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ABSTRACT OF THESIS 

ADAPTIVE MULTI-OBJECTIVE OPERATING ROOM PLANNING 
WITH STOCHASTIC DEMAND AND CASE TIMES 

The operating room (OR) is accountable for most hospital admissions and is one of 
the most cost and work intensive areas in the hospital. From recent trends, we discover an 
unexpected parallel increase in expenditure and waiting time. Therefore, improving OR 
planning has become obligatory, particularly regarding utilization, and service level. 
Significant challenges in OR planning are the high variations in demand, processing 
times of surgical specialties, the trade-off between the objectives, and control of OR 
performance in long-term. Our model provides OR configurations at a strategical level of 
OR planning to minimize the tradeoff between the utilization and service level 
accounting for variation in both demand and processing times of surgical specialties. An 
adaptive control scheme is proposed to aid OR managers to maintain the OR performance 
within the prescribed controllable limits. Our model is validated using a simulation of 
demand and processing time data of surgical services at University of Kentucky Health 
Care. 

Keywords: Operating Room, utilization, service level, and Trade-off. 
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Chapter 1 Introduction 
1.1. Background 

Operating room (OR) is essential because of rising demand, increasing health care 

costs (Figure1. 1) and waiting lists. U. S. healthcare expenditure was increased by $ 0.2 

trillion in years 2014-15 (Forbes,2015) and waiting time is increasing every year (Viberg 

et al., 2013). Ironically, despite increasing expenditure, hospitals are unable to reduce the 

waiting. This inadequacy is attributed to the inefficient OR planning in the hospitals. The 

OR is one of the most cost and work intensive areas of a hospital. The OR’s are the primary 

reason for almost 70% of all hospital admissions (Ehrenfeld et al., 2013) and account for 

more than 40% of a hospital’s total revenue. Therefore, OR managers are consistently 

looking for ways to maximize the utilization, service level, patient flow, and minimize the 

waiting time and cost. 

Figure 1. 1:National Healthcare Expenditure (NHE) per capita 
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1.2. Motivation  

OR planning has always been very complicated because of the phases of planning, 

sequential stages, highly stochastic demand, processing times, the sheer diversity of the 

surgical services and the priorities of the stakeholders, patients and OR managers. OR 

planning is carried out in three hierarchical phases (Vissers et al., 2001) strategic, tactical 

and operational respectively. The strategic plan is carried out for a long-term where, 

agreements with surgical specialties concerning their patient volumes, targets, etc. are set 

up. Tactical level planning addresses the usage of resources on a medium-term by 

developing cyclic master scheduling strategy (MSS). Operational phase deals with 

resource re-allocation and re-sequencing resulting from dynamic disturbances in healthcare 

systems, such as variations in processing times, and fluctuations in demand, e.g., no-shows, 

cancellations, and emergencies (Banditori et al., 2013). 
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Figure 1. 2:Planning Phases 

Strategic OR planning phase is significant, because of its impact on other planning 

phases down the line. Strategic OR planning deals with the allocation of block time: 

allocated time for each surgical specialty, and surgical-mix: planned number of cases to be 

served for each specialty. Both the block time and surgical-mix together are referred as 

configuration. It is imperative to establish one.to.one relationship between the 

configurations and Key performance indicators (KPI’s) of OR performance, to maintain 

the performance of OR within controllable limits given the high variation in the system. 

Apart from the planning, OR performance is also affected by the upstream and 

downstream stages of the peri-operative process. Perioperative process deals with the 

surgical interventions at the hospital. The Peri-operative process can be broadly broken 

down into three stages as shown in Figure 1.1 (Gupta, 2007): pre-operative stage, intra-
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Pre-operative 
stage 

Intra-operative 
stage 

Post-operative 
stage 

Figure 1. 3:Peri-operative process 

operative stage, and post-operative stage. Pre-operative stage deals with the preparation of 

the patient for the surgery with counseling, anesthesia, etc. Intra-operative stage constitutes 

the OR, where the actual surgery is performed. Depending on the condition of the patient 

after the surgery, the patient is moved either to post-anesthesia care units (PACU) or 

intensive care unit (ICU) in post-operative stages of recovery. 

       

 

 

 

 

Delay at the pre-operative stage leaves the OR idle leading to low utilization and 

may cause overtime when other case is scheduled into that OR (Roberts et al., 2015). While 

non-availability of beds in post-operative stages leads to blocking, in which case the patient 

must recover in OR itself, blocking the sequence of surgeries leading to high waiting time 

and increased cost (Augusto et al., 2010), (Wang et al., 2015). Abedini et al., (2017) 

proposed an optimization model along the peri-operative process to reduce the blocking of 

cases among pre-operative, intra-operative and post-operative stage. Given the high cost 

associated with OR relative to other stages, hospitals usually prefer standard OR plans and 

more resources in pre-operative and post-operative stages concerning Intra-operative stage 

to smoothen the patient flow. However, additional disturbances in a system like the 

variation in demand and processing times, coupled with disruptions from upstream and 

downstream stages, emergencies, cancellation affect the KPI’s of OR. 
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KPI’s of OR performance from the literature are (Cardoen et al., 2010) utilization, 

service level, waiting time, overtime, idletime, revenue per OR minute, cost and patient 

flow. Significant KPI’s among them are, utilization and service level, as they have direct 

relationships with other KPI’s. For example, maximizing utilization reduces the waiting 

time, idletime, and cost, and maximizing service level can be credited with increasing the 

patient flow and revenue per OR minute. Utilization is the ratio of the used time to the 

allocated time. Service level is the ratio of the actual demand to the planned number of 

cases. Therefore, research objective is to develop a standard strategic OR plan which 

maximizes the utilization and service level given the variation in demand and processing 

times. 

1.3. Challenges in OR planning 

One of the primary problems in developing the efficient OR plans is the stochastic 

demands and processing times of various surgical specialties. Unlike production facility 

where the uncertainty in demand and processing time are relatively low, efficient 

production plans can be carried out with little or no disruption in the program. 

Nevertheless, due to the high fluctuation in the OR, OR planning requires an 

accommodating plan which dampens the high variation in demand and processing times 

and simultaneously balances the overtime and idletime.  

Another significant challenge arises from the objectives of the two principal 

stakeholders of the OR department, OR managers and patients. Hospital management 

usually aspires to efficiently utilize its resources, which increases their revenues and cuts 

cost. On the other hand, patients prefer high service rate, short waiting time and low cost. 

These Objectives are inconsistent with each other, because reserving too much OR time 
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may improve the service rate (reduces waiting time), but performs low on utilization 

generating more idletime, and consequently high cost. On the other hand, packing limited 

block time with more number of cases to maximize utilization causes higher overtime. 

Therefore, the objective from the operations research perspective is to develop OR plans 

which minimize the cost by balancing overtime and idletime and minimizes the tradeoff 

between utilization and service rate. 

Although Optimal OR plans are generated to maximize the utilization and service 

level, there is a variation in these KPI’s in real-time due to the continuous fluctuation in 

demand and processing times of surgical services. This phenomenon presents a challenge 

to maintain the OR utilization and service level in control in the long term. Therefore, it is 

of great importance to develop a dynamic adaptive OR planning scheme, to change the OR 

configuration according to the current performance, to maintain the KPI’s within a 

controllable limit in the long term. 

1.4. Contribution 

Contributions of our work in OR planning are: (1) Prove that existence of trade-off 

between utilization and service level; (2) Multiple portfolio optimization to minimize the 

trade-off between utilization and service level; (3) An adaptive control scheme to maintain 

utilization and service levels within the controllable limits in the long term. (4) Validating 

the OR configurations and an adaptive scheme using the historical distribution of demand 

and processing times of surgical services at University of Kentucky Healthcare (UKHC) 

using a simulation along the time horizon. 

First, we balance the cost incurred due the overtime and idletime generated due to 

the variation in demand and processing time using the newsvendor model as proposed in 
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Strum et al. 1997. We present the trade-off between utilization and service level by 

modeling the configurations from two perspectives: (1) demand perspective: to maximize 

the service level (2) workload perspective: to maximize the OR utilization. 

Second, using historical data of utilization and service level, we provide an efficient 

frontier of configurations which minimize the trade-off between the utilization and service 

level using multiple objective portfolio optimization, with different preferences among the 

objectives.  This optimization provides one to one relationship between the configurations 

and the expected performance of OR regarding utilization and service level. 

Third, we developed an adaptive control scheme which monitors the error in 

utilization and service level from the targets for the current time and changes the OR 

configuration adaptively to maintain the utilization and service level within the 

predetermined controllable limits by the OR manager. 

Fourth, we validate the performance of our model using statistical process control 

(SPC) and control charts by simulating normally distributed demand and processing times 

of major surgical services provided at the UKHC. 

1.4.      Impact Statement 
 

Performance of Hospitals are judged based on important KPI’s like utilization, cost, 

waiting time, throughput time, service level etc... OR mangers and patients are two 

important stakeholders of the OR. OR managers often strive for an efficient OR planning 

schemes to maximize utilization which reduces cost and maximizes service level to reduce 

waiting time for patients. OR plans are often disrupted by the stochastic demands and case 

times leading to long waiting lists and high costs for patients.  This research will aid in 
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realizing efficient OR planning in hospitals to reduce the cost of healthcare and waiting 

time by increasing the utilization of resources and service level given the stochastic 

demands and case times. Adaptive control scheme is also illustrated to aid OR managers 

to maintain the OR performance measures within prescribed control limits. 

 

1.5. Thesis structure 

The rest of the thesis is organized as follows:  

Chapter 2 provides a literature review, on the application of operations research in 

healthcare, the status of multi-objective optimization in strategic OR planning, state of 

literature dealing with the variation in demand and processing times, application of 

newsvendor model and portfolio optimization in the healthcare background. 

Chapter 3 presents the methodology. Firstly, a detailed problem description of OR 

planning and evaluation schemes of the OR performances is provided. Secondly, the trade-

off among the utilization and service level is staged by modeling the configurations from 

demand and workload perspectives. Thirdly, based on the historical data of utilization and 

service level, optimal OR configurations are formulated using a multiple-objective 

portfolio optimization which minimizes the trade-off between the utilization and service 

level. Fourthly, a detailed description of an adaptive control scheme is given, which ensures 

that the utilization and service level is within the controllable limits along the time horizon. 

Chapter 4 provides the results of the case study. A case study is carried out with the 

historical data of surgical services at UKHC. First, utilization and service level are 

compared among two sets of OR configuration each developed from demand and workload 

perspective, to show the trade-off among these KPI’s of OR. Second, efficient portfolio 
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frontiers to minimize the trade-off between utilization and service level are generated. 

Third, the adaptive control scheme is validated by verifying the conformance of utilization 

and service levels within the controllable limits along the time horizon. 

Chapter 5 discusses conclusions and directions for future research. 
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Chapter 2 Literature review 

This chapter emphasizes on the literature review in five specific topics. First, 

general trends regarding the application of operations research in OR management are 

introduced. Second, literature dealing with significant objectives in OR planning is 

discussed in detailed. Third, literature studying the impact of variation in demand and 

processing time on KPI’s of OR are elaborated. Finally, optimization techniques used in 

this research, newsvendor model, and portfolio selection are introduced, and their 

applications in OR planning are reviewed. 

2.1 Operations Research in OR management 

OR management is an extensive and complex field of study because of the 

hierarchical planning structure, stochastic demand, processing times, multiple objectives 

to accomplish and the trade-offs among the objectives. Guerriero and Guido (2011) 

presented a structural literature review on how Operational Research can be applied to the 

surgical planning and scheduling processes. Cardoen et al., (2010) summarizes the 

significant trends in research on operating room planning and scheduling and identified 

areas to be addressed in the future. Erdogan and Denton (2011) presented a thorough 

literature review on, challenges and directions for future research in OR planning and 

scheduling from operations research perspective. 

2.2 Objectives in OR planning 

OR planning is carried out in three hierarchical phases (Vissers et al., 2001) 

strategic, tactical and operational respectively. We focus on strategic phase planning, 

which requires a decision on the block times and surgical-mixes for surgical specialties for 

a long term. As the decisions made in the strategic phase directly impact the following two 
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phases, it is imperative for OR managers to address multiple objectives in strategic OR 

planning. However, Majority of the current literature focuses on single objectives like 

maximizing utilization, profit, patient flow and minimize waiting time. The following 

sections will elaborate on the research specific to utilization, service level, and multiple 

objectives.  

2.2.1 Utilization 

Utilization is a thoroughly studied objective in the literature and is one of the critical 

KPI’s of OR performance.  Ozkarahan (2000) used a goal programming approach to 

schedule cases into OR to maximize utilization, under constraints like surgeon preferences, 

intensive care capabilities, and available time restrictions. However, this model has strong 

assumptions of accurate estimation of surgeon-specific surgical duration and availability 

inventory of case, which does not hold true in the actual OR setting. Dexter and Traub 

(2002) provided a heuristic to schedule elective cases into OR’s using the sample mean 

from the historical data to maximize OR utilization. 

Kharraja et al., (2006) proposed a master surgical schedule approach to maximize 

utilization. A cyclic master surgery schedule is developed for a week using integer linear 

programming first. Then, they introduced multiple knapsack problem to assign additional 

to exploit the unused OR time generated because of the variation in processing times and 

cancellations. Ye et al., (2017) proposed an efficient sequencing heuristic to minimize the 

total completion time and associated it to maximizing utilization.  Dexter et al., (2005) 

discussed that OR utilization is highly unstable in the presence of high variations in 

processing times and demand. Improving utilization needs OR managers to reserve 

adequate block time to avoid both idletime and overtime. In other words, balance the 
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tradeoff between reserving too much time leading to low utilization and too little time 

resulting in higher overtime. 

2.2.2 Service level 

Service level has manifold of definitions in the literature. Service level is addressed 

as throughput: number of treated patients in a period, also referred as patient flow. Baligh 

and Laughhunn (1969) proposed a linear model for resource allocation to maximize patient 

flow under constraints like resources, no. of a patient available, budget, and policy 

constraints. VanBerkel and Blake (2007) studied the impact redistribution of capacity 

among surgical specialties according to the variation in demand using simulation. This 

research provided multiple options in capacity planning to decrease the waiting time for 

elective surgeries. Santibáñez et al., (2007) developed a mixed integer linear programming 

model to schedule patients into OR’s, and reported an increase in the number of cases 

served with same the capacity. Testi et al., (2007) proposed using bin packing algorithm to 

generate master schedule strategy (MSS) which maximizes throughput with deterministic 

processing times. Abedini et al., (2016) optimized operating room planning by assigning 

priorities among surgical-mixes.  The above literature explicitly did not address the 

variation in case times and demands which have a significant effect on OR performance.   

The service level of an OR configuration depends on the surgical-mix. Adan and 

Vissers (2003) proposed an integer linear programming model to optimize the surgical-mix 

given the target of the length of stay, and utilization of the resources. Finding the surgical-

mix has been studied by researchers, Wagner (1969), discussed the possibility of 

formulating the Hospital Surgical-mix Selection Problem (HCMSP) as a product mix 
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problem. Blake and Carter (2002), proposed a goal programming approach to solve the 

HCMSP from cost and volume perspectives at the planning phase.  

2.2.3 Multiple objectives 

A vital aspect of OR planning is addressing the multiple objectives like utilization, 

service level, revenue, waiting time, etc. Reddy Gunna et al., (2017) proposed using 

portfolio optimization technique to model OR configurations which maximize patient flow 

and benefit for the hospital.  Mulholland et al., (2005) employed linear programming to 

maximize the financial outcomes to hospitals and physicians. Zhang et al., (2009) proposed 

a method of allocating operating room capacity to specialties to maximize the patient flow 

and minimize the cost using mixed integer programming.  

2.3 Newsvendor model 

Newsvendor model (Porteus, 2002) is a mathematical model, used to determine 

optimal inventory levels, subjected to fixed cost ratios (i.e., Co: overage cost and Cu: 

underage cost, 𝐶𝐶𝑜𝑜 ,𝐶𝐶𝑢𝑢 > 0) and uncertain demand 𝐷𝐷~𝒩𝒩(𝜇𝜇𝐷𝐷 ,𝜎𝜎𝐷𝐷2). Newsvendor model the 

trade-off between overage and underage cost and minimizes the overall total cost. Overage 

cost is the holding cost, occurred when the actual demand is greater than the inventory 

level. underage cost is the setup cost or the lost sales, when the actual demand is greater 

than the inventory level. A simple example is illustrated in Figure 2.1, newsvendor model 

points the equilibrium point of holding cost and set-up cost, at which the total cost is 

minimum. 
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Figure 2. 1:Newsvendor model 

The optimal inventory level Q* is given by  𝑄𝑄∗ = 𝜇𝜇𝐷𝐷 + 𝑧𝑧𝜎𝜎𝐷𝐷 where, 𝐹𝐹(𝑄𝑄∗) =

Φ(z) = 𝐶𝐶𝑢𝑢
𝐶𝐶𝑜𝑜+𝐶𝐶𝑢𝑢

, and 𝑧𝑧 = 𝑄𝑄∗−𝜇𝜇𝐷𝐷
𝜎𝜎𝐷𝐷

. Strum et al., (1997) modeled the tradeoff among overtime 

and idletime in block times as a newsvendor problem. Newsvendor model is extended to 

OR planning. Block time to allocated is regarded the order quantity, and overtime and 

idletime are regarded as the holding cost and setup cost respectively. Therefore, an optimal 

Block time from the newsvendor approach is the block time, balancing both the overtime 

and idletime costs. Olivares et al., (2008) extended the application of news vendor to 

healthcare by structural estimation framework to show the tradeoff between the overtime 

costs and idletime costs. However, newsvendor model does little to address the variation 

in demand directly, which might cause unreasonably long waiting lists for some surgeries. 

Variation in demand directly impacts the service level and waiting time. Therefore it is 

crucial to estimate the optimal surgical-mix to reduce long waiting lists. Thus, both the 
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surgical-mix and block time should be optimized at the strategic phase to generate an 

efficient MSS at the tactical level. 

2.4 Portfolio selection 

Portfolio selection (PS) is the process of choosing a portfolio of securities by 

gauging various portfolios with different weighting for stocks regarding risk and reward 

by evaluating the historical performance (Markowitz, 1952). The objective of portfolio 

selection is to invest 𝑥𝑥𝑖𝑖 proportion of total investment in 𝑛𝑛 securities with average return 

𝑟𝑟𝑖𝑖 to maximize the expected reward 𝐸𝐸 = ∑ 𝑟𝑟𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 . The constraints in portfolio selection 

are the sum of investment proportions is equal to one ∑ 𝑥𝑥𝑖𝑖 = 1𝑛𝑛
𝑖𝑖=1  and the risk 𝜎𝜎 is less than 

the prescribed limit. The risk of a portfolio is defined as the standard deviation of expected 

return given by �∑ ∑ 𝜎𝜎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1  where 𝜎𝜎𝑖𝑖𝑖𝑖 is the covariance of ith and jth securities.  

The portfolio which provides the maximum possible expected return  𝐸𝐸 can be 

derived from the mathematical formulation given Eqn. (2.1- 2.2). The objective function 

Expected Return Eqn. (2.1) is maximized subject to the constraint Eqn. (2.2), sum of all 

weightage is equal to one. The associated risk 𝜎𝜎  with the portfolio is evaluated by 

�∑ ∑ 𝜎𝜎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 . 

Maximize: 𝐸𝐸 = ∑ 𝑟𝑟𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1  (2.1) 

Subject to:  

�𝑥𝑥𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

 
(2.2) 
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The portfolio which gives the minimize possible Risk 𝜎𝜎 can be derived from the 

mathematical formulation given in Eqn. (2.3- 2.4). The objective function Risk Eqn. (2.1) 

is minimized subject to the constraint Eqn. (2.2), sum of all weightage is equal to one. The 

associated Expected return 𝐸𝐸  with the portfolio is evaluated by ∑ 𝑟𝑟𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 . 

Minimize:𝜎𝜎 = �∑ ∑ 𝜎𝜎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1  (2.3) 

Subject to:  

�𝑥𝑥𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

 
(2.4) 

 

Intermediate portfolios between the extremes are derived by using incremented 

value of risk as a constraint. The mathematical formulation to derive the intermediate 

portfolios is given by Eqn. (2.5-2.7). 

Maximize:𝐸𝐸 = ∑ 𝑟𝑟𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1  (2.5) 

Subject to:  

�𝑥𝑥𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

 
(2.6) 

�∑ ∑ 𝜎𝜎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 ≤ 𝜎𝜎 + 𝑖𝑖 (2.7) 

 

The objective is to maximize the expected return Eqn. (2.5) Subject to the 

constraints Eqn. (2.6), sum of all then weight is equal to one. Constraint Eqn. (2.7), the 

associated risk is less than or equal to the sum of the minimum risk and increment value.  



17 
 

An example of portfolio optimization with three assets in illustrated in Figure 2.1.  

 

            Figure 2. 2:Iso-mean and Iso-variance lines 

A two-dimensional graph is used represent a portfolio with weightages 𝑥𝑥1 and 𝑥𝑥2 

on x-axis and y-axis respectively. Since the sum of weightages in portfolio optimization is 

equal to one. The weightage of the third asset 𝑥𝑥3 is given by subtracting the sum of 𝑥𝑥1 and 

𝑥𝑥2 from one. Figure.2.1 presents the Iso-mean {𝐸𝐸1,𝐸𝐸2 ⋯𝐸𝐸6} and Iso-variance lines 

{𝑉𝑉1,𝑉𝑉2⋯𝑉𝑉4} of portfolios. Iso-mean lines is the locus of portfolios which have equal 

expected reward. Iso-variance ellipse is the locus of portfolios which have equal risk, i.e. 

standard deviation of expected return. The objective of the portfolio optimization is 

choosing the portfolios which offer maximum expected reward given fixed risk limit. From 

figure 2.1 we can observe that, though portfolios (points in graph) c and g have same risk, 

because they lie on same Iso-variance ellipse, g has more reward than c. similarly points f 

and h dominate b and d respectively. Therefore, it can be inferred that the efficient frontier 

constitutes the line formed by the points e, f, g, h. However, when the number of assets is 
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greater than three, it is not possible to present the frontiers with weightages 𝑥𝑥𝑔𝑔. Efficient 

frontier in such cases is presented as a relationship between risk and reward as shown in 

Figure 2.2. The horizontal axis represents the risk, which the standard deviation of expected 

reward. The vertical axis represents the reward, which is the expected return. A portfolio 

is on the efficient frontier, meaning there is no other portfolio which can deliver greater 

rewards without increase the risk. 

 

Figure 2. 3:Efficient frontier of portfolios 

As far as the application of PS in healthcare is concerend, Van Houdenhoven et al., 

(2007) used portfolio effect and mathematical algorithms to bring down the total required 

OR times. Hans et al., (2008), proposed a concept of planned slack time to maximize 

utilization and minimize the risk of overtime, under the presence of variations in processing 

times at the tactical phase. A large inventory of elective cases is assumed, thus avoiding 

the variation in demand. Dexter and Ledolter (2003) addressed the problem of OR capacity 

expansion using mean-variance analysis of a portfolio of surgeons, as per their contribution 

margin per OR hour.  
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However, traditional PS generates an efficient frontier of portfolios with only one 

objective, in this case, it can be utilization or service rate. Determining an effective 

portfolio of block times and surgical-mix concurrently can be considered as a multiple 

portfolio optimization problem. Wang, (1999) introduced a routine to resolve the multiple 

benchmark portfolio optimization problem. 

Existing literature does not address the variations in processing times and demands 

simultaneously. Moreover, the focus is on single objectives like maximizing utilization, 

profit, minimizing waiting time, etc. We offer a theoretical account for efficient allocation 

of resources among surgical specialties, block times and surgical-mixes, analyzing the 

expected service level, utilization, and their variation. We demonstrate that our approach 

is empirical; can be applied at any level of planning. These configurations minimize the 

tradeoff between utilization and service rate. Furthermore, our model also accounts for the 

stochastic nature of the surgical process, stochastic demand and processing times. 
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Chapter 3 Methodology 

 Chapter 3 presents the methodology. First, a detailed problem description of OR 

planning and evaluation schemes of the OR performances is provided. Second, the trade-

off among the utilization and service level is staged by modeling the configurations from 

demand and workload perspectives. Third, based on the historical data on utilization and 

service level, optimal OR configurations are formulated using a multiple-objective 

portfolio optimization which minimizes the trade-off between the utilization and service 

level. Finally, a detailed description of an adaptive control scheme is given, which ensures 

that the utilization and service level are within the controllable limits along the time 

horizon. 

3.1 Problem description 

 OR planning deals with the decision making regarding the OR configuration, which 

constitutes deciding on the surgical-mix: Planned number of patients of a specialty 𝑔𝑔 to be 

treated 𝑁𝑁𝑔𝑔, and the Block time: Reserved time allocated for each specialty 𝐵𝐵𝑔𝑔. These 

decisions are based on the historical distribution of the demand for each specialty  

𝑑𝑑𝑔𝑔~𝒩𝒩(𝜇𝜇𝑔𝑔𝑑𝑑,𝜎𝜎𝑔𝑔𝑑𝑑
2) and the distribution of processing times of each specialty 

𝑝𝑝𝑔𝑔~𝒩𝒩(𝜇𝜇𝑔𝑔
𝑝𝑝,𝜎𝜎𝑔𝑔

𝑝𝑝2). 

Assumptions in OR planning: 

1. Demand and processing times of specialties follow a normal distribution. 

2. All the other resources like surgeons, anesthesiologists, nurses, equipment, 

etc. are available, after a standard OR plan is established. 
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3. All the Demand of a specialty is treated, which is less than or equal to the 

planned number of cases (𝑑𝑑𝑔𝑔 ≤ 𝑁𝑁𝑔𝑔) irrespective of the overtime or idletime. 

 OR performance is evaluated interms of utilization and service level. Utilization 

and service level can be calculated for individual specialties and for the overall OR 

configuration. Utilization of a specialty is defined as the ratio of workload: the sum of 

processing times of cases treated, to the allocated block time. Utilization for each specialty 

is calculated using Eqn. (3.1). Overall utilization of OR plan is given by the sum product 

of the weights of block time 𝑤𝑤𝑔𝑔𝑢𝑢 of the specialty Eqn. (3.2) and individual utilization 𝑢𝑢𝑔𝑔 as 

shown in Eqn. (3.3).  

 

𝑢𝑢𝑔𝑔= 
∑ 𝑝𝑝𝑖𝑖
𝑚𝑚𝑖𝑖𝑚𝑚�𝑑𝑑𝑔𝑔,𝑁𝑁𝑔𝑔�
𝑖𝑖=1

𝐵𝐵𝑔𝑔
 

(3.1) 

𝑤𝑤𝑔𝑔𝑢𝑢 =
𝐵𝐵𝑔𝑔

∑ 𝐵𝐵𝑔𝑔𝐺𝐺
𝑔𝑔=1

 
(3.2) 

𝑈𝑈 = �𝑤𝑤𝑔𝑔𝑢𝑢
𝐺𝐺

𝑔𝑔=1

𝑢𝑢𝑔𝑔 
(3.3) 

  

Service level of a specialty 𝑠𝑠𝑔𝑔 is defined as the ratio of the number of cases served to the 

planned number of cases. Service level of specialty is calculated using Eqn. (3.4). Overall 

service level of OR plan is obtained from the sum product of weightages of surgical-mix 

𝑤𝑤𝑔𝑔𝑠𝑠 of the specialty Eqn. (3.5) and individual service level 𝑠𝑠𝑔𝑔 as shown in Eqn. (3.6). 
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𝑠𝑠𝑔𝑔=𝑚𝑚𝑖𝑖𝑛𝑛�𝑑𝑑𝑔𝑔,𝑁𝑁𝑔𝑔�
𝑁𝑁𝑔𝑔

 (3.4) 

𝑤𝑤𝑔𝑔𝑠𝑠 =
𝑁𝑁𝑔𝑔

∑ 𝑁𝑁𝑔𝑔𝐺𝐺
𝑔𝑔=1

 
(3.5) 

𝑆𝑆 = �𝑤𝑤𝑔𝑔𝑠𝑠
𝐺𝐺

𝑔𝑔=1

𝑠𝑠𝑔𝑔 
(3.6) 

 

3.2 Trade-off between utilization and service level 

 The decision regarding the OR configuration can be made from two different 

perspectives: (1) Workload load perspective, (2) Demand perspective. These approaches 

provide optimal OR configuration to maximize utilization and service level respectively. 

3.2.1 Maximizing Utilization 

 To maximize utilization of OR, the block time should be matched to the expected 

workload of a specialty: the product of demand and processing times. Workload of 

specialty can be estimated using the joint distribution of historical distribution of demands 

𝑑𝑑𝑔𝑔~𝒩𝒩(𝜇𝜇𝑔𝑔𝑑𝑑,𝜎𝜎𝑔𝑔𝑑𝑑
2) and processing times 𝑝𝑝𝑔𝑔~𝒩𝒩(𝜇𝜇𝑔𝑔

𝑝𝑝,𝜎𝜎𝑔𝑔
𝑝𝑝2). The mean 𝜇𝜇𝑔𝑔𝑙𝑙  and variance �𝜎𝜎𝑔𝑔𝑙𝑙�

2
 

of work load are given by Eqn. (3.7) and Eqn. (3.8) respectively. 

 

𝜇𝜇𝑔𝑔𝑙𝑙 =  𝜇𝜇𝑔𝑔𝑑𝑑𝜇𝜇𝑔𝑔
𝑝𝑝 (3.7) 

�𝜎𝜎𝑔𝑔𝑙𝑙�
2
 = 𝜇𝜇𝑔𝑔𝑑𝑑

2�𝜎𝜎𝑔𝑔
𝑝𝑝�

2
+ 𝜇𝜇𝑔𝑔

𝑝𝑝2�𝜎𝜎𝑔𝑔𝑑𝑑�
2

+ �𝜎𝜎𝑔𝑔
𝑝𝑝�

2
�𝜎𝜎𝑔𝑔𝑑𝑑�

2
 (3.8) 
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Then, the newsvendor model is employed to obtain optimal block times with the cost ratio 

of idletime and overtime �𝐶𝐶𝑖𝑖
𝐶𝐶𝑜𝑜
�. The optimal Block time to maximize utilization is given by 

Eqn. (3.9), similarly, Optimal processing time 𝑝𝑝𝑔𝑔∗  for each case is given by Eqn. (3.10). 

 

𝐵𝐵𝑔𝑔𝑢𝑢 = 𝜇𝜇𝑔𝑔𝑙𝑙 + 𝑧𝑧𝜎𝜎𝑔𝑔𝑙𝑙  (3.9) 

Where, 𝐹𝐹�𝐵𝐵𝑔𝑔𝑢𝑢� = Φ(z) = 𝐶𝐶𝑜𝑜
𝐶𝐶𝑜𝑜+𝐶𝐶𝑖𝑖

, and 𝑧𝑧 = 𝐵𝐵𝑔𝑔𝑢𝑢−𝜇𝜇𝑔𝑔𝑙𝑙

𝜎𝜎𝑔𝑔𝑙𝑙
.  

𝑝𝑝𝑔𝑔∗ =  𝜇𝜇𝑔𝑔
𝑝𝑝 + 𝑧𝑧𝜎𝜎𝑔𝑔

𝑝𝑝 (3.10) 

 

Surgical-mix 𝑁𝑁𝑔𝑔𝑢𝑢 to maximize utilization is obtained by dividing the allocated block time 

for the specialty by the optimal processing time  𝑝𝑝𝑔𝑔∗  Eqn. (3.11). 

 

𝑁𝑁𝑔𝑔𝑢𝑢 =
𝐵𝐵𝑔𝑔𝑢𝑢

𝑝𝑝𝑔𝑔∗
 

(3.11) 

3.2.2 Maximizing Service level 

 To maximize service level of OR, the surgical-mix should be matched to the 

expected demand for a specialty. Alike in section 3.2.1, Optimum surgical-mix 𝑁𝑁𝑔𝑔𝑠𝑠 , using 

newsvendor model is estimated by Eqn. (3.12). Optimal block time for a specialty to 

maximizes service level 𝐵𝐵𝑔𝑔𝑠𝑠 is obtained by the product of surgical-mix from Eqn. (3.12) 

and optimal processing time from Eqn. (3.10). 

𝑁𝑁𝑔𝑔𝑠𝑠 = 𝜇𝜇𝑔𝑔𝑑𝑑 + z𝜎𝜎𝑔𝑔𝑑𝑑 (3.12) 

𝐵𝐵𝑔𝑔𝑠𝑠 = 𝑁𝑁𝑔𝑔𝑠𝑠𝑝𝑝𝑔𝑔∗  (3.13) 
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 Though the objectives seem to be consistent with each other; there exists a trade-

off between them. When the OR configurations from these two perspectives are evaluated 

in terms of utilization and service level, we can observe that the optimal solution for 

maximizing utilization is not optimal for maximizing service level. 

 

Table 3. 1: Trade-off between utilization and service level 

Criteria  Utilization Service level 

Workload 

(Maximizes utilization) 

𝑈𝑈𝑢𝑢∗ 𝑆𝑆𝑢𝑢 

Demand 

(maximizes service level) 
𝑈𝑈𝑠𝑠 𝑆𝑆𝑠𝑠∗ 

 

 The elements in Table.3.1 are presented in the form of 𝐾𝐾𝐾𝐾𝐾𝐾𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 (∗). It can be 

inferred that, utilization in maximum when the OR configuration is derived from workload 

a perspective, but the service level is not optimal. Service level is maximum when the OR 

configuration is derived from demand perspective, but the utilization is not optimal. 

Therefore, further optimization is needed to minimize the trade-off between utilization and 

service level. 

3.3 Minimizing the Trade-off 

 Optimal Block times and surgical-mixes are generated explicitly for each specialty 

in the previous section (section.3.2). We minimize the trade-off between utilization and 

service level using historical data of OR performance with multiple objective portfolio 

optimization.  
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 An analogy can be drawn between choosing different stocks with weights in a 

portfolio, to selecting a surgical-mix and block times of surgical specialties for OR 

planning. Efficient frontiers of utilization and service level can be formulated using the 

historical sample mean and standard deviations of utilizations and service levels of surgical 

specialties. 

3.3.1 Efficient frontier of utilization 

 Utilizations 𝑢𝑢𝑔𝑔 are evaluated using Eqn. (3.1) for each individual specialty over a 

long period of time for an implemented OR configuration (𝐵𝐵𝑔𝑔,𝑁𝑁𝑔𝑔). Alike portfolio 

optimization in Markovitz (1952) we define historical sample mean of utilization 𝜇𝜇𝑔𝑔
𝑢𝑢 as 

return value of a specialty 𝑔𝑔 and 𝜎𝜎𝑖𝑖𝑖𝑖𝑢𝑢 is the covariance of ith and jth specialty. Efficient 

frontier of utilization are derived from Eqn. (3.14-3.18) which gives the percentage of total 

block time for each specialty 𝑥𝑥𝑔𝑔, their respective Expected utilization 𝐸𝐸𝑢𝑢 and the associated 

risk 𝜎𝜎𝑢𝑢 : standard deviation of expected utilization.  

Maximize: 𝐸𝐸𝑢𝑢 =  ∑ 𝑥𝑥𝑔𝑔𝜇𝜇𝑔𝑔
𝑢𝑢𝐺𝐺

𝑔𝑔=1  (3.14) 

Subject to:  

∑ 𝑥𝑥𝑔𝑔𝐺𝐺
𝑔𝑔=1 =1 (3.15) 

�𝑚𝑚𝑖𝑖𝑛𝑛(𝑢𝑢𝑔𝑔)

∑ 𝜇𝜇𝑔𝑔𝑙𝑙
����𝐺𝐺

𝑔𝑔=1
� ≤  𝑥𝑥𝑔𝑔 ≤ �𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢𝑔𝑔)

∑ 𝜇𝜇𝑔𝑔𝑙𝑙
����𝐺𝐺

𝑔𝑔=1
� 

(3.16) 

�∑ ∑ 𝜎𝜎𝑖𝑖𝑖𝑖𝑢𝑢𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝐺𝐺
𝑖𝑖=1

𝐺𝐺
𝑖𝑖=1 ≤ 𝜎𝜎𝑢𝑢 

(3.17) 
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𝑥𝑥𝑔𝑔 ≥ 0 (3.18) 

 In the above mathematical formulation, Eqn. (3.14) maximizes the expected 

utilization subject to constraints Eqn. (3.15-3.18). Constraint (3.15) ensures that the sum 

of all the weights is equal to one. Constraint (3.16) warrants that the weights of a specialty 

lie within the maximum and minimum limits. Constraint (3.17) ensures the standard 

deviation of expected utilization is less than or equal to the associated risk. Constraint 

(3.18) is to make sure all weights are greater than or equal to zero.  

3.3.2 Efficient frontier of service level 

A similar approach from section 3.3.1 is extended to the service level. Service 

levels 𝑠𝑠𝑔𝑔 are evaluated using Eqn. (3.4) for each individual specialty over a long period of 

time for an implemented OR configuration (𝐵𝐵𝑔𝑔,𝑁𝑁𝑔𝑔). By defining historical sample mean 

of service level 𝜇𝜇𝑔𝑔
𝑠𝑠  as return value of a specialty 𝑔𝑔 and 𝜎𝜎𝑖𝑖𝑖𝑖𝑠𝑠  is the covariance of ith and jth 

specialty. Efficient frontier of service level is derived from Eqn. (3.19-3.18) which gives 

the percentage of total block time for each specialty 𝑦𝑦𝑔𝑔, their respective Expected 

utilization 𝐸𝐸𝑠𝑠 and the associated risk 𝜎𝜎𝑠𝑠 : standard deviation of expected utilization. 

Maximize: 𝐸𝐸𝑠𝑠 =  ∑ 𝑦𝑦𝑔𝑔𝜇𝜇𝑔𝑔
𝑠𝑠𝐺𝐺

𝑔𝑔=1  (3.19) 

Subject to:  

∑ 𝑦𝑦𝑔𝑔𝐺𝐺
𝑔𝑔=1 =1 (3.20) 

�𝑚𝑚𝑖𝑖𝑛𝑛(𝑠𝑠𝑔𝑔)

∑ 𝜇𝜇𝑔𝑔𝑙𝑙
����𝐺𝐺

𝑔𝑔=1
� ≤  𝑥𝑥𝑔𝑔 ≤ �𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠𝑔𝑔)

∑ 𝜇𝜇𝑔𝑔𝑙𝑙
����𝐺𝐺

𝑔𝑔=1
� 

(3.21) 
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�∑ ∑ 𝜎𝜎𝑖𝑖𝑖𝑖𝑠𝑠 𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖𝐺𝐺
𝑖𝑖=1

𝐺𝐺
𝑖𝑖=1 ≤ 𝜎𝜎𝑠𝑠 

(3.22) 

𝑦𝑦𝑔𝑔 ≥ 0 (3.23) 

 

In the above mathematical formulation, Eqn. (3.19) maximizes the expected 

utilization subject to constraints Eqn. (3.20-3.23). Constraint (3.20) ensures that the sum 

of all the weights is equal to one. Constraint (3.21) warrants that the weights of a specialty 

lie within the maximum and minimum limits. Constraint (3.22) ensures the standard 

deviation of expected service level is less than or equal to the associated risk. Constraint 

(3.23) is to make sure all weights are greater than or equal to zero. 

3.3.3 Efficient frontier to minimize the trade-off 

 To minimize the trade-off between utilization and service level. We used multiple 

objective portfolio optimization method which is similar weighted sum multiple objective 

optimization. We normalize the multi-objective function, by dividing it with the ranges of 

expected objective function values derived with single objectives from section 3.3.1 and 

3.3.2. Ranges of Expected utilization and service level are the difference between the upper 

and lower bounds of 𝐸𝐸𝑢𝑢 and 𝐸𝐸𝑠𝑠 respectively. Similarly, ranges of associated risks are the 

difference between the upper and lower bounds of 𝜎𝜎𝑢𝑢 and 𝜎𝜎𝑠𝑠 respectively. The objective of 

the multiple -objective portfolio optimization is to minimize the deviation from the optimal 

solutions of objectives, given the constraints and preference among the objectives.  

Efficient frontier to minimize the trade-off from the mathematical formulation Eqn. 

(3.24-3.30) which gives the percentage of total block time for each specialty 𝑥𝑥𝑔𝑔𝛼𝛼, percentage 
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of surgical mix for each specialty 𝑦𝑦𝑔𝑔𝛼𝛼 with their respective Expected trade-off value 𝐸𝐸𝛼𝛼 and 

the associated risk in trade-off  𝜎𝜎𝛼𝛼: standard deviation of expected trade-off value.  

 

Minimize: 𝐸𝐸𝛼𝛼= 𝛼𝛼
𝐸𝐸𝑈𝑈−𝐸𝐸𝑈𝑈

�𝐸𝐸𝑈𝑈 − ∑ 𝑥𝑥𝑔𝑔𝛼𝛼𝜇𝜇𝑔𝑔𝑢𝑢���𝐺𝐺
𝑔𝑔=1 � + (1−𝛼𝛼)

𝐸𝐸𝑠𝑠−𝐸𝐸𝑠𝑠
�𝐸𝐸𝑠𝑠 − ∑ 𝑦𝑦𝑔𝑔𝛼𝛼𝜇𝜇𝑔𝑔𝑠𝑠���𝐺𝐺

𝑔𝑔=1 � (3.24) 

Subject to:  

∑ 𝑥𝑥𝑔𝑔𝛼𝛼𝐺𝐺
𝑔𝑔=1 =1 (3.25) 

∑ 𝑦𝑦𝑔𝑔𝛼𝛼𝐺𝐺
𝑔𝑔=1 =1 (3.26) 

�𝑚𝑚𝑖𝑖𝑛𝑛(𝑢𝑢𝑔𝑔)
∑ 𝜇𝜇𝑔𝑔𝑢𝑢����𝐺𝐺
𝑔𝑔=1

� ≤  𝑥𝑥𝑔𝑔𝛼𝛼 ≤ �𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢𝑔𝑔)
∑ 𝜇𝜇𝑔𝑔𝑢𝑢����𝐺𝐺
𝑔𝑔=1

� (3.27) 

�𝑚𝑚𝑖𝑖𝑛𝑛(𝑠𝑠𝑔𝑔)
∑ 𝜇𝜇𝑔𝑔𝑠𝑠����𝐺𝐺
𝑔𝑔=1

� ≤   𝑦𝑦𝑔𝑔𝛼𝛼 ≤ �𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠𝑔𝑔)
∑ 𝜇𝜇𝑔𝑔𝑠𝑠����𝐺𝐺
𝑔𝑔=1

� (3.28) 

𝑦𝑦𝑔𝑔𝛼𝛼�∑ 𝑁𝑁𝑔𝑔𝑑𝑑𝐺𝐺
𝑔𝑔=1 �𝑝𝑝𝑔𝑔 ≤ 𝑥𝑥𝑔𝑔𝛼𝛼�∑ 𝐵𝐵𝑔𝑔𝑙𝑙𝐺𝐺

𝑔𝑔=1 � Ɐ 𝑔𝑔 = 1,2. .𝐺𝐺 (3.29) 

𝛼𝛼
σ𝑢𝑢−σ𝑢𝑢

�σ𝑢𝑢 − �∑ ∑ 𝜎𝜎𝑖𝑖𝑖𝑖𝑢𝑢𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝐺𝐺
𝑖𝑖=1

𝐺𝐺
𝑖𝑖=1 � + (1−𝛼𝛼)

σ𝑠𝑠−σ𝑠𝑠
�σ𝑠𝑠 − �∑ ∑ 𝜎𝜎𝑖𝑖𝑖𝑖𝑠𝑠 𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖𝐺𝐺

𝑖𝑖=1
𝐺𝐺
𝑖𝑖=1 � ≥  𝜎𝜎𝛼𝛼 

(3.30) 

 

In the above mathematical formulation, Eqn. (3.19) Minimizes the trade-off among 

the objectives, when preference among the objectives 𝛼𝛼 is given. The objective function is 

Subjected to constraints Eqn. (3.25-3.30). Constraint (3.25) and (3.26) ensures that the sum 

of all the weights is equal to one for the block times and surgical mix respectively. 

Constraint (3.27) warrants that the weights of a specialty lie within the maximum and 

minimum workloads. Constraint (3.28) warrants that the weights of a specialty lie within 

the maximum and minimum limits of demand. Constraint (3.29) is to ensure that the 

product of surgical mix and processing time is less than or equal to allocated block time. 
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Constraint (3.30) ensures the standard deviation of expected trade-off value is less than or 

equal to the associated risk. 

The expected utilization 𝐸𝐸𝑢𝑢𝛼𝛼 and associated risk 𝜎𝜎𝑢𝑢𝛼𝛼  for a preference can be 

evaluated by Eqn. (3.31) and Eqn. (3.32) respectively.  The expected service level 𝐸𝐸𝑠𝑠𝛼𝛼 and 

associated risk 𝜎𝜎𝑠𝑠𝛼𝛼  for a preference can be evaluated by Eqn. (3.33) and Eqn. (3.34) 

respectively. 

 

𝐸𝐸𝑢𝑢𝛼𝛼 =  �𝑥𝑥𝑔𝑔𝛼𝛼𝜇𝜇𝑔𝑔𝑢𝑢���
𝐺𝐺

𝑔𝑔=1

 
(3.31) 

𝜎𝜎𝑢𝑢𝛼𝛼 =  ���𝜎𝜎𝑖𝑖𝑖𝑖𝑢𝑢𝑥𝑥𝑖𝑖𝛼𝛼𝑥𝑥𝑖𝑖𝛼𝛼
𝐺𝐺

𝑖𝑖=1

𝐺𝐺

𝑖𝑖=1

 

(3.32) 

𝐸𝐸𝑠𝑠𝛼𝛼 =  �𝑦𝑦𝑔𝑔𝛼𝛼𝜇𝜇𝑔𝑔𝑠𝑠���
𝐺𝐺

𝑔𝑔=1

 
(3.33) 

𝜎𝜎𝑠𝑠𝛼𝛼 =  ���𝜎𝜎𝑖𝑖𝑖𝑖𝑠𝑠 𝑦𝑦𝑖𝑖𝛼𝛼𝑦𝑦𝑖𝑖𝛼𝛼
𝐺𝐺

𝑖𝑖=1

𝐺𝐺

𝑖𝑖=1

 

(3.34) 

 

OR configurations (𝐵𝐵𝑔𝑔𝛼𝛼,𝑁𝑁𝑔𝑔𝛼𝛼 ) which minimize trade-off between utilization and 

service rate is obtained by multiplying the weights of utilization 𝑥𝑥𝑔𝑔𝛼𝛼 with the sum of block 

times from Eqn. (3.9) and the surgical-mix is obtained by multiplying the weights of 

service level 𝑦𝑦𝑔𝑔𝛼𝛼 with the sum of cases from Eqn. (3.12) respectively for preference 𝛼𝛼.  
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𝐵𝐵𝑔𝑔𝛼𝛼 = �∑ 𝐵𝐵𝑔𝑔𝑢𝑢𝐺𝐺
𝑔𝑔=1 � 𝑥𝑥𝑔𝑔𝛼𝛼 (3.35) 

𝑁𝑁𝑔𝑔𝛼𝛼 =  �∑ 𝑁𝑁𝑔𝑔𝑑𝑑𝐺𝐺
𝑔𝑔=1 � 𝑦𝑦𝑔𝑔𝛼𝛼 (3.36) 

  

To sum up, analyzing the distribution of demand and processing times of each surgical 

specialty, OR configurations are modeled minimizing the trade-off between utilization and 

service. A one to one relationship is provided relating the distributions of demand, 

processing times, OR configurations and preference among objectives, to the distribution 

of expected utilization and service level as shown in the Figure 3.1. 

 

Figure 3. 1:One to one relationship 

 This model of one to one mapping aides OR managers to make an informed 

decision about the OR configuration according to their targets of OR performances and 

preferences. 
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3.4 Adaptive control scheme 

 OR managers are required to maintain the OR performance within controllable 

limits to meet their targets in the long term. This enhances the need to develop an adaptive 

control scheme, which tracks the OR performance along the time horizon and changes the 

OR configuration periodically to meet the targets in the long term. Uniform OR 

configurations are repeatedly implemented for a limited period of time: referred as cycle 

𝑐𝑐. If the OR performance at the end of each cycle is within the predetermined control limits 

then the OR performance, then the system is under control. On the other hand, if the OR 

performance is out of the control, then the OR configuration must be modified using an 

adaptive control scheme to bring the OR performance in control. 

 As previous section (3.3.3) provides one to one relationship between the OR 

configurations and OR performance distributions, it can be used by the OR managers to 

decide on OR configurations depending on their, preference among the objectives, targets 

of utilization and service level. A decision on OR configuration 𝐵𝐵𝑔𝑔𝛼𝛼,𝑁𝑁𝑔𝑔𝛼𝛼  results in 

utilization and service level following the distribution 𝑈𝑈~𝒩𝒩(𝐸𝐸𝑢𝑢𝛼𝛼 ,𝜎𝜎𝑢𝑢𝛼𝛼
2) and 𝑆𝑆~𝒩𝒩(𝐸𝐸𝑠𝑠𝛼𝛼 ,𝜎𝜎𝑠𝑠𝛼𝛼

2) 

respectively. For a cycle c, upper and lower control limits for OR utilization are given by 

Eqn. (3.37) and Eqn. (3.38) respectively, where 𝛽𝛽 is the fraction of standard deviation 

allowed. Similarly, Controllable upper limit and lower limits for OR service levels are Eqn. 

(3.39) and Eqn. (3.40) respectively. 

𝐸𝐸𝑈𝑈
𝑐𝑐

= 𝐸𝐸𝑢𝑢𝛼𝛼 +  𝛽𝛽𝜎𝜎𝑢𝑢𝛼𝛼 (3.37) 

𝐸𝐸𝑈𝑈𝑐𝑐 = 𝐸𝐸𝑢𝑢𝛼𝛼 −  𝛽𝛽𝜎𝜎𝑢𝑢𝛼𝛼 (3.38) 

𝐸𝐸𝑆𝑆
𝑐𝑐

= 𝐸𝐸𝑠𝑠𝛼𝛼 +  𝛽𝛽𝜎𝜎𝑠𝑠𝛼𝛼 (3.39) 
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𝐸𝐸𝑆𝑆𝑐𝑐 = 𝐸𝐸𝑠𝑠𝛼𝛼 −  𝛽𝛽𝜎𝜎𝑠𝑠𝛼𝛼 (3.40) 

  Actual OR utilization 𝑋𝑋𝑈𝑈𝑐𝑐  and service level 𝑋𝑋𝑆𝑆𝑐𝑐 are evaluated at the end of each 

cycle using Eqn. (3.3) and Eqn. (3.6) respectively. As shown in Fig.4, If utilization and 

service level are within the controllable limits, then same OR configuration is continued 

for the following cycle. Else, OR configuration for the next cycle is derived by changing 

the expected utilization, service level and preference Eqn. (3.41) among the objectives for 

the next cycle. 

 

Figure 3. 2:Adaptive scheme 

 

𝛼𝛼𝑐𝑐+1= 
�𝑿𝑿𝒔𝒔

𝒄𝒄

𝐸𝐸𝑆𝑆
𝑐𝑐�

�
𝑋𝑋𝑈𝑈
𝑐𝑐

𝐸𝐸𝑈𝑈
𝑐𝑐  + 𝑿𝑿𝒔𝒔

𝒄𝒄

𝐸𝐸𝑆𝑆
𝑐𝑐�

 
(3.41) 

 OR configurations for the next cycle are formulated using the weights of block 

times 𝑥𝑥𝑔𝑔𝑐𝑐 and surgical mix 𝑦𝑦𝑔𝑔𝑐𝑐 with preference, expected utilization and service level for 

next cycle as a constraint in the mathematical formulation mentioned in Eqn. (3.42-49) 
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Maximize: 𝜎𝜎𝑐𝑐+1 =  � 𝛼𝛼𝑐𝑐+1

σ𝑢𝑢−σ𝑢𝑢
�σ𝑢𝑢 − �∑ ∑ 𝜎𝜎𝑖𝑖𝑖𝑖𝑢𝑢𝑥𝑥𝑖𝑖𝑐𝑐+1𝑥𝑥𝑖𝑖𝑐𝑐+1𝐺𝐺

𝑖𝑖=1
𝐺𝐺
𝑖𝑖=1 � + �1−𝛼𝛼𝑐𝑐+1�

σ𝑠𝑠−σ𝑠𝑠
�σ𝑠𝑠 −

�∑ ∑ 𝜎𝜎𝑖𝑖𝑖𝑖𝑠𝑠 𝑦𝑦𝑖𝑖𝑐𝑐+1𝑦𝑦𝑖𝑖𝑐𝑐+1𝐺𝐺
𝑖𝑖=1

𝐺𝐺
𝑖𝑖=1 ��  

(3.42) 

Subject to:  

∑ 𝑥𝑥𝑔𝑔𝑐𝑐+1𝐺𝐺
𝑔𝑔=1 =1 (3.43) 

∑ 𝑦𝑦𝑔𝑔𝑐𝑐+1𝐺𝐺
𝑔𝑔=1 =1 (3.44) 

�𝑚𝑚𝑖𝑖𝑛𝑛(𝑢𝑢𝑔𝑔)
∑ 𝜇𝜇𝑔𝑔𝑢𝑢����𝐺𝐺
𝑔𝑔=1

� ≤  𝑥𝑥𝑔𝑔𝑐𝑐+1 ≤ �𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢𝑔𝑔)
∑ 𝜇𝜇𝑔𝑔𝑢𝑢����𝐺𝐺
𝑔𝑔=1

� Ɐ 𝑔𝑔 = 1,2. .𝐺𝐺 (3.45) 

�𝑚𝑚𝑖𝑖𝑛𝑛(𝑠𝑠𝑔𝑔)
∑ 𝜇𝜇𝑔𝑔𝑠𝑠����𝐺𝐺
𝑔𝑔=1

� ≤   𝑦𝑦𝑔𝑔𝑐𝑐+1 ≤ �𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠𝑔𝑔)
∑ 𝜇𝜇𝑔𝑔𝑠𝑠����𝐺𝐺
𝑔𝑔=1

� Ɐ 𝑔𝑔 = 1,2. .𝐺𝐺 (3.46) 

𝑦𝑦𝑔𝑔𝑐𝑐+1�∑ 𝑁𝑁𝑔𝑔𝑑𝑑𝐺𝐺
𝑔𝑔=1 �𝑝𝑝𝑔𝑔 ≤ 𝑥𝑥𝑔𝑔𝑐𝑐+1�∑ 𝐵𝐵𝑔𝑔𝑙𝑙𝐺𝐺

𝑔𝑔=1 � Ɐ 𝑔𝑔 = 1,2. .𝐺𝐺 (3.47) 

�𝑥𝑥𝑔𝑔𝑐𝑐+1𝜇𝜇𝑔𝑔𝑢𝑢���
𝐺𝐺

𝑔𝑔=1

≤ 𝐸𝐸𝑈𝑈𝑐𝑐+1 
(3.48) 

�𝑦𝑦𝑔𝑔𝑐𝑐+1𝜇𝜇𝑔𝑔𝑠𝑠���
𝐺𝐺

𝑔𝑔=1

≤ 𝐸𝐸𝑆𝑆𝑐𝑐+1 
(3.49) 

 In the above mathematical formulation, Eqn. (3.42) Maximizes the deviation from 

the maximum risk of utilization and service levels, when preference among the objectives 

𝛼𝛼𝑐𝑐+1 is given. The objective function is Subjected to constraints Eqn. (3.43-49). Constraint 

(3.43) and (3.44) ensures that the sum of all the weights is equal to one for the block times 

and surgical mix respectively. Constraint (3.45) warrants that the weights of a specialty lie 

within the maximum and minimum workloads. Constraint (3.46) warrants that the weights 

of a specialty lie within the maximum and minimum limits of demand. Constraint (3.47) is 

to ensure that the product of surgical mix and processing time is less than or equal to 

allocated block time. Constraint (3.48) and (3.49) ensures the expected utilization and 
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service levels are less than prescribed limits. The block time and surgical mix for the next 

cycle are given with the weights 𝑥𝑥𝑔𝑔𝑐𝑐+1 and 𝑦𝑦𝑔𝑔𝑐𝑐+1 substituted in Eqn. (3.35) and Eqn. (3.36) 

respectively. 
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Chapter 4 Case study 

This chapter provides the results of the case study. A brief background of the 

UKHC is introduced. First, utilization and service level are compared among two sets of 

OR configuration each developed from demand and workload perspective, to show the 

trade-off among these KPI’s of OR. Second, efficient portfolio frontiers to minimize the 

trade-off between utilization and service level are generated and compared. Third, the 

adaptive control scheme is validated by verifying the conformance of utilization and 

service levels within the controllable limits along the time horizon. 

University of Kentucky Health Care (UKHC) served almost 30,000 patients from 

2013-14, excluding weekends and holidays which is approximately 500 cases in a week. 

There are 19 major surgical specialties offered at UKHC. Utilization and service level are 

significant performance indicators at UKHC. Therefore, we intend to study the 

performance of OR regarding utilization and service level along the time horizon. From 

the historical data, we have the number of cases of each surgical group served and 

processing times, of each week over a period of one year. Data analysis showed that these 

groups followed a normal distribution regarding both number of cases processed per week 

and processing times, with a confidence interval higher than 95%.  
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Table 4. 1: Distribution of demand and processing time at UKHC 
 

Demands 
 

Case times  
Mean Std.Dev  Mean Std.Dev 

service-1 28.15 7.95 
 

141.02 19.01 
service-2 30.64 7.82 

 
248.16 28.64 

service-3 6.91 2.36 
 

129.02 18.84 
service-4 54.51 10.66 

 
116.56 18.40 

service-5 24.25 8.22 
 

171.17 23.95 
service-6 25.26 8.07 

 
135.38 20.41 

service-7 10.68 3.84 
 

123.61 27.00 
service-8 15.68 4.12 

 
171.93 25.99 

service-9 31.94 8.26 
 

187.77 20.40 
service-10 8.04 2.71 

 
170.33 40.64 

service-11 49.34 14.37 
 

64.22 12.67 
service-12 95.53 22.25 

 
143.01 11.20 

service-13 20.96 6.27 
 

88.44 16.39 
service-14 38.85 9.89 

 
141.19 19.82 

service-15 4.02 2.39 
 

80.93 25.17 
service-16 24.08 9.90 

 
103.31 16.40 

service-17 4.62 2.75 
 

226.78 75.78 
service-18 34.17 9.23 

 
120.47 17.00 

service-19 15.34 4.45 
 

166.74 31.68 
 

4.1 Trade-off between utilization and service level 

Simulation is carried out with randomly generated normal demands and processing 

times at discrete time intervals. The performance of OR configurations is measured in 

terms of utilization and service level. Simulation results of the OR configurations derived 

using newsvendor model from workload and demand perspectives are presented in 

Table:4.2.  

Table 4. 2: Case study - Trade-off between utilization and service rate 

 utilization Service level 
Workload 

perspective 0.831* 0.843 
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Demand 
perspective 0.814 0.865* 

 

Table 4.2 clearly presents the trade-off among the OR configurations from 

workload and demand perspectives. Configuration from workload perspective has high 

utilization. On the other hand, configurations from demand perspective have high service 

rate. 

4.2 Minimizing the trade-off  

A configuration which is optimal on both utilization and service rate is obtained by 

minimizing the tradeoff using PS. Optimal configuration minimizing the trade-off should 

have minimum possible expected value of trade-off and maximum possible risk.  From 

Figure 4.1, we observe that, full preference (𝛼𝛼 = 1) to utilization offers minimum trade-

off, but also minimum risk. On the other hand, with full preference to service level (𝛼𝛼 =

0) offers maximum expected trade-off associated with maximum risk. A balance between 

the expected trade-off and risk is achieved with equal preference among objectives (𝛼𝛼 =

0.5). 
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Figure 4. 1:Efficient frontiers of Trade-off 
 

OR configurations minimizing the trade-off are compared in terms of expected 

utilization and associated standard deviation. From Figure 4.2 it can be observed that 

efficient frontier generated with full preference to utilization (𝛼𝛼 = 1) is dominating other 

frontiers. 

 

Figure 4. 2: Utilization on efficient frontiers minimizing the trade-off 
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Similarly, OR configurations minimizing the trade-off are compared in terms of 

expected service level and associated standard deviation. From Figure 4.3 it can be 

observed that efficient frontier generated with full preference to service level (𝛼𝛼 = 0) is 

dominating other frontiers. 

 

Figure 4. 3: Service level on efficient frontiers minimizing the trade-off 
 

4.3 Adaptive control 

  Adaptive control model is validated by Simulating normally distributed demands 

and processing times over period of 50 cycles of 36 weeks each. This model is evaluated 

at three different preferences among the objectives. Individual control charts of utilization, 

service level and trade-off values are presented along the time horizon at each cycle. X-bar 

and R-bar charts, a type of statistical control charts is used to monitor the mean and range 

of utilization and service level in subgroups of weeks. Capability analysis is carried out to 

verify the robustness of OR performance measures. A control chart is used to monitor the 

preference along the time horizon. 
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4.3.1 Preference: Alpha = 0.5 
 

OR configuration with equal preference among the objectives with minimum 

expected trade-off value is chosen for the first cycle. OR performance regarding the 

Utilization and service level are evaluated at the end of each cycle to verify, whether they 

lie within the controllable limits.   Controllable limits for utilization and service levels are 

established within 0.75 of standard deviation.  

Individual X-bar chart of utilization is presented in Figure 4. 4. It can be observed 

that the utilization is clearly under control. X-bar and R-Chart is used with the continuous 

data collected in subgroup size of thirty-six. The Mean (X-Bar) of each subgroup for 

utilization charted on the top graph and the Range (R) of the subgroup of utilization charted 

on the bottom graph in Figure 4. 5.   

 

Figure 4. 4:Control chart of utilization with alpha = 0. 5 
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Figure 4. 5:X-bar and R-bar Charts of utilization with alpha = 0. 5 

 

Individual X-bar chart of service level is presented in Figure 4. 6. It can be 

observed that the service level is clearly under control. X-bar and R-Chart is used with 

the continuous data collected in subgroup size of thirty-six. The Mean (X-Bar) of each 

subgroup for service level is charted on the top graph and the Range (R) of the subgroup 

of service level is charted on the bottom graph in Figure 4. 7. 



42 
 

 

Figure 4. 6: Control chart of service level with alpha = 0. 5 
 

 

Figure 4. 7:X-bar and R-bar Charts of Service level with alpha = 0. 5 

 

Statistical process control chart of trade-off is monitored along the time, as shown 

in Figure 4. 8, and is observed to clearly under the control. 
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Figure 4. 8:Control chart of Trade-off with alpha = 0. 5 
 

A capability analysis is also carried out to verify, if the control limits of OR 

performance are within the specified limits. From Figure’s 4.9 and 4.10, it is observed that 

process capability indices 𝑐𝑐𝑝𝑝and 𝑐𝑐𝑝𝑝𝑝𝑝 values are greater than one, indicating that the OR 

performance measures: utilization and service levels, are within the pre-established 

controllable limits. 

 

Figure 4. 9:Capability analysis of utilization with alpha = 0. 5 
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Figure 4. 10:Capability analysis of service level with alpha = 0. 5 
 

Control chart of preference adaptively changing along the cycles is monitored in 

Figure 4. 11. The mean (X-bar) of the preference is observed to 0.499 approximately equal 

0.5, which is the preference chosen initially. 

 

Figure 4. 11:Control chart of alpha with alpha = 0. 5 
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The promising results from the control charts and process capability analysis show 

that OR performance regarding utilization and service level are within the control limits 

along the time horizon. Therefore, it can be assured that our model of optimization and 

adaptive control enable OR managers to make an informed decision on OR configurations 

and control the OR performances in the long-term, given the stochastic demand and 

processing times of surgical specialties. 

4.3.2 Preference: Alpha = 0.25 

To study the impact of preference on the OR performance measures, we repeated 

the adaptive control planning with a preference alpha = 0.25 among the objectives: the 

preference for utilization is 0.25 and the preference of service level is 0.75. Individual X-

bar chart of utilization is presented in Figure 4. 12. It can be observed that the utilization is 

clearly under control and is marginally less than the utilization obtained with equal 

preference. X-bar and R-Chart is used with the continuous data collected in subgroup size 

of thirty-six. The Mean (X-Bar) of each subgroup for utilization charted on the top graph 

and the Range (R) of the subgroup of utilization charted on the bottom graph in Figure 4. 

13. 
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Figure 4. 12:Control chart of utilization with alpha = 0.25 

 

Figure 4. 13:X-bar and R-bar Charts of utilization with alpha = 0.25 
 

Individual X-bar chart of service level is presented in Figure 4. 14. It can be 

observed that the service level is clearly under control and is marginally greater than the 

service level with equal preference. X-bar and R-Chart is used with the continuous data 

collected in subgroup size of thirty-six. The Mean (X-Bar) of each subgroup for service 

level is charted on the top graph and the Range (R) of the subgroup of service level is 

charted on the bottom graph in Figure 4. 15. 
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Figure 4. 14:Control chart of Service level with alpha = 0.25 

 

 

Figure 4. 15:X-bar and R-bar Charts of Service level with alpha = 0.25 
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Statistical process control chart of trade-off is monitored along the time, as shown 

in Figure 4. 16, and is observed to clearly under the control with greater trade-off value 

than equal preference among the objectives. 

 

Figure 4. 16:Control chart of Trade-off with alpha = 0.25 
 

Capability analysis is also carried out to verify, if the control limits of OR 

performance are within the specified limits. From Figure’s 4.17 and 4.18, it is observed 

that process capability indices 𝑐𝑐𝑝𝑝and 𝑐𝑐𝑝𝑝𝑝𝑝 values are greater than one, indicating that the 

OR performance measures: utilization and service levels, are within the pre-established 

controllable limits. 
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Figure 4. 17:Capability analysis of utilization with alpha = 0.25 
 

 

Figure 4. 18:Capability analysis of service level with alpha = 0.25 
 

Control chart of preference adaptively changing along the cycles is monitored in 

Figure 4. 11. The mean (X-bar) of the preference is observed to 0.499 approximately equal 

0.5, which is the preference chosen initially. 
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Figure 4. 19:Control chart of preference with alpha=0.25 

 

The promising results from the control charts and process capability analysis show 

that OR performance regarding utilization and service level are within the control limits 

along the time horizon. Therefore, it can be assured that our model of optimization and 

adaptive control enable OR managers to make an informed decision on OR configurations 

and control the OR performances in the long-term, given the stochastic demand and 

processing times of surgical specialties. 

4.3.3 Preference: Alpha = 0.75 
 

To study the impact of preference on the OR performance measures, we repeated 

the adaptive control planning with a preference alpha = 0.75 among the objectives: the 

preference for utilization is 0.75 and the preference of service level is 0.25. Individual X-

bar chart of utilization is presented in Figure 4. 20. It can be observed that the utilization is 

clearly under control and is marginally greater than the utilization obtained with equal 

preference because of high weightage. X-bar and R-Chart is used with the continuous data 

collected in subgroup size of thirty-six. The Mean (X-Bar) of each subgroup for utilization 
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charted on the top graph and the Range (R) of the subgroup of utilization charted on the 

bottom graph in Figure 4. 21. 

 

Figure 4. 20:Control chart of utilization with alpha = 0.75 
 

 

Figure 4. 21:X-bar and R-bar Charts of service level with alpha = 0.75 
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Individual X-bar chart of service level is presented in Figure 4. 22. It can be 

observed that the service level is clearly under control and is marginally greater than the 

service level with equal preference. X-bar and R-Chart is used with the continuous data 

collected in subgroup size of thirty-six. The Mean (X-Bar) of each subgroup for service 

level is charted on the top graph and the Range (R) of the subgroup of service level is 

charted on the bottom graph in Figure 4. 23. 

 

Figure 4. 22:Control chart of service level with alpha = 0.75 
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Figure 4. 23:X-bar and R-bar Charts of service level with alpha = 0.75 
Statistical process control chart of trade-off is monitored along the time, as shown 

in Figure 4. 24, and is observed to clearly under the control with greater trade-off value 

than equal preference among the objectives. 

 

Figure 4. 24:Control chart of Trade-off with alpha = 0.75 
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Capability analysis is also carried out to verify, if the control limits of OR 

performance are within the specified limits. From Figure’s 4.25 and 4.26, it is observed 

that process capability indices 𝑐𝑐𝑝𝑝and 𝑐𝑐𝑝𝑝𝑝𝑝 values are greater than one, indicating that the 

OR performance measures: utilization and service levels, are within the pre-established 

controllable limits. 

 

Figure 4. 25:Capability analysis of utilization with alpha = 0.75 
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Figure 4. 26:Capability analysis of service level with alpha = 0.75 
 

Control chart of preference adaptively changing along the cycles is monitored in 

Figure 4. 27. The mean (X-bar) of the preference is observed to be 0.7510 approximately 

equal 0.75, which is the preference chosen initially. 

 

 

Figure 4. 27:Control chart of preference with alpha = 0.75 
 

The promising results from the control charts and process capability analysis show 

that OR performance regarding utilization and service level are within the control limits 

along the time horizon. Therefore, it can be assured that our model of optimization and 

adaptive control enable OR managers to make an informed decision on OR configurations 

and control the OR performances in the long-term, given the stochastic demand and 

processing times of surgical specialties. 
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Chapter 5 Conclusion and future work 

5.1 Conclusion  

OR scheduling is essential, because of the rising demands, increasing expenditure 

and waiting times. ORs are liable for a significant proportion of admissions, therefore are 

the most work-intensive and cost consuming area of hospitals. High variations in patient 

arrival and processing times make the performance of OR plans highly unstable regarding 

utilization and service rate leading to high costs and long waiting lists. Current literature 

focusses on optimizing the OR configuration with predictive processing times and large 

inventory of demand, leading to low utilization and service level.  

This thesis presents a three-step approach to optimize the OR configuration at 

strategic level planning. First, newsvendor model is used to balance the overtime and 

idletime costs in determining the block time and surgical-mix. Second, trade-off between 

the objectives, utilization and service level is exhibited and minimize using multiple-

portfolio optimization. A one to one relationship is provided between distributions of 

demands, processing times, OR configuration and the distribution of expected OR 

utilization and service level. This relationship aides OR mangers in making an informed 

decision on OR configuration given stochastic demand and processing times of specialties. 

Third, an adaptive control scheme is proposed to ensure OR performance within 

predetermined control limits along the time horizon. 

A simulation with normal distributions of demand and processing times of various 

surgical specialties at UKHC is used to validate the optimization model. Results 

demonstrate that the OR performance is well within the control limits along the time 

horizon.  
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5.2 Future work 

This thesis is explicitly dealing with optimization of intra-operative stage, which is 

relatively very expensive when compared with the other stages of the peri-operative 

process. However, a holistic optimization of the peri-operative process will be a significant 

contribution towards achieving efficient healthcare system. Another significant direction 

in OR planning is to extend the optimization into other phases of planning down the line: 

tactical phase and Operational phase. This optimization model coupled with integer linear 

programming can be used to generate master schedule strategy within subspecialties. 

However, operational phase of OR planning needs a robust sequencing and scheduling 

methods to accommodate inherent variations in the system like cancellations, delays, no 

shows etc.…    
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