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ABSTRACT

Aerodynamic shape optimization (ASO) is important in contemporary engineering

design of complex systems such as aircraft and wind turbines. The use of high-fidelity

partial differential equation (PDE) simulations within the design process is becoming the

standard. However, the overall computation cost of the ASO problem can be very high

when considering the following key challenges: (1) time-consuming PDE simulations, (2)

large number of design variables, and (3) conventional optimization require many system

evaluations. Combined these form an optimization problem which may be prohibitive

to solve, even when using high performance computing (HPC) systems. In this work,

a computationally efficient optimization algorithm for aerodynamic design is presented.

In our approach, direct optimization of a computationally expensive model is replaced

by an iterative updating and re-optimization of a fast physics-based replacement model,

following the surrogate-based optimization paradigm. The surrogate is constructed us-

ing a low-fidelity model which is corrected using manifold mapping (MM) to become a

reliable representation of the high-fidelity one during the optimization process. Only one

high-fidelity PDE simulation is required per design iteration. The version of MM utilized

here does not require gradient information. The proposed method is validated and char-

acterized by applying it to several benchmark ASO problems, including lift-constrained

airfoil drag minimization in inviscid and viscous transonic flows, and comparing the re-

sults with state of the art techniques. MM yielded optimized shapes, with 8 B-spline

design variables, that are comparable to the shapes obtained by direct optimization algo-

rithms equipped with adjoint sensitivities and trust regions. In the inviscid benchmark

case, MM needs less than 150 equivalent high-fidelity model evaluations (only flow solu-
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tions), or approximately 460 minutes on a HPC with 32 processors, whereas the direct

algorithm needs 391 high-fidelity model evaluations (flow and adjoint), or approximately

4,494 minutes on the same HPC. In other words, the MM algorithm is an order of mag-

nitude faster than the gradient-based search with adjoint sensitivities in this case. For

the viscous case, MM yields an optimized shape using less than 300 equivalent high-

fidelity evaluations, taking approximately 80 hours on the HPC. In this case, the direct

algorithm is not able to reach a comparably efficient shape. MM is able to handle vector-

valued design problems efficiently. This is demonstrated on a multipoint design problem

as well as on an inverse design problem. The multipoint design shows that the optimized

airfoil outperformed that original airfoil in terms of flight conditions and robustness in

multiple cruise conditions. In the inverse design case, MM needs an order of magnitude

less equivalent high-fidelity model evaluations than a derivative-free algorithm.
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CHAPTER 1. INTRODUCTION

1.1 Motivation and Challenges

Aerodynamic shape optimization is important in contemporary engineering design of

complex systems such as aircraft and wind turbines (see, e.g., [2] and [3]). Nowadays, the

use of high-fidelity partial differential equation (PDE) simulations within the design pro-

cess is becoming the standard. Typically, the main purpose with using high-fidelity PDE

simulations is to capture any nonlinear physics encountered by the system. Moreover,

it may be impossible to rely on prior designs when considering unconventional configu-

rations. In addition, there may be nonlinear couplings with other disciplines within the

system. For example in aircraft, there is a strong coupling between the aerodynamics

and structures which needs to be resolved using accurate PDE simulations. Using ex-

perimental data will be too costly and time-consuming. Therefore, high-fidelity PDE

simulations are essential in modern engineering design.

It is challenging to use high-fidelity PDE simulations as a part of the design process.

Design optimization using numerical techniques is not widely used in industry. In typical

engineering practices, computational models are used in hands-on parametric studies.

One of the reasons for optimization not being widespread is that the sheer computational

cost can be so high that performing automated design optimization in a timely manner

may not be possible, even when using high performance computing (HPC). The key

challenges with automated PDE-constrained design optimization can be summarized as

follows:
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Figure 1.1: Key challenges with automated PDE-constrained design optimization.

• Time-consuming PDE simulations: To illustrate the computational cost, let

us look at two-dimensional transonic flow past an airfoil. Figure 1.1(a) shows a grid

independence study of such a flow past the NACA 0012 airfoil at a fixed lift. The

study shows that grids with at least million cells are needed to accurately reflect the

physics. The computational cost increases rapidly with the grid size and approaches

20 minutes per PDE simulation on HPC with 32 processors. This is a simplified

model of the actual fluid flow. A viscous flow simulator is more appropriate to

represent the real fluid flow. The computational cost will be at least at an order

of magnitude greater with such a solver, bringing the time for one PDE simulation

to around 3 to 4 hours. An even realistic model would be to consider a wing shape

instead of an airfoil shape. This would require a three-dimensional viscous fluid

flow simulation with millions of computational cells, which would increase the cost

by another order of magnitude. This brings the simulation time to around a day

on HPC. Still, the model would not be complete. Components such as the fuselage,
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tail, and nacelles should be included. Clearly, the computational cost will grow,

rendering the use of PDE simulations within the design task even more impractical.

• Large number of design variables: In order to describe the aerodynamic sur-

faces properly and accurately, a large number of parameters may be needed. Fig-

ure 1.1(b) shows an example of a trapezoidal wing which is parameterized using

the Free-form Deformation technique [5]. The number of control parameters (or

design variables) needed to describe a shape like this within a design optimization

task is on the order of one hundred (see, e.g., [4]). The computational cost of an

optimization task depends strongly on the number of design variables as well as

the size of the search space, i.e., the parameter ranges.

• Conventional optimization techniques require many system evaluations:

Gradient-based search techniques [6] are typically used to perform automated PDE-

constrained design optimization. Such techniques often need a large number of

system evaluations to reach a converged design. Moreover, calculations of the

gradients of the objective functions and constraints are required. Calculating the

gradients is expensive. Fortunately, this cost can be reduced dramatically by using

adjoint sensitivity information [7] where the gradients of a functional with respect

to the design variables can be estimated by solving the adjoint equation. In general,

the computational cost of one adjoint simulation is similar to the cost of one pri-

mary flow simulation. However, the adjoint simulation has be performed for each

function. The use of adjoint technology is transformational for aerodynamic design

as the cost of obtaining the gradients is essentially independent of the number of

design variables. However, solving the performing the additional adjoint equation

simulation can still be computationally expensive. Furthermore, the gradient-based

search techniques still need a large number of system evaluations.
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The overall computation cost of the aerodynamic shape optimization problem can be

very high when considering the three challenging facts discussed here above. The combi-

nation of the high computational cost of the PDE simulations and a multi-dimensional

design space constitutes a design problem which can be very impractical to solve with

conventional optimization techniques [8, 3, 9, 10, 11, 12, 13], even when using HPC clus-

ters and adjoint sensitivity information. Therefore, efficient design methodologies are

needed to address this issue.

1.2 Research Contributions

The focus of this research work is in the area of aerodynamic shape optimization,

and the main contributions are follows:

• An aerodynamic shape optimization technique using multi-fidelity computational

fluid dynamics (CFD) models and manifold mapping (MM) [1].

• The proposed technique is implemented in a computational framework which seam-

lessly integrates airfoil geometry generators, computational mesh generators, and

CFD solvers to create an aerodynamic shape design tool.

• The proposed technique is validated and characterized by applying it to bench-

mark design problems and comparing it with state of the art. The benchmark

cases include two cases developed by the AIAA Aerodynamic Design Optimization

Discussion Group1 (ADODG), as well as other problems which highlight the unique

features of the proposed technique, such as inverse design and multi-point design

problems.

• Two different alternatives to optimize the fast multi-fidelity surrogate are investi-

gated.

1https://info.aiaa.org/tac/ASG/APATC/AeroDesignOpt-DG/default.aspx
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1.3 Thesis Outline

The thesis is organized as follows. Chapter 2 gives the background of aerodynamic

design and aerodynamic shape optimization techniques. In Chapter 3, the optimization

methodology is described, including the problem formulation, and the optimization tech-

niques utilized in the course of this study. Chapter 4 presents the results of numerical

applications of the proposed technique to transonic inviscid and viscous problems involv-

ing direct and inverse design of two-dimensional airfoil shapes. Chapter 5 concludes the

thesis.
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CHAPTER 2. BACKGROUND

This chapter briefly describes aerodynamic design in general, and then gives a liter-

ature review of techniques for solving aerodynamic shape optimization problems.

2.1 Aerodynamic Design

Aerodynamic design is an important part of aircraft design. Figure 2.1 shows a gen-

eral flow of the aerodynamic design process. Early attention was mainly focused on

maximizing lift to provide high cruise wing loading requirements of jet transport [14].

Lately, however, the focus has turned to multidisciplinary trade-offs, e.g., the speed of

aircraft, ratio of lift and drag, wing loading, and specific fuel consumption of the en-

gines. Typically, the aerodynamic designer would like to maximize V L/D (where V is

the cruise speed, and L/D is the lift-to-drag ratio) considering the increment of corre-

sponding structure weight [7]. As shown in Fig. 2.1, the inner loop of the aerodynamic

design process involves mesh generation, computational fluid dynamics (CFD) analysis,

visualization and performance evaluations - all of which are time-consuming [15].

Direct design is the most common approach to aerodynamic design. Here, the de-

signer manipulates the shape of the aerodynamic surface to directly minimize (or maxi-

mize) a given figure of merit subject to a set of constraints. In wing (or airfoil) design,

this is done for a given lift coefficient, Mach number, and Reynolds number. Essentially,

this is a single-point, single-objective constrained nonlinear minimization problem. On

the other hand, transport aircraft operate at various operating conditions due to different
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Figure 2.1: A flowchart of the aerodynamic design process.

flight environment and fuel burn requirements [16]. Near the region where single-point

design performs well, efficiency may increase dramatically with small changes in operating

conditions [17]. So, instead of designing for a single point the design can be performed at

all the required operating points. Leading to the so-called multi-point design [18], which

essentially is a multi-point, single-objective constrained nonlinear minimization problem.

Inverse design is another approach to aerodynamic design. It requires a target spec-

ification to be developed, and then the task it to minimize the difference between the

target and current aerodynamic information. For example, a pressure distribution can

be the target, and then the geometry yielding that target distribution is sought by it-

eratively changing the shape to minimize the norm of the difference between the target

and current distributions [19]. The inverse design problem can be ill posed and there is

no guarantee that there exists a solution. Moreover, the target distribution may no yield

the best design in terms of the figures of merit. Furthermore, constructing the target

distribution is not straight forward.

In both direct and inverse design, the underlying problem can be formulated as con-

strained nonlinear minimization. The task is to solve the minimization problem to yield

the optimal aerodynamic design. This is known as aerodynamic shape optimization
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(ASO). Several ASO techniques have been developed in recent years [20]. Next section

gives a brief review of ASO techniques.

2.2 Aerodynamic Shape Optimization Techniques

ASO techniques can be broadly categorized into being either direct approach or

surrogate based approach [21]. Direct optimization (DO) techniques include gradient-

based search (e.g., steepest descent, and sequential quadratic programming [22]) and

derivative-free search (e.g., heuristic algorithms, such as genetic algorithms [23], or pat-

tern search [21]). Derivative-free approaches are very computationally intensive and are

not suitable for ASO. Gradient-based search is the most widely adopted approach to

solve ASO problems. ASO with gradient-based search algorithms was first attempted by

Hicks and Henne back in the mid 1970’s [24]. They developed numerical optimization

algorithms for the design of subsonic and transonic airfoils and wings. The simulation

models used in their studies were state of the art at that time, but are now considered be-

ing low-fidelity methods. The derivatives were calculated using finite difference methods.

In 1988, Jameson introduced adjoint sensitivity to ASO [7]. This technology transformed

ASO as it enabled the calculation of the derivatives independent of the number of design

variables. Gradient-based search using adjoint sensitivities is currently the state of the

art for ASO (see, e.g., [12]).

As mentioned in Chapter 1, there are several reasons why ASO of high-fidelity simu-

lation models can be challenging. Surrogate-based optimization (SBO) [25, 26, 27] aims

at addressing those challenges. The basic idea behind SBO is to replace the direct opti-

mization of the computationally expensive model with an iterative process that involves

the construction, optimization, and updating of a fast surrogate model [21]. Surrogates

models can be broadly divided into two categories: data-driven surrogates, and physics-

based surrogates [21].
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Data-driven surrogates (also called approximation surrogates) are constructed by

approximating sampled high-fidelity model data using techniques such as polynomial

approximation [26], kriging, [28] and neural networks [29]. In order to enhance the

surrogate at global modeling accuracy or global optimum locating accuracy, numerous

methods for allocating additional training points have been developed (see, e.g., Forrester

and Keane [27]). According to the work of Forrester and Keane [27], SBO with data-

driven surrogates can be used as an efficient global optimization technique.

A physics-based surrogate is constructed by correcting or enhancing a low-fidelity

model [30], [31]. The low-fidelity model can be obtained by either using simplified govern-

ing equations or exploiting the high-fidelity model with a coarser computational descrip-

tion [30, 32] and relaxed convergence criteria [32]. The low-fidelity model is subsequently

corrected or enhanced to become a reliable representation of the high-fidelity model by

using certain response correction methods. In the data-driven surrogate approach, a

large amount of data sample is needed to ensure a decent accuracy. The physics-based

surrogates contain information on the underlying physics through the low-fidelity model.

Consequently, physics-based surrogates require less high-fidelity information to set up.

Typically, the high-fidelity model is evaluated only once per design iteration.

Over the last few decades, various correction techniques and related optimization

algorithms have been developed, including the approximation and model management

optimization (AMMO) [30], multi-point correction techniques [33, 34], several variations

of output space mapping (SM) [33], as well as manifold mapping (MM) [1, 35]. Apart

from the aforementioned ones, which are all so-called parametric methods [31] (where

the correction functions are given explicitly with the parameters usually obtained by

explicit calculations or solving auxiliary linear regression problems), a number of non-

parametric technique have been developed, such as the shape-preserving response pre-

diction (SPRP) [36], adaptive response correction (ARC) [37], and adaptive response

prediction (ARP) [38].
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Parametric methods are preferred by many due to their simplicity. Among these,

MM [1, 35] seems to be one of the most interesting because of its capability to accom-

modate available high-fidelity model data accumulated during the optimization run, as

well as having the potential to approximately satisfy the first-order consistency with the

high-fidelity model upon the algorithm convergence. Moreover, MM is capable of han-

dling vector responses [1], making it, potentially, a good candidate for multi-point and

inverse design problems. Despite its potential, MM has not yet been applied to ASO.
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CHAPTER 3. OPTIMIZATION METHODOLOGY

In this chapter, the PDE-constrained optimization problem formulation is given,

and the techniques to solve it are described. In particular, direct and surrogate-based

methods are described. The direct methods include derivative-free and gradient-based

approaches. The surrogate-based methods include data-driven and physics-based ap-

proaches.

3.1 Basic Definitions and Terminology

We start by introducing the basic terminology used throughout the thesis:

Optimization problem: In this work, the optimization problem is looking for the

best solution with respect to specific data given by a set of partial differential equation

(PDE) simulations.

Design variables: The design variables considered in this work are a group of

numerical arguments which are allowed to change during the design optimization. In

general, design variables are often bounded, i.e., they have upper and lowers bounds.

Typically, design variables are categorized into boo-lean, e.g., whether or not to have

a fixed lift coefficient mode in a wing design; discrete, e.g., number of distribution of

control points along the airfoil of the wing; or continuous, e.g., value of displacement of

control points of the wing. The solution method of the optimization problem depends

to some extent on the design variable types. In this work, all the design variables are

continuous.
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Objective function: The objective function represents the problem that is being

solved over the design variables. Conventionally, minimization and maximization prob-

lems are the most popular ones. Usually, the minimization problem is always defined in

the standard form, and the maximization problem can be treated by negating the objec-

tive function. This work considers determining single-objective optimization problems

of the minimization type.

Constraints: Constrained optimization problems are problems where the minimiza-

tion of the objective function are subject to constraints. In general, constraints can be

categorized into two types: equality constraints, and inequality constraints. The opti-

mization problems considered in this work use both types of constraints. In general,

evaluations of the constraints require evaluations of the PDE simulator.

High-fidelity model: The high-fidelity model response function is an output of a

PDE simulation model which is assumed to be accurate and expensive to evaluate.

Low-fidelity model: In contrast to the high-fidelity model, a low-fidelity model is

a fast simplified version of the high-fidelity one. For example, a low-fidelity model can

utilize simplified physics models, coarse mesh resolution and relaxed simulation conver-

gence criteria [39]. In all three problems considered in this work, the low-fidelity models

utilize a combination of a coarse mesh resolution and relaxed simulation convergence

criteria. These are called multi-resolution models [36]. However, it should be noted that

the optimization methodology does not depend on the low-fidelity model type. In this

work, the design variables considered in low-fidelity model are the same as used in the

high-fidelity model.

3.2 Optimization Problem Formulation

The aerodynamic design problems considered in this work involve nonlinear con-

strained optimization of airfoil shapes in two-dimensional transonic flow. The flow simu-
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lations are performed using accurate, but computationally expensive, high-fidelity com-

putational fluid dynamics (CFD) models. The high-fidelity simulations are denoted here

by f. In general, nonlinear constrained optimization problems can be formulated as

x∗ = arg min
x
H(f(x)), (3.1)

s.t. g(x) ≤ 0, h(x) = 0, l ≤ x ≤ u,

where x is the design variable vector of size n × 1, x∗ is the optimized design vector of

size n× 1, H is a scalar valued objective function, f(x) is a m× 1 vector with the figures

of merit, g(x) is a p×1 vector with the inequality constraints, h(x) is a q×1 vector with

the equality constraints, and l and u are the design variable lower and upper bounds,

respectively, both vectors of the same size as x. The vectors f(x), g(x), and h(x) are all

obtained, or derived, from the computationally expensive PDE simulations.

In aerodynamic shape optimization, the high-fidelity simulation model f calculates

the figures of merit. For example, in the two-dimensional case, f can be composed as

follows

f(x) = [Cl.f (x) Cd.f (x) Cm.f (x) A(x)]T , (3.2)

where Cl.f (x) is the high-fidelity non-dimensional lift coefficient, Cd.f (x) is the high-

fidelity non-dimensional drag coefficient, Cm.f (x) is the pitching moment coefficient, and

A(x) is the airfoil cross-sectional area. The subscript f denotes the high-fidelity model.

In the case of a drag minimization problem, the objective function in problem (3.1) is

set as

H(f(x)) = Cd.f (x). (3.3)

The inequality constraints are set as

g1(x) = Cm.min − Cm.f (x) ≤ 0, g2(x) = Amin − A(x) ≤ 0, (3.4)
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where Cm.min is a minimum allowable pitching moment coefficient, and Amin is a mini-

mum cross-sectional area. The equality constraint is

h1(x) = Cl.t − Cl.f (x) = 0, (3.5)

where Cl.t is a target lift coefficient set by the designer. Here, the angle of attack, α, is

used as a dummy variable to find the target lift coefficient value. All the constraints are

handled directly in the optimization process.

3.3 Direct Optimization

Direct optimization can be broadly categorized into derivative-free and gradient-based

search approaches [31]. Methods of the derivative-free type are typically more costly than

their gradient-based counterparts, but have the benefit of being more immune to numer-

ical noise. The latter may be present when using CFD simulation models, especially

with coarse CFD model discretization. Due to the availability of adjoint technology [7],

it is possible to perform direct gradient-based optimization of computationally expensive

simulation models. Using this technology, the cost of obtaining the gradients is almost

equivalent to one flow solution for any number of design variables.

The flowchart of a generic direct optimization algorithm is shown in Fig. 3.1 and has

the following main steps

1. Consider the initial design and evaluate the objective function in terms of the

high-fidelity simulation model at this design with the constraints.

2. Update the design variables and evaluate the objective function again using the

high-fidelity model. Save the current design if the constraints are met. Try the

next design if not satisfied.

3. Repeat the loop until the termination condition is satisfied.
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Figure 3.1: A flowchart of the direct optimization algorithm.

Note that in most cases, the high-fidelity simulation has to be evaluated in order to

obtain the constraint terms. Also, obtaining the adjoint solution is an additional cost

incurred during an evaluation of the high-fidelity PDE simulation.

3.3.1 Gradient-based search

Gradient-based search methods are widely used in ASO due to the availability of

adjoint technology [7]. We use gradient-based search with adjoints for comparison with

the optimization technique proposed in this work.

Direct gradient-based search is performed iteratively in this work as follows [21]

x(i+1) = arg min
x,||x−x(i)||≤δ(i)

H(s(i)), (3.6)

where x(i), i = 0,1,..., is a sequence of approximate solutions to the problem (3.1),

whereas s(i)(x) is a linear expansion of f(x) at x(i) defined as

s(i)(x) = f(x(i)) +∇f(x(i)) · (x− x(i)), (3.7)
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where∇f(x(i)) is the gradient of f at the reference design x(i). ∇f(x(i)) (applies separately

for the drag and lift coefficient) is obtained by the adjoint equation [7]. The linear model

(3.7) satisfies the zero- and first-order consistency conditions with the function s(i)(x) at

x(i), i.e.,

s(i)(x(i)) = f(x(i)), (3.8)

and

∇s(i)(x(i)) = ∇f(x(i)). (3.9)

Optimization of the linear model is constrained to the vicinity of the current design

defined as ||x − x(i)|| ≤ δ(i), with the trust region radius δ(i) adjusted adaptively using

standard trust region rules [40]. The termination conditions for the algorithm (3.6) are:

(i)||x(i)−x(i−1)|| < εx, (ii)|H(i)−H(i−1)| < εH , (iii)δ(i) < εδ, where εx, εH , and εδ are

user defined convergence tolerances. For direct optimization of the aerodynamics design

benchmark problems given in Chapter 4, we use: εx = 10−6, εH = 10−7, and εδ = 10−6.

The solution of algorithm (3.6) with the model (3.7) is carried out using the MATLAB

fmincon algorithm [41]. MATLAB fmincon [41] utilizes several optimization algorithms

(depending on the user preference as well as the scale of the problem at hand). These in-

clude a trust region reflective algorithm where the objective function is represented using

its linear or quadratic expansion models optimized using standard trust region rules [40],

a sequential quadratic programming (SQP) algorithm, where the original problem is

solved iteratively by replacing the original objective function (and nonlinear constraints)

by their respective local quadratic models (linear for constraint functions), as well as

an interior point algorithm, where the original constrained problem is replaced by a se-

quence of approximate minimization problems using a barrier method. In this work, we

use the interior point algorithm.
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3.3.2 Derivative-free search

Derivative-free search methods do not require gradient information, so it can be more

immune to numerical noise than gradient-based approaches. Moreover, derivative-free

methods can handle discontinuous function better. However, in most cases, derivative-

free algorithms require greater amount of high-fidelity simulation evaluations to find

the optimum than the gradient-based ones. Some widely used global search algorithms

include genetic algorithms (GAs) [42], and particle swarm optimization [43, 44]. For

local search algorithms, the pattern search algorithm [42] is widely used.

We use the pattern search algorithm [42] in this work for (i) comparison purposes,

and (ii) to drive our proposed multi-fidelity algorithms (described in Section 3.6). The

pattern search algorithm [42] is a stencil-based local optimization method that explores

the neighborhood of the current design point. A rectangular grid (i.e., one point in each

direction and in each dimension) is used in our implementation. The search process

utilizes grid-constrained line search with the search direction determined using the ob-

jective function gradient estimated from perturbed designs. In case of a failure, the best

perturbation (if better than the current design) is selected. Finally, the grid is refined

in case the poll step does not lead to an improved design. The poll stage of the pattern

search process is illustrated in Fig. 3.2.

3.4 Surrogate-based Optimization

This section describes the basis of surrogate-based optimization (SBO) [26], and

approaches to construct surrogate models. The surrogates that are used in this work are

emphasized.

The basic idea of SBO is that the computation of the expensive high-fidelity simu-

lation model is replaced by a series of fast surrogate models. These surrogate models

should be accurate enough to represent the high-fidelity model. During the optimization
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Figure 3.2: A schematic of the poll stage of the pattern search algorithm.

process, the surrogate models should be corrected by evaluating high-fidelity models. In

this type of approach, most of the computation is performed by the surrogate models. As

mentioned in Chapter 1, SBO can handle problems where the simulation costs are high

and sensitivity information is not easily obtained. Even in some cases where it is easy to

obtain derivative information cheaply, numerical noise still can still make the optimiza-

tion process challenging [45]. SBO aims at solving these types of problems, as well as

reducing the computational cost. A well-known approach for generating surrogate model

is to sample the design space using design of experiments (DOE) [46, 47, 48] techniques,

then evaluate the high-fidelity simulation at those designs and, subsequently, generate

an approximation of the high-fidelity data. The SBO algorithm updates approximation

by adding new high-fidelity information as it becomes available.

A flowchart of SBO in Fig. 3.3 shows that the SBO process can be represented as [31]

x(i+1) = arg min
x

s(i)(x), (3.10)

where x(i), i = 0, 1, ..., is a sequence of approximate solutions to the original problem

(3.1), whereas s(i) is the surrogate model at iteration i. The surrogate model should be
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Figure 3.3: A flowchart of a generic surrogate-based optimization algorithm.

cheap and accurate enough to represent high-fidelity model, at least around the current

design point, in the design space. Normally, the information from the high-fidelity model

evaluation will be used in the next design iteration. Here, the computation time of

the surrogate model is very short. This may make the SBO process faster than direct

optimization methods.

The surrogate model is the most important part of SBO process as it replaces the

high-fidelity model in the optimization process. Surrogate models can be constructed in

two ways: using data-driven methods, or physics-based methods. We describe the two

types in the next two sections.
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Figure 3.4: The general data-driven surrogate model construction process.

3.5 Data-driven Techniques

Data-driven surrogate models, also called approximation-based models, are constructed

using the high-fidelity simulation model evaluated at selected sampling points in the de-

sign space. The process of constructing data-driven surrogate models is shown in Fig. 3.4.

The first step is the DOE which is sampling training points in the design space. After

sampling, the high-fidelity model is used to evaluate the training points. Fitting those

points to a response surface can be achieved by two primary approaches: using explicit

formulas by solving an appropriate regression problem [26], and solving a separate min-

imization problem [28]. To verify the accuracy of the surrogate model, different sets of

data are sampled and evaluated to test the surrogate.

3.5.1 Design of experiment

DOE [46, 47, 48] are a set of techniques used to sample points in the design space.

Generally, the more sampling points, the more information about system can be obtained.

However, more sampling points require more evaluations of the high-fidelity model. Uni-

form sampling plan is the most popular one [49]. Factorial design [50] samples the points
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Figure 3.5: Sampling points in design space.

at the centers and corners (extreme points) in design space. A star distribution [51] is

a simple version of factorial design. Figure 3.5(a) shows a star sampling distribution

for the two dimensional case. A widely used DOE for sampling is the Latin Hypercube

Sampling (LHS) [51]. The idea of LHS is to use bins to sample the points along each

design variable dimension. For example, as shown in Fig. 3.5(b), if the range of each

design variable is split into 20 bins, for the two-dimensional case, there are 202 cells in

the design space. The samples are allocated randomly so that for each dimension bin

there is only one sample inside. In some cases, LHS might not be uniformly sampled, for

example, along the diagonal in Fig. 3.5(b). Ye [52], Palmer and Tsui [53], Beachkofski

and Grandhi [54], Leary [55] developed some techniques to overcome the lack of unifor-

mity of LHS. Other sampling plans include orthogonal array sampling [26], quasi-Monte

Carlo sampling [50], and Hammersley sampling [50].

3.5.2 Approximation techniques

After sampling the points with DOE strategies, the next step is to use approximation

methods to construct the surrogate models. Polynomial regression is a simple and widely

used approach to generate surrogate model [26]. Other techniques available for setting up
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data-driven surrogate models include Kriging [56], radial basis functions [57, 27], neural

networks [58, 31]. Kriging, or Gaussian process regression might be the most widely used

data-driven surrogate model in many different fields, especially, for ASO. Different from

polynomial regression, Kriging [56] is to predict the value of the high-fidelity model at a

given point by calculating a weighted average of the known values of the function in the

neighborhood of the point.

3.5.3 Model validation

A reliable optimum can only be obtained if the surrogate model is constructed ac-

curately enough. The split-sample method [26] is probably the most popular way to

implement the model validation. Two subsets of the available data sample is utilized.

The first one is the original set which is used to construct the surrogate model. The

second subset contains the test points considered for the model validation purpose. The

quality evaluation by this approach generally depends upon how the sample data is par-

titioned. It is not guaranteed the samples would provide the best use since it is only

part of the samples. Cross-validation is another very popular accurate evaluation tech-

nique [59, 26]. In this approach, N subsets are used as test set for the surrogate model

constructed by the rest of other N − 1 subsets. The overall error can be estimated with

all the N error evaluations obtained in this way. Compared with split-sample method,

this approach is less biased. The drawback of this method is also very obvious: the

surrogate model has to be generated multiple times, which brings another advantages

of robustness since every point has been evaluated many times in both sampling and

testing process. Bootstrapping seems to work better than cross-validation approach [60].

By using the easiest form, sampling with replacement from the full sample is considered.

It takes the sample data set as a population so that samples can be drawn from it. The

new random sample size is still the same with the original sample size. This approach

can also be used in identifying confidence intervals [26].
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3.6 Physics-based Techniques

Physics-based surrogates, also referred to as multi-fidelity surrogates, are constructed

by correcting/enhancing physics-based low-fidelity models [31, 30, 61]. A low-fidelity

model, or a simplified description of the system under consideration, can be obtained

by neglecting certain physical or second-order effects, using simplified equations, or by

exploiting the high-fidelity model with a coarser computational description [30]. The

low-fidelity models are subsequently corrected or enhanced to become a reliable rep-

resentation of the high-fidelity model by specific methods such as multiplicative or

additive corrections [31], space mapping (SM) [33, 34], adaptive response correction

(ARC) [37], adaptive response prediction (ARP) [62], or shape-preserving response pre-

diction (SPRP) [36].

Data-driven surrogates can be the basis of efficient global optimization techniques [27].

However, to ensure decent accuracy, data-driven surrogates require a large number of

data samples. Moreover, the number of samples grows quickly with the problem di-

mensionality. Although the physics-based surrogate models are not as versatile as the

data-driven ones, they have the potential to offer significantly better efficiency in terms

of the computational cost [31, 30, 61]. Many multi-fidelity algorithms require only a sin-

gle high-fidelity model evaluation per design iteration [31]. Consequently, physic-based

surrogates may exhibit better generalization capability than the approximation ones.

3.6.1 Multi-fidelity optimization algorithm

A generic multi-fidelity optimization algorithm with trust regions produces a sequence

x(i), i = 0, 1, ..., of approximate solutions to the original problem (3.1) using a surrogate

model s(i)(x) at each iteration i of algorithm (3.10) [31]. The surrogate model s is a

suitably corrected low-fidelity model c. The key component of the multi-fidelity opti-

mization algorithm is the physics-based low-fidelity (or coarse) model c that embeds
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certain knowledge about the system under consideration, and allows us to construct a

reliable surrogate using a limited amount of high-fidelity model data. In this work, the

low-fidelity model is evaluated using the same CFD solver as the high-fidelity model f.

Two (parametric) correction methods are considered: SM [34] (for the sake of comparison

and validation) and manifold mapping (MM) [63, 35].

3.6.2 Space mapping

The SM technique was originally developed for microwave engineering design appli-

cations [25, 64], but is now widely used in many other engineering fields [65, 66]. In

this work, multi-point output space mapping (OSM) is used to enhance the low-fidelity

transonic airfoil model. Multi-point OSM constructs an aerodynamic surrogate model

as follows [34]

s(i)(x) = A(i)◦c(x)+D(i)+q(i) = [a
(i)
l Cl.c(x)+d

(i)
l +q

(i)
l a

(i)
d Cd.c(x)+d

(i)
d +q

(i)
d Ac(x)]T ,

(3.11)

where ◦ denotes component-wise multiplication. Note that there is no need to map Ac

because

Ac(x) = Af (x) (3.12)

for all x. The response correction parameters A(i) and D(i) are obtained by solving

[A(i),D(i)] = arg min
[A,D]

i∑
k=0

∥∥f(x(k))− (A ◦ c(x(k)) + D)
∥∥2
, (3.13)

i.e., the response scaling is supposed to (globally) improve the matching for all previous

iteration points. The additive response correction term q(i) is defined as

q(i) = f(x(i))− [A(i) ◦ c(x(i)) + D(i)], (3.14)

i.e., it ensures perfect matching (zero-order consistency) between the surrogate and the

high-fidelity model at the current design x(i), i.e., s(i)(x(i)) = f(x(i)).



25

Fortunately, A(i) and D(i) can be obtained analytically [34] as a
(i)
l

d
(i)
l

 = (CT
l Cl)

−1CT
l Fl, (3.15)

and  a
(i)
d

d
(i)
d

 = (CT
dCd)

−1CT
dFd, (3.16)

where

Cl =

 Cl.c(x
(0)) Cl.c(x

(1)) ... Cl.c(x
(i))

1 1 ... 1

 , (3.17)

Fl =

 Cl.f (x
(0)) Cl.f (x

(1)) ... Cl.f (x
(i))

1 1 ... 1

 , (3.18)

and

Cd =

 Cd.c(x
(0)) Cd.c(x

(1)) ... Cd.c(x
(i))

1 1 ... 1

 , (3.19)

Fd =

 Cd.f (x
(0)) Cd.f (x

(1)) ... Cd.f (x
(i))

1 1 ... 1

 , (3.20)

which is a least-square optimal solution to the linear regression problem

Cla
(i)
l + d

(i)
l = Fl (3.21)

and

Cda
(i)
d + d

(i)
d = Fd, (3.22)

which is equivalent to (3.13). Note that the matrices CT
l Cl and CT

dCd are non-singular

for i > 1. For i = 1, only the multiplicative correction A(i) is used, which can be

calculated in a similar way.

The solution of algorithm (3.6) with the surrogate model (3.11) is carried out using the

pattern search algorithm [62] and the termination conditions are the same as for the direct

optimization algorithm (Section 3.3), but with εx = 10−3, εH = 10−4, εδ = 10−3.
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3.6.3 Manifold mapping

MM [67, 1] is a response correction technique that is capable of comprehensive ex-

ploitation of available high-fidelity model data. In its basic version, the MM surrogate

model is defined [1] as

s(i)(x) = f(x(i)) + S(i)(c(x)− c(x(i)), (3.23)

with S(i) being a 3× 3 correction matrix in our case (in general, the size of S is equal to

the number of the components in c, f , and s) defined as

S(i) = ∆F ·∆C†, (3.24)

where

∆F = [f(x(i))− f(x(i−1)) . . . f(x(i))− f(x(max{i−n,0}))], (3.25)

and

∆C = [c(x(i))− c(x(i−1)) . . . c(x(i))− c(x(max{i−n,0}))]. (3.26)

The pseudo-inverse, denoted by †, is defined as

∆C† = V∆C

∑†
∆C UT

∆C, (3.27)

where U∆C,
∑

∆C, and V∆C are the factors in the singular value decomposition of the

matrix ∆C. The matrix
∑†

∆C is the result of inverting the nonzero entries in
∑

∆C,

leaving the zeros invariant [67].

The MM model alignment is illustrated in Fig. 3.6. Point x∗c denotes the minimizer

corresponding to the low-fidelity model response, and the point y is the vector of design

specifications. Solid and dashed lines denote the tangent planes for the high- and low-

fidelity model responses at their optimal designs. Upon convergence, the linear correction

S∗ (being the limit of S(i) with i→∞) maps the point c(x∗) to f(x∗), and the tangent

plane for c(x) at c(x∗) to the tangent plane for f(x) at f(x∗).
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Figure 3.6: A conceptual illustration of the manifold mapping model alignment (adopted
and reproduced from Echeverria [1]).

It should be noted that although MM does not explicitly use sensitivity information,

the surrogate and the high-fidelity model Jacobians become more and more similar to

each other towards the end of the MM optimization process (i.e., when ‖x(i)−x(i−1)‖ → 0)

so that the surrogate (approximately) satisfies both the zero- and first-order consistency

conditions with f. This allows for a more precise identification of the high-fidelity model

optimum. On the other hand, the correction matrix S(i) can be defined using exact

Jacobians of the low- and high-fidelity models if available.

The solution of algorithm (3.6) with the surrogate model (3.23) is carried out using

the pattern search algorithm [62], and the termination conditions are the same as SM

algorithm. In the specific case of airfoils, where the model response vectors consist of

three components (lift, drag, and cross-section area), the correction matrix S should be

identity with respect to the third components (the area is identical for both the low- and

high-fidelity model).
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CHAPTER 4. NUMERICAL APPLICATIONS

In this chapter, the direct and multi-fidelity optimization algorithms are applied to

two benchmark aerodynamic design problems involving inviscid and viscous transonic

flow past airfoil shapes. These benchmark cases were developed by the AIAA Aerody-

namic Design Optimization Discussion Group1 (ADODG). A part of these results were

presented at AIAA SciTech 2016 Conference [68, 69]. The first two-dimensional case,

Benchmark Case I (BC I), is drag minimization of NACA 0012 in inviscid flow at zero

lift, and the second case, Benchmark Case II (BC II), is the lift-constrained drag min-

imization of RAE 2822 in viscous flow. First, BC I, high-fidelity models are presented

where Euler Equation of the flow is introduced. B-spline curves [70] is used to param-

eterize geometry. Then half region O-mesh has been generated in Pointwise [71] (since

the airfoil is symmetric and the angle of attack is zero) and the compressible Euler equa-

tions has been solved by Stanford University Unstructured (SU2) [72]. This improves

the flow solutions and guarantees that the lift coefficient is equal to zero (which previ-

ously was hard to obtain due to highly nonlinear flow features). In BC II, a C-mesh has

been constructed and the Reynolds-averaged Navier-Stokes (RANS) equations and the

Spalart-Allmaras [73] turbulence model are solved by SU2 solver. Grid studies of the

benchmark cases are presented to verify that the computational grid satisfies the con-

vergence criteria where the drag count should be converged within 0.1 and 1 counts for

BC I and BC II, respectively. The RANS model has been validated by RAE 2822 airfoil

using the RAE 2822 airfoil by comparing with experimental data. Both benchmark cases

1https://info.aiaa.org/tac/ASG/APATC/AeroDesignOpt-DG/default.aspx



29

are solved using multi-fidelity optimization with (space mapping) SM [34] and manifold

mapping (MM) [63, 35]. Moreover, for comparison purposes, we solve both benchmark

cases with a gradient-based technique with adjoints and trust regions [21]. Additionally,

BC I is solved using pattern search [21, 62] (a derivative-free direct optimization tech-

nique). The optimization formulation are also explained and introduced as well. Results

are compared in terms of the design quality as well as the number of model evaluations

and total optimization time.

In order to improve robustness of optimized airfoil, multipoint design, such as done

in [17], is explored by using MM. The optimization involves the minimization of the

weighted drag coefficients at each operating points subject to constraints. Different

cases of multipoint optimization are performed and analyzed. It turns out that MM is

well suited for such cases as it can handle vector responses.

As mentioned in Chapter 2, inverse design is a different approach to perform aero-

dynamic design. Direct design approach requires the cost function (usually the drag

coefficient) to be defined with constraints, and then finds the solution using mathe-

matical algorithms with consideration of constraints sequentially [19]. In this work, we

perform inverse design using MM to optimize airfoil geometry shape to reach to a target

pressure distribution. Manifold mapping is also well suited for inverse design since it

involves a vector responses.

4.1 Benchmark Case I: Drag Minimization of the NACA 0012

Airfoil in Transonic Inviscid Flow

The multi-fidelity optimization algorithms in Chapter 3 are applied to BC I involving

inviscid transonic flow past NACA 0012 airfoil shape. The optimization results are

compared with pattern search and gradient-based search in terms of the design quality

as well as the amount of model evaluations and total optimization time.
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4.1.1 Problem definition

The objective is to minimize the drag coefficient (Cd) of the modified NACA 0012

airfoil section at a free-stream Mach number of M∞ = 0.85 and an angle of attack α = 0

deg. subject to a minimum thickness constraint. The optimization problem is stated as

min
l≤x≤u

Cd, (4.1)

where x is the vector of design variables, and l and u are the lower and upper bounds,

respectively. The thickness constraint is stated as

z(x) ≥ z(x)baseline, (4.2)

where z(x) is the airfoil thickness, x ∈ [0, 1] is the chord-wise location, and z(x)baseline

is the thickness of the baseline airfoil, which is a modified version of the NACA 0012,

defined as

z(x)baseline = ±0.6(0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4). (4.3)

In our implementation, the objective function is set as

H(f(x)) = Cd(x)), (4.4)

and the thickness constraint is handled directly. The design variables and their bounds

are described as follows.

4.1.2 Design variables

The airfoil shape design variables are defined by the parametrization method. In this

work, we use B-spline curves [70] for the shape parametrization. The airfoil surfaces are

written in parametric form as

x(t) =
n+1∑
i=1

XiNi,k(t), (4.5)
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Figure 4.1: B-spline parameterization for the upper surface of the airfoil.

and

z(t) =
n+1∑
i=1

ZiNi,k(t), (4.6)

where (x, z) are the Cartesian coordinates of the surface, Ni,k is the B-spline basis func-

tion of order k, (Xi, Zi) are the coordinates of the B-spline control polygon, and n+ 1 is

the total number of control points. Note that the surface description with (4.5) and (4.6)

is continuous. The control points are used as design variables and allowed only to move

freely vertically as shown in Fig. 4.1 (in this figure we only show the upper surface of

the airfoil). Each designable control point is free to move in the vertical direction only.

Thus, we have x = [Z1 Z2 ... Zn+1]T and the corresponding Xi are fixed during the

optimization.

In BC I, we use 10 control points, as shown in Fig. 4.1, where two are fixed at the

leading- and trailing-edges, and the other ones can move in the vertical direction, yielding

8 design variables in total. Based on a fit to the modified NACA 0012 of (4.3), we fix

the x-locations of the free control points as

X = [0 0.0536 0.2000 0.4000 0.5854 0.7527 0.8854 0.9706]T .
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The initial design variable vector is

x = [0.0185 0.0474 0.0654 0.0633 0.0486 0.0323 0.0161 0.0043]T .

The lower bound of x is set as zero, i.e., l = 0, and the upper bound is set as one, i.e.,

u = 1.

4.1.3 High-fidelity CFD model

The Stanford University Unstructured (SU2) computer code [72] is utilized for the

inviscid fluid flow simulations. The steady compressible Euler equations are solved with

an implicit density-based formulation. The convective fluxes are calculated using the

second order Jameson-Schmidt-Turkel (JST) scheme [74]. Three multi-grid levels are

used for solution acceleration. Asymptotic convergence to a steady state solution is

obtained in each case. The flow solver convergence criterion is the one that occurs first

of the two: (i) the change in the drag coefficient value over the last 100 iterations is less

than 10−4, or (ii) a maximum number of iterations of 1,000 is met.

An O-type computational mesh is generated using Pointwise [71] (see Fig. 4.2). Since

the airfoil is symmetrical and the angle of attack is fixed at zero, only the half-plane is

considered. The far-field boundary is set 55 chord lengths away from the airfoil surface.

The mesh density is controlled by the number of cells on the airfoil surface and the

number of cells normal to the surface. The results of a grid convergence study, given in

Table 4.1, revealed that a 512× 512 mesh (shown number 5 in the table) is required for

convergence within 0.1 drag count (1 drag count is defined ∆Cd = 10−4) when compared

with the next mesh. Distance to the first grid point is 0.0015c where c is the airfoil chord

length. The flow simulation for Mesh 5 takes about 4.2 minutes. An adjoint solution

for the drag coefficient take approximately the same amount of time. It should be noted

that throughout an optimization run the airfoil shape may change significantly and the

flow and adjoint simulation times may vary depending on the particular shape.
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(a) Far-field (b) Surface

Figure 4.2: Mesh views of half-plane O-mesh used in the inviscid model.

Table 4.1: Grid convergence study for the baseline shape of BC I at M∞ = 0.85 and
α = 0.0o.

Mesh Grid Size Cl Cl Simulation Time ∗ (min)
1 32× 32 (961) 0.0 496.7194 0.29
2 64× 64 (3969) 0.0 480.7083 0.41
3 128× 128 (16129) 0.0 470.2201 0.71
4 256× 256 (65025) 0.0 469.3722 1.72
5 512× 512 (261121) 0.0 468.4470 4.24
6 1024× 1024 (1046529) 0.0 468.3714 24.60

∗Computed on a high-performance cluster with 32 processors. Flow solution only.
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Figure 4.3: Solver convergence history of the high- and low-fidelity model.

For the optimization studies, Mesh 5 is used as the high-fidelity model f, and Mesh

3 as the low-fidelity model c (used only for SM and MM). For the low-fidelity model,

the maximum number of solver iterations is set to 300. Figure 4.3 shows the solver

convergence of the low-fidelity model, and it also gives a comparison of the low- and the

high-fidelity models. The comparison indicates that the low-fidelity model is a relatively

good representation of the high-fidelity one.

4.1.4 Results

BC I is solved using the optimization algorithms listed in Table 4.2. Figure 4.4 shows

the convergence of the argument x, and it also shows the evolution of the objective

function H (the drag coefficient in this case). The direct algorithms A and B terminate on

the objective function, whereas the SM and MM algorithms terminate on the argument.

In terms of design quality, Direct B obtains the lowest drag coefficient value of 47.7

counts (Table 4.3). Direct A obtains a drag coefficient value of 55.1 counts, whereas

the SM and MM algorithms converge to the same design with a drag coefficient value

of 74.5 counts. Although, there is a significant difference in the drag coefficient values,
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Table 4.2: Details of the optimization algorithms used for BC I.

Algorithm Driver Mesh for f Mesh for c Adjoints Trust Region

Direct A Pattern Search 5 N/A N/A N/A
Direct B MATLAB’s fmincon 5 N/A Yes Yes

Space Mapping Pattern search 5 3 No Yes
Manifold Mapping Pattern Search 5 3 No Yes
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Figure 4.4: BC I convergence history.
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Table 4.3: Optimization results for BC I.

Parameter/Method Baseline Direct A Direct B SM MM
Cl(l.c.) 0.0 0.0 0.0 0.0 0.0
Cd(d.c.) 468.45 55.10 47.68 74.53 74.53
Nc - - - 778 778
Nf - 1,383 391∗ 4 4
Nequ - 1,383 391∗ ≈ 150 ≈ 150

tc(min) - - - 447.0 445.8
tf (min) - 6,939 4,494 12.3 13.1
ttot(min) - 6,939 4,494 459.3 458.9

* Primary flow solutions as well as adjoint solutions.

the overall shapes look very similar (see Fig. 4.5). However, there is a slight difference

between the shapes obtained by the direct algorithms and the multi-fidelity algorithms.

In particular, the shapes obtained by the direct algorithms have a slightly fuller shape

between x/c = 0.6 to x/c = 0.8 than the shapes obtained by the multi-fidelity algorithms.

Other parts of the shapes are comparable.

In terms of the pressure coefficient distributions, shown in Fig. 4.5, the shape obtained

by Direct B has a distinctly lower peak near the leading-edge of the airfoil compared to

the others. All the shapes have reduced the shock strength significantly when compared

to the baseline pressure distribution. Figure 4.6 shows the pressure coefficient contours

for all the shapes, including the baseline. A grid convergence study of the optimized

shape obtained by MM indicates that the high-fidelity grid used in the optimization run

(the 512×512 grid) is converged within 0.3 drag counts. This indicates that a finer mesh

may have to be used for the high-fidelity model in order to ensure a drag coefficient

resolution of less than 0.1 drag counts.

In terms of computational cost, the multi-fidelity algorithms need the least amount of

time. In particular, they need 4 high-fidelity model evaluations (Nf ), and 778 low-fidelity

model evaluations (Nc); which, in total, is equivalent to less than 150 high-fidelity model

evaluations (Ntot). The total optimization time is about 459 minutes. Direct B needs 391

high-fidelity model evaluations (includes both flow and adjoint solutions) and the total
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Figure 4.5: Comparison of BC I baseline and optimized characteristics.

Table 4.4: Grid convergence study for the optimized shape of BC I at M∞ = 0.85 and
α = 0.0o.

Mesh Grid Size Cl Cd Simulation Time ∗ (min)
1 32× 32 (961) 0.0 272.7192 0.25
2 64× 64 (3,969) 0.0 129.5981 0.42
3 128× 128 (16,129) 0.0 83.0096 0.76
4 256× 256 (65,025) 0.0 77.2443 1.59
5 512× 512 (261,121) 0.0 74.5209 4.41
6 1, 024× 1, 024 (1,046,529) 0.0 74.1940 23.34

∗Computed on a high-performance cluster with 32 processors. Flow solution only.

optimization time is about 4,949 minutes. Note that both of the multi-fidelity methods

used in this study only require the flow solutions but not the adjoint solutions like the

gradient-based algorithm. Consequently, the SM and MM algorithms are more efficient

than the Direct B algorithm. Direct A needs 1,383 high-fidelity model evaluations (only

flow solutions) and the total optimization time is about 6,939 minutes.

The problem (4.1) is solved using the pattern search algorithm and the low-fidelity

model c only (mesh 2 of Table 4.1 without the SM or MM corrections). The results

are shown in Fig. 4.7. We can clearly see that the low-fidelity optimum is much worse

than the optimized shapes obtained by MM and pattern search with the high-fidelity

model since it has a very strong double shock near the trailing-edge. In face the drag
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Figure 4.6: Comparison of BC I baseline and optimized pressure coefficient contours.
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Figure 4.7: Comparison of BC I baseline and optimized pressure coefficient of low-fidelity
model.

coefficient value of the low-fidelity optimum is around 114 counts, where as the high-

fidelity optimum is around 55 counts.

4.2 Benchmark Case II: Lift-constrained Drag Minimization

of the RAE 2822 in Transonic Viscous Flow

The multi-fidelity optimization algorithms in Chapter 3 are applied to BC II involving

viscous transonic flow past the RAE 2822 airfoil shape. The optimization results are

compared with gradient-based search in terms of the design quality as well as the number

of model evaluations and total optimization time.

4.2.1 Problem definition

The objective is to minimize the drag coefficient (Cd) of the RAE 2822 airfoil at a

free-stream Mach number of M∞ = 0.734, lift coefficient of 0.824, and Reynolds number

of 6.5 × 106, subject to an area and pitching moment constraints. The task is to solve

the following constrained optimization problem

min
l≤x≤u

Cd, (4.7)
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subject to the following constraints:

Cl = 0.824, (4.8)

Cm ≥ −0.092, (4.9)

A ≥ Abaseline, (4.10)

where Cm is the moment coefficient and A is the airfoil cross-sectional area nondimen-

sionalized with the chord length squared.

The constant lift coefficient constraint (4.8) is implicitly satisfied in the flow solver

by using the angle of attack as a dummy parameter. In the implementation of the multi-

fidelity algorithms, the pitching moment and cross-sectional area constraints (4.9) and

(4.10), respectively, are handled through a penalty function. In the direct optimization

algorithms, those constraints are handled directly.

4.2.2 Design variables

The B-spline parameterization approach, described in Section 4.1, is used in BC II

for the upper and lower surfaces. We use 10 control points, as shown in Fig. 4.8, where

two are fixed at the leading- and trailing-edges, and the other ones, 4 for each surface,

can move in the vertical direction. This yields 8 design variables. Based on a fit to the

RAE 2822, we set the x-locations of the free control points as

X = [Xu; Xl]
T = [0.0 0.15 0.45 0.80; 0.0 0.35 0.60 0.90]T .

The initial design variable vector is

x = [xu; xl]
T = [0.0175 0.0498 0.0688 0.0406; −0.0291 −0.0679 −0.0384 0.0054]T .

The lower bound of x is set as l = [0 0 0 0; −1 −1 −1 −1]T , and the upper

bound is set as u = [1 1 1 1; 0 0 0 0]T .
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Figure 4.8: B-spline parameterization for the airfoil surface.

4.2.3 High-fidelity CFD model

The SU2 implicit density-based flow solver [72] is used for the viscous case, solving

the steady compressible Reynolds-averaged Navier-Stokes (RANS) Equations with the

Spalart-Allmaras turbulent model [73]. The convective flux will be calculated using the

second order JST scheme [74]. One multi-grid level is used for solution acceleration. The

turbulent variables are convected using a first-order scalar upwind method. The flow

solver convergence criterion is the one that occurs first of the two: (i) the change in the

drag coefficient value over the last 100 iterations is less than 10−5, or (ii) a maximum

number of iterations of 5,000 is met.

The grids are generated using a hyperbolic C-mesh, [75] (see Fig. 4.9). The far-field

is set 100 chords away from the airfoil surface. The grid points are clustered at the

trailing edge and the leading edge of the airfoil to give a minimum streamwise spacing

of 0.001c, and the distance from the airfoil surface to the fist node is 4× 10−6c. The grid

density is controlled by the number of points in the streamwise direction (Ns), and the

number of points in the direction normal to airfoil surface (Nn). We set the number of
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(a) Surface (b) Far-field

Figure 4.9: Mesh views of hyperbolic C-mesh used in viscous model.

Table 4.5: Grid convergence study for the baseline shape of BC II.

Mesh Grid Size Cl(cts) Cd(cts) Simulation Time ∗ (min)
1 160× 40 (9,836) 82.40 255.9 5.5
2 320× 80 (38,876) 82.40 215.0 20.8
3 640× 160 (154,556) 82.39 202.4 66.0
4 1, 280× 320 (616,316) 82.41 201.9 275.7

∗Computed on a high-performance cluster with 32 processors. Flow solution only.

points in the wake region equal to the number in the normal direction. The grid sizes

are denoted by Ns × Nn. Table 4.5 gives the results of a grid convergence study using

the RAE 2822 airfoil at M∞ = 0.734 and Cl = 0.824. The constant lift condition is

determined by externally changing the angle of attack using a numerical optimization

algorithm. Typically, 3 to 4 iterations are needed. The simulation times presented in

Table 4.5 give the overall time to compute the constant lift condition. The times do not

include the time it takes to calculate the adjoint solutions.

For the optimization studies, we use Mesh 3 for the high-fidelity model f and Mesh

1 for the low-fidelity model c. The low-fidelity model convergence criteria is the same as

the high-fidelity one, but with the following values: drag coefficient convergence set to

10−4, and the maximum number of iterations is set to 2,000. Figure 4.10 shows that the

low-fidelity solver is converged well within the 1,000 iteration limit. Also the low-fidelity
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Figure 4.10: Solver convergence history of the high- and low-fidelity model.

model is a good representation of high-fidelity one in terms of the pressure coefficient

distributions.

4.2.4 Results

BC II is solved using the Direct B, SM, and MM algorithms as described in Table 4.2,

but using Meshes 3 and 1 of Table 4.5 for the high- and low-fidelity models, respectively.

Figure 4.11 shows the convergence history of the algorithms. The Direct B algorithm

was terminating after 4 design iterations based on the argument. The multi-fidelity

algorithms are, however, able to make significant reduction in the objective function. SM

terminates after 4 design iterations based on the design variables, and MM terminates

after 3 design iterations.

As can be seen by Table 4.6, the SM algorithm reduces the drag coefficient value from

202.4 counts to 126.8 counts (or by 75.6 counts). The MM algorithm reduces the drag

coefficient value from 202.4 counts to 127.3 counts (or by 75.1 counts). Direct B reduces

the drag coefficient value to 163.1 counts (or by 39.3 counts). Figure 4.12 shows the

optimized shapes and pressure coefficient distributions. Figure 4.13 shows the pressure

coefficient contours. Clearly, the SM and MM reduce the shock strength significantly.
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Figure 4.11: BC II convergence history.

Table 4.6: Optimization results for BC II.

Parameter/Method Baseline Direct B SM MM
Cl(l.c.) 82.39 82.40 82.45 82.39
Cd(d.c.) 202.4 163.10 126.80 127.30
Cm,c/4 -0.0961 -0.0883 -0.0920 -0.0915
A 0.0779 0.0779 0.0772 0.0769
Nc - - 1,878 1,621
Nf - 55 17 13
Nequ - 55 ≈ 133 ≈ 114

tc(min) - - 1,807 1,566
tf (min) - 535.9 265.6 202.0
ttot (min) - 535.9 2,073.0 1,768.0

However, the cross-sectional area constraints are slightly violated for both SM and MM.

In particular, the cross-sectional areas of SM is 0.90% below the baseline value of 0.0779,

and MM is 1.28% below. These violations are minor. The Direct B algorithm satisfies

the pitching moment coefficient constraint and cross-sectional area properly.

The optimization cost of the SM and MM algorithms is comparable. SM needs

approximately 133 equivalent high-fidelity model evaluations (17 high-fidelity and 1,878

low-fidelity). MM needs approximately 114 equivalent high-fidelity model evaluations

(13 high-fidelity and 1,621 low-fidelity). In terms of time, SM takes 34.6 hours, and

MM takes 29.5 hours. Table 4.7 indicates that the meshes used in the studies here are
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Figure 4.12: BC II baseline and optimized shapes and pressure distributions.

Table 4.7: Grid convergence study for the optimized shape of BC II.

Mesh Grid Size Cl(cts) Cd(cts) Simulation Time ∗ (min)
1 160× 40 (9,836) 82.38 179.90 4.1
2 320× 80 (38,876) 82.38 134.51 25.9
3 640× 160 (154,556) 82.40 126.80 66.1
4 1, 280× 320 (616,316) 82.38 124.74 498.1

∗Computed on a high-performance cluster with 32 processors. Flow solution only.

converged within 2 drag count. Direct B algorithm shows low cost in this case in terms

of time, however, from Fig. 4.11, the objective function was not able to approach further

optimization iteration after the third one.

From the two benchmark cases above, it is noticed that MM performs very similarly

with SM. This was expected since since high-fidelity model responses are scalars rather

than vector responses, so the following two applications will introduce the advantages of

MM when the responses are vectors.
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(a) Baseline (b) Direct B

(c) Space mapping (d) Manifold mapping

Figure 4.13: BC II baseline and optimized pressure coefficient contours.



47

4.3 Case III: Multipoint Lift-constrained Drag Minimization

in Transonic Inviscid Flow

Transport aircraft operate at multiple conditions due to various flight missions and

air traffic control restrictions [16]. Small changes in the airfoil shape may effect the fuel

burn efficiency significantly in the off-design points, which may increase the operating

cost and greenhouse gas emission [16]. This is the specific motivation for multipoint

design.

4.3.1 Problem definition

In this section, a total of 3 cases are investigated. Like BC I and II, the idea of

these come from the Aerodynamic Design Optimization Discussion Group (ADODG)

Benchmark Case IV where the problem investigates the optimum solution for the 3-D

CRM wing. Martins et al. [4, 16] have performed a lot of work on this benchmark case.

In this section, in order to focus on the MM algorithm, the model has been simplified,

so that geometry being used is from BC II, i.e., RAE 2822 airfoil. The objective is to

optimize the weighted sum of drag coefficients for several operation conditions. Com-

parison between multipoint design and single point design is performed. Case IIIb is the

baseline single point optimization. The single point case and the new multipoint cases

are summarized in Table 4.8. Case IIIa and Case IIIc are multipoint problems considered

here for different Mach numbers and lift conefficients. The weight factors τi for the cases

are uniformly distributed over the Mach number and Cl space. Note that the weights

and the problem formulations are based on the AIAA ADODG BC II. The general form

of each optimization problem can be described as follows.

The objective is to minimize the weighted average drag coefficient
N∑
i=1

τiCdi subject to

an area and pitching moment constraint. The task is to solve the following constrained
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Figure 4.14: Operation conditions of the singlepoint and multipoint designs.
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Table 4.8: Operating conditions for each optimization cases.

Case Point Weights(τi) Mach Cl

IIIa 1 1 0.734 0.824
1 1

4
0.724 0.824

IIIb 2 1
2

0.734 0.824

3 1
4

0.744 0.824

1 1
5

0.724 0.824

2 1
5

0.734 0.774

IIIc 3 1
5

0.734 0.824

4 1
5

0.734 0.874

5 1
5

0.744 0.824

optimization problem:

min
l≤x≤u

N∑
i=1

τiCdi, (4.11)

subject to the following constraints:

Cl = 0.824, (4.12)

A ≥ Abaseline, (4.13)

The constant lift coefficient constraint (4.12) is implicitly satisfied in the flow solver

by using the angle of attack as a dummy parameter. In the implementation of the

multi-fidelity algorithms, the cross-sectional area constraint (4.13) is handled through a

penalty function. The B-spline parameterization approach, described in Section 4.1, is

used this application for the upper and lower surfaces. We still use 10 control points, as

shown in Fig. 4.8.

4.3.2 High-fidelity CFD model

An O-type computational mesh is generated using Pointwise [71] (see Fig. 4.15. The

far-field boundary is set 55 chord lengths away from the airfoil surface. The results of a
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(a) Far-field (b) Surface

Figure 4.15: O-mesh views of RAE 2822 airfoil.

Table 4.9: Grid convergence study for the baseline shape (RAE 2822).

Mesh Grid Size Cd Cl Alpha Simulation Time ∗ (min)
1 32× 32 (1,922) 127.36 82.42 2.087 0.9
2 64× 64 (7,938) 84.60 82.37 1.922 1.1
3 128× 128 (32,258) 78.06 82.40 1.877 2.4
4 256× 256 (130,050) 76.60 82.40 1.852 6.7
5 512× 512 (522,242) 76.37 82.40 1.847 20.7
6 1024× 1024 (2,093,058) 76.30 82.41 1.843 114.0
∗Computed on a high-performance cluster with 32 processors. Flow solution only.

grid convergence study, given in Table 4.9, revealed that a 512×512 mesh (shown number

5 in the table) is required for convergence within 0.1 drag count when compared with

the next mesh. Distance to the first grid point is 0.0004c. The flow simulation for Mesh

5 takes about 20.7 minutes. SU2 [72] is utilized for the inviscid fluid flow simulations.

The flow solver convergence criterion is the same with BC I solver convergence criterion

in Section 4.1. As the same with BC II, the constant lift condition is determined by

externally changing the angle of attack using a numerical optimization algorithm. The

simulation times presented in Table 4.9 give the overall time to compute the constant

lift condition.
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Figure 4.16: Solver convergence history of high- and low-fidelity simulation.

For the optimization studies, we use Mesh 5 for the high-fidelity model f and Mesh

2 for the low-fidelity model c. The low-fidelity model convergence criteria is the same

as the high-fidelity one, but with the following values: drag coefficient convergence set

to 10−4, and the maximum number of iterations is set to 500. Figure 4.16 shows that

the low-fidelity solver is converged well within the 500 iteration limit which allows the

deformed mesh to converge properly. Fig. 4.16 shows that the low-fidelity model has

a slight mismatch at the edge of shock on the upper surface with high-fidelity model.

However, from the optimized results and consideration of time ratio between high- and

low- fidelity model, it is still a preferred representation of high-fidelity model.

4.3.3 Results

This multipoint design is solved by using MM algorithms as described in Table 4.2,

but using Meshes 5 and 2 of Table 4.9 for the high- and low-fidelity models, respectively.

Figure 4.17 shows the optimized shapes and pressure distributions of different design

cases. The multi-fidelity algorithms are able to make a significant reduction in the

objective function.
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Figure 4.17: Multipoint design baseline and optimized characteristics.

To explain the robustness of the multipoint design properly, we compare the ML/D

contours with respect to Cl and Mach number for the baseline, single point design (Case

IIIa), and multipoint designs (Cases IIIa and IIIb). ML/D provides a metric for quan-

tifying aircraft range based on the Breguet range equation with constant thrust-specific

fuel consumption [16]. It is assumed the thrust-specific fuel consumption is constant in

this case when performance falls into limited range of Mach number [76]. From Figs. 4.18

and 4.19, the maximum of the baseline airfoil falls on a lower Mach number and a higher

Cl than the nominal flight condition. The single-point optimization in Fig. 4.18 shows

a movement of the optimum range of ML/D toward the nominal cruise condition. The

multipoint design in Fig. 4.19 shows a flatter area of ML/D contours near the maximum

of the nominal condition, which means the aircraft can cruise at a wider robust range in

terms of Mach number and Cl. Also, the maximum ML/D of Case IIIb of multipoint

design is 585.6 which is slightly higher than the single-point design (Case IIIa) maximum

of ML/D = 573.7.

In aircraft design, the 99% value of maximum ML/D is the often used to examine

the robustness of the design [77], however, this comparison is not totally fair since the

maximum of each case varies. To compare more accurately, the area where ML/D is
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Figure 4.18: Baseline and single point design ML/D contours.
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(b) Case IIIc: 5 multipoints

Figure 4.19: Multipoint design ML/D contours.
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greater than 450 is selected and compared for all designs in Figs. 4.18 and 4.19. As can

be seen in Case IIIc, the bold line closed area is greater than the bold area in Case IIIa,

this means the robust range of optimized airfoil in Case IIIc can perform more robustly

under wider cruise conditions.

4.4 Case IV: Inverse Design in Transonic Inviscid Flow

Inverse design is another case where the MM shows the capability of dealing with

vector responses. Instead of optimizing the figure of merit directly, a target pressure dis-

tribution is considered as the objective response that can provide a desired aerodynamic

feature. The target pressure distribution has to be obtained beforehand [78] however.

Figure 4.22 shows the general algorithm for inverse design.

4.4.1 Problem definition

The initial geometry is the RAE 2822 airfoil. The objective is to optimize the norm

of the current pressure distribution and a target pressure distribution. Here, we use the

optimized shape from Case IIIa to generate the target pressure distribution.

We solve the following constrained minimization problem

min
l≤x≤u

∥∥Cp(x)− C∗p
∥∥ (4.14)

subject to the following constraints

Cl = 0.824, (4.15)

A ≥ Abaseline, (4.16)

where Cp(x is the pressure distribution of the current design x, and C∗p is the target

pressure distribution.

The constant lift coefficient constraint (4.15) is implicitly satisfied in the flow solver

by using the angle of attack as a dummy parameter. In the implementation of the
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Figure 4.20: Inverse design algorithm flowchart.

multi-fidelity algorithms, the cross-sectional area constraints (4.16) is handled through

a penalty function. The B-spline parameterization approach, described in Section 4.1, is

used in this application for the upper and lower surfaces. We still use 10 control points,

as shown in Fig. 4.8. The CFD solver is described in Section 4.1.

4.4.2 Results

This inverse design problem is solved by using Direct A and MM algorithm as de-

scribed in Table 4.2, but using Meshes 5 and 2 of Table 4.9 for the high- and low-fidelity

models, respectively. Figure 4.21 shows the convergence history of the algorithms. The

multi-fidelity algorithm makes a significant reduction in the objective function and ter-

minates after 4 design iterations based on the objective function. The direct algorithm

terminates after 5 iterations on objective function like MM.

The overall optimized shapes look very similar (see Fig. 4.22). Since the highly

nonlinear PDE simulation, a small shape change may generate big difference on the

physics and effect the characteristics. There is a slight difference between the shapes
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Figure 4.21: Inverse design convergence history.

Table 4.10: Optimization results for inverse design.

Parameter/Method Baseline Target Direct A MM
Cl(l.c.) 82.38 82.42 82.41 82.41
Cd(d.c.) 76.27 15.15 39.77 22.33
Nc - - - 741.0
Nf - - 1,302 24.0
Nequ - - 1,302 ≈ 145

tc (min) - - - 816.2
tf (min) - - 9,766 161.4
ttot (min) - - 9,766 977.6
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Figure 4.22: Inverse design baseline and optimized characteristics.

obtained by the direct algorithm and the multi-fidelity algorithm, however, in terms

of the pressure coefficient distributions, shown in Fig. 4.22, at x/c = 0.6 to 0.9 of the

pressure coefficient distribution, MM reaches to the edge of target Cp more closely than

Direct A. Specifically at portion from 0.7 of x/c, MM is able to overlap with target

design, and Direct A shows Cp distribution between baseline and target design. Other

than that, the distributions obtained by both Direct A and MM near the leading-edge

of the airfoil have distinctly lower peak than the target pressure distribution, but higher

than the baseline. Both of the shapes are approaching to the target pressure distribution

though.

In terms of computational cost in Table 4.10, the multi-fidelity algorithm is faster

than the direct one. In particular, it needs 24 high-fidelity model evaluations (Nf ),

and 741 low-fidelity model evaluations (Nc); which, in total, is equivalent to less than

150 high-fidelity model evaluations (Ntot). The total optimization time is about 977.6

minutes. Direct A needed 1,302 high-fidelity model evaluations (includes flow simulation

only) and the total optimization time is about 9,766 minutes. Consequently, the MM

algorithms are more efficient than the Direct A algorithm in terms of computational cost

and optimization quality.
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CHAPTER 5. CONCLUSION

A robust and computationally efficient optimization methodology for aerodynamic

shape optimization is presented. The approach uses low-fidelity models corrected by

the manifold mapping (MM) technique to create fast and reliable surrogates which are

utilized to search for an approximate optimum of an expensive high-fidelity model at

a low CPU cost. The MM correction is applied both to the objectives and constraints

to ensure a good alignment between the surrogate and the high-fidelity model. The

MM approach developed here does not require gradient information. The approach is

applied to benchmark cases involving direct design of airfoil shapes in two-dimensional

inviscid and viscous transonic flows. The results of these benchmark cases show that

the optimized designs are obtained at a significantly lower computational cost compared

to the direct high-fidelity model optimization with adjoint sensitivity information when

using eight design variables. In those cases, which involve scalar objective functions,

the cost is comparable with the space mapping algorithm (also based on multi-fidelity

models). In terms of vector responses, the MM algorithm proves to be efficient. To this

end, multipoint design problems were solved using MM with good results. Also, the

MM algorithm was demonstrated on an inverse design problem. The MM algorithm gets

close to the target pressure distribution at a fraction of the cost of using a derivative-free

approach.

Numerical applications of benchmark cases, multipoint design and inverse design

using the manifold framework illustrate the following:



60

• In the benchmark cases considered here, the objective functions are all scalars.

In such cases, the MM algorithm yields comparable results to the space mapping

algorithm.

• MM typically works well for design cases with vector-valued responses. Multipoint

problems are an example of aerodynamic design cases using vector responses. Here,

the aerodynamic surface is optimized at multi operating conditions, e.g., at several

sets of Mach number and lift coefficients. MM was easy to apply to such a case,

and gave satisfactory results at a low cost.

• Inverse design is another example of an aerodynamic design case requiring vector-

valued responses. MM was applied to the shape optimization for matching a target

pressure distribution. In this case, MM outperforms a derivative-free approach in

terms of both cost and matching of the distributions.

Future work in this research area should consider the following:

• Since our implementation uses pattern search to optimize the surrogate model, the

cost with increasing number of design variables grows quickly. Future work will

investigate alternatives to efficiently optimize the surrogate model. In particular,

extension of MM using adjoint sensitivity information will be investigated, as well

as adding techniques for the reduction of the design space dimensionality. This will

enable the use of MM for large-scale cases, e.g., the aerodynamic shape optimization

of three-dimensional wings which require several hundred design variables.

• Another possible future investigation is to combine space mapping and MM with

space mapping used as a preconditioner for the low-fidelity model. In such as

case, the multi-point space mapping surrogate may be established using, e.g., star-

distribution design of experiments in order to improve the global matching between

the models (in which case only the global parameters A and D need to be calcu-

lated), and the MM correction may be applied on the top of SM.
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