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ABSTRACT OF THESIS 

 

 

TORQUE RESPONSE OF THIN-FILM FERROMAGNETIC PRISMS 
IN UNIFORM MAGNETIC FIELDS AT MACRO AND MICRO SCALES  

 

 The non-contact nature of magnetic actuation makes it useful in a variety of microscale 
applications, from microfluidics and lab-on-a-chip devices to classical MEMS or even 
microrobotics. Ferromagnetic materials like nickel are particularly attractive, because they can be 
easily deposited and patterned using traditional lithography-based microscale fabrication 
methods. However, the response of ferromagnetic materials in a magnetic field can be difficult to 
predict. When placed in a magnetic field, high magnetization is induced in these ferromagnetic 
materials, which in turn generates force and/or torque on the ferromagnetic bodies. The 
magnitude and direction of these forces are highly dependent on the type of material used, the 
volume and aspect ratio of the ferromagnetic material, as well as the spatial distribution and 
magnitude of the magnetic field. It is important to understand these complex interactions in order 
to optimize force and torque generated, particularly given common limitations found in 
microfabrication, where it is often challenging to deposit large volumes of ferromagnetic material 
using conventional microdeposition methods, and power availability is also often limited, which 
in turn limits the ability to generate strong electromagnetic fields for actuation.  

This work represents a theoretical analysis and experimental validation in macro scale to 
determine best practices when designing ferromagnetic actuators for microscale applications. 
Specifically, the use of nickel thin film prisms actuated in spatially uniform electromagnetic fields. 
These constraints were chosen because uniform magnetic fields can be readily generated with a 
simple and inexpensive Helmholtz coil design, and the uniformity makes actuation force 
independent of location, minimizing the need for spatial precision in devices. Nickel can also be 
easily deposited using evaporation or sputtering, generally in forms of thin-films. 
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Chapter 1 Introduction 

1.1 Motivation 

The non-contact nature of magnetic actuation makes it useful in a variety of microscale 

applications, from microfluidics and lab-on-a-chip devices to classical MEMS or even 

microrobotics. Ferromagnetic materials like nickel are particularly attractive, because they can be 

easily deposited and patterned using traditional lithography-based microscale fabrication 

methods. However, the response of ferromagnetic materials in a magnetic field can be difficult to 

predict. When placed in a magnetic field, high magnetization is induced in these ferromagnetic 

materials, which in turn generates force and/or torque on the ferromagnetic bodies. The 

magnitude and direction of these forces are highly dependent on the type of material used, the 

volume and aspect ratio of the ferromagnetic material, as well as the spatial distribution and 

magnitude of the magnetic field. It is important to understand these complex interactions in order 

to optimize force and torque generated, particularly given common limitations found in 

microfabrication, where it is often challenging to deposit large volumes of ferromagnetic material 

using conventional microdeposition methods, and power availability is also often limited, which 

in turn limits the ability to generate strong electromagnetic fields for actuation.  

This work represents a theoretical analysis and experimental validation in macro scale to 

determine best practices when designing ferromagnetic actuators for microscale applications. 

Specifically, the use of nickel thin film prisms actuated in spatially uniform electromagnetic fields. 

These constraints were chosen because uniform magnetic fields can be readily generated with a 

simple and inexpensive Helmholtz coil design, and the uniformity makes actuation force 

independent of location, minimizing the need for spatial precision in devices. Nickel can also be 

easily deposited using evaporation or sputtering, generally in forms of thin-films.  
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In the theoretical analysis, a uniform magnetization approximation was used to derive induced 

magnetic torque on low aspect ratio ferromagnetic prisms. This was used to analytically 

determine the optimum ferromagnetic thin-film aspect ratio (𝑅) and orientation (𝜃) to maximize 

induced magnetic torque. In order to experimentally validate these findings, cantilever beams 

with nickel tip masses were fabricated using wire EDM and placed in a uniform electromagnetic 

field so that the beam deflection could be used to indirectly measure the induced torque on the 

nickel. In both the analytical and experimental models, the maximum torque and maximum beam 

deflection was achieved at an aspect ratio of around 1:3 (thickness:width), but there was still a 

significant torque achieved even at much lower aspect ratio values. This is significant because for 

most microfabrication methods it is difficult and time consuming to make thick ferromagnetic 

structures.  The results of these analyses can be used for rational, optimized design of microscale 

ferromagnetic actuators. 

To further investigate the validity of the formulation for induced torque on thin-film 

ferromagnetic materials in micro scale, microscale cantilever beams were fabricated and tested 

in a uniform magnetic field. The microscale beams were made of a lithographically-patterned 

photopolymer with a thin-film of nickel deposited at the tip using sputtering and electroless nickel 

plating (ENP). When placed in a uniform magnetic field, the microscale beam deflection was 

observed by microscope as an indirect measurement of the induced torque on the thin film and 

was compared to the analytical results.  

1.2 Thesis Organization 

This thesis consists of five chapters with the following content: 

Chapter one includes a brief introduction to the thesis by providing motivation and rational for 

the presented research. 
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Chapter two describes a conceptual and theoretical analysis of the physics of ferromagnetic 

materials response in a magnetic field. First, different materials are categorized based on their 

magnetic properties and their behavior in the magnetic fields are discussed. Then, more details 

on the advantages of using ferromagnetic materials in magnetic fields are presented. The induced 

magnetization in the ferromagnetic objects is explored both from a physical and mathematical 

stand point and the corresponding induced torque and force are discussed. Then, for a specific 

case of a ferromagnetic prism, the magnetization vector is calculated as a function of the object’s 

aspect ratio.  As a result, the maximum torque is achieved for the optimum values of the aspect 

ratio, object orientation angle in the magnetic field and the magnetic field strength. 

Chapter three presents an experimental method to measure the induced torque on a 

ferromagnetic prism. Euler-Bernoulli beam theory is used to calculate the deflection of a 

paramagnetic macroscale cantilever beam with a ferromagnetic prism affixed to the tip in a 

spatially uniform magnetic field. Also, macro scale beams with different aspect ratio 

ferromagnetic prism were created to experimentally validate the predicted beam deflection 

values.  

Chapter four involves the proof of concept for fabrication of ferromagnetic thin films for non-

contact actuation. The fabrication process of microscale beams with thin film nickel fixed at the 

tip using electroless nickel plating (ENP) is described. Also, the beam deflection of the fabricated 

microscale beams is measured in a uniform magnetic field and is compared to the analytical 

prediction using the beam bending theory. 

Chapter five provides a summary of the performed work and lays out future work for this project. 
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Chapter 2 Theory 

2.1 Behavior of Materials in an Externally Applied Magnetic Field 

All materials consist of atoms as their building blocks and each atom is made of a nucleus and a 

group of orbiting electrons. The electrodynamics dictates that the rotation of each negatively 

charged electron generates a magnetic dipole moment. Therefore, the network of atoms forms 

many micro domains within the material, with each having a random magnetic dipole moment. 

In most materials, the dipole moments of these micro domains neutralize each other and it results 

in no net magnetic field. On the other hand, in a permanent magnetic material, most of the micro 

domains’ magnetic dipole moments are fixed in a certain direction, generating a magnetic field 

inside and around the object. 

Materials can be categorized in three groups based on their magnetic properties: 1) diamagnetic, 

2) paramagnetic and 3) ferromagnetic materials. In diamagnetic materials such as quartz and 

calcite, atoms do not have a net magnetic moment and therefore, there is a non-cooperative 

interaction between orbiting electrons when the body is placed in a magnetic field. In 

paramagnetic bodies, atoms have net magnetic moments that are partially and individually 

affected by an external magnetic field and they are reversed to their original alignment when the 

field is removed. In contrast with the first two groups, ferromagnetic materials have large micro 

domains with great parallel magnetic moments. These micro domains align spontaneously and to 

a great extent in the presence of an external field, and if the applied field is removed, the original 

orientation is restored. However, if the external magnetic field is great enough, the induced 

alignment remains even after the magnetic field is removed. The unique magnetic properties of 

ferromagnetic materials make it possible to generate force and/or torque on ferromagnetic 
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materials by applying an external magnetic field – a property that is useful in a variety of magnetic 

actuators and sensors. 

If an object is placed in a magnetic field, �⃗⃗� , the dipole moments of the micro domains within the 

body tend to align with the external magnetic field. The induced alignment of the dipole moments 

creates a net magnetic moment in the material, �⃗⃗� . The induced magnetic moment 

(magnetization) is a vector quantity and is a measure of the object’s tendency to align with the 

applied external field. When placed in a magnetic field, diamagnetic and paramagnetic materials 

exhibit zero or very low magnetization, whereas for ferromagnetic materials such as iron, cobalt 

and nickel, the induced magnetization can be very high. The interaction of �⃗⃗�  and �⃗⃗�  have the 

potential to generate forces and/or torques on the ferromagnetic object.  

If the magnitude of the applied magnetic field is low enough, the magnetization vector for a 

ferromagnetic object will return to zero after the field is removed, as shown by the red curve in 

Figure 2.1. This corresponds to the magnetic micro domains within the material resuming random 

orientation with respect to on another. However, if the magnitude of the applied magnetic field 

exceeds a specific value, H𝑠, the magnetization vector of the object becomes saturated and 

pinned in the direction of the applied field. Increasing the external field beyond this point does 

not change the magnitude of the magnetization further; instead, it remains at the magnitude 

achieved at the saturation point, referred to as saturation magnetization, M𝑠. If the external field 

is removed, the magnetization cannot completely recover its original alignment and a residual 

magnetization, M𝑟, remains in the body, as shown in Figure 2.1. Note that neither the direction 

nor the magnitude of the residual magnetization vector are the same as the magnetization vector 

at saturation. 
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If the direction of the applied magnetic field is reversed on a ferromagnetic object with a residual 

magnetization, the material starts to demagnetize and lose the residual magnetization. If the 

reverse applied field is increased further, the ferromagnetic object saturates in the direction of 

the reversed field. Cyclic magnetization and demagnetization of the ferromagnetic material is 

referred to as the magnetic hysteresis and is shown by the green curve in Figure 2.1. 

 

Figure 2.1 Induced magnetization in the ferromagnetic object vs the applied external field. Red 
curve shows the undersaturated region. Green curve shows the hysteresis loop of the 

ferromagnetic object. 

When the ferromagnetic object is in the undersaturated region, the magnetization vector can be 

easily manipulated repeatedly by changing the magnitude of the applied field: removing the 

applied field causes the magnetization to return to zero. However, once a ferromagnetic object 

reaches saturation, the residual magnetization requires reversing the applied magnetic field to 

clear the “magnetic memory” of the object and return the magnetization to zero. Any nonzero 

residual magnetization within the object will cause the object to generate its own local magnetic 

field, which in turn can interfere with any new applied external magnetic field or the behavior of 
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other ferromagnetic objects within in the vicinity of the object. In applications that require control 

or actuation of multiple ferromagnetic objects, these residual fields can become very problematic. 

Therefore, the scope of this work will be focused on the undersaturation region where the 

magnetization of a ferromagnetic body can be reset by simply removing the applied field. 

2.2 Ferromagnetic Materials in Undersaturated Magnetic Fields 

When a ferromagnetic object is placed in a spatially non-uniform magnetic field, magnetic force 

is generated on the object. If the magnetized ferromagnetic object is considered as a magnetic 

dipole, the interaction of the magnetization vector with the gradient of the external field 

generates a force, 𝐹 , on the object: 

𝐹 = 𝜇0𝑣(�⃗⃗� . 𝛻)�⃗⃗�  (6.1) 

Here 𝜇0 is the vacuum permeability (𝜇0 = 4𝜋 × 10−7𝐻/𝑚) and 𝑣 is the ferromagnetic material 

volume.  

The field generated by most magnets such as bar, horseshoe, or industrial electromagnets is 

highly nonuniform (Figure 2.2); the spatial gradients in these fields can be used to generate large 

amounts of force. It is also possible to generate spatially uniform fields, such as those associated 

with Helmholtz coil electromagnets (Figure 2.2) or the inside of a solenoid. Uniform magnetic 

fields are advantageous in many magnetic control and actuation applications, since the direction 

of the field can be easily manipulated and any forces or torques generated on the object are not 

location-dependent. However, equation (6.1) shows that if there is no spatial gradient in the 

applied magnetic field, the force generated on a ferromagnetic object placed within it is zero. 
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Figure 2.2 Schematic field lines in non-uniform magnetic fields (horseshoe and bar magnets) vs 
uniform magnetic fields (Helmholtz coil electromagnets). 

On the other hand, magnetic torque, �⃗� , is induced on a ferromagnetic object even in spatially-

uniform magnetic fields. The magnetic torque is generated by the induced magnetization in the 

ferromagnetic body and is a function of the magnetization vector (�⃗⃗� ) and the applied magnetic 

field vector (�⃗⃗� ).  

�⃗� = 𝜇0𝑣�⃗⃗� × �⃗⃗�  (6.2) 

Thus, in the presence of a known magnetic field, if the volume of the ferromagnetic object and 

the magnetization vector of the ferromagnetic body are known, it is possible to determine the 

value of the induced torque. Therefore, it is essential to know how to calculate the magnetization 

vector for a given object. 

2.3 Determining the Magnetization Vector for a Ferromagnetic Object 

The induced magnetic moment on a ferromagnetic object can be thought of a magnetic field 

inside the body, 𝐻𝑖
⃗⃗⃗⃗ , which is in the same direction as the magnetization. The internal magnetic 

field and the magnetization vectors are related by the ferromagnetic material’s susceptibility, 𝑋, 

which is a measure of the material’s potential to be magnetized. 
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�⃗⃗� = 𝑋𝐻𝑖
⃗⃗⃗⃗  (6.3) 

Note that, below the saturation point, the internal magnetic field does not align perfectly with 

the external magnetic field. Therefore, it is assumed that a conceptual demagnetization field, 𝐻𝑑
⃗⃗⃗⃗  ⃗, 

appears in the ferromagnetic body that prevents the internal field from completely matching the 

external field. Mathematically, this relationship can be shown as 

𝐻𝑖
⃗⃗⃗⃗ = �⃗⃗� + 𝐻𝑑

⃗⃗⃗⃗  ⃗ (6.4) 

Figure 2.3 schematically illustrates the relation between these magnetic fields. 

 
 

(a) (b) 

Figure 2.3 (a) schematic view of internal magnetic field, 𝐻𝑖
⃗⃗⃗⃗ , vs applied external field, �⃗⃗�  , (b) the 

vector relationship between the internal, external and demagnetization vectors. 

If the demagnetization field is known, then the magnetization vector can be determined as a 

function of the external magnetic field, which is typically a known input parameter. To do so, a 

useful parameter is the symmetric demagnetization tensor, �̿�, which represents the ratio of the 

strength of the material demagnetization field to the material magnetization. 

𝐻𝑑
⃗⃗⃗⃗  ⃗ = −�̿��⃗⃗�  (6.5) 

By equating equations (6.3), (6.4), and (6.5), the magnetization can be written as 

�⃗⃗� = 𝑋(�⃗⃗� − �̿��⃗⃗� ) (6.6) 

which can be solved for �⃗⃗� , 
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�⃗⃗� = (
1

𝑋
𝐼 ̿ + �̿�)

−1

�⃗⃗� = �̿�𝑎�⃗⃗�  (6.7) 

 

Where 𝐼  ̿ is the identity tensor and �̿�𝑎 is the apparent susceptibility tensor, which indicates the 

relationship between the external magnetic field and the magnetization within the ferromagnetic 

body. Equation (6.7) shows that the apparent susceptibility tensor not only determines the 

relative angle between the magnetic field and the magnetization vector, but it also affects the 

magnitude of the induced magnetization. Therefore, the apparent susceptibility tensor indirectly 

influences the cross product in equation (6.7) which determines the induced torque on the 

ferromagnetic body. Thus, it is important to understand how the apparent susceptibility tensor is 

computed, but for arbitrary geometries this can be prohibitively complicated. 

The demagnetization tensor is symmetric by definition, and for a uniformly magnetized object the 

demagnetization tensor is constant throughout the body. In addition, Abbott, et al [1] showed 

that if the body coordinate frame is chosen to align with the principle axes of the ferromagnetic 

body, the resulting demagnetization tensor is always diagonal. So, for a uniformly magnetized 

ferromagnetic object with the Cartesian coordinate frame aligned with its main axes, the 

demagnetization tensor simplifies to 

�̿� = [

𝑛𝑥 0 0
0 𝑛𝑦 0

0 0 𝑛𝑧

] (6.8) 

where 𝑛𝑥, 𝑛𝑦 and 𝑛𝑧 are the demagnetization factors in the 𝑥, 𝑦 and 𝑧 directions, respectively. 

So, for a uniformly magnetized ferromagnetic object, the susceptibility tensor becomes: 
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�̿�𝑎 =

[
 
 
 
 
 
 

𝑋

1 + 𝑛𝑥𝑋
0 0

0
𝑋

1 + 𝑛𝑦𝑋
0

0 0
𝑋

1 + 𝑛𝑧𝑋]
 
 
 
 
 
 

 (6.9) 

Among many different available shapes, ferromagnetic prisms (Figure 2.4a) are particularly 

interesting because they can be easily fabricated at both the macro and micro scales. And if the 

prism’s susceptibility is low [2] and the dimensions are small relative to the applied magnetic field 

lines [3], the uniform magnetization assumption required for using equation (6.9) is valid for these 

geometries.  

 

 

 

(a) (b) 

Figure 2.4 (a) prism vs (b) square cuboid. 

Bellegia [4] was able to show that the demagnetization factors for a prism in a coordinate system 

aligned with major axes can be explicitly written as a function of the geometrical parameters of 

the body. For example, for the prism demagnetization factor in the 𝑧 direction is 
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𝑛𝑧 = 𝐺(𝜆𝑥 , 𝜆𝑦) =
1

3𝜋𝜆𝑥𝜆𝑦
{−2 + 𝜆𝑦

3 + 𝜆𝑥
3 + (2 − 𝜆𝑦

2)�̅�𝑦 + (2 − 𝜆𝑥
2)�̅�𝑥

− �̅�𝑥𝑦
3
+ (−2 + 𝜆𝑦

2 + 𝜆𝑥
2)𝛬 − 3𝜆𝑦 𝑙𝑛(𝜆𝑦 + �̅�𝑦)

− 3𝜆𝑥 𝑙𝑛(𝜆𝑥 + �̅�𝑥) + 6𝜆𝑥𝜆𝑦 𝑡𝑎𝑛−1 (
𝜆𝑥𝜆𝑦

𝛬
)

− 3𝜆𝑥𝜆𝑦 𝑙𝑛(𝜆𝑥
𝜆𝑥𝜆𝑦

𝜆𝑦) + 3𝜆𝑦(𝜆𝑥
2 − 1) 𝑙𝑛 (

�̅�𝑥

𝜆𝑦 + 𝛬
)

+ 3𝜆𝑥(𝜆𝑦
2 − 1) 𝑙𝑛(

�̅�𝑦

𝜆𝑥 + 𝛬
) + 3𝜆𝑦𝜆𝑥

2 𝑙𝑛(𝜆𝑦 + �̅�𝑥𝑦)

+ 3𝜆𝑦
2𝜆𝑥 𝑙𝑛(𝜆𝑥 + �̅�𝑥𝑦)} 

(6.10) 

 

where 𝜆𝑥 ≡ 𝐿𝑥 𝐿𝑧⁄  and 𝜆𝑦 ≡ 𝐿𝑦 𝐿𝑧⁄  with 𝐿𝑥, 𝐿𝑦 and 𝐿𝑧 are the lateral length of the prism in 𝑥, 𝑦 

and 𝑧 direction respectively. Also, �̅�𝑦 ≡ √1 + 𝜆𝑦
2, �̅�𝑥 ≡ √1 + 𝜆𝑥

2, �̅�𝑥𝑦 ≡ √𝜆𝑥
2 + 𝜆𝑦

2 and  

Λ ≡ √1 + 𝜆𝑥
2 + 𝜆𝑦

2. Using the same methodology, 𝑛y and 𝑛𝑥 can be determined [4, 5], resulting 

in  

𝑛𝑧 = 𝐺(𝜆𝑥, 𝜆𝑦) (6.11) 

𝑛𝑦 = 𝐺 (
𝜆𝑥

𝜆𝑦
,
1

𝜆𝑦
) 

(6.12) 

𝑛𝑥 = 𝐺 (
1

𝜆𝑥
,
𝜆𝑦

𝜆𝑥
) (6.13) 

 

In addition, [6] showed that the trace of the demagnetization tensor is unity. As a result, the 

demagnetization factors are constrained by  

𝑛x + 𝑛𝑦 + 𝑛z = 1 (6.14) 

Therefore, any set of three of the previous four equations can be used to determine the three 

demagnetization factors.  
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In the special case of a square cuboid, where at least two dimensions of the prism are equal 

(Figure 2.4b), these equations can be further simplified. For 𝐿𝑦 = 𝐿𝑧, 𝜆𝑦 = 1, so 

𝑛𝑧 = 𝑛𝑦 = 𝐺(𝜆𝑥 , 1) (6.15) 

And equation (6.14) can be rewritten as  

𝑛x + 2𝑛𝑦 = 1 (6.16) 

If we further define the aspect ratio of the square cuboid as 𝑅 ≡ 𝐿𝑥 𝐿𝑦⁄ ≡ 𝐿𝑥 𝐿𝑧⁄ =  λx, then the 

demagnification factors can be stated as simple functions of this aspect ratio: 

{
𝑛𝑥 = 𝐺(𝑅, 1)

𝑛𝑦 = 𝑛𝑧 = 1 − 2𝑛𝑥
 (6.17) 

 

Using these equations, 𝑛𝑥, 𝑛y and 𝑛𝑧 are shown as a function of the square cuboid aspect ratio 

in Figure 2.5. For a cube (𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 and 𝑅 = 1), the demagnetization factors are all equal to 

1/3. However, if the aspect ratio of the square cuboid is smaller than 1, the demagnetization 

factor in the 𝑥 direction increases whereas the demagnetization factors in the 𝑦 and 𝑧 directions 

both decrease. As the aspect ratio approaches zero—corresponding to a cuboid that is infinitely 

thin in the x direction—𝑛𝑥 approaches unity while the other factors go to zero. 
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Figure 2.5 Demagnetization factors vs aspect ratio (R) 

Once the demagnetization factors are known, the magnetization vector of a uniformly magnetized 

prism can be found:  

�⃗⃗� = (
𝑋

1 + 𝑛𝑥𝑋
𝐻𝑥 ,

𝑋

1 + 𝑛𝑦𝑋
𝐻𝑦,

𝑋

1 + 𝑛𝑧𝑋
𝐻𝑧) (6.18) 

 

where, 𝐻𝑥, 𝐻𝑦 and 𝐻𝑧 are the magnetic field components in 𝑥, 𝑦 and 𝑧 directions respectively. 

When the magnetization vector is known, equation (6.2) can be used to find the induced torque 

on a ferromagnetic body in a known magnetic field. 

2.4 Magnetic Torque on a Ferromagnetic Prism in a Uniform Magnetic Field 

Assume that the ferromagnetic square cuboid is oriented at an angle of 𝜃 with respect to a 

spatially uniform magnetic field, as shown in Figure 2.6.  
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Figure 2.6 Orientation of a beam with a ferromagnetic square cuboid at the tip in a uniform 
magnetic field. 

The magnetization induced in the prism interacts with the external field, which generates torque 

on the prism. Using equation (6.2), the torque about the 𝑧 axis can be written as: 

𝑇𝑧 = 𝜇0𝑣(𝑀𝑥𝐻𝑦 − 𝑀𝑦𝐻𝑥) (6.19) 

 

Using equation (6.18), this can be rewritten as: 

𝑇𝑧 = 𝜇0𝑣𝐻𝑥𝐻𝑦𝑋(
1

1 + 𝑛𝑥𝑋
−

1

1 + 𝑛𝑦𝑋
) 

(6.20) 

 

If the prism is oriented such that the external magnetic field component along the 𝑧 axis is 

negligible  

(𝐻𝑧 = 0), this can be written as: 

𝑇𝑧 =
1

2
𝜇0𝑣|�⃗⃗� |

2
𝑋(

1

1 + 𝑛𝑥𝑋
−

1

1 + 𝑛𝑦𝑋
)𝑠𝑖𝑛2𝜃 (6.21) 

 

where |�⃗⃗� | is the magnitude of the external magnetic field. Upon inspection of this equation, it 

can be seen that the magnitude of the applied torque is dependent on the geometry (𝑣, 𝑛𝑥 and 
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𝑛𝑦, which are all  functions of 𝐿𝑥, 𝐿𝑦 and 𝐿𝑧) and the magnetic properties of the ferromagnetic 

material (𝑋), as well as the magnitude (|�⃗⃗� |) and the orientation (𝜃) of the external magnetic field. 

For a square cuboid with susceptibility of 𝑋 = 600, with a lateral length of 30 𝑚𝑚 (𝐿𝑦 = 𝐿𝑧 =

30 𝑚𝑚) that is placed in a known external magnetic field such that the magnetic field component 

along the 𝑧 axis is negligible, the torque about the 𝑧  axis can be illustrated as a function of 𝑅 as 

in Figure 2.7. For a cube (𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 and 𝑅 = 1),  the induced torque is negligible. In this case, 

the demagnetization factors are equal in all principal directions and no net magnetization is 

generated in the body. However, the induced torque maximizes at the aspect ratio of 0.317. In 

other words, for a given footprint (𝐿𝑦 and 𝐿𝑧 held constant) the maximum torque that can be 

generated on the prism occurs if the height of the cuboid is approximately one third of its lateral 

length. 

 

Figure 2.7 Torque vs aspect ratio (R) for different 𝜃s; for 𝑙 = 30𝑚𝑚, 𝑋 = 600, |�⃗⃗� | = 4.2𝑚𝑇. 
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Note that in the case of a square cuboid, higher aspect ratios correspond to a higher volume of 

the ferromagnetic material, which, in turn tends to generate more torque as shown in equation 

(6.21). On the other hand, the lower aspect ratios provide higher anisotropy in the ferromagnetic 

object, which leads to higher angles between the applied magnetic field and the magnetization 

vector. Therefore, the balance between the effective volume and the anisotropy of the object, at 

𝑅 = 0.317, maximizes the induced torque. Also, it is interesting to note that when aspect ratio is 

decreased below the optimum value, the induced torque initially decreases at a very slow rate. 

For example, if the thickness of the cuboid is reduced by 50% from the optimum thickness 

(𝑅: 0.317 → 0.158), the induced torque reduces only by 7.6%.  This result is of a great significance 

at the microscale, where thin-film ferromagnetic square cuboids are relatively easy to fabricate 

compared to microfabrication of thicker ferromagnetic layers, which are often expensive, time 

consuming, and technically challenging to fabricate. Therefore, as shown in Figure 2.7, low aspect 

ratio thin films that are easier to fabricate can be used and still achieve relatively high induced 

torque. 

In addition to being a function of geometry, magnetically induced torque is influenced by the field 

orientation (𝜃), as shown in Figure 2.8.  Since the induced torque is a function of 𝑠𝑖𝑛2𝜃, it peaks 

at 𝜃 = 45°. So if the principal axis of the square cuboid is at an angle of 45° with respect to the 

magnetic field direction, the maximum torque is achieved. At this angle, the 𝑥 and 𝑦 components 

of the magnetic field cooperate to maximize the interaction of the magnitude of the 

magnetization in the object and the relative angle between the magnetic field and the induced 

magnetization.  

As shown in the same figure, torque is also proportional to the square of the external magnetic 

field magnitude (|�⃗⃗� |). From a physical stand point, higher magnetic field generates both a higher 
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magnetization and it also appears explicitly in the torque equation; the combination of the two 

effects results in a nonlinear behavior of the induced torque as the magnetic field increases. 

 

Figure 2.8 Torque vs 𝜃 for different magnetic fields; for 𝑙 = 30𝑚𝑚, 𝑋 = 600,𝑅 = 0.11. 

 

Figure 2.9 Torque vs material susceptibility (𝑋); for 𝑙 = 30𝑚𝑚, |�⃗⃗� | = 4.2𝑚𝑇, 𝑅 = 0.11, 𝜃 =

45°. 
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Torque can be plotted as a function of material susceptibility, as shown in Figure 2.9. It can be 

seen that for low susceptibility materials 𝑋 < 100, the induced torque is strongly dependent on 

the material susceptibility; whereas for higher susceptibilities (i.e. 𝑋 → ∞ ), the diagonal elements 

of the apparent susceptibility tensors are close to a constant value for each direction. This results 

in the independent behavior of the induced torque for high susceptibility values, as shown in 

equation (6.22). 

�̿�𝑎(𝑋 → ∞) ≅

[
 
 
 
 
 
 
1

𝑛𝑥
0 0

0
1

𝑛𝑦
0

0 0
1

𝑛𝑧]
 
 
 
 
 
 

 (6.22) 
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Chapter 3 Macro-scale Beam Bending 

As discussed in the previous chapter, an applied external magnetic field generates torque on a 

ferromagnetic object. For a case of a square cuboid in a spatially uniform magnetic field, the 

applied torque was formulated as a function of the magnetic field strength (|�⃗⃗� |), the aspect ratio 

of the cuboid (𝑅), the susceptibility of the ferromagnetic material (𝑋), and the orientation (𝜃) of 

the external magnetic field. However, torque is difficult to measure directly and in order to 

experimentally validate the formulation of the torque, an intermediate parameter is required. 

One way to indirectly measure torque is to use the torque to cause a measurable secondary effect: 

in this case, by affixing the ferromagnetic prism to the end of a cantilever beam. In the presence 

of an external field, the magnetic torque causes measureable bending of the beam, which can 

then be used to calculate the torque experienced by the prism. 

3.1 Beam Bending of a Magnetically Actuated Beam 

Euler-Bernoulli  beam theory suggests that for pure bending of a long beam where transverse 

shear effects are negligible, the moment, 𝑀0(𝑦), at each point along the length of the beam can 

be calculated as  

𝑀0(𝑦) = 𝐸𝐼
𝑑2𝜔

𝑑𝑦2
 (7.1) 

 

Where 𝐸, 𝐼 and 𝜔 are the Young’s modulus, the moment of inertia and the displacement of the 

beam respectively. In the special case of a moment applied at the end of a cantilever, as shown 

in Figure 3.1,  Equation (7.1) can be solved for the maximum displacement, 𝛿, at the end of the 

beam  
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𝛿 =
𝑀0𝑙

2

2𝐸𝐼
=

6𝑀0𝑙
2

𝐸𝑏ℎ3
 (7.2) 

 

Where 𝑙, 𝑏 and ℎ are the beam length, width and height respectively. 

 

Figure 3.1 Beam bending of a cantilever. 

If a ferromagnetic prism is attached to the tip of the cantilever and the whole system is placed in 

a uniform magnetic field, the magnetic torque that is induced in the ferromagnetic body will act 

as a moment on the cantilever and cause bending, as shown in Figure 3.1. If the applied moment 

is replaced with the induced magnetic torque on a ferromagnetic prism, the torque can be 

explicitly calculated as: 

𝑇𝑧 =
𝐸𝑏ℎ3

6𝑙2
𝛿 (7.3) 

 

Therefore, if such a system is available and the end tip deflection is measured, this equation can 

be used to calculate the magnetic torque.  

3.2 Fabrication & Experimental Setup 

The experimental setup consisted of four different components: 1) a pair of electromagnetic 

Helmholtz coils used to generate a magnetic field, 2) a power source used to power the coils, 3) 
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cantilever beams with ferromagnetic prisms affixed to the free ends, and 4) a beam holder used 

to orient the beams within the magnetic field.  

A pair of electromagnetic coils (Scientific Equipment and Services, Model EMU-75) were placed 

next to each other with a gap distance of 𝑔 = 55𝑚𝑚. The distance between the two identical 

electromagnets was kept small compared to the core diameter (𝑑 = 75𝑚𝑚) in order to generate 

a uniform magnetic field between the magnets (Figure 3.2a). The magnetic coils were then 

connected to a (Hewlett Packard, Model E3631A)  DC power source in order to generate the 

magnetic field with the control over the input voltage, 𝑉.  The uniformity of the magnetic field 

was verified by measuring the magnetic field strength at different points between the coils using 

an axial probe Gaussmeter (Magnetic Instrumentation Inc, Model 912). The same Gaussmeter 

was used to measure the magnetic field strength generated at different voltages, the results of 

which are shown in Figure 3.2b. 

The cantilever beams were cut using shears from thin aluminum alloy 1100 sheets (Lyon 

Industries, ASTM-B-209). Aluminum was selected because it is a paramagnetic material and is not 

affected magnetically when placed in a magnetic field. The ferromagnetic prisms were cut from a 

Ni-200 bar (McMaster-Carr) using wire EDM (Knuth, Smart EDM) in order to obtain nickel prisms 

with identical square cross sections but different thicknesses. The dimensions of the aluminum 

beams and the Ni prisms are shown in Table 3.1. Each Ni prism was glued to the tip of one of the 

aluminum beams. Figure 3.3 shows the nickel prisms after being cut (Figure 3.3a), the completed 

cantilever beams with nickel prisms attached (Figure 3.3b) and the wire EDM machine used to 

fabricate the prisms (Figure 3.3c). 
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(a) 

 

(b) 

Figure 3.2 (a) coils diameter and gap, (b) Magnitude of the applied magnetic field (|�⃗⃗� |) vs the 

input voltage (V) at a gap distance of 𝑔 = 55𝑚𝑚. 
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Table 3.1  Dimensions of the Ni prisms glued to aluminum beams (𝑏 = 5𝑚𝑚, ℎ = 0.05𝑚𝑚) 

Sample # 
Cantilever length 

(𝑙) 
Prism lateral length 

(𝐿𝑦, 𝐿𝑧) 
Prism thickness (𝐿𝑥) 

Prism aspect 
ratio (𝑅) 

1 30𝑚𝑚 4𝑚𝑚 0.17𝑚𝑚 0.04 

2 30𝑚𝑚 4𝑚𝑚 0.42𝑚𝑚 0.11 

3 30𝑚𝑚 4𝑚𝑚 0.79𝑚𝑚 0.20 

4 30𝑚𝑚 4𝑚𝑚 0.98𝑚𝑚 0.25 

5 30𝑚𝑚 4𝑚𝑚 1.60𝑚𝑚 0.40 

6 30𝑚𝑚 4𝑚𝑚 2.60𝑚𝑚 0.65 

7 20𝑚𝑚 4𝑚𝑚 0.42𝑚𝑚 0.11 
 

 

Figure 3.3 (a) Wire EDM cut Ni prisms, (b) clamped aluminum cantilevers with Ni prism at the tip 
between glass slides, (c) Wire EDM machine; scale bar = 10𝑚𝑚. 

The fixture shown in Figure 3.4 was used to position the beams within the magnetic field. The 

fixture allows the beams to be clamped between two glass slides, the orientation of which is 

controlled by a laser cut acrylic holder. All materials used in creating the fixture are paramagnetic, 

in order to minimize impact on the magnetic field, �⃗⃗� . 
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Figure 3.4 Experimental setup. 

Each sample was placed in the magnetic field at three different angles (𝜃 = 15°, 30°, 45°) and 

four different magnetic fields (|�⃗⃗� | = 0 𝑚𝑇, 8.4𝑚𝑇, 14.6𝑚𝑇, 20.8𝑚𝑇). To measure the beam 

deflection at each trial, digital images of the beam were taken using a (Nikon, L-IM) microscope 

and (Olympus, QColor3) camera. ImageJ software was used to calculate the beam tip deflection 

with respect to the original beam orientation at |�⃗⃗� | = 0 𝑚𝑇, as shown in Figure 3.5. 

    
(a) (b) (c) (d) 

Figure 3.5 Digital images of the macro scale beam in the magnetic field at (a)|�⃗⃗� | = 0𝑚𝑇, (b) 

|�⃗⃗� | = 8.4𝑚𝑇, (c) |�⃗⃗� | = 14𝑚𝑇, (d) |�⃗⃗� | = 20.8 𝑚𝑇, for sample #7. 

3.3 Results and Discussion 

Figure 3.6 shows the beam deflection measurements as well as the theoretical predicted 

deflection as a function of the prism aspect ratio. Both the general trend and magnitude of the 

experimental measurements show generally good agreement with theory. The highest beam 
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deflection for the experimentally tested cantilevers was seen at a prism aspect ratio of 0.4, which 

is similar to the analytically-predicted optimum value of 0.317. In the experimental results, the 

beam deflection for low aspect ratio prisms was higher than the predicted values. In this range 

for a lateral length of 4 𝑚𝑚, the lower aspect ratios correspond to relatively large prisms 

compared to the magnetic field, which may violate the uniform magnetization assumption used 

in deriving the magnetic torque relationships in Chapter 2. 

 

Figure 3.6 Experimental vs analytical beam deflections for different aspect ratios (𝑅), |�⃗⃗� | =

8.4𝑚𝑇 and 𝜃 = 30°. 

Theoretical and experimental beam deflection for different magnetic field magnitudes is shown 

Figure 3.7. These experimental results also show good agreement with the analytically predicted 

behavior. The beam deflection is maximized when the principle axis of the beam (𝑥 axis) is aligned 

at 45° with respect to the magnetic field lines, as predicted by theory. In addition, the 

experimental beam deflections are higher when in the presence of higher magnitude magnetic 

fields, which corresponds to the effect of the magnetic field in both the magnetization of the 
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ferromagnetic prisms and the induced torque. The measured experimental values are within an 

order of magnitude of theoretical predictions, but do not match exactly. The cantilever beam 

stiffness is highly sensitive to the Young’s Modulus and dimensions of the beam; so even small 

fabrication errors in the beam or small inaccuracies in assumed material properties could result 

in a relatively large mismatch between the predicted and observed results.  

 

Figure 3.7 Experimental vs analytical beam deflections for different magnetic fields, sample #7 
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Chapter 4 Microbeam Fabrication and Bending 

At the microscale, magnetic forces have been applied in a variety of applications for actuation and 

sensing. One embodiment uses microfabricated magnetic coils that use electric current to 

generate a magnetic field that interacts with either a permanent magnet or ferromagnetic object 

[7, 8]. However, these systems require both an onboard electrical circuit and a connected power 

supply, which typically limits the mobility of the system, making it impossible to create 

“untethered” or wire-free actuation. In addition, because the fabricated coils are often very small, 

these systems are only capable of generating very small, localized magnetic fields. 

Another way to use magnetic force at the microscale involves remote actuation. In this case, a 

microscale magnetically responsive part is actuated in the presence of an externally applied 

magnetic field. With a strong enough field, the magnetically responsive material can be controlled 

and actuated from relatively large distances (tens of centimeters or more). This methodology has 

been used by a number of researchers to create remotely controlled dynamic systems in 

microrobotics [9-11]. For example, [12] created free standing beams with thin film nickel cobalt 

at the tip that could be remotely actuated to replicate the swimming motion of sperm. However, 

one of the main drawbacks of remote actuation is that when large force or torque generation is 

needed, these systems can require a relatively large volume of ferromagnetic material and/or 

very strong magnetic fields. The former is a particular problem, because most microfabrication 

methods are designed to create very thin (~ 1 µm) layers of material, so it can be technically 

challenging to generate thicker microscale ferromagnetic materials. 

There are a variety of options for depositing ferromagnetic materials such as nickel at the 

microscale, including: thermal evaporation, chemical vapor deposition, sputtering, and 

electroplating. The first three methods are mostly used to fabricate thin film layers and deposition 
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of higher thickness of the material faces different challenges. Thermal evaporation and chemical 

vapor deposition can be used to deposit thin films of nickel; however, the high temperature and 

the chemical composition of the gasses used in these processes may not be compatible with other 

materials in the microfabricated part [13]. In addition, these processes, as well as sputtering, have 

very low deposition rates, which can make them time consuming and costly for fabrication of 

large volumes of ferromagnetic material. Higher deposition rates can be achieved by using 

electroplating, but this method requires a seed layer that must be electrically connected to a 

power supply during the deposition process. This makes it very difficult to create freestanding 

nickel “islands” on a surface, such as the nickel prisms required for this project. 

Creating high-torque ferromagnetic microactuators required the development of a unique nickel 

microfabrication method. This method uses a combination of sputtering of a nickel seed layer 

onto photopolymer (SU-8) cantilever beams, combined with a modified electroless nickel plating 

method to deposit nickel in a confined prism geometry. Combining this with the equations derived 

in the previous chapters made it possible to create ferromagnetic prisms that were capable of 

generating very high torque—and therefore high beam deflection—without unreasonably long 

microfabrication times.  

4.1 Beam Bending in Micro Scale 

In this chapter, the same methodology presented for macro scale cantilevers is used to investigate 

the capability of the microscale nickel prisms to actuate a microscale cantilever beam in a spatially 

uniform magnetic field. The external magnetic field generates magnetization in the prism, which 

in turn generates a magnetic torque on the prism and the cantilever. Therefore, equation (4.1) 

can be used to predict the beam deflection in the presence of a magnetic field, which can in turn 

be used to calculate the induced magnetic torque. 



30 
 

𝛿 =
6𝑀0𝐿

2

𝐸𝑏ℎ3
=

𝐿2

𝐸𝑏ℎ3
. 3𝜇0𝑣|�⃗⃗� |

2
𝑋 (

1

1 + 𝑛𝑥𝑋
−

1

1 + 𝑛𝑦𝑋
)𝑠𝑖𝑛2𝜃 (8.1) 

 

4.2 Fabrication  

The fabrication process of a polymer cantilever with a nickel prism at the tip consists of three 

parts: 1) fabrication of the cantilever structure, 2) deposition of a nickel seed layer, and 3) 

depositing additional nickel using electroless nickel plating.  

The polymer cantilever was created using photolithographic patterning of SU-8 photoresist. First, 

a sacrificial layer of Omni Coat was spin coated at 3000rpm for 30s on a silicon wafer 

(UniversityWafer) and the wafer was then baked at 250℃ for 1min. Then, SU-8 3005 (MicroChem) 

was spin coated at 4000rpm for 30s on the wafer and the SU-8 was prebaked at 65℃ and 95℃ 

for 1min and 3mins respectively. A chrome photomask with the microbeam pattern was used to 

crosslink the prebaked SU-8 using UV light for 3mins at 2.8 𝑚𝐽/𝑐𝑚2. Then, the wafer was post-

baked at 65℃ and 95℃ for 1min and 2mins respectively. Thereafter, the uncrosslinked SU-8 was 

removed using SU-8 developer (MicroChem) and the cantilever structure was defined. A 

schematic for the process and a micrograph of one of the resulting beams is shown in Figure 4.1. 

 

Figure 4.1 (Left) Fabrication process of the polymer microbeams, 1) deposition of the Omni Coat, 
2) SU-8 deposition, 3) exposure of the SU-8 layer, 4) development of unexposed SU-8. (Right) 

Micrograph of fabricated SU-8 cantilever beam. Scale bar = 150𝜇𝑚. 
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Once the cantilevers were fabricated, the nickel prisms needed to be patterned at the end of the 

cantilevers. SU-8 is not compatible with high temperature processes such as thermal evaporation 

and chemical vapor deposition. The slow deposition rate for these processes and sputtering would 

have also required incredibly long deposition times. It also would have been incredibly difficult to 

create an electrical connection between the tip of the cantilever and a power source, so 

electroplating was not applicable. So, an alternative method was to use electroless nickel plating 

(ENP) where Ni is chemically reduced and deposited on a surface. The ENP process requires a seed 

layer such as Ni, Cr, Ti or Ta, and will not spontaneously deposit onto SU-8, making it promising 

for the patterning required here. 

To pattern the seed layer on the SU-8 cantilever, positive photoresist S1813 (MicroChem) was 

used. S1813 was spin coated on the silicon wafer at 1000 rpm for 30 seconds, followed by a pre-

exposure bake at 115℃ for 1min. Then, a second photomask was used to expose the positive 

photoresist for 1 min at 2.8 mJ/cm2. The exposed positive photoresist was then removed by 1:1 

diluted solution of water and the Microdeposit concentrate (MicroChem). After this development 

step, the SU-8 cantilever was masked with the positive photoresist with only the tip of the 

cantilever open for deposition of the seed layer. 

The seed layer consisted of 50 nm thick tantalum adhesion layer followed by a 100 nm layer of 

nickel. These two layers were deposited using sputtering (Ta sputtering at 3.97𝑚𝑇𝑜𝑟𝑟 , rate: 

0.2�̇�/𝑠; Ni sputtering at 4.37𝑚𝑇𝑜𝑟𝑟, rate 1.6�̇�/𝑠). Following deposition, the positive photoresist 

masking layer was removed using acetone to prepare the cantilever with thin film Ni at the tip for 

the lift-off process using the ENP. A schematic for the seed layer sputtering steps of the process 

and a micrograph of one of the resulting beams is shown in Figure 4.2. 
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Figure 4.2 (Left) Fabrication process for creating nickel seed layer on the tips of the microscale 
cantilevers. 5) deposition and exposure of positive photoresist, 6) removal of the exposed 

positive photoresist, 7) sputtering the seed layer, 8) removal of the positive photoresist. (Right) 
Micrograph of SU-8 cantilever beam with sputtered nickel layer. Scale bar = 150𝜇𝑚. 

An ENP bath was prepared by heating 128 mL of purified DI water was heated to 91℃ on a 

hotplate. Then, 8 mL of part A and 24 mL of part B of a commercially available ENP kit (Casswell 

plating) were added to the bath. Once thermal equilibrium was achieved, the silicon wafer with 

the cantilever pattern was placed into the bath for 37 minutes. Then, the wafer was removed 

from the bath and was allowed to equilibrate to room temperature for 5 minutes, after which it 

was rinsed with DI water.  

It was discovered that when this process was performed on cantilevers prepared as described, 

the sputtered seed layer almost always delaminated as shown in Figure 4.3; as a result, the final 

cantilevers had little to no nickel on the ends. One possible reason for the delamination is that 

the ENP process is thermally activated and the wafer was in the hot bath for extended time; the 

mismatch in the thermal expansion rates for SU-8 versus nickel may have caused stress to build 

between the layers eventually leading to delamination. In addition, the reduction reaction of 

nickel that occurs at the surface of the seed layer during ENP produces small bubbles of hydrogen. 

When these bubbles grow to sufficient size, buoyancy causes them to detach from the surface, 

which may exert additional force on the seed layer. 
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Figure 4.3 Delaminated seed layers during ENP process. Scale bar = 50𝜇𝑚. 

In order to prevent the delamination of the seed layer during the ENP process, a locking 

mechanism was developed. In this method, after the seed layer was sputtered on the cantilever 

and the positive photoresist was removed, using photolithography, a SU-8 frame was patterned 

on the edges of the seed layer so that it can physically hold the seed layer in place during the ENP 

process. Then, the ENP process was performed as mentioned above, and no delamination was 

observed. After fabrication, the cantilevers were released from the silicon substrate by chemically 

dissolving the Omni Coat base layer using Remover PG (MicroChem). These final stages of the 

fabrication process and a micrograph of a cantilever after the SU-8 frame patterning step are 

shown in Figure 4.4.  
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Figure 4.4 (Left) ENP process and cantilever release steps during microfabrication process: 9) 
deposition and exposure of the second SU-8 layer, 10) development of unexposed SU-8, 11) 

electroless Ni plating, 12) removal of the Omni Coat layer and release of the microbeam. (Right) 
Micrograph of SU-8 cantilever beam after step 10. Scale bar = 150𝜇𝑚. 

The thickness of the nickel deposited during the ENP process was measured using a Zygo 

interferometer, the results of which are shown in Figure 4.5. Table 4.1 shows the dimensions and 

the specifications of the SU-8 cantilever and the nickel prism, as measured using the Zygo and 

optical microscopy. 

  
(a) (b) 

Figure 4.5 (a) Zygo measurement of the microbeams, (b) image of the electroless nickel plated 
microbeam. Scale bar = 150𝜇𝑚. 
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Table 4.1 Microbeam geometry and material properties 

Cantilever dimensions: length (𝑙), thickness (ℎ), 
width (𝑏) 

1 mm, 3.7 𝜇𝑚, 150 𝜇𝑚 

Nickel thin film dimensions: 𝐿𝑥 , 𝐿𝑦, 𝐿𝑧 30 𝜇𝑚, 150 𝜇𝑚, 150 𝜇𝑚 

Aspect ratio (𝑅) 0.2 

Young’s Modulus of SU-8 (E) [14] 4.4 𝐺𝑃𝑎Error!  Bookmark not defined. 
 

 

4.3 Experimental Setup and Results 

The released cantilevers were then clamped and glued between glass slides so that they can be 

oriented at different angles in the magnetic field using the acrylic holder. The magnetic field was 

generated using the same experimental setup presented in the previous chapter. Each sample 

was placed in the magnetic field at three different angles (𝜃 = 15°, 30°, 45°) at three different 

magnetic fields (|�⃗⃗� | = 30.4 𝑚𝑇, 55.6 𝑚𝑇, 81.6 𝑚𝑇). To measure the beam deflection at each 

trial, digital images of the beam were taken using a (Nikon, L-IM) microscope and (Olympus, 

QColor 3) camera. Then, ImageJ software was used to calculate the beam tip deflection with 

respect to the original beam orientation at |�⃗⃗� | = 0 𝑚, as shown in Figure 4.6. 

    
(a) (b) (c) (d) 

Figure 4.6 Digital images of the micro scale beam in the magnetic field at (a)|�⃗⃗� | = 0𝑚𝑇, (b) 

|�⃗⃗� | = 30.4𝑚𝑇, (c) |�⃗⃗� | = 55.6𝑚𝑇, (d) |�⃗⃗� | = 81.6 𝑚𝑇. 

Experimental beam deflection for different magnetic fields is shown Figure 4.7. It can be seen that 

the beam deflection at the microscale follows the same trend as the analytical solution: the 

deflection peaks at 𝜃 = 45° and increases with increased magnetic field strength.  However, it is 

important to note that the magnitude of the deflection measured in the experiments is roughly 
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1/20th that predicted by the analytical solution. There are a number of reasons that could be 

causing the mismatch, including error in the material properties of the SU-8 and the electroless 

plated nickel and inaccuracies in measuring the cantilever and prism geometry. Also, since the 

ENP process involves nucleation of hydrogen bubbles, the deposited nickel may include cavities 

which reduce the effective volume of ferromagnetic material. Future work will focus on 

characterizing these errors and developing a more accurate predictive model for deflection of 

these microbeams. 

 

Figure 4.7 Experimental beam deflection of the microbeams at different orientations (𝜃) and 
field strength. 
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Chapter 5 Conclusions and Future Work 

5.1 Conclusions 

This work focused on the torque response of ferromagnetic prisms in uniform magnetic fields at 

macro and micro scales. The magnetic responses of different magnetic materials were outlined in 

chapter two and it was followed by the conceptual and mathematical description of induced 

magnetization in a ferromagnetic material in a spatially uniform magnetic field. The magnetization 

vector was then used to formulate the induced torque on a ferromagnetic prism in a magnetic 

field. It was analytically shown that the magnetic torque on a thin film Ni is a function of the 

orientation of the prism, magnitude of the applied magnetic field and the aspect ratio of the thin 

film. It was concluded that the induced torque is maximized for the angle of 45° between the 

magnetic field lines and the principal axis of the ferromagnetic prism. Also, the higher magnetic 

fields, |�⃗⃗� |, resulted in higher induced torque on the ferromagnetic prisms. In addition, it was 

shown that the induced torque is maximized for the aspect ratio of 0.317 which most effectively 

incorporates the effects of the magnetization magnitude and direction with the volume of the 

ferromagnetic prism. In chapter three, experimental macro scale beams were fabricated and 

tested in a uniform magnetic field to validate the analytical results. The beam bending deflection 

of the aluminum macro beams with square cuboid nickel masses affixed at the tip were measured 

in a uniform magnetic field as an indirect method to evaluate the induced magnetic torque on a 

nickel prism. The experimental results also illustrated that the beam deflection or equivalently, 

the induced torque is maximized at 𝜃 = 45° and it increases as the magnitude of the applied 

magnetic field increases. Furthermore, theory showed that torque is maximized when the aspect 

ratio of the prism is around 0.317, and a peak was seen in this range experimentally. In other 

words, the induced magnetic torque on a ferromagnetic square cuboid can be optimized if the 
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thickness of the thin-film prism designed to be about one third of the lateral length during the 

fabrication process. Experimental and theoretical data also showed that significant torque can 

still be generated at lower aspect ratios (0.15 – 0.317); therefore, extensive fabrication processes 

to incorporate high volumes of ferromagnetic materials in macro and micro scales can be avoided. 

As described in chapter four, micro scale beams with nickel prisms at the tip were fabricated and 

the beam deflection in a spatially uniform magnetic field was measured to explore the feasibility 

of using thin film ferromagnetic materials to generate torque in micro scale. Similar to the results 

in chapter three, the beam deflection for the microbeams maximized at 𝜃 = 45° and was 

dependent on the magnitude of the applied magnetic field. Therefore, by a precise control over 

the thickness of the deposited ferromagnetic prism, the thin film can be also actuated in micro 

scale which is useful in many MEMS applications. 

5.2 Future work 

The future work on this study may include thorough characterization of the sputtering and 

confinement of the ENP deposition process. Also, it is important to investigate the purity and 

uniformity of the volume of the Ni deposited during the electroless nickel plating. Furthermore, 

in order to determine the source of mismatch between the analytical predictions and 

experimental data in the microbeams, characterization experiments may be performed.  
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