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ABSTRACT OF DISSERTATION 

 

Impedance-to-Scattering Matrix Method for Large Silencer Analysis 

 

Large silencers used in the power generation industry usually have a very large 
cross section at the inlet and outlet. Higher-order modes will populate the inlet and 
outlet even at very low frequencies. Although the silencer itself is often modeled 
by a three-dimensional analysis tool such as the boundary element method (BEM) 
or finite element method (FEM), a direct computation of the transmission loss (TL) 
from the BEM or FEM model can be challenging without incorporating certain 
forms of modal expansion. 

A so-called “impedance-to-scattering matrix method” is proposed to extract the 
modes at the inlet and outlet from the BEM impedance matrix based on the point 
collocation method. The BEM impedance matrix relates the sound pressures at 
the inlet and outlet to the corresponding particle velocities, while the scattering 
matrix relates the modes at the inlet and outlet. Normally there are more boundary 
elements than the total number of modes at the inlet and outlet, and a least-
squares procedure is used to condense the element-based impedance matrix to 
the mode-based scattering matrix.  The TL computation will follow if a certain form 
of the incident wave is assumed and the outlet is non-reflective. Several commonly 
used inlet/outlet configurations are considered in this dissertation, which include 
axisymmetric, non-axisymmetric circular, and rectangular inlet/outlet shapes.  In 
addition to the single inlet and outlet silencers, large multi-inlet and multi-outlet 
silencers are also investigated. 

Besides the collocation-based impedance-to-scattering matrix method, an integral-
based impedance-to-scattering matrix method based on the reciprocal identity is 
also proposed for large silencer analysis. Although it may be more time-consuming 
to perform the additional numerical integration, an integral-based method is free of 
any uncertainties associated with collocation points. The computational efficiency, 
accuracy and stability are compared between two proposed methods. 

One bonus effect of producing the scattering matrix is that it can also be used to 
combine subsystems in series connection. The Redheffer’s star product is 
introduced to combine scattering matrices of subsystems. 

In the design stage, rapid assessment of the silencer performance is always 
preferred. However, the existing analytical approaches are only suitable for simple 



  
 

dissipative silencers such as straight lined ducts.  A two-dimensional first-mode 
semi-analytical solution is developed to quickly evaluate the performance of tuned 
dissipative silencers below the cut-off frequency.   The semi-analytical solution can 
also serve as a validation tool for the BEM. 

 

KEYWORDS: Impedance matrix, scattering matrix, large silencers, boundary 
element method, transmission loss 
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Chapter 1 INTRODUCTION  

1.1 Background 

The power generation industry is the mainstay of the modern society, which 

supplies essential energy to the industrial development and our everyday life. 

However, a loud noise will be generated during the operation of the power plants, 

and noise complaints often arise from the nearby residents if it cannot be 

addressed appropriately. The combustion exhaust noise from the gas turbine is 

one of the major noise sources. To attenuate the sound level of the exhaust noise, 

large dissipative silencers are widely used in the power generation industry, such 

as the parallel-baffle silencers, round silencers, and rectangular lined ducts, as 

shown in Figure 1.1.   

 

Figure 1.1 Geometry of typical dissipative silencer types: (a) parallel-baffle 

silencer; (b) round silencer; (c) rectangular lined duct. (Beranek and Vér, 2006) 

1.1.1 Silencers 

Silencers are the commonly used noise control devices for internal combustion 

engines, gas turbines, air-conditioning and ventilation systems (Munjal, 2014). 
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There are two different types of silencers: reactive silencers and dissipative 

silencers. Dissipative silencers shown in Figure 1.1 convert the acoustic energy to 

heat by using sound absorbing materials, and are suited to addressing medium to 

high frequency broadband noise because of the frequency characteristics of the 

absorbing materials (Wallin et al., 2012). Reactive silencers do not use sound 

absorbing materials but instead employ geometric design principles (Harris, 1991). 

By providing the impedance mismatch due to the sudden area change, noise is 

attenuated by reflection and cancellation of sound waves. Therefore, reactive 

silencers are normally used to abate sound consisting of discrete tones, especially 

in the low frequency region (Wallin et al., 2012). A typical reactive silencer is shown 

in Figure 1.2. 

 

Figure 1.2 Typical reactive silencer. (Potente, 2005) 

1.1.2 Acoustic performance criteria of silencers 

The insertion loss (IL), transmission loss (TL) and noise reduction (NR) are three 

commonly used metrics to evaluate the acoustic performance of silencers (Munjal, 

2014).  
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Insertion loss (IL) is defined as the change in the radiated sound pressure level 

(SPL) at a certain point resulting from the insertion of the silencer when compared 

to a straight pipe output without the silencer (Beranek and Vér, 2006). 

 

Figure 1.3 Definition of insertion loss of a silencer. 

With reference to Figure 1.3, the insertion loss is defined by 

 𝐼𝐿 =  𝑆𝑃𝐿 1– 𝑆𝑃𝐿2 = 20 log10 |
𝑝1

𝑝2
| (1.1) 

Transmission loss (TL) is defined as the difference between the incident sound 

power level and the transmitted sound power level with an anechoic termination 

(Munjal, 2014). 

               

Figure 1.4 Definition of transmission loss of a silencer. 

With reference to Figure 1.4, the transmission loss is defined by 
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 𝑇𝐿 =  10 log10
𝑊𝑖

𝑊𝑡
 (1.2) 

Noise reduction (NR) is the difference in sound pressure levels at two points one 

upstream and one downstream (Munjal, 2014), which is demonstrated in Figure 

1.5. 

                        

 

Figure 1.5 Definition of noise reduction of a silencer. 

Equation 1.3 is the mathematical expression of the noise reduction 

 𝑁𝑅 =  𝑆𝑃𝐿 1– 𝑆𝑃𝐿2 = 20 log10 |
𝑝1

𝑝2
| (1.3) 

Of the three performance parameters introduced above, insertion loss is clearly 

the most direct metric to indicate the performance of silencer since it represents 

the loss in the radiated sound power level due to the insertion of the silencer 

between the noise source and the receiver (Munjal, 2014). Insertion loss is easy 

to measure but difficult to simulate because it requires the knowledge of the source 

impedance and the termination condition when sound exits the outlet pipe and 

radiates into the surrounding environment. Similar to the insertion loss, noise 

reduction also depends on the property of the termination condition and the 

locations of the two measurement points.  Unlike insertion loss and noise 

reduction, transmission loss is the property of the silencer itself because it does 
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not take the source impedance into consideration and it also assumes the outlet 

has an anechoic termination.  Due to its simplicity, transmission loss has been 

used as the main indicator of silencer performance in the research community.   It 

should be noted that for large dissipative silencers used in power generation, most 

sound waves are absorbed by the sound-absorbing materials and all three 

performance metrics (IL, NR, and TL) produce very similar results.   

1.1.3 Traditional methods for TL calculation 

In general, there are two commonly used methods for determining TL numerically: 

the four-pole matrix method (Wu et al, 1998; Munjal, 2014), and the wave 

decomposition method (Wu and Wan, 1996; Selamet and Radavich, 1997). 

Four-pole matrix method 

Based on the plane-wave theory (Pierce, 1981), a silencer with an inlet and outlet 

shown in Figure 1.6 can be represented by a linear acoustic four-pole network 

below the cut-off frequency at the inlet/outlet: 

 {
𝑝1
𝑣1
} = [

𝐴 𝐵
𝐶 𝐷

] {
𝑝2
𝑣2
} (1.4) 

 

Figure 1.6 Four-pole method for TL calculation. 

where 𝑝1 and 𝑣1 are the sound pressure and normal particle velocity at the inlet, 

and 𝑝2 and 𝑣2 are the sound pressure and normal particle velocity at the outlet, 
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respectively. The four-pole matrix can be obtained by 1-D transfer matrix method 

if the analytical four-pole matrices for all attenuating elements are available, or 

calculated by a 3D numerical tool, such as the finite element method (FEM) or the 

boundary element method (BEM).  In the BEM model, a negative sign on 𝑣2 is 

added because the normal vector at the outlet is opposite to the normal at the inlet, 

and the four-pole parameters, 𝐴, 𝐵, 𝐶 and 𝐷 can be obtained from 

 𝐴 =
𝑝1
𝑝2
|
𝑣2=0,𝑣1=1

    𝐵 =
𝑝1
−𝑣2

|
𝑝2=0,𝑣1=1

 (1.5a, 1.5b) 

 𝐶 =
𝑣1
𝑝2
|
𝑣2=0,𝑣1=1

    𝐷 =
𝑣1
−𝑣2

|
𝑝2=0,𝑣1=1

 (1.5c, 1.5d) 

The TL of the silencer can be then calculated by Equation 1.6, 

 
𝑇𝐿 = 20 log10 (

1

2
|𝐴 +

𝐵

𝜌𝑐
+ 𝜌𝑐𝐶 + 𝐷|) + 10 log10

𝑆𝑖
𝑆𝑜

 (1.6) 

where 𝑆𝑖  and 𝑆𝑜  are the cross-sectional areas of the inlet and outlet tubes, 

respectively.  Wu et al (1998) proposed an improved four-pole method that 

calculates the impedance matrix first, and then converts the impedance matrix into 

the four-pole matrix.  The advantage of the improved method is that it speeds up 

the computation time by 50%.    

Wave decomposition method 

The acoustic wave in the duct is the superposition of the forward and backward 

moving waves (Munjal, 2014).  Based on the plane-wave theory, the sound 

pressure at the at the location 𝑥 of the inlet duct is expressed below, 
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 𝑝(𝑥) = 𝐴𝑒−𝑗𝑘𝑥 + 𝐵𝑒𝑗𝑘𝑥 (1.7) 

where 𝐴 is the complex amplitude of incident wave, 𝐵 is the complex amplitude of 

reflected wave, and  𝑘 is the wavenumber. 

Because of the anechoic termination assumption at the outlet for the TL 

calculation, only the outgoing wave exists, and the sound pressure at the location 

𝑥 of the outlet duct is, 

 𝑝(𝑥) = 𝐶𝑒−𝑗𝑘𝑥 (1.8) 

Therefore, the TL of the silencer can be calculated in terms of 𝐴 and 𝐶, as shown 

in Equation 1.9. 

 𝑇𝐿 = 20 log10
|𝐴|

|𝐶|
+10 log10

𝑆𝑖
𝑆𝑜

 (1.9) 

In order to obtain the wave amplitudes of 𝐴 and 𝐵, the three-point method (Wu and 

Wan, 1996) is one of the popular approaches. As shown in Figure 1.7, 𝑥1 and 𝑥2 

are the longitudinal coordinates of the two selected points at the inlet duct. The 

sound pressures of these two points  𝑝1  and 𝑝2  can be written as         

 

Figure 1.7 Three-point method for TL calculation. 
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 𝑝1 = 𝐴𝑒
−𝑗𝑘𝑥1 + 𝐵𝑒𝑗𝑘𝑥1 (1.10a) 

 𝑝2 = 𝐴𝑒
−𝑗𝑘𝑥2 + 𝐵𝑒𝑗𝑘𝑥2 (1.10b) 

The incident wave amplitude 𝐴 can be obtained after solving Equation 1.10a and 

1.10b, 

 
𝐴 =

𝑝1𝑒
+𝑗𝑘𝑥2 − 𝑝2𝑒

+𝑗𝑘𝑥1

2𝑗 sin(𝑘(𝑥2 − 𝑥1))
 (1.11) 

provided that sin(𝑘(𝑧2 − 𝑧1)) ≠ 0. Since |𝐶| = |𝑝3|, the point of  𝑝3  can be selected 

anywhere in the outlet duct. The TL can be then calculated by Equation 1.9. 

1.1.4 BEM substructuring technique 

The BEM substructuring technique (Lou et al, 2003) is an efficient tool for large 

silencer analysis, since it may not be possible to analyze a very large silencer in 

one single BEM model on a desktop computer. Thanks to the direct mixed-body 

BEM theory, which can handle complex internal components (Wu et al, 1998 and 

Wu and Wan, 1996) as well as multiple bulk-reacting materials (Wu et al, 2002 and 

Jiang et al, 2010) in one single BEM domain without resorting to the tedious multi-

domain BEM, a large silencer can be divided into several smaller substructures at 

any cross sections along with the axial direction of the silencer. Continuity of sound 

pressures and particle velocities at junctions is automatically enforced when the 

BEM impedance matrices are merged by a synthesis procedure (Wu et al, 2002).  

After all the impedance matrices of the substructures are merged, the resulting 

impedance matrix of the silencer can be used to calculate the TL. As demonstrated 

in Figure 1.8, a tuned dissipative silencer, also known as the “pine-tree” silencer 
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because of its internal structural shape, can be divided into three small 

substructures A, B and C to fit within the memory limitation of a desktop computer. 

For substructure B, only one small template needs to be modeled, and its 

impedance matrix can be used repeatedly downstream. To speed up the 

computation, multiple desktop computers can be used simultaneously for different 

substructures as each substructure calculation is independent of one another. 

Finally, with the impedance matrices of all substructures available, the impedance 

matrix of the large silencer can be formed by using the impedance matrix 

synthesis. 

 

Figure 1.8 A tuned dissipative silencer divided into three small substructures with 

the second substructure as a repeating template. 

1.2 Motivation 

In general, silencers used in the power generation usually have very large 

dimensions. Even a single unit isolated from an array of bar silencers or tuned-

dissipative silencers may still have a large cross section at the inlet and the outlet 

(Cummings and Astley, 1996, Mechel, 2002 and Wang and Wu, 2015).  The plane-
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wave cutoff frequency of the inlet and outlet ducts of such silencers can be less 

than a few hundred Hz, and the frequency range of interest normally goes up to 

8000 Hz or above.  Due to the low cutoff, the conventional four-pole transfer matrix 

is not valid, and more importantly the anechoic termination can no longer be 

represented by the characteristic impedance boundary condition.  Although the 

silencer itself is often modeled by a three-dimensional analysis tool such as BEM 

(Cheng and Seybert, 1987; Wu and Wan, 1996; Wu et al. 2002; Ji, 2010) or FEM 

(Peat, 1982; Peat and Rathi, 1995; Tsuji et al., 2002; Barbieri, 2006), a direct 

computation of the TL from the BEM or FEM model can be challenging without 

incorporating certain forms of modal expansion. 

Since the 1990s, approximate analytical solutions are available for large lined duct 

silencers. Cummings and Sormaz (1993), Ingard (1994) and Kakoty and Roy 

(2002) proposed a two-dimensional analytical solution for an infinitely long lined 

duct.  By assuming no reflected waves in the lined duct, the attenuation of an 

incident plane wave can be obtained after solving the characteristic equation 

numerically. However, this approach is strictly restricted to very simple and uniform 

structures. 

Kirby and his co-workers (2003, 2005, 2006, 2009, and 2014) used a hybrid FEM 

to study the acoustical performance of large dissipative silencers.  To apply the 

hybrid technique, the 2D FEM is first employed to extract the eigenvalues and the 

associated eigenvectors of an axially uniform cross section.  These 2D transversal 

modes are then used in the modal expansion along the axial direction if the cross 

section remains the same. To determine the unknown amplitudes in the modal 
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expansion, either a point collocation method or a mode matching scheme is 

adopted to enforce the continuity of sound pressure and particle velocity at both 

ends where the uniform section meets the flanges or any irregular junctions. The 

higher-order modes, including the evanescent modes, are considered in the modal 

expansion because the evanescent modes are still important at the flanges or 

irregular junctions. Since the FEM is mainly used on a 2D cross section to extract 

the modes, the hybrid FEM is a very efficient numerical technique for silencers with 

a very long axially uniform section.   

On the BEM side, Zhou et al. (2012, 2013 and 2016) recently proposed a reciprocal 

identity method in conjunction with the BEM impedance matrix to extract the 

higher-order modes at the inlet and outlet.  Each reciprocal identity couples the 

analytical modal expansion in the inlet and outlet ducts to a BEM solution with a 

random boundary condition set. The modal expansion assumes a certain form of 

the incident wave in the inlet duct, and an anechoic termination at the outlet. The 

unknown modal amplitudes are the reflected waves in the inlet duct and the 

transmitted waves in the outlet duct.  Depending on how many modes can 

propagate to the inlet and outlet at a given frequency, a minimum number of BEM 

solutions are needed for the reciprocal identity coupling. The BEM impedance 

matrix can naturally provide more than enough such solutions since each column 

of the impedance matrix represents a BEM solution corresponding to a unique 

boundary condition set. A least-squares procedure is then used to solve for the 

unknown modal amplitudes. The reciprocal identity method can be regarded as an 
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indirect post-processing filter whose sole function is to extract the modes at the 

inlet and outlet from the BEM impedance matrix. 

In this dissertation, a so-called “impedance-to-scattering matrix method” is 

developed to extract the modes at the inlet and outlet from the BEM impedance 

matrix for the large silencer analysis (Wang and Wu, 2014, 2015 and 2016). 

Compared to the reciprocal identity method (Zhou et al., 2012, 2013 and 2016), 

the proposed method is a more efficient approach that directly converts the BEM 

impedance matrix into the scattering matrix for TL computation. The BEM 

impedance matrix relates the sound pressures at the inlet and outlet to the 

corresponding particle velocities (Lou et al., 2003; Marburg and Nolte, 2008), while 

the scattering matrix relates the modes at the inlet and outlet.  Each sound 

pressure and particle velocity can be expanded in terms of the duct modes at the 

centroid of each constant boundary element. These point-wise expansions are 

then related by the BEM impedance matrix, and the scattering matrix can be 

obtained after a few matrix operations. Normally there are more boundary 

elements than the total number of modes at the inlet and outlet, and a least-

squares procedure is used to condense the element-based impedance matrix to 

the mode-based scattering matrix. The TL computation will follow if a certain form 

of the incident wave is assumed and the outlet is non-reflective. Figure 1.9 

demonstrates the complete TL computation procedure of the large silencer. 
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Figure 1.9 Flowchart of the procedure for large silencer analysis. 

The concept of scattering matrix was introduced in the past in electromagnetics 

(Dicke, 1947) and acoustics (Åbom, 1991) below the plane-wave cutoff frequency.  

In other words, only the first mode was considered in those early scattering matrix 

applications.  With the introduction of the BEM impedance matrix (Lou et al, 2003), 

all higher-order propagating modes along with the evanescent modes can be 

extracted from the BEM impedance matrix and incorporated into the scattering 

matrix.   One bonus effect of producing the scattering matrix is that it can also be 
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used to combine subsystems in series connection. Unlike the traditional 4-pole 

transfer matrix, the higher-order modes are now included in the scattering matrix.  

Although the BEM impedance matrix may also be used to combine subsystems 

(Lou et al, 2003), it should be noted that the impedance matrix must be always 

associated with a particular BEM mesh due to its element-based nature, but the 

scattering matrix is a system property that does not rely on any mesh. Therefore, 

it is easier to store scattering matrices in the database, and thus it is a better 

approach for combining subsystems in series connection. 

1.3 Organization 

The dissertation is organized as follows: 

Chapter 2 first introduces the impedance matrix and the scattering matrix for large 

silencers, and then details the derivation of the transformation from the impedance 

matrix to the scattering matrix. Test cases are presented to validate the proposed 

method.  

Chapter 3 extends the proposed method to large multi-inlet and multi-outlet 

silencers. The current techniques to calculate the TL of multi-inlet and multi-outlet 

silencers are reviewed first. Then the transformation from the impedance matrix to 

scattering matrix for large three-port silencers is detailed. The BEM TL solution is 

validated by an equivalent IL solution using the automatically matched layer (AML) 

in the FEM.  

In Chapter 2 and 3, a direct point collocation approach is used to convert the BEM 

impedance matrix into the scattering matrix for TL computation.  Chapter 4 
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presents an integral-based impedance-to-scattering matrix method based on the 

recently developed reciprocal identity method (Zhou et al, 2016). The 

computational efficiency, accuracy and stability are compared between the 

collocation-based and integral-based methods. 

Chapter 5 first extends the impedance-to-scattering matrix method to large silence 

with irregular inlet and outlet configurations analysis, and then introduces the 

Redheffer’s star product (Redheffer, 1962) to combine scattering matrices of 

subsystems and methods for determination of TL in one-third octave and octave 

band.  

Chapter 6 presents an important case study on the tuned dissipative silencers.  A 

semi-analytical solution is also developed to evaluate the BEM solution. 

Chapter 7 includes summary, conclusions and suggestions for future work. 
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Chapter 2 COLLOCATION-BASED IMPEDANCE-TO-SCATTERING 

MATRIX METHOD FOR LARGE SILENCER ANALYSIS 

2.1 Introduction 

As discussed in Chapter 1, silencers used in power generation usually have very 

large dimensions. The plane-wave cutoff frequency of the inlet and outlet ducts of 

such silencers can be less than a few hundred Hz, while the frequency range of 

interest normally goes to 8000 Hz or above.  Although the BEM is a truly 3D 

analysis tool, and in theory it should be valid at any high frequencies as long as 

the BEM mesh is fine enough, the conventional method to calculate TL has been 

relying on the 1-D four-pole transfer matrix.  When the frequency goes above the 

plane-wave cutoff of the inlet and outlet ducts, higher-order modes begin to 

emerge at the inlet and outlet, and the conventional four-pole transfer matrix is no 

longer valid. Therefore, a different method that considers the higher-order modes 

must be developed to compute the TL for large silencers. 

In this chapter, a so-called collocation-based impedance-to-scattering matrix 

method is proposed to extract the higher-order modes at the inlet and outlet from 

the BEM impedance matrix for TL computation.  Later in Chapter 4, an integral-

based impedance-to-scattering matrix method is also introduced as an alternative 

to the collocation-based method.  Comparison between these two methods is 

presented in Chapter 4.   

2.2 BEM impedance matrix  

The BEM impedance matrix Z is defined by 
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(

 
 
 
 
 
 
 
 
 

𝑝11
𝑝12
.
.
.
𝑝1𝑞
……
𝑝21
𝑝22
.
.
.
𝑝2𝑙 )

 
 
 
 
 
 
 
 
 

= [

𝑍1,1  ⋯ 𝑍1,𝑞+𝑙
⋮ ⋱ ⋮

𝑍𝑞+𝑙,1 ⋯ 𝑍𝑞+𝑙,𝑞+𝑙

]

(

 
 
 
 
 
 
 
 
 

𝑣11
𝑣12
.
.
.
𝑣1𝑞
……
𝑣21
𝑣22
.
.
.
𝑣2𝑙 )

 
 
 
 
 
 
 
 
 

 (2.1) 

where 𝑝 and 𝑣 denote the sound pressure and particle velocity at the inlet and 

outlet.  For 𝑝 and 𝑣, the first subscript 1 represents the inlet and 2 the outlet; the 

second subscript represents the boundary element numbering ( 𝑞  constant 

elements at inlet and 𝑙 constant elements at outlet).   The impedance matrix can 

be obtained by “tuning on” 𝑣  = 1 on each element at the inlet and outlet 

successively, one at a time.  Although there are a total of 𝑞 + 𝑙 velocity boundary 

condition sets, they all share the same BEM coefficient matrix.  Therefore only one 

matrix inverse (or decomposition) is needed at each frequency.   Equation 2.1 can 

be re-written in a more compact vector form 

 
(
𝐩𝟏
𝐩𝟐
) = [

𝐙𝟏𝟏 𝐙𝟏𝟐
𝐙𝟐𝟏 𝐙𝟐𝟐

] (
𝐯𝟏
𝐯𝟐
) (2.2) 

where 1 and 2 denote the inlet and the outlet, respectively, and the element 

numbering index is dropped. 

2.3 Scattering matrix 

The scattering matrix S relates the modal amplitudes at the inlet and outlet: 



18 
 

 

(

 
 
 
 
 
 
 
 
 

𝑃20
+

𝑃21
+

.

.

.
𝑃2(𝑁−1)
+

……
𝑃10
−

𝑃11
−

.

.

.
𝑃1(𝑁−1)
−

)

 
 
 
 
 
 
 
 
 

= [

𝑆1,1  ⋯ 𝑆1,2𝑁
⋮ ⋱ ⋮

𝑆2𝑁,1 ⋯ 𝑆2𝑁,2𝑁

]

(

 
 
 
 
 
 
 
 
 

𝑃10
+

𝑃11
+

.

.

.
𝑃1(𝑁−1)
+

……
𝑃20
−

𝑃21
−

.

.

.
𝑃2(𝑁−1)
−

)

 
 
 
 
 
 
 
 
 

 (2.3) 

where 𝑃 denotes the wave amplitude of a particular mode. The superscript + on 𝑃 

represents the right-traveling wave and – the left-traveling wave; the first subscript 

1 denotes the inlet and 2 the outlet; the second subscript denotes the order of the 

mode.   Assume that there are 𝑁 modes (n = 0 to N-1) in the inlet duct and the 

outlet duct as well.  The 𝑁 modes may include evanescent modes, but normally 

one evanescent mode beyond the last propagating mode is enough because most 

evanescent modes are insignificant when they reach the inlet and outlet locations.   

In fact, the exponential decay rate of any evanescent mode can be analytically 

assessed at a given frequency. Equation 2.4 can be re-written in a more compact 

vector form 

 
(
𝐏𝟐
+

𝐏𝟏
−) = [

𝐒𝟏𝟏 𝐒𝟏𝟐
𝐒𝟐𝟏 𝐒𝟐𝟐

] (
𝐏𝟏
+

𝐏𝟐
−) (2.4) 

It is noted that in Equation 2.4 the transmitted wave amplitudes at the outlet 𝐏𝟐
+and 

the reflected wave amplitudes at the inlet 𝐏𝟏
− are placed on the left-hand side, while 

the incident wave amplitudes at the inlet 𝐏𝟏
+ and the reflected wave amplitudes at 

the outlet 𝐏𝟐
− are placed on the right-hand side. Since the TL is defined based on 
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an anechoic termination, 𝐏𝟐
− is clearly a zero vector.  As for 𝐏𝟏

+, a single incident 

plane wave without any higher-order modes is assumed in this study for simplicity, 

although the three different source models suggested by Mechel (Mechel, 1990) 

may also be adopted.  In other words, we let 𝐏𝟏
+= [1, 0, 0, … , 0]T, where the 

superscript T denotes the transpose.  If the scattering matrix S is available, both 

𝐏𝟐
+ and  𝐏𝟏

− may be solved from Equation 2.4. 

2.4 TL above the plane-wave cutoff frequency of the inlet/outlet 

In Chapter 1, the traditional TL calculation methods are introduced. However, the 

results are only valid below the plane-wave cutoff at the inlet/outlet since the plane-

wave theory is used in those methods.  In this section, by including the higher-

order modes at the inlet and outlet ducts, the TL computation is valid at all 

frequencies. 

The sound pressure and particle velocity of the incident wave at any point 𝑖 in the 

inlet duct can be expressed in the general modal expansion form, 

 𝑝1𝑖
+ = ∑Φ1𝑛

𝑖 𝑃1𝑛
+  e−j𝑘1𝑧,𝑛𝑧

𝑁−1

𝑛=0

 (2.5) 

 𝑣1𝑖
+ =

1

𝜌𝜔
∑ 𝑘1𝑧,𝑛Φ1𝑛

𝑖 𝑃1𝑛
+  e−j𝑘1𝑧,𝑛𝑧

𝑁−1

𝑛=0

 (2.6) 

where z is the axial coordinate along the inlet duct, 𝑃1𝑛
+  is the modal amplitude 

corresponding to the right-traveling wave of order n, 𝑘1𝑧  represents the 

wavenumber in the 𝑧 direction, Φ1𝑛
𝑖  denotes the eigenfunction value at the point 𝑖. 
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For a circular or rectangular cross section, the eigenfunctions can be obtained 

analytically.  For convenience, z=0 is set right at the inlet cross section.  

The intensity of the incident wave then can be calculated 

 𝐼1𝑖 =
1

2
𝑅𝑒(𝑝1𝑖

+ (𝑣1𝑖
+)∗) (2.7) 

where ∗  denotes the conjugant and 𝑅𝑒(∙)  denotes the real part of a complex 

number. 

The sound power is the integration of the intensity over the cross-sectional area of 

the inlet 

 𝑊1 = ∫ 𝐼1𝑖  𝑑𝑆
𝑆1

 (2.8) 

where 𝑆1 is the cross-sectional area of the inlet. 

Based on assumption of the single incident plane-wave, 𝐏𝟏
+= [1, 0, 0, … , 0]T, the 

incident sound power is simply 

 𝑊1 =
𝑆1

2𝜌𝑐
 (2.9) 

At the outlet, by simply switching the first subscript 1 to 2 in Equation 2.5 to 

Equation 2.8, the transmitted sound power is the summation of sound power from 

different modes:  
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 𝑊2 = ∫
1

2𝜌𝜔
∑𝑅𝑒(Φ𝑛

𝑖 𝑃2𝑛
+ (𝑘𝑧,𝑛Φ𝑛

𝑖 𝑃2𝑛
+ )∗)

𝑁−1

𝑛=0𝑆2

 𝑑𝑆 (2.10) 

where the transmitted modal amplitudes 𝑃2𝑛
+  can be calculated from Equation 2.4 

once the BEM impedance matrix Z is converted into the scattering matrix S.  The 

TL is defined as the difference between the incident and transmitted sound power 

level,  

 𝑇𝐿 =  10 log10
𝑊1

𝑊2
 (2.11) 

2.5 Impedance-to-Scattering matrix method for axisymmetric silencers 

2.5.1 Transformation from the impedance matrix to scattering matrix 

The simplest way to demonstrate the impedance-to-scattering matrix method is to 

begin with the axisymmetric configuration. For an axisymmetric silencer, the modal 

expansion of sound pressure in the inlet/outlet duct is   

 
𝑝(𝑟, 𝑧) = ∑ 𝐽0(𝑘𝑟,𝑛𝑟)[𝑃𝑛

+ e−j𝑘𝑧,𝑛𝑧 + 𝑃𝑛
−ej𝑘𝑧,𝑛𝑧]

∞

𝑛=0

 (2.12) 

where 𝑘𝑟,𝑛 is the radial wavenumber associated with the n-th mode, and 𝑘𝑧,𝑛 is the 

corresponding axial wavenumber, 𝐽0 is the Bessel function of the first kind of order 

zero, and the superscripts + and – represent the incident and reflected waves, 

respectively.  The n = 0 mode is the plane-wave mode with 𝑘𝑟,0 = 0.  The two 

wavenumbers are related by  
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 𝑘𝑟,𝑛
2 = 𝑘2 − 𝑘𝑧,𝑛

2  (2.13) 

where  𝑘 = 𝜔/𝑐, 𝜔 is the circular frequency and c is the speed of sound.  The radial 

wavenumber 𝑘𝑟,𝑛 has to satisfy the rigid-wall boundary condition  

 𝐽0
′(𝑘𝑟,𝑛𝑎) = 0 (2.14) 

where 𝑎 is the radius of the inlet/outlet duct. 

For convenience, 𝑧 = 0 is locally set at the inlet cross section. Therefore, sound 

pressures of the q boundary elements at the inlet can be expressed in the matrix 

form 

(

  
 

𝑝11
𝑝12
.
.
.
𝑝1𝑞)

  
 
= [

𝐽0(𝑘𝑟,0𝑟11) ⋯ 𝐽0(𝑘𝑟,𝑁−1𝑟11)

⋮ ⋱ ⋮
𝐽0(𝑘𝑟,0𝑟1𝑞) ⋯ 𝐽0(𝑘𝑟,𝑁−1𝑟1𝑞)

  ⋮   

𝐽0(𝑘𝑟,0𝑟11) ⋯ 𝐽0(𝑘𝑟,𝑁−1𝑟11)

⋮ ⋱ ⋮
𝐽0(𝑘𝑟,0𝑟1𝑞) ⋯ 𝐽0(𝑘𝑟,𝑁−1𝑟1𝑞)

]

(

 
 
 
 
 
 
 
 
 

𝑃10
+

𝑃11
+

.

.

.
𝑃1(𝑁−1)
+

……
𝑃10
−

𝑃11
−

.

.

.
𝑃1(𝑁−1)
−

)

 
 
 
 
 
 
 
 
 

 (2.15) 

where 𝑟1𝑖 is the radial coordinate of the centroid of the ith boundary element at the 

inlet.  Equation 2.15 can be re-written in a more compact vector form 

 
𝐩𝟏 = 𝐌𝟏𝟏 (

𝐏𝟏
+

𝐏𝟏
−) (2.16) 

where the “modal matrix” M11 relates sound pressures at the inlet cross section to 

the modal amplitudes at the inlet.  Similarly, sound pressures at the outlet (where 

𝑧 = 0  is also locally set) is 
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𝐩𝟐 = 𝐌𝟐𝟏 (

𝐏𝟐
+

𝐏𝟐
−) (2.17) 

The particle velocity expression corresponding to the sound pressure in Equation 

2.12 is 

 
𝑣(𝑟, 𝑧) =

1

𝜌𝜔
∑𝑘𝑧,𝑛𝐽0(𝑘𝑟,𝑛𝑟)[𝑃𝑛

+ e−j𝑘𝑧,𝑛𝑧 − 𝑃𝑛
−ej𝑘𝑧,𝑛𝑧]

∞

𝑛=0

 (2.18) 

Express the particle velocities of the 𝑞 boundary elements at the inlet (where 𝑧 =

0) in terms of the modal amplitudes at the inlet to get   

(

  
 

𝑣11
𝑣12
.
.
.
𝑣1𝑞)

  
 
=

[
 
 
 
 
𝑘𝑧,1
𝜌𝜔

𝐽0(𝑘𝑟,0𝑟11) ⋯
𝑘𝑧,𝑁−1
𝜌𝜔

𝐽0(𝑘𝑟,𝑁−1𝑟11)

⋮ ⋱ ⋮
𝑘𝑧,1
𝜌𝜔

𝐽0(𝑘𝑟,0𝑟1𝑞) ⋯
𝑘𝑧,𝑁−1
𝜌𝜔

𝐽0(𝑘𝑟,𝑁−1𝑟1𝑞)

  

⋮   

−
𝑘𝑧,1
𝜌𝜔

𝐽0(𝑘𝑟,0𝑟11) ⋯ −
𝑘𝑧,𝑁−1
𝜌𝜔

𝐽0(𝑘𝑟,𝑁−1𝑟11)

⋮ ⋱ ⋮

−
𝑘𝑧,1
𝜌𝜔

𝐽0(𝑘𝑟,0𝑟1𝑞) ⋯ −
𝑘𝑧,𝑁−1
𝜌𝜔

𝐽0(𝑘𝑟,𝑁−1𝑟1𝑞)]
 
 
 
 

(

 
 
 
 
 
 
 
 
 

𝑃10
+

𝑃11
+

.

.

.
𝑃1(𝑁−1)
+

……
𝑃10
−

𝑃11
−

.

.

.
𝑃1(𝑁−1)
−

)

 
 
 
 
 
 
 
 
 

 

 

(2.19) 

or in a more compact vector form 

 
𝐯𝟏 = 𝐌𝟏𝟐 (

𝐏𝟏
+

𝐏𝟏
−) (2.20) 
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Similarly, the particle velocities at the outlet can be written as 

 
𝐯𝟐 = 𝐌𝟐𝟐 (

𝐏𝟐
+

𝐏𝟐
−) (2.21) 

Substitute Equations 2.16, 2.17, 2.20, 2.21 into Equation 2.2 to get 

 
𝐌𝟏𝟏 (

𝐏𝟏
+

𝐏𝟏
−) = 𝐙𝟏𝟏𝐌𝟏𝟐 (

𝐏𝟏
+

𝐏𝟏
−) + 𝐙𝟏𝟐𝐌𝟐𝟐 (

𝐏𝟐
+

𝐏𝟐
−) (2.22) 

 
𝐌𝟐𝟏 (

𝐏𝟐
+

𝐏𝟐
−) = 𝐙𝟐𝟏𝐌𝟏𝟐 (

𝐏𝟏
+

𝐏𝟏
−) + 𝐙𝟐𝟐𝐌𝟐𝟐 (

𝐏𝟐
+

𝐏𝟐
−) (2.23) 

The above two equations are combined into one matrix form 

 
[
𝐌𝟏𝟏 − 𝐙𝟏𝟏𝐌𝟏𝟐

𝐙𝟐𝟏𝐌𝟏𝟐
] (
𝐏𝟏
+

𝐏𝟏
−) = [

𝐙𝟏𝟐𝐌𝟐𝟐

𝐌𝟐𝟏 − 𝐙𝟐𝟐𝐌𝟐𝟐
] (
𝐏𝟐
+

𝐏𝟐
−) (2.24) 

It should be noted that all the inlet wave amplitudes (with subscript 1) are on one 

side and all the outlet wave amplitudes (with subscript 2) are on the other side of 

Equation 2.24.  Although this may look like a “transfer scattering matrix” that relates 

the inlet directly to the outlet, matrix inverse should not be performed at this stage 

because Equation 2.24 does not represent a well-posed boundary value problem.  

A well-posed boundary value problem should have a known condition at the inlet 

and another known condition at the outlet.  For example, to find the TL, a certain 

incident wave (𝐏1
+) should be given at the inlet and the outlet is assumed anechoic 

(𝐏2
− = 𝟎).  To split the matrix contributions into the incident and reflected waves in 

Equation 2.24, let 
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[
𝐌𝟏𝟏 − 𝐙𝟏𝟏𝐌𝟏𝟐

𝐙𝟐𝟏𝐌𝟏𝟐
] = [𝐍𝟏𝟏 𝐍𝟏𝟐] (2.25) 

 
[

𝐙𝟏𝟐𝐌𝟐𝟐

𝐌𝟐𝟏 − 𝐙𝟐𝟐𝐌𝟐𝟐
] = [𝐍𝟐𝟏 𝐍𝟐𝟐] (2.26) 

and re-arrange Equation 2.24 to obtain 

 
[𝐍𝟐𝟏 −𝐍𝟏𝟐] (

𝐏𝟐
+

𝐏𝟏
−) = [𝐍𝟏𝟏 −𝐍𝟐𝟐] (

𝐏𝟏
+

𝐏𝟐
−) (2.27) 

Equation 2.27 is now “well-posed” because it has both inlet and outlet components 

on each side.  Since there are always more boundary elements than the number 

of propagating modes, a least-squares matrix inverse can be performed on 

Equation 2.27 to get the scattering matrix S, 

 
(
𝐏𝟐
+

𝐏𝟏
−) = [

𝐒𝟏𝟏 𝐒𝟏𝟐
𝐒𝟐𝟏 𝐒𝟐𝟐

] (
𝐏𝟏
+

𝐏𝟐
−) (2.28) 

The unknowns 𝐏𝟐
+ and 𝐏𝟏

− can be then obtained if the scattering matrix is available 

and a single incident plane wave and the anechoic termination are assumed. 

At this point, the scattering matrix S can also be rearranged to obtain a so-called 

“transfer scattering matrix” S*, 

 
(
𝐏𝟏
+

𝐏𝟏
−) = [

𝐒𝟏𝟏
∗ 𝐒𝟏𝟐

∗

𝐒𝟐𝟏
∗ 𝐒𝟐𝟐

∗ ] (
𝐏𝟐
+

𝐏𝟐
−) (2.29) 

The transfer scattering matrix relates the modes at the inlet to the modes at the 

outlet.  As such, it may be used in the same way as the traditional four-pole transfer 

matrix to combine subsystems in series connection.  
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2.5.2 Axisymmetric Test Case 

An axisymmetric round bar silencer shown in Figure 2.1 is used as the test case 

for the above formulation. The bar is made of polyester, serving as the sound 

absorbing material. The characteristic impedance 𝑍′ and complex wavenumber 𝑘′ 

are the bulk-reacting properties of the sound absorbing material, and there are 

several different empirical models for the bulk-reacting properties of fibrous 

materials (Allard and Atalla, 2009).  One of the most popular empirical models 

proposed by Delany and Bazley (1970) is shown below: 

 𝑍′ = 𝑍0(1 + 0.0571𝑋
−0.754 − 𝑗0.087𝑋−0.732) (2.30) 

 𝑘′ = 𝑘0(1 + 0.0978𝑋
−0.7 − 𝑗0.0189𝑋−0.595) (2.31) 

where 𝑍0 is the characteristic impedance of air and 𝑘0 the wavenumber in the air, 

and 𝑋 is a dimensionless parameter in terms of density of air 𝜌, frequency 𝑓 and 

the flow resistivity of the material 𝑅:   

 𝑋 =
𝜌𝑓

𝑅
 (2.32) 

The flow resistivity for polyester at room temperature is 𝑅 = 16000 Rayl/m.  The 

fibrous material is normally protected by a perforated facing sheet, which can be 

modeled by a transfer impedance.  In this study, a simple empirical formula by 

Sullivan and Crocker (1978) is used.  That is  

 𝜉 = (6.0 × 10−3 + 𝑗4.8 × 10−5𝑓)/𝜎 (2.33) 
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where 𝜉 is the normalized transfer impedance of the perforated facing sheet, 𝑓 is 

frequency, and 𝜎 is the porosity.  In this test case, we use 𝜎 = 30%. 

Due to the size and length of the silencer, the bar silencer is divided into three 

small substructures with the second substructure being a small template. As 

shown in Figure 2.1, the template substructure represents 1/9 of the axially uniform 

middle section, and its impedance matrix can be repeatedly used 9 times in the 

impedance matrix synthesis procedure. The analytical solution for the 

axisymmetric bar silencer can be obtained by using a method similar to the one 

proposed by Selamet et al. (2004) for lined expansion chambers except that the 

bulk-reacting material is now placed in the middle instead of on the wall and all 

higher-order modes are included in the TL computation.  With reference to Table 

1, there are 16 propagating modes up to 8000 Hz at room temperature. To account 

for any residual contributions from the evanescent modes that may manage to 

survive at the inlet and outlet, one evanescent mode is included in the modal 

expansion.  In other words, N =17 is used.  The BEM mesh using at least 8 

constant elements per wavelength and 1/45 rotational symmetry has 690 constant 

elements at the inlet and another group of 690 elements at the outlet.  This results 

in a 1380×1380 impedance matrix at each frequency.  Figure 2.2 compares the 

BEM solution using N = 17 to the analytical solution.  It should be noted that our 

analytical solution code based on the method in by Selamet et al. (2004) fails to 

find the correct characteristic roots after 4000 Hz.  Nonetheless, we still present 

the BEM solution up to 8000 Hz.  It is seen that the BEM solution compares very 
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well with the analytical solution up to the frequency for which the analytical solution 

is valid.   

 

Figure 2.1 An axisymmetric round bar silencer with three substructures 

 (Unit: m; 𝐿 = 6 m). 
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Table 2.1 Cut-on Frequencies at Inlet/Outlet of the Bar Silencer. 

Cut-on Frequency (Hz) Total Number of Propagating Modes 

612 2 

1120 3 

1624 4 

2127 5 

2629 6 

3131 7 

3633 8 

4135 9 

4637 10 

5138 11 

5640 12 

6141 13 

6643 14 

7145 15 

7646 16 

8148 17 
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To test the convergence of using more modes, we increase the number of modes 

to N = 30.  Figure 2.3 compares the solution of N = 17 to the solution of N = 30.  

We can see that adding more evanescent modes barely changes the TL curve. 

 

Figure 2.2 TL comparison between the BEM and the analytical solution. 
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Figure 2.3 TL of the axisymmetric bar silencer using N = 17 and N = 30.  

2.6 Impedance-to-Scattering matrix method for a non-axisymmetric 

circular inlet/outlet 

2.6.1 Transformation from the impedance matrix to the scattering matrix 

The modal expansion of sound pressure in a circular duct with a non-axisymmetric 

solution is   

 
𝑝(𝑟, 𝜃, 𝑧) = ∑ 𝐽0(𝑘𝑟,0,𝑛𝑟)[𝐴0𝑛e

−j𝑘𝑧,0,𝑛𝑧 + 𝐵0𝑛e
j𝑘𝑧,0,𝑛𝑧]

∞

𝑛=0

+ ∑∑𝐽𝑚(𝑘𝑟,𝑚,𝑛𝑟)[(𝐴𝑚𝑛
+ e−j𝑚𝜃 + 𝐴𝑚𝑛

− ej𝑚𝜃)e−j𝑘𝑧,𝑚,𝑛𝑧
∞

𝑛=0

∞

𝑚=1

+ (𝐵𝑚𝑛
+ e−j𝑚𝜃 + 𝐵𝑚𝑛

− ej𝑚𝜃)ej𝑘𝑧,𝑚,𝑛𝑧] 

(2.34) 
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where 𝑘𝑟,𝑚,𝑛 is the radial wavenumber associated with the (m, n) mode, and 𝑘𝑧,𝑚,𝑛 

is the corresponding axial wavenumber. The two wavenumbers are related by 

 𝑘𝑟,𝑚,𝑛
2 = 𝑘2 − 𝑘𝑧,𝑚,𝑛

2  (2.35) 

where k is the wavenumber.  The radial wavenumber 𝑘𝑟,𝑚,𝑛 has to satisfy the rigid-

wall boundary condition  

 𝐽𝑚
′ (𝑘𝑟,𝑚,𝑛𝑎) = 0 (2.36) 

where 𝑎 is the radius of the inlet/outlet duct, and the prime denotes the derivative. 

If 𝑧 = 0 is locally set at the inlet cross section, sound pressures of the q boundary 

elements at the inlet can be expressed in the matrix form 

(

  
 

𝑝11
𝑝12
.
.
.
𝑝1𝑞)

  
 
= [𝑴𝑷𝑨𝟎𝒏,𝑴𝑷𝑨𝒎𝒏

+ ,𝑴𝑷𝑨𝒎𝒏
− ,𝑴𝑷𝑩𝟎𝒏,𝑴𝑷𝑩𝒎𝒏

+ ,𝑴𝑷𝑩𝒎𝒏
− ]

(

 
 
 

𝑨𝟎𝒏
𝑨𝒎𝒏
+

𝑨𝒎𝒏
−

𝑩𝟎𝒏
𝑩𝒎𝒏
+

𝑩𝒎𝒏
− )

 
 
 

 (2.37) 

where 

 

𝑴𝑷𝑨𝟎𝒏 = 𝑴𝑷𝑩𝟎𝒏 = [

𝐽0(𝑘𝑟,0,0𝑟11) ⋯ 𝐽0(𝑘𝑟,0,𝑁−1𝑟11)

⋮ ⋱ ⋮
𝐽0(𝑘𝑟,0,0𝑟1𝑞) ⋯ 𝐽0(𝑘𝑟,0,𝑁−1𝑟1𝑞)

  ]

𝑞×𝑁

 (2.38) 

Let 

𝑴𝑷𝜽+(𝑚) = [

𝐽𝑚(𝑘𝑟,𝑚,0𝑟11)e
−j∗𝑚∗𝜃11 ⋯ 𝐽𝑚(𝑘𝑟,𝑚,𝑁−1𝑟11)e

−j∗𝑚∗𝜃11

⋮ ⋱ ⋮
𝐽𝑚(𝑘𝑟,𝑚,0𝑟1𝑞)e

−j∗𝑚∗𝜃1𝑞 ⋯ 𝐽𝑚(𝑘𝑟,𝑚,𝑁−1𝑟1𝑞)e
−j∗𝑚∗𝜃1𝑞

  ]

𝑞×𝑁

 (2.39) 
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𝑴𝑷𝜽−(𝑚) = [

𝐽𝑚(𝑘𝑟,𝑚,0𝑟11)e
j∗𝑚∗𝜃11 ⋯ 𝐽𝑚(𝑘𝑟,𝑚,𝑁−1𝑟11)e

j∗𝑚∗𝜃11

⋮ ⋱ ⋮
𝐽𝑚(𝑘𝑟,𝑚,0𝑟1𝑞)e

j∗𝑚∗𝜃1𝑞 ⋯ 𝐽𝑚(𝑘𝑟,𝑚,𝑁−1𝑟1𝑞)e
j∗𝑚∗𝜃1𝑞

  ]

𝑞×𝑁

 (2.40) 

where 𝑚 =1, 2,……, M-1. Therefore 

𝑴𝑷𝑨𝒎𝒏
+ = 𝑴𝑷𝑩𝒎𝒏

+ = [𝑴𝑷𝜽+(1),𝑴𝑷𝜽+(2), … ,𝑴𝑷𝜽+(𝑀 − 1) ]𝑞×[(𝑀−1)∗𝑁] (2.41) 

𝑴𝑷𝑨𝒎𝒏
− = 𝑴𝑷𝑩𝒎𝒏

− = [𝑴𝑷𝜽−(1),𝑴𝑷𝜽−(2), … ,𝑴𝑷𝜽−(𝑀 − 1) ]𝑞×[(𝑀−1)∗𝑁] (2.42) 

The details of the right-hand side vector of Equation 2.37 are 

 

𝑨𝟎𝒏 =

(

 
 
 

𝑃10
+

𝑃11
+

.

.

.
𝑃1(𝑁−1)
+

)

 
 
 
     𝑨𝒎𝒏

+ =

(

 
 
 

𝑃1𝑁
+

𝑃1(𝑁+1)
+

.

.

.
𝑃1(𝑀∗𝑁)
+

)

 
 
 
     𝑨𝒎𝒏

− =

(

 
 
 

𝑃1(𝑀∗𝑁+1)
+

𝑃1(𝑀∗𝑁+2)
+

.

.

.
𝑃1[(2𝑀−1)∗𝑁]
+

)

 
 
 

 (2.43) 

 

𝑩𝟎𝒏 =

(

  
 

𝑃10
−

𝑃11
−

.

.

.
𝑃1(𝑁−1)
−

)

  
 
     𝑩𝒎𝒏

+ =

(

 
 
 

𝑃1𝑁
−

𝑃1(𝑁+1)
−

.

.

.
𝑃1(𝑀∗𝑁)
−

)

 
 
 
     𝑩𝒎𝒏

− =

(

 
 
 

𝑃1(𝑀∗𝑁+1)
−

𝑃1(𝑀∗𝑁+2)
−

.

.

.
𝑃1[(2𝑀−1)∗𝑁]
−

)

 
 
 

 (2.44) 

Equation 2.37 can be re-written in a more compact vector form same as Equation 

2.16: 

 
𝐩𝟏 = 𝐌𝟏𝟏 (

𝐏𝟏
+

𝐏𝟏
−) (2.45) 

Similarly, sound pressures at the outlet (where 𝑧 = 0 is also locally set) is 
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𝐩𝟐 = 𝐌𝟐𝟏 (

𝐏𝟐
+

𝐏𝟐
−) (2.46) 

The particle velocity expression corresponding to the sound pressure in Equation 

2.34 is 

𝑣(𝑟, 𝜃, 𝑧) =
1

𝜌𝜔
{∑ 𝐽0(𝑘𝑟,0,𝑛𝑟)[𝐴0𝑛e

−j𝑘𝑧,0,𝑛𝑧 − 𝐵0𝑛e
j𝑘𝑧,0,𝑛𝑧]

∞

𝑛=0

+ ∑∑𝐽𝑚(𝑘𝑟,𝑚,𝑛𝑟)[(𝐴𝑚𝑛
+ e−j𝑚𝜃 + 𝐴𝑚𝑛

− ej𝑚𝜃)e−j𝑘𝑧,𝑚,𝑛𝑧
∞

𝑛=0

∞

𝑚=1

− (𝐵𝑚𝑛
+ e−j𝑚𝜃 + 𝐵𝑚𝑛

− ej𝑚𝜃)ej𝑘𝑧,𝑚,𝑛𝑧]} 

(2.47) 

Express the particle velocities of the q boundary elements at the inlet (where 𝑧 =

0) in terms of the modal amplitudes at the inlet cross section to get   

(

  
 

𝑣11
𝑣12
.
.
.
𝑣1𝑞)

  
 
= [𝑴𝑽𝑨𝟎𝒏,𝑴𝑽𝑨𝒎𝒏

+ ,𝑴𝑽𝑨𝒎𝒏
− ,𝑴𝑽𝑩𝟎𝒏,𝑴𝑽𝑩𝒎𝒏

+ ,𝑴𝑽𝑩𝒎𝒏
− ]

(

 
 
 

𝑨𝟎𝒏
𝑨𝒎𝒏
+

𝑨𝒎𝒏
−

𝑩𝟎𝒏
𝑩𝒎𝒏
+

𝑩𝒎𝒏
− )

 
 
 

 (2.48) 

where 

𝑴𝑽𝑨𝟎𝒏 = −𝑴𝑽𝑩𝟎𝒏 =

[
 
 
 
 
𝑘𝑧,0,0
𝜌𝜔

𝐽0(𝑘𝑟,0,0𝑟11) ⋯
𝑘𝑧,0,𝑁−1
𝜌𝜔

𝐽0(𝑘𝑟,0,𝑁−1𝑟11)

⋮ ⋱ ⋮
𝑘𝑧,0,0
𝜌𝜔

𝐽0(𝑘𝑟,0,0𝑟1𝑞) ⋯
𝑘𝑧,0,𝑁−1
𝜌𝜔

𝐽0(𝑘𝑟,0,𝑁−1𝑟1𝑞)

  

]
 
 
 
 

𝑞×𝑁

 

 

(2.49) 

Let 



35 
 

𝑴𝑽𝜽+(𝑚) =

[
 
 
 
 
𝑘𝑧,𝑚,0
𝜌𝜔

𝐽𝑚(𝑘𝑟,𝑚,0𝑟11)e
−j∗𝑚∗𝜃11 ⋯

𝑘𝑧,𝑚,𝑁−1
𝜌𝜔

𝐽𝑚(𝑘𝑟,𝑚,𝑁−1𝑟11)e
−j∗𝑚∗𝜃11

⋮ ⋱ ⋮
𝑘𝑧,𝑚,0
𝜌𝜔

𝐽𝑚(𝑘𝑟,𝑚,0𝑟1𝑞)e
−j∗𝑚∗𝜃1𝑞 ⋯

𝑘𝑧,𝑚,𝑁−1
𝜌𝜔

𝐽𝑚(𝑘𝑟,𝑚,𝑁−1𝑟1𝑞)e
−j∗𝑚∗𝜃1𝑞

  

]
 
 
 
 

𝑞×𝑁

 (2.50) 

𝑴𝑽𝜽−(𝑚) =

[
 
 
 
 
𝑘𝑧,𝑚,0
𝜌𝜔

𝐽𝑚(𝑘𝑟,𝑚,0𝑟11)e
j∗𝑚∗𝜃11 ⋯

𝑘𝑧,𝑚,𝑁−1
𝜌𝜔

𝐽𝑚(𝑘𝑟,𝑚,𝑁−1𝑟11)e
j∗𝑚∗𝜃11

⋮ ⋱ ⋮
𝑘𝑧,𝑚,0
𝜌𝜔

𝐽𝑚(𝑘𝑟,𝑚,0𝑟1𝑞)e
j∗𝑚∗𝜃1𝑞 ⋯

𝑘𝑧,𝑚,𝑁−1
𝜌𝜔

𝐽𝑚(𝑘𝑟,𝑚,𝑁−1𝑟1𝑞)e
j∗𝑚∗𝜃1𝑞

  

]
 
 
 
 

𝑞×𝑁

 (2.51) 

where 𝑚 =1, 2,……, M-1. Therefore 

𝑴𝑽𝑨𝒎𝒏
+ = −𝑴𝑽𝑩𝒎𝒏

+ = [𝑴𝑽𝜽+(1),𝑴𝑽𝜽+(2), … ,𝑴𝑽𝜽+(𝑀 − 1) ]𝑞×[(𝑀−1)∗𝑁] (2.52) 

𝑴𝑽𝑨𝒎𝒏
− = −𝑴𝑽𝑩𝒎𝒏

− = [𝑴𝑽𝜽−(1),𝑴𝑽𝜽−(2), … ,𝑴𝑽𝜽−(𝑀 − 1) ]𝑞×[(𝑀−1)∗𝑁] (2.53) 

or in a more compact vector form same as Equation 2.20: 

 
𝐯𝟏 = 𝐌𝟏𝟐 (

𝐏𝟏
+

𝐏𝟏
−) (2.54) 

Similarly, particle velocities at the outlet is 

 
𝐯𝟐 = 𝐌𝟐𝟐 (

𝐏𝟐
+

𝐏𝟐
−) (2.55) 

The rest of the derivation is the same as Equations 2.22-2.28. 

2.6.2 Test Cases 

The first test case is an axisymmetric simple expansion chamber as shown in 

Figure 2.4.  In this case, we will ignore the symmetry and treat the problem as a 

non-axisymmetric problem to see if the more general formulation would still 

produce the correct result.  Like the axisymmetric round bar silencer, the analytical 
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solution used for comparison is also based on the method by Selamet et al. (2004) 

except that the transmitted sound power for the TL calculation now includes higher-

order modes.  The plane-wave cutoff frequency of the 0.418 m diameter inlet/outlet 

is 1000 Hz at room temperature.   Table 2.2 lists all the cut-on frequencies up to 

the 4th mode.  Since the TL is negligible after 1000 Hz for this simple expansion 

chamber, we only run the test up to 4000 Hz, which is high enough for validation 

purposes.  According to Table 2, there are 5 propagating modes in the inlet and 

outlet ducts at 4000 Hz, and the next propagating mode will not emerge until 4302 

Hz, which is far away from the 4000 Hz target. Therefore, five propagating modes 

in the radial direction will be enough without having to include any evanescent 

modes in that direction.  At the same time, we randomly select the first 5 modes in 

the angular direction, although there is really no angular variation in this 

axisymmetric test case.  In other words, we select M = N = 5 in the modal 

expansion to form the scattering matrix.  The BEM mesh used has 684 elements 

at the inlet and another group of 684 elements at the outlet.  This results in a 

1368x1368 impedance matrix at each frequency.  The TL comparison between the 

BEM solution and analytical solution is shown in Figure 2.5.  It is seen that the non-

axisymmetric formulation does produce a very accurate result for this axisymmetric 

test case. 
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Figure 2.4 Simple expansion chamber (Unit: m). 

 

Table 2.2 Cut-on Frequencies at Inlet/Outlet of the Simple Expansion Chamber. 

Cut-on Frequency (Hz) Total Number of Propagating Modes 

1000 2 

1832 3 

2657 4 

3480 5 

4302 6 
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Figure 2.5 TL comparison between the BEM and the analytical solution for the 

simple expansion chamber test case. 

The second test case is a non-axisymmetric expansion chamber as shown in 

Figure 2.6.  The expansion chamber has a small inlet and a small outlet so that its 

TL can be reliably obtained as a benchmark solution by using the conventional 

BEM up to the cutoff frequency of the inlet and outlet.   

 

Figure 2.6 Non-axisymmetric expansion chamber (Unit: m; 𝛿1 = 𝛿2= 0.051 m). 
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To validate the scattering matrix formulation, we intentionally divide the muffler into 

two subsystems as shown in Figure 2.7, so that each subsystem would have either 

a large inlet or a large outlet.  The transfer scattering matrix of each subsystem 

can be individually obtained, and then the two matrices are multiplied together to 

form the resultant transfer scattering matrix: 

 𝐒∗ = 𝐒𝟏
∗𝐒𝟐

∗  (2.56) 

The resultant transfer scattering matrix S* is then converted back to a resultant 

scattering matrix S for the final TL computation.  

 

Figure 2.7 Demonstration of two subsystems.   

 By comparing the TL to the benchmark solution, we can indirectly verify the 

scattering matrix formulation without having to find the analytical solution of a non-

axisymmetric expansion chamber with a large inlet and a large outlet.  Table 2.3 

lists the cut-on frequencies associated with different (m, n) modes at room 

temperature. To ensure that all the modes are covered in the frequency range that 

we are interested in, which is up to 3000 Hz, we select M = 4 and N = 2.  The BEM 

mesh for subsystem 1 has 116 elements at the inlet and 220 elements at the outlet, 

while subsystem 2 has 220 elements at the inlet and 116 elements at the outlet.  
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Figure 2.9 compares the two BEM solutions, one from the two-subsystem transfer 

scattering matrix approach and the other from the conventional single-structure 

BEM (the benchmark solution).  Also shown in Figure 2.8 is the measurement data 

from Selamet, Ji and Radavich (1998).  It is observed that two BEM solutions are 

identical to each other and both agree very well with the experimental data. 

 

Table 2.3 Cut-on Frequencies at the Chamber of the Non-axisymmetric Simple 

Expansion Chamber. 

m / n 0 1 2 

0 0 2731 5000 

1 1312 3800 6084 

2 2177 4779 7105 

3 2994 5712 8086 

4 3790 6615 9038 
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Figure 2.8 Comparison between conventional single-structure BEM, two-

subsystem transfer scattering matrix approach, and experiment. 

2.7 Impedance-to-Scattering matrix method for a rectangular inlet/outlet 

2.7.1 Transformation from the impedance matrix to scattering matrix 

The modal expansion of sound pressure inside a rectangular duct is   

 
𝑝(𝑥, 𝑦, 𝑧) = ∑∑cos

𝑚𝜋𝑥

𝑏
cos

𝑛𝜋𝑦

ℎ
[𝐴𝑚𝑛 e

−j𝑘𝑧,𝑚,𝑛𝑧 + 𝐵𝑚𝑛e
j𝑘𝑧,𝑚,𝑛𝑧]

∞

𝑛=0

∞

𝑚=0

 (2.57) 

where 𝑘𝑧,𝑚,𝑛 is the wavenumber associated with the (m, n) mode, which is given 

by 

 
𝑘𝑧,𝑚,𝑛
2 = 𝑘2 − (

𝑚𝜋

𝑏
)
2

− (
𝑛𝜋

ℎ
)
2

 (2.58) 
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If 𝑧 = 0 is locally set at the inlet cross section, sound pressures of the q boundary 

elements at the inlet can be expressed in the matrix form 

(

  
 

𝑝11
𝑝12
.
.
.
𝑝1𝑞)

  
 
= [𝑴𝑷𝑨(0),𝑴𝑷𝑨(1), … ,𝑴𝑷𝑨(𝑀 − 1),𝑴𝑷𝑩(0),𝑴𝑷𝑩(1), … ,𝑴𝑷𝑩(𝑀 − 1)]

(

 
 
 
 
 

𝑨(0)

𝑨(1)
⋮

𝑨(𝑀 − 1)
𝑩(0)

𝑩(1)
⋮

𝑩(𝑀 − 1))

 
 
 
 
 

 (2.59) 

where 

𝑴𝑷𝑨(𝑚) = 𝑴𝑷𝑩(𝑚) =

[
 
 
 
 cos

𝑚𝜋𝑥

𝑏
cos

0𝜋𝑦

ℎ
⋯ cos

𝑚𝜋𝑥

𝑏
cos

(𝑁 − 1)𝜋𝑦

ℎ
⋮ ⋱ ⋮

cos
𝑚𝜋𝑥

𝑏
cos

0𝜋𝑦

ℎ
⋯ cos

𝑚𝜋𝑥

𝑏
cos

(𝑁 − 1)𝜋𝑦

ℎ

  

]
 
 
 
 

𝑞×𝑁

 (2.60) 

 

𝑨(𝑚) =

(

  
 

𝐴𝑚0
𝐴𝑚1.
.
.

𝐴𝑚(𝑁−1))

  
 
     𝑩(𝑚) =

(

  
 

𝐵𝑚0
𝐵𝑚1.
.
.

𝐵𝑚(𝑁−1))

  
 
     (2.61) 

and 𝑚 =0, 1, 2,……, 𝑀-1. 

Let 

 

𝐏𝟏
+ = (

𝑨(0)

𝑨(1)
⋮

𝑨(𝑀 − 1)

)     𝐏𝟏
− = (

𝑩(0)

𝑩(1)
⋮

𝑩(𝑀 − 1)

)     (2.62) 

Equation 2.59 can be re-written in a more compact vector form 

 
𝐩𝟏 = 𝐌𝟏𝟏 (

𝐏𝟏
+

𝐏𝟏
−) (2.63) 
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Similarly, sound pressures at the outlet (where 𝑧 = 0 is also locally set) is 

 
𝐩𝟐 = 𝐌𝟐𝟏 (

𝐏𝟐
+

𝐏𝟐
−) (2.64) 

The particle velocity corresponding to the sound pressure in Equation 2.57 is 

 
𝑣(𝑥, 𝑦, 𝑧) = ∑∑

𝑘𝑧,𝑚,𝑛
𝜌𝜔

cos
𝑚𝜋𝑥

𝑏
cos

𝑛𝜋𝑦

ℎ
[𝐴𝑚𝑛 e

−j𝑘𝑧,𝑚,𝑛𝑧 − 𝐵𝑚𝑛e
j𝑘𝑧,𝑚,𝑛𝑧]

∞

𝑛=0

∞

𝑚=0

 (2.65) 

Express the particle velocities of the q boundary elements at the inlet (where 𝑧 =

0) in terms of the modal amplitudes at the inlet to get   

(

  
 

𝑣11
𝑣12
.
.
.
𝑣1𝑞)

  
 
= [𝑴𝑽𝑨(0),𝑴𝑽𝑨(1), … ,𝑴𝑽𝑨(𝑀 − 1),𝑴𝑽𝑩(0),𝑴𝑽𝑩(1), … ,𝑴𝑽𝑩(𝑀 − 1)]

(

 
 
 
 
 

𝑨(0)

𝑨(1)
⋮

𝑨(𝑀 − 1)
𝑩(0)

𝑩(1)
⋮

𝑩(𝑀 − 1))

 
 
 
 
 

 (2.66) 

where 

𝑴𝑽𝑨(𝑚) = −𝑴𝑽𝑩(𝑚) 

(2.67) 

=

[
 
 
 
 
𝑘𝑧,𝑚,0
𝜌𝜔

cos
𝑚𝜋𝑥

𝑏
cos

0𝜋𝑦

ℎ
⋯

𝑘𝑧,𝑚,𝑁−1
𝜌𝜔

cos
𝑚𝜋𝑥

𝑏
cos

(𝑁 − 1)𝜋𝑦

ℎ
⋮ ⋱ ⋮

𝑘𝑧,𝑚,0
𝜌𝜔

cos
𝑚𝜋𝑥

𝑏
cos

0𝜋𝑦

ℎ
⋯

𝑘𝑧,𝑚,𝑁−1
𝜌𝜔

cos
𝑚𝜋𝑥

𝑏
cos

(𝑁 − 1)𝜋𝑦

ℎ

  

]
 
 
 
 

𝑞×𝑁

 

or in a more compact vector form 

 
𝐯𝟏 = 𝐌𝟏𝟐 (

𝐏𝟏
+

𝐏𝟏
−) (2.68) 
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Similarly, particle velocities at the outlet is 

 
𝐯𝟐 = 𝐌𝟐𝟐 (

𝐏𝟐
+

𝐏𝟐
−) (2.69) 

The rest of the derivation is the same as Equations 2.22-2.28. 

2.7.2 Rectangular Test Case 

The rectangular test case is a square lined duct as shown in Figure 2.9.  The lining 

material (flow resistivity=8,000 Rayl/m) on all four sides is 0.0508 m thick, and is 

covered by a 30% open perforated facing sheet.   

 

Figure 2.9 Square lined duct test case (Unit: m; L = 0.9144 m). 
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Table 2.4 Cut-on Frequencies at Inlet/Outlet of the Square Lined Duct. 

Cut-on Frequency (Hz) Mode (m, n) 

1688 (1, 0), (0,1) 

2387 (1, 1) 

3376 (2, 0), (0,2) 

3774 (2, 1), (1,2) 

4774 (2, 2) 

5064 (3, 0), (0,3) 

5338 (3, 1), (1,3) 

6086 (3, 2), (2,3) 

6752 (4, 0), (0,4) 

6960 (4, 1), (1,4) 

7162 (3, 3) 

7549 (4, 2), (2,4) 

8440 (5, 0), (0,5) 

 



46 
 

Due to the symmetry of the design, only ¼ of the lined duct has to be modeled in 

the BEM.  If the lining is modeled by the local impedance boundary condition (as 

opposed to the bulk-reacting modeling), a simple analytical solution for sound 

attenuation can be obtained by using the first-mode method proposed by Ingard 

(1994).  Although sound attenuation along a lined duct is not really the TL, it can 

still be very close due to the simple uniform design.  Table 2.4 lists all the cut-on 

frequencies at room temperature up to 8440 Hz.  Since the 6th mode in each 

direction will not appear until 8440 Hz, M = N = 5 is sufficient to solve the problem 

up to 8000 Hz.  The BEM mesh has 529 elements at the inlet, and 529 elements 

at the outlet.  This generates a 1058x1058 impedance matrix at each frequency.   

Figure 2.10 compares the TL from BEM to the analytical solution for attenuation.   

Surprisingly, both solutions agree very well with each other.  The reason for such 

a good agreement may be due to the fact that there is barely any reflection from a 

straight duct and at the same time the first mode probably dominates the 

attenuation behavior. 
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Figure 2.10 Comparison between the BEM (TL) and the analytical solution 

(attenuation) for the square lined duct. 

2.8 Summary 

In this chapter, it is demonstrated that the BEM impedance matrix can be 

converted into the scattering matrix for the axisymmetric configuration, non-

axisymmetric circular and the rectangular inlet/outlet shapes based on the point 

collocation method. The BEM impedance matrix is a very useful BEM output if the 

solutions from multiple velocity boundary condition sets are solved simultaneously.  

Conversion of the BEM impedance to the scattering matrix enables the inclusion 

of higher-order modes in the TL computation for large silencers.  The 

transformation from the BEM impedance matrix to the scattering matrix is validated 

by either an analytical solution or experimental data, directly or indirectly, for all 

three configurations.  
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Chapter 3 BEM ANALYSIS OF LARGE MULTI-INLET MULTI-OUTLET 

SILENCERS  

3.1 Introduction 

In Chapter 2, large silencers with a single inlet and a single outlet are analyzed by 

using the substructured BEM in conjunction with the proposed impedance-to-

scattering matrix method. In applications, silencers with multiple inlets and multiple 

outlets are also quite common.  For example, a three-port silencer, which can be 

one inlet with two outlets or two inlets with one outlet, are frequently used to split 

or merge exhaust gas streams.  

The acoustic performance of multi-inlet and multi-outlet mufflers has been 

investigated by many researchers below the plane-wave cutoff frequency of the 

inlets and outlets.  Selamet and Ji (2000) proposed a three-dimensional analytical 

approach to determine the TL of simple circular expansion chambers with a single 

inlet and two outlets.  Similarly, Denia et al. (2003) used a mode-matching method 

for the acoustical attenuation analysis of elliptical expansion chambers with one 

inlet and two outlets. Wu et al. (2008) also studied the acoustic performance of a 

single-inlet/double-outlet cylindrical expansion-chamber based on the modal 

meshing approach originally proposed by Munjal (1987). Besides the analytical 

approaches, which are only applicable to very simple configurations, Jiang et al. 

(2005), Mimani and Munjal (2012) and Xin et al. (2014) used the numerical 

impedance matrix to derive the TL for small mufflers with multiple inlets and 

multiple outlets.  
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The existing literature on the TL analysis of multi-inlet/multi-outlet mufflers are all 

based on the assumption that only plane waves exist in the inlet and outlet ducts. 

Therefore, the existing methods for calculating the TL of multi-inlet and multi-outlet 

mufflers are only suited to small inlet and outlet cross sections where the plane-

wave assumption is still valid. However, large multi-inlet/multi-outlet silencers are 

commonly used in the power generation industry. The plane-wave cutoff frequency 

of the inlet and outlet ducts can be less than a few hundred Hz, while the frequency 

range of interest normally goes up to 8000 Hz or higher.  

In this chapter, the impedance-to-scattering matrix method is extended to the 

three-port silencers (Wang et al., 2016 and 2017) for simplicity and for illustration 

purposes.  The method can also be extended to more general multi-inlet and multi-

outlet silencers. To validate the proposed method, we compare the TL from the 

proposed BEM to the equivalent IL solution using AML (Automatically Matched 

Layer) available in the commercial FEM software, Virtual.Lab. The AML is a special 

implementation of the “Perfectly Matched Layer” (Berenger, 1994, Tam et al., 1998 

and Bermúdez et al., 2007) boundary condition for non-reflective boundaries in 

FEM.  It is well known that when the inlets and outlets are assumed anechoic, the 

IL is equivalent to the TL.  In Virtual.Lab, the AML boundary condition can be easily 

applied at both the inlet and outlet end to calculate the IL (which is equivalent to 

the TL) if a single incident wave (loading) is applied to the inlet. However, at this 

point, the incident wave can be applied to only one inlet in Virtual.Lab.  Therefore, 

the AML/FEM validation in this study is limited to large silencers with one inlet and 

two outlets only. 
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3.2 Lumped Impedance matrix method  

Before the introduction of the proposed impedance-to-scattering method, Jiang et 

al’s (2005) impedance matrix method for silencers with two inlets is reviewed first 

in this section.  

 

Figure 3.1 Two-inlet and one-outlet silencer. 

As shown in Figure 3.1, the impedance matrix is defined as 

 
{

𝑝1
𝑝2
𝑝3
} = [

𝑧11 𝑧12 𝑧13
𝑧21 𝑧22 𝑧23
𝑧31 𝑧32 𝑧33

] {

𝑣1
𝑣2
𝑣3
} (3.1) 

where subscripts 1,2 and 3 denote the first inlet, second inlet and outlet location 

respectively. Below the plane-wave cutoff frequency at the inlets and outlet, the 

sound pressures and particle velocities at each cross section are uniform. Above 

the cutoff frequency, the non-uniform sound pressure distribution over the inlets 

and the outlet is simply averaged out by Jiang et al. (2005). Therefore, a lumped 

3X3 impedance matrix can always be obtained at each frequency.  Because of this 

sound pressure averaging procedure, TL is only accurate below the plane-wave 

cutoff frequency of the inlets/outlet.  Nonetheless, it can still provide an 
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approximate solution above the cutoff frequency, especially within just a few 

hundred Hz above the cutoff. 

The sound pressure and particle velocity at any point inside the inlet duct can be 

expressed as 

 𝑝 = 𝑝𝑖 + 𝑝𝑟 (3.2) 

 𝑣 =
𝑝𝑖 − 𝑝𝑟
𝜌𝑐

 (3.3) 

where 𝑝𝑖 and 𝑝𝑟 are the incident and reflected wave components, respectively. 𝜌 

is the air density, and 𝑐 is the speed of sound. 

Since the anechoic termination is assumed for the TL computation, only the 

transmitted wave component exists inside the outlet duct. 

After the substitution of the wave components into Equation 3.1, it then can be 

expressed as  

 

{

𝑝1𝑖 + 𝑝1𝑟
𝑝2𝑖 + 𝑝2𝑟
𝑝3𝑡

} =

[
 
 
 
 
 
𝑧11
𝜌𝑐

𝑧11
𝜌𝑐

𝑧11
𝜌𝑐

𝑧11
𝜌𝑐

𝑧11
𝜌𝑐

𝑧11
𝜌𝑐

𝑧11
𝜌𝑐

𝑧11
𝜌𝑐

𝑧11
𝜌𝑐 ]
 
 
 
 
 

{

𝑝1𝑖 − 𝑝1𝑟
𝑝2𝑖 − 𝑝2𝑟
𝑝3𝑡

} (3.4) 

Adding 𝑝1𝑖 − 𝑝1𝑟  to both sides of the first equation and 𝑝2𝑖 − 𝑝2𝑟  to the second 

equation, yields 



52 
 

 

{
2𝑝1𝑖
2𝑝2𝑖
𝑝3𝑡

} =

[
 
 
 
 
 
𝑧11
𝜌𝑐

+ 1
𝑧11
𝜌𝑐

𝑧11
𝜌𝑐

𝑧11
𝜌𝑐

𝑧11
𝜌𝑐

+ 1
𝑧11
𝜌𝑐

𝑧11
𝜌𝑐

𝑧11
𝜌𝑐

𝑧11
𝜌𝑐 ]
 
 
 
 
 

{

𝑝1𝑖 − 𝑝1𝑟
𝑝2𝑖 − 𝑝2𝑟
𝑝3𝑡

} (3.5) 

A ratio of the incident sound pressure at the second inlet to the incident sound 

pressure at the first inlet has to be defined first for a silencer with two inlets. This 

ratio is in general a complex number. If the ratio is equal to one, the means the two 

incident waves have the same amplitude and are in phase. If the ratio is equal to 

negative one, the two incident waves are 180o out of phase. In real applications, 

the ratio may be determined by measuring the amplitude and phase angle of sound 

pressure at the end of the two exhaust pipes, if an anechoic termination is 

assumed. A complex ratio 𝛽 between the two incident sound pressures at the 

inlets is defined as 

 𝑝𝑖2 = 𝛽𝑝𝑖1 (3.6) 

For simplicity of notation, denote the above 3X3 matrix by A and its items by 𝑎𝑖j. 

Substituting the ratio 𝛽  into Equation 3.5, and dividing both sides of all three 

equations by 𝑝3𝑡, Equation 3.5 can be re-arranged as 

 

[

−2 𝑎11 𝑎12
−2𝛽 𝑎21 𝑎22
0 𝑎31 𝑎32

]

{
 
 

 
 

𝑝1𝑖
𝑝3𝑡

𝑝1𝑖 − 𝑝1𝑟
𝑝3𝑡

𝑝2𝑖 − 𝑝2𝑟
𝑝3𝑡 }

 
 

 
 

= {

−𝑎13
−𝑎23
1 − 𝑎33

} (3.7) 
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The unknown 
𝑝1𝑖

𝑝3𝑡
 can be solved by  

 

𝑝1𝑖
𝑝3𝑡

=

|

−𝑎13 𝑎11 𝑎12
−𝑎23 𝑎21 𝑎22
1 − 𝑎33 𝑎31 𝑎32

|

|

−2 𝑎11 𝑎12
−2𝛽 𝑎21 𝑎22
0 𝑎31 𝑎32

|

 (3.8) 

With the 
𝑝1𝑖

𝑝3𝑡
 available, TL can be obtained by Equation 3.9 as shown below: 

 
𝑇𝐿 = 10 log10

𝑊1𝑖 +𝑊2𝑖

𝑊3𝑡
= 10 log10 |

𝑝1𝑖
𝑝3𝑡
| + 10 log10

𝑆1 + |𝛽|
2𝑆2

𝑆3
 (3.9) 

where 𝑆1 ,  𝑆2 ,  𝑆3  are cross-sectional areas of two inlets and the outlet, 

respectively. 

3.3 Impedance-to-Scattering matrix method 

In this section, the derivation of the impedance-to-scattering matrix method is 

demonstrated by using a two-inlet/one-outlet silencer. It can be found at the end 

of the derivation that the scattering matrix of a one-inlet/two-outlet silencer remains 

the same. 

3.3.1 BEM impedance matrix 

The BEM impedance matrix Z of a two-inlet/one-outlet silencer is defined by 
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑝11
𝑝12
.
.
.
𝑝1X
⋯⋯
𝑝21
𝑝22
.
.
.
𝑝2Y
⋯⋯
𝑝31
𝑝32
.
.
.
𝑝3Q )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= [

𝑍1,1  ⋯ 𝑍1,X+Y+Q
⋮ ⋱ ⋮

𝑍X+Y+Q,1 ⋯ 𝑍X+Y+Q,X+Y+Q

]

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑣11
𝑣12
.
.
.
𝑣1X
⋯⋯
𝑣21
𝑣22
.
.
.
𝑣2Y
⋯⋯
𝑣31
𝑣32
.
.
.
𝑣3Q )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.10) 

where 𝑝 and 𝑣 denote the sound pressure and particle velocity at the inlet and 

outlet.  For 𝑝 and 𝑣, the first subscript 1, 2 and 3 represent inlet 1, inlet 2 and 

outlet, respectively; the second subscript represents the boundary element 

numbering (X constant boundary elements at inlet 1, Y constant boundary 

elements at inlet 2, and Q constant boundary elements at the outlet).   The 

impedance matrix can be obtained by “turning on” 𝑣 =1 on each element at the 

two inlets and the outlet successively, one at a time.  Although there are a 

total of X + Y + Q velocity boundary condition sets, they all share the same 

BEM coefficient matrix.  Therefore, only one matrix inverse is needed at each 

frequency.  

Equation (3.10) can re-written in a more compact vector form: 
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(

𝐩𝟏
𝐩𝟐
𝐩𝟑
) = [

𝐙𝟏𝟏 𝐙𝟏𝟐 𝐙𝟏𝟑
𝐙𝟐𝟏 𝐙𝟐𝟐 𝐙𝟐𝟑
𝐙𝟑𝟏 𝐙𝟑𝟐 𝐙𝟑𝟑

] (

𝐯𝟏
𝐯𝟐
𝐯𝟑
) (3.11) 

where 1, 2 and 3 denote the inlet 1, inlet 2 and the outlet, respectively, and the 

element numbering index is dropped. In Jiang et al. (2005), Equation 3.11 is 

lumped into Equation 3.1 after averaging out the non-uniform pressure 

distributions over the inlets and the outlet. 

3.3.2 Scattering matrix 

The scattering matrix S relates the modal amplitudes in the inlets and outlet ducts: 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑃30
+

𝑃31
+

.

.

.
𝑃3(𝑁−1)
+

⋯⋯
𝑃10
−

𝑃11
−

.

.

.
𝑃1(𝑁−1)
−

⋯⋯
𝑃20
−

𝑃21
−

.

.

.
𝑃2(𝑁−1)
−

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= [

𝑆1,1  ⋯ 𝑆1,3𝑁
⋮ ⋱ ⋮

𝑆3𝑁,1 ⋯ 𝑆3𝑁,3𝑁

]

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑃10
+

𝑃11
+

.

.

.
𝑃1(𝑁−1)
+

⋯⋯
𝑃20
+

𝑃21
+

.

.

.
𝑃2(𝑁−1)
+

⋯⋯
𝑃30
−

𝑃31
−

.

.

.
𝑃3(𝑁−1)
−

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.12) 

where 𝑃 denotes the wave amplitude of a particular mode. The superscript + on 𝑃 

represents the right-traveling wave and – the left-traveling wave; the first subscript 

1, 2 and 3 represent inlet 1, inlet 2 and outlet, respectively.   Assume that there are 
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N modes in each of the two inlet ducts and the outlet duct as well.  The N modes 

may include evanescent modes, but normally one evanescent mode is enough if 

the inlet and outlet ducts have a certain length that can ensure the next evanescent 

mode has a negligible contribution when it travels to the inlets and outlet.   Equation 

(3.12) can be re-written in a more compact vector form: 

 

(
𝐏𝟑
+

𝐏𝟏
−

𝐏𝟐
−
) = [

𝐒𝟏𝟏 𝐒𝟏𝟐 𝐒𝟏𝟑
𝐒𝟐𝟏 𝐒𝟐𝟐 𝐒𝟐𝟑
𝐒𝟑𝟏 𝐒𝟑𝟐 𝐒𝟑𝟑

] (

𝐏𝟏
+

𝐏𝟐
+

𝐏𝟑
−

) (3.13) 

3.3.3 Transformation from impedance matrix to scattering matrix 

The modal expansion of sound pressure and particle velocity inside a cylindrical 

duct with a non-axisymmetric solution can be retrieved from Section 2.5.1.  

For convenience, 𝑧 = 0 is locally set at the inlet cross section. Therefore, the 

modal expansion of sound pressures of the X boundary elements at inlet 1 can be 

expressed in the matrix form  

(

  
 

𝑝11
𝑝12
.
.
.
𝑝1X)

  
 
= [𝑴𝑷𝑨𝟎𝒏,𝑴𝑷𝑨𝒎𝒏

+ ,𝑴𝑷𝑨𝒎𝒏
− ,𝑴𝑷𝑩𝟎𝒏,𝑴𝑷𝑩𝒎𝒏

+ ,𝑴𝑷𝑩𝒎𝒏
− ]

(

 
 
 

𝑨𝟎𝒏
𝑨𝒎𝒏
+

𝑨𝒎𝒏
−

𝑩𝟎𝒏
𝑩𝒎𝒏
+

𝑩𝒎𝒏
− )

 
 
 

 (3.14) 

The detail of each item in Equation 3.14 can be found in Section 2.5.1. 

Equation 3.14 can be re-written in a more compact vector form 
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𝐩𝟏 = 𝐌𝟏𝟏 (

𝐏𝟏
+

𝐏𝟏
−) (3.15) 

Similarly, sound pressures at inlet 2 and the outlet (where 𝑧 = 0 is also locally set) 

are 

 
𝐩𝟐 = 𝐌𝟐𝟏 (

𝐏𝟐
+

𝐏𝟐
−) (3.16) 

 
𝐩𝟑 = 𝐌𝟑𝟏 (

𝐏𝟑
+

𝐏𝟑
−) (3.17) 

Express the particle velocities of the X boundary elements at inlet 1 (where 𝑧 = 0) 

in terms of the modal amplitudes to get   

(

  
 

𝑣11
𝑣12
.
.
.
𝑣1𝑞)

  
 
= [𝑴𝑽𝑨𝟎𝒏,𝑴𝑽𝑨𝒎𝒏

+ ,𝑴𝑽𝑨𝒎𝒏
− ,𝑴𝑽𝑩𝟎𝒏,𝑴𝑽𝑩𝒎𝒏

+ ,𝑴𝑽𝑩𝒎𝒏
− ]

(

 
 
 

𝑨𝟎𝒏
𝑨𝒎𝒏
+

𝑨𝒎𝒏
−

𝑩𝟎𝒏
𝑩𝒎𝒏
+

𝑩𝒎𝒏
− )

 
 
 

 (3.18) 

The detail of each item in Equation 3.14 can be found in Section 2.5.1. 

A more compact vector form of Equation 3.18 is 

 
𝐯𝟏 = 𝐌𝟏𝟐 (

𝐏𝟏
+

𝐏𝟏
−) (3.19) 

Similarly, particle velocities at inlet 2 and the outlet are 

 
𝐯𝟐 = 𝐌𝟐𝟐 (

𝐏𝟐
+

𝐏𝟐
−) (3.20) 
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𝐯𝟑 = 𝐌𝟑𝟐 (

𝐏𝟑
+

𝐏𝟑
−) (3.21) 

Substitute Equations 3.15, 3.16, 3.17, and 3.19, 3.20, 3.21 into Equation 3.11 to 

get 

 
𝐌𝟏𝟏 (

𝐏𝟏
+

𝐏𝟏
−) = 𝐙𝟏𝟏𝐌𝟏𝟐 (

𝐏𝟏
+

𝐏𝟏
−) + 𝐙𝟏𝟐𝐌𝟐𝟐 (

𝐏𝟐
+

𝐏𝟐
−) + 𝐙𝟏𝟑𝐌𝟑𝟐 (

𝐏𝟑
+

𝐏𝟑
−) (3.22) 

 
𝐌𝟐𝟏 (

𝐏𝟐
+

𝐏𝟐
−) = 𝐙𝟐𝟏𝐌𝟏𝟐 (

𝐏𝟏
+

𝐏𝟏
−) + 𝐙𝟐𝟐𝐌𝟐𝟐 (

𝐏𝟐
+

𝐏𝟐
−) + 𝐙𝟑𝟐𝐌𝟑𝟐 (

𝐏𝟑
+

𝐏𝟑
−) (3.23) 

 
𝐌𝟑𝟏 (

𝐏𝟑
+

𝐏𝟑
−) = 𝐙𝟑𝟏𝐌𝟏𝟐 (

𝐏𝟏
+

𝐏𝟏
−) + 𝐙𝟑𝟐𝐌𝟐𝟐 (

𝐏𝟐
+

𝐏𝟐
−) + 𝐙𝟑𝟑𝐌𝟑𝟑 (

𝐏𝟑
+

𝐏𝟑
−) (3.24) 

The above three equations are combined into a single matrix equation below: 

[
𝐌𝟏𝟏 − 𝐙𝟏𝟏𝐌𝟏𝟐

−𝐙𝟐𝟏𝐌𝟏𝟐

−𝐙𝟑𝟏𝐌𝟏𝟐

] (
𝐏𝟏
+

𝐏𝟏
−) + [

−𝐙𝟏𝟐𝐌𝟐𝟐

𝐌𝟐𝟏 − 𝐙𝟐𝟐𝐌𝟐𝟐

−𝐙𝟑𝟐𝐌𝟐𝟐

] (
𝐏𝟐
+

𝐏𝟐
−) = [

𝐙𝟏𝟑𝐌𝟑𝟐

𝐙𝟑𝟐𝐌𝟑𝟐

−𝐌𝟑𝟏 + 𝐙𝟑𝟑𝐌𝟑𝟑

] (
𝐏𝟑
+

𝐏𝟑
−) (3.25) 

There is one more step before we can get to the scattering matrix.  This is to move 

all known conditions to one side and all unknown conditions to the other. It should 

be pointed out that a well-posed boundary value problem should have a known 

condition at the inlet and another known condition at the outlet. For example, to 

find the TL, a certain incident wave (𝐏𝟏
+, 𝐏𝟐

+) should be given at the two inlets, and 

the outlet is assumed anechoic (𝐏3
− = 𝟎).  To split the matrix contributions to the 

incident and reflected waves in Equation 3.25, let 
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[
𝐌𝟏𝟏 − 𝐙𝟏𝟏𝐌𝟏𝟐

−𝐙𝟐𝟏𝐌𝟏𝟐

−𝐙𝟑𝟏𝐌𝟏𝟐

] = [𝐍𝟏𝟏 𝐍𝟏𝟐] (3.26) 

 
[

−𝐙𝟏𝟐𝐌𝟐𝟐

𝐌𝟐𝟏 − 𝐙𝟐𝟐𝐌𝟐𝟐

−𝐙𝟑𝟐𝐌𝟐𝟐

] = [𝐍𝟐𝟏 𝐍𝟐𝟐] (3.27) 

 
[

𝐙𝟏𝟑𝐌𝟑𝟐

𝐙𝟑𝟐𝐌𝟑𝟐

−𝐌𝟑𝟏 + 𝐙𝟑𝟑𝐌𝟑𝟑

] = [𝐍𝟑𝟏 𝐍𝟑𝟐] (3.28) 

and re-arrange Equation 3.25 to obtain 

 

[𝐍𝟑𝟏 −𝐍𝟏𝟐 −𝐍𝟐𝟐] (
𝐏𝟑
+

𝐏𝟏
−

𝐏𝟐
−
) = [𝐍𝟏𝟏 𝐍𝟐𝟏 −𝐍𝟑𝟐] (

𝐏𝟏
+

𝐏𝟐
+

𝐏𝟑
−

) (3.29) 

Equation 3.29 is now “well-posed” because it has both inlet and outlet components 

on each side.  Since there are always more boundary elements than the number 

of propagating modes, a least-squares matrix inverse procedure can be performed 

on Equation 3.29 to get the scattering matrix S, 

 

(
𝐏𝟑
+

𝐏𝟏
−

𝐏𝟐
−
) = [

𝐒𝟏𝟏 𝐒𝟏𝟐 𝐒𝟏𝟑
𝐒𝟐𝟏 𝐒𝟐𝟐 𝐒𝟐𝟑
𝐒𝟑𝟏 𝐒𝟑𝟐 𝐒𝟑𝟑

] (

𝐏𝟏
+

𝐏𝟐
+

𝐏𝟑
−

) (3.30) 

For silencers with one inlet and two outlets, the above scattering matrix remains 

the same if 1 and 2 now represent the two outlets and 3 represents the inlet. The 

only thing that needs to modify is the input from (1,0,0..), (1,0,0..) and (0,0,0,…) to 

(0,0,0,…) , (0,0,0,…) and (1,0,0..). 
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3.4 Test Cases 

The first two test cases compare the difference between the lumped impedance 

matrix method (Jiang et al. 2005) and the proposed impedance-to-scattering matrix 

method for silencers with two inlets and one outlet. To compute the TL of a two-

inlet silencer, a complex ratio 𝛽 between the two incident sound pressures at the 

inlets is required. In this section, we set 𝛽 = 1. 

The first test case is an expansion chamber with two inlets and one outlet as shown 

in Figure 3.2. The same test case was used in Jiang et al. (2005) up to 4000 Hz.  

The plane-wave cutoff frequency of a 0.04 m diameter tube is 5025 Hz at room 

temperature.  Even though there are no higher-order modes in the frequency range 

of interest, M = 2 and N = 2 are still used to test the current formulation. Figure 3.3 

shows the TL comparison between the proposed impedance-to-scattering matrix 

method and the lumped impedance matrix method.  It is seen that the two methods 

produce identical results below the cutoff frequency as expected. 

 

Figure 3.2 Simple expansion chamber with two inlets and one outlet (Unit: m). 
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Figure 3.3 TL comparison between impedance-to-scattering matrix and lumped 

impedance matrix method. 

The second test case is a round bar silencer with two inlets as shown in Figure 

3.4. The absorptive bar is made of polyester (flow resistivity=16,000 Rayl/m) and 

is covered by a 30% open perforated facing sheet and two rigid end panels. Due 

to the size of the silencer, the substructuring technique is used to obtain the 

resultant impedance matrix before it is converted into the scattering matrix. The 

template substructure is 1/9 of substructure 2, and its impedance matrix can be 

repeatedly used 9 times in the impedance matrix synthesis procedure. 
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Figure 3.4 A two-inlet round bar silencer model with three substructures (Unit: m). 

The cut-off frequency of the large outlet is 670 Hz at room temperature, and we 

run the test case up to 2500 Hz. To consider the higher-order modes, we select M 

= 7 and N = 3. Figure 3.5 shows the comparison between the impedance-to-

scattering matrix method and the lumped impedance matrix method. The pressure 

averaging procedure works well below the plane-wave cutoff frequency of the 

inlets/outlet because the sound pressure distribution is still uniform at any cross 

section of the inlet/outlet ducts.  Above the cutoff, sound pressure distribution over 

each cross section gradually becomes nonuniform as higher-order modes begin 

to emerge. This explains why both methods produce the same TL below the cutoff 

and the lumped impedance matrix result begins to diverge as the frequency goes 

higher.  
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Figure 3.5 TL comparison between impedance-to-scattering matrix and lumped 

impedance matrix method. 

At frequencies above the cutoff, the FEM/AML technique is used to validate the 

proposed impedance-to-scattering matrix method. At this point, since the incident 

source can only be applied to one inlet in Virtual.Lab, the following FEM/AML 

validation is limited to silencers with one inlet and two outlets. The third test case 

is a three-port expansion chamber as shown in Figure 3.6. The plane-wave cutoff 

frequency of a 0.08 m diameter tube is 2510 Hz at room temperature. To consider 

the higher-order modes, we select M = 6 and N = 6. Figure 3.7 compares the one-

inlet/two-outlet expansion chamber between the impedance-to-scattering matrix 

method and the FEM/AML method. It is seen that both method compare very well 

with each other up to 8000 Hz.  
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Figure 3.6 Three-port expansion chamber (Unit: m). 

 

Figure 3.7 TL of the one-inlet/two-outlet expansion chamber comparison between 

FEM/AML and BEM. 

The comparison between the one-inlet/two-outlet and the two-inlet/one-outlet 

expansion chamber is shown in Figure 3.8, and it is found that the TL is identical 

below the plane-wave cutoff frequency and starts to vary above the cutoff. 
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Figure 3.8 TL comparison between one-inlet/two-outlet and two-inlet/one-outlet 

expansion chamber. 

The fourth test case is a three-port absorptive silencer as shown in Figure 3.9. The 

absorptive material is polyester (flow resistivity=16,000 Rayl/m, thickness = 0.05m) 

and is covered by a 30% open perforated facing sheet. Figure 3.10 compares the 

one-inlet/two-outlet expansion chamber comparison between the impedance-to-

scattering matrix method and the FEM/AML method. It is seen that both method 

compare very well with each other up to 8000 Hz. The comparison between the 

one-inlet/two-outlet and the two-inlet/one-outlet arrangements is shown in Figure 

3.11.  It is seen that the two TL curves are identical below the plane-wave cutoff 

frequency. The difference between the two silencers is also minimal above the 

cutoff frequency. 
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Figure 3.9 Three-port absorptive silencer (Unit: m). 

 

Figure 3.10 TL of the one-inlet/two-outlet absorptive silencer comparison 

between FEM/AML and BEM. 
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Figure 3.11 TL comparison between one-inlet/two-outlet and two-inlet/one-outlet 

absorptive silencer.  

3.5 Summary 

The impedance-to-scattering matrix method is extended to large multi-inlet and 

multi-outlet silencers. In this chapter, the two-inlet/one-outlet silencer is used to 

demonstrate the transformation from the impedance matrix to the scattering matrix.  

Numerical results from the proposed impedance-to-scattering matrix method 

agree very well with the results from the lumped impedance matrix method below 

the plane-wave cutoff frequency.  Above the cutoff, the lumped impedance matrix 

solution begins to diverge from the scattering matrix solution. Even though the 

pressure-averaging procedure to produce the lumped 3X3 impedance matrix has 

no theoretical basis above the plane-wave cutoff, the lumped impedance matrix 

method can still provide an approximate solution for comparison purposes.  
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The FEM/AML is used to validate the proposed impedance-to-scattering matrix 

method above the plane-wave cutoff frequency for silencers with the one inlet and 

two outlets. The one-inlet/two-outlet and the two-inlet/one-outlet silencers are also 

compared to each other.  It is found that they have the identical TL below the plane-

wave cutoff frequency, but begin to diverge slightly above the cutoff.  Nonetheless, 

the difference is very small, especially for the absorptive silencer test case.  
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Chapter 4 INTEGRAL-BASED IMPEDANCE-TO-SCATTERING MARIX 

METHOD FOR LARGE SILENCER ANALYSIS 

4.1 Introduction 

In Chapter 2 and Chapter 3, a point collocation based impedance-to-scattering 

matrix method is proposed for large silencer analysis. In this method, modal 

expansion is used to express each sound pressure and particle velocity in terms 

of the duct modes at the centroid of each constant boundary element at the inlet 

and outlet. Substituting these point-wise modal expansions into the BEM 

impedance matrix relationship will result in the scattering matrix that relates the 

modes at the inlet and outlet. In the case of constant boundary elements, the 

centroid of each element is a natural choice, although the constant pressure and 

the constant velocity can apply to any point on the element. To avoid any 

uncertainties associated with where to collocate, an integral-based impedance-to-

scattering matrix method based on the reciprocal identity method is developed in 

this chapter.  

Zhou et al. (2016) proposed a numerical technique based on the reciprocal identity 

integral to determine the TL of large silencers at all frequencies.  The reciprocal 

identity is an integral equation that couples two different sound fields on the same 

silencer.  The first sound field used in the reciprocal identity coupling is an 

analytical solution with a single incident plane wave at the inlet and an anechoic 

termination at the outlet. This analytical solution represents an ideal condition 

under which the TL is defined. The second sound field used in the reciprocal 

identity coupling is the BEM solution associated with a random boundary condition 
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set.  Each reciprocal identity that couples the two sound fields, one analytical and 

the other BEM associated with a random boundary condition set, forms one linearly 

independent equation. Depending on how many modes can propagate to the inlet 

and outlet at a given frequency, a minimum number of BEM solutions are needed 

for the reciprocal identity coupling.  The BEM impedance matrix can naturally 

provide more than enough such solutions since each column of the impedance 

matrix represents a BEM solution corresponding to a unique boundary condition 

set.  A least-squares procedure is then used to solve for the unknown modal 

amplitudes. 

The proposed integral-based impedance-to-scattering matrix method is a direct 

extension of the reciprocal identity method by Zhou et al (2016). It should be noted 

that Zhou et al’s reciprocal identity method was meant to calculate the TL only.  In 

contrast, not only can the proposed extension calculate the TL, but it can also 

produce the scattering matrix of the silencer, which can bring additional benefits in 

other applications. One potential benefit is to combine subsystems in series or 

parallel connection by using the scattering matrix synthesis. Although combining 

subsystems in series or parallel connection can also be achieved by using the BEM 

impedance matrix synthesis (Lou et al. 2003), the scattering matrix is a more 

desirable matrix because it does not depend on any BEM mesh.  In other words, 

a BEM impedance matrix is always associated with a particular BEM mesh, while 

the scattering matrix is a system property of the silencer itself. The details of the 

scattering matrix synthesis will be presented in Chapter 5. Additionally, the 
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proposed integral-based method can provide a comparison and validation tool for 

the collocation-based method presented in Chapter 2.   

4.2 Reciprocal identity  

In a homogeneous acoustic domain without mean flow, sound propagation in the 

frequency domain is governed by the Helmholtz equation.  Different sets of 

boundary conditions may be applied to the boundary.  With each different set of 

boundary conditions, the sound field is expected to be different.  Let 𝑝A and 𝑝B 

represent two different sound pressure solutions corresponding to two distinct 

boundary condition sets, A and B, respectively.  Both sound pressures, 𝑝A and 𝑝B 

satisfy the Helmholtz equation, 

 ∇2𝑝A + 𝑘
2𝑝A = 0 (4.1) 

 
∇2𝑝B + 𝑘

2𝑝B = 0 (4.2) 

where k is the wavenumber.  The Green’s second identity is then applied to relate 

these two different sound fields, 

 
∫(𝑝A∇

2𝑝B − 𝑝B∇
2𝑝A) dV

Ω

= ∫ (𝑝A
∂𝑝B
∂𝑛

− 𝑝B
∂𝑝A
∂𝑛

)  dS
∂Ω

 (4.3) 

where 𝑛 is the outward normal direction, Ω the homogeneous acoustic domain free 

of any thin or perforated bodies, and 𝜕Ω  the boundary surface.  Substituting 

Equation 4.1 and 4.2 into the above identity yields 
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∫ (𝑝A

∂𝑝B
∂𝑛

− 𝑝B
∂𝑝A
∂𝑛

)  dS
∂Ω

= 0 (4.4) 

Since the right-hand side of Equation 4.4 is zero, we may take the liberty of flipping 

the outward normal to the inward direction in Equation 4.4 so that it is consistent 

with most acoustic BEM software.  In linear acoustics, the momentum equation 

relates the normal derivative of sound pressure to the normal particle velocity by 

 ∂𝑝

∂𝑛
= −𝑗𝜌𝜔𝑣 (4.5) 

where 𝜔  is the angular frequency and 𝑣  is the particle velocity in the normal 

direction.  Equation 4.4 becomes 

 
∫ (𝑝A𝑣B − 𝑝B𝑣A) dS
∂Ω

= 0 (4.6) 

where 𝑣A and 𝑣B are the particle velocities in the normal direction.  Equation 4.6 is 

the classical reciprocal identity.  This is actually the starting point of most BEM 

formulations when A  represents the free-space Green’s functions, and B 

represents the physical problem at hand.  The boundary surface 𝜕Ω in the classical 

reciprocal identity, Equation 4.6, is still the entire external boundary enclosing the 

homogeneous acoustic domain free of any thin bodies, perforated tubes, or bulk-

reacting materials.  It has been proved (Zhou et al, 2013) that Equation 4.6 can be 

reduced to the inlet and outlet surfaces only, regardless of any complex internals 

inside the silencer and the chamber of silencer.  In other words, 
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∫ (𝑝A𝑣B − 𝑝B𝑣A) dS = 0
S1+S2

 (4.7) 

where S1 is the inlet surface, and S2 is the outlet surface.        

4.3 A reciprocal identity method for TL computation 

The reciprocal identity method proposed by Zhou et al. (2016) is briefly reviewed 

in this section. For demonstration purposes, only the axisymmetric configuration is 

presented here. 

The modal expansion of sound pressure at the inlet and outlet ducts of an 

axisymmetric silencer is 

 
𝑝(𝑟) = ∑(𝑝𝑛

+e−j𝑘𝑧,𝑛𝑧 + 𝑝𝑛
−e+j𝑘𝑧,𝑛𝑧)𝐽0(𝑘𝑟,𝑛𝑟)

𝑁−1

𝑛=0

 (4.8) 

where the subscripts 𝑧 and 𝑟 denote the axial and radial directions, respectively, 

𝐽0 is the Bessel function of the first kind of order zero, and the superscripts + and 

– represent the incident and reflected waves, respectively. Although the series 

expansion goes to infinity in Equation 4.8, there will only be a finite number of 

propagating modes in each frequency range.  In practice, at least one evanescent 

mode beyond the highest propagating mode should be included in case the 

frequency is close to the next propagating mode.   

Recall that sound field 𝐴  represents the analytical solution with an anechoic 

termination.  For simplicity, the incident wave in the TL calculation is a single plane 

wave without any higher-order modes. On the other hand, the reflected wave may 
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include higher-order modes due to reflection from the silencer.  At the inlet cross 

section (where 𝑧 = 0  is locally set), the sound pressure can be written as 

 
𝑝𝐴1(𝑟) = ∑(𝑝𝐴1𝑛

+ + 𝑝𝐴1𝑛
− )𝐽0(𝑘𝑟,𝑛𝑟)

𝑁−1

𝑛=0

 (4.9) 

in which the subscripts 1 and n represent the waves in the inlet duct, and the order 

of modes, respectively.  Since the incident wave in our TL computation is a single 

plane wave, we set 𝑝𝐴10
+ =1, and all other 𝑝𝐴1𝑛

+ = 0 for n > 0.  The corresponding 

particle velocity is 

 
𝑣𝐴1(𝑟) =

1

𝜌𝜔
∑ 𝑘𝑧,𝑛(𝑝𝐴1𝑛

+ − 𝑝𝐴1𝑛
− )𝐽0(𝑘𝑟,𝑛𝑟)

𝑁−1

𝑛=0

 (4.10) 

Because of the anechoic termination assumption, the sound pressure at the outlet 

cross section (where 𝑧 = 0 is also locally set) is 

 
𝑝𝐴2(𝑟) = ∑ 𝑝𝐴2𝑛

+ 𝐽0(𝑘𝑟,𝑛𝑟)

𝑁−1

𝑛=0

 (4.11) 

in which the subscript 2 represents the outlet. The corresponding particle velocity 

in the inward normal direction is 

 
𝑣𝐴2(𝑟) = −

1

𝜌𝜔
∑ 𝑘𝑧,𝑛𝑝𝐴𝑜𝑛

+ 𝐽0(𝑘𝑟,𝑛𝑟)

𝑁−1

𝑛=0

 (4.12) 

The axial wavenumber 𝑘𝑧𝑛 and the radial wavenumber 𝑘𝑟𝑛 are related by 
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 𝑘𝑧,𝑛
2 = 𝑘2 − 𝑘𝑟,𝑛

2  (4.13) 

where 𝑛 are the eigenvalues that must satisfy the rigid-wall boundary condition 

 𝐽0
′(𝑘𝑟,𝑛𝑎) = 0 (4.14) 

in which 𝐽0
′  is the derivative of  𝐽0, and 𝑎 is the radius of the inlet/outlet duct. 

There are 3N wave amplitudes in the analytical expansion, 𝑝𝐴1𝑛
+ , 𝑝𝐴1𝑛

− , 𝑝𝐴2𝑛
+ , where 

n = 0, 1, 2, …, N-1.  If a unit incident plane wave is assumed for the TL computation, 

𝑝𝐴10
+ = 1 and all other 𝑝𝐴1𝑛

+ = 0, then the remaining 2N wave amplitudes become 

the unknowns that can be solved by applying the reciprocal identity at least 2N 

times, each time with a BEM solution corresponding to a random boundary 

condition set.   The BEM impedance matrix in Equation 2.1 can provide up to 𝑞 + 𝑙 

sets of such solutions, where 𝑞 and 𝑙 are the number of boundary elements at the 

inlet and the outlet, respectively.  The total number of boundary elements at the 

inlet and outlet, 𝑞 + 𝑙, is normally greater than 2N.  This leads to the following (𝑞 +

𝑙) × 2𝑁 overdetermined system of equations  

 𝐀𝐱 = 𝐁 (4.15) 

where 𝐀 = [𝑎𝑗ℎ] (𝑗 = 1, 2, … , 𝑞 + 𝑙; ℎ = 1, 2, … , 2𝑁) is the system matrix, x=[𝑝𝐴10
− ,

𝑝𝐴11
− , … ,   𝑝𝐴1(𝑁−1)

− , 𝑝𝐴20
+ , 𝑝𝐴21

+ , … , 𝑝𝐴2(𝑁−1)
+ ]

T
 is the unknown vector of modal 

amplitudes, and 𝐁 = [𝑏𝑗]
T
 is the right-hand side vector.  The explicit expressions 

for 𝑎𝑗ℎ and bj are 
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𝑎𝑗ℎ = ∫ (𝑣𝐵1𝑗 +
𝑘𝑧,(ℎ−1)

𝜌𝜔
𝑝𝐵1𝑗) 𝐽0(𝑘𝑟,(ℎ−1)𝑟) d𝑆        (ℎ = 1 to 𝑁

𝑆1

) (4.16) 

𝑎𝑗ℎ = ∫ (𝑣𝐵2𝑗 −
𝑘𝑧,(ℎ−𝑁−1)

𝜌𝜔
𝑝𝐵2𝑗) 𝐽0(𝑘𝑟,(ℎ−𝑁−1)𝑟) d𝑆   ( ℎ = 𝑁 + 1 to 2𝑁

𝑆2

) (4.17) 

𝑏𝑗 = −∫ (𝑣𝐵1𝑗 −
𝑝𝐵1𝑗
𝜌𝑐

)  d𝑆
𝑆1

 (4.18) 

where the subscript B denotes the sound field B, 1 the inlet, 2 the outlet, j the j-th 

boundary condition set, and h the h-th unknown modal amplitude.  For each 

boundary condition set, most of the velocities are zero except a unit velocity on a 

particular element, and the pressures are taken straight from the j-th column of the 

BEM impedance matrix.  After the 2N unknown modal amplitudes are solved from 

Equation 4.15 by a least-square procedure, the transmitted sound power in the 

outlet duct can be evaluated.   The incident sound power in the inlet duct is simply 

based on a unit plane wave.  The TL can be obtained by the Equation 2.11. 

4.4 Integral-based impedance-to-scattering matrix method 

The modal expansion of sound pressure at any point i in the inlet/outlet duct is   

 
𝑝𝑖 = ∑Φ𝑛

𝑖 [𝑃𝑛
+ e−j𝑘𝑧,𝑛𝑧 + 𝑃𝑛

−ej𝑘𝑧,𝑛𝑧]

𝑁−1

𝑛=0

 (4.19) 

where 𝑃𝑛
+ and 𝑃𝑛

− are the modal amplitudes corresponding to the acoustic waves 

of order n travelling in the positive and negative z directions, respectively, zk  

represents the wavenumber in the axial direction, Φ𝑛
𝑖  denotes the eigenfunction 
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value at the point i. For a circular or rectangular inlet/outlet, the eigenfunctions can 

be obtained analytically. 

The particle velocity expression corresponding to the sound pressure in Equation 

4.19 is 

 
𝑣𝑖 =

1

𝜌𝜔
∑ 𝑘𝑧,𝑛Φ𝑛

𝑖 [𝑃𝑛
+ e−j𝑘𝑧,𝑛𝑧 − 𝑃𝑛

−ej𝑘𝑧,𝑛𝑧]

𝑁−1

𝑛=0

 (4.20) 

Let sound field A be the analytical modal expansion described above.  For 

convenience, 𝑧 = 0 is locally set at the inlet/outlet cross section. Let sound field B 

represent the BEM solution associated with an arbitrary boundary condition set 

prescribed at the inlet and outlet. Therefore, Equation 4.4 at the inlet surface can 

be expressed as 

∫ (𝑝A𝑣B − 𝑝B𝑣A) dS =
S1

∫ ∑Φ𝑛
𝐴
(𝑃1𝑛

+ (𝑣𝐵𝑗 −
𝑘𝑧,𝑛
𝜌𝜔

𝑝𝐵𝑗)+𝑃1𝑛
− (𝑣𝐵𝑗 +

𝑘𝑧,𝑛
𝜌𝜔

𝑝𝐵𝑗))

𝑁−1

𝑛=0

 dS = 0 
S1

 (4.21) 

where j denotes the j-th boundary condition, 1 the inlet. The BEM impedance 

matrix in Equation 2.1 can provide up to 𝑞 + 𝑙 sets of boundary condition, where q 

and l are the number of boundary elements at the inlet and the outlet, respectively. 

For each boundary condition set, most of the velocities are zero except a unit 

velocity on a particular element, and the pressures are taken straight from the j-th 

column of the impedance matrix. The 𝑞 + 𝑙  sets of Equation 4.21 can be 

represented in the matrix form below: 
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[
 
 
 
 
 ∫ (𝑣𝐵1 −

𝑘𝑧,0
𝜌𝜔

𝑝𝐵1)Φ0
1dS 

S1

⋯ ∫ (𝑣𝐵1 −
𝑘𝑧,𝑁−1
𝜌𝜔

𝑝𝐵1)Φ𝑁−1
1 dS 

S1

⋮ ⋱ ⋮

∫ (𝑣𝐵(𝑞+𝑙) −
𝑘𝑧,0
𝜌𝜔

𝑝𝐵(𝑞+𝑙))Φ0
𝑞+𝑙
dS 

S1

⋯ ∫ (𝑣𝐵(𝑞+𝑙) −
𝑘𝑧,0
𝜌𝜔

𝑝𝐵(𝑞+𝑙))Φ𝑁−1
𝑞+𝑙

dS 
S1

  

⋮   

∫ (𝑣𝐵1 +
𝑘𝑧,0
𝜌𝜔

𝑝𝐵1)Φ0
1dS 

S1

⋯ ∫ (𝑣𝐵1 +
𝑘𝑧,𝑁−1
𝜌𝜔

𝑝𝐵1)Φ𝑁−1
1 dS 

S1

⋮ ⋱ ⋮

∫ (𝑣𝐵(𝑞+𝑙) +
𝑘𝑧,0
𝜌𝜔

𝑝𝐵(𝑞+𝑙))Φ0
𝑞+𝑙
dS 

S1

⋯ ∫ (𝑣𝐵(𝑞+𝑙) +
𝑘𝑧,0
𝜌𝜔

𝑝𝐵(𝑞+𝑙))Φ𝑁−1
𝑞+𝑙

dS 
S1 ]

 
 
 
 
 

(

 
 
 
 
 
 
 
 
 

𝑃10
+

𝑃11
+

.

.

.
𝑃1(𝑁−1)
+

……
𝑃10
−

𝑃11
−

.

.

.
𝑃1(𝑁−1)
−

)

 
 
 
 
 
 
 
 
 

= (
0
⋮
0
) 

(4.22) 

Equation 4.22 can be re-written in a more compact vector form 

 
𝐀(
𝐏𝟏
+

𝐏𝟏
−) = (𝟎) (4.23) 

where A is the “modal coefficients matrix” at the inlet cross section. 

Similarly, at the outlet surface, we have 

 
𝐁(
𝐏𝟐
+

𝐏𝟐
−) = (𝟎) (4.24) 

Equation 4.23 and 4.24 can be combined as 

 
𝐀(
𝐏𝟏
+

𝐏𝟏
−) + 𝐁 (

𝐏𝟐
+

𝐏𝟐
−) = (𝟎) (4.25) 

After the rearrangement of Equation 4.25 and a least-squares matrix inverse 

performance, the scattering matrix S can be obtained thereafter.  
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4.5 Test Cases 

The first test case is an axisymmetric round bar silencer shown in Figure 4.1, which 

is also used for the validation of the point collocation based impedance-to-

scattering matrix method in Chapter 2. Figure 4.1 compares both the collocation-

based and integral-based impedance-to-scattering matrix methods using N = 17 

to the analytical solution. It is seen that the two different impedance-to-scattering 

matrix methods produce identical results, and compare very well with the analytical 

solution up to the frequency for which the analytical solution is valid.  However, 

from Table 4.1, it is noticed the MATLAB computation time is much less in the 

collocation-based method than in the integral-based method. Figure 4.2 compares 

the solution of each method when N = 30 is selected.  We can see that adding 

more evanescent modes barely changes the TL curve and solutions of the two 

methods are almost identical. 
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Figure 4.1 TL of the round bar silencer (N=17). 

 

Table 4.1 Computational time per frequency comparison. 

Method Time (s) 

Collocation-based 1.45 

Integral-based 29.73 
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Figure 4.2 TL of the round bar silencer (N=30). 

The second test case is a tuned dissipative large silencer as shown in Figure 4.3. 

The lining is made of polyester (flow resistivity=16,000 Rayl/m) and is covered by 

30% open perforated facing sheets. 

The substructured BEM is an ideal tool to obtain the resultant impedance matrix 

for this type of silencers.  The pine-tree silencer is divided into three substructures 

as shown in Figure 4.4. For substructure 2, only a small template is modeled, and 

the impedance matrix of the template can be repeatedly used 5 times to obtain the 

impedance matrix of the middle section. In this silencer model, the BEM mesh has 

13254 constant elements at the inlet and another group of 13254 elements at the 

outlet. This results in a 26508×26508 impedance matrix for each frequency. There 

are 692 propagating modes within 8000 Hz. Therefore, N=700 is selected to 

include all propagating modes up to 8000 Hz and some evanescent modes. It can 
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be seen that both methods produce an identical TL shown in Figure 4.5.  Because 

there is more integral computation involved in this test case than the previous one, 

the difference of computation time between the two methods is more noticeable. 

Figure 4.3 Dimensions of a tuned dissipative large silencer. 

 

Figure 4.4 A tuned dissipative silencer model with three substructures. 
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Figure 4.5 TL of the tuned dissipative silencer. 

4.6 Summary 

The reciprocal identity method can be used to convert the BEM impedance matrix 

to the scattering matrix for large silencer analysis. Since the reciprocal identity is 

an integral equation, the integral-based impedance-to-scattering matrix method 

can potential smooth out any irregularities associated with the selection of 

collocation points.  

Two test cases, one axisymmetric round bar silencer and the other rectangular 

tuned dissipative silencer, are used to compare the difference of two impedance-

to-scattering methods. Although the collocation-based method always has the 

uncertainty associated with the “optimal” collocation locations, the two test cases 

show that the accuracy and the stability are about the same for both methods. 

Because of the additional numerical integration involved in the integral-based 
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method, the computation time is much longer than the collocation-based method. 

Nonetheless, the integral-based method still can provide a comparison and 

validation tool for the collocation-based method, in case the silencer geometry 

becomes more complicated. 
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Chapter 5 ADVANCED BEM ANALYSIS FOR LARGE BAR SILENCERS 

5.1 Introduction 

Bar silencers are commonly used among all types of dissipative silencers in the 

power generation industry. The idea of bar silencers was first proposed by Nilsson 

and Söderqvist (1983), and they claimed that an array of square or round bars 

made of sound absorbing materials have certain advantages over a similarly 

configured splitter silencer. They explained the better performance of bar silencers 

by attributing to three major effects: (1) a ‘‘constriction effect’’, in which at low 

frequencies, the sound field within the silencer induces cylindrical waves within the 

bars, and has to travel through gradually decreasing cylindrical areas; (2) a 

‘‘diagonal effect’’, in which with bars, waves enter the absorbing material via the 

corners, and the acoustically effective thickness of the material then becomes 20% 

greater than in a splitter-type silencer with the same baffle width; (3) a ‘‘slot effect’’, 

in which the bar geometry results in shorter distances between sound-absorbing 

surfaces and a greater area of sound-absorbing material exposed to the sound 

field (Cummings and Astey, 1996). 

Cummings and Astey (1996) conducted an FEM analysis of sound attenuation in 

bar silencers, consisting of rectangular prisms of sound-absorbing material placed 

in a rectangular lattice arrangement within a rigid-walled duct. The numerically 

predicted results were compared to the experimental data. Comparison was also 

made between the acoustic performance of bar silencers and the equivalent 

splitter silencers, and the authors found that bar silencers tend to have better 

attenuation characteristics at low frequencies.  Kirby et al. (2012) investigated the 
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performance difference of different silencer designs for gas turbine exhaust 

systems by using a hybrid 2-D FEM method. The performance of bar silencers was 

observed to be very dependent on the type of material chosen and the flow 

resistivity of the material. 

On the BEM side, the reciprocal identity method (Zhou et al. 2016) and the 

proposed impedance-to-scattering matrix method (Wang and Wu, 2016) are also 

ideally suited to the TL analysis of bar silencers.  Both methods express sound 

pressure and the corresponding particle velocity in the inlet and outlet ducts in 

terms of the analytical mode shapes.  For circular and rectangular inlet/outlet cross 

sections, the analytical mode shapes can be found easily.   However, for more 

complicated inlet/outlet configurations, the mode shapes have to be obtained 

numerically.    

 

Figure 5.1 A rectangular unit isolated from an aligned lattice arrangement of 

round bars. 
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Figure 5.2 A rectangular unit isolated from an aligned lattice arrangement of 

square bars. 

 

Figure 5.3 A triangular unit isolated from a shifted lattice arrangement of round 

bars. 
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Figures 5.1-5.3 demonstrate three typical lattice arrangements of bar silencers 

(Yang et al., 2017). Due to symmetry, only a small module is isolated from the 

lattice for analysis purposes.  As shown in Figures 5.1 and 5.2, the isolated module 

is a rectangular duct with either a round or a rectangular bar inside, and the 

housing is assumed rigid due to symmetry.  Figure 5.3 shows a shifted lattice 

arrangement of round bars and an isolated hexagon module.  Due to rotational 

symmetry, the hexagon module can eventually be reduced to a triangular module.  

The mode shapes of a triangular module may be difficult to find analytically, but 

can be obtained numerically by using the 2-D FEM.  

In the first part of this chapter, the impedance-to-scattering matrix method is 

extended to irregular inlet and outlet configurations where the mode shapes have 

to be determined by the 2-D FEM.  Following the study of the impedance-to-

scattering method using the numerical FEM modes, Redheffer’s star product 

(Redheffer,1962) is introduced to combine the scattering matrices of subsystems 

into the resultant scattering matrix of the whole system.  As mentioned in Chapter 

4, even though the BEM impedance matrix may also be used to combine 

subsystems, the scattering matrix is a more desirable format due to its mesh-

independent property. 

In industry, one-third octave or octave band is a more preferable output format. 

Measurements of IL and NR for large silencers are normally performed in one-third 

or octave bands, but TL must be first determined in narrow bands because the TL 

computation requires additional post-processing of the measured or computed 

sound pressure data.  Therefore, the conversion from the narrow-band TL to one-
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third or octave band is needed in order to compare to the measured IL or NR.  

However, there has been no standard procedure for determining the TL in one-

third or octave bands using measured data or simulation.   

In the last part of this chapter, three different methods for determining TL are 

compared in one-third or octave bands.  They are (1) the wave decomposition 

method, (2) the equivalent IL method, and (3) the direct conversion method, 

respectively.  All three methods assume a constant-amplitude incident sound wave 

in the inlet duct at all frequencies.  While the first two methods still rely on the 

plane-wave assumption in the inlet and outlet ducts, the direct conversion method 

can be used for large silencers at higher frequencies when higher-order cross 

modes propagate along with the plane waves in the inlet and outlet ducts. 

5.2  Impedance-to-Scattering matrix method with 2-D FEM modes 

In Chapter 2 to Chapter 4, the BEM impedance matrix is converted into the 

scattering matrix by introducing the modal expansion to sound pressure and 

particle velocity at a rectangular or circular inlet/outlet in terms of the corresponding 

analytical modes.  In this section, the 2-D FEM is first applied to extract the 

numerical mode shapes of a general inlet/outlet cross section, which may not be 

rectangular or circular, before the modal expansion is introduced. Figure 5.4 shows 

a flow chart (from EABE paper) that demonstrates the procedure. 
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Figure 5.4 Flowchart of impedance-to-scattering matrix method with 2-D FEM 

modes computation procedure. 
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The modal expansion of sound pressure at the point 𝑖 in the inlet/outlet duct is   

 
𝑝𝑖 = ∑Φ𝑛

𝑖 [𝑃𝑛
+ e−j𝑘𝑧,𝑛𝑧 + 𝑃𝑛

−ej𝑘𝑧,𝑛𝑧]

𝑁−1

𝑛=0

 (5.1) 

where 𝑃𝑛
+ and 𝑃𝑛

− are the modal amplitudes corresponding to the acoustic waves 

of order n travelling in the positive and negative z directions, respectively, zk  

represents the wavenumber in the axial direction, Φ𝑛
𝑖  denotes the eigenfunction 

value at the point i. For a circular or rectangular inlet and outlet, the eigenfunctions 

can be obtained analytically.  For irregular shapes, the eigenfunctions have to be 

obtained numerically. 

The particle velocity expression at the point 𝑖 in the inlet/outlet duct corresponding 

to the sound pressure in Equation 5.1 is 

 
𝑣𝑖 =

1

𝜌𝜔
∑ 𝑘𝑧,𝑛Φ𝑛

𝑖 [𝑃𝑛
+ e−j𝑘𝑧,𝑛𝑧 − 𝑃𝑛

−ej𝑘𝑧,𝑛𝑧]

𝑁−1

𝑛=0

 (5.2) 

5.2.1 Eigenfunction extraction using 2D FEM 

The governing differential equation for the transversal sound pressure in a 2-D 

cross section at the inlet and outlet (where 𝑧 = 0 is locally set) is, 

 ∇𝑥𝑦
2𝑝𝑥𝑦 + 𝑘𝑥𝑦

2 𝑝xy = 0 (5.3) 

where 𝑝𝑥𝑦  is the transversal sound pressure, and 𝑘xy  is the transversal 

wavenumber.  
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The axial wavenumber 𝑘𝑧 and the transversal wavenumber 𝑘xy are related by 

 𝑘𝑥𝑦
2 + 𝑘𝑧

2 = 0 (5.4) 

The transversal sound pressure at any point 𝑖 is expressed in terms of the shape 

functions by using FEM (Fang and Ji, 2013), 

 𝑝𝑥𝑦,𝑖 = 𝐍
T𝐩 (5.5) 

where the matrix 𝐍 consists of the column vectors of the global shape functions, 

and 𝐩 is the column vector of the nodal values of transversal sound pressure. 

After applying the Galerkin procedure, Equation 5.3 can be expressed as 

 ∫{𝑁}(∇𝑥𝑦
2𝑝𝑥𝑦 + 𝑘𝑥𝑦

2 𝑝xy) d𝑆
𝑆

= {0} (5.6) 

After integration by parts, Equation 5.6 becomes 

 ∫{𝑁}
𝜕𝑝𝑥𝑦
𝜕𝑛

 d𝐿 − ∫{∇𝑁} ∙ ∇𝑝𝑥𝑦 d𝑆 
𝑆

+ 𝑘𝑥𝑦
2

𝐿

∫{𝑁}𝑝𝑥𝑦d𝑆 
𝑆

= {0} (5.7) 

where 𝐿 is the boundary of the cross section 𝑆. 

Substituting Equation 5.5 into Equation 5.7 produces 

 ∫{𝑁}
𝜕𝑝𝑥𝑦
𝜕𝑛

 d𝐿 − ∫{∇𝑁}{∇𝑁}T d𝑆{𝑝}
𝑆

+ 𝑘𝑥𝑦
2

𝐿

∫{𝑁}{𝑁}Td𝑆{𝑝}
𝑆

= {0} (5.8) 

Applying the rigid-wall boundary condition to Equation 5.8 yields the following 

eigen-equation, 
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 (𝐊 − 𝑘𝑥𝑦
2 𝐌)𝐩 = 𝟎 (5.9) 

where 𝐊 and 𝐌 are the stiffness matrix and mass matrix, respectively.  They are 

 𝐊 =∑∫ (∇𝐍)𝑒(∇𝐍)𝑒
T d𝑆𝑒

𝑆𝑒

 (5.10) 

 
𝐌 =∑∫ (𝐍)𝑒(𝐍)𝑒

T d𝑆𝑒
𝑆𝑒

 
(5.11) 

where the subscript 𝑒 denotes the element. 

If the number of nodes is n, n eigenvalues 𝑘𝑥𝑦  (1 ≤ 𝑖 ≤ 𝑛) and the associated 

eigenvectors (𝚽)𝑖  with length of n may be obtained by solving Equation 5.9. 

With the numerical modes at the inlet and outlet available, the impedance matrix 

can be converted to the scattering matrix by using either the collocation-based or 

the integral-based method as illustrated in previous chapters. 

5.2.2 Test cases 

The first test case is a rectangular bar silencer as shown in Figure 5.5.  This test 

case was first reported by Kirby et al. (Kirby et al., 2014) using the hybrid analytical 

and 2D FEM method based on the point-collocation method.  The dimensions of 

the silencer is shown in Figure 5.6 with 𝑑𝑥 = 0.28 𝑚，𝑑𝑦 = 0.21 𝑚, 𝑒𝑥 = 0.06 𝑚, 

𝑒𝑦 = 0.045 𝑚, and 𝐿 = 0.9 𝑚. The flow resistivity for the sound absorbing material 

is 19307 rayls/m.  The porosity of the perforated facing sheet is 27%, hole diameter 

𝑑ℎ = 0.003 𝑚, and wall thickness 𝑡𝑤 = 0.0016 𝑚.  All values of the parameters are 
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the same as the test case studied by Kirby et al. (Kirby et al., 2014). Even though 

the inlet/outlet is rectangular, numerical modes are still calculated by FEM and 

used for the impedance-to-scattering matrix method to validate the proposed 

procedure.  Figure 5.7 compares the BEM result from the impedance-to-scattering 

matrix using the 2D FEM to the numerical solution by Kirby et al., along with the 

insertion loss (IL) measurement data from the reference (Kirby et al., 2014).  In 

practice, IL is easier to measure on-site, but it is not the same as the more 

theoretical TL.  Nonetheless, it does provide a reference for comparison purposes.  

For large dissipative silencers, the trend of IL should be close to the trend of TL.  

As shown in Figure 5.7, it is seen that both numerical TL predictions are higher 

than the IL measurement but the proposed method compares fairly well with Kirby 

et al.’s point collocation method for TL up to 8000 Hz. The minor discrepancies 

could be due to the FEM interpolation of the modes at the centroid of each element.  

 

Figure 5.5 3D sketch of the rectangular bar silencer. 
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Figure 5.6 Dimensions of the rectangular bar silencer. 

 

Figure 5.7 TL comparison of the rectangular bar silencer. 

The second test case is a triangular module isolated from a shifted lattice 

arrangement of round bars shown in Figure 5.3.  With reference to Figure 5.8, 

𝐿 = 2 𝑚, 𝑙1 = 0.4 𝑚, and 𝑙2 = 0.1 𝑚. 
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Figure 5.8 Cross section of a triangular module isolated from a shifted lattice 

arrangement of round bars. 

Table 5.1 Three study cases of the triangle module. 

Case number Flow resistivity (rayls/m) Porosity 

1 16000 0.30 

2 16000 0.08 

3 1800 0.30 

As shown in Table 5.1, case study for different flow resistivity and porosity 

combinations are developed and the respective TL results are compared in Figure 

5.9.  Increasing the porosity of the perforated facing sheet may improve the 

acoustic attenuation performance at higher frequencies; however, this may be at 

the expense of a small reduction of TL at lower frequencies.  It should be noticed 

that at very high frequencies, the effect of flow resistivity is very little. 
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Figure 5.9 TL comparison of three study cases of the triangle module. 

The last test case is a comparison between the triangular module and the square 

module to demonstrate the advantage of the shifted lattice arrangement shown in 

Figure 5.3 over the aligned lattice arrangement shown in Figure 5.1.  Figure 5.10 

shows the dimensions of the two different bar silencer designs with 𝑙1 = 0.4 𝑚, and 

𝑙2 = 0.1 𝑚.  The round bar is made of polyester with flow resistivity R=16000 

rayls/m, and is covered by a 30% open perforated facing sheet. 

The TL comparison of the two designs is shown in Figure 5.11, and it is seen that 

triangular module has better performance over 1000 Hz. This is because the 

shifted lattice (triangular module) is a more compact design than the aligned lattice 

(square module). 
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Figure 5.10 Dimensions of the two different designs: (a) Triangular module; (b) 

Square module. 

 

Figure 5.11 TL comparison between the triangular and square modules. 
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5.3 Scattering Matrix Synthesis 

The impedance matrix synthesis has been used to combine subsystems in series 

connection before (Lou et al., 2003, Park et al., 2009, and Yang and Ji, 2016). One 

disadvantage of using the impedance matrix synthesis is that it always requires a 

piece of BEM mesh at the inlet and outlet to go with the impedance matrix.  On the 

other hand, the scattering matrix is a system property and is mesh independent, 

making it a more desirable format than the BEM impedance matrix. 

5.3.1 Redheffer’s star product 

By using the Redheffer’s star product (Redheffer, 1962), the scattering matrices 

from two subsystems can be combined into a single scattering matrix. 

 

Figure 5.12 Two subsystems combination using the scattering matrix synthesis 

approach. 

The scattering matrix of each subsystem can be written as 

(
𝐂
𝐁
) = 𝐒(𝟏) (

𝐀
𝐃
) = [

𝐒𝟏𝟏
(𝟏)

𝐒𝟏𝟐
(𝟏)

𝐒𝟐𝟏
(𝟏)

𝐒𝟐𝟐
(𝟏)
] (
𝐀
𝐃
)      (

𝐄
𝐃
) = 𝐒(𝟐) (

𝐂
𝐅
) = [

𝐒𝟏𝟏
(𝟐)

𝐒𝟏𝟐
(𝟐)

𝐒𝟐𝟏
(𝟐)

𝐒𝟐𝟐
(𝟐)
] (
𝐂
𝐅
) (5.12) 

and the combined scattering matrix as 
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(
𝐄
𝐁
) = 𝐒 (

𝐀
𝐃
) = 𝐒(𝟏)⊗𝐒(𝟐) = [

𝐒𝟏𝟏 𝐒𝟏𝟐
𝐒𝟐𝟏 𝐒𝟐𝟐

] (
𝐀
𝐃
) (5.13) 

where  

 𝐒𝟏𝟏 = 𝐒𝟏𝟏
(𝟐)[𝐈 − 𝐒𝟏𝟐

(𝟏)𝐒𝟐𝟏
(𝟐)]

−𝟏
𝐒𝟏𝟏
(𝟏)

 (5.14) 

 𝐒𝟏𝟐 = 𝐒𝟏𝟐
(𝟐)
+ 𝐒𝟏𝟏

(𝟐)[𝐈 − 𝐒𝟏𝟐
(𝟏)𝐒𝟐𝟏

(𝟐)]
−𝟏
𝐒𝟏𝟐
(𝟏)
𝐒𝟐𝟐
(𝟐)

 (5.15) 

 𝐒𝟐𝟏 = 𝐒𝟐𝟏
(𝟏)
+ 𝐒𝟐𝟐

(𝟏)[𝐈 − 𝐒𝟐𝟏
(𝟐)𝐒𝟏𝟐

(𝟏)]
−𝟏
𝐒𝟐𝟏
(𝟐)
𝐒𝟏𝟏
(𝟏)

 (5.16) 

 𝐒𝟐𝟐 = 𝐒𝟐𝟐
(𝟏)[𝐈 − 𝐒𝟐𝟏

(𝟐)𝐒𝟏𝟐
(𝟏)]

−𝟏
𝐒𝟐𝟐
(𝟐)

 (5.17) 

By following the rule above, the scattering matrices of n subsystems in series 

connection can be combined to form a single resultant scattering matrix for the 

entire system for TL computation or further study.  

5.3.2 Test cases 

The first test case is a two-subsystem bar silencer as shown in Figure 5.13.  The 

purpose of this test case is to validate the scattering matrix synthesis by comparing 

to the impedance matrix synthesis.  The impedance matrix of each subsystem can 

be obtained by following the same BEM substructuring procedure shown in Figure 

2.1, and the mesh size of each subsystem is the same as the test case used in 

Section 2.4.2.  The more traditional way to combine two subsystems is to use the 

impedance matrix synthesis.  However, instead of combining the impedance 

matrices of the two subsystems, we convert each subsystem impedance matrix to 
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a corresponding subsystem scattering matrix first, and then the Redheffer’s star 

product is used to obtain the resultant scattering matrix for the whole system. The 

TL can be obtained from the resultant scattering matrix afterwards. Since the 

combined length (6 m) of the two bars is the same as the length of the single bar 

design reported in Section 2.4.2, the TL of this two-bar design is also compared to 

the TL of the original one-bar design to study any potential benefits of sudden area 

change in the middle of the silencer. It is seen from Figure 5.14 that the two 

synthesis methods produce identical results, and the two-bar design also provides 

additional attenuation above the cutoff frequency due to the sudden area change. 

 

Figure 5.13 A two-subsystem bar silencer (𝐿 = 3 m). 
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Figure 5.14 TL of the two subsystems bar silencer. 

It should be noted that the impedance matrix must be always associated with a 

particular BEM mesh due to its element-based nature.  However, the scattering 

matrix is a system property that does not rely on any mesh.  To confirm the mesh 

independent property of the scattering matrix, we alter the mesh size of the two 

subsystems to ensure that they don’t have the same mesh. The first subsystem 

has 690 constant elements at the inlet and another group of 690 elements at the 

outlet. The second subsystem has 740 constant elements at the inlet and another 

group of 740 elements at the outlet.  In the traditional impedance matrix synthesis, 

the two BEM impedance matrices are not compatible and, therefore, cannot be 

combined at all.   However, this is not an issue for the scattering matrix synthesis 

as long as both scattering matrices have the same number of modes.  In this test 
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case, we select 17 modes in both subsystems.  From Figure 5.15, it can be verified 

that the scattering matrix synthesis is mesh independent. 

 

Figure 5.15 Comparison between the element-to-element match and the different 

element size combination. 

In Chapter 2, a so-called “transfer scattering matrix” was introduced to combine 

subsystems in series connection.  The transfer scattering matrix is shown below 

again: 

 
(
𝐏𝟏
+

𝐏𝟏
−) = [

𝐒𝟏𝟏
∗ 𝐒𝟏𝟐

∗

𝐒𝟐𝟏
∗ 𝐒𝟐𝟐

∗ ] (
𝐏𝟐
+

𝐏𝟐
−) (5.18) 

Due to its direct inlet-to-outlet relationship, the resultant transfer impedance matrix 

of a cascaded system can be obtained by simply multiplying the subsystem 

transfer impedances together.  In other words, 
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 𝐒∗ = 𝑺𝟏
∗ ∗ 𝑺𝟐

∗ ∗ … ∗ 𝑺𝒏
∗  (5.19) 

This method was used to validate the TL of a small non-axisymmetric silencer in 

Chapter 2.  However, by applying this method to the current test case, it is 

surprising to find that the transfer scattering matrix method is only valid at low 

frequencies, as shown in Figure 5.16.  From Figure 5.16, it is seen that as the 

frequency gets close to the cutoff frequency, the transfer scattering matrix method 

becomes unstable. One possible explanation is that the transfer scattering matrix 

is ill-conditioned when a large number of higher-order modes are used. Table 5.2 

shows the condition number comparison of the scattering matrix versus the 

transfer scattering matrix of a subsystem at 420 Hz, at which the TL starts to 

diverge.  It is found that the condition number of the transfer scattering matrix is 

several orders higher than that of the scattering matrix, especially when more 

higher-order modes are included. 

Table 5.2 Condition number comparison at 420 Hz. 

           Number of Modes 

Matrix Type 

N = 1 N = 17 

Scattering Matrix 1.02 62.82 

Transfer Scattering Matrix 1.43×105 4.45×1020 
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Figure 5.16 Comparison between the scattering matrix and transfer scattering 

matrix synthesis (N =17). 

5.4 Large silencer transmission loss in octave band 

5.4.1 Octave and one-third octave band 

Each octave band filter has a fixed center frequency and is twice as wide as the 

one before it, as shown in Figure 5.17. In other words, the bands are related by 

the following relationship 

 𝑓𝑢
𝑓𝑙
= 2 (5.20) 

where 𝑓𝑢  and 𝑓𝑙  are the upper limit and lower limit frequency of the band, 

respectively. 
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Figure 5.17 Octave band filters. 

Each octave band filter may be divided into three one-third octave band filters for 

greater frequency resolution.  The standard center, lower and upper limit 

frequencies for octave and one-third octave bands below 2900 Hz are shown in 

Table 5.3. 
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Table 5.3 Octave and One-Third Octave Bands Comparison 

 (Beranek and Vér, 2006). 

 

To convert the narrow bands to octave bands (octave bands or one-third octave 

bands), it is necessary to calculate the overall sound level in each band filter.  Since 

the sound level scales are logarithmic, they cannot be combined algebraically.  

Instead, the energy addition theorem is applied to combine the narrow-band sound 

power levels in each band filter to obtain the overall sound power level for a given 
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band.  This is essentially the numerical integration of sound power over each band 

divided by the bandwidth.  In other words, the end result is the average sound 

power in each band.  In practice, only a simple summation or integration procedure 

of the sound power is performed without doing the average if the same frequency 

increment is used at every measurement point.   

5.4.2 Methods for determination of silencer transmission loss in octave 

band 

In this section, three different methods are presented to convert the narrow-band 

TL into octave or one-third octave bands.  All three methods are based on the 

assumption of a constant amplitude incident wave across the frequency range.  In 

reality, however, the incident sound power may be different at each frequency. 

Wave decomposition method 

𝑊𝑖 and 𝑊𝑡 obtained by the method illustrated in section 1.1.3 in narrow bands are 

integrated (or simply summed) over each band to get the TL in octave bands: 

 
𝑇𝐿 = 10log10 (

𝑊𝑖

𝑊𝑡
) (5.21) 

Equivalent Insertion Loss Method 

This method assumes that the four-pole matrix of the silencer as shown in 

Equation 1.4, has been either measured or calculated in narrow bands.  However, 

it should be noted that the four-pole matrix does not exist above the plane-wave 

cutoff of the inlet and outlet ducts. The narrow-band TL can be calculated by 

Equation 1.6 in terms of the four-pole parameters. 
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Figure 5.18(a) shows the basic components of a typical duct silencing system and 

5.17(b) shows the corresponding circuit analog of the acoustical system.  In 

5.17(b), 𝑍𝑆 is the source impedance, 𝑍𝑇 is the termination impedance, 𝑝1 and 𝑢1 

are the sound pressure and particle velocity at inlet, and 𝑝2 and 𝑢2 are the sound 

pressure and particle velocity at outlet, respectively.  Relations among these 

quantities are shown in Equation 5.22, 5.23 and 5.24, 

 𝑝𝑠 = 𝑝1 + 𝑍𝑆𝑢1 (5.22) 

 
{
𝑝1
𝑢1
} = [

𝑇11 𝑇12
𝑇21 𝑇22

] {
𝑝1
𝑢1
} (5.23) 

 𝑝2 = 𝑍𝑇𝑢2 (5.24) 

 

Figure 5.18 (a) Typical duct silencing system; (b) Electric analog. 
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𝑝𝑜 can also be expressed in terms of [𝑇],  𝑍𝑆, 𝑍𝑇 and 𝑝𝑠 by solving the equations 

above, 

 
𝑝𝑜 =

𝑍𝑇𝑝𝑠
(𝑍𝑇𝑇11 + 𝑇12 + 𝑍𝑆𝑍𝑇𝑇21+𝑍𝑆𝑇22)

 (5.25) 

Thus, insertion loss (IL) can be calculated by 

 
𝐼𝐿 = 20log10 |

𝑍𝑇𝑇11 + 𝑇12 + 𝑍𝑆𝑍𝑇𝑇21 + 𝑍𝑆𝑇22
(𝑍𝑇𝐷11 + 𝐷12 + 𝑍𝑆𝑍𝑇𝐷21 + 𝑍𝑆𝐷22)

| (5.26) 

where [𝐷] is the four-pole matrix of the straight replacement pipe. It is noted that 

when the source and termination are anechoic, Equation 5.26 can be reduced to 

Equation 1.6.  In other words, the IL is the same as TL if both the source and 

termination are anechoic. 

To compute the TL in octave bands, the sound pressures at the outlets of the two 

cases shown in Figure 5.19 are computed.  Since both the source and termination 

are anechoic, the computed IL is the same as the TL.  
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Figure 5.19 Two pseudo cases. 

According to Equation 5.25, if the source and termination are both anechoic, the 

sound pressures 𝑝1 and 𝑝2 at the termination of the straight pipe and the silencer, 

respectively, can be calculated separately by using the following equations: 

 𝑝1 =
𝑝𝑠

(𝑇11 +
𝑇12
𝜌𝑐

+ 𝑇21𝜌𝑐+𝑇22)
 

(5.27) 

 𝑝2 =
𝑝𝑠

(𝐷11 +
𝐷12
𝜌𝑐

+ 𝐷21𝜌𝑐+𝐷22)
 

(5.28) 

Assume ps is constant across the frequency range, and then convert 𝑝1 and 𝑝2 to 

octave-band sound pressure levels 𝑆𝑃𝐿1 and 𝑆𝑃𝐿2, respectively.  It can be proved 

that a constant ps with an anechoic source is equivalent to a constant incident 

wave.  Then, the equivalent TL can be calculated by 

 𝑇𝐿 = 𝐼𝐿 = 𝑆𝑃𝐿2 − 𝑆𝑃𝐿1 (5.29) 
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Direct Conversion Method 

If the narrow-band TL is available already, the direct conversion method can be 

easily applied by following the simple steps below: 

1: Set the incident sound power 𝑊𝑖 =1 in Equation 5.21 at all frequencies. 

2: Calculate the corresponding transmitted sound power 𝑊𝑡  at each frequency 

from the narrow-band TL. 

3: Convert both 𝑊𝑖  and 𝑊𝑡  into octave bands by doing simple integration (or 

summation). 

4: Calculate the TL from the octave-band 𝑊𝑖 and 𝑊𝑡. 

5.4.3 Test cases 

The first test case is the simple expansion shown in Figure 5.20.  One-third octave 

band TL curves using the three different methods presented in this section are 

compared to the narrow-band TL in Figure 5.21. The frequency stepping used in 

the narrow-band calculation is 10 Hz.  It is seen from Figure 5.21 that all three 

methods produce the identical TL and that is why only one red curve is displayed. 

Below the plane-wave cutoff frequency at the inlet and outlet, all three methods 

are all valid to convert the narrow band TL into the one-third octave or octave band. 
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Figure 5.20 Simple expansion chamber. 

 (𝐿=200 mm, 𝑑=35 mm, 𝐷 =150 mm). 

 

Figure 5.21 Transmission loss comparison of simple expansion chamber. 
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The second test case is a large round bar silencer shown in Figure 2.1.  The 

narrow-band TL can be obtained by applying the proposed impedance-to-

scattering method.  

Due to the large cross section of the silencer, the plane-wave assumption is not 

valid anymore at the inlet and outlet. Therefore, only the direct conversion method 

can be used to convert the narrow-band TL into octave bands. Figure 5.22 shows 

the comparison between the narrow-band TL, the 1/3-octave band TL, and the 

octave-band TL. It can be seen that the one-third octave band TL curve is close to 

the narrow band TL for the highly absorptive silencer, and the peak value of the 

octave band TL is decreased. 

 

Figure 5.22 Transmission loss of the round bar silencer. 
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5.5 Summary 

In order to study the acoustic attenuation of large silencers with irregular inlet and 

outlet configurations, the cross-sectional modes at the inlet and outlet are 

extracted by the 2-D FEM first. The proposed method is first validated by the 

numerical solution by Kirby et al. (2014) on a rectangular bar silencer test case. A 

triangular unit isolated from a shifted lattice arrangement of round bars is modeled 

later to study its performance advantages over the aligned lattice design. It is found 

that increasing the porosity of the perforated facing sheet may improve the 

acoustic attenuation performance at higher frequencies but this may be at the 

expense of a small reduction of TL at lower frequencies and the effect of flow 

resistivity is very little at very high frequencies. Because of the more compact 

design of shifted lattice (triangular module) than the aligned lattice (square 

module), it is seen that triangular module has better attenuation over 1000 Hz. 

Bar silencers usually consist of several subsystems as shown in Figure 5.13. The 

scattering matrix synthesis using the Redheffer’s star product is developed in this 

chapter. Since the scattering matrix is mesh-independent, the scattering matrix 

synthesis does not require a BEM mesh to be attached to it.  Additionally, it takes 

much less memory space to store the scattering matrix than impedance matrix. 

Compared to the so-called transfer scattering matrix method, the scattering matrix 

synthesis is more stable above the plane-wave cutoff frequency. 

Finally, three methods for converting the narrow-band TL to one-third octave or 

octave band are developed.  There has been no existing standard procedure for 

determining the TL in one-third or octave bands using measured data or 
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simulation.  All three methods are valid for the TL conversion below the plane-

wave cutoff frequency at the inlet and outlet, and the direct conversion method can 

still be used above the cutoff frequency. 
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Chapter 6 SEMI-ANALYTICAL AND BEM SOLUTIONS OF LARGE TUNED 

DISSIPATIVE SILENCERS 

6.1 Introduction 

The noise spectrum at the gas turbine exhaust is contributed by not only the 

broadband noise but also tonal components due to the rotor stator interaction, 

combustion instabilities (Kudernatsch, 2000) and the fan exhaust. Noise with tonal 

components is always found to be more annoying than the broadband noise at the 

same overall level without a tone. However, typical large dissipative silencers such 

as parallel-baffle silencers, bar silencers and lined ducts are only good at reducing 

broadband noise since they don’t have any reactive components.  

To attenuate the broadband noise while suppressing tonal noise, tuned dissipative 

silencers are commonly used. Tuned dissipative silencers consist of baffles 

containing cavities which can be designed or tuned for optimum acoustical 

performance at selected frequencies (Bell, 1993). Figure 6.1 shows a typical tuned 

dissipative silencer, which is sometimes called “pine-tree silencer” because of its 

configuration.  As shown in Figure 6.1, absorbing material is attached to one side 

of each inclined shape of a cavity, to increase the bandwidth of spectral attenuation 

near the target frequencies. As a result, tuned dissipative silencers can 

accommodate normal fluctuations in operating temperature. These types of 

silencers are particularly effective for attenuating tonal fan noise at the blade pass 

frequency and its harmonics.  Additionally, thanks to the inclined angle of each 

cavity with respect to the flow direction, these silencers are usually used in exhaust 
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flows with heavy dust load since dust deposits on the branches of the trees will 

slide down naturally (Mechel, 2002). 

 

Figure 6.1 A pine-tree silencer (Mechel, 2002). 

To the author's knowledge, there has been no work directly related to the TL 

analysis of pine-tree silencers. Mechel (1998, 2002) provided approximate design 

formulas, but they are not applicable for low frequencies below 70 Hz. Even though 

pine-tree silencers have not been thoroughly investigated, the acoustic attenuation 

performance of lined resonators and array resonators have been studied and 

improved by many researchers.  Selemet et al. (2005) developed a two-
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dimensional closed-form analytical solution to investigate the acoustic 

performance of a concentric circular Helmholtz resonator lined with fibrous 

material. The fibrous material in the cavity has been found to lower the resonance 

frequency and the peak transmission loss. The resonance frequency shifts to lower 

frequencies and the overall transmission loss decreases relative to the empty 

chamber with increasing flow resistivity. For low frequencies below the resonance, 

the transmission loss with thicker absorbent is slightly higher, whereas this 

behavior is reversed on the other side of resonance. Howard and Craig (Howard 

and Craig, 2014) conducted tests on three orifice geometries of side-branches on 

an adaptive quarter-wave tube to determine which was the least compromised by 

the high-speed exhaust gas passing over the side-branch. The side-branch 

geometries tested were a sharp edge, a backward inclined branch, and a bell 

mouth. The experimental results showed that the side-branch with a bell-mouth 

geometry resulted in the greatest noise reduction by an adaptive quarter-wave 

tube. Wang and Mak (2012) presented a theoretical study of a duct loaded with 

identical side-branch resonators based on the Bloch wave theory (Kittel, 1986) and 

the transfer matrix method to investigate wave propagation in the duct. A duct with 

several identical resonators exhibits a unique attenuation characteristic caused by 

structural periodicity, and may, if carefully designed, provide a much broader noise 

attenuation bands compared to a single resonator. Seo and Kim (2005) tested 

serial and parallel arrangements of resonators to obtain broader impedance 

mismatch characteristics in broadband. It was found out that the serial 

arrangement mainly increases the peak of TL at the resonance frequency and the 
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parallel arrangement logarithmically increases the peak of TL and expands the 

bandwidth. Coulon et al. (2016) used a 2D FEM model coupled to a global 

MATLAB optimization solver to optimize three or more Helmholtz resonator arrays.  

Among different types of constructions, arrays made of concentric resonators with 

transversal openings offer the most efficient and flexible design to optimize 

distance between openings. 

In this chapter, a two-dimensional first-mode semi-analytical solution is presented 

to quickly evaluate the performance of pine-tree silencers below the plane-wave 

cut-off frequency. The proposed method can provide a quick assessment of the 

acoustic attenuation performance of large tuned dissipative silencers during the 

initial design stage. Additionally, the semi-analytical method can also provide a 

low-frequency benchmark solution for the 3D BEM, which is not limited to the 

plane-wave cut-off frequency when used in conjunction with the impedance-to-

scattering matrix method. 

6.2 Semi-analytical solution of large tuned dissipative silencers 

The objective of this section is to present a two-dimensional first-model semi-

analytical solution for the TL analysis of tuned dissipative silencers below the 

plane-wave cutoff frequency.  To study the problem using a semi-analytical 

method, the tuned dissipative silencer is divided into 4 sections as shown in Figure 

6.3. The four-pole transfer matrices of section 2 and section 3 can be determined 

by the proposed two-dimensional first-mode analytical solution. For section 1 and 

4, it may be difficult to derive the analytical solution because of the irregular 

shapes. Therefore, the impedance matrix is calculated by BEM. Although BEM is 
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still used, it is applied to two small sections only.  The four-pole transfer matrices 

in sections 2 and 3 can be easily converted to two corresponding impedance 

matrices.  After that, the impedance matrix synthesis technique is performed to 

form the resultant impedance matrix of the whole model. The TL of the test case 

can then be obtained after converting the resultant impedance matrix back to the 

four-pole transfer matrix. This semi-analytical solution has a combination of both 

an analytical approach and a numerical approach (BEM).  The analytical approach 

is applied to the core part of the silencer design (the pine tree), while the BEM is 

only applied to the inlet and outlet transition ducts.  

 

Figure 6.2 A tuned dissipative silencer test case (Unit: m). 

 

Figure 6.3 Four sections of the divided tuned dissipative silencer test case. 
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6.2.1 Transfer matrix determination of lined resonator 

 

Figure 6.4 A lined resonator. 

As shown in Figure 6.4, inside the main duct of a lined resonator, the sound 

pressure can be expressed in terms of the first mode by 

 𝑝(𝑥,𝑦) = (𝐴𝑒
−𝑗𝑘𝑥𝑥 + 𝐵𝑒𝑗𝑘𝑥𝑥)(𝐶𝑒−𝑗𝑘𝑦𝑦 + 𝐷𝑒𝑗𝑘𝑦𝑦) (6.1) 

where A, B, C, and D are undetermined coefficients.  The wavenumber in the 𝑥 

direction, 𝑘𝑥, and the wavenumber in 𝑦 direction, 𝑘𝑦, are related by 

 𝑘𝑥
2 + 𝑘𝑦

2 = 𝑘2 (6.2) 
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Apply the rigid boundary conditions at 𝑥 = 0 and 𝑦 = 𝐿, in other words, 
𝜕𝑝

𝜕𝑥
= 0 at 

𝑥 = 0, and 
𝜕𝑝

𝜕𝑦
= 0 at 𝑦 = 𝐿, to get 

 𝐴 = 𝐵 (6.3) 

 𝐷 = 𝐶𝑒−2𝑗𝑘𝑦𝐿 (6.4) 

Substitute Equations 6.3 and 6.4 into Equation 6.1, and lump A and B with C to 

redefine a new undetermined coefficient C. The general expression of sound 

pressure becomes 

 𝑝(𝑥,𝑦) = 𝐶 cos(𝑘𝑥𝑥) (𝑒
−𝑗𝑘𝑦𝑦 + 𝑒𝑗𝑘𝑦(𝑦−2𝐿)) (6.5) 

The expression for the particle velocity in the 𝑥 direction corresponding to Equation 

6.5 is 

 𝑢𝑥 =
𝑗

𝜌𝜔

𝜕𝑝

𝜕𝑥
= 𝐶

𝑗

𝜌𝜔
(−𝑘𝑥 sin(𝑘𝑥𝑥)) (𝑒

−𝑗𝑘𝑦𝑦 + 𝑒𝑗𝑘𝑦(𝑦−2𝐿)) (6.6) 

The local impedance at 𝑥 = 𝐷 is defined as 

 𝑍𝑚  =
𝑝

𝑢𝑥
= 𝑗𝜌𝜔

cos (𝑘𝑥𝐷)

𝑘𝑥sin (𝑘𝑥𝐷)
 (6.7) 

To determine the local impedance of the porous material in the rectangular duct, 

the transfer matrix of the porous material in the rectangular duct is obtained first, 
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(
𝑝1

𝑢1
) = [

cos (�̂�𝑑) 𝑖�̂��̂�sin(�̂�𝑑)
𝑖

�̂��̂�
sin (�̂�𝑑) cos (�̂�𝑑)

] (
𝑝2

𝑢2
) (6.8) 

where 𝑑  is the thickness of the material, �̂�  is the complex wavenumber of the 

material, �̂��̂� is the characteristic impedance of the material.  

Because of the rigid-wall boundary condition, 𝑢2 = 0, the local impedance is 

 𝑍𝑚 =
𝑝1
𝑢1
= −𝑖�̂��̂� cot(�̂�𝑑) (6.9) 

In this case , 𝑍𝑚 = −𝑖�̂��̂� cot(�̂�𝑇). 

Substituting the expression of 𝑍𝑚 into Equation 6.7 produces 

 𝑗𝜌𝜔
cos (𝑘𝑥𝐷)

𝑘𝑥sin (𝑘𝑥𝐷)
+ 𝑗�̂��̂� cot(�̂�𝑇) = 0 (6.10) 

Equation 6.10 is the characteristic equation and the wavenumber in 𝑥 direction  𝑘𝑥 

can be obtained by solving the nonlinear equation numerically.  

The wavenumber in 𝑦 direction,  𝑘𝑦, can be obtained from Equation 6.2 thereafter. 

Therefore, the local impedance at the opening of the side branch (𝑦 = 0) can be 

expressed as 

 𝑍 =
𝑝

𝑢𝑦
=
−𝑗𝜌𝜔cot(𝑘𝑦𝐿)

𝑘𝑦
 (6.11) 

With the local impedance at the opening of the side branch available, the transfer 

matrix of the lined resonator is 
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 [𝑇] = [
1 0

𝑆𝑏
𝑍⁄ 1

] (6.12) 

where 𝑆𝑏 is the cross section area of the opening of the side branch. 

The TL of the lined resonator can be calculated by  

 
𝑇𝐿 = 20 log10 (

1

2
|𝑇11 +

𝑇12
𝜌𝑐

+ 𝜌𝑐𝑇21 + 𝑇22|) (6.13) 

6.2.2 Impedance matrix synthesis  

Section 2 and 3 in Figure 6.2 both contain a series of lined resonators.  Between 

any two neighboring line resonators, there is also a short straight duct that 

connects the two lined resonators.  The four-pole transfer matrix of each lined 

resonator can be obtained by Eq. (6.12), and the four-pole transfer matrix of the 

connecting short straight duct can be easily obtained by the plane-wave theory.   

The resultant transfer matrices of the sections 2 and 3 in Figure 6.2 can be 

obtained by simply multiplying the corresponding four-pole transfer matrices 

together. Each of the two resultant four-pole transfer matrices is then converted to 

a corresponding impedance matrix by 

 [𝑍] =

[
 
 
 
𝑇11
𝑇21

𝑇12 −
𝑇11𝑇22
𝑇21

1

𝑇21
−
𝑇22
𝑇21 ]

 
 
 

 (6.14) 

where [𝑍] is impedance matrix, and 𝑇11 , 𝑇12 , 𝑇21  and 𝑇22  are four poles of the 

transfer matrix. 
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The BEM is then applied to produce the impedance matrices of sections 1 and 4 

in Figure 6.3.  The impedance matrix of each section can be expressed as 

 {

𝑝1
𝑝2
𝑝3
} = [

𝑍11
1 𝑍12

1 𝑍13
1

𝑍21
1 𝑍22

1 𝑍22
1

𝑍31
1 𝑍32

1 𝑍33
1

] {

𝑢1
𝑢2
𝑢3
} (6.15) 

 
{
𝑝2
𝑝4
} = [

𝑍11
2 𝑍12

2

𝑍21
2 𝑍22

2 ] {
𝑢2
𝑢4
} (6.16) 

 
{
𝑝3
𝑝5
} = [

𝑍11
3 𝑍12

3

𝑍21
3 𝑍22

3 ] {
𝑢3
𝑢5
} (6.17) 

 
{

𝑝4
𝑝5
𝑝6
} = [

𝑍11
4 𝑍12

4 𝑍13
4

𝑍21
4 𝑍22

4 𝑍22
4

𝑍31
4 𝑍32

4 𝑍33
4

] {

𝑢4
𝑢5
𝑢6
} (6.18) 

After some manipulations of Equations 6.15 to 6.18,  𝑢2, 𝑢3, 𝑢4 and 𝑢5 can be 

expressed in terms of 𝑢1 and 𝑢6: 

[
 
 
 
𝑍22
1 − 𝑍11

2

𝑍32
1

−𝑍21
2

0

  

𝑍23
1

𝑍33
1 − 𝑍11

3

0
−𝑍21

3

  

−𝑍12
2

0
𝑍11
4 − 𝑍22

2

𝑍21
4

  

0
−𝑍12

3

𝑍12
4

𝑍22
4 − 𝑍22

3 ]
 
 
 

{

𝑢2
𝑢3
𝑢4
𝑢5

} = [

−𝑍21
1

−𝑍31
1

0
0

  

0
0

−𝑍13
4

−𝑍23
4

] {
𝑢1
𝑢6
} (6.19) 

Matrix inverse is then performed on Equation 6.19 to produce 

 
{

𝑢2
𝑢3
𝑢4
𝑢5

} = [

𝐴
𝐶
𝐸
𝐺

  

𝐵
𝐷
𝐹
𝐻

] {
𝑢1
𝑢6
} (6.20) 

Sound pressure 𝑝1 and 𝑝6 can be expressed in terms of 𝑢1 and 𝑢6 by 
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{
𝑝1
𝑝6
} = [

𝑍11
1 + 𝑍12

1 𝐴 + 𝑍13
1 𝐶 𝑍12

1 𝐵 + 𝑍13
1 𝐷

𝑍31
4 𝐸 + 𝑍32

4 𝐺 𝑍33
4 + 𝑍31

4 𝐹 + 𝑍32
4 𝐻

] {
𝑢1
𝑢6
} (6.21) 

Similar to Equation 6.14, the resultant impedance matrix of the full model can be 

converted back to the corresponding transfer matrix by 

 [𝑇] =

[
 
 
 
𝑍11
𝑍21

𝑍12 −
𝑍11𝑍22
𝑍21

1

𝑍21
−
𝑍22
𝑍21 ]

 
 
 

 (6.22) 

Finally, the TL of the tuned dissipative silencer can be obtained by Equation 6.13. 

6.2.3 Validation of the semi-analytical solution 

The 2D analytical solution for the TL of an isolated lined resonator should be 

validated first before we can move on to a full tuned dissipative silencer. The first 

test case is shown in Figure 6.4 with 𝐿 = 10√2", 𝑇 = 𝐷 = 4", 𝑊 = 2.5" and the 

depth (for 3D BEM comparison purposes) of the resonator is 2". The porous 

material has a flow resistivity R=16000 rayls/m, and is covered by a 30% open 

perforated facing sheet. It can be seen in Figure 6.5 that the 2D analytical solution 

matches very well with the 3D BEM solution. The computed natural frequency of 

this lined resonator is around 165 Hz. The theoretical natural frequency of the 

resonator without any lining is 240 Hz. Therefore, the natural frequency is shifted 

to the lower frequency with porous material attached to one side, and the 2D 

analytical solution is able to catch the natural frequency accurately. 
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Figure 6.5 TL comparison between the BEM and analytical solution. 

The second test case is also a lined resonator but the side branch is inclined with 

45 degree as shown in Figure 6.6, in which 𝐿 = 10", 𝑇 = 𝐷 = 4", 𝑊 = 2.5" and the 

depth (for 3D BEM) of the resonator is 2". The porous material has a flow resistivity 

R=16000 rayls/m, and is covered by a 30% open perforated facing sheet. 
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Figure 6.6 A lined resonator inclined with 45 degree. 

Since the derivation of the analytical solution is based on a vertical side branch, in 

order to apply the analytical solution to an inclined side branch, the width of the air 

channel of the side branch 𝐷 has to be adjusted to 𝐷 ∗ sin𝜃, where 𝜃 is the incline 

angle of the side branch. Figure 6.7 shows the comparison between the BEM and 

analytical solution for the inclined test case. The two solutions compare fairly well 

with each other. 

Figure 6.8 compares the inclined lined resonator to the vertical lined resonator, 

and it can be seen that the natural frequency of the inclined lined resonator is 

shifted to a lower frequency, and the peak value is slightly lower than the vertical 

lined resonator. 
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Figure 6.7 TL comparison between the BEM and analytical solution. 

 

Figure 6.8 TL comparison between the vertical and 45 degree inclined side 

branch. 
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After the validation of a single lined resonator in the previous two test cases, the 

third test case is an inclined resonator array shown in Figure 6.9, which is used to 

validate the multiplication of the analytical transfer matrices. Each of five inclined 

resonator has the same dimensions as in the second test case. The 2D analytical 

solution compares very well with the 3D BEM solution, as shown in Figure 6.10. 

 

Figure 6.9 An inclined resonator array. 

 

Figure 6.10 TL comparison between the BEM and analytical solution. 
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In the first three test cases, we have validated the 2D first-mode analytical solution 

for either a single lined resonator or an array of lined resonators in series 

connection. Therefore, the transfer matrices of section 2 and section 3 shown in 

Figure 6.3 can be obtained by the proposed 2D analytical method with confidence.   

The two transfer matrices are then converted to the corresponding impedance 

matrices in order to connect to the inlet (section 1) and outlet (section 4). The BEM 

is used to obtain the impedance matrices of section 1 and section 4. By performing 

the impedance matrix synthesis, the resultant impedance matrix of the full model 

can be obtained. The TL of the dissipative silencer can be computed if the resultant 

impedance matrix is converted back to the four-pole transfer matrix. 

 

Figure 6.11 TL comparison among the FEM+AML, BEM and analytical solution. 

The dimensions of the tuned dissipative silencer test case are shown in Figure 6.2, 

and the porous material has a flow resistivity R=16000 rayls/m, and is covered by 

0

10

20

30

40

50

60

31.25 62.5 125 250 500 1000 2000 4000 8000

T
ra

n
s
m

is
s
io

n
 L

o
s
s
 (

d
B

)

Frequency (Hz)

FEM+AML

BEM

Semi-Analyticl Solution



133 
 

a 30% open perforated facing sheet.  Figure 6.11 compares three different TL 

solutions of the tuned dissipative silencer: BEM, FEM+AML (Virtual.Lab) and 

proposed semi-analytical solution. It should be noted that the FEM+AML solution 

requires more computer memory at high frequencies than the BEM because it 

does not have the substructuring capability.  Therefore, the FEM+AML analysis 

stops at 4000 Hz. Also, the 2D semi-analytical solution is only theoretically valid 

up to the plane-wave cut-off frequency.   Nonetheless, all three methods agree 

very well with each other below the plane-wave cutoff frequency, which is 225 Hz. 

Above the cutoff frequency, the FEM+AML solution generally matches the BEM 

solution up to 4000 Hz.  It is also found that the 2D semi-analytical method can still 

provide a decent approximate solution slightly above the theoretical cut-off 

frequency. 

6.3 BEM analysis of large tuned dissipative silencers 

In this section, the tuned dissipative silencer shown in Figure 6.2 is fully 

investigated to better understand the acoustic attenuation performance. 

6.3.1  Difference between locally reacting and bulk reacting modelling of 

sound absorbing material 

In BEM or FEM, the sound absorbing material can be modelled by two different 

approaches: locally reacting or bulk-reacting. In the locally reacting case, the 

normal surface impedance is derived as a boundary condition. In the bulk-reacting 

case, bulk properties (complex density and complex speed of sound) are used to 

describe the sound absorbing material (Crocker, 2007). The bulk-reacting 
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properties can be measured by the two-cavity method (Utsuno et al., 1990) or the 

two-source method (Tao et al., 2003). Therefore, locally reacting modelling does 

not consider the axial wave propagation occurred in the sound absorbing material, 

while the bulk reacting modelling method includes three-dimensional wave 

propagation (Bies et al., 1991). 

Figure 6.12 shows the TL comparison between the locally reacting and bulk 

reacting modelling of sound absorbing material for the tuned dissipative silencer 

test case. It can be seen that the two methods have some minor disagreements at 

low frequencies but they do generally match each other quite well above 1000 Hz. 

Since the locally reacting BEM model is easier to create and is slightly more 

computationally efficient, all remaining test cases in this chapter will be modeled 

by the locally reacting approach. 
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Figure 6.12 TL comparison between the locally reacting and bulk reacting 

modelling of sound absorbing material. 

6.3.2 Effect of the sound absorbing material 

Cavities inside of the tuned dissipative silencer are designed or tuned for optimum 

acoustical performance at selected target frequencies, and the sound absorbing 

material attached to one side of each cavity can increase the bandwidth of spectral 

attenuation around the target frequencies while providing the broadband 

attenuation at high frequencies. As shown in Figure 6.13, with the help of the sound 

absorbing material, TL is much higher between 200 to 2000 Hz. It should also be 

noted that the natural frequencies will shift lower with the sound absorbing material 

attached. Therefore, the 2D semi-analytical method may be used as a quick design 

tool to fine tune the peak frequencies. 
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Figure 6.13 TL comparison between with and without sound absorbing material. 

6.3.3 Effect of temperature change 

Tuned dissipative silencers can accommodate normal fluctuations in operating 

temperature because of the attached sound absorbing material. Figure 6.14 

compares the TL of the tuned dissipative silencer at 20oC to the TL at 500oC.  If 

the sound absorbing material is removed from the pine-tree silencer, the TL 

comparison between 20oC and 500oC is shown in Figure 6.15. 

Because the speed of sound increases when the temperature goes higher, the 

wavelength at each frequency also becomes longer. It can be found that the TL 

peaks in both Figure 6.14 and Figure 6.15 shift to higher frequencies. The tuned 

dissipative silencer is still able to suppress several target frequencies while 
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providing the broadband attenuation, but the reactive silencer might not attenuate 

noise at desired frequencies. 

 

Figure 6.14 TL comparison between 20oC and 500oC. 

 

Figure 6.15 TL comparison between 20oC and 500oC. 
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6.3.4 Effect of non-symmetric design 

The tuned dissipative silencer shown in Figure 6.2 has three different cavity sizes. 

In order to find the benefits of using multiple sizes of cavities in a silencer design, 

a symmetric tuned dissipative silencer as shown in Figure 6.16, in which all cavities 

have the same size, is selected to compare to the original non-symmetric design. 

The TL comparison is shown in Figure 6.17. As expected, the symmetric design at 

low frequencies has only one peak frequency at around 210 Hz, while the non-

symmetric design does provide the attenuation at two more target frequencies at 

low frequencies. However, the spectrum of attenuation near the target frequency 

for the symmetric design is wider and the amplitude of attenuation is higher. Above 

500 Hz, the performance of both designs is about the same. 

 

Figure 6.16 A symmetric tuned dissipative silencer (Unit: m). 
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Figure 6.17 TL comparison between non-symmetric and symmetric design. 

6.4 Summary 

Tuned dissipative silencers are commonly used in the power generation industry 

to attenuate the broadband noise while suppressing tonal noise. In this chapter, a 

two dimensional first-mode semi-analytical method is proposed to determine the 

TL of the dissipative silencer. Given the large size and complex configuration, it is 

time consuming to model and calculate the TL of the tuned dissipative silencer 

using 3D FEM or BEM. Therefore, the proposed semi-analytical method can play 

an important role in the initial design stage by providing a quick assessment of the 

TL below the plane-wave cutoff frequency. The proposed semi-analytical method 

matches very well with the BEM and the FEM/AML below the cutoff, and can still 

provide a decent approximate solution slightly above the cutoff. 
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To better understand the performance of the tuned dissipative silencer, case study 

is performed by using the BEM. It is found that the locally reacting modeling of the 

sound absorbing material is more efficient and it can also provide a similar result 

compared to the more complex bulk-reacting modelling method. Thanks to the 

sound absorbing material, the tuned dissipative silencer is able to increase the 

bandwidth of the attenuation spectrum around the target frequencies, and thus it 

can accommodate variations in the operating temperature. If there are multiple 

tonal components in the noise spectrum, several different sizes of cavities can be 

included in the design to achieve multiple peak frequencies.  

 

 

 

 

 

 

 

 

 

 



141 
 

Chapter 7 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

RESERACH 

The impedance-to-scattering matrix method is developed for large silencer 

analysis in this dissertation, which includes a point collocation-based approach and 

an integral-based approach. Large bar silencers and tuned dissipative silencers 

are investigated by the BEM in conjunction with the proposed impedance-to-

scattering matrix method, and a semi-analytical solution is also developed to 

quickly assess the performance of tuned dissipative silencers. 

7.1 Point collocation-based impedance-to-scattering matrix method 

Chapter 2 and Chapter 3 derive the scattering matrix from the BEM impedance 

matrix for large single-inlet/single-outlet and multi-inlet/multi-outlet silencers, 

respectively, based on the point collocation approach. 

For single-inlet/single-outlet silencers, the derivations are presented for three 

commonly used inlet/outlet configurations: axisymmetric, non-axisymmetric 

circular and rectangular. TL above the plane-wave cutoff frequency is defined by 

assuming a single unit incident plane wave at the inlet and an anechoic termination 

at the outlet. The proposed method is validated by comparing to available 

analytical solutions or experimental data.  It is also found that adding more 

evanescent modes barely changes the TL curve.  

For large multi-inlet/multi-outlet silencers, it is observed that the scattering matrix 

of a one-inlet/two-outlet silencer is the same as that of the flipped two-inlet/one-

outlet silencer, and the only thing that needs to change is the input from (1,0,0..), 



142 
 

(1,0,00..) and (0,0,0,…) to (0,0,..), (0,0,..) and (1,0,0..). The proposed method is 

first compared to the lumped impedance matrix method for small mufflers below 

the plane-wave cutoff. For large silencers, the FEM/AML method is used to 

validate the proposed method above the plane-wave cutoff.   

Recommendations for future work in this area include: 

1. Experimental verifications are recommended to further validate the 

proposed method for large silencers. Since IL is very close to TL for highly 

absorptive silencers and is easier to measure, comparing the TL from the 

BEM to the measured IL can further validate the proposed method. 

2. More test cases are needed to check if the TL for a two-inlet/one-outlet 

silencer is identical to the TL of the flipped one-inlet/two-outlet counterpart 

above the plane-wave cutoff. 

7.2 Integral-based impedance-to-scattering matrix method 

Chapter 4 demonstrates that the BEM impedance matrix can also be converted to 

the scattering matrix by using the reciprocal identity integral. Each reciprocal 

identity integral equation couples a BEM solution with a random boundary 

condition set at the inlet and outlet to the analytical modal expansion. The 

motivation to develop this integral-based method is that the collocation-based 

method always has the uncertainties associated with the “optimal” collocation 

locations. The integral-based method does not need a collocation point and 

theoretically can be more stable and accurate.  



143 
 

A few test cases are used to compare the collocation-based method to the integral-

based method. It is found that the collocation-based method has the same 

accuracy and stability as the integral-based method. However, the integral-based 

method is more computationally intensive due to the need to carry out additional 

surface integration. Nonetheless, the integral-based method can always serve as 

a benchmark solution to validate the collocation-based method. 

7.3 Bar silencers 

Chapter 5 extends the impedance-to-scattering matrix method to large silencers 

with irregular inlet and outlet configurations.  The 2-D FEM is used to extract the 

cross-sectional modes of the inlet and outlet first, and then the numerical modes 

are used to expand sound pressure and particle velocity in the impedance-to-

scattering matrix method. The proposed method is validated by available 

analytical/numerical solutions and measurement data. A case study on a triangular 

unit isolated from a shifted lattice arrangement of round bars is also performed.  

The next part of Chapter 5 introduces the Redheffer’s star product for combining 

the scattering matrices of multiple subsystems in series connection. The scattering 

matrix is a preferred output format than the BEM impedance matrix because it is a 

system property and is mesh-independent. 

The final part of Chapter 5 develops three methods for the determination of TL in 

one-third octave and octave bands. All three methods are valid for the TL 

conversion below the plane-wave cutoff frequency at the inlet and outlet, and the 

direct conversion method is also valid above the plane-wave cutoff frequency. 
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Several improvements can be done in the future: 

1. More irregular inlet and outlet configurations can be tested. 

2. Optimization on different bar arrangements can be performed. 

7.4 Tuned dissipative silencers 

Chapter 6 presents a two-dimensional first-mode semi-analytical solution to 

determine the TL of tuned dissipative silencers. The semi-analytical solution 

agrees very well with the 3D BEM solution and the FEM/AML solution below the 

plane-wave cutoff frequency. The 2D semi-analytical solution can be a useful 

analysis tool for tuned dissipative silencers in their initial design stage, and it can 

also serve as a validation tool for the 3D BEM at low frequencies.  

A case study on the tuned dissipative silencers is performed using the BEM. It is 

found that the tuned dissipative silencers can provide broadband noise attenuation 

while suppressing the tonal noise at low frequencies. With the help of the sound 

absorbing material, the tuned dissipative silencers can accommodate variations of 

the operating temperature.   

At this point, the semi-analytical solution still requires the BEM to provide two 

impedance matrices for the inlet and outlet transition ducts.  In the future, these 

two impedance matrices may be approximated by an analytical solution. 
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APPENDIX   NUMERICAL DETERMINATION OF TRANSFER IMPEDANCE 

With reference to Figure A.1, a small perforate sample is placed inside a “virtual 

impedance tube” with an anechoic termination.  The wall thickness t and the hole 

spacing d of the sample are fully modeled in the BEM.  A true anechoic termination 

is difficult to achieve in the lab, but it is very easy to apply in the numerical model.  

A unit-amplitude velocity is prescribed at the inlet as the source to drive the virtual 

measurement system.        

 

Figure A.1 A perforate sample in a “virtual impedance tube”. 

According to the plane-wave theory, the sound pressure 𝑝 and the particle velocity 

𝑣 in the 𝑥 direction (positive to the right) are 

 𝑝 = 𝐴𝑒−𝑗𝑘𝑥 + 𝐵𝑒𝑗𝑘𝑥 (A.1) 

 𝑣 = (1/𝜌𝑐)(𝐴𝑒−𝑗𝑘𝑥 − 𝐵𝑒𝑗𝑘𝑥) (A.2) 

where A and B are the complex amplitudes of the incident and reflected waves, 

respectively, k is the wavenumber, 𝜌 is the mean density, c is the speed of sound, 

and 𝑗 = √−1.  On the front face of the sample, the acoustical impedance is  
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 𝑍1 =
𝑝

𝑢
= 𝜌𝑐(𝐴 + 𝐵)/(𝐴 − 𝐵) (A.3) 

if 𝑥=0 is set there.  On the back side of the sample, the acoustical impedance is 

simply the characteristic impedance due to the anechoic termination.  In other 

words, 

 𝑍2 = 𝜌𝑐 (A.4) 

Therefore, the transfer impedance Ztr of the perforate sample is 

 𝑍𝑡𝑟 = 𝑍1 − 𝑍2 = 𝜌𝑐((𝐴 + 𝐵)/(𝐴 − 𝐵) − 1) (A.5) 

The two complex amplitudes, A and B, can be determined by placing two field 

points in the BEM model.  Let 𝑝1 and 𝑝2 be the sound pressures of the two field 

points shown in Figure A.1.  Use Equation A.1 twice to get    

 𝑝1 = 𝐴𝑒
−𝑗𝑘𝑥1 + 𝐵𝑒𝑗𝑘𝑥1 (A.6) 

 𝑝2 = 𝐴𝑒
−𝑗𝑘𝑥2 + 𝐵𝑒𝑗𝑘𝑥2 (A.7) 

The matrix form of two equations above is 

 
{
𝑝1
𝑝2
} = [𝑒

−𝑗𝑘𝑥1 𝑒𝑗𝑘𝑥1

𝑒−𝑗𝑘𝑥2 𝑒𝑗𝑘𝑥2
] {
𝐴
𝐵
} (A.8) 

After that, the two unknowns A and B can be solved by a simple matrix inverse:  

 
{
𝐴
𝐵
} = [𝑒

−𝑗𝑘𝑥1 𝑒𝑗𝑘𝑥1

𝑒−𝑗𝑘𝑥2 𝑒𝑗𝑘𝑥2
]
−1

{
𝑝1
𝑝2
} (A.9) 
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With A and B solved, the transfer impedance Ztr of the perforate sample is 

calculated by Equation A.5. This transfer impedance can then be used later in the 

muffler BEM model that uses the same perforate pattern. 

The first test case is a straight-through perforated tube muffler as shown in Figure 

A.2.   The details of the perforated tube are given below.  The hole diameter (𝑑ℎ) 

is 4.98 mm, the wall thickness ( 𝑡 ) is 0.9 mm, the distances between two 

neighboring holes are 𝑏 =15.13 mm and ℎ =15.54 mm, respectively, and the 

porosity (𝜎) is 8.4%.  The total number of holes is 170. 

 

Figure A.2 Straight-through perforated tube muffler test case. 

 (𝐿=257.2 mm, 𝑑=49 mm, 𝐷 =164.4 mm).  

 

Figure A.3 Definition of b and h. 



148 
 

In addition to the transfer impedance to model the perforate, we also want to see 

if a detailed 3D modeling can produce a decent result.  After all, our proposed 

method is based on the same detailed 3D modeling concept, only on a much 

smaller scale.  There are two different kinds of detailed 3D modeling techniques in 

BEM.  The first technique is to model the wall thickness of the perforated tube, 

which requires two layers of meshes with one on each side of the thin tube (0.9 

mm thickness), and a detailed hole modeling with a side mesh along the depth; 

the second technique is a reduced version that ignores the wall thickness of the 

tube, but still models every circular hole in a 2D fashion.  Figure A.4 and A.5 show 

the BEM mesh of the detailed 3D modeling with wall thickness.  Due to the 

rotational symmetry nature of this muffler, only a small sector needs to be modeled.  

The reduced zero-thickness BEM mesh is similar to the one shown in Figure A.4 

except that there is only one layer of mesh placed on the mid surface of the 

perforated tube.     

 

Figure A.4 BEM mesh for the detailed 3D modeling of the muffler. 
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Figure A.5 Side view of the BEM mesh that shows the wall thickness. 

To numerically “measure” the transfer impedance, we use the virtual impedance 

tube setup as demonstrated in Figure A.1.  A 75.6mm X 77mm rectangular 

perforated plate (0.9 mm thickness) is placed in the middle of an 800.9 mm long 

duct with the same rectangular cross section.  The perforate sample has the same 

porosity and the same perforate pattern as the real perforated tube, except that it 

is a flat sample without any curvature.  A BEM mesh that models the 800.9 mm 

long duct along with the perforated sample is used to calculate the sound 

pressures at the two field points shown in Figure A.1.  The exact locations of the 

two field points are not important as long as they are away from the sample to 

avoid any near-field 3D effect.  The (dimensioned) transfer impedance is then 

calculated by Equation A.5 and sent to the muffler BEM model to determine the TL 

of the muffler.   As one can see, the entire procedure requires two BEM models, 

one for the measurement setup, and the other for the muffler.  Fortunately, the 
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measurement setup is a small-scale model, and its transfer impedance can be 

reused in other muffler designs as long as they use the same perforate pattern. 

Figure A.6 compares the TL results from the proposed method, the detailed 3D 

model with wall thickness, and the detailed 3D modeling without wall thickness, to 

the experimental data.   As we can see from the figure, both the proposed method 

and the detailed 3D modeling with wall thickness match the experimental result 

very well.  The zero-thickness detailed 3D modeling (using only one layer of “T’ 

elements on the tube) falls short at high frequencies.  

 

Figure A.6 Performance of the proposed method in test case 1 (circular holes). 

In the second test case, we replace each circular hole on the perforated tube by 

an 8mm X 2.5mm rectangular slot, as shown in Figure A.7.  The 8 mm length is 

arranged along the circumferential direction and the 2.5 mm width is along the axial 
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direction.  The resulting porosity (𝜎) is 8.6%.  The rest of the dimensions, including 

wall thickness, b, and h, remain the same as in the first test case.    

 

Figure A.7 Perforated tube with rectangular slots. 

Figure A.8 shows the comparison of the proposed method along with the zero-

thickness detailed 3D modeling to the benchmark solution (detailed 3D modeling 

with wall thickness).  As expected, the proposed method matches the benchmark 

solution very well because it is basically based on the same 3D modeling concept, 

but implemented in an indirect, two-step procedure. The zero-thickness detailed 

3D modeling falls off at high frequencies, which is the same as the first test case. 
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Figure A.8 Performance of the proposed method in test case 2 (rectangular 

slots). 

A simple numerical determination of the transfer impedance of perforated tube is 

developed to deal with the situation when existing empirical formulas cannot be 

used with full confidence. The resulting transfer impedance data can also be 

reused in other designs as long as they use the same perforate pattern. The 

proposed indirect, two-step procedure can easily match the full-blown 3D modeling 

of the whole muffler. Therefore, it is recommended to model the perforated tube 

by determined transfer impedance instead of a 3D detailed modeling on the whole 

muffler, using either the BEM or the FEM. 
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