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ABSTRACT OF THESIS 
 

FORECASTING THE WORKLOAD WITH A HYBRID MODEL TO REDUCE THE 
INEFFICIENCY COST 

 
 
Time series forecasting and modeling are challenging problems during the past decades, 
because of its plenty of properties and underlying correlated relationships. As a result, 
researchers proposed a lot of models to deal with the time series. However, the proposed 
models such as Autoregressive integrated moving average (ARIMA) and artificial neural 
networks (ANNs) only describe part of the properties of time series. In this thesis, we 
introduce a new hybrid model integrated filter structure to improve the prediction 
accuracy. Case studies with real data from University of Kentucky HealthCare are carried 
out to examine the superiority of our model. Also, we applied our model to operating 
room (OR) to reduce the inefficiency cost. The experiment results indicate that our model 
always outperforms compared with other models in different conditions. 
 
KEYWORDS: ARIMA; Artificial Neural Networks; Hybrid model; Time series 
forecasting; Operating room scheduling. 
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  Chapter 1 Introduction 

1.1 Background and motivation 

With the growth of demand in the healthcare industry, healthcare cost exceeds $2 

trillion in these years (Cheng et al., 2015), and preventive cost control is becoming one of 

the most important challenges for healthcare. The majority of the annual budget of 

healthcare spend on operating room (OR) (Wijngaarden, Scholten, & Wijk, 2012); among 

the cost of OR, the salaries of staff (include surgeons, nurses, and anesthesia, etc.) 

account for the largest proportion (Alex Macario, Terry S., Brian, & Tom, 1995). 

Therefore the managers in a hospital prefer using the OR block time and related resources 

or equipment efficiently (Hosseini & Taaffe, 2015). Most industry information resources 

indicate that the acceptable utilization for the OR should between 75% and 80%. For 

example, the American Hospital Association uses 75% as a guideline 

Under the capitated hospital contracts, anesthesia groups need to provide all 

services of anesthesia to a given number of patients who are insured, and surgical groups 

are paid with a fixed salary each month. Under both capitated revenue and salaried 

settings, the anesthesia team prefers minimizing the cost of staff by allowing the surgical 

group to allocate efficient block time to finish its surgical cases without too much 

overtime or idle time. If allocating too much block time to the surgical groups, it results 

in extra idle time, which is a waste of recourses; oppositely, if underestimating the block 

time, it will generate over-utilize cost  (Dexter, Macario, Qian, & Traub, 1999). 

As a result, the estimation of the demand (number of patients) or workload (total 

case time during a period) for OR cases is central to OR block planning and scheduling 

problems. However, underestimating demand has a series of negative impact on the 
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hospital, such as extending the staff's working time, increasing the waiting list of patients, 

and reducing patients' satisfactory. On the contrary, overestimating demand also causes 

some troubles, such as lowering OR utilization, occupying the resources unnecessarily. 

Plenty of inefficient costs will be generated by the deviation between forecast value and 

actual value. 

Although most hospitals predict the workload or block time by surgeons' 

estimation, the surgeons' estimation is not accurate (Fügener, Schiffels, & Kolisch, 2015). 

Therefore, an accurate prediction of workload is valuable to OR block scheduling. From 

the perspective of operating room manager, it is much more beneficial if they hire the 

fewest staff and keep the quality of service at the same time (Dexter et al., 1999). Under 

the settings above, the day or week on which to perform cases should be selected to 

match the time period, in which the human resources should be scheduled to operating 

room. From the perspective of the OR staff, an accurate prediction of the workload will 

smooth their workload which helps to keep them a good working condition and emotion. 

To some extent, it is beneficial to improve OR utilization and benefits. 

From the perspective of a whole hospital system operating over a long time period, 

we can carry out a long-term forecast procedure (e.g., one to three years). It helps the 

hospital to determine the budget, which is used to deal with the demand in the following 

years (e.g., constructing more operating rooms, purchasing medical instruments). An 

accurately predetermined volume is so important as the hospital wish to ensure that both 

the quantity and quality of service delivered by the budget meet a predetermined set of 

volumes and standards (Dredge, 2004). 
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1.2 Challenges in time series forecasting 

Demand forecasting with time series is useful for OR block planning and 

scheduling, but challenging. Forecasting the time series is regarded as one grand 

challenge in modern science. (Cheng et al., 2015). Obtaining an efficient and accurate 

forecasting value of time series are still challenging problems, because of the different 

mixed relationships of non-linearity, linearity and periodic behaviors presented. In 

statistic, time series can be thought of non-linear dynamic systems if they are marked as 

non-linear causal factors such as irregular, non-periodic, asymmetric, multimodal and 

lagged variable relations, predictions of changes in state space and time irreversibility, etc. 

(Fan & Yao, 2013). 

Predicting workload of operating room has been a crucial and challenging 

application of time series based models. This modeling method is useful in practice while 

little information is available on the underlying relationships of time series when no 

available statistical models are able to relate the objective variable to other explanatory 

variables. 

As the time series contains different kinds of features, such as linear and nonlinear, 

it presents properties which are difficult for us to capture and describe precisely with one 

single model (G P Zhang, 2003). In fact, the most recent models do not perform well in 

predicting the workload of the OR. We want to build a new model to improve the 

forecast accuracy, which can be applied to OR workload forecasting. A hybrid model 

could be more efficient when predicting the workload for healthcare. The advantages of 

this approach come from the following aspects (G P Zhang, 2003): 
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Usually, it is hard to tell where the time series comes from, or in practice, to 

determine if a forecast model is able to obtain a better performance among several 

models. As a result, it is a difficulty for researchers to choose an optimal model for their 

unique situation. In practice, several different models are applied and compared, and then 

the model, which generates smaller errors among several methods is selected. However, 

the choice of models is not necessarily based on the minimum error for current data 

because of many underlying factors for future application, such as the variability of the 

sample, uncertainty of models and structural changes. When combining different 

approaches, model selection can be based on additional efforts. 

Besides, time series are seldom only contain linearity or non-linearity in the real 

word. They usually present both properties. Under this condition, both ARIMA and 

neural networks are not sufficient for modeling and forecasting because when ARIMA 

models deal with non-linear relationships, it is inefficient; whereas neural network 

models alone cannot model and forecast both linear and non-linear patterns 

simultaneously. Therefore, while combining the ARIMA and ANN models, the 

underlying relationships among time series can be described and captured in a more 

efficient way. 

The last point is that in the literature about time series modeling and forecasting, 

none of the methods is the best in each case. This is mainly because application problems 

in the real world are usually complicated in reality, none single forecasting method can 

describe the same pattern in the same way. Many empirical studies (Makridakis et al., 

1993; Makridakis & Hibon, 2000), including several large sample size predictive 

competition, show that hybrid models, which are combining several different methods, 
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the forecasting accuracy could be improved. Thus, hybrid models are quite useful 

because they increase the chances of capturing underlying patterns in time series and 

improve the performance of whole model. A few empirical studies have shown that 

hybrid models outperform a single model with prediction accuracy increased. 

Additionally, the hybrid model has more robustness to possible structural changes in time 

series. 

1.3 Problems and shortcomings in literature 

Because of the complexity of time series, the specific structure of the measured 

patterns is still unknown, and in most cases, it is not certain. As what we presented in 

previous paragraph, it is generally agreed that the past and future observations are related 

by linearity or simple nonlinearity. However, the actual time series indicates non-linear 

properties and can be regarded as non-stationary as well. Thus, some classical and crucial 

linear methods, such as autoregressive (AR) and moving averages (MA), are not able to 

capture and describe the nonlinear relationships because of the disadvantages in 

predicting the complicated patterns. 

The current predictive model cannot be used universally, because a single model 

captures and presents only part of properties. The various properties of time series pose a 

significant challenge to obtain accurate results. The time series appearances from such a 

complicated system exhibits non-periodic pattern even in a stable condition. Besides, 

since real-world time series often present underlying relationships, the relationships 

obtained from them tend to present numerous forms of non-stationary. However, the 

methods proposed in the literature emphasis predicting linear and fixed time series 

(Cheng et al., 2015).  



6 
 

From the related research, some authors apply time series prediction to OR 

demand, but they did not obtain acceptable accuracy using their models (Dexter et al., 

1999). For some other papers, they focus on estimating the duration or variation of 

individual cases based on the past mean value (A Macario & Dexter, 1999). Nevertheless, 

the application did not show persuasive results to convince the reviewers that their 

approach was beneficial to the hospital. Although the bias from this method is close to 0, 

the absolute error is 1.3 hours (the average duration is equal to 3.06 hours) (Dexter et al., 

1999). To a certain extent, these studies cannot help us to achieve useful results in 

predicting the demand of OR. 

Over the past a few decades, several developments were made in capturing 

patterns from the time series and the nonlinear structure of the underlying system. Recent 

reviews of time series prediction models (De Gooijer & Hyndman, 2006) provide extend 

coverage of important prediction models and some other models; and neural network 

models. However, there is still no comprehensive review of the latest developments in the 

prediction models for nonlinear and non-stationary complex systems. The primary 

objective in this thesis is to construct a hybrid model for predicting time series in the real 

world, which improves the accuracy of forecasting and obtains a better performance 

when applied on OR. 

1.4 Contribution 

The contribution of this thesis is as following aspects: (1) we develop a new 

Hybrid-Filter model to solve problems in time series forecasting, which is used to obtain 

accurate results; (2) we carry out a case study to examine the priority of our model when 
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compared with classical models; (3) another case study to examine the validation of our 

model in an application problem. 

1.5 The structure of this thesis 

This thesis is organized as follows: In Chapter 2, we will carry out literature 

review on forecast models; a newly built model is presented in Chapter 3; and in Chapter 

4, we provide two case study, one is for comparing the accuracy with three models, 

another is for the performance in an application. In Chapter 5, we will summarize this 

thesis and talk about the future work.  
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Chapter 2 Literature Review 

The time series is defined as a series of data, which are co-related with each other 

over consecutive times. A univariate time series only contains a single variable. Similarly, 

when over one variables are under consideration, it is termed as a multivariate time series. 

We mainly carry out literature review on univariate time series forecasting instead of 

multivariate time series in this section. 

2.1 Difficulties in time series forecasting 

The prediction and modeling for time series are fundamentally important in 

various practical areas. As a result, a lot of research works on this topic have been active 

for several decades. Many crucial forecasting methods are developed in the literature to 

obtain better results and validity when applied to prediction. To investigate these 

forecasting methods, we will discuss some classical models, as well as their inherent 

advantages and disadvantages.  

In recent years, manufacturing and healthcare systems faced a trade-off problem 

of high quality products and services with limited and finite resources. We can solve this 

problem sufficiently through statistical methods. Particularly, the accurate forecasting 

demand are necessary for lots of activities, fore example, budgeting, marketing, financial 

planning and inventory control. The overall decision-making process can benefit from 

accurate demand forecasting and modeling tools. 

Whenever we try to model a process behavior, we have to deal with the natural 

variation it presents. This natural change is confused with the errors while measuring the 

model. In the case of data collected from some different time series, we must also 

consider the correlation among the data presented in the recorded value. These kind of 
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approach has been shown to be useful for the characterization and prediction of such 

time-dependent processes. 

One of the key challenges to forecasting theories and practice is that time series 

data are not stationary in reality, because they always contain different features and 

various factors that may change established relationships and patterns . In Makridakis and 

Hibon’s M-3 competition (Makridakis & Hibon, 2000), authors draw four conclusions 

after comparing various forecast models with different forecast horizon and measures, 

and one critical view is that the accuracy of the hybrid methods outperforms specific 

individual methods, and the errors generated by hybrid models are relatively smaller 

compared with other models.  

In the back-propagation (BP) neural network model, there are a lot of neurons in 

different layers, which are able to capture complex phenomena. The principle of the 

model is to adjust the parameters iteratively and minimize the prediction error. When 

dealing with small scale data, Liu et al. (Liu, Kuo, & Sastri, 1995) indicated that the 

neural network model generated better results compared with the other statistical model. 

According to previous studies, although the BP neural network model ignores the 

prediction error when building the model, it can still generate good prediction. The errors 

between output nodes and objective value provide feedback to update the weights and 

threshold, but the errors do not affect the value of the input nodes. Therefore, this lost 

part of features by the ANN could be crucial (Tseng, Yu, & Tzeng, 2002).  

Many papers suggest that combine two different methods and take advantages of 

both models is a possible solution to obtain better accuracy than a single model. Thus, in 

this paper, we combined ANNs and ARIMA together, and integrate a filter structure to 
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further improve the accuracy. The newly built hybrid model benefits from different 

positive properties of ANNs and ARIMA. In next section, we will introduce our method 

in details. 

2.2 Models in time series forecasting 

In this section, we are going to present some classical methods used to de describe 

the time series. Some of the following models are used as control groups in chapter 4, and 

compare the results from these models with our new Hybrid-Filter model. 

2.2.1 Exponential smoothing method 

In 1957, Holt (Holt, 2004) proposed a forecasting model for extending simple 

exponential smoothing method. The model has the following properties: (1) reducing the 

weighting parameter put on older data and giving more significance to recent data; (2) 

less computing complexity; and (3) less required data. This model takes the advantages of 

these properties to smooth current random fluctuations and to continuously revise 

seasonal trend. In 1960, Peter (Peter, 1960) extended Holt's method by adding seasonality 

to the former algorithm, which is known as the Holt-Winter method. Taylor (Taylor, 

2003) improved Holt-Winter method by introducing multiple-seasonality trends. 

However, as these models contain trend equations, which are fixed when forecasting 

multi-step ahead future data, they cannot be used to forecast the turning point.  

2.2.2 Autoregressive Integrated Moving Averages (ARIMA) 

During the past few years, the research field of modeling time series draw lots of 

researchers' attention. The main purpose of modeling the time series is to obtain and 

describe the relationships among past data to build an available method that captures the 

underlying relationships in the time series (R.K, Agrawal, Adhikari, R.K, & Agrawal, 
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2013). And then use the previous method to predict the value or condition in the future. 

Because of the indispensable importance of time series, we should give appropriate 

attention to adapting the appropriate model to the underlying time series in various 

practical areas, for example, business, economics and engineering. The accurate time 

series prediction depends on the fitness of the model. Researchers have done a lot of 

effort over the years to develop efficient models to improve prediction accuracy. 

Therefore, a variety of important prediction models has been developed in the literature 

during the past decades. 

A classical time series model is Autoregressive Integrated Moving Average 

(ARIMA) model. The most important assumption of implementing the model is that the 

time series is considered as linearity and follows a specific probability distribution. 

What’s more, the Autoregressive (AR)，  moving average (MA) and autoregressive 

moving average (ARMA) are subclasses of ARIMA model. Box and Jenkins (Box & 

Jenkins, 1971) proposed a fairly successful change in the ARIMA model for seasonal 

time series modeling, which is seasonal ARIMA (SARIMA). The ARIMA model is 

popular because of its flexibility, it can simply describe and interpret time series, and the 

associated Box-Jenkins method is used to minimize the error between model and actual 

value. However, there are still some limitations in these models, for example, assumption 

of normal distribution of original data, which are deficient in many practical conditions. 

To solve this shortcoming, some methods for nonlinear time series are proposed in the 

literature; however, these are not as straightforward and simple as the ARIMA model 

from the point of view for implementation. 
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The feature of a time series based demand which is stochastic has been predicted 

and modeled during the past a few decades frequently by ARIMA. ARIMA model is such 

classic that it is used as a complicated benchmark for comparing a couple of alternative 

methods within a univariate framework (Abraham & Nath, 2001; Darbellay & Slama, 

2000; Taylor & Buizza, 2003). 

Taylor et al. (Taylor, de Menezes, & McSharry, 2006) compared several 

univariate forecast methods, for example, seasonal ARMA methods, exponential 

smoothing for double seasonality, neural networks, regression method with principal 

component analysis (PCA) and benchmark method 𝑦𝑦𝑡𝑡� = 𝑦𝑦𝑡𝑡−1. To measure the accuracy 

of these models, they use mean absolute percentage error (MAPE). As a result, the 

exponential smoothing method performs the best, leading to the conclusion that simple 

and robust methods can outperform sophisticated alternatives. 

From the result, the neural network generate a bad result. Taylor thought it was 

not due to over-fitting or an overly complex structure of neural networks (Taylor et al., 

2006), these are two general drawbacks when modeling with the neural network. The bad 

results may come from the following aspect: they did not divide the data into two 

categories, because weekday and weekend follow different distribution. Another possible 

reason is that the sample size used to train an ANNs is too small, the nonlinear 

relationship may be concealed. 

2.2.3 Artificial neural networks (ANNs) 

From the past a few decades, artificial neural networks (ANNs) drawn lots of 

attention in the field of prediction. Although it is based on the initial biological 

inspiration, later ANN was used in some other practical fields, such as for the purpose of 
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prediction and classification. When applied to the prediction of time series, the 

superiority of ANN is inherent in nonlinear modeling, and there is no pre-estimation of 

the statistical distribution of the observed results. Appropriate models are adaptively 

formed according to the given data. For this reason, ANN is data driven and adaptive. 

Recently, a variety of researches were carried out in the field of the application of time 

series prediction with neural network. Some import points about the application of time 

series forecasting with ANNs was presented by Zhang et al. in 1998 (Guoqiang Zhang & 

Eddy Patuwo, 1998). Several neural network methods are proposed in the literature. One 

of these methods is the multi-layer perceptions (MLPs), which only contains a single 

hidden layer Feed Forward Network (FNN) (G P Zhang, 2003). Another form of FNN is 

the Time Lagged Neural Network (TLNN) (Kihoro, J. M., R. O. Otieno, 2004). In 2008, 

C. Hamzacebi (Hamzaçebi, 2008) constructed a new NN model, which is applied to 

prediction on seasonal patterns. This method is quite easy, and the experiments were 

proved to be useful and effective in predicting time series which contain seasonality. 

Besides, there are many different neural network structures in the literature due to the 

ongoing research work in this area. 

2.2.4 Support Vector Machine (SVM) 

Recently, an important methods on the prediction of time series is Vapnik’s 

(Vapnik, 1998) support vector machine (SVM). Although initially SVM was designed to 

solve the classifying the patterns, it was later widely used in lots of different areas, for 

example, regression analysis, and time series analysis. Therefore, the SVM method 

becomes a crucial model to deal with nonlinear data, especially for the modeling and 

forecasting. The main points of the SVM model is applying the structural risk 
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minimization (SRM) theory to find the optimal decision rules. Only the subset of training 

data determines the results to a specific patterns. Another crucial feature of SVM comes 

from the following point, the training here is equal to solving the problem of linear 

constrained quadratic optimization. Unlike the neural network model, SVM generated 

results are always an optimal solution. Another feature of SVM is that we can 

independently control the quality, regardless of the size of the input data. Generally, in 

the SVM methods, mapping the input nodes to a higher dimensional space, with some 

special functions, called support vector kernel, even in high-dimensional often produce 

good promotion. In the past few years, researchers have developed many SVM prediction 

models. 

Suykens and Vandewalle (J. A. K. Suykens & Vandewalle, 1999) applied SVM 

on pattern recognition problems. The authors build an SVM model base on the least 

square version for classification problems. The ridge regression interpretation of support 

vector has been given in for the function estimation problem, which considers type 

constraints instead of inequalities from the classical SVM approach. 

Cao and Tay (Cao & Tay, 2003) carried out a research on financial time series 

forecasting. Their experiment results show that both SVM and regularized Radial basis 

function (RBF) neural network minimize the regularized risk function. What’s more, for 

dealing with the vibration in the financial data, they proposed adaptive parameters 

method, which is updating larger weights on the latest value and smaller weights on older 

value. However, the adaptive parameters and weights cannot be guaranteed to be an 

optimal solution. Thus, an efficient method to search the best combinations of parameters 

should be investigated in the future work.  
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For extending the least square based SVM, Suykens and Vandewalle (J. Suykens 

& Vandewalle, 2000) introduced recurrent LS-SVM’s for static nonlinear function 

estimation problems. They use finite numbers of case to assign large penalties to extreme 

value in this paper. The authors indicated that LS-SVM’s is able to generalize well, 

despite there are only small size of training data sets. Their works provide some fresh 

aspects to modeling the time series which presents nonlinearity.   

Raicharoen et al. (Raicharoen, Lursinsap, & Sanguanbhokai, 2003) applied 

Critical SVM (CSVM) to approximate functions for signal processing and time series. 

The CSVM consists of the SVM, the Perceptron, and the Nearest Neighbor Algorithm. 

Their algorithm presents significant performances on the chaotic Mackey-Glass time 

series. Moreover, the CSVM is easy to implement. Farooq et al.  (Farooq, Guergachi, & 

Krishnan, 2007) proposed a model based on Least-Squares SVM to forecast long term 

chaotic time series. The results of case studies indicate that this methods obtains better 

results compared with related methods for Mackey Glass-30 long term chaotic time series 

prediction task. 

2.2.5 Autoregressive Conditional Heteroskedastic (ARCH) 

Garcia et al.(Garcia, Contreras, van Akkeren, & Garcia, 2005) proposed a new 

method based on the generalized autoregressive conditional heteroskedastic (GARCH) to 

predict one-step-ahead electricity prices in hours, which is used to modeling and 

prediction. The average forecast errors, which are measured with forecast mean square 

error (FMSE), are around 9%. When consider the complexity in time series for recoded 

electricity price, the errors are acceptable. Besides, the GARCH model outperforms 
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ARIMA model when volatility and spikes present. Considering the demand as an 

explanatory variable, the GARCH model improves the performance as well.  

2.3 Hybrid models in time series forecasting 

The hybrid prediction model is a well-constructed method for obtaining better 

accuracy of forecasting. This hybrid approach utilizes the advantages from different 

forecasting methods, such as the ability to capture different time series patterns  (de 

Menezes, W. Bunn, & Taylor, 2000).  

There are a lot of methods available for us to combine similar models together. 

Draper (Draper, 1995) developed a new method to gain stable results by the average of 

different models. Likewise, Zou and Yang (Zou & Yang, 2004) used the aggregated 

forecast through exponential re-weighting method (AFTER) to mix the forecasts from the 

different individual autoregressive moving average (ARMA) models. Nevertheless their 

research only focus on combinations of linear methods with different parameters. The 

advantage of combining similar models together is to obtain a stable model with high 

robustness and enhance the strong point of the similar models (Yu, Wang, & Lai, 2005). 

To the contrary, the disadvantages of these models are also augmented. 

To deal with the previous drawbacks, combining different kinds of models has 

been studied during past a few decades. Tseng et al. (Tseng et al., 2002) developed a new 

method which combines BP-ANN model and seasonal time series ARIMA (SARIMA). A 

crucial limitation of SARIMA model comes from the following aspect: too many of 

historical data is required. However, as various factors of uncertainty changing rapidly, 

we always need to forecast with limited historical data. To make up the shortcomings of 

SARIMA, the author hybrid neural network, which performs well with small sample size 
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with SARIMA. What’s more, their model takes advantage of SARIMA to help the NN 

model to reduce the forecasting errors. The result also supports the author’s model as 

their hybrid SARIMA-BP model outperforms other models with the lowest error. 

However, as the precondition of SARIMA, this model cannot be applied to non-seasonal 

time series. 

Zhang (G P Zhang, 2003) also suggested that many studies, including some 

predictive experiments with large sample size, show that when a few different predictive 

models are combined together, the accuracy of the prediction is usually better than a 

single model and there is no need to find a "true" or "best" model (Makridakis et al., 

1993). In this paper, the author combining two models, ARIMA model ANNs, the hybrid 

method takes the advantages of ARIMA model which captures linear features and ANNs 

model which focuses on nonlinear features. The results of an empirical case study with 

three real datasets, evaluated by MSE (mean squared error) and MAD (mean absolute 

deviation), show that their hybrid model outperforms each single model are used 

separately. 

Similarly, Pai and Lin (Pai & Lin, 2005) suggested that by combining various 

prediction methods, they can capture lots of types of patterns of data sets at the same time. 

From literature, the conclusion from a variety case studies indicates that when combining 

different forecasting models, the results obtain from the hybrid models are better than the 

results come from single methods, on average (Makridakis, 1989). A hybrid model which 

combining AIRMA and SVM model was presented, the experimental results show the 

overall errors between forecasting values and actual values can be significantly reduced 

with a hybrid model.  
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2.4 Accuracy measurements in time series forecasting 

Many evaluation methods of forecasting developed in the past several years. 

However, the most of these measures cannot be universally applicable, as some measures 

can be infinite and others can be undefined in different cases, under this condition, these 

measures would generate misleading results and make reviewers confused (Hyndman & 

Koehler, 2006). 

From the papers in the past, most textbooks and papers (e.g., Bowerman, 

O’Connell, & Koehler, 2004) use MAPE (Mean Absolute Percentage Error) as an 

evaluation measurement. In contrast, Makridakis (Makridakis, et al., 1998) warn against 

the use of the MAPE in some specific conditions. Other measuremetns such as median 

relative absolute error (MRAE ), Geometric Mean Relative Absolute Error (GMRAE) 

and Median Absolute Percentage Error (MdAPE) were recommended by Fildes (Fildes, 

1992). The MdRAE, Symmetric Median Absolute Error (sMAPE) and Symmetric 

Median Absolute Percentage Error  (sMdAPE) were presented in the M3-competition 

(Makridakis & Hibon, 2000). In addition, some other researchers (Tseng et al., 2002; G. 

Peter Zhang, 2007) evaluated their results with MSE, MAE (Mean Absolute Error) and 

MAPE. To determine choose which measures to evaluate forecast errors, Hyndman and 

Koehler (Hyndman & Koehler, 2006) compared these measures with different data sets. 

The authors suggest that the new proposed scaling error method MASE (Mean 

Absolute Scaled Error) can be a standard method of measuring error. This method is 

applicable in a wide range unless it is always finite and well defined in all cases where 

historical data is equal and irrelevant. When the value of MASE is greater than 1, the 

prediction result is worse than the simple method. However, in some cases, the existing 
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measurement method is still preferred. For example, when all the data is on the same 

order of magnitude, MAE can be the preferred method of measuring accuracy as it is well 

interpretable; when all the observations are much greater than zero, MAPE is a better 

choice because of a simpler calculation difficulty. 

2.5 Application of time series forecasting on operating room (OR) 

Dexter et al. (Dexter et al., 1999) proposed a case study to forecast the workload 

of surgical group’s elective cases for allocating block time. The author compared the 

configuration of time series forecasting, for instance, the number of previous time periods 

of observations applied to optimize the model in prediction, and then generate an optimal 

method comparing the error. The results generated by time series analysis were used to 

calculate the upper bound of cases which will be finished in the future. Dexter suggested 

that their results could help managers to deal with the variations in future OR demand. 

What’s more, this method can be applied to compute how many numbers of OR block 

time should be allocated to surgeons, which is used to minimize the labor costs. However, 

the error generated by their method is over 20% evaluated by MAPE, and some more 

sufficient forecast models should be applied to improve the accuracy. Also, a case study 

about how this method help to reduce labor cost should be carried out to convince us. 

To increase the OR efficiency, Stepaniak et al. (Stepaniak, Heij, Mannaerts, De 

Quelerij, & De Vries, 2009) provided a statistical model to forecast the duration of 

surgical cases. From the obtained results, Stepaniak et al. suggested that the scheduling of 

OR cases can be improved by applying a 3-parameter logarithmic model with surgical 

effect and by using a surgeon's prior guess for a rarely observed CPT. The 
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underestimation and overestimation of OR time and OR inefficiency were significantly 

reduced in each case from the results. 

In next section, we are going to introduce our hybrid model. 
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Chapter 3 Methodology 

Analysis of historical data with time series provides more insights of the data than 

simple statistics, such as averages or means, variance or standard deviation, skewness, 

and kurtosis. In this section, we present two popular methods, the autoregressive 

integrated moving average (ARIMA) method and the artificial neural networks (ANNs) 

method, for demand forecasting with time series. 

3.1 Autoregressive Integrated Moving Average (ARIMA) 

ARMA(p, q) is a simple combination of AR(p) and MA(q) models. At first, we 

introduce the AR(p) model and MA(q) model. In an AR(p) model, we assume the 

unknown value 𝑦𝑦𝑡𝑡  consists of past observations 𝑦𝑦𝑡𝑡−𝑖𝑖  with accumulated errors 𝜀𝜀𝑡𝑡  and a 

constant 𝑐𝑐, and the AR model is as following: 

𝑦𝑦𝑡𝑡 = 𝑐𝑐 +  �𝜑𝜑𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ 𝜀𝜀𝑡𝑡 (3-1) 

where 𝜑𝜑𝑖𝑖  is a parameter and, 𝑝𝑝  is the number of autoregressive terms,  𝑖𝑖 =

1,2, … ,𝑝𝑝. If 𝑝𝑝 = 1, we call it first-order autoregressive model, in this condition 𝑦𝑦 regress 

on itself lagged by one period (see equation 3.2).  

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜑𝜑1𝑦𝑦𝑡𝑡−1  + 𝜀𝜀𝑡𝑡 (3-2) 

In some papers, the AR model is specified in terms of lag operators. The lag 

operator 𝐿𝐿 is defined as:  

𝐿𝐿𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡−1 (3-3) 

Combining equation 3.1 and 3.2, then we obtain: 
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𝜀𝜀𝑡𝑡 = 𝜑𝜑(𝐿𝐿)𝑦𝑦𝑡𝑡 = (1 −�𝜑𝜑𝑖𝑖𝐿𝐿𝑖𝑖
𝑝𝑝

𝑖𝑖

)𝑦𝑦𝑡𝑡 (3-4) 

Similarly, the MA(q) model is: 

𝑦𝑦𝑡𝑡 = 𝜇𝜇 + �𝜃𝜃𝑗𝑗𝜀𝜀𝑡𝑡−𝑗𝑗

𝑞𝑞

𝑗𝑗=1

+ 𝜀𝜀𝑡𝑡 (3-5) 

𝑦𝑦𝑡𝑡 = 𝜃𝜃(𝐿𝐿)𝜀𝜀𝑡𝑡 = (1 + �𝜃𝜃𝑗𝑗𝐿𝐿𝑗𝑗

𝑞𝑞

𝑗𝑗=1

)𝜀𝜀𝑡𝑡 (3-6) 

 

where 𝜇𝜇 is the expectation value of 𝑦𝑦𝑡𝑡, usually it is the average of past q values, 𝜃𝜃𝑗𝑗  

is a coefficient for 𝑗𝑗 = 1,2, … , 𝑞𝑞, 𝑞𝑞 is the number of lagged forecast error, 𝜀𝜀𝑡𝑡 describes the 

stochastic error. When 𝑞𝑞 = 1, we call it first-order moving average model, it is defined as: 

𝑦𝑦𝑡𝑡 = 𝜇𝜇 + 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 (3-7) 

 

We can obtain a more general and useful model ARMA(p, q) by simply 

combining AR(p) and MA(q) models because ARMA(p, q) is able to capture more 

features of time series. The new model is as following: 

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + �𝜑𝜑𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ �𝜃𝜃𝑗𝑗𝜀𝜀𝑡𝑡−𝑗𝑗

𝑞𝑞

𝑗𝑗=1

+ 𝜀𝜀𝑡𝑡 (3-8) 

 

We can also describe ARMA model in a lag operator notation. Thus the ARMA(p, 

q) model are given as follows: 

𝜑𝜑(𝐿𝐿)𝑦𝑦𝑡𝑡 =  𝜃𝜃(𝐿𝐿)𝜀𝜀𝑡𝑡 (3-9) 
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If a time series has constant mean and standard deviation when the time changes, 

we call it stationarity or stationary time series. When the state of time series is non-

stationary and we applied ARMA model, some problems occur, such as the prediction 

results are biased and invalid. Thus the prerequisite of application of ARMA model 

described above is stationary time series. Then ARMA model is proposed to deal with 

non-stationary time series. For changing non-stationary data to stationary, in ARIMA 

model we compute the differences of original data 𝑦𝑦𝑡𝑡 and make it a new data set 𝑦𝑦𝑡𝑡∗. The 

mathematical formulation of ARIMA(p, d, q) can be represented as follows: 

𝜑𝜑(𝐿𝐿)(1 − 𝐿𝐿)𝑑𝑑𝑦𝑦𝑡𝑡∗ = 𝜃𝜃(𝐿𝐿)𝜀𝜀𝑡𝑡 (3-10) 

The integer d is the level of differencing. If 𝑑𝑑 = 0, we obtain: 

𝑦𝑦𝑡𝑡∗ = 𝑦𝑦𝑡𝑡   (3-11) 

In this condition, the ARIMA is the same as ARMA model. If 𝑑𝑑 = 1: 

𝑦𝑦𝑡𝑡∗ = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1 (3-12) 

When d=2, the 𝑦𝑦𝑡𝑡∗ is defined as: 

𝑦𝑦𝑡𝑡∗ = (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1) − (𝑦𝑦𝑡𝑡−1 − 𝑦𝑦𝑡𝑡−2) = 𝑦𝑦𝑡𝑡 − 2𝑦𝑦𝑡𝑡−1 + 𝑦𝑦𝑡𝑡−2 (3-13) 

 

As only if the time series is stationary, then we are able to apply ARMA model to 

forecast the future condition of a time series. Therefore, we carry out an Augmented 

Dickey-Fuller test (ADF test), which is applied to examine whether unit roots present in a 

time series or not. If the unit root exists, then the time series is non-stationary. After 

constructing a new time series by calculating the differences of previous time series, we 

test the stationarity. These procedures repeated until the null hypothesis is rejected, which 

means we have already obtained a stationary time series, the times of differencing is 
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recorded as d. As the time series is the differences of original time series, we need to 

return to the original condition after we obtain forecast value. 

To determine the value of the lag operators of AR(p) and MA(q), we need to set 

up a range of p and q (usually they are around T/10, ln(T) or T^0.5, T is the period) first, 

from 1 to N (both p and q are integers). We calculate the value of Akaike information 

criterion (AIC) of every combination of p and q (totally N*N combinations), the 

combination of p and q with a minimum value of AIC is reserved as the lag operators of 

ARIMA (p, d, q) model.  

For example, assuming we are going to construct an ARIMA model with the 15 

past observations. At first, we should carry out an ADF test to examine the stationarity of 

the time series.  

Table 3.1 statistic of ADF test (H=0, null hypothesis, H=1, alternative hypothesis) 

H p-Value 
1 0.0183 

 

The results from Table 3.1 show that because the confidence level is at 5% level 

(p-value is less than 0.0183), the null hypothesis is rejected. If the p value is larger than 

0.05, then we should compute the differences of the original time series and make them a 

new data set. This procedure will repeat until the data is stationary. 

The range of p and q is from 1 to 3, which means we have 9 combinations of p 

and q values. We compare the value of AIC which is calculated with different 

combinations of p and q. The combination of p and q is recorded with the minimum value 

of AIC. Thus, an ARIMA(p, d, q) is completed and ready for forecasting the demand of 

OR in the following days. 
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Table 3.2: All combinations of p and q with AIC values. 

P Q AIC 
1 1 15.5497 
1 2 15.6258 
1 3 15.1653 
2 1 15.6497 
2 2 15.7079 
2 3 15.0611 
3 1 15.5661 
3 2 16.4248 
3 3 16.9767 

From Table 3.2, we find the minimum value of AIC is 15.0611, the corresponding 

combination of p and q is 2 and 3. Therefore, the final ARIMA model should be 

ARIMA(2,0,3), which is equal to ARMA(2,3) model as the original time series is 

stationary. 

3.2 Artificial Neural Networks 

Classic forecasting models include exponential smoothing (e.g., holt-winter 

method), and ARIMA, etc. One of the typical features of these models is that they are 

only able to capture linear properties of data with a time series. To solve the limitation of 

ARIMA model, researchers construct several models to capture the unique features in 

time series. For instance, the autoregressive conditional heteroscedastic (ARCH) model 

(Engle, 1982), and the threshold autoregressive (TAR) model (Tong, 1983). Although 

these models improve the ability to describe nonlinear time series, we have limited 

development in nonlinear modeling (De Gooijer & Kumar, 1992). This is because these 

methods are constructed for specific time series, and those method may be not efficient 

when applied to other types of time series.  

Compared with other methods of modeling nonlinear time series, an ANN model 

has a crucial advantage that it can be used to model a lot of functions with goodaccuracy 
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by using universal estimators (G P Zhang, 2003). Such advantage also comes from 

processing the data information in parallel. Different from ARIMA model, no prior 

assumption (e.g., stationary time series) is required before constructing the model. 

Instead, the ANN model is mainly determined by the properties of time series, such as 

periodicity, seasonality, etc. Therefore, ANNs have been regarded as an optional 

forecasting model because of its strength of handling with nonlinear patterns.  

A classical feedforward network, which contains one hidden layer is most widely 

used for modeling and forecasting data with a time series (Guoqiang Zhang & Eddy 

Patuwo, 1998). This structure is a network contains three layers (i.e., one input layer, one 

hidden layer and one output layer) of connected neurons. We describe the structure 

between output (𝑦𝑦𝑡𝑡) and the inputs (𝑦𝑦𝑡𝑡−1, 𝑦𝑦𝑡𝑡−2,…, 𝑦𝑦𝑡𝑡−𝑝𝑝) by the following mathematical 

representation: 

 

𝑦𝑦𝑡𝑡 = 𝛼𝛼0 + �𝛼𝛼𝑗𝑗𝑔𝑔(𝛽𝛽0𝑗𝑗 + �𝛽𝛽𝑖𝑖𝑗𝑗𝑦𝑦𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

)
𝑞𝑞

𝑗𝑗=1

+ 𝜀𝜀𝑡𝑡 (3-14) 

 

where 𝛼𝛼𝑗𝑗   are the weights between hidden layer and output layer, and 𝛽𝛽𝑖𝑖𝑗𝑗   are 

weights connect input layer and hidden layer (j = 0, 1, 2,…, q; i =0, 1, 2,…, p; j =1, 2,…, 

q); p is the number of input nodes and q is the number of hidden nodes. The equation (3-

14) express one output node in the output layer of which is mostly used for day-ahead 

prediction. The sigmoid function is mostly used as the hidden layer activative function 

g(·), that is,  
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𝑔𝑔(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
 (3-15) 

 

 

Figure 3.1: Shape of sigmoid function 

With a transfer function g(·), the ANNs is able to describe the nonlinear property 

in time series, and then mapping the features from input layer to hidden layer. Hence, the 

ANN model, in fact, is used to map the data from the past observations 

(𝑦𝑦𝑡𝑡−1, 𝑦𝑦𝑡𝑡−2,…, 𝑦𝑦𝑡𝑡−𝑝𝑝) to the future value 𝑦𝑦𝑡𝑡 in a nonlinear function, i.e.,  

 

𝑦𝑦𝑡𝑡 = 𝑓𝑓(𝑦𝑦𝑡𝑡−1, 𝑦𝑦𝑡𝑡−2,…, 𝑦𝑦𝑡𝑡−𝑝𝑝,𝑤𝑤) + 𝜀𝜀𝑡𝑡 (3-16) 

 

where w are the weights of all coefficiceints in neural works, and f(·) is a function 

to map past observations to objective value through weights and activate function. 

Therefore, the neural network is able to model nonlinear time series. The equation given 
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by (3-14) is a most generally used neural networks. When the nodes are large enough, 

this model can be used to model any type of nonlinear time series. In practice, a neural 

network with small numbers of nodes is able to forecast the out-of-sample data well. An 

overfilled model is consistent with the model established, but the generalization of the 

sample data is poor. Both p and q may be the most crucial parameters in the ANN model 

because these two parameters are quite important to determine the structure of the neural 

networks, besides, there are generally agreed principle to determine the value of q. 

However, no theory is able to determine the value of p. Therefore, experiments case 

studies are often carried out to determine the optimal combinations of p and q. As long as 

the values of p and q are fixed, the network can be trained. As in the ARIMA model 

establishment, the parameters are determined on the overall accuracy criterion such as 

minimize the mean square error.  

In our model, we construct a three-layers ANN model, the number of input layer 

nodes is five, the hidden layer has twenty nodes and one node in the output layer. We use 

another sigmoid function instead of equation (3.13) as the transport function between 

layers, the formula is as following: 

 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑔𝑔(𝑡𝑡) = 2
1 + 𝑒𝑒−2∗𝑛𝑛� − 1 (3-17) 

 

When calculating the parameters of ANN, we choose algorithm ‘traingdx’, it 

means that a training function according to gradient descent momentum and an adaptive 

learning rate, the objective of this function is to revise the parameters and then minimize 

the errors. As BP-ANN always generates different parameters, we repeat constructing 
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models for 10 times and pick the model with minimum MSE after training data. For 

accelerating the computing procedure, we set up a training object as 1e-4.  

We extract 250 historical data from UK HealthCare, the sample size for training 

the ANN is 240 (except the last 10 data). Every time when we training the networks, we 

use 15 groups of past data, 12 groups for training set and 3 groups for validation set. In 

each group, there are 5 data for input and 1 datum for output, each observation is used 6 

times (5 times for input nodes, 1 time for output node) repeatedly. Thus totally 80 data 

were used to train a single networks. 

3.3 Hybrid-Filter 

Although different forecasting models are suitable in different background 

settings, none of them can be universally applied to the variety of circumstance. For 

example, ARIMA is successful when used in long-term and linear data sets, but perform 

badly in short-term and nonlinear data sets. Both theatrical and empirical studies drawn a 

conclusion that hybrid model outperforms single forecasting models (Pai & Lin, 2005). 

To take advantages of both ARIMA and ANNs, we combine these two models. Thus, the 

newly hybrid model can capture different aspects of various patterns. 

In the real world, a time series always presents hybrid properties, and it is 

reasonable to assume that time series consists of linear components and nonlinear 

components. So that it is a combination of linear components and nonlinear components 

as follows: 

𝑦𝑦𝑡𝑡 = 𝛽𝛽1𝐿𝐿𝑡𝑡 + 𝛽𝛽2𝑁𝑁𝑡𝑡 + 𝛽𝛽0 (3-18) 

Here, 𝑦𝑦𝑡𝑡 is actual value at time period t, 𝐿𝐿𝑡𝑡 denotes the linear part, and 𝑁𝑁𝑡𝑡 denotes 

nonlinear part, 𝛽𝛽1 and 𝛽𝛽2 are coefficients, 𝛽𝛽0 is the error. 𝐿𝐿𝑡𝑡  and 𝑁𝑁𝑡𝑡  are computed from 
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past observations. In this case study, we use ARIMA to compute 𝐿𝐿𝑡𝑡 with historical data 

and obtain 𝑁𝑁𝑡𝑡 from ANNs.  

Assuming that we have obtained a series of 𝑦𝑦𝑖𝑖, 𝐿𝐿𝑡𝑡 and 𝑁𝑁𝑡𝑡 (e.g., i=t–15, t–14,…, t–

1), then we regress these 𝐿𝐿𝑡𝑡  and 𝑁𝑁𝑡𝑡  on 𝑦𝑦𝑖𝑖 . However, there must be some residuals 

between 𝑦𝑦𝑖𝑖 and 𝐿𝐿𝑡𝑡 and 𝑁𝑁𝑡𝑡. Therefore, we also need to model the residual. After that we 

get a regression model, that is: 

 

𝑦𝑦𝚤𝚤� = 𝛽𝛽1𝐿𝐿�𝑖𝑖 + 𝛽𝛽2𝑁𝑁�𝑖𝑖 + 𝛽𝛽0 (3-19) 

 

Here, 𝛽𝛽0  denotes the error; 𝐿𝐿�𝑖𝑖  is the estimate linear value, 𝑁𝑁�𝑖𝑖  is the estimate 

nonlinear value. We can just plug in 𝐿𝐿�𝑡𝑡 and 𝑁𝑁�𝑡𝑡  to the regression function above while 

computing 𝑦𝑦𝑡𝑡� . 

However, not all 𝑦𝑦𝑡𝑡�  obtained from regression model are final outputs. For further 

reducing the error of the hybrid model, we lead in the concept of control chart Russo 

(Russo, Camargo, & Fabris, 2012) presented an application of control charts ARIMA for 

autocorrelated data, this method can be integrated into the filter structure to deal with the 

time series data which is obviously autocorrelated. A filter structure F is integrated into 

the hybrid model to filter ‘potential inaccurate' 𝑌𝑌𝑡𝑡� .  

To determine whether it is accurate or inaccurate, we use the concept of quality 

control charts. While 𝑦𝑦𝑡𝑡�  is between 𝜇𝜇 + 𝑡𝑡 ∗ 𝜎𝜎  and 𝜇𝜇 − 𝑏𝑏 ∗ 𝜎𝜎 , we deem it is accurate; 

oppositely, while the potential forecast value 𝑦𝑦𝑡𝑡�  is larger than 𝜇𝜇 + 𝑡𝑡 ∗ 𝜎𝜎  (𝜇𝜇  is mean 

demand of previous days, 𝜎𝜎  is standard deviation of previous a few days, a is a 
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coefficient) the 𝑦𝑦𝑡𝑡�  is judged ‘inaccurate’, and then we use another value as the final 

output. Similarly, when 𝑦𝑦𝑡𝑡�  is less than 𝜇𝜇 − 𝑏𝑏 ∗ 𝜎𝜎, we use the value to replace 𝑦𝑦𝑡𝑡�  as well.  

Figure 3.2 shows how our model works. We obtain the upper bound and lower 

bound by past observations. When the output 𝑦𝑦𝑡𝑡�  exceeds upper bound or lower bound, 

the filter structure picks ‘inaccurate data’ (e.g., point 2, 4 and 9 in figure 2) and we use 

output generated by the mean of past observations to replace the original output 𝑦𝑦𝑡𝑡� .  

 

 

Figure 3.2: Upper bound and lower bound of workload 

An optional filter structure we take into consideration is Logistic Regression. The 

formula of logistic regression is as following: 

𝑃𝑃(𝑌𝑌 = 1) =
𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑋𝑋

1 + 𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑋𝑋
 (3-20) 

Also, it can be expressed in Log format: 

𝑙𝑙𝑙𝑙𝑔𝑔 �𝑃𝑃(𝑌𝑌 = 1)
1 − 𝑃𝑃(𝑌𝑌 = 1)� � = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋 (3-21) 

Logistic regression is a model applied to categorical dependent variables, such as 

lose/win, fail/pass or low/high. In our model, we use logistic regression to judge the 

forecast value, which comes from the hybrid model, is inaccurate or accurate.  

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

UB and LB

original output LB UB



32 
 

In summary, there are three steps for obtaining the final outputs: 

Step 1, using ARIMA to compute linear part of time series, 𝐿𝐿�𝑖𝑖, and using ANNs to 

compute nonlinear part, 𝑁𝑁�𝑖𝑖; 

Step 2, regressing 𝐿𝐿�𝑖𝑖  and 𝑁𝑁�𝑖𝑖  on 𝑦𝑦𝑖𝑖 , we can obtain 𝑦𝑦𝚤𝚤�  by plugging 𝐿𝐿�𝑖𝑖  and 𝑁𝑁�𝑖𝑖  in 

regression model; 

Step 3, judging 𝑦𝑦𝚤𝚤�  obtained from step 2 is ‘accurate’ or not, using past mean value 

to replace inaccurate data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Flow chart of Hybrid-Filter model 

At time t, we use historical data to enumerate the value of 𝛼𝛼 from 0 to 3 and 

record the best result with 𝛼𝛼; this 𝛼𝛼 will be applied in next time. This procedure will 

repeat before determining the accurate of 𝑌𝑌𝑡𝑡�  every time. 

Compute 𝐿𝐿𝑡𝑡 by ARMA 
Compute 𝑁𝑁𝑡𝑡 by ANN 

 

𝑌𝑌𝑡𝑡�  is 
accurate ? 

 

Historical data  𝑌𝑌𝑡𝑡−1, 𝑌𝑌𝑡𝑡−2,… 
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Final output  

Replace 𝑌𝑌𝑡𝑡�  by the mean of 
past observations 

Compute 𝑌𝑌�𝑡𝑡 with regression 
model 

No 
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For allocating the resources of the hospital, the managers need to obtain the 

forecast value several days or weeks in advance, to make the results meaningful, we will 

forecast from every single day to every 10 days (2 weeks). As the properties of ANNs, 

every time we will obtain a different result, therefore, whenever we use ANNs to forecast, 

we will repeat 10 times and use the mean value of these 10 series data to compare with 

other methods.  

In this thesis, we use Matlab R2014a to construct the Hybrid-Filter model. 

3.4 Evaluation method 

There are lots of evaluation methods for measuring the errors. However, not all of 

them are suitable for this paper. The first one is Mean Forecast Error (MFE), it presents 

as: 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑡𝑡
�𝑒𝑒𝑡𝑡

𝑛𝑛

𝑡𝑡=1

 (3-22) 

𝑒𝑒𝑡𝑡 : the error between actual and forecast value; 

In MFE, it shows the forecast bias, when the MFE equals to zero, the performance 

is best, but the effects of positive and negative errors cancel out.  

Mean Absolute Error (MAE) is another measure, the formula is: 

  

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑡𝑡
� |𝑒𝑒𝑡𝑡|
𝑛𝑛

𝑡𝑡=1

 (3-23) 

 

It presents the magnitude of errors, which are between forecasting values and 

actual values. When the MAE computed from a set of data is smaller, the better the result 
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is. However, MAE is dependent on the scale of observations; we cannot apply it when 

compare the different scales of data.  

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑡𝑡
�𝑒𝑒𝑡𝑡2
𝑛𝑛

𝑡𝑡=1

 (3-24) 

 

The Mean Squared Error (MSE) will generate extreme large errors because of the 

square. The feature of this evaluation method is that the weights of large errors are much 

more expensive compared with value with small errors. 

As all data in this case study are positive and much greater than zero, the MAPE 

may be preferred for evaluating the accuracy of the forecast (Hyndman & Koehler, 2006). 

Therefore, in this case study, we use MAPE (mean absolute percentage error) as the 

measurement of accuracy. The formula is as follows: 

 

𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀 =
1
𝑡𝑡
� |𝑒𝑒𝑡𝑡/𝑦𝑦𝑡𝑡|
𝑛𝑛

𝑡𝑡=1

 (3-25) 

𝑦𝑦𝑡𝑡 : denotes the actual value. 

Compared with other measurements, MAPE is independent of the scale of 

measurement and extreme forecast errors will not be panelized. 

To evaluate the inefficient cost, we construct functions and they are described as 

follows: 

 

𝐶𝐶 =  𝑂𝑂𝑗𝑗𝑗𝑗𝑖𝑖 + ℎ ∗ 𝑢𝑢𝑗𝑗𝑗𝑗𝑖𝑖  (3-26) 
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𝑂𝑂𝑗𝑗𝑗𝑗𝑖𝑖 = max {𝑡𝑡𝑗𝑗𝑗𝑗𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑗𝑗𝑖𝑖 , 0} (3-27) 

𝑢𝑢𝑗𝑗𝑗𝑗𝑖𝑖 = max {𝑥𝑥𝑗𝑗𝑗𝑗𝑖𝑖 − 𝑡𝑡𝑗𝑗𝑗𝑗𝑖𝑖 , 0} (3-28) 

 

C : inefficient cost 

𝑂𝑂𝑗𝑗𝑗𝑗𝑖𝑖  : over-time of surgeon k in i-th day in week j 

𝑢𝑢𝑗𝑗𝑗𝑗𝑖𝑖  : idle time of surgeon k in i-th day in week j 

𝑡𝑡𝑗𝑗𝑗𝑗𝑖𝑖  : actual workload of surgeon k in i-th day in week j 

𝑥𝑥𝑗𝑗𝑗𝑗𝑖𝑖  : assigned workload of surgeon k in i-th day in week j 

h : cost ratio over-time cost / idle time cost. 

We will calculate the inefficient cost of several surgical groups with forecast 

workload, and compare the inefficient generated by different methods. 

In next section, we will present empirical experiments with the results. 
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Chapter 4 Case Study 

In this section, we carry out two case studies to provide solid results to support 

our Hybrid-Filter model. The first case study is to prove the superiority of our Hybrid-

Filter model; we compare the results with ARIMA and ANNs. Also, a new time series 

data are generated randomly follow the features of original time series. The objective is 

to prove that our model can be applied in different condition. 

The second case study, we defined ‘inefficient cost' to evaluate the performances 

in the application. Using three forecast methods, we generate three inefficient cost. The 

results are presented to support the point that our Hybrid-Filter model is efficient in this 

application problem. 

4.1 Case study on forecasting accuracy 

4.1.1 Data generation 

We have collected 365-day historical OR data from UK Healthcare. Extracting the 

data on weekends and holidays, data of 245 days are left. Given,  

i : index for cases i=1,…,I; 

j : index for ORs j=1,…,J; 

d : index for days d=1,2,3,4,5; 

w : index for weeks w=1,…,W; 

𝑝𝑝𝑤𝑤𝑑𝑑
𝑖𝑖𝑗𝑗  : processing time of case i in OR j of d-th day w-th week, in minute; 

𝑦𝑦𝑤𝑤𝑑𝑑 : forecast total time of cases of w-th week, in minute. 

The duration of a case is defined as:  

𝑝𝑝𝑤𝑤𝑑𝑑
𝑖𝑖𝑗𝑗 = 𝑝𝑝𝑤𝑤𝑑𝑑𝑤𝑤

𝑖𝑖𝑗𝑗 − 𝑝𝑝𝑤𝑤𝑑𝑑𝑤𝑤
𝑖𝑖𝑗𝑗 , (4-1) 
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where 𝑝𝑝𝑤𝑤𝑑𝑑𝑤𝑤
𝑖𝑖𝑗𝑗  denotes the time when the surgery is completed, 𝑝𝑝𝑤𝑤𝑑𝑑𝑤𝑤

𝑖𝑖𝑗𝑗  denotes the 

time when the surgery is start. 

4.1.2 Normality tests 

As mentioned before, we integrate the concept of Statistical Process Control 

Charts to improve our forecast accuracy further. Because of the concept of Statistical 

Process Control Charts, if a series of data generated by stationary process that follow a 

normal distribution, we can assume that about 68% of future data to fall within ±1 

standard deviation around the mean value, 95% of future observations which are between 

±2 standard deviation around the mean value, and approximate 99% of future data fall 

within ±3 standard deviation around the mean value. Under these principles, we can 

filter extreme values, which is more likely to generate large errors between forecast value 

and actual value. Thus the assumption of normal distribution is necessary when we 

construct a quality control charts.  

From the original data of UK healthcare, the total case time per day is 1.5107e4 ± 

1.5784e3 min. To test the normality of original time series, test and Kolmogorov-

Smirnov test are carried out to test the normality using SPSS 19.0.  

Jarque-Bera  test (JB-test) is applied to determine whether the sample data present 

the same skewness and kurtosis as the normal distribution (Jarque & Bera, 1987). The 

statistic of JB test is described as following: 

𝐽𝐽𝐽𝐽 = 𝑛𝑛−𝑗𝑗+1
6

(𝑀𝑀2 + 1
4

(𝐶𝐶 − 3)2) (4-2) 

Where n denotes the number of observations; S is the skewness of sample data; C 

is the value of kurtosis of sample data, and k is the number of regressors. 
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In Kolmogorov–Smirnov (KS) test, the probability distributions of one-

dimensional sample data are used to compare a sample with a reference probability 

distribution. The following tables present the statistic of the sample data. 

Table 4.1: Statistics of total case time per day 

 Statistic Std. Error 
Mean 15107.03 100.84 

95% Confidence 
Interval for Mean 

Lower Bound 14908.39  
Upper Bound 15305.65  

5% Trimmed Mean 15105.05  
Median 15133.00  

Variance 2491350.38  
Std. Deviation 1578.40  

Minimum 10507.00  
Maximum 19806.00  

Range 9299.00  
Interquartile Range 2081.00  

Skewness -.028 .156 
Kurtosis .128 .310 

 
In statistics, we use skewness to measure the asymmetry of the probability 

distribution about its mean. The value of skewness can be positive and negative. The 

skewness can be computed as: 

𝛾𝛾1 = 𝑀𝑀 ��
𝑋𝑋 − 𝜇𝜇
𝜎𝜎

�
3

� =
𝜇𝜇3
𝜎𝜎3

 

(4-3) 

=
𝑀𝑀[(𝑋𝑋 − 𝜇𝜇)3]

(𝑀𝑀[(𝑋𝑋 − 𝜇𝜇)2])3 2�
 

Where X is a random variable from sample data, 𝜇𝜇 is the mean value, 𝜎𝜎 is the 

standard deviation, E is the expectation operator, 𝜇𝜇3 denotes the third central moment. 

The n-th central moment is defined as: 

𝜇𝜇𝑛𝑛 = E[(𝑋𝑋 − E(𝑋𝑋))𝑛𝑛] 
(4-4) 

= � (𝑥𝑥 − 𝜇𝜇)𝑛𝑛𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
+∞

−∞
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Similarly, kurtosis is a measurement of the ‘tailedness’ of a distribution. In 

another word, Kurtosis describes the shape of a probability distribution. The formula to 

calculate kurtosis is as following: 

𝐾𝐾𝑢𝑢𝐾𝐾𝑡𝑡[𝑋𝑋] =
𝜇𝜇4
𝜎𝜎4

 

(4-5) 

=
𝑀𝑀[(𝑋𝑋 − 𝜇𝜇)4]

(𝑀𝑀[(𝑋𝑋 − 𝜇𝜇)2])2
 

 

Generally, the value of skewness and Kurtosis between -2 and +2 is considered 

acceptable in order to prove the normality of sample data using SPSS. Obviously, -0.028 

and 0.128 are within the range. 

 
Figure 4.1: Histogram of total case time per day 

From histogram in Figure 4.1, the total case time per day is approximately 

symmetrical around the mean value. Figure 4.1 also supports the result of skewness in 

Table 4.1. Thus  we consider it as an approximate normal distribution time series. 
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Table 4.2: Percentiles of original data 

 5 10 25 50 75 
Weighted 
Average 12252.30 12859.40 14088.00 15133.00 16169.00 

Tukey's Hinges   14089.00 15133.00 16155.00 
 

 90 95 
Weighted Average 17040.60 17708.00 

Tukey's Hinges   
 

Table 4.3: Extreme values of original data 

  Case Number Value 
Highest 1 213 19806.00 

 2 138 19616.00 
 3 163 18897.00 
 4 140 18882.00 
 5 193 18243.00 

Lowest 1 15 10507.00 
 2 236 11389.00 
 3 23 11745.00 
 4 17 11878.00 
 5 204 11894.00 

 
Table 4.4: Tests of Normality 

Kolmogorov-Smirnov Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 
.044 245 .200 .996 245 .698 

 

From Table 4.4 the sigma value of Kolmogorov-Smirnov test is 0.200 which is 

larger than 0.05. The result shows there are no significant differences between the normal 

distribution and the sample data. Thus the decision of Kolmogorov-Smirnov test is 

retaining the null hypothesis at 5% level. Similarly, the sigma value of Shapiro-Wilk test 

is also larger than 0.05, and the null hypothesis, which the sample data is a normal 

distribution, is maintained.  
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Figure 4.2: Normal Q-Q Plot  

 

 
Figure 4.3: Detrended Normal Q-Q Plot 

 

 
Figure 4.4: Box plot of total case time per day 
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From Figure 4.2, we can find the points presented the normal Q-Q plot distribute 

around the diagonal. The Q-Q plots in Figure 4.2 verify the conclusion above.  

4.1.3 Results of case study one 

For examining the applicability and generality of the Hybrid-Filter, we use the 

above features of the original data to generate a new random time series. There are 300 

observations in the new set of time series, and it follows normal distribution with the 

mean value of 1.5084e4 and standard deviation of 1.6002e3.  

In the first case study, we are going to investigate how the hybrid model performs 

among three models (i.e., ARIMA, ANNs & Hybrid filter). We compare the results 

generated by ARIMA, ANNs and Hybrid filter. As we mentioned in the previous chapter, 

the errors between forecast value and actual value are evaluated by MAPE. The MAPE 

can be described as follows: 

𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀 =
1
𝑡𝑡
� |𝑒𝑒𝑡𝑡/𝑦𝑦𝑡𝑡|
𝑛𝑛

𝑡𝑡=1

 (4-6) 

 

𝑒𝑒𝑡𝑡: the error between actual and forecast value; 

𝑦𝑦𝑡𝑡: the actual value. 

As the ANNs model always output different values, we repeat the ANN model 10 

times to obtain 10 series of data, and then compute the average value of these data. Thus 

the final outputs of ANNs are the mean value of 10 series of data. The original time series 

is denoted by S1, and the new randomly generated time series is denoted by S2. 

Table 4.5 presents the MAPE when the three methods are applied on one-step 

ahead forecasting (i.e., forecast one day in advance). Although we apply our Hybrid-
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Filter model on a different time series with similar features, the performance of our 

model is still better than the other two methods.  

Table 4.5: Comparing the MAPE of different methods & time series 

 ARIMA ANNs Hybrid-Filter 

MAPE of S1 11.52% 10.64% 8.51% 
MAPE of S2 12.50% 10.99% 9.78% 

 

Table 4.6: Comparing the MAPE of S2  

 ARIMA ANNs Hybrid-Filter 

MAPE 12.50% 10.99% 9.78% 
MAPE≤5% 23.93% 28.93% 30.57% 
MAPE≤10% 48.57% 57.86% 60.00% 
MAPE≤15% 67.97% 79.62% 80.00% 
MAPE≤20% 81.85% 85.35% 89.43% 
MAPE>20% 18.15% 14.65% 10.67% 

 

From Table 4.6, the MAPE generated by ARIMA is 12.50%, 10.99% by ANNs, 

and 9.78% by Hybrid-Filter model. Comparing with ARIMA, the error generated by 

ANNs reduces 12.08%, and the error of the Hybrid-Filter model reduces 21.76%. 

In another view, the Hybrid-Filter model obtains more accurate data than ARIMA 

and ANNs, the percentages of MAPE is less than 5% are 23.93%, 28.93%, 30.57%, the 

percentages of MAPE which is between 5% and 10% are 24.64%, 28.93%, 29.43%. Also, 

when we focus on the extreme value, our model avoids extreme large bias from the actual 

value as well, because of the percentages of MAPE larger than 20% are only 10.67%; the 

percentage reduces 41.21% (compared with ARIMA) and 27.17% (compared with 

ANNs). Obviously, as the Hybrid-Filter model generates more accurate data and less 

inaccurate data, our model outperforms among these 3 models. 
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For allocating the resources of the hospital, the managers need to obtain the 

forecast value several days or weeks in advance. Therefore, we are going to investigate 

how these three models perform while we forecast the workload from 1 day to 10 days (2 

weeks) ahead. The results are measured by MAPE. 

 

Figure 4.5: MAPEs (S1) of ARIMA with different days in advance 

 

Figure 4.6: MAPEs (S2) of ARIMA with different days in advance 

From Figure 4.5 and 4.6, when we apply ARIMA model, the error will increase 

while the forecast period increase. Both of the above two linear regression models show a 

strong increasing trend with a positive coefficient. That means when we want to make a 
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long-term forecast with ARIMA model, the error will go very high so that ARIMA model 

is inapplicability in multi-step forecasting. 

 

Figure 4.7: MAPEs (S1) of ANNs with different days in advance 

 

Figure 4.8: MAPEs (S2) of ANNs with different days in advance 

Figure 4.7 and 4.8 present opposite trend of the MAPEs generated in different 

cases. However, the coefficients are relatively small compared with ARIMA. To some 

extent, we consider the MAPEs of ANNs are stochastic and without any linear trend. 
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Figure 4.9: MAPEs (S1) of Hybrid-Filter with different days in advance 

 

Figure 4.10: MAPEs (S2) of Hybrid-Filter with different days in advance 

From figures 4.8 and 4.9, although the trend of these two models is declining, the 

absolute value of coefficient is quite small compared with ARIMA. Generally, the 

MAPEs keep consistent when the number of days in advance increase. Thus, compared 

with ARIMA, Hybrid-Filter and ANNs are better when applied to multi-days in advance 

forecasting. 
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Figure 4.11: MAPEs (S1) of different methods 

 

Figure 4.12: MAPEs (S2) of different methods 

Table 4.7: Comparison of MAPEs (S1) with different days ahead 

Days in advance ARIMA ANNs Hybrid-Filter 

1 11.53% 10.64% 9.02% 
2 13.03% 10.92% 9.09% 
3 13.32% 10.86% 8.77% 
4 13.59% 10.70% 9.24% 
5 12.73% 11.26% 8.78% 
6 17.33% 11.58% 8.76% 
7 13.99% 10.79% 8.85% 
8 14.81% 11.70% 8.68% 
9 15.35% 11.44% 9.44% 
10 14.58% 12.06% 8.81% 
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Table 4.8: Comparison of MAPEs (S2) with different days ahead 

Days in advance ARIMA ANNs Hybrid-Filter 

1 12.50% 10.99% 9.78% 
2 12.65% 11.02% 9.94% 
3 13.17% 11.08% 9.91% 
4 12.70% 11.03% 9.67% 
5 13.25% 10.84% 9.73% 
6 13.54% 10.96% 9.88% 
7 12.98% 10.97% 9.59% 
8 13.50% 10.68% 9.68% 
9 15.09% 10.90% 9.71% 
10 14.39% 10.29% 9.50% 

 

From Figure 4.11 and 4.12, it is obviously that our model always performs best 

among these three methods. The differences between ARIMA and Hybrid-Filter model 

become larger and larger. Predictably our model will maintain the superiority. Table 4.7 

and Table 4.8 present the MAPEs of three models in different forecast period. As the 

forecast period increase, the accuracy of ANNs and Filter keeps steady while the MAPE 

of ARIMA increase very high.  

Table 4.9: P values of one tail t-test (S1) 

Days in advance ARIMA_Hybrid-Filter ANNs_Hybrid-Filter 

1 0.0146 0.036586 
2 0.0017 0.037991 
3 0.0001 0.014469 
4 0.0010 0.074817 
5 0.0018 0.022846 
6 0.0000 0.003817 
7 0.0001 0.029218 
8 0.0000 0.004413 
9 0.0000 0.035826 
10 0.0000 0.004236 
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Table 4.10: P values of one tail t test (S2)  

Days in advance ARIMA_Hybrid-Filter ANNs_Hybrid-Filter 

1 0.0448 0.2602 
2 0.0004 0.0729 
3 0.0000 0.0609 
4 0.0002 0.0333 
5 0.0002 0.0686 
6 0.0002 0.0712 
7 0.0002 0.0324 
8 0.0001 0.0814 
9 0.0000 0.0531 
10 0.0000 0.1239 

 

Table 4.9 and Table 4.10 present the P values of one tail t-test. The null 

hypotheses are the MAPEs generated by ARIMA are smaller than Hybrid-Filter model, 

and the MAPEs generated by ANNs are smaller than Hybrid-Filter model. As is shown in 

the table, in time series S1, the MAPEs of ARIMA are always significantly larger than 

MAPEs of Hybrid model at 95% confidence level. In time series S2, except one-step 

ahead forecasting, the MAPEs of ARIMA are significantly larger than MAPEs of Hybrid 

model at 95% confidence level as well. When compared with ANNs, from Table 4.9, we 

found that in half cases, our model improves the performance significantly at 95% 

confidence level; 9 of 10 cases improve the accuracy significantly at 90% confidence 

level. But in time series S2, only 2 cases improve the forecasting accuracy at 90% 

confidence level. As the time series S2 is generated randomly, some underlying 

relationships from original time series S1 are broken. Despite the fact that we obtained 

worse performances in time series S2 compared with S1, the results did not present 

negative effect on our model. 
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Figure 4.13: Extension to 20 steps of MAPEs of different methods 

To investigate if the MAPEs will converge, we extend the steps from 10 to 20. 

From Figure 4.13, we found that the MAPEs of ARIMA are around 19% when the steps 

extend to 20, and they still have an increasing trend. The MAPEs of ANNs are around 

12%, compared with the result of one step, the errors also increase about 13%. The errors 

of Hybrid-Filter model are more stable compared with the other two models, because the 

difference of MAPEs between 1 step and 20 steps is only 1.77%. 

4.2 Case study on application to Operating room 

In this case study, we are going to reduce the over-utilized cost and idle time cost 

of OR with forecasting the workload of a surgical group. There were 189 surgeons in 

operations during 6.3.2013 to 5.30.2014 in UK healthcare. To simplify the problem, we 

choose surgeons ID# 2744, 1822 and 677 who operated the most surgeries among 189 

surgeons. 

In practice, there are two methods for surgery scheduling, which are block 

scheduling and open scheduling (Cardoen, Demeulemeester, & Belien, 2008). In the case 

of block scheduling system, each surgeon allocates the block time according to a periodic 

schedule, which is weekly or monthly, until the next period (multiple weeks or months). 
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In this condition, while the surgery is determined to be completed within the block time, 

the surgeons will schedule the case in their blocks. In the case of an open scheduling 

system, the surgeons request block times to OR for each case, and add the scheduled case 

time to an available OR on a first-come, first-serve basis. In this thesis, we follow the 

open scheduling method in this case study. 

4.2.1 Evaluation method 

To evaluate the results, we define an ‘inefficient cost'; the cost can be described as 

following: 

C =  ℎ ∗ 𝑂𝑂𝑤𝑤𝑗𝑗𝑑𝑑 + 𝑢𝑢𝑤𝑤𝑗𝑗𝑑𝑑  (4-6) 

𝑂𝑂𝑗𝑗𝑗𝑗𝑖𝑖 = max {𝑡𝑡𝑤𝑤𝑗𝑗𝑖𝑖 − 𝑥𝑥𝑤𝑤𝑗𝑗𝑖𝑖 , 0} (4-7) 

𝑢𝑢𝑗𝑗𝑗𝑗𝑖𝑖 = max {𝑥𝑥𝑤𝑤𝑗𝑗𝑖𝑖 − 𝑡𝑡𝑤𝑤𝑗𝑗𝑖𝑖 , 0} (4-8) 

Where, 𝑂𝑂𝑤𝑤𝑗𝑗𝑑𝑑  denotes over-time of surgeon k in d-th day in week w, 𝑢𝑢𝑤𝑤𝑗𝑗𝑑𝑑  denotes 

over-time of surgeon k in d-th day in week w, 𝑡𝑡𝑤𝑤𝑗𝑗𝑑𝑑  is the actual workload of surgeon k in 

d-th day in week w and 𝑥𝑥𝑤𝑤𝑗𝑗𝑑𝑑  is the assigned workload of surgeon k in d-th day in week w, 

h is the cost ratio of over-time over idle time. In most cases, h is around 1.75 (Hosseini & 

Taaffe, 2015). 

4.2.2 Results of case study 

We forecast the workload of each surgeon and calculate the inefficient cost with 

an actual workload, and then compare the ‘inefficient' cost obtained by different forecast 

methods. 

As surgeons only worked three or two days per week, so that after we exclude 

holidays and weekends, totally 273 observations are available (40 weeks). Among 273 

observations, the first 15 data are used as historical data for training models. By the end 
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of the week, day T, we forecast the surgeon’s workload in next week (workload on T+1, 

T+2, T+3), and then the surgeons apply the operating room with an estimating value of 

their workload. 

Table 4.11: MAPE of different methods 

Forecasting method MAPE 

ARIMA 30.49% 

ANNs 24.65% 

Hybrid-Filter 21.52% 

 

At first, we compare the error of these three methods. From Table 4.11, we found 

that the ARIMA generated the largest error, 30.49%. Comparing with ARIMA, the 

MAPE of Hybrid-Filter decreases 29.42% and comparing with ANNs; it decreases 

12.70%. Obviously, our model outperforms among these methods and improves the 

performance significantly. 

As mentioned before, an optional filter is logistic regression model. To examine 

which filter is better in application problem, we integrate logistic regression model into 

the hybrid model instead of the control charts. In this case study, we define the MAPE is 

larger than 10% as ‘inaccurate’ output; oppositely, the MAPE which is less than 10% is 

‘accurate’ output. 

The first method is using logistic model to replace the original ‘filter structure’, 

named Hybrid-Logistic model. Another is combining filter and a logistic regression 

model, called Hybrid-Filter & Logistic model. In Hybrid-Filter & Logistic model, we use 

original filter structure to pick the value, which exceeds lower bound or upper bound first 
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and then looking for ‘inaccurate' with a logistic regression model. The third method is 

Hybrid-Filter model, which is proposed in the previous section. 

Table 4.12: MAPE of different filter 

Forecast method MAPE 

Hybrid-Logistic 22.32% 
Hybrid-Filter & Logistic 25.17% 

Hybrid-Filter 21.52% 
 

From Table 4.10, the MAPE generated by Hybrid-Logistic model is 22.32%, 

improved 9.45% compared with ANNs and 26.8% compared with ARIMA. The MAPE 

of Hybrid-Filter & Logistic is 25.17%, even worse than ANNs because the function of 

filter and logistic is overlapping. As the performances of Hybrid-Logistic and Hybrid-

Filter are close, only 3.58% difference between these two methods, it is difficult to tell 

which one is better. However, in an application problem, we can compare the 

performance of each method and choose a better one. 

Table 4.13: Inefficient cost of different methods (h is from 1 to 2) 

h ARIMA ANNs Hybrid-Filter 

1.00 19518.29 15993.93 13162.89 
1.25 22061.79 17878.81 14876.96 
1.50 24605.28 19763.69 16591.04 
1.75 27148.77 21648.56 18305.12 
2.00 29692.27 23533.44 20019.2 

 

Table 4.14: Comparing results with ARIMA and ANNs (h is from 1 to 2) 

h (ARIMA-Hybrid)/ARIMA% (ANNs-Hybrid)/ANNs% 

1.00 32.56% 17.70% 
1.25 32.57% 16.79% 
1.50 32.57% 16.05% 
1.75 32.57% 15.44% 
2.00 32.58% 14.93% 



54 
 

 

As the value of h affects the inefficient cost, we compare the results with different 

h. Table 4.13 and 4.14 present the results of inefficient cost generated by three forecast 

models. From the above tables, the Hybrid-Filter model always performs best with the 

lowest inefficient cost. When the h increases, the differences between ANNs and hybrid 

model decrease. In Table 14, we compute the percentage differences between each two 

methods; the results show that the over-time cost generated by our model is larger than 

ANNs', or, the ANNs generate more idle time cost compared with the Hybrid-Filter mode. 

This information can be used to further improve our model. 

In this case study, the Hybrid-Filter model takes advantages of each single 

forecasting method, ARIMA and ANNs. The ability of modeling linear and nonlinear 

time series contribute to obtaining the better performances. Besides, a filter structure is 

integrated into the model to further improve the performance. The results prove the 

effectiveness of the Hybrid-Filter model. Thus, when we apply our Hybrid-Filter model 

to multi-steps-ahead forecasting in complicated time series, our model outperforms other 

models in practice. 
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Chapter 5 Conclusion and future works 

5.1 Conclusion and results 

Modeling and predicting data with time series are essential in various areas of 

practice, for example, the product demand in mass-manufacture for resource allocation, 

the short-term electricity demand for the electricity supply system, the rainfall and river 

flow for flood prevention, etc. As a result, research on this topic has been active for 

decades, and many classical models proposed to obtain better performance and validity of 

predicting data with time series, such as Autoregressive Integrated Moving Average 

(ARIMA), artificial neural network (ANN), etc. 

Allocating necessary resources to operating rooms (OR) based on a high accuracy 

of demand forecasting is important to OR management, which provides sufficient OR 

block times for surgeons to complete their cases and reduces unnecessary waiting times 

for patients. However, data with time series have different features, such as linearity and 

non-linearity, which are difficult to capture or describe by using a single or simple 

modeling and predicting method (G P Zhang, 2003). It does not exist a general model can 

be applied to every particular problem. 

Besides, because most modeling methods focus on one-step-ahead forecasting, the 

performance in mid-term forecasting (i.e., weekly and biweekly forecasting) is quite bad. 

However, in the OR management system, each surgeon assigned blocks of time in a 

cyclic schedule (weekly or monthly) until the next review period (Cardoen et al., 2008). 

Therefore, for allocating the resources of the hospital, the managers want to obtain the 

demand several days or weeks in advance. A model, which can be applied to mid-term or 
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even long-term forecasting (weeks in advance) with high accuracy, is critical under this 

condition. 

As mentioned before, to describe and model the underlying relationship of time 

series, many classical models are proposed, one basic models is ARIMA model. 

Compared with moving average (MA) and autoregressive (AR) model, ARIMA is more 

flexible to model the feature of the time series. The main drawback of ARIMA is that the 

model always treats the time series as linear. In other words, a linear relationship is 

assumed among the time series. Thus nonlinear patterns cannot be captured and modeled 

by the ARIMA model. Obviously, there does not exist pure linear time series in the real 

world. 

To solve the limitation of ARIMA model, researchers construct several models to 

capture the nonlinearity in time series. For instance, the autoregressive conditional 

heteroscedastic (ARCH) model (Engle, 1982), and the threshold autoregressive (TAR) 

model (Tong, 1983). Although these models improve the ability to describe nonlinear 

time series, we have limited development in nonlinear modeling (De Gooijer & Kumar, 

1992). These methods are constructed for specific time series, and they are not efficient 

when applied to other types of time series. Then ANNs is proposed to overcome these 

shortcomings, compared with ARCH and TAR, the most significant feature of ANNs is 

that ANNs are universally applied model. This is because the ANNs is flexible to model 

various time series. The flexibility of ANNs comes from the parallel processing of the 

information from the data (G P Zhang, 2003). In addition, there is no precondition when 

applying ANNs to time series modeling. 
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Many empirical studies indicate that the accuracy of forecasting can be improved 

by combining several different models (Makridakis et al., 1993; Makridakis & Hibon, 

2000). Therefore, combining different models is a feasible choice of which increase the 

chances of modeling different properties in time series and improve the predictive 

accuracy.  

The advantage of combining similar models together is to obtain a stable model 

with high robustness and enhance the strong point of the similar models (Yu et al., 2005). 

Since we mentioned in the previous paragraph, to deal with the different features in time 

series, we build a hybrid model, which combines the ARIMA and ANNs, to take 

advantages of each single model. The hybrid model is as following: 

𝑦𝑦𝑡𝑡 = 𝛽𝛽1𝐿𝐿𝑡𝑡 + 𝛽𝛽2𝑁𝑁𝑡𝑡 + 𝛽𝛽0 (5.1) 

Here, 𝑦𝑦𝑡𝑡  is actual value at period t, 𝐿𝐿𝑡𝑡  denotes the linear part, and 𝑁𝑁𝑡𝑡  denotes 

nonlinear part, 𝛽𝛽1 and 𝛽𝛽2 are coefficients, 𝛽𝛽0 is the error. 𝐿𝐿𝑡𝑡  is obtained from ARIMA, 

and 𝑁𝑁𝑡𝑡 is computed from ANNs.  

To further improve the forecast accuracy when applied to mid-term forecasting, 

we lead in the concept of Statistical Process Control Chart. Using the past observations, 

we can calculate the upper bound and lower bound with the past mean value and standard 

deviation. The extremely large or small value, which exceeds the upper bound and lower 

bound obtained from the previous procedure, is considered as inaccurate value. We call 

this structure ‘filter’, the function of which is to find the potential inaccurate data, and 

then replacing them with the mean value of several past observations.  

We also provide an optional filter structure, which is logistic regression model. 

Logistic regression is a model applied to categorical dependent variables, such as 
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lose/win, fail/pass or low/high. Here we use logistic regression to judge the forecast value 

is inaccurate or accurate. While applying a logistic regression model, a threshold value is 

set up to distinguish inaccurate data from forecast value, and then the average of past 

observations is used to replace the inaccurate value.  

The filter structure is integrated into our hybrid model to improve the accuracy in 

mid-term prediction. It is beneficial to obtain better results, because the filter structure 

helps to exclude extreme large and small value, which is more likely to generate relative 

high errors.  

We carry out two case studies to examine the priority and applicability of our 

Hybrid-Filter model proposed in previous chapter. In the first case study, to evaluate the 

error, mean absolute percentage error (MAPE) is used because of its properties, such as 

scale independent and non-penalty with extreme values. A new time series is generated 

randomly following the features of original time series, the results from two series data 

will be compared to prove that our Hybrid-Filter model can be used in different condition 

with high accuracy.  

Three methods are proposed in this case study, from the results of Table 5.1 and 

5.2, compared with ARIMA, the MAPE is reduced by 35.49% on average with different 

days in advance in Table 5.1 and 26.94% in Table 5.2. When compared with ANNs, the 

MAPE is reduced by 19.95% and 10.43% in different cases. Notice that the results in 

Table 5.1 are better than Table 5.2. This is because some underlying relationships of time 

series 1are captured by our models, but as time series 2 is generated randomly, the 

underlying relationships are broken. Therefore, we achieve worse results with less 

efficient information in Table 5.2. 
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Table 5.1: Comparison of MAPEs (S1) with different days ahead 

Days in advance ARIMA ANNs Hybrid-Filter 

1 11.53% 10.64% 9.02% 
2 13.03% 10.92% 9.09% 
3 13.32% 10.86% 8.77% 
4 13.59% 10.70% 9.24% 
5 12.73% 11.26% 8.78% 
6 17.33% 11.58% 8.76% 
7 13.99% 10.79% 8.85% 
8 14.81% 11.70% 8.68% 
9 15.35% 11.44% 9.44% 
10 14.58% 12.06% 8.81% 

 

Table 5.2: Comparison of MAPEs (S2) with different days ahead 

Days ahead ARIMA ANNs Hybrid-Filter 

1 12.50% 10.99% 9.78% 
2 12.65% 11.02% 9.94% 
3 13.17% 11.08% 9.91% 
4 12.70% 11.03% 9.67% 
5 13.25% 10.84% 9.73% 
6 13.54% 10.96% 9.88% 
7 12.98% 10.97% 9.59% 
8 13.50% 10.68% 9.68% 
9 15.09% 10.90% 9.71% 
10 14.39% 10.29% 9.50% 

 

The results present in Table 5.1 and 5.2 prove the following points: (1) in 

different cases, our Hybrid-Filter model always performs best with the smallest MAPEs 

among three methods; (2) different from ARIMA, when the number of days in advance 

increasing, the MAPEs of our model keep steady instead of increasing. 
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In the second case study, we extend to an application problem. The objective is to 

reduce the inefficient cost, which is generated by the error between forecasting workload 

and actual workload. The inefficient cost is defined as following: 

C =  ℎ ∗ 𝑙𝑙𝑗𝑗𝑗𝑗𝑖𝑖 + 𝑢𝑢𝑗𝑗𝑗𝑗𝑖𝑖  (5.2) 

𝑙𝑙𝑗𝑗𝑗𝑗𝑖𝑖  is the overtime generated by surgeon k in i-th day in week j, 𝑢𝑢𝑗𝑗𝑗𝑗𝑖𝑖  is the idle 

time generated by surgeon k in i-th day in week j, h denotes the cost ratio of overtime and 

idle time. 

Table 5.3: Inefficient cost of different methods 
h ARIMA ANNs Hybrid-Filter 

1.00 19518.29 15993.93 13162.89 
 

From the results in Table 5.3, compared with ARIMA, our Hybrid-Filter model 

reduces the inefficient cost by 32.56% and the inefficient cost reduce 17.70% of the cost 

generated by ANNs. This case study provides sufficient results to convince us that when 

using our model to solve an application problem, it is still valid and better than other 

proposed methods. 

5.2 Limitations and future work 

Despite we achieve the best performance among the three methods using our 

Hybrid-Filter model, there are still some limitations in our case study. At first, too many 

factors have effects on the final outputs, such as the number of past observations used in 

ARIMA, ANNs and filter structure. It is difficult for us to obtain an optimal combination 

of these numbers, and then applied the combination to our model to generate optimal 

results.  

What’s more, since our model is based on the combination of ARIMA and ANNs, 

thus when we take the advantages of these two models, the disadvantages of these models 
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are also augmented. The disadvantages of ARIMA and ANNs have negative effects on 

the final forecast outputs as well. For example, the computation complexity of ANNs 

makes our model take too much time to compute.  

In the following research, we are going to investigate how to improve the forecast 

efficiency. In other words, we expect higher accuracy with less computation complexity 

and less historical data. Also we are searching a method or principle to determine the 

numbers of historical data used in time series model. Thus we can achieve optimal results 

as long as following the principle. Besides, we expect to integrate more explanatory 

variables to describe the workload. 
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