequency of occurrence is plotted in the 

radial direction with the center of the rose plot being set to zero. Along the 

circumferential direction the contact angle is plotted with 0° being set at the intersection 

of Quadrant IV and Quadrant I. The angles were defined in a counter-clockwise motion. 

Also for all the contacts the horse approached from the right. 

 There are two key findings to observe from Figure 2.8. First is the greater 

frequency of rear leg contacts. 90.7% (39/43) of the contacts measured were rear leg 

contacts Also the wide variation in the front leg contacts which spanned from -13° to 93°. 

The 2009 data set was similarly divided into four categories: front leg-front rail 

(FLFR, 35 contacts), front leg-rear rail (FLRR, 27 contacts), back leg-front rail (BLFR, 

98 contacts), and back leg-rear rail (BLRR, 61 contacts). Rose plots from the 2009 

British Eventing Safety Research fence are shown in Figure 2.9. The plots are divided 
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into four categories starting from the top left plot and going clockwise: FLFR, FLRR, 

BLRR, BLFR. The difference between front leg and back leg contacts can be clearly seen 

by the distribution of the number of occurrences per angle. This difference is important 

because safety devices have to be designed not to activate when experiencing these 

incidental contact forces. Therefore understanding both the contact force magnitude and 

its direction are necessary for the safety device design. As was previously mentioned, 

none of these contacts resulted in a rotational fall, however these results still provide 

some insight into what happens in a jump. For example the contacts beyond 90° were 

found to be mostly hoof strikes. For each of the contacts, the angle, duration, maximum 

force, and impulse were calculated among other quantities of interest. 
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Figure 2.6 2008 Goodyear Safety Research Fence [11] 

Figure 2.7 British Eventing Safety Research Fence [11] 
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Figure 2.8 Rose plots of the contact angles measured using the 2008 Goodyear Safety 

Research Fence. The rose plot on the left is all provided front leg contacts of the 60, 

while the plot on the right is all provided rear leg contacts 

4 contacts 39 contacts 
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Figure 2.9 Rose plots of the 2009 British Eventing Safety Research Fence. The rose plots 

are divided up into four categories. Starting from the top left and going clockwise the 

plots represent the categories FLFR, FLRR, BLRR, and BLFR 
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2.5 Summary of Available Data 

To better understand the available data for use in this effort, Table 2.1 

summarizes the current state. Eleven key parameters for the current effort were identified 

and are as follows: 1) contact velocity magnitude, 2) contact velocity direction, 3) take-off 

velocity, 4) airborne time, 5) contact force magnitude, 6) contact force direction,     

7) horse inertia, 8) rider inertia, 9) rider CG, 10) horse geometry, and 11) rider geometry. 

In the list of parameters contact velocity magnitude refers to the magnitude of the contact 

velocity at the instant just before the contact between the horse and the fence. Similarly, 

the contact velocity direction is the direction of the competitor (horse and rider) velocity 

vector at the instant before contact. Take-off velocity is different from the contact 

velocity because it takes place at the moment of time that the horse and rider first start the 

jumping trajectory. Airborne time is defined as the time that elapses from the take-off of 

the competitor to the moment the competitor lands. Contact force magnitude is defined as 

the amount of force that is applied by the horse on the fence. Similarly, the contact force 

direction is the elevation angle of the horse-fence contact. Both the horse inertia and the 

rider inertia are defined as the overall moment of inertia about axes perpendicular to the 

sagittal plane of motion. The last two parameters referred to the geometrical properties of 

both the horse and the rider.  

The parameters were divided into three categories for which Eventing research 

data is available. The categories were rotational fall, jumping, and standing. The 

rotational fall category lists the available research that was measured for each of the 

parameters during a rotational fall. The jumping category lists the data that is available 
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for jumps that either had no contacts or had slight contacts but did not lead to a rotational 

fall. The last category lists research that was measured for a horse in the standing 

position. 

A key factor to note from Table 2.1 is simply the lack of measured data that can 

be obtained from past Eventing research. Especially the rotational fall category has only 

one parameter with any available data. Moreover, the data that is available , 6 videos, was 

obtained from amateur videos and not a scientific study. Part of the lack of quantifiable 

data is simply due to how infrequently rotational falls occur. According to the FEI, in 

2015 the percentage of rotational falls was 0.19% which is 1 rotational horse fall every 

536 starters [17]. In 2015 the FEI statistics recorded 20,351 starters. Furthermore, there 

would be multiple fences per competition per starter. If this averaged 30, then there 

would be one rotational fall per 16,080 jump attempts. To fill the information gaps for 

rotational falls, available data can be used as a basis to appropriately approximate the 

correct physics.  Chapter 3 presents a closer look at horse and rider inertia.  
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Table 2.1 Summary of available data 

Parameter 

Eventing Research 

Rotational Fall Jumping Standing 

Contact Velocity 

Magnitude 
Not Available Not Available 

Contact Velocity 

Direction 
Not Available Not Available 

Take-off 

Velocity 
Not Available 60 Jump Attempts [29] 

Airborne Time 6 videos 60 Jump Attempts [29] 

Contact 

Force Magnitude 
Not Available 62 Front Leg Contacts [9, 10, 11] 

Contact 

Force Direction 
Not Available 62 Front Leg Contacts [9, 10, 11] 

Horse Inertia 

5 Pony Cadavers [43] 

6 Dutch Warmbood Cadavers [5] 

38 Fore and Hind Limbs only [31] 

Rider Inertia 6 Human Cadavers [6] 

Rider CG 1 Person [38] 

Horse Geometry Not Available Not Available 

Rider Geometry Not Available Not Available 

3
1
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Chapter 3: Inertia Approximation 

3.1 Introduction 

In order to model a rotational fall as it occurs in the sport of Eventing, inertial 

properties of the starter (horse and rider) are required. However, with only six horses, 

there is not a sufficient basis of inertial values from available data to be confident of 

breadth of applicability. Regression equations derived in two of the previous efforts were 

considered as a possible approach to expand the available data. However, not all the 

cadaver segments had regression equations determined for the moment of inertia about 

the sagittal plane. In addition, several segments that did have regression equations did not 

have sufficient information to calculate the segment mass required to use the moment of 

inertia regression equation. Breed differences in the sport further complicate the situation. 

Therefore, developing a simple geometric model as an inertia phenomena model was 

adopted as the approach. Available data from published studies serves as a metric to 

evaluate the validity and accuracy of the developed geometric model.  

3.2 Standing Inertia Models 

Inertial Properties of Dutchwarmblood Horse presented the most comprehensive 

information of the prior inertia studies. Properties of a standing inertia model referred to 

as DWB were calculated from the available data. The DWB inertia was then used to 

optimize a simplified geometrical model based on three cylinders representing the head, 

neck, and body (remainder) and referred to as TCM. Both the DWB and the TCM were 

oriented in a standing configuration as shown in Figure 3.1.  
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3.2.1 Dutch Warmblood (DWB) Standing Inertia Model 

The DWB inertia model was developed using measured data obtained by Dr. 

Buchner and his team for Horse 3, a Dutch Warmblood breed dissected into 26 segments. 

The segmentation of the horse is depicted in Figure 3.1. The local segment data recoded 

in the study is provided in Table 3.1 and Table 3.2. Note that the Tail segment was not 

included as it did not qualify as a rigid body and could not be measured using the 

pendulum method. Furthermore, differences between the left and right segments of the 

limbs were observed to be caused due to differences in segmentation and possible mass 

loss. Horse 3 was selected from the three available complete measurement sets because it 

was of similar height and weight to a living horse available for use to develop the 

approach of this thesis. 

Figure 3.1 Location of dissections for the 26 segments of the six Dutch Warmblood 

horses that were measured for inertial properties [5]

X 

Z 

Y 
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Table 3.1 Segment center of mass, segment mass, and segment reference length for Horse 3 

Provided by Buchner, 2016 [4] 

Segment 
CG absolute (m) Segment Reference 

X Y Z Mass (kg) Length (m) 

Trunk 0.6837 -0.1753 0.2400 353.0 1.6 

Head 0.2136 -0.0217 0.0896 21.6 0.3 

Neck 0.2382 0.1007 0.0422 28.4 0.5 

Scapula 0.0827 0.0852 -0.0463 -0.0461 0.0532 0.0583 12.0 12.2 0.3 0.3 

Brachium 0.1246 0.1442 -0.0218 -0.0292 0.0769 0.0506 8.6 9.4 0.3 0.3 

Antebrachium 0.1618 0.1466 -0.0004 0.0099 0.0551 0.0624 6.2 6.8 0.4 0.4 

Metacarpus 0.1268 0.1346 0.0022 -0.0005 0.0425 0.0486 1.4 1.5 0.3 0.3 

Pastern Forelimb 0.0602 0.0578 -0.0111 -0.0095 0.0410 0.0494 0.8 0.7 0.1 0.1 

Hoof Forelimb 0.0405 0.0282 -0.0142 -0.0197 0.0575 0.0397 1.1 1.2 0.1 0.1 

Thigh 0.2287 0.2165 -0.0230 -0.0211 0.0774 0.0681 18.1 15.6 0.4 0.4 

Crus 0.1601 0.1770 -0.0350 -0.0205 0.0683 0.0646 7.5 7.5 0.4 0.5 

Metatarsus 0.1121 0.1118 -0.0121 -0.0192 0.0413 0.0504 2.7 2.7 0.4 0.3 

Pastern Hind 

Limb 0.0568 0.0690 -0.0145 -0.0163 0.0381 0.0406 0.9 0.8 0.1 0.1 

Hoof Hind Limb 0.0284 0.0315 -0.0201 -0.0184 0.0489 0.0449 1.0 0.9 0.1 0.1 

3
4
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Table 3.2 Inertia tensor measurements of Horse 3 provided by Buchner, 2016 [4] 

Trunk

Head

Neck

Scapula 0.1357 0.1281 0.1658 0.1722 0.2968 0.3141 0.0006 -0.0432 0.0543 0.0657 -0.0085 0.0342

Brachium 0.0631 0.0732 0.0624 0.0915 0.1013 0.1326 0.0116 0.0372 -0.0035 0.0089 0.0033 -0.0025

Antebrachium 0.0185 0.0226 0.1167 0.1233 0.1279 0.1387 -0.0099 -0.0178 0.0036 0.0018 -0.0023 0.0031

Metacarpus 0.0009 0.0009 0.0118 0.0128 0.0117 0.0128 -0.0004 0.0011 0.0003 -0.0007 0.0010 -0.0012

Pastern Forelimb 0.0003 0.0003 0.0017 0.0012 0.0018 0.0013 -0.0001 0.0001 -0.0002 0.0000 -0.0003 0.0001

Hoof Forelimb 0.0018 0.0021 0.0022 0.0021 0.0018 0.0016 -0.0004 -0.0003 -0.0002 -0.0003 0.0002 0.0003

Thigh 0.2446 0.1485 0.2489 0.1854 0.2903 0.2743 0.0094 -0.0061 0.0297 0.0216 -0.0684 0.0492

Crus 0.0283 0.0274 0.1249 0.1319 0.1341 0.1358 -0.0075 -0.0140 0.0019 -0.0019 0.0112 -0.0092

Metatarsus 0.0037 0.0021 0.0456 0.0509 0.0490 0.0545 -0.0050 -0.0027 0.0007 -0.0027 0.0022 -0.0001

Pastern Hind Limb 0.0005 0.0003 0.0023 0.0016 0.0022 0.0017 -0.0001 -0.0004 -0.0002 -0.0001 -0.0002 0.0000

Hoof Hind Limb 0.0013 0.0012 0.0017 0.0016 0.0012 0.0011 -0.0004 -0.0004 0.0000 0.0001 0.0002 0.0003

0.0273

Pzx

-2.3838

0.0284

-0.1852

Pyz

3.3251

-0.0428

0.9257

Pxy

-2.2588

0.1517

0.33110.2481

Iyy

70.5660

0.4849

0.9339

Segment 
Ixx

30.6490

0.3766

Izz

55.6273

0.6361

Inertia Tensor (kg m
2
)

3
5
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The method used to calculate the COM of the DWB horse involved reducing the 

problem to two dimensions by taking the horse to be symmetric along the sagittal plane. 

The absolute X, Y axes were oriented horizontally and vertically with both laying in the 

sagittal plane as depicted in Figure 3.1, with the origin of the coordinates located at the 

fore hoof.  Each segment had a set of local axes that can be seen depicted in Figure 3.1. 

Furthermore, to find the X and Y coordinates of the COM it was necessary to assume 

angles for the standing position of the segments. These angles were defined from the 

positive global X-axis counterclockwise to the individual local segment x-axis and are 

tabulated in Table 3.3.  

Table 3.3 Angle from global X-axis to segment local x-axis 

Segment 
Angle to X-axis 

(°) 

Fore Hoof 50 

Pastern Forelimb 50 

Metacarpus 90 

Antebrachium 90 

Brachium 135 

Scapula 45 

Neck 135 

Head 225 

Trunk 0 

Thigh 45 

Crus 135 

Metarsus 90 

Pastern Hindlimb 55 

Hind Hoof 55 

Once the segment COM coordinates were converted to the absolute coordinate 

frame, then Equations 3.1 and 3.2 were used to calculate the composite COM, which was 

found to be located at X=0.74 m and Y=1.14 m. In Equation 3.1 Xi= segment x-

coordinate of COM, mi= segment mass, and X= composite x-coordinate of COM. In 
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Equation 3.2 Yi= segment y-coordinate of COM, mi= segment mass, and Y= composite 

y-coordinate of COM.

X̅=
∑ Xi

̅̅ ̅ mi

∑ mi

 , for i=1,…25 (3.1) 

Y̅=
∑ Yi

̅̅ ̅ mi

∑ mi

 , for i=1,…25 (3.2) 

After the DWB COM was calculated, the overall inertia tensor for the DWB had 

to be determined by rotating each segment inertia tensor to align with the global axes 

orientations before the composite body inertia is calculated. Segment rotations were 

conducted about the global Z-axis (perpendicular to sagittal plane) using Euler’s rotation 

theorem as defined in Advanced Engineering Dynamics [20]. The transformation used for 

all 25 segments can be seen in Equation 3.3, where theta is an arbitrary rotation angle.  

C= [
cos(ϑ) sin(ϑ) 0

-sin(ϑ) cos(ϑ) 0

0 0 1

] (3.3) 

The rotation transformation shown in Equation 3.3 was then used to rotate the 

segment inertia tensor. An inertia tensor is the matrix form of Iij where i and j can equal 

1,2, or 3 with 1 corresponding to the x-axis, 2 to the y-axis, and 3 to the z-axis. When i 

and j are equal the values are referred to as the moments of inertia and are located along 

the diagonal of Equation 3.3, while the others are the products of inertia.  To transform 
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the original segment inertia tensor into the rotated frame Equation 3.3 and its transpose 

are used as defined in Advanced Dynamics [21] and can be seen in Equation 3.4. 

Irotated=[C][Ioriginal segment][C]T (3.4) 

Once all the segment inertia tensors were oriented to the equine standing position the 

parallel-axis theorem or transfer formula was applied to each. The parallel-axis theorem 

is defined in both Advanced Mechanics of Materials and Applied Elasticity [41] and 

Engineering Mechanics: Dynamics [23] as a method to determine moments of inertia 

about any parallel axis when the moment of inertia of the body about an axis passing 

through the body’s mass center is known. The parallel-axis equation can be seen in 

Equation 3.5, where d is the perpendicular distance between the parallel axes. 

I=IG+md
2

(3.5) 

The parallel-axis theorem and the principle of superposition were used for each segment 

in turn to determine its inertia tensor about the horse COM. These were added to 

complete the composite-body inertia for the horse. The DWB inertia tensor about the 

COM can be seen in Equation 3.6.  

IDWB= [
266.9 231.3 231.4

231.3 306.7 237.3

231.4 237.3 293.2

]  kg m2  (3.6) 
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3.2.2 Three Cylinder Model (TCM) of Standing Inertia 

The TCM was developed with the main objective of allowing an effective and 

accurate method of estimating the moment of inertia about the axis perpendicular to the 

sagittal plane (IZZ) based on minimal noninvasive measurements of a living horse. The 

first step in achieving this objective was to reduce the number of elements required in the 

cylinder-based model. This was mainly to decrease the number of measurements needed 

from the horse.  

To determine what segments from the DWB had the greatest effect relative to a 

typical rotational fall contact, each segment was evaluated in two ways derived from the 

parallel-axis theorem. The first evaluation method used the distance, d, from a point at 

the midspan of the antebrachium segment to the COM of each segment. The point at the 

midspan of the antebrachium was used because in the literature this area had been 

identified as the critical area for rotational falls.  An illustration of this distance for key 

equine segments can be seen in Figure 3.2.  It should be noted that the rider was not 

included in this illustration but was included in the analysis. Utilizing the first evaluation 

method two results were obtained for each segment. The first results, referred to as md2, 

took into account the individual segment mass and the distance from the segment COM 

to the overall DWB COM. To better understand the importance of each segment md2 

term the percentage of each segment relative to the sum of the 26 md2 segment values 
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was also calculated. Results from the first evaluation method can be seen in Table 3.4 for 

each of the 26 segments.  

The results from the first evaluation shown in Table 3.4 highlighted that for the 26 

segments, all equine segments excluding the tail segment plus rider, the highest 

contributors due combination of high mass and segment COM location relative to overall 

DWB COM were the rider, and the horse head, neck, trunk, and thigh. A key observation 

was the variation between the right and left thigh segments. The variation is attributed to 

inconsistencies in the dissection process, along with possible mass loss from 

segmentation. 

The second method of evaluation took into account the full parallel-axis theorem 

contribution of each segment. Four properties were used for this evaluation: IZZ, md2, IZZ- 

plus-md2, and the percentage of each individual segment IZZ plus md2 term with respect 

the sum of all 26 IZZ-plus-md2 segment terms. The results from the second method of 

evaluation can be seen in Table 3.5.  
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Figure 3.2 An illustration of the distances used for the evaluation method for the segment 

contributions. The distance d used in the evaluation is highlighted by the red arrows.  The 

rider element is excluded in this image but was used in the analysis. The point of 
reference here is at the fore hoof, but later is calculated along the ante brachium between 

points 8 and 9 for the analysis.
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Table 3.4 First comparison method for inertias of segments of the DWB 

Segment md2 (kg m2) md2 (%) 

Rider 109.6 6.5 

Trunk 906.3 53.7 

Head 97.1 5.8 

Neck 82.0 4.9 

Scapula 19.2 16.5 1.1 1.0 

Brachium 6.1 5.0 0.4 0.3 

Antebrachium 2.8 2.1 0.2 0.1 

Metacarpus 0.1 0.0 0.0 0.0 

Pastern Forelimb 0.0 0.0 0.0 0.0 

Hoof Forelimb 0.0 0.0 0.0 0.0 

Thigh 185.2 107.6 11.0 6.4 

Crus 41.4 41.8 2.5 2.5 

Metatarsus 21.1 21.8 1.3 1.3 

Pastern Hind 

Limb 
5.1 5.1 0.3 0.3 

Hoof Hind Limb 6.0 6.5 0.4 0.4 
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Table 3.5 Second comparison method for inertias of the segments of the DWB 

Segment 
Izz md2 

Izz+md2 (kg 

m2) 

Izz+md2

(%) 

Rider 3.9 109.6 113.5 6.5 

Trunk 55.6 906.3 961.9 54.9 

Head 0.6 97.1 97.7 5.6 

Neck 0.9 82.0 83.0 4.7 

Scapula 0.3 0.3 19.2 16.5 19.5 16.8 1.1 1.0 

Brachium 0.1 0.1 6.1 5.0 6.2 5.2 0.4 0.3 

Antebrachium 0.1 0.1 2.8 2.1 2.9 2.2 0.2 0.1 

Metacarpus 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 

Pastern Forelimb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Hoof Forelimb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thigh 0.3 0.3 185.2 107.6 185.5 107.9 10.6 6.2 

Crus 0.1 0.1 41.4 41.8 41.6 41.9 2.4 2.4 

Metatarsus 0.0 0.1 21.1 21.8 21.2 21.8 1.2 1.2 

Pastern Hind 

Limb 0.0 0.0 5.1 5.1 5.2 5.1 0.3 0.3 

Hoof Hind Limb 0.0 0.0 6.0 6.5 6.0 6.5 0.3 0.4 

Total 1751.8 
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The results from the second evaluation shown in Table 3.5 were consistent with 

the results of the first evaluation. This showed that the md2 term dominates the results. 

Again, the primary segments were found to be the horse trunk, neck, head, thigh and the 

rider. The difference was minimal between the percentage contributions in both 

evaluation methods for each individual segment to the overall total.  

 It was hypothesized that the Thigh segment along with the other segments of the 

forelimbs and hind limbs could be included in a body cylinder along with the trunk. To 

verify this hypothesis four test cases were compared. Test Case 1 was defined as the full 

25 segment DWB model without any modifications and this is the reference for others 

which are approximations. Test Case 2 was defined as the DWB Head, Neck, Thigh, and 

Trunk segments only. Test Case 3 excluded the Thigh segment but kept the Head, Neck, 

and Trunk. Test Case 4 combined the forelimbs and hindlimbs including the thigh into a 

Body segment, while still keeping the Head and Neck segments. For all four cases the 

COM X and Y coordinates were found. The principal measure used to evaluate the four 

test cases was the angle Gamma defined as the angle from the positive horizontal axis to 

the overall COM calculated for each case. Results in Table 3.6 indicate that a Thigh 

segment does not need to be added separately (Case 2) due its small effect versus 

combining it into a Body segment (Case 4). Also shown was that the Body element 

performs better than simply using the Trunk segment. Therefore, the TCM can consist of 
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only the Head, Neck, and Body segments. This allows the TCM-plus-Rider model to 

consist of only Head, Neck, Body and Rider elements. An illustration of the TCM-plus-

Rider can be seen in Figure 3.3. 

Table 3.6 Evaluation of the significance of a Thigh element 

DWB COM Test Cases 
X-Coordinate

(m) 

Y-Coordinate

(m) 

γ* 

 (°) 

Case 1 0.74 1.14 57.0 

Case 2 0.70 1.06 56.6 

Case 3 0.65 1.02 57.5 

Case 4 0.70 1.04 56.1 
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Figure 3.3 An illustration of TCM plus the Rider elements 



47 

Each of the significant body elements is represented as an equivalent cylinder. 

Take the Head segment for example.  Two measurements that were used to create the 

head cylinder were the head length defined from the base of the ears to the tip of the nose 

and the head circumference below the cheek bone. Figure 3.4 shows the two 

measurements that were used for the head cylinder.  

Figure 3.4 Illustrations of the measurements used to create the Head segment 

x 
z 

y 
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The mass moment of inertia of the head cylinder about its local COM axis 

perpendicular to the sagittal plane can then be approximated by Equation 3.7, which 

was obtained from Engineering Mechanics: Dynamics [23].  

IZZ,H=
1

12
mH(3RH

2+LH
2) (3.7) 

In Equation 3.7 IZZ,H= mass moment of inertia of the Head, mH= mass of Head,  

RH= Head radius, and LH=Head length. As part of using the this approach the cylinder is 

assumed to be homogenous. As can be seen from the Equation, the IZZ approximation 

requires the element mass to be known. Therefore, a method had to be developed on how 

to approximate the element mass. Three methods were tested and compared to determine 

the optimal: 1) segment percentage, 2) volumetric approximation, and 3) published 

densities.  

The segment percentage method determined the mass of the head segment by 

using the percentage of the total mass that corresponded to the head. This percentage was 

found by taking the average head mass of the six horses that were studied in the Inertial 

Properties of Dutch Warmblood Horses and then finding its percentage with respect to 

the average total mass of the six horses in the study. By this method it was found that the 

head is approximately 4.3% of the total mass. To test this approximation the total mass of 

the living horse that is approximated would be multiplied by 4.3% resulting in the 

percentage of the horses’ total mass corresponding to the head. 

The volumetric approximation approach made use of an effective density. The 

effective density was calculated by taking the total mass of a living horse and dividing it 
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by the volume of the three cylinders (Head, Neck, and Body) used to construct the TCM. 

The effective density was then used to find the individual segment mass by multiplying 

the segment volume by the effective density.  

The published density approach used the average densities measured in the study 

Inertial Properties of Dutch Warmblood Horses. The density for the trunk segment was 

modified to be the average of not only the trunk segment density but also the segments 

composing the forelimb and the hindlimb. This modification resulted in a new density 

called the body density. Another study also found the densities of Thoroughbred horses. 

Results from both studies are listed below with the standard deviation of the densities 

shown in parenthesis. 

Dutch Warmblood Horses: 

Body Density=1,193 kg/m3 (0.054) 

In order to test the three methods of calculating segment mass, measurements 

from living horses had to be obtained. Measurements were obtained for four horses 

available to the University of Kentucky team. The measurements can be seen in Table 

3.7. Hugo was selected to evaluate the methods due to its similarities in weight and breed 

with Horse 3 from the DWB study. The IZZ term was approximated for Hugo using all 

three methods and then compared to the IZZ term measured in the DWB model as 

Head Density=1,081 kg/m3 (0.027) 

Neck Density=1,038 kg/m3 (0.002) 

Body Density=1,288 kg/m3 (0.01) 

Thoroughbred Horses: 

Head Density=1,031 kg/m3 (0.045) 

Neck Density=1,019 kg/m3 (0.015) 
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reference. The percent error of each comparison can be seen in Table 3.8. From this 

comparison it was observed that the published density method of estimating segment 

mass was the most accurate.  
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Table 3.7 Original set of measurements used to test segment mass approximation 

Horse Breed 

Horse 

Weight 

(kg) 

Length 

of Body 

(m) 

Heart 

Girth 

(m) 

Neck 

length 

(m) 

Neck 

Circumference 

(m) 

Head 

Length 

(m) 

Head 

Circumference 

(m) 

Tyler TB 482 1.6256 1.8796 0.7112 0.9144 0.6096 0.6350 

Tulepo TB 484 1.5494 1.9304 0.6604 0.9398 0.5842 0.5969 

Hugo Warmblood 535 1.6256 1.9939 0.8128 0.9652 0.6350 0.6604 

Rocky TB 449 1.4732 1.9050 0.7620 0.9652 0.5969 0.6223 

5
0
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Table 3.8 Percent error of the Izz component on the inertia of the DWB model and the 

three methods of estimating segments mass 

Following a similar process as that of the Head segment Equations 3.8 and 3.9 

were established. In Equation 3.8 IZZ,B= mass moment of inertia of Body, mB= mass of 

Body, RB= Body radius, and LB= Body length. Similarly, in Equation 3.9 IZZ,N= mass 

moment of inertia of Neck, mN= mass of Neck, RN= Neck radius, and LN= Neck length. 

IZZ,B=
1

12
mB(3RB

2+LB
2) (3.8) 

IZZ,N=
1

12
mN(3RN

2+LN
2) (3.9) 

3.2.3 Inertia Approximation for the Rider 

Once the geometric approximation for the horse was verified, then a similar 

approximation was needed to model the rider. Various methods have been developed to 

obtain inertial properties of a human [15]. These methods range from geometrical 

approximations, to penetrative methods that utilize x-rays. Typically, inertia 

approximations of a human body require several detailed measurements of the human 

body. In order to have a more effective inertia approximation for our purposes, a 

similar cylindrical approach as that was used. This approach used two principal 

publications of morphological properties [6,38]. 

Method Percent Error 

Segment Percentage 20.9% 

Volumetric Density 25.3% 

Published Density 4.1% 
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Human moment of inertia measurements were documented in a study for impact

protective systems in the aerospace field. During this study moments of inertia were 

measured for six cadavers with three in the seated position and three cadavers in the 

standing position [6]. Age, weight, stature, trochanterion height, CM- vertex, and 

principal moments of inertia were provided.  

Human mass centers in various positions was also the focus of another study 

conducted for the Federal Aviation Agency at the Civil Aeromedical Research Institute 

[36]. Researchers measured the location of the center of gravity of five living men in 

sixty-seven positions. Of these, the body position that was selected due to its similarities 

with a rider position was with the subject sitting back erect, seat 90° to back, legs 50° to 

thighs and both hands on overhead control [38] . An illustration of the body position can 

be seen in Figure 3.5.The location of the average CG was measured as 9% of the height 

from the chair. To compensate for the variation the author of this thesis selected to use 

10%. 

Figure 3.5 Illustration of the body position defined as sitting back erect, seat 90° 

to back, legs 50° to thighs and both hands on overhead control [38] 
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The rider CG cylinder-based approximation lead to a new parameter being defined 

as RCOM or Rider COM. The RCOM was defined as the distance from the posterior body 

plane to the measured COM.  RCOM was then calculated using Equation 3.10, where RH= 

Rider height. 

𝑅𝐶𝑂𝑀=0.1(0.5RH)    (3.10) 

Applying results from the studies and using only two measurements of eventers, 

height and weight, the cylindrical approximation was validated by applying correction 

factors derived from ratios (Equation 3.11). In Equation 3.11 IZZ,R= mass moment of 

inertia of Rider, mR= Rider mass, and RH= Rider height. 

IZZ,R=
1

12
mR (3 (

0.54 RH

2π
)

2

+0.7 RH
2)  (3.11) 

To validate the cylindrical approximation of the moment of inertia, data from 

cadavers in the sitting position was used. It was found that the percent difference of the 

approximation when compared to the measured value ranged from 0.66% to 10.1% which 

was deemed acceptable for our use in Monte Carlo simulation of large populations. 
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3.3 United States Eventing Association (USEA) Survey 

 After the geometric model was developed, a method was devised to acquire a large 

dataset of inertial parameters in an effective manner. To achieve this a “citizen science” 

effort was conducted through the USEA to distribute a survey internationally. Seven 

measured parameters from the survey are depicted in Figure 3.6. A summary of all survey 

questions along with a description of available options are included in Table 3.9. Also a 

partial picture of the USEA survey is shown in Figure 3.7. To increase the reliability of the 

citizen science measurements the survey results are validated through several accuracy 

checks [43].  

Figure 3.6 Illustration of the measurements that were requested in the USEA survey 



56 

 

 

 

 

 

Table 3.9 List of parameters requested on the USEA survey 

  

Parameter Description 

Breed Categories: 
 Thoroughbred 
 Warmblood Cross 
 Warmblood - Light bodied 
 Warmblood- Heavy bodied (weight above 635 kg) 
 Other 

Competition Level Categories: 
 BN (0.80m) 
 Novice (0.90m) 
 Training (1.00m) 
 Preliminary//1* (1.10m) 
 Intermediate/2* (1.15m) 
 Advanced/3* (1.20m) 
 4* (1.20m) 
 Other 

Height measured in hands 

Horse Scale Weight  

Length of body point of shoulder to point of buttock 

Heart Girth 
around horse touching just at the withers to behind 

elbow 

Circumference of 

Neck 
around the middle of the horse's neck 

Length of Neck base of ear to center of where the neck meets shoulder 

Circumference of 

Head 
around head just below cheek 

Length of Head base of ear to tip of nose 

Rider Height  

Rider Weight  

Home Location (City, State, Country) 
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Figure 3.7 Partial image of the USEA survey 
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3.4 Results from the USEA Survey 

The survey has received inputs from various locations in the United States and 

throughout the world. Inputs are summarized in Table 3.10 and Figures 3.8-3.11 in this 

section. Along with the geometrical measurement that were provided in the USEA survey, 

the methods discussed earlier in this Chapter were utilized to approximate inertial 

properties for both the individual segments and also the overall composite-body in the 

standing configuration. The latest results (May 2017) although not used throughout the 

thesis due to their unavailability during the writing of this thesis are available in 

Appendix A.  

A key finding from the results is that the distributions for the geometric equine 

measurements, rider, and segment moments of inertia were found to be normal 

distributions. This can be observed in the histograms plotted in Figures 3.8 – 3.11. The 

plots show the parameter that was measured or approximated in the horizontal axis and 

the frequency of occurrence in the vertical axis. Distributions observed for the 

various geometrical parameters and cylinder-based inertia values were used to derive 

random normal functions using MATLAB. The random normal functions are key to 

the Monte Carlo analysis conducted in the following Chapter. The random normal 

functions are defined by the mean and standard deviation values of the measured 

distributions and are provided in Table 3.10.A major difference between the measured/

approximated results and the randomly generated function for that parameter is the 

number of frequency of occurrence. The randomly generated functions consist of 

1,000 random points while the measured results are two orders of magnitude lower.  
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Table 3.10 Mean and standard deviation of geometric and cylinder-based inertia 

approximations of USEA survey about cylinder center of mass.

Parameter Mean Standard Deviation 

Body Mass (kg) 550.6 79.7 

Body Length (m) 1.7719 0.1845 

Body Radius (m) 0.2934 0.03845 

IBody (kg m2) 148.5 43.4 

Neck Mass (kg) 55.05 11.77 

Neck Length (m) 0.7112 0.06036 

Neck Radius (m) 0.1552 0.01623 

INeck (kg m2) 2.719 0.9113 

Head Mass (kg) 20.02 6.37 

Head Length (m) 0.5896 0.04507 

Head Radius (m) 0.1015 0.01372 

IHead (kg m2) 0.6599 0.3390 

Horse Height to Withers (m) 1.651 0.09268 

Rider Mass (kg) 63.1 8.705 

Rider Height (m) 1.656 0.1628 

IRider (kg m2) 7.52 1.8846 
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Figure 3.8 Histogram of Body Length (a) and a randomly generated distribution 

replicating the Body Length (b). The (c) plot the histogram of the Body Radius and the 

randomly generated distribution replicating the Body Radius (d) 

a) b) 

c) d)
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Figure 3.9 Histogram of Neck Length (a) and a randomly generated distribution 

replicating the Neck Length (b) The (c) plots the histogram of the Neck Radius and the 

randomly generated distribution replicating the Neck Radius (d) 

a) b) 

c) 

d)
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Figure 3.10 Histogram of Head Length (a) and a randomly generated distribution 

replicating the Head Length (b). The (c) plots the histogram of the Head Radius and the 

randomly generated distribution replicating the Head Radius (d) 

a) b) 

c) d)
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One important Figure to note is Figure 3.13. The significance of this figure is that 

it highlights the difference between the standing orientation of the TCM model to that of 

a jumping form. In this Figure three histograms are plotted with the left plot being the 

moment of inertia about the COM of the TCM and rider segments in the standing 

orientation obtained through the used of the geometric measurement and the cylinder-

based inertia approximation. The middle histogram is the randomly generated normal 

distribution used to create a population that imitates the measured data. The last 

histogram in this Figure is that of the TCM-plus-Rider segments re-oriented into the 

jumping position. The contact point is set at mid Antebrachium, an added length to the 

Body segment. A key observation is the skewness of the last histogram. The reason why 

its skewed is because of the combination of the moment of inertia of the Body, Neck, and 

Head segments combining in the overall moment of inertia term.  
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Figure 3.11 Histograms of moment of inertia about the sagittal plane of motion. Histogram (a) is the IZZ about the TCM COM 

calculated from USEA survey data. (b) is the approximation of the histogram on the left using normal-distribution from 

random generation function through the use of MATLABTM. (c) is the translation of (b) to the contact point located at mid 

antebrachium 

b) a) c)

6
3
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Chapter 4: Phenomenological Study 

The motion of a competitor (horse and rider) experiencing a rotational fall was 

understood by conducting phenomenological studies on simplified models. The essential 

Physics of the motion was represented so that general design guidance can be obtained 

from the results. To conduct such an approach the complexity of the rotational fall problem 

had to be simulated using current geometric and dynamic measurements on available 

approximations. The underlying mechanics of the motion were represented with 

information from various sources including the USEA survey, cylinder-based inertia 

approximations, literature and expert inputs.  

Additionally, to fully understand and quantify the contribution of each aspect and 

assist in conducting a sensitivity analysis of the problem, a phased approach was used. This 

was achieved by first modeling a simple block overturning, then gradually increasing the 

complexity of the geometry and other parameters to that of the desired model of the 

competitor.  

Furthermore, the study will be performed using a Monte Carlo simulation approach. 

The Monte Carlo method is a numerical method of solving mathematical problems by 

random sampling. The advantage of using the Monte Carlo method is that the error is 

reduced with increasing number of samples [36]. This method has been applied in various 

fields including aerospace applications. For example, the Monte Carlo method was used 

for launch vehicle design and requirements analysis at the NASA Marshall Space Flight 

Center [22], among many other applications.  
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4.1 Fundamental Mechanics of Rotational Falls 

There are several key observations in regards to the foundation of the mechanics 

that occur during a rotational fall. The first is the dominance of key geometric elements in 

the motion. This observation can be seen in the cylinder-based inertia approximation where 

four out of 26 elements capture 71.7% of the horse and rider inertia. Therefore, the dynamic 

model could be simplified into the same four segments used for the cylinder-based inertia 

approximation.  

The second key observation is the time interval of the motion. Video analysis 

conducted at the 1990 Stockholm World Equestrian Games revealed airborne times for 

competitors ranging from 0.282 seconds to 0.355 seconds [29]. As a comparison, human 

reaction times were tested for 94 Division 1 collegiate football players at the University of 

Michigan Ann Arbor using a falling meter stick. The test showed a mean reaction time of 

0.203 seconds. Results were also measured with a computer and resulted in a mean reaction 

time of 0.268 seconds [14]. Therefore, the reaction times of a Division 1 athlete are 

approximately equal to the average airborne time in a jump. Since rotational falls initiate 

at a time during the total airborne time, it is unlikely the rider can react in time. Based on 

this observation, the rate of change of the orientation of the segments is ignored. This 

allows the angle of the competitor model segments to be fixed throughout the simulation.  
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The third observation that was made was in regards to the critical point after which 

the competitor would not be able to recover from a rotational fall. The condition that was 

observed to induce a non-recoverable rotational fall was found to be after the COM passed 

vertical (exceeded 90°). The system would experience an influx of energy after this point 

through conversion of potential energy to additional rotational kinetic energy. 

The direction of the contact velocity vector is unkown. Due to a lack of available 

velocitiy data to quantify this property, the horse-fence contact direction obtained from the 

British Eventing Safety Fence was used as an initial approximation. This data did not 

include rotational falls. The choice will be verified with video analysis in future work.  

The last fundamental property that needed to be determined was the velocity 

magnitude of the competitor at the contact point. Again there are currently no sources that 

have measured velocity magnitude at the instants before and after horse-fence contact. The 

most similar measurements available are of the take-off velocities at the start of the 

jumping arc. Therefore, the contact speed is initially approximated with the take-off 

velocity magnitude. All of the initial approximation will be evaluated through the phased 

simulations, and adjusted as indicated.  
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4.2 Mechanisms Principles 

Mechanics principles used to conduct the simulations are the Principle of Impulse 

and Momentum and the Principle of Work and Energy. Conservation of angular 

momentum (2-D) is used to transition the translational motion prior to contact into a 

rotational motion about a fixed point as shown in Equation 4.1. This is a 2-D analysis with 

rotation about fixed-point axis perpendicular to the plane. 

𝑟𝑐𝑜𝑛𝑡𝑎𝑐𝑡−𝐶𝑂𝑀 × 𝑚𝑉 = 𝐼𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝜔𝑐𝑜𝑛𝑡𝑎𝑐𝑡  (4.1) 

Once the angular velocity is determined then Work/Energy is be used to determine the 

angular velocity at 90°. To calculate this Equation 4.5 was used.  

1

2
𝐼𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝜔𝑐𝑜𝑛𝑡𝑎𝑐𝑡

2 − 𝑚𝑔(ℎ2 − ℎ1) =
1

2
𝐼𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝜔90°

2  (4.5) 

If ω90° was greater than zero the system has overturned. 
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4.3 Overview of the Geometric Cases 

Several geometries are used for the overturning analysis. Each consecutive 

geometrical case increased in complexity. The phased approach allowed for a more in-

depth sensitivity study. Among the properties that were varied were the geometric shape, 

contact velocity, and contact angle. A list of the cases that are studied is shown on Table 

4.1. 

Table 4.1 Geometric illustration of the three cases explored 

Case Number Geometry 

1 

2 

3 
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4.4 Case I

Case I is the most basic case with the geometrical shape being a rectangular prism 

(block). The Case is divided into three different sub-cases that varied based on the 

conditions for contact velocity and contact angle. The main parameters in Case I are the 

block length, block height, contact velocity, contact angle, and mass. Further, the contact 

velocity direction was aligned with the midline of the body, while the magnitude varied. 

Table 4.2 and Table 4.3 show the case descriptions and parameter values. Furthermore, the 

varying properties used uniform rather than normal distributions for only this case bounded 

by the values specified in Table 4.3. 

Table 4.2 Description of conditions for various cases 

Case 

Name 

Block 

Length 

(m) 

Non-dimensionalized 

Geometric Parameter 

(Block Length/Block Height 

Contact 

Angle 

(°) 

Contact 

Velocity 

(m/s) 

Case1a Varied Varied Fixed Fixed 

Case 1b Varied Varied Fixed Varied 

Case 1c Varied Varied Varied Varied 

Table 4.3 Description of parameter settings on various conditions 

Parameter Fixed Condition Varied Condition 

Block Mass 1 kg - 

Block Length 

(m) 

- (0 m-3 m) 

Non-Dimensionalized 

Geometric Parameter 

 (m) 

- .1-3 

Contact Angle 

(°) 
0° (-45°- 45°) 

Contact Velocity 

(m/s) 

5 m/s (1 m/s -10 m/s) 
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To further understand the various cases Figure 4.1 illustrates the three cases that were 

modeled at the time of contact and also at n seconds later. Also in the figure the block 

length is denoted by the letter a and the block height is denoted by the letter b.  

Figure 4.1 Illustration of the iterations of Case 1 at the time of contact and at a moment n 

seconds later 

γ

b 

a 

Vcontact

t=tcontact 

ωcontact 

Case 1a 

Case 1b 

t=tcontact +n 

γ

b 

a 

t=tcontact 

ωcontact 

t=tcontact +n 

Case 1c 

γ
α+δα 

t=tcontact 

γ
ωcontact 

t=tcontact +n 

Vcontact +δV
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4.4.1 Case 1a Results

The results of Case 1a illustrates how the geometry, as expected,  has a significant 

effect on whether the block overturns or not. This observation can be clearly seen in Figure 

4.2. In the Figure the horizontal axis plots the ratio of length over height. Parameter which 

was defined as block length divided by block height. The vertical axis plots ωcontact which 

is the angular velocity at the point of contact. In the plot, the points whose ω90° value were 

less than zero and therefore did not overturn were colored green. The points that did 

overturn were colored red. The black points are ωcritical values for each block ratio that was 

found through an analytical solution. It can be seen clearly how the green and red results 

of the simulation are  separated by the line created for the analytical solution. A key 

observation from this plot is the geometric aspect that as the ratio decreases the points are 

more susceptible to overturning. This is caused by the shape of the block being tall and 

slender forcing the COM to have a location farther above the contact point. 
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Figure 4.2 Block ratio range from 0.1 to 3 with block length held constant 

Length/Height 
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4.4.2 Case 1b Results

Case 1b presented further verification for the model with varying velocity 

magnitudes included. This can be seen in Figure 4.3 where block ratio (horizontal axis) is 

plotted against ωcontact . The red makers are the points that failed because their ω90° 

exceeded zero. The black solid line is the analytical solution calculated for the geometric 

cases. As can be seen there are no red markers below the line as the results matched the 

analytical solution.. 

Figure 4.3 Block ratio varied from 0.1 to 3 with block length held constant. Block 

velocity ranged from 0 m/s to 10 m/s 

Length/Height 
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Another way of looking at the results is to define Gamma as the angle from the 

positive x-axis to the COM of the system. In this case there is no variation for the 

incoming angle α that is set to zero degrees, Gamma is an inherent property of the 

geometry. The property Gamma is plotted as the horizontal axis in Figure 4.4 plotted 

against ωcontact in the vertical axis. It can be observed that the higher Gamma is the easier 

it is for the block to overturn with initial smaller angular velocity. 

Figure 4.4 Block ratio ranged form 0 to 3 with block length held constant. Velocity 

varied from 0 m/s to 10 m/s 
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4.4.3 Case 1c Results

Case 1c expanded the complexity of the results by the addition of the angle, α. 

Figure 4.5 shows how adding a variable contact angle can affect the overturning block 

problem. In the figure the horizontal axis plots block ratio, the vertical axis plots ωcontact, 

and the third axis is alpha. 

Figure 4.5 Block ratio ranged from 0 to 3 with block length held contant at 1. The 

velocity ranged from 0 m/s to 10 m/s. Alpha ranged from -45° to 45° 

Alpha (degrees) 

Length/Height 
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The alternate form of looking at the results of Case 1c is by looking at Gamma 

rather than block ratio. This plot can be seen in Figure 4.6. Three axes include Alpha, 

Gamma, and  ωcontact

Figure 4.6 Gamma vs ωcontact vs Alpha 
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4.5 Case 2 

The geometrical shape explored in Case 2 is  the TCM. For further details on the 

TCM refer to Chapter 3.The case is divided into four subcases to highlight differences 

between contact velocity variation and inertias. These sub-cases are further explained in 

Table 4.4. It should be noted that the Antebrachium length is not an element with mass, 

but rather a finite length and direction added to more accurately locate the point of 

contact for a rotational motion. Also, in Table 4.4 FLFR signifies front leg-front rail and 

FLRR signifies front leg-rear rail. 

Table 4.4 Subcases for Case 2 

Case 

Name 
Elements 

Contact Velocity 

(m/s) 

Contact Angle 

(degrees) 

2a Body, Neck, Head Varied FLFR 

2b Body, Neck, Head, Antebrachium length Varied FLFR 

2c Body, Neck, Head Varied FLRR 

2d Body, Neck, Head, Antebrachium length Varied FLRR 

4.5.1 Initial Conditions for Variables

Prior to reviewing the results, it is necessary to define the new geometric and 

physical parameters used in Case 2. First of all, the geometric parameters used in Case 2 

are shown in Figure 4.8. The length and radius of the segments were obtained from the 

USEA survey discussed in Chapter 3. The mean and standard deviation of the parameters 

were then used to randomly generate a normal distribution of the parameters using 

MATLAB. 
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Figure 4.7 Illustration of Case 2 geometric parameters 

The angles β,ϕ, and ν were defined relative to the body angle, α.The angles β, ϕ, 

and ν were not defined based on publications due to the lack of available measurements. 

They were, however, estimated by an experienced eventer in the University of Kentucky 

team. Furthermore, their range was widened to encompass more possible options. The 

ranges for these variables will be narrowed by the use of video analysis in future work. 

Another variable that is used is that of γ. ϒ is defined as the angle from the positive x-axis 

to the overall (all elements in the specified subcase) center of mass. This is the same 

angle as that used in Case 1. 

The last set of variables that need to be defined for Case 2 are the Antebrachium 

length, antebrachium contact percentage, and angle ν. The antebrachium length can be 

seen illustrated in Figure 3.1 where it is defined by reference points 8-9. The 

antebrachium contact percentage simply stands for the percentage of the antebrachium 

α 

β 

ϕ

β

α 

ν 

α

β
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length at which the contact occurred. For example, 75% antebrachium contact percentage 

would mean the contact occurred ¾ of the way down from the pivot point between the 

antebrachium length and the Body. Lastly the angle ν (nu) is defined from the angle α, 

counter-clockwise until reaches the antebrachium length. The angle ν can be in both the 

third and fourth quadrants. 

Furthermore, to define the range of antebrachium lengths the results from the 

USEA survey were used. The antebrachium length was defined by Equation 4.6. The 

variables used in this equation are defined as follows; HH is the horse height up to the 

withers, BD is the diameter of the body, ABL is the antebrachium length and the value 0.6 

is derived from the average percentage contribution of the ABL to the total forelimb 

length (ABL, metacarpus, and digit forelimb). 

(𝐻𝐻 − 𝐵𝐷) ∙ (0.6) = 𝐴𝐵𝐿            (4.6) 

Another important assumption that should be restated is that of the velocity vector 

direction. As was stated in Section 4.1, the velocity vector direction was defined by the 

angle ψ. However, due to a lack of measurements angle ψ was assumed to be equal to 

angle α. Furthermore, it should be restated that angle α was defined by the force contact 

directions measured in the British Eventing Safety Research Fence. 

In addition, a modification of the FLRR measurement from the British Eventing 

Safety Research Fence was performed. As can be seen in Chapter 3, the FLRR contacts 
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contain angles greater than 90°. Since such an angle would be impractical, it was decided 

to neglect all contact angles that are greater than that value. 

Finally, an overview of the variables that were used in Case 2 are shown in Figure 

4.8. In the Figure, the variables that are varied in the initial conditions are shown by 

shaded blocks. 
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Figure 4.8 Parameter map of variables used in Case 2

8
1
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4.5.2 Case 2a Results 

Case 2a includes the TCM with the contact angles experienced by the front leg- 

front rail contacts in the Goodyear Safety Research Fence.  The results for this particular 

geometry and input conditions showed that no points overturn. This result is shown in 

Figure 4.9. The reason for there not being any overturning is due to the contact point 

being located at the bottom front of the body. 

Figure 4.9 Case 2a scatter plot of Gamma (angle from x-axis to TCM COM), contact 

velocity, and Alpha 
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4.5.3 Case 2b Results 

Case 2b is similar in geometry as Case 2a except that it has the added 

antebrachium length that was previously discussed. The Antebrachium Length percentage 

was set to 50%. Case 2b uses the contact angles obtained from the FLFR contacts in the 

British Eventing Safety Research Fence. The Npass for this analysis was 99.6% with 

1,000 randomly generated points. These results can be seen in Figure 4.10. 

Figure 4.10 Case 2b scatter plot of Gamma, contact angular velocity, and Alpha 
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4.5.4 Case 2c

In Case 2c the geometry is still the TCM, however, the contact angles are those 

recoded as FLRR in the British Eventing Safety Research Study. This case does not have 

the antebrachium length added. The Npass was 97.3% with the number of random points 

being equal to 1,000. The results are plotted in Figure 4.11. 

Figure 4.11 Case 2c scatter plot of Gamma, contact angular velocity, and Alpha 
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4.5.5 Case 2d

Case 2d is similar to Case 2b, however, the contact angles were changed to 

simulate those experienced by FLRR contacts in the Goodyear Safety Research Fence.  

Similar to Case 2b this case has an added Antebrachium Length set to 50%. The Npass 

was equal to 92.4%. These results are illustrated in Figure 4.12. 

Figure 4.12 Case 2d scatter plot of Gamma, contact angular velocity, and Alpha 
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4.6 Case 3 
In Case 3 there was an additional element added to the Case 2 model. The element 

that was added was the rider. The variables for the rider are the Rider Height, Rider 

Radius, Rider Pseudo Height, and Rider Mass. For further information on how these 

variables are used to calculate the moment of inertia for the rider element refer to Chapter 

3. Additionally, there was a new angle defined for the rider orientation. The angle was

called Lambda and was defined to be relative to Alpha. Lambda was a normal 

distribution centered at 90° and with a standard deviation of 13.4°. Case 3 was divided 

into two subcases. Case3a would use the FLFR contact angle distribution. Case 3b would 

use the FLRR contact angle distribution. Again for Case 3 gamma is defined as the angle 

from the positive x-axis to the overall center of mass with the origin set at the contact 

point. 
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4.6.1 Case 3a Results

The number of the 1,000 randomly generated points that did not overturn in Case 

3a were 98.6%.  This is 1% less than the result of Case 2a. However, the change is so 

small that it can be attributed to the statistical variability in the Monte Carlo analysis. 

This will further be explored in Chapte 5. To illustrate this result Figure 4.13 shows the 

scatter plot of Gamma vs contact angular velocity vs Alpha. 

Figure 4.13 Case 3a scatter plot of Gamma, contact angular velocity, and Alpha 
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4.6.2 Case 3b Results

As expected Case 3b performed similar to Case 2d and had a significantly higher 

number of points overturning. The Npass for this case was 78.1%. The results for Case 3b 

can be seen in Figure 4.14. 

Figure 4.14 Case 3b scatter plot of Gamma, contact angular velocity, and Alpha 
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Chapter 5: Sensitivity Analysis 

Following the development of the three case studies discussed in Chapter 4 a 

subsequent study was performed to determine the dominant variables for Case 3a. Case 

3a was selected since it encased the full geometry as well as the measured front-leg, 

front-rail contact angle distribution. Determination of the dominant variables was 

conducted by using the percentage of the points whose initial conditions would lead it to 

not overturn (Npass percentage) as the principal measure. All variables except the 

designated control variable were held constant. The Npass  percentage was measured for 

all control variable settings. 

Additionally, to compensate for the statistical variance of the input normal-

distributions multiple test runs were performed for each individual control variable 

setting. It was determined that an average of five test runs was sufficient to obtain 

adequate results. The control variables along with the range they were iterated through 

are shown in Table 5.1. 

Table 5.1 Control variables and ranges used in sensitivity study 

Variable Range 

Convergence 100 -100,000 random points 

Alpha 290°-70° 
Beta α+110°-α+160° 
Phi α+200°-α+260° 
Nu α+200°-α+340° 

Lambda α+160°-α+90° 

ABL pct 10%-100% 

Contact Velocity pct 10%-100% 

Psi 290°-80° 
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5.1 Sensitivity Analysis 

5.1.1 Convergence 

The first control parameter that was explored was the number of random points. 

Since the accuracy of the Monte Carlo method increases with the number of random 

points it was necessary to see at what point the analysis would converge to a solution. 

Therefore, Case 3a from Chapter 4 was simulated with 100 random points, gradually 

increasing the number of points to 100,000 random points. The result of this analysis can 

be seen in Figure 5.1 where the number of random points (horizontal axis) can be seen 

plotted against the Npass rate for Case 3a (vertical axis). It was observed that for Case 3a 

10,000 points were sufficient to obtain a converged solution. 

Figure 5.1 Convergence study of Case 3a 
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5.1.2 Alpha 

Alpha or the contact angle of the Body was the second control variable. Alpha 

was varied from 290° to 70°. This range was constrained to the first and fourth quadrants 

since those would be the only possible ranges. Alpha was expected to be a dominant 

control variable since it is a key contributor to the location of Gamma. The results of this 

control variable can be seen plotted in Figure 5.2. The plot shows the range of settings for 

Alpha in the horizontal axis and the Npass percentage for each setting in the vertical axis. 

The results showed a drop of approximately 60% in Npass as Alpha was changed from 0° 

to 70°. Therefore, fence designs in which the horse would be approaching it at a high 

Alpha would require greater consideration.  

Figure 5.2 Sensitivity Analysis of Case 3a with Alpha set as the control variable 
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5.1.3 Beta 

Beta or the angle of the Neck relative to Alpha at contact was the third control 

variable. Beta’s range was set from α+110° to α+160°, with alpha being constrained to 

the distribution measured for a front leg-front rail contact on the British Eventing Safety 

Fence. The solution to this analysis can be seen in Figure 5.3. In the figure the horizontal 

axis plots the angle setting relative to Alpha. The vertical axis plots the Npass percentage 

recorded for the control setting. The results showed that the Npass percentage was not 

greatly affected by the variation of Beta. Over a range of 50 degrees the overall change 

was approximately 0.4%. Therefore, Beta was deemed not to be a dominant variable.  

Figure 5.3 Sensitivity Analysis of Case3a with Beta set as the control variable 



94 

5.1.4. Phi 

Phi or the angle of the Head relative to Alpha was selected as the fourth control 

variable. Phi was varied through a range of α+200 to α+260°.  This motion was 

constrained by the inherent range of motion of a horse. The results can be seen in Figure 

5.4. The figure plots the relative angle of Phi to Alpha in the horizontal axis. The vertical 

axis of the figure shows the Npass percentage. Eventhough, Phi was ran through a range 

of 60° it only caused an improvement of 0.14%. Therefore, Phi was not deemed to be a 

dominant control variable.  

Figure 5.4 Sensitivity Analysis of Case3a with Phi set as the control variable 
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5.1.5. Nu 

Nu or the angle of the Antebrachium length relative to Alpha was selected as the 

fifth control variable. Nu was varied through a range of α+200° to α+340°. The results of 

the evaluation are shown in Figure 5.5. The figure plots Nu relative Alpha in the 

horizontal axis. The vertical axis plots the Npass percentage. The results did show a slight 

dependence of Npass percentage to Nu. Although its effects are not as dominant as those 

observed for Alpha, the combination of this variable with a more dominant variable could 

lead to a significant effect on Npass.  

Figure 5.5 Sensitivity Analysis of Case 3a with Nu as the control variable 
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5.1.6. Lambda 

Lambda or the angle of the Rider relative to Alpha was selected as the sixth 

control variable. Lambda was varied through the range of α+160° to α+90°. Lambda was 

not varied in the first quadrant as that rider position would be impractical. The results for 

this control variable can be seen in Figure 5.6. the figure plots the Lambda angle relative 

to Alpha in the horizontal axis. The vertical axis of the figure plots the Npass percentage. 

Lambda did not vary significantly. The variance that was observed could even be 

attributed to be within the statistical variation of analysis.  

Figure 5.6 Sensitivity Study of Case 3a with Lambda as the control variable 
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5.1.7 Contact Velocity Percent 

Contact Velocity percentage or the magnitude of the contact velocity at the instant 

before contact was selected as the seventh control variable. The contact velocity was 

reduced gradually from the value used in Case 3a down to 10% of its original value. The 

results can be seen in Figure 5.7. The figure plots the percentage of the original contact 

velocity distribution from Case 3a in the horizontal axis. The vertical axis plots the Npass 

percentage for each control variable setting. The results did show and increase in Npass 

as the contact velocity magnitude decrease. However since Case 3a had a high Npass to 

begin with the variation of the Contact Velocity magnitude only had minimal effect. 

Perhaps if Contact Velocity magnitude was combined with a high risk initial conditions 

then the effect might become more dominant. 

Figure 5.7 Sensitivity analysis of Case 3a with Contact Velocity Magnitude as the control 

variable 
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5.1.8 ABL Percentage 

Antebrachium length contact percentage was defined as the location along 

the Antebrachium length at which the contact occurred. The contact point was varied 

from 0%, which was the joint between the Body and the Antebrachium length, to 

100%, which was located at the knee. Another property that was not an angle that 

was explored was the location of the contact point on the Antebrachium length. The 

results can be seen in Figure 5.8. The figure plots the location of the contact point 

along the Antebrachium length on the horizontal axis. The vertical axis plots the 

Npass percentage. The results showed significant variation of Npass as the contact 

location was varied. A drop of Npass of 16% was found as the contact is moved 

from the Body-Antebrachium joint to the knee. Therefore ABL percentage was 

deemed to be a dominant variable.  

Figure 5.8 Sensitivity analysis of Case 3a with ABL percentage as the control variable 
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5.1.9 Psi 

Psi of the contact velocity direction was selected as the last control variable. Psi 

was varied through a range of 290° to 80°. The results of the variation can be seen in 

Figure 5.9. The horizontal axis of the figure plots the setting of Psi and the vertical axis 

plots the Npass percentage. An interesting result was found since a Psi angle below 0° 

resulted in a lower Npass than that for an Psi angle above 0°. It was also seen that the 

Npass began to drop after Psi exceeded approximately 50°. This results was attributed as 

increase or decrease of the overall moment about the contact point. For example a Psi 

angle of -70° would have a high positive velocity component in the vertical direction 

inducing a high positive moment, while a Psi angle of 70° would have a high negative 

velocity in the y-direction inducing a negative moment. Nevertheless Psi was deemed to 

be a dominant variable.  

Figure 5.9 Sensitivity analysis of Case 3a with Psi as the control variable 
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5.1.10 Npass Sensitivity Results 

The sensitivity analysis of Npass showed five main parameters that have a 

moderate to drastic effect on Npass. The parameters are Alpha, Nu, Contact Velocity 

Magnitude, ABL percentage, and Psi. Even though, Nu and Contact Velocity Magnitude 

did not have as great an impact as the other main dominant parameters they still had a 

moderate effect. This moderate effect when combined with high risk combinations of the 

other dominant parameter would increase in significance. The identification of these 

dominant variables allows the researchers to evaluate their effect when modeling several 

deformable fence mechanisms. Ultimately allowing for design guidance for Eventing 

fence designers.  
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Chapter 6: Conclusion and Future Work 

6.1 Conclusion 

Several outcomes were achieved in the efforts outlined in this thesis. The first of 

these outcomes was the determination of the underlying mechanics of the motion that 

occurs during rotational falls. These properties, when available, were defined by previous 

studies or estimated using the data that was available at the time of this effort. Several of 

the fundamental properties will have to be verified in future studies. Nevertheless, the 

foundational understanding of the motion is believed to capture a large percentage of the 

overall dynamics that occurs in rotational falls. 

One fundamental property of the analysis that was missing was a large data set of 

moments of inertia for the horse and rider. The key moment of inertia was the inertia 

about an axis perpendicular to the sagittal plane of motion. To compensate for the lack of 

measured data a cylinder-based inertia approximation was developed that captured 71.7 

% of the overall moment of inertia of the horse and rider. Furthermore, the cylinder-

based model was applied in conjuncture with a citizen science survey effort distributed 

through the USEA to collect a wide data set of horse and rider geometric properties. 

Using the wide range of geometric results the inertias were determined for the population 

of geometric values that were recorded.  

Following the collection of a database for the geometric measurements and inertia 

approximation MATLABTM random generation function was used to generate normal-

distribution functions of the input values for a rotational fall analysis. The analysis broke 
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down the problem into simple components in order to gain a higher understanding of the 

dominant factors in causing the rotational fall. The Monte Carlo method, a numerical 

method used for solving mathematical problems using random sampling, was used to 

widen the analysis to a large sample size that could more accuratetly model the various 

horses and riders that compete in the sport.  

The results from the Monte Carlo analysis resulted in fivedominant variables that 

increase the risk of rotational falls. The variables are Alpha, Nu, Contact Velocity 

Magnitude, ABL percentage, and Psi. These variables were tested by holding all other 

variables constant while the control parameter was varied through a range of valued. The 

measure for the performance of the control parameter was the number of random points 

that passed relative to the original condition.  

6.2 Future Work 

Future aspects of the project can be divided into two main efforts: high-speed 

video analysis and design validation of cross-country fences. The first effort is set to take 

place at the Rolex Eventing 2017 competition. High-speed cameras will be used to 

identify the fundamental mechanics that were observed for rotational falls. Even though 

actual video of a rotational fall is extremely rare, the results from typical jumping 

attempts can help reveal/verify several key underlying parameters.  



103 

 

 The second main aspect is to apply the Monte Carlo analysis towards various 

fence design. Also part of this effort is the evaluation of several deformable safety 

devices. As part of this effort the impulse between the at the point of contact and the 

resultant force from the fence will be explored. The results of these efforts in conjunction 

to the ones discussed in this thesis will provide a platform to optimize fence designs.  
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APPENDIX A 

USEA Survey Results (May 2017) 
 

Breed Withers 

Height 

Horse 

Height 

(cm) 

Horse 

weight 

Calculated 

weight 

Length 

of 

Body 

Heart 

Girth 

Circumference 

of neck 

Length 

of neck 

Length of 

head 

Circumference 

of head 

Rider 

height 

Rider 

Weight 

Level Location 

1 Thoroughbred 16.2 168 0 484 163 188 91 71 61 64 
  

0 0 

2 Thoroughbred 16 163 476 486 155 193 94 66 58 61 
  

0 0 

3 Warmblood - Light 

bodied 

17 173 0 551 163 201 97 81 64 66 
  

0 0 

4 Thoroughbred 16.1 165 0 450 147 191 97 76 61 64 
  

0 0 

5 Thoroughbred 17.1 175 0 546 165 198 99 74 58 64 173 50 BN 0 

6 Thoroughbred 16.1 165 0 463 160 185 91 69 56 66 188 73 Novice 0 

7 Warmblood - Heavy 

bodied (weight above 

1,400 lbs) 

17.2 178 0 627 180 203 104 81 61 71 168 68 Training, 

Preliminary 

0 

8 Thoroughbred 16 163 0 456 157 185 94 69 58 61 180 74 Novice 0 

9 Thoroughbred 16.3 170 499 506 170 188 91 71 58 66 170 73 Advanced/3* 0 

10 Thoroughbred 16.1 165 0 461 155 188 89 81 56 66 155 54 Starter 0 

11 Other 15.2 157 499 449 155 185 104 66 61 69 163 48 BN 0 

12 Thoroughbred 16 163 482 484 163 188 99 71 61 61 160 64 Dressage 0 

13 Thoroughbred 16 163 482 484 163 188 99 71 61 61 160 64 Dressage 0 

14 Other 15.1 155 499 429 152 183 94 66 58 66 155 52 Hunters 0 

15 Thoroughbred 16.1 165 544 544 183 188 102 71 61 74 160 54 Hunter 0 

16 Thoroughbred 17.1 175 590 680 196 203 107 76 61 69 170 68 Novice 0 

17 Other 14.3 150 0 537 191 183 91 64 48 48 165 52 0 0 

1
0
3
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18 Thoroughbred 16.1 165 0 522 185 183 97 69 61 56 173 61 0 0 

19 Thoroughbred 16.3 170 0 605 203 188 94 
 

48 53 157 64 0 0 

20 Thoroughbred 15.2 157 0 566 196 185 94 71 53 51 157 64 0 0 

21 Other 15.3 160 0 590 188 193 94 71 51 58 173 61 0 0 

22 Warmblood - Light 

bodied 

16.2 168 0 571 173 198 94 71 71 94 
  

3'6 Jumpers 0 

23 Thoroughbred 16 163 0 429 152 183 91 71 61 61 
  

2'6 Hunters 0 

24 Thoroughbred 16.2 168 0 504 165 191 94 71 61 64 
  

3'6 jumpers 0 

25 Thoroughbred 16.3 170 0 534 170 193 97 69 64 64 
  

3'3 jumpers 0 

26 Thoroughbred 16.3 170 522 0 203 
     

160 48 Novice, Training 

Novice 

0 

27 Thoroughbred 16 163 590 0 198 
     

160 57 Preliminary/1* 0 

28 Quarter Horse  15.3 160 454 0 198 
     

168 57 Novice 0 

29 Thoroughbred 17 173 590 0 
      

178 64 Intermediate/2* 0 

30 Thoroughbred 16 163 454 0 183 
     

163 68 Novice 0 

31 Thoroughbred 17 173 544 0 206 
     

157 64 BN 0 

32 Thoroughbred 16.2 168 544 0 
       

57 BN, Novice 0 

33 Quarter horse paint cross 0 0 408 0 
        

BN 0 

34 Welsh / Thoroghbred 

cross 

13.2 137 0 0 
      

163 68 Novice 0 

35 Thoroughbred 16 163 567 0 
      

142 50 Preliminary/1* 0 

36 Thoroughbred 18 183 0 0 
      

180 64 Novice 0 

37 Thoroughbred 16 163 499 0 
        

BN 0 

38 irish sport horse 17 173 544 0 191 
 

71 76 
  

178 79 Intermediate/2* 0 
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39 Warmblood - Light 

bodied 

16.2 168 0 0 
      

163 54 Training 0 

40 Warmblood Cross 16 163 0 0 
       

60 Intermediate/2*  

(1.15 m) 

0 

41 Warmblood - Light 

bodied 

16 163 540 562 170 198 94 76 56 64 163 50 BN 0 

42 Thoroughbred 16.1 165 0 550 175 193 91 66 56 64 168 59 BN 0 

43 Thoroughbred 15.2 157 480 0 180 
     

155 55 Novice (.90 m) 0 

44 Thoroughbred 15.2 157 499 0 188 
       

Novice 0 

45 Thoroughbred 15.2 157 513 0 
      

155 58 Novice (.90 m) 0 

46   Arabian 0 0 354 361 152 168 84 66 53 58 160 58 Training 0 

47 Haflinger 13.25 138 0 486 188 175 104 61 64 69 170 85 BN 0 

48 Warmblood Cross 16 163 499 0 198 
     

163 54 Novice, Training 0 

49 Thoroughbred 17.2 178 499 0 198 
     

173 73 Novice 0 

50 Thoroughbred 16.1 165 0 0 
      

165 61 BN 0 

51 Arabian welsh cross 13.1875 137 0 0 
      

165 61 BN 0 

52 Thoroughbred 0 0 0 0 
       

61 0 0 

53 Warmblood Cross 16.1 165 0 596 180 198 109 66 61 69 173 61 Training 0 

54 Thoroughbred 16.2 168 454 0 
      

173 66 Novice 0 

55 Quarter Horse 15 152 340 0 193 
     

147 73 BN 0 

56 Warmblood Cross 17.2 178 680 740 193 213 112 79 66 66 178 73 Training 0 

57 Warmblood - Light 

bodied 

15.2 157 476 0 183 
     

163 59 Novice 0 

58 Irish draught x 16.1 165 590 0 206 
     

180 
 

Novice (.90 m) Aberdeen 

59 Thoroughbred 17.1 175 0 0 
      

170 59 Preliminary/1* virginia Beach Va 

60 Thoroughbred 15.1 155 495 558 178 193 
  

69 56 170 52 Preliminary/1* Mullica Hill, NJ 
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61 Warmblood - Light 

bodied 

15 152 431 345 155 163 107 61 56 61 165 70 Novice greencastle,In 

62 Thoroughbred 16.3 170 499 0 
 

132 
    

170 75 Preliminary/1* Unionville, PA 

63 Thoroughbred 18 183 658 0 213 
     

173 68 Novice New Hampshire 

64 Thoroughbred 16.2 168 0 556 173 196 102 74 58 66 175 58 Training Glenelg, Maryland  

65 Warmblood - Light 

bodied 

14 142 0 0 
      

163 57 BN Troy, Mi 

66 Warmblood - Light 

bodied 

16 163 499 456 157 185 99 76 58 61 168 68 Intermediate/2* Denver, Colorado 

67 Warmblood - Light 

bodied 

16.1 165 472 474 155 191 91 64 58 
 

64 61 Preliminary/1* Ocala, FL 

68 Thoroughbred 16 163 497 498 168 188 94 69 58 58 173 68 Preliminary/1* Ocala, Florida  

69 Warmblood - Heavy 

bodied (weight above 

1,400 lbs) 

17 173 546 548 170 196 114 79 58 64 173 68 Preliminary/1* Ocala, Florida  

70 Thoroughbred cross 16.1 165 0 446 150 188 
 

74 56 56 180 77 Advanced/3* Ocala, Florida  

71 Warmblood - Light 

bodied 

16.3 170 544 556 173 196 104 76 58 61 180 77 Intermediate/2* Ocala, Florida  

72 0 16.2 168 522 532 165 196 107 76 61 71 180 77 Preliminary/1* Ocala, Florida  

73 Warmblood - Light 

bodied 

16.1 165 513 523 163 196 109 74 56 69 180 77 Intermediate/2* Ocala, Florida 

74 Thoroughbred 17 173 530 529 183 185 
    

173 60 BN (.80 m) Melbourne, 

Victoria, Australia 

75 Warmblood Cross 0 0 567 0 198 
       

Training 0 

76 Warmblood Cross 16.1 165 567 0 191 
 

107 71 51 
 

173 82 Novice Orlando, fl, usa 

77 Thoroughbred 16.3 170 0 0 
      

152 47 BN Medford, NJ, United 

States 

78 Thoroughbred 17 173 548 0 
  

112 99 69 56 163 58 Training Temecula, 

California, US 

79 Warmblood - Light 

bodied 

16.3 170 544 0 
      

173 61 4* Temecula CA 92593 

80 Warmblood Cross 16 163 567 0 208 
     

173 64 Novice Portland,Oregon 
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81 Qh welsh 14.1 145 408 0 175 
   

61 51 170 57 BN 0 

82 Thoroughbred 16.3 170 590 0 
      

168 91 BN Crestwood, IL, US 

83 Warmblood - Light 

bodied 

16.2 168 531 0 208 
     

170 57 BN Springfield, 

Missouri, USA 

84 Connemara/Thoroughbred  16.2 168 567 444 206 160 104 91 76 61 165 66 Training Aiken, SC USA 

85 Thoroughbred 17 173 547 0 203 
     

163 61 Training canaan nh usa 

86 Thoroughbred 15.2 157 579 780 185 224 97 
 

51 66 165 57 Novice Lexington ky USA  

87 Warmblood Cross 15.1 155 499 0 
      

155 50 BN Lopez island, wa, 

usa 

88 Thoroughbred 16.3 170 671 629 206 191 
  

41 56 
 

82 BN Aumsville, oregon, 

Marion county 

89 Warmblood - Light 

bodied 

0 0 0 0 
      

170 59 Preliminary/1* Dekalb, IL, USA 

90 Thoroughbred 16 163 567 367 165 163 109 71 53 64 168 60 Novice, Training REDDICK, FL, 

USA 

91 0 14 142 408 0 183 
     

157 66 BN Kearneysville, West 

Virginia USA 

92 Thoroughbred 18.1 185 0 579 206 183 97 
 

91 56 175 84 Training Southern Pines NC 

USA 

93 Thoroughbred 17 173 544 0 198 
     

175 68 Novice, Training Stevensville MI 

USA 

94 Thoroughbred 16 163 454 0 
      

163 57 Training Arnold, Md US 

95 Warmblood - Light 

bodied 

15 152 419 0 
      

168 53 BN Sudbury, 

Massachusetts US 

96 Thoroughbred 17 173 658 0 198 
 

76 76 51 
 

168 83 Training Usa 

97 Thoroughbred 16.1 165 499 0 193 
     

157 79 BN northeast 

ohio,ohio,usa 

98 Morgan Standardbred 

cross 

15.3 160 522 0 193 
  

97 61 61 168 59 Intermediate/2* Florida 

99 0 16.1 165 544 0 206 
     

160 57 Novice warrensburg, il, usa 
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100 Thoroughbred 16.1 165 499 0 
      

170 68 Training Lakebay 

Washington, USA  

101 Quarter horse/ 

throughbreed  

15 152 454 0 
 

132 
    

157 45 Just stated her under 

saddle  

Highland Maryland 

Howard  

102 Warmblood Cross 17.1 175 635 0 213 
     

178 73 Training Sheboygan, WI, US 

103 Warmblood Cross 17.1 175 635 0 213 
     

178 73 Training Sheboygan, WI, US 

104 Warmblood - Light 

bodied 

17.1 175 590 568 213 178 
 

102 76 
 

178 77 Training Santa Cruz, CA 

USA 

105 Warmblood - Light 

bodied 

16.2 168 567 0 206 
     

175 61 Novice Ewing, Virginia, 

United States 

106 Thoroughbred 16.4 173 0 0 
      

168 64 BN Rochester MI USA 

107 Thoroughbred 15.3 160 454 0 
      

140 82 Training USA 

108 Thoroughbred 16.1 165 454 0 193 
     

160 64 Intermediate/2* Strafford, VT, USA 

109 Warmblood - Light 

bodied 

17 173 590 1352 213 274 86 69 61 
 

157 76 Training Amarillo, Texas, 

United States 

110 Thoroughbred 16.1 165 499 0 198 
     

168 59 Training Fort Collins, CO, 

USA 

111 Appendix 15 152 0 0 
      

157 50 BN Pittsburgh, PA USA 

112 Quarter Horse 17 173 635 760 213 206 91 84 61 53 185 75 Novice Oregon, USA 

113 Thoroughbred 16.3 170 567 0 206 
     

168 54 Intermediate/2* Rye, ny 

114 Thoroughbred 16.1 165 544 0 198 
     

178 75 BN Ocala FL USA 

115 Warmblood - Heavy 

bodied (weight above 

1,400 lbs) 

16.3 170 714 756 229 198 107 76 66 61 170 67 Novice Ruffin NC USA 

116 Mustang  15.1 155 386 0 
      

163 45 BN Spokane, WA,USA 

117 Warmblood Cross 15 152 442 0 
      

168 66 Novice Connecticut 

118 Thoroughbred 16.1 165 431 0 198 
     

160 54 Starter Lexington, KY, 

USA 
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119 Warmblood Cross 16.3 170 499 0 173 
     

165 59 BN Dover, NH 

120 Warmblood - Light 

bodied 

15.2 157 544 0 
      

175 66 Novice Woodbury,MN,USA 

121 Saddlebred  15 152 363 0 157 
     

180 82 BN 0 

122 Paint  14.2 147 680 0 
       

59 BN, Novice Lexington Ky 

123 Thoroughbred 16.2 168 0 0 203 
  

84 66 64 157 51 Preliminary/1* Louisville KY USA 

124 Quarter/Mustang  14.2 147 445 420 163 175 
    

160 59 BN Victorville CA 

United States  

125 Thoroughbred 15.3 160 363 0 183 
     

168 54 BN Girard, 

Pennsylvania, USA 

126 Thoroughbred 17 173 635 0 
      

163 54 BN, Novice Avon, oh, united 

states 

127 Warmblood - Light 

bodied 

16.2 168 680 0 
      

157 50 Preliminary/1* Gig Harbor, WA, 

USA 

128 Thoroughbred 15.3 160 499 0 191 244 
    

163 77 Preliminary/1* Aiken, SC, USA 

129 Warmblood Cross 17.2 178 635 0 
      

163 66 Preliminary/1* Newark, Ohio, USA 

130 Irish Sport Horse 0 0 0 0 
        

Intermediate/2* 0 

131 Thoroughbred 15.1 155 635 0 
        

Training 0 

132 Thoroughbred 16.1 165 544 0 
      

168 67 BN, Novice Slingerlands, NY, 

USA 

133 Thoroughbred 15.3 160 0 0 
      

173 
 

BN (.80 m) Cocoa fl brevard 

134 0 0 0 0 0 
          

135 Quarter Horse 15.2 157 567 0 
      

163 45 BN Versailles, KY, 

USA 

136 Thoroughbred 16.3 170 585 587 178 198 102 71 58 64 170 79 Novice Rochester, NH. 

137 Warmblood Cross 15.2 157 522 543 178 191 102 69 58 66 145 59 Training Spring City, UT, 

USA 

138 Thoroughbred 16.2 168 567 548 170 196 104 74 56 61 170 59 Intermediate/2* Spring City, UT, 

USA 

139 Quarter horse not 16 163 0 571 173 198 114 74 61 66 163 61 Novice Lehi, It, USA 
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140 Warmblood - Light 

bodied 

16.2 168 590 526 168 193 94 89 48 56 157 54 Preliminary/1* Round Hill, VA 

141 Thoroughbred 18.1 185 0 735 183 218 122 94 81 74 168 77 BN Round Hill, VA, 

USA 

142 Percheron TB cross 15.1 155 0 594 175 201 114 94 71 58 168 73 Training Round Hill, VA 

143 Warmblood - Heavy 

bodied (weight above 

1,400 lbs) 

17.1 175 0 827 188 229 112 86 76 66 170 52 Novice Round Hill, VA 

144 Thoroughbred 16 163 544 0 198 
     

165 77 BN, Novice Lexington, KY 

145 Warmblood Cross 16.3 170 624 679 191 206 104 81 66 66 188 70 Preliminary/1*, 

About to make the 

move up to 

Intermediate this 

coming season 

Medina, Ohio, 

United States 

146 Warmblood Cross 17 173 624 629 185 201 112 79 61 69 188 70 Novice, Retired 

recently. Competed 

Novice recognized 

and Training level 

at unrecognized 

Medina, Ohio, 

United States 

147 Appendix 15.2 157 544 551 180 191 107 69 56 66 168 54 BN, Novice Westerville, Ohio 

148 Warmblood Cross 17.1 175 610 687 188 208 109 74 58 66 185 85 BN Westerville, Ohio, 

United States 

149 Warmblood Cross 17.1 175 590 598 191 193 102 74 56 61 170 59 Preliminary/1*, 

Moving up to 

intermediate this 

year 

Westerville, Ohio, 

United States 

150 Thoroughbred 16.2 168 499 0 203 
     

168 59 Novice Dorset, Vt 
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