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ABSTRACT 

 

 The earliest conceptual phases of aircraft design present a challenging problem to 

engineers, due to the breadth of potential designs available and the depth of analysis required to 

choose between them. In this research, a new methodology was created to perform conceptual 

design analysis on aircraft, using off-the-shelf, high-fidelity software tools to explore the project 

design space, including important preliminary design factors and thereby producing a more 

robust result which is less subject to compromise at later design stages. We claim that this 

analysis can be performed in one hour with commonly available computation resources, and 

therefore is applicable to conceptual design. A case study was created to develop the method, 

particularly, the conceptual design of a supersonic transport jet. For this application, Solidworks 

was used to create a parameterized three-dimensional CAD solid to define the exterior geometry 

of the aircraft, and create populations of design candidates. The method also used STAR-CCM+ 

to perform an automated fluid flow analysis of these candidates, using three-dimensional, 

viscous, turbulent finite volume analysis and incorporating internal engine performance 

characteristics. Finally, MATLAB was used to collect the data produced by these analyses, 

compute additional results of interest, and quantify the design space represented by a population 

of candidates. We heavily automated the steps of this process, to allow large studies or 

optimization frameworks to be implemented. Our results show that the method produces a data 

set which is much richer than conventional conceptual design techniques. The method captures 

many interactions between aircraft systems which are normally not quantified until later phases 

of design: aerodynamic interactions between external lifting surfaces and between the external 

body and internal engine performance, and how structural constraints affect wing performance. 

We also produce detailed information about the aircraft static stability. Further, the method is 

able to produce these results with commonly available computer hardware within the one-hour 

timeframe we allow for a conceptual design analysis. 
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CHAPTER 1 

INTRODUCTION: PROJECT BACKGROUND 

 

Conceptual Design and Case Study Mission 

 Engineering design is generally characterized by an extremely open working 

environment, with an overwhelming number of variables at play. An effective design must 

balance many design goals which are often in mutual conflict or exclusion. This truism is 

reflected in aircraft design as well; with the added challenge due to the fact that an aerospace 

design also requires a very high degree of optimization to be competitive—or even feasible. This 

is evidenced by the high cost of aerospace vehicles compared to other engineering projects of 

similar physical size [1]. The aircraft design process is very analysis-intensive, in that it requires 

the application of many technical physical concepts; many of these analyses performed 

numerically. Since the development of the earliest transistors, digital processing power has 

advanced exponentially; this phenomenon is known popularly as Moore’s Law (see Figure 1.1). 

Therefore, it should be expected that the sophistication of the aircraft design process should also 

advance over time. The general goal of the research described here was to leverage these gains 

against certain aspects of the aircraft design process. 

 

 

Figure 1.1. Transistor count as a function of time [2]. 
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 A project case study was formulated to lend a basis for the research project, and this 

study will be used in discussion at hand. The case study is an aircraft conceptual design project, 

where our methods were developed, tested and compared. As this development proceeded, valid 

conceptual designs were produced. 

 The case used for this purpose is the design of a small transport aircraft, capable of long-

range supersonic cruise, called the SCCT Project. This project was driven by a group of industry 

leaders (SCCT Committee), who developed the requirements for the mission in accordance with 

their knowledge of the aircraft market. The committee is also responsible for making final design 

decisions regarding this aircraft; the research described in this thesis is used by the committee to 

understand the feasible design space of the intended vehicle, as well as the layout and 

configuration of the aircraft. 

Table 1.1. SCCT Mission Requirements. 

Total Range 5000 nmi 

Passenger Count 20-30 

Maximum Takeoff Weight 121,000 lbf 

Maximum Altitude 55000 ft 

Cruise Mach 1.6 

 

 The requirements for the project are shown above in Table 1.1. The set of requirements 

was developed by the SCCT committee based on their analysis of the global aviation market, as 

well as the practical and regulatory limitations of passenger transport. However, it is necessary 

for the designer to understand the requirements in great detail, as the requirements must always 

be interpreted and interpolated to arrive at a complete design [3]. 

 The gross takeoff weight of the aircraft should be less than 121,000 pounds. The general 

reason for this requirement is to keep the takeoff weight low, in order to drive down the vehicle 

cost. Nicolai shows that the takeoff weight is a reasonable predictor of unit cost for various 

aircraft types, and therefore can be used as a proxy during the early design stages, when it is 

infeasible to calculate a detailed bill of materials for the aircraft [4]. The specific value for the 

weight limit corresponds to noise regulation. Starting in 2017, new aircraft will be subject to 
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ICAO Chapter 14 regulations concerning takeoff and landing noise; the regulation progressively 

limits the noise for aircraft below 121,000 pounds [5][6]. Noise for supersonic aircraft has 

historically been a difficult challenge, and as such its constraints are being considered at the 

earliest possible phase of this design. 

 The target of 20-30 passenger seating is based on the market size of the aircraft, and the 

desired price point of the flight when finished. The desired cost of the flight is expected to be 

only slightly higher than contemporary first-class airline flights, i.e. less than $20,000 USD [7]. 

The market for airfare of this price is expected to be small, and so the seat count is fairly 

minimal. The seating in the aircraft is considered to be typical of business class on a modern 

airline flight, with seat pitch roughly three feet. Since the aircraft cruises at supersonic velocity, 

the cruise phase is significantly shorter than aircraft of similar size; provisions for extended sleep 

are thus not required. 

 The SCCT committee created a matrix of the intended destinations of the vehicle, 

containing 24 major cities, to set a target for the range of the aircraft. For each possible trip 

between these destinations, the great-circle distance was computed using the airport latitude and 

longitude and the following form of the Vincenty formula [8]: 

 

 

(1) 

 

 Then, an interval of potential vehicle range distances was evaluated. For each range, the 

proportion of feasible trips was computed. The range target was selected where a small peak in 

this distribution occurs; this corresponds to a range that gives a large number of possible 

destinations without excess capability. This decision was also heavily informed by the historic 

knowledge of the committee members. The distribution is shown in Figure 1.1 below. 
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Figure 1.2. SCCT Destination Range Distribution. 

 Another important constraint on the SCCT design is the maximum cruising altitude. 

Generally, increased cruise altitude corresponds to better cruise performance, but this comes at 

the expense of weight in the passenger pressure vessel structure as well as human safety in the 

event of decompression. The United States Federal Aviation Administration (FAA) mandates 

that the cabin altitude (the altitude corresponding to the pressure in the cabin) must be 

maintained at 8000 feet or lower. At higher altitudes, hypoxia compromises the health and safety 

of crew and passengers. There is a trend among corporate aircraft manufacturers to fly at even 

lower cabin altitudes for reasons of passenger comfort, but attempts to study this have proven 

inconclusive [9]. The relationship between the flight altitude and cabin altitude is shown in 

Figure 1.2 below; some typical pressure values are shown in Table 1.2. To maintain the required 

cabin altitude for our case, the cabin must be pressurized to 9.64 pounds-force per square inch 

(psi). This corresponds well with similar aircraft. 
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Figure 1.3. Cabin Altitude vs. Flight Altitude for selected cabin pressures. 
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Table 1.2. Typical Cabin Pressurization for Passenger Aircraft. 

 Aircraft Cruise Altitude, [ft] Pressurization, [psi] 

BAE Concorde 60000 10.5 

Bombardier Global Express 41000 9.7 

Boeing 767 39000 8.5 

Boeing 787 39000 8.9 

Syberjet SJ30 41000 12.1 

 

 The choice of desired cruise Mach number was made by the SCCT committee based on 

flight time for the desired trips. To inform this decision, an analysis of the cost per seat-mile and 

the total travel time was created. The operating point was then selected to give the maximum 

improvement in flight time while staying within the desired operating cost. The resulting 

operating point was in the vicinity of Mach 1.6; the trade analysis is shown below in Figure 1.3. 

 

Figure 1.4. Travel time vs. Cost per Seat-Mile for selected trip distances. 
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 Some comparison to historic supersonic aircraft is useful to provide additional 

background for the SCCT project. One of the first designs built specifically for supersonic 

performance was the F-104 Starfighter. Its design was a response to USAF pilots’ need for a 

lighter, more maneuverable replacement for the F-86 and F-100 aircraft, and was optimized for 

transonic performance [10].  

 

Figure 1.5. Lockheed F-104 Starfighter [2]. 

 

 The performance requirements drove several notable features of this design. First, the 

wing planform is extremely small. This raised the maneuvering speed of the aircraft to the 

desired regime without excessively increasing drag. The wing airfoil section was very slender 

and sharp to reduce wave drag. These features provided the desired performance, but with the 

side effect of raised landing speed; a blown flap was required to reduce the speed at touchdown 

from 220 knots to 170, and a drogue chute was used on a normal landing. The use of a large 

turbojet engine with blown flaps also resulted in extreme ground noise. [10]. 

 The 1960’s brought the design of the Concorde, the first supersonic transport aircraft. 

This aircraft marked several key advancements in the field. The chief improvement was the use 
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of a slender delta wing to provide acceptable performance in supersonic flight while retaining a 

low landing speed. The tradeoff for this low landing speed was a high angle of attack, requiring a 

complex and heavy droop nose to give the pilot visibility. The design also used a highly 

advanced engine installation, with variable inlet geometry and a high-temperature compressor. 

The overall pressure ratio of the engine at cruise was 82:1, and the high thrust of the engine 

allowed the aircraft to cruise without afterburner use [11]. 

 

Figure 1.6. Aerospatiale/BAC Concorde [2]. 

 Another important design feature of the Concorde was the overall sizing. The desire to 

increase the lift-to-drag ratio demanded an extremely slender fuselage, and a large wing. This 

slender fuselage still had to accommodate standing passengers and the pass-through wing 

structure, thereby fixing the minimum dimension of the aircraft [12]. 

 The Lockheed-Martin F-22 is an example of a modern aircraft capable of supersonic 

cruise. In this aircraft however, the ability to cruise at Mach 1.8 without afterburner is due in 
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large part to the sheer thrust-weight ratio; the dry (non-afterburning) thrust-weight ratio of the 

aircraft is typically 0.77 [13]. Other features of the aircraft actually compromise the supercruise 

performance. The engine inlets have fixed geometry to reduce weight, and are sized for subsonic 

performance; this results in spillage drag during supercruise. The inlet edges are rounded to 

accommodate this spillage [13]. 

 

Figure 1.7 Lockheed-Martin F-22 [2]. 

 The SCCT project is part of a renewed interest in supersonic passenger transport since the 

late 1990s. Several private-sector projects are underway, all in early phases of design. These may 

be regarded as direct competitors to the SCCT project, targeting very similar business markets. 

 Chief among these competitor designs is the AS2 aircraft, being developed by Aerion. 

The current published specifications of this aircraft include a gross takeoff weight of 95,000 

pounds, cruise Mach of 1.6 and a three-engine design; the model of the engine is not specified. 

The key aerodynamic feature is the use of a short wing using a “Natural Laminar Flow” airfoil. 

This airfoil attempts to reduce skin friction drag by delaying the transition from laminar to 

turbulent flow on the wing; ideally, only the aft 30% of the wing is in the turbulent regime [14]. 
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Figure 1.8. Aerion AS2 [14]. 

 Another competitor design is the Spike Aerospace S-512. This aircraft is being developed 

toward a target gross-takeoff weight of 84,000 pounds, a target range of 4000 nautical miles, and 

a fuselage profile intended to minimize sonic boom [15]. The low weight of this aircraft is driven 

by the intended use of two Pratt & Whitney JT8D low-bypass turbofan engines. The 

aerodynamic design of this aircraft appears to be in an early phase; numerous changes to the 

promotional material have taken place and the aircraft currently features a delta wing. Applying 

the range analysis featured in Chapter 3 of [4], this design requires a lift-to-drag ratio of 11.4 

during supersonic cruise. 

 

Figure 1.9. Spike S-512 [15]. 
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 A common feature of many current supersonic initiatives is the reduction in sonic boom 

noise. This is a feature of the Spike design, and the chief feature of the SAI QSST design. Very 

little data is published regarding the QSST, but the obvious feature is a complex fuselage profile 

intended to reduce the strength of shockwaves during supersonic flight. 

 

Figure 1.10 SAI QSST [16]. 

 

Introduction to Aircraft Design Process 

 Canonically, the aircraft design process is considered as a process through three phases. 

The conceptual design process is the first of these. The goal of this phase of design is to arrive at 

a set of high-level design parameters which satisfy the overall customer requirements of the 

aircraft. The customer requirements are the mission profile and other constraints established by 

the customer; this process requires careful analysis and discussion between the customer and 

engineers, as the requirements often address quantitative customer needs using numerical 

quantities [3]. The design parameters are those of overall sizing and configuration, such as gross 

takeoff weight, engine thrust, wing area, wing thickness, taper ratio, and sweep angle. Since 

conceptual design is the phase considered in this paper, the analysis methods are designed to 

provide these results at minimum. 
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 The Preliminary design process concerns mid-level parameters of the design, such as 

wing camber and twist, basic internal packaging, and major structural elements. During this 

phase, the requirements are taken to be the result parameters of the conceptual phase. For 

example, a wing structure is designed to support the shape and loading determined in the 

previous phase. 

 Detailed design is the final phase of the design process. Continuing in the same fashion of 

the previous steps, this phase attempts to design detail elements which satisfy the general 

component requirements laid out in the preliminary stage. Joining of structural elements, specific 

component locations and mounting, wiring/plumbing, and surface finishing are all finalized at 

this phase [4]. 

 

Figure 1.11. Aircraft Design Phases [4]. 

 An important aspect of the canonical design process is that it normally incorporates 

numerous design “freezes”, where a set of design parameters are considered to be fixed for 
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subsequent design phases. This normally happens between the three phases listed above, but also 

can occur within a phase. The reason for these freezes are to make the project more tractable; the 

number of variables present in the overall design project can lead to virtually endless redesign 

work when a large-scale change is made after detailed design work has been completed. 

 This action of design freezing can be hazardous to the design process; it necessarily 

involves truncating a portion of the available design space. Many details are not considered 

during the conceptual design phase, and may require significant compromises when included at 

later phases. This problem is typically addressed through experience; an experienced design team 

is able to predict the important constraints for a given project. We attempt to improve this 

prediction by including actual analysis germane to these constraints, and indeed all constraints to 

which the design is subjected. 

 Any design process requires some schematic concept of the system being designed, and 

this is also true for aircraft. Initially, this representation is simply the geometric form of the 

vehicle; considering the exterior shape and internal arrangement. Many different techniques are 

used, which vary dramatically in the detail of the representation as well as the time required to 

draft the design. In each case, a number of variables are assigned to the geometry which are later 

used to analyze the performance. For example, in the simplest case the aircraft can be 

represented as a single point. The point takes on variables like mass and moment of inertia, and 

can undergo simple kinematic analysis based on these properties. 

 One representation commonly used during the earliest phases of aircraft design is the 

“stick airplane”. This model extends the point along one dimension, effectively modeling the 

vehicle as a line segment. The various components of the aircraft can then be placed at points 

along this line, and the overall properties of the vehicle are derived from the sum of the 

component contributions. An example of this representation is shown in Figure 1.11. The image 

can be considered as an aircraft viewed from the port side, with the front facing left. Four 

components are considered; each is placed at a location along the aircraft length and provides 

some contribution to force, mass or lift. This analysis can consider both the type and properties 

of each component individually, as well as their placement in the overall system. This typically 
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allows the estimation of performance quantities such as pitch stability and rate, and rate of climb 

[17]. 

 

Figure 1.12. Single-Dimension Stick Airplane. 

 The stick airplane suffers an important drawback, which is that the performance of each 

component is considered individually. In reality, the performance of all the aircraft components 

behave in a coupled fashion: the engine thrust affects the flow over the wing, and main wing 

creates a downwash on the tail. In order to begin to address these couplings, the panel airplane 

can be used, which begins to represent the aircraft geometry in three dimensions. The exterior 

geometry of the aircraft is represented as a collection of two-dimensional plane elements, located 

and oriented in three-dimensional space; a panel airplane is shown in Figure 1.12. This allows 

the planform shape to be quantified, as well as the three-dimensional mass properties of the 

vehicle. With this representation, it is possible to estimate the lift distribution, and stability about 

three axes. It is also possible to begin to analyze the properties of the internal structure, by 

modeling the vehicle as a collection of simple beams (i.e. the wing and tail spars connected to a 

central fuselage) [4][18]. 
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Figure 1.13. Panel Aircraft representation. [19] 

 At the current apex of geometric representations, 3D CAD (Computer Aided Drafting) 

tools are used. These methods allow the complete aircraft to be represented in arbitrary detail, 

using free-form solid volume geometry. The volume of the aircraft components are represented 

as a set of analytical solids in three-dimensional space. This format is extremely flexible, and 

introduces many variables to define the form of the solid geometry. With this technique, an 

analysis of the internal structure and volume is possible, allowing the packaging arrangement of 

internal components to be considered. CAD is the starting point for many of the most advanced 

engineering analyses performed today, and also forms the basis of modern manufacturing 

techniques [20]. A transport aircraft is represented in CAD in Figure 1.13, and shows a typical 

level of detail used in the conceptual design phase. 

 Each of the geometric representations described above allow a set of performance 

analyses to be performed. Some approximation is made of the fluid flow around the body while 

it is in flight to analyze the aerodynamic performance of a test geometry. The methods used to 

accomplish this also vary dramatically in cost and detail. The detail of an approach can further be 

split into its accuracy and precision; an accurate analysis produces answers which closely match 

the real performance, and a precise analysis is reliably sensitive to small changes in the model 

variables. It is important to balance these features when creating an analysis suite for a project. 



16 

 

Figure 1.14. 3D CAD Aircraft Exterior. 

 For the simplest representations, an analytical performance factor called the Oswald 

efficiency is typically used. This factor is simply a property of any lifting-surface component, 

and is applied to a point or stick airplane to characterize the three-dimensional shape of the finite 

wing. Applying this factor is an analytic result, so numerical computation is straightforward; 

however, the value of the Oswald factor itself is typically an empirical result [21]. 

 Since the 1960s, computational tools have been used to eliminate this experimental 

dependence and calculate the performance of a design directly. One of the most common tools is 

the Vortex Lattice method, which is applied to a panel geometry. This approach uses a linear 

superposition of many analytical solutions of varying strength, with the overall sum constrained 

to satisfy the body boundary conditions. In order to combine such solutions, they must be linear; 

this restricts the flow regimes which can be applied to inviscid and irrotational flows. Vortex 

lattice codes are still widely used for modern design; a popular implementation is Tornado for 

MATLAB [19]. Computationally, these methods typically require the explicit inversion of a 

large square matrix. 

 Modern computational fluid dynamics (CFD) is performed using Finite Volume methods. 

These methods directly discretize the Navier-Stokes equations on a mesh of volume cells. With 
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well-posed boundary conditions the problem is tractable to solve numerically. This approach 

typically uses an implicit numerical solver and requires a high-resolution mesh; the solution 

therefore requires significantly longer computation time than previous methods. However, when 

used properly the accuracy and precision of the computation can be arbitrarily chosen by the 

designer. Many free, commercial and research-grade are currently maintained which implement 

finite-volume CFD solvers. 

 Turbulent boundary layers pose a challenge worth mentioning in modern CFD 

applications, and they strongly affect the flow regimes under consideration in this project. Since 

the underlying physics of turbulence are not well understood, turbulence simulation typically 

involves an empirically-based model such as k-epsilon or k-omega [22]. Direct numerical 

simulation is possible, but it remains cost-prohibitive for high Reynolds number flow and 

complex shapes [23]. 

 Other analysis tools which are important to aircraft design are those which address the 

analysis approach used in the project. Since a number of analyses must take place in order to 

evaluate a design candidate, the type and order of the analysis process can also be studied. Thus, 

the process of designing an aircraft vehicle also includes the design of the process used to create 

the vehicle design. Many tools for performing this meta-analysis are provided by Systems 

engineering, but a more rigorous approach is given by a field called Multidisciplinary Design 

Optimization (MDO). MDO attempts to formulate a complete design project as a single problem, 

and in such a way that a true optimization can be performed. Ideally, the project is written as a 

one-to-one objective function of the design variables, such that minimizing the function results in 

an optimal design candidate. This approach is an area of active research, particularly by J. 

Alonso at Stanford University [24]. Our approach differs from true MDO, however; we attempt 

to use some basic techniques to achieve a fast and inexpensive initial evaluation of a project. 

Rather than an exhaustive or custom-tailored optimization approach which results in a complete 

design, we use versatile commercial codes which are automated to provide only the necessary 

information to assess design concepts against a set profile. 

 The Design Structure Matrix is a tool used to optimize the analysis itself. Analysis blocks 

are called Subsystems, and are listed on the main diagonal of a square matrix. The information 
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flow between subsystems is shown by a binary value in off-diagonal entries, called feed-forward 

or feed-back. Figure 1.14 shows how the DSM format translates to typical flow-chart diagrams. 

 

Figure 1.15. Design Structure Matrix terminology and format [25]. 

 The DSM highlights the information flow between portions of the analysis. Coupled 

portions of the loop require iteration to converge on the output values, so it is useful to attempt to 

arrange the analysis subsystems to minimize the amount of iteration required. [25][26]. 

 Once an analysis scheme has been optimized, the design of the actual project at hand can 

take place. Heuristic methods for this optimization are often required for multidisciplinary 

analysis of large systems, due to the difficulty of calculating the gradient of the objective 

function with respect to the design variables. The simplest heuristic method is the use of a global 

random search, in which many design candidates are generated, with design variables taking on 

random values. Each candidate is analyzed using the same scheme, and the best performing 

candidate is taken to be the optimum. This approach requires large populations of candidates to 

be evaluated in order to be successful. An improvement on the simple random search can be 

provided by a Particle Swarm Optimization, in which a smaller random-sample population is 
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evolved over several iterations, with each iteration converging toward the population best 

performer; some randomization is included at each step to avoid local minima [27][28]. 

 Another line of research into analysis optimization involves the use of lower-fidelity 

analysis tools to predict the best-performing design candidates. This technique is called 

Surrogate-Based Optimization; its aim is to reduce the computation cost of evaluating large 

populations. The goal of the analysis tools used here is not to predict exactly the outright 

performance of each model, but rather to predict the rank of performance of the candidates 

relative to each other. The top performers can then be evaluated using a small number of high-

cost evaluations to obtain the true optimal performance. [24]. 

 It is our claim that the best approach to the design of aircraft balances these goals. By 

carefully tuning the fidelity of the analysis in the conceptual phase, a more robust optimal design 

can be delivered by including important preliminary design factors while retaining a low cost of 

analysis. Using the case study of a supersonic commercial transport, we showcase an analysis 

technique using commercial software tools, which are automated to provide a high-fidelity 

analysis at low computation cost. While  
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CHAPTER II 

METHODOLOGY: HIGH-FIDELITY CONCEPTUAL DESIGN APPROACH 

 

Computer-Aided Drafting using Solidworks 

 A general discussion of CAD is beyond the scope of this thesis, however our problem 

does require some specific methods and techniques to provide a well-posed problem. The 

purpose of CAD in our approach is to take a set of real-valued scalar dimensions and generate a 

solid 3D model file, to be read by subsequent analysis steps. Since the CAD defines the 

geometry to be analyzed, there must be a one-to-one correspondence between the dimensions 

and models, so each given set of dimensions results in exactly one unique 3D model. The 

following steps describe a generalized CAD process, and specific actions which were taken in 

order to preserve this correspondence. We use Solidworks to implement this process, but the 

method is easily adapted to other packages.  

 

Figure 2.1: CAD Construction Process. 

 The schematic shown in Figure 2.1 shows the general flow of the construction of the 

CAD file. The process begins with a table of real-valued scalar dimensions, which define 

sketches composed of analytical curve segments such as lines, circular arcs, and/or cubic splines. 

These sketch segments are then used to create or cut solid features using operations including 

extrusion, revolution, lofting, and sweeping. These solid features combine to make the final 

geometric bodies which are saved to the CAD files. We refer to the complete system shown in 

Figure 2.1 as a CAD “deck”; once this deck is constructed, the initial table can be modified to 
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generate new models automatically. In fact, this method allows the generated models to be 

arbitrary in both individual geometry as well as total number. Thus, it is often referred to as 

Parametric CAD, Rubber CAD, or iMod[29]. 

 Building the CAD deck requires some a priori knowledge of the desired final product, so 

some forethought is necessary. Initial considerations must be made of the desired output 

coordinate system; we use the axis directions defined in [17]. This system defines X pointing 

longitudinally along the nose of the airplane, Y pointing horizontally in the starboard direction, 

and Z pointing down. More generally, before building a CAD deck one must consider the 

amount of flexibility desired in the model. Extreme flexibility is possible; for example, a single 

CAD deck can create models of conventional, biplane or aft-wing aircraft, with several different 

engine arrangements, as well as geometric variations of the dimensions of each. However, such 

configuration options add complexity to the deck and it therefore requires more time to construct 

and debug. 

 Building the CAD deck begins with creating line elements which are expanded to form 

the 3D bodies. The sketching process is critical to the creation of a one-to-one CAD model, since 

this is the step where the dimensions are applied to the geometry. As new sketches are created, 

they are defined by dimensions; these then populate the table which is used to control the 

geometry. In addition to numerical dimensions which are applied, logical relations can be 

established between elements to define their position. For example, a line can be defined as 

parallel to the X-axis with one endpoint at the origin. Now, the line can be fully defined by its 

length and direction (+x or –x). 
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Figure 2.2: Un-dimensioned sketch. 

 Figure 2.2 shows a sketch which contains neither dimensions nor relations. It simply 

consists of four basic sketch entities: three straight lines, and a portion of an ellipse. It is a closed 

sketch and a 3D model could be generated from it, but it is not useful for the problem at hand, 

since any applied dimensions will produce the same output. 

 

Figure 2.3: Fully Defined sketch. 
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 In Figure 2.3 the sketch has been fully defined using a combination of relations and 

dimensions. The dimensions are shown using drafting notation, and the relations are identified 

by green icons. The lower right corner has been defined as coincident with the origin, fixing its 

location. The two lines adjacent to this corner have been assigned horizontal and vertical 

relations, as well as distance dimensions. The ellipse has been defined by constraining its center 

to the vertical line, at a fixed distance from the origin. A horizontal construction line forms the 

semimajor axis of the ellipse, and defines the endpoint of the angled line. The degenerate cases 

of a distance pointing the opposite direction are handled behind-the-scenes in Solidworks by 

signing each created dimension [30]. Applying a negative dimension to a distance or angle will 

flip the direction and take a value equal to the absolute value applied. 

 The sketch is now in a state such that any combination of the four applied dimensions 

will yield exactly one unique result. Solidworks uses the term “Fully Defined” to identify this 

state. When a sketch is finished, the range of desired movement should be considered, to ensure 

that the sketch can obtain the range without logical errors. For example, an angle which must be 

able to take on both positive and negative values should be dimensioned with an added 90 

degrees, as shown in Figure 2.4. 

 

 

 

 

 

Figure 2.4: Angle of Incidence dimension for airfoil showing +3 and -2 degrees. 

 The techniques used in sketching and dimensioning the model determine the number of 

variables required to construct the model; this contributes significantly to the scale of the 
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analysis as a whole. Since the goal of the analysis is to study the cross-coupling of geometric 

shape with respect to performance output, the number of dimensions used in sketching adds 

directly to the dimensionality of this cross-coupling [31]. Figure 2.5 shows an example of this 

case. Two methods of constructing the desired cross-section are shown; note that the sketch to 

the left uses arc and ellipse curves and is defined with only three dimensions; the sketch on the 

right uses cubic spline entities and requires a total of nine dimensions. The shape on the left 

gives much more flexibility in terms of geometric shape, but this comes at the expense of 

threefold greater complexity. 

  

 

Figure 2.5: Comparison of Sketch Construction; 3 dimensions vs. 9 dimensions. 

 

 Once a sketch construction was obtained, the solid model can be built. This is performed 

using common CAD operations including extrusion, revolution, and lofting. Our design methods 

do not constrain the type of features used to construct the solid model; however certain features 

add dimensions to the design. For example, the profile shown in Figure 2.5 can be extruded 
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normal to the plane to generate a solid volume. The distance of this extrusion then adds a 

dimension to the analysis. The following images shown in Figure 2.6, show the process of lofting 

a wing onto our design. The progression begins with the upper left image and proceeds 

clockwise. First, the sketches which will compose the loft are shown. The wing is composed of 

three airfoil sections, along with guide curves corresponding to the leading and trailing edges. 

The loft is performed as two separate features, with the inboard section lofted first followed by 

the outboard section. The final image shows the completed solid body of the wing. 

  

  

Figure 2.6: CAD Wing Loft Progression. 

 Note that a portion of the wing volume intersects the fuselage volume already present in 

the images. One advantage of solid body modeling techniques is that the features can be merged, 
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which creates a single model from the union of the new feature and the existing solid. This 

automatically creates a manifold solid with the correct intersection edge. 

 One section of our design is constructed using imported geometry; namely the engine 

nacelle, and inlet/nozzle flowpaths. Since the specific engine is specified by the mission profile, 

we elected to use a fixed geometry for these elements which is imported and placed at the 

desired location. The inlet geometry was created using the SUPIN code developed by John W. 

Slater at NASA Glenn Research Center [32][33]; the code takes inputs of Mach number, mass 

flow rate and fan diameter; it then explicitly generates the geometry of the engine inlet. The 

generated geometry is shown below in Figure 2.7. 

 

Figure 2.7: Inlet geometry generated by NASA SUPIN. 

 

 The geometry output from SUPIN was then wrapped in a best-fit cubic surface within 

Solidworks to create the final engine CAD. At the other end of the engine, the nozzle geometry 

was created in Solidworks to match the F-100 inlet under cruise conditions. The usage of the 

dedicated inlet and nozzle flowpaths is explained in greater detail in Section 8. These three 
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geometry shapes were saved to a separate Parasolid file, which was imported to the CAD deck 

and placed on the model. 

 

Figure 2.8: CAD Placement of Imported Engine Geometry. 

 After importing the engine geometry to the CAD model, it must be placed in such a way 

that dimensions can be applied. This is accomplished by choosing three specific points on the 

engine geometry, and locating them in x-y-z space within the model. A construction sketch is 

used to place three points in space with the desired relationship, and the corresponding points on 

the imported engine geometry are fixed to these sketch points. This is shown in Figure 2.8; the 

sketch uniquely locates the inboard corners of the inlet mouth as well the top centerline. After 

placing the engine, additional CAD modeling is used within the deck to provide volume for 

structural support, such as a pylon or a bulge in the wing surface.  

 The final CAD operation is to create a negative fluid volume. This converts the aircraft 

geometry into the geometry of the fluid surrounding the aircraft, which is one of the intended 

analyses to be performed. This is easily performed using solid modeling techniques by creating a 

large volume and performing a subtraction operation of the original shapes. This final volume is 

shown in Figure 2.9; the small collection of hidden lines in the center show the location of the 
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aircraft. A conical fluid domain has been constructed as the intended analysis regime is 

supersonic in nature. The fluid domain is also truncated at the centerline plane of the aircraft (i.e. 

the z-x plane) to apply a symmetry assumption to the simulation. 

 

Figure 2.9: Complete Fluid Domain CAD. 

 The crucial feature of our CAD deck is the table of dimensions which drives the model. 

In Solidworks, this is called a Design Table and features all the model dimensions as columns, 

with different model configurations as rows. An excerpt of the upper-left portion of a design 

table is shown below in Figure 2.10. 
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Figure 2.10: Design Table Excerpt. 

 We color the columns of the design table by the part of the aircraft they refer to; in this 

example the red columns refer to fuselage dimensions and the green columns refer to the wing. 

The rows of the table are populated by the design models which are to be analyzed. We create 

these rows procedurally by assigning each dimension a generated value; this is done in three 

ways. 

 The simplest method to generate model variation direct randomization of the dimensions. 

We accomplish this by setting fixed minimum and maximum limits; these are seen in the “min” 

and “max” rows of the table above. The numbered models which make up the remainder of the 

table are then generated by taking a random value between these limits. Direct randomization has 

the advantage of a thorough exploration of the design space; since all dimensions vary 

independently with respect to all other dimensions, it should be possible to detect all cross-

coupling effects between the models. Such an exhaustive process is very time-consuming, 

however. In practice, the dimensions are not entirely independent, so some small engineering 
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analyses can be performed which correlate several variables. The controls applied to accomplish 

this reduction are discussed in detail in the final section of this chapter. 

 Finally, some dimensions are simply held constant. This is performed due to known 

conditions of the model, derived from the initial mission goals. For example, since our design 

should seat 20 passengers with 0.9-meter seat pitch, the passenger cabin aisle must be 9m in 

length. The text color-coding shown in Figure 2.10 shows the method used to generate the model 

variations; white dimensions are directly randomized, black dimensions are held constant, and 

grey columns are calculated from other values. 

 We determine the total number of models to be analyzed based on the number of 

randomized variables used, and the method used to choose a final design. When using a simple 

global random search, a single group of models is created and evaluated, and with the highest-

performing model selected as the design to use. For this approach, we use 30 models per 

variable. When using an iterative optimization approach, we use 10 models per variable. Our 

CAD decks typically used 30-40 randomized variables. 

 Once the models are generated, they must be exported and debugged. The export process 

simply saves each model to a Parasolid Binary file, a compact format which contains only the 

solid geometry with very little metadata. We automate this process using a Solidworks macro 

written in VBA. The macro simply loops through all the models (termed Configuration in 

Solidworks) and executes a forced rebuild of the CAD geometry using the table dimensions, and 

then saves the output file. The source code of this macro is shown in Appendix B. 

 Ideally, this is the end of the CAD process and the models can now be analyzed. 

However, there are frequently issues with model generation which must be resolved before the 

CAD deck is finished. The usual source of these errors are models which failed to rebuild due to 

some error in the CAD generation, frequently due to a logical flaw in one or more solid features. 

These become more common using complex constructions and spline curves, due to the 

increased degrees of freedom. An example of a failed model is shown in Figure 2.11, where a 

wing loft operation has failed.  
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Figure 2.11: CAD Rebuild Failure. 

 The simplest way to resolve these errors is to limit the range of the dimensions in the 

design table, but we attempted to avoid this method where possible by more careful application 

of dimensions and relations within the part. The reason for this preference is that a reduction in 

the range of dimensions effectively truncates the design space represented in the analysis, 

therefore compromising the robustness of the final result. 

 

Aerodynamic Analysis Using STAR-CCM+ 

 We performed an analysis in STAR-CCM+ to evaluate the performance of our design 

candidates during the cruise phase of flight. The overall purpose of our STAR-CCM+ analysis is 

to open the given set of candidate CAD geometries and perform an identical analysis upon each. 

The goal is to create a fair benchmark, allowing the design candidates to be ranked based on 

performance calculations using the results obtained in STAR-CCM+. In order accomplish the 

consistency required for such a benchmark, we created a fully automated analysis using macro 

code written in JAVA. The complete analysis process is automated, and proceeds through the 

steps shown in Figure 2.12 below. 
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Figure 2.12. STAR-CCM+ Evaluation Workflow Schematic. 

 The topology of the simulation is shown schematically in Figure 2.13. In the main fluid 

region, supersonic flow enters the conical boundary from the left (1) and passes over the walls of 

the vehicle (3). The downstream boundary is a pressure-release boundary (2). The angle of the 

cone was determined by the Mach angle at the evaluated flow velocity, plus five degrees to 

account for the pitch angle changes. 

The engine installation adds two 

smaller fluid domains which contact 

the main region at (6) and (7). Separate 

regions are used in order to provide 

additional control over the grid 

generation process. Within the engine 

flowpath, the fan face boundary (4) is 

a pressure-release outlet; the turbine 

boundary is a mass flow inlet with 

specified total temperature. Most of 

the evaluations performed involve 

pitch angles only, and so bilateral 

symmetry is used. 

 

 The surfaces of the CAD geometry must be named to apply these boundary conditions 

within STAR-CCM+. This capability is a feature of the Parasolid file format, and essentially tags 

the faces of the CAD part so that they can be called in the CFD phase. We chose names that were 

Figure 2.13. STAR-CCM+ Simulation Topology 

Schematic. 
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human-readable and applied them to the imported part surfaces in Solidworks; when the fluid 

domain is created the only un-named faces are those belonging to the vehicle itself; these 

boundaries are automatically collected and the appropriate wall conditions are applied.  

 The first step in the evaluation process is to import the CAD geometry saved by 

Solidworks and create a finite volume mesh on which to perform the solution. This is a multi-

step process in STAR-CCM+, with each phase generating a Representation. The CAD import 

results in an “Initial” representation, and the code then proceeds to generate Geometry, Surface 

Mesh, and Volume Mesh representations; the last of these is finally used for the finite volume 

solver. 

The initial representation is an analytic CAD body. The first step in the mesh process is to 

tessellate this body into planar surface elements, creating the Part mesh. This discretization is 

purely curvature-based and incorporates no element sizing; the goal is merely to capture the 

geometry accurately. This grid is shown in Figure 2.14, highlighting the area of the engine inlet 

and wing root. 

 

Figure 2.14. STAR-CCM+ Part Tessellation. 
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 The Surface Mesh representation is generated next. This important step imposes the 

boundary conditions for the simulation, as well as the boundary face sizing of the final volume 

mesh. The mesh generator is a curvature-based, triangular grid; the sizing is controlled primarily 

by a target edge length, with curvature refinement down to a prescribed minimum edge length 

[23]. Within STAR-CCM+, this is performed as a Parts-Based Mesh Operation. We use surface 

controls applied to individual boundaries to limit the element edge length on the body, with 

separate controls for internal and external surfaces. The surface size at the far-field boundary is 

allowed to be large, on the order of the vehicle length [23]. The sizes applied are shown in Table 

2.15. 

 

Figure 2.15. STAR-CCM+ Surface Mesh. 

  



35 

Table 2.1 STAR-CCM+ Mesh Parameters. 

Parameter Value Units 

Base Size 30 m 

Target Surface Size 100 % Base 

Target Surface Size (Internal) 0.5 % Base 

Minimum Surface Size 0.3 % Base 

Surface Curvature 48 Pts/Circle 

Surface Growth Rate 1.16 - 

Number of Prism Layers 11 - 

Prism Layer Stretching 1.5 - 

Prism Layer Total Thickness 

(External) 0.16 m 

Prism Layer Total Thickness 

(Internal) 0.08 m 

Volume Mesh Quality Threshold 0.6 - 

Volume Mesh Optimization Cycles 3 - 

 

 The final step in the mesh process generates the volume mesh. This single-step process 

fills the fluid volume with polyhedral cells using sizing based on the surface mesh; it is possible 

to incorporate additional sizing constraints, but for our purposes the surface size controls were 

found to be sufficient. This process also generates a layer of prism cells at wall boundaries in 

order to resolve the boundary layer gradient. STAR-CCM+ does provide the option to use 

rectangular or tetrahedral volume cells, but these options do not support the fluid region 

interfaces used for our engine flowpath. Figure 2.16 shows the engine inlet volume mesh, with 

the actual volume cells shown in green. 
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Figure 2.16. STAR-CCM+ Volume Mesh, Intake Detail. 

 This image also shows the treatment of prism layers at the intake edges; the prisms are 

continued along the region interface into open space. This feature is used on the nozzle flow 

region as well, and allows better resolution of several important phenomena related to the 

engine: the shock-pattern in the inlet and its interaction with the boundary layer, and the fluid 

shear where the nozzle flow rejoins the free stream. 

 With the volume mesh in place, the solution process can begin. STAR-CCM+ computes 

its flow solution in a global Cartesian reference frame and coordinate system, called Laboratory. 

We first define an additional coordinate system with respect to these global coordinates, which 

we use as a flow-centered coordinate system. In this way the freestream flow direction as well as 

directions for lift and drag forces can be computed using the flow coordinate system; when the 

coordinate system itself is rotated the directions are preserved. This also simplifies the process of 

applying multiple transformations with the Euler angle convention; the coordinate system is 
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simply rotated about its own Z-Y-X axes--in that order--to achieve the desired yaw, pitch and 

roll angles [17][34]. 

 In STAR-CCM+, the governing equations to be solved on the volume mesh are selected 

by choosing Models within a physics continuum applied to the fluid region. We used a three-

dimensional, steady, viscous coupled flow regime (the specific model choices are listed in Table 

2.2), derived from the following integral form of the Navier-Stokes equations [23][35]: 

 

 

(2) 

 

where W includes density and flow velocity, F includes transport and grid velocity, G includes 

viscous stress and heat flux, and finally H accounts for body forces. χ represents fluid domain 

porosity, and is unused (unity) for this analysis. The fluid was modeled as an ideal gas, with the 

properties of standard-atmosphere air. Turbulence and separation are modeled using the RANS 

SST K-Omega turbulence with source terms taken from dimensionless user boundary conditions 

Turbulence Intensity and Viscosity Ratio. These were set to 0.01 and 10 respectively for all 

cases. For near-wall locations, the STAR-CCM+ All-Y+ Wall Treatment was used. This model 

assumes a linear viscous layer and a logarithmic region, blending the two using an intermediate 

function. For momentum, this is accomplished using Reichardt’s law, here in non-

dimensionalized form [23]: 

 

 

(3) 

 

                      

(4) 
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Temperature blending is derived from Kader’s law, modified to accommodate a wall roughness 

function (smooth walls were assumed throughout these cases) [23]: 

 

 

(5) 

 

 

(6) 

 

Table 2.2. STAR-CCM+ Physics Models used for SCCT Cruise Evaluation. 

Regime Model Used 

Space Three-Dimensional 

Time Steady 

Material Gas 

Equation of State Ideal Gas 

Flow Regime Coupled Flow 

Energy Regime Coupled Energy 

Viscous Regime Turbulent 

Turbulence Reynolds-Averaged Navier-Stokes 

Reynolds-Averaged Turbulence K-Omega Turbulence 

K-Omega Turbulence Model SST (Menter) K-Omega 

K-Omega Wall Treatment All-y+ Wall Treatment 

 

 Coupled flows in STAR-CCM+ allow the use of the expert solver tools, Grid-Sequencing 

Initialization and the Expert Driver. The former is used to provide a well-posed initial condition 

by solving the full geometry and boundary conditions for a simplified inviscid flow, then passing 

that solution to the main solver. The latter is a tool which actively modulates the CFL number of 

the implicit solver while running to give faster convergence while maintaining stability. As an 

additional stabilizing feature, the solver is run for the first 250 iterations using a first-order 

coupled flow discretization, before switching to second-order accuracy. This operation was 
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necessary to give consistent stability to the engine inlet flow. The parameters used for these 

solvers are given in Table 2.3; other solver parameters were left at default values. 

Table 2.3. STAR-CCM+ Solver Parameters used for SCCT Cruise Evaluation. 

Courant Number 80 

Grid Sequencing CFL Number 150 

Grid Sequencing Convergence Tolerance 0.02 

Expert Driver CFL Ramp End Iteration 100 

Expert Driver Minimum Explicit Relaxation 0.5 

 STAR-CCM+ uses tools called Reports to extract values of interest from the simulation. 

These simply extract the raw flow values on the appropriate cells or faces, and compute the 

desired output. Many options are available to be reported due to the richness of data available 

from a CFD solution. The reports used in this analysis are shown below in Table 2.4. 

Table 2.4. STAR-CCM+ Reported Values used in SCCT Cruise Evaluation. 

Name Report Type Entity Direction 

Cell Count Element Count All Regions - 

Planform Area, S Projected Area All Wall-Type Boundaries [ 0, 0, 1] 

Wing Semispan, b Maximum All Wall-Type Boundaries [ 0, 1, 0] 

Fuselage Length, l Minimum All Wall-Type Boundaries [ 1, 0, 0] 

Lift Force All Wall-Type Boundaries [ 0, 0,-1] 

Drag Force All Wall-Type Boundaries [-1, 0, 0] 

Side Force Force All Wall-Type Boundaries [ 0,-1, 0] 

X-moment Moment All Wall-Type Boundaries [ 1, 0, 0] 

Y-moment Moment All Wall-Type Boundaries [ 0, 1, 0] 

Z-moment Moment All Wall-Type Boundaries [ 0, 0, 1] 

L/D Expression Lift,Drag - 

Fan Mass Flow Rate Mass Flow Fan Face - 

Fan Total Pressure 

Mass-Flow Averaged Total 

Pressure Fan Face - 

Fan Total 

Temperature 

Mass-Flow Averaged Total 

Temperature Fan Face - 
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 These reports are saved to the final output of the simulation, but are also used to control 

the solution during the implicit iteration process. The flow conditions at the fan face are used by 

the macro code for the on-line engine deck to compute the nozzle flow conditions and the 

specific fuel consumption. Also, the report values are used to stop the solver when sufficient 

convergence is attained; this is done when the L/D ratio and engine mass flow rate stabilize 

asymptotically to five significant digits. 

 The STAR-CCM+ macro code evaluates five different flow solutions in order to provide 

sufficient data to the subsequent performance analysis. The first solutions to be run are three 

pitch angles at 1, 3, and 5 degrees angle of attack. Forces and moments are recorded at each 

angle. Within the macro code, a least-squares regression is then used to fit a line and parabola to 

the Drag and Lift force curves, respectively; a numerical solver then computes the alpha value 

which maximizes L/D. This angle of attack is then evaluated. 

To obtain a sideslip solution, the bilateral symmetry assumption is abandoned. We create a copy 

of the mesh and mirror those cells about the symmetry plane, then combine the regions. In this 

process, the centerline symmetry boundary is removed. A single sideslip case is evaluated using 

a 1-degree sideslip angle, and pitched at the previously computed maximum L/D angle of attack. 

Once these solutions have been completed, the recorded values are written to an output file in 

comma-separated value (.csv) format. Forces and moments are recorded for all simulated 

conditions, as well as cell count, mass flow rate, body length, span, as well as the system time 

required to solve all cases. Also, the computed thrust-specific fuel consumption and maximum 

L/D angle of attack are written. All other simulation data is discarded, and the STAR-CCM+ 

process repeats over each CAD model provided to the macro. 
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Post-Analysis using MATLAB 

 MATLAB is used to collect and analyze the data results from STAR-CCM+. We used a 

written script to accomplish this task, as opposed to the interactive MATLAB prompt; this 

allows the post-analysis to be repeated precisely for different data sets without significant effort. 

First, the data results from STAR-CCM+ are read from the comma-separated text files, then 

collate each recorded value into a vector of that quantity across all tested CAD models. The code 

is written to search a given directory and read all .csv files present, concatenating the data into a 

single set. This was done so that a STAR-CCM+ analysis could be split into multiple operations 

for the range of models, allowing that operation to be parallelized. 

 After this concatenation, the MATLAB workspace contains a series of result vectors, 

each having dimension equal to the population of models tested. At this point, additional derived 

result values are computed from the direct results. These derived values are used to evaluate the 

optimization objective function and assess the performance of each model, as well as provide 

additional information about the population. The values computed are based on an assumed 

cruise-climb flight profile, terminating at the required maximum altitude and operating at 

maximum lift-to-drag ratio throughout the cruise. 

 First, the weights are calculated. The lift produced at maximum L/D is corrected to the 

maximum altitude by multiplying by the density ratio between the evaluation flow and the 

known maximum altitude. This maximum-altitude lift is equated to the weight of the vehicle at 

cruise termination, assumed to consist of the aircraft empty weight, 5% fuel, and the full 

payload. Using an empirical relation from Nicolai, the gross takeoff weight is computed as a 

function of the empty weight, and the cruise start weight is computed as a function of the gross 

takeoff weight. This computation requires the use of the secant method. Fuel weight is obtained 

simply by subtracting the payload and empty weight from the gross vehicle weight.  

 Once the weights are computed, performance results can be estimated. The range is 

calculated using the Breguet range equation and the cruise phase weight ratio [4]. The stability 

derivatives with respect to pitch and sideslip are obtained from the central differences of the 

STAR-CCM+ results. The aerodynamic center and neutral point are then computed using simple 
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ratios, and used to obtain the static margin [4]. The use of aerodynamic center assumes that the 

vehicle center of gravity is located at the aerodynamic center, which is known as the trimmed 

flight condition. Finally, we define a Dutch roll coefficient to quantify the roll moment direction 

during sideslip flight; this coefficient is simply the ratio of the roll moment to the yaw restoring 

moment. All the relations described above are listed below in Equations X-Y. 

 𝑊4 =
𝜌𝑚𝑖𝑛 

𝜌𝑒𝑣𝑎𝑙

(𝐿)𝐿
𝐷⁄ 𝑚𝑎𝑥 (7) 

 𝑊𝑒 = 0.911𝑊0
0.947 (8) 

 𝑊3 = (0.9)(0.95)𝑊0 (9) 

 𝑊𝑓 = 𝑊0 − 𝑊𝑒 − 𝑊𝑝 (10) 

 
𝑅 =

𝑉

𝐶

𝐿

𝐷
ln (

𝑊3

𝑊4
) (11) 

 
𝑋𝑎𝑐 = (

𝑀𝑦

𝐿
)

𝐿
𝐷⁄ 𝑚𝑎𝑥

 (12) 

 

𝑋𝑛𝑝 =

𝜕𝑀𝑦

𝜕𝛼
𝜕𝐿
𝜕𝛼

 (13) 

 
𝑆𝑀 = (𝑋𝑛𝑝 − 𝑋𝑎𝑐)

𝑏

𝑆
 (14) 

 
𝐶𝐷𝑅 ≝ (

𝑀𝑥

𝑀𝑧
)

𝑠𝑖𝑑𝑒𝑠𝑙𝑖𝑝

 (15) 

 

 We then find the subset of tested design candidates which pass feasibility tests based on 

these computed values, and sort those models according to their performance. These feasibility 

tests are based on the defined mission parameters, as well as stability criteria for steady flight. 

The criteria used are listed and described in Table 2.5. 
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Table 2.5. SCCT Candidate Feasibility Criteria. 

Criterion Description 

𝑊0 < 121000 𝑙𝑏𝑓 Gross Takeoff weight must satisfy mission requirement. 

𝑅 > 5000 𝑛𝑚𝑖 Cruise Range must satisfy mission requirement. 

|(𝑋𝑎𝑐 − �̅�) (
𝑏

𝑆
)| < 0.01 Trimmed CG location must be within 1% MAC of the aircraft 

volume centroid. 

𝐷 < 𝑇 Cruise drag must be less than the available engine thrust. 

0.01 < 𝑆𝑀 < 0.05 Static Margin must be between 1% and 5%. [Phillips][Raymer] 

𝐶𝐷𝑅 > 0 Dutch Roll coefficient must be positive. [Phillips] 

 

 Once the set of feasible design candidates are found, they are sorted according to 

performance using an objective function. The choice of the objective function is a crucial aspect 

of a design optimization [24] and as such we devoted careful thought to the decision. In the end, 

two options were seriously considered, and both make an effective objective function for 

optimization of the SCCT design. Both of these options consider the most challenging 

performance criteria of the mission profile; the range target of 5,000 nautical miles, and the 

weight target of 121,000 pounds. The first option is to attempt to find the lowest-weight 

candidate that satisfies the range requirement; the second option is to attempt to find the longest-

range candidate that satisfies the weight constraint. 

 In the case of the first option, the objective function simply becomes the calculated gross 

takeoff weight. The chief advantage of this approach is that the vehicle weight is an excellent 

predictor of the vehicle cost [4]; thus, minimizing the weight can be considered to minimize the 

unit cost as well. However, a major motivation for the mission weight target is the noise 

regulations governing the aircraft; improving the gross takeoff weight below this limit does not 

change the noise category further. 

 For the second option, the objective function is the negative of the range. Minimizing this 

function gives a longer cruise range; Figure 1.1 shows that a longer range allows a higher 

proportion of trips to be made by the aircraft, and consequently broadens the available market for 

the vehicle. Also, this benefit is not coarsely discretized; even marginal improvements to the 
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cruise range provide additional feasible trips. For this reason, we chose to use the calculated 

range as the objective function for this project. 

 Finally, a number of data measures are plotted to understand the data. Scatter plots of the 

range with respect to weight, wing area and fuel volume are created; histogram plots are created 

for several output values. Parameter estimations for the mean and variance of the computed 

range and takeoff weight are made, using a normal distribution assumption. 

 

Meta-Analysis using DSM 

 Before approaching the details of our analysis, we first performed an overall study of our 

analysis process. This meta-analysis helped to set the general approach to the process, indicating 

the scope of analysis which should be undertaken as well as the order in which to perform each 

simulation step. We used a Design Structure Matrix (DSM) to accomplish this meta-analysis. 

Each task in a process such as ours requires certain data as input, and produces different data as 

output; DSM uses analytical methods to identify these information relationships between a series 

of tasks. The tasks within the process are referred to as Subsystems, and are placed on the main 

diagonal of a square matrix [26]. The input dependency is shown in all off-diagonal positions: 

Any required inputs from preceding analyses are shown in the upper right of the matrix while 

inputs required from subsequent analysis are shown in the lower left. The DSM for our 

conceptual design process is shown below in Figure 2.17. The figure shows many individual 

subsystems, grouped into the partitions of the overall analysis. They have been organized to both 

minimize the internal iteration needed within each partition, as well as eliminate any overall 

iteration. Practically, this means that the solution is closed for a given set of input candidates. 
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Figure 2.17. Supercruise Analysis DSM. 

 

The subsystems in our DSM were chosen to provide a thorough analysis of the cruise 

phase of flight for our design. Since the design is a long-range transport, cruising flight has the 

largest impact on mission performance. Also, the major subsystem groups (i.e. fluid flow, 

structural analysis) used to analyze cruising flight are also applied to other phases of flight. 

Therefore, the methods developed in our approach can easily be expanded to include other these 

phases. The first group is the CAD geometry, which forms the physical geometry of the aircraft 

design candidates. Since the design table is determined by the construction methods used in the 

CAD deck, but also drives the construction of the vehicle, these are a coupled system. 
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Coupling in the STAR-CCM+ partition is present between the engine deck and solver 

subsystems. Frequent iteration was implemented between the engine deck and the solver while 

running a solution, in order to update the engine boundary condition; however the computation 

of the engine deck is extremely rapid and does not impede the solver subsystem.  
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CHAPTER III 

RESULTS 

 

 

Figure 3.1. Sensitivity of Range to STAR-CCM+ mesh resolution. 

Figure 3.1 shows the computed range of ten randomly selected SCCT candidate models; 

each line represents the results of a given model across a variety of different element counts. The 

element counts were adjusted by changing the minimum size and prism cell count from the 

values listed in Table 2.1; the cell count listed is for the sideslip case using the reflected, non-

symmetric mesh. This study was used to judge the correct number of elements required to obtain 

consistent and accurate results from the workflow. 
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Figure 3.2. Evaluation Time comparison for Solidworks analysis. 

 

 

 

Figure 3.3. Evaluation Time comparison for STAR-CCM+ analysis. 
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 Figures 3.2 and 3.3 show the evaluation time for the Solidworks and STAR-CCM+ 

portions of analysis. The data was collected from a single group of design candidates generated 

from a CAD deck; a total of 388 models were used. The evaluation times are given in CPU time, 

which is the overall time of the analysis multiplied by the number of CPU cores used; 

alternatively, this can be thought of as the expected time for the analysis to run on a single CPU 

core. All computations were performed on Intel Xeon CPU dies having 8 cores total and clock 

speeds between 3.1 and 3.5 GHz. Note that the time units in Figure 3.2 are seconds, while those 

of Figure 3.3 are hours. The sample mean CPU time is shown in the inset for each figure. 

 

 

Figure 3.4. Histogram of Candidate Population CAD export file sizes. 

 Figure 3.4 illustrates the variation in file size for a typical randomized population of CAD 

models. The size shown is the on-disk size of the file. The line represents a least-squares normal 
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distribution computed for the sample data. This population in particular contains the failed model 

shown in Figure 2.11; this model is indeed the outlier visible at the left of the figure, and its file 

size is 4.34 standard deviations below the mean.  

 

 

Figure 3.5. Histogram of Candidate Population Evaluated Cruise Range. 

 Figure 3.5 shows the evaluated range of a randomized sample population from a CAD 

deck, and the estimated normal distribution of the output. Parameter estimations for the 

distribution mean and standard deviation are shown in the inset. The data shown represents the 

complete set of models tested, prior to being filtered by the constraints given in Table 2.5. 
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Figure 3.6. Comparison of feasible candidates from multiple configuration options. 

 Figure 3.6 shows a comparison of models across five different CAD decks, comparing 

the evaluated gross takeoff weight and the cruise range. The five series listed in the legend 

correspond to the different decks used; these were constructed in order to implement aircraft 

configurations whose differences were too large to implement in a single CAD deck. In the order 

listed, the series implemented a delta wing with underslung engines, a delta wing with engines 

above the wing, a three-engine design, an aft-wing model with embedded engines, and an aft-

wing model with wing-mounted engines. Infeasible models (those which fail any of the criteria 

listed in Table 2.5) are omitted from this plot. 
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Figure 3.7. Design Study Best Performing Candidate. 

 Figure 3.7 shows a diagram of the best performing model tested, according to the range-

based objective function discussed in Chapter 2 and subject to the constraints of Table 2.5. This 

model obtains a range of 5350 nautical miles, at a gross takeoff weight of 120,650 pounds; the 

cruise lift-to-drag ratio is 8.13, and its thrust-specific fuel consumption is 0.879 lbm/lbf/hr, with 

the engine at 79% of maximum available thrust during cruise. Its wingspan is 58.5 feet, with an 

overall length of 118 feet. The total fuel capacity is estimated to be 9800 gallons. This model is a 

member of the population shown in Figure 3.5 and represents a result 2.4 standard deviations 

above the sample mean. 
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CHAPTER IV 

DISCUSSION 

 

 

Meta-Analysis 

 We are primarily interested in the effectiveness of this analysis method with regard to the 

problem of conceptual design. We therefore wish to know whether it produces a more robust 

result than established methods, and whether the time cost of the analysis falls within the one-

hour target we established. The first step in judging the efficacy of the design methodology we 

have developed is to examine the realism of the results. The grid sensitivity study shown in 

Figure 3.1 allows us to estimate the mesh resolution required for our analysis. In particular, the 

STAR-CCM+ analysis must accomplish two overall objectives. It should accurately predict the 

absolute range of the design candidates, but more importantly it must provide the correct relative 

ranking of the candidates when evaluated according to the objective function. This can obviously 

be accomplished by maximizing the number of cell elements used, but the analysis comes at a 

very high time cost; STAR-CCM+ is by far the most time-consuming portion of the analysis. 

Therefore, the minimum number of elements required to provide acceptable results should be 

used. With fewer than 400,000 elements, the simulation produces no useful result. The ranking 

of models is arbitrary and inconsistent, and the cruise range is significantly overestimated. The 

inaccuracy is due to an underestimation of the shear drag, due to insufficient boundary layer 

resolution. High cell counts continue to obtain more accurate results for this drag, but only 

750,000 cells are required to predict the correct ranking of model performance. The mesh sizing 

used for subsequent simulations was then set to provide at least this number of elements. 

 

 The time required to perform the analysis is of critical importance. In order for the 

analysis to be feasible at the conceptual design stage, the time required should be less than one 

hour per design candidate. This time should also be achievable using a reasonable level of 

computation resource. Figures 3.2 and 3.3 show the time distribution among the analysis 

partitions, and show clearly the time difference between STAR-CCM+ and Solidworks. The 

MATLAB computation time is negligible by comparison, occupying less than one second for an 
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entire population of candidates. In total, the analysis has an expected total CPU time per model 

of 23,771 seconds, or 6.6 hours. In order for this analysis to be completed within one hour, at 

least seven computation cores must be used. Modern workstation machines are normally 

equipped with eight or sixteen CPU cores, so this analysis is feasible for conceptual design on 

common hardware. The use of a larger computation cluster would allow significantly more 

analyses to be performed. 

 

 Since random variables are used in our CAD deck, we can consider the output to be a 

random variable as well; we can then analyze its distribution. From statistics[36], the Central 

Limit Theorem holds that the mean of a large number of independent random variables will be 

approximately normally distributed, regardless of the individual distributions of the starting 

variables. The function used in this analysis is not a simple mean and so cannot be expected to 

always produce a normally-distributed result, but we may intuitively test the assumption with a 

fit and provide some insight to the data results. Some examples are shown in Figures 3.4 and 3.5.  

 

 In the first of these, we see how the file size of the data is distributed. This assumption 

can be used to assess the quality of the CAD models produced without examining each model 

individually. Using this assumed distribution to check for outliers proves to be a reliable method 

to detect failed CAD models, and can be performed automatically. This can be used to test the 

quality of a CAD deck, by assessing its ability to reproduce models throughout a given range of 

design variables. Figure 3.5 shows the distribution of objective function results produced by the 

population. This can also be used to assess the potential for further examination of a design; we 

can see that high-performing results are potentially available in the upper tail of this distribution. 

Accessing these results can be done by simply generating larger random populations, or (more 

feasibly) by using MDO tools like Particle Swarm or Genetic Algorithm [27]. Conversely, a 

result distribution which falls far below the mission target would have a vanishingly small 

probability of producing a feasible result; this would indicate that changes need to be made in the 

construction of the CAD deck to allow different or broader configuration changes. 
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Design Candidate Variations 

 In Figure 3.6 we see the individual results pertinent to the design case. This result shows 

that certain configuration options are clearly superior to others, with all of the best-performing 

options having and aft-mounted wing and wing-mounted engines. For this case, each 

configuration option used a different CAD deck; this was done only so that the results could be 

separated and assess the relative merits of the configurations. The methods we use to construct 

the CAD deck could produce all the listed configurations in a single population. The figure 

shows an obvious correlation between the evaluated weight and range. This is a result of the 

coupling between gross takeoff weight and wing area; higher-weight models have 

correspondingly higher wing area, directly proportional to the increased lift generation. If this 

increase in lift comes with a minimal increase in drag, then this increase also propagates to the 

lift-to-drag ratio and the cruise range.  

 

 Figure 3.7 gives the best performing candidate found in this case study, which meets all 

the mission criteria established. The detail of this result shows the benefit of applying these 

analysis methods; the amount of information available about this candidate is much greater than 

that produced by simpler analysis methods [4][11][19][31], allowing for a much more 

sophisticated preliminary design phase. Since we also have significant information about the 

design space occupied by this result, we have confidence in its robustness. Notable 

characteristics of this model are a wing which passes through the fuselage centerline behind the 

pressure vessel, allowing for a more slender fuselage. Additionally, the lack of leading edge 

extensions or chines eliminates associated vortex drag and lends more efficient cruise flight. 

 

 

Included Preliminary Design factors 

 One of the goals of this design methodology was to include preliminary design factors in 

the conceptual stage, without increasing the cost; we will now enumerate and discuss those 

factors. The use of a complete CAD geometry allows the examination of several phenomena 

which are beyond the scope of simpler geometric representations. We include complex wing 

designs incorporating variable forward and backward sweep, leading edge extensions and 



56 

fuselage chines, fuselage/wing blending, complex twist and thickness profiles, and tip 

treatments. The flexibility of the approach allows unconventional topologies to be modeled, such 

as diamond or ring-shaped wings [20]. 

The use of full-body CFD captures interactions between the various components of the 

aircraft; wing-fuselage, wing-tail, fuselage-inlet, etc. are couplings which are naturally detected 

using our methods; these interactions are very difficult to characterize when analyzing the 

components separately [4]. Additionally, the use of coupled, viscous flow resolves the shear drag 

of the vehicle without including additional relations; this is very important for supersonic flow 

where the skin friction accounts for a significant portion of the overall drag [37][38]. 

Several propulsion related factors are calculated automatically in our approach. Most 

importantly, the STAR-CCM+ evaluation includes an engine deck, based on a non-ideal low-

bypass turbofan, as found in Chapter 7 of [39]. The conditions at the fan-face (pressure out let 

boundary) are passed to a Java method which computes the nozzle boundary conditions. This is 

updated every 10 iterations in STAR-CCM+. The engine deck also saves the cruise TSFC and 

maximum thrust, which are included in the output calculation. Further, the cell-weighted 

standard deviation of mass flow is computed for the fan face boundary at each angle of attack, 

allowing us to characterize the flow uniformity feeding the engine. In addition to this 

performance data, geometric information is captured by the CAD implementation. The engine 

nacelle orientation has a profound effect on aircraft performance; analysis involving the engine 

nacelle angle simply adds an extra variable to our analysis. Since the engine location/orientation 

is known from the CAD, we can compute the moment due to an engine out or unstart condition. 

Once again, we assume that the CG is located at the computed Xac location; the engine-out 

moment is then the gross thrust of the engine multiplied by the perpendicular distance to the 

thrust line of action.  
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Figure 4.1. Wing Beam Bending Schematic.  

To address structural considerations, we use a cantilevered beam approximation to limit 

the minimum thickness of the wing [18], as diagrammed in Figure 4.1. We assume the limiting 

case where the center 40% of the wing section is a solid beam, shown in green; the loading is 

assumed to be a constant pressure corresponding to the average wing loading observed at a +3-g 

flight condition. Starting from the tip, the next-section minimum moment of area required to 

support the wing is computed based on the loading, as well as the moment exerted by any 

outboard sections, and based on that section’s chord length we obtain the minimum allowable 

airfoil section thickness. This computation is performed for the canard and main wing, and 

occurs in the CAD design table. 

  



58 

CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

Summary 

 We created a methodology to perform conceptual design analysis on aircraft. Our aim 

was to use off-the-shelf, high-fidelity software tools to explore the project design space, 

including important preliminary design factors and thereby producing a more robust result which 

is less subject to compromise at later design stages. We claim that this analysis can be performed 

in one hour with commonly available computation resources, and therefore is applicable to 

conceptual design. 

 We used the case study of a supersonic transport jet to develop these methods. For this 

application, we used Solidworks to create a parameterized three-dimensional CAD solid to 

define the exterior geometry of the aircraft, and create populations of design candidates. We used 

STAR-CCM+ to perform an automated fluid flow analysis of these candidates, using three-

dimensional, viscous, turbulent finite volume analysis and incorporating internal engine 

performance characteristics. We then used MATLAB to collect the data produced by these 

analyses, compute additional results of interest, and quantify the design space represented by a 

population of candidates. We heavily automated the steps of this process, to allow large studies 

or optimization frameworks to be implemented. 

 Our results show that the method produces a data set which is much richer than 

conventional conceptual design techniques. The method captures many interactions between 

aircraft systems which are normally not quantified until later phases of design: aerodynamic 

interactions between external lifting surfaces and between the external body and internal engine 

performance, and how structural constraints affect wing performance. We also produce detailed 

information about the aircraft static stability. Further, the method is able to produce these results 

with commonly available computer hardware within the one-hour timeframe we allow for a 

conceptual design analysis. 
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Conclusions 

 Aircraft design—and indeed any design process—must be supported by some analysis of 

potential candidates. We have claimed that the level of detail involved in aircraft conceptual 

design should be tailored to give an analysis which can be performed in a single hour using 

reasonable computation resources. In order for this analysis to provide the most robust result, the 

analysis should be as detailed as possible within these constraints. We explored this problem by 

constructing a set of automated analyses using off-the-shelf commercial software, applied to the 

design of a supersonic transport aircraft. Our analysis used parametric 3D CAD geometry 

feeding aerodynamic analysis using Solidworks, and STAR-CCM+. 

 

 Our analysis successfully produced results under the constraints listed above, and 

produced viable design candidates which satisfy both the mission requirements and the 

feasibility limits of flight. The method produces a rich set of result data which captures many 

preliminary design factors which are normally left to later phases of the design process. In the 

case study at hand, we obtained detailed information about the installed engine performance and 

the coupling between all external lifting surfaces; the outer geometry was also constrained to 

allow for structural feasibility. The method also produces a statistical analysis of the design 

space, allowing for an understanding of the distribution of results and prediction of further 

design steps. The analysis scales easily with additional computation resources, which would 

allow still more detail to be included within the limiting timeframe of conceptual design. In this 

particular case, it would be beneficial to include aerodynamic analysis of takeoff, landing, climb 

and descent phases of flight [39], as well as internal packaging of components and structure [18]. 
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APPENDIX A 

JAVA SOURCE CODE FOR STAR-CCM+ 

 The following source code was used to evaluate collections of Parasolid models for the 

SCCT design case. It performs the complete simulation and is constructed for batch operation 

over large sets of models. It also contains numerous error-capture scenarios to make the code 

more robust against poor geometry and/or evaluation errors. 

 

/*======================================================= 
 SCCT Evaluation 
  
This macro imports aircraft bodies from .x_b files and 
evaluates four flow conditions: three pitch angles using 
a centerline symmetry assumption as well as a single 
full-body yaw condition. From this it saves a .csv file 
containing the forces and moments necessary to evaluate 
total range and static stability derivatives. 
 
The create() method creates the simulation and sets mesh 
and physics constants. 
 
The import_poly() method contains a loop to import and 
evaluate many bodies in a separately imported free-stream 
region. Shock-refined meshing at a lower mach is used. The 
import and mesh portion of the code includes error-capturing 
in order to reject poor CAD models, continuing to the next 
loop cycle. 
 
Lines of interest: 
 124..137  mesh settings 
 140..145  physics settings 
 151..163  solver settings 
 171..172  loop numbers (model count) 
 212, 222, 224 import paths 
 266..267  mesh freestream velocity 
 290..292  mesh refine settings 
 364..365  run freestream velocity 
 206, 436  output path 
 
========================================================*/ 
package macro; 
 
import java.util.*; 
import java.lang.*; 
import java.io.*; 
 
import star.base.report.*; 
import star.base.neo.*; 
import star.common.*; 
import star.coupledflow.*; 
import star.energy.*; 
import star.flow.*; 
import star.kwturb.*; 
import star.material.*; 
import star.meshing.*; 
import star.metrics.*; 
import star.prismmesher.*; 
import star.resurfacer.*; 
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import star.trimmer.*; 
import star.turbulence.*; 
import star.vis.*; 
 
public class cruise_climb2_3 extends StarMacro { 
 
  public void execute() { 
 create(); 
 import_poly(); 
  } 
 
  private void create() { 
 Simulation simulation_0 = getActiveSimulation(); 
 
 // create continua and turn on models 
 MeshContinuum meshContinuum_0 = 
simulation_0.getContinuumManager().createContinuum(MeshContinuum.class); 
    PhysicsContinuum physicsContinuum_0 = 
simulation_0.getContinuumManager().createContinuum(PhysicsContinuum.class); 
 meshContinuum_0.enable(ResurfacerMeshingModel.class); 
    meshContinuum_0.enable(TrimmerMeshingModel.class); 
    meshContinuum_0.enable(PrismMesherModel.class); 
 physicsContinuum_0.enable(ThreeDimensionalModel.class); 
    physicsContinuum_0.enable(SteadyModel.class); 
    physicsContinuum_0.enable(SingleComponentGasModel.class); 
    physicsContinuum_0.enable(CoupledFlowModel.class); 
    physicsContinuum_0.enable(IdealGasModel.class); 
    physicsContinuum_0.enable(CoupledEnergyModel.class); 
    physicsContinuum_0.enable(TurbulentModel.class); 
    physicsContinuum_0.enable(RansTurbulenceModel.class); 
    physicsContinuum_0.enable(KOmegaTurbulence.class); 
    physicsContinuum_0.enable(SstKwTurbModel.class); 
    physicsContinuum_0.enable(KwAllYplusWallTreatment.class); 
 
 // get mesher objects 
 MaximumCellSize maximumCellSize_0 = 
meshContinuum_0.getReferenceValues().get(MaximumCellSize.class); 
    GenericRelativeSize genericRelativeSize_0 = ((GenericRelativeSize) 
maximumCellSize_0.getRelativeSize()); 
    NumPrismLayers numPrismLayers_0 = meshContinuum_0.getReferenceValues().get(NumPrismLayers.class); 
    PrismThickness prismThickness_0 = meshContinuum_0.getReferenceValues().get(PrismThickness.class); 
    prismThickness_0.getRelativeOrAbsoluteOption().setSelected(RelativeOrAbsoluteOption.ABSOLUTE); 
    GenericAbsoluteSize genericAbsoluteSize_0 = ((GenericAbsoluteSize) 
prismThickness_0.getAbsoluteSize()); 
    SurfaceGrowthRate surfaceGrowthRate_0 = 
meshContinuum_0.getReferenceValues().get(SurfaceGrowthRate.class); 
    SurfaceSize surfaceSize_0 = meshContinuum_0.getReferenceValues().get(SurfaceSize.class); 
    RelativeMinimumSize relativeMinimumSize_0 = surfaceSize_0.getRelativeMinimumSize(); 
    RelativeTargetSize relativeTargetSize_0 = surfaceSize_0.getRelativeTargetSize(); 
  
 // make region 
    Region region_0 = simulation_0.getRegionManager().createEmptyRegion(); 
    region_0.setPresentationName("FluidDomain"); 
    Boundary boundary_veh = region_0.getBoundaryManager().getBoundary("Default"); 
    boundary_veh.setPresentationName("Faces"); 
    Boundary boundary_0 = region_0.getBoundaryManager().createEmptyBoundary(); 
    Boundary boundary_1 = region_0.getBoundaryManager().createEmptyBoundary(); 
    Boundary boundary_2 = region_0.getBoundaryManager().createEmptyBoundary(); 
    boundary_0.setPresentationName("symm"); 
    boundary_1.setPresentationName("inlet"); 
    boundary_2.setPresentationName("outlet"); 
    boundary_0.setBoundaryType(SymmetryBoundary.class); 
    boundary_1.setBoundaryType(FreeStreamBoundary.class); 
    boundary_2.setBoundaryType(PressureBoundary.class); 
    FeatureCurve featureCurve_0 = region_0.getFeatureCurveManager().createEmptyFeatureCurve(); 
    featureCurve_0.setPresentationName("CraftEdges"); 
 FeatureCurve featureCurve_1 = region_0.getFeatureCurveManager().getFeatureCurve("Default"); 
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 featureCurve_1.setPresentationName("Edges"); 
  
 // make flow coordinates 
 Units units_0 = simulation_0.getUnitsManager().getPreferredUnits(new IntVector(new int[] {0, 1, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})); 
 Units rads = simulation_0.getUnitsManager().getPreferredUnits(new IntVector(new int[] {0, 1, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})); 
 LabCoordinateSystem labCoordinateSystem_0 = 
simulation_0.getCoordinateSystemManager().getLabCoordinateSystem(); 
    CartesianCoordinateSystem flow_coord = 
labCoordinateSystem_0.getLocalCoordinateSystemManager().createLocalCoordinateSystem(CartesianCoordinateSys
tem.class, "Flow"); 
    Coordinate coordinate_0 = flow_coord.getOrigin(); 
    coordinate_0.setCoordinate(units_0, units_0, units_0, new DoubleVector(new double[] {0.0, 0.0, 0.0})); 
    coordinate_0.setValue(new DoubleVector(new double[] {0.0, 0.0, 0.0}));  
  
 // mesh constants 
 meshContinuum_0.getReferenceValues().get(BaseSize.class).setValue(20.0); 
    genericRelativeSize_0.setPercentage(100.0); 
    numPrismLayers_0.setNumLayers(8); 
    genericAbsoluteSize_0.getValue().setValue(0.15); 
    surfaceGrowthRate_0.setGrowthRate(1.08); 
    relativeMinimumSize_0.setPercentage(0.4); 
    relativeTargetSize_0.setPercentage(100.0); 
 SurfaceSizeOption surfaceSizeOption_0 = 
featureCurve_0.get(MeshConditionManager.class).get(SurfaceSizeOption.class); 
    surfaceSizeOption_0.setSurfaceSizeOption(true); 
    SurfaceSize surfaceSize_1 = featureCurve_0.get(MeshValueManager.class).get(SurfaceSize.class); 
    RelativeMinimumSize relativeMinimumSize_1 = surfaceSize_1.getRelativeMinimumSize(); 
    relativeMinimumSize_1.setPercentage(0.5); 
    RelativeTargetSize relativeTargetSize_1 = surfaceSize_1.getRelativeTargetSize(); 
    relativeTargetSize_1.setPercentage(0.5); 
  
 // physics constants 
    StaticTemperatureProfile staticTemperatureProfile_0 = 
physicsContinuum_0.getInitialConditions().get(StaticTemperatureProfile.class); 
    physicsContinuum_0.getReferenceValues().get(ReferencePressure.class).setValue(18753.9); 
    
staticTemperatureProfile_0.getMethod(ConstantScalarProfileMethod.class).getQuantity().setValue(216.65); 
    FlowDirectionProfile flowDirectionProfile_0 = boundary_1.getValues().get(FlowDirectionProfile.class); 
    flowDirectionProfile_0.getMethod(ConstantVectorProfileMethod.class).getQuantity().setComponents(-1.0, 
0.0, 0.0); 
 flowDirectionProfile_0.setCoordinateSystem(flow_coord); 
  
 // solver params 
 CoupledImplicitSolver coupledImplicitSolver_0 = ((CoupledImplicitSolver) 
simulation_0.getSolverManager().getSolver(CoupledImplicitSolver.class)); 
    
coupledImplicitSolver_0.getExpertInitManager().getExpertInitOption().setSelected(ExpertInitOption.GRID_SEQ
_METHOD); 
    GridSequencingInit gridSequencingInit_0 = ((GridSequencingInit) 
coupledImplicitSolver_0.getExpertInitManager().getInit()); 
    coupledImplicitSolver_0.setCFL(100.0); 
    gridSequencingInit_0.setMaxGSLevels(5); 
    gridSequencingInit_0.setConvGSTol(0.02); 
    gridSequencingInit_0.setGSCfl(150.0); 
    
coupledImplicitSolver_0.getSolutionDriverManager().getExpertDriverOption().setSelected(ExpertDriverOption.
EXPERT_DRIVER); 
    ExpertDriverCoupledSolver expertDriverCoupledSolver_0 = ((ExpertDriverCoupledSolver) 
coupledImplicitSolver_0.getSolutionDriverManager().getDriver()); 
    expertDriverCoupledSolver_0.setEndIteration(100); 
    KwTurbSolver kwTurbSolver_0 = ((KwTurbSolver) 
simulation_0.getSolverManager().getSolver(KwTurbSolver.class)); 
    
kwTurbSolver_0.getRampCalculatorManager().getRampCalculatorOption().setSelected(RampCalculatorOption.LINEA
R_RAMP); 
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    LinearRampCalculator linearRampCalculator_0 = ((LinearRampCalculator) 
kwTurbSolver_0.getRampCalculatorManager().getCalculator()); 
    kwTurbSolver_0.setUrf(1.0); 
    linearRampCalculator_0.setInitialRampValue(0.8); 
    linearRampCalculator_0.setEndIteration(30); 
  }  
 
  private void import_poly() { 
  
 //======================================== 
 // Input values 
 //======================================== 
 int start = 1; 
 int end = 40; 
 int N = end - start + 1; 
 double[] alpha = {1.0, 3.0, 5.0}; 
 double beta = 1.0; 
 double[] D = new double[4]; 
 double[] L = new double[4]; 
 double[] m_x = new double[4]; 
 double[] m_y = new double[4]; 
 double[] m_z = new double[4]; 
 double[] Dc = new double[4]; 
 double[] Lc = new double[4]; 
 long epoch = System.currentTimeMillis()/1000; 
  
 // STAR-CCM+ Object Declarations 
 Simulation simulation_0 = getActiveSimulation(); 
 Units reflect = simulation_0.getUnitsManager().getPreferredUnits(new IntVector(new int[] {0, 1, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})); 
 Units rads = simulation_0.getUnitsManager().getPreferredUnits(new IntVector(new int[] {0, 1, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})); 
 LabCoordinateSystem labCoordinateSystem_0 = 
simulation_0.getCoordinateSystemManager().getLabCoordinateSystem(); 
 CartesianCoordinateSystem flow_coord = ((CartesianCoordinateSystem) 
labCoordinateSystem_0.getLocalCoordinateSystemManager().getObject("Flow 1")); 
 PhysicsContinuum physicsContinuum_0 = ((PhysicsContinuum) 
simulation_0.getContinuumManager().getContinuum("Physics 1")); 
 MeshContinuum meshContinuum_0 = ((MeshContinuum) 
simulation_0.getContinuumManager().getContinuum("Mesh 1")); 
 MeshManager meshManager_0 = simulation_0.getMeshManager(); 
 MeshPipelineController meshPipelineController_0 = simulation_0.get(MeshPipelineController.class); 
 PartImportManager partImportManager_0 = simulation_0.get(PartImportManager.class); 
 MeshActionManager meshActionManager_0 = simulation_0.get(MeshActionManager.class); 
 Region region_0 = simulation_0.getRegionManager().getRegion("FluidDomain"); 
 Boundary boundary_1 = region_0.getBoundaryManager().getBoundary("inlet"); 
 VelocityProfile velocityProfile_0 = 
physicsContinuum_0.getInitialConditions().get(VelocityProfile.class); 
 MachNumberProfile machNumberProfile_0 = boundary_1.getValues().get(MachNumberProfile.class); 
 velocityProfile_0.setCoordinateSystem(flow_coord); 
 Solution solution_0 = null; 
 simulation_0.saveState(resolvePath("..//CCworking"+start+".sim")); 
  
 // write output file header 
 try{ 
  PrintWriter fout = new PrintWriter(new 
FileWriter(resolvePath("..//CCoutput"+start+".csv"), true)); 
  fout.println("Model,Cells,Time,Alpha@LDmax,S,b,-
l,L@1,L@3,L@5,L@LDmax,L@Yaw,D@1,D@3,D@5,D@LDmax,D@Yaw,Mx@1,Mx@3,Mx@5,Mx@LDmax,Mx@Yaw,My@1,My@3,My@5,My@LDm
ax,My@Yaw,Mz@1,Mz@3,Mz@5,Mz@LDmax,Mz@Yaw,-Y@Yaw"); 
  fout.close(); 
 }catch(IOException e){ 
  simulation_0.println(e); 
 }    
 partImportManager_0.importCadPart(resolvePath("..//cad//halfDomain35.x_b"), "SharpEdges", 30.0, 3, 
1.0E-5, true, false);  
 CadPart cadPart_1 = ((CadPart) simulation_0.get(SimulationPartManager.class).getPart("Body 2")); 
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 // loop over models  
 for(int model = start; model<=end; model++){ 
 
  epoch = System.currentTimeMillis()/1000; 
  //===================================== 
  // Import Parts and make Fluid Region 
  //===================================== 
  File psolid = new File(resolvePath("..//cad//"+model+".x_b")); 
  if(!psolid.exists()){continue;} 
  partImportManager_0.importCadPart(resolvePath("..//cad//"+model+".x_b"), "SharpEdges", 
30.0, 3, 1.0E-5, true, false); 
  CadPart cadPart_0 = null; 
  try{cadPart_0 = ((CadPart) 
simulation_0.get(SimulationPartManager.class).getPart(Integer.toString(model)));} 
  catch(java.lang.Exception modelerr0){ 
   simulation_0.println(modelerr0); 
   CompositePart compositePart_0 = ((CompositePart) 
simulation_0.get(SimulationPartManager.class).getPart("Assembly 1")); 
   simulation_0.get(SimulationPartManager.class).removeParts(new NeoObjectVector(new 
Object[] {compositePart_0})); 
   continue; 
  }  
  PartCurve partCurve_0 = ((PartCurve) cadPart_0.getPartCurveManager().getObject("Edges")); 
  partCurve_0.setPresentationName("CraftEdges"); 
  CadPart cadPart_2 = null; 
  try{cadPart_2 = (CadPart) meshActionManager_0.subtractParts(new NeoObjectVector(new 
Object[] {cadPart_0, cadPart_1}), cadPart_1, "CAD");} 
  catch(java.lang.Exception modelerr1){ 
   simulation_0.close(ServerConnection.CloseOption.ForceClose); 
   simulation_0 = null; 
   simulation_0 = new Simulation(resolvePath("..//CCworking"+start+".sim")); 
   reflect = simulation_0.getUnitsManager().getPreferredUnits(new IntVector(new 
int[] {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})); 
   rads = simulation_0.getUnitsManager().getPreferredUnits(new IntVector(new int[] 
{0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})); 
   labCoordinateSystem_0 = 
simulation_0.getCoordinateSystemManager().getLabCoordinateSystem(); 
   flow_coord = ((CartesianCoordinateSystem) 
labCoordinateSystem_0.getLocalCoordinateSystemManager().getObject("Flow 1")); 
   physicsContinuum_0 = ((PhysicsContinuum) 
simulation_0.getContinuumManager().getContinuum("Physics 1")); 
   meshContinuum_0 = ((MeshContinuum) 
simulation_0.getContinuumManager().getContinuum("Mesh 1")); 
   meshManager_0 = simulation_0.getMeshManager(); 
   meshPipelineController_0 = simulation_0.get(MeshPipelineController.class); 
   partImportManager_0 = simulation_0.get(PartImportManager.class); 
   meshActionManager_0 = simulation_0.get(MeshActionManager.class); 
   region_0 = simulation_0.getRegionManager().getRegion("FluidDomain"); 
   boundary_1 = region_0.getBoundaryManager().getBoundary("inlet"); 
   velocityProfile_0 = 
physicsContinuum_0.getInitialConditions().get(VelocityProfile.class); 
   machNumberProfile_0 = boundary_1.getValues().get(MachNumberProfile.class); 
   partImportManager_0.importCadPart(resolvePath("..//cad//halfDomain35.x_b"), 
"SharpEdges", 30.0, 3, 1.0E-5, true, false);  
   cadPart_1 = ((CadPart) 
simulation_0.get(SimulationPartManager.class).getPart("Body 2")); 
   simulation_0.println(modelerr1); 
   continue; 
   } 
  cadPart_2.setPresentationName("FluidDomain"); 
  region_0.getPartGroup().setObjects(cadPart_2); 
 
  //===================================== 
  // Create shock-resolved mesh 
  //===================================== 
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 velocityProfile_0.getMethod(ConstantVectorProfileMethod.class).getQuantity().setComponents(-
442.31, 0.0, 0.0); 
 
 machNumberProfile_0.getMethod(ConstantScalarProfileMethod.class).getQuantity().setValue(1.5); 
   
  try{meshPipelineController_0.generateVolumeMesh();} 
  catch(java.lang.Exception mesherr0){ 
   simulation_0.println(mesherr0); 
   simulation_0.get(SimulationPartManager.class).removeParts(new NeoObjectVector(new 
Object[] {cadPart_0, cadPart_2})); 
   continue; 
  }   
  flow_coord.setBasis0(new DoubleVector(new double[] {1.0, 0.0, 0.0})); 
  flow_coord.setBasis1(new DoubleVector(new double[] {0.0, 1.0, 0.0})); 
  flow_coord.getLocalCoordinateSystemManager().rotateLocalCoordinateSystems(new 
NeoObjectVector(new Object[] {flow_coord}), new DoubleVector(new double[] {0.0, -1.0, 0.0}), new 
NeoObjectVector(new Object[] {rads,rads,rads}), alpha[1]*Math.PI/180.0, flow_coord); 
  try{simulation_0.getSimulationIterator().step(80);} 
  catch(java.lang.Exception runerr0){ 
   simulation_0.println(runerr0); 
   solution_0 = simulation_0.getSolution(); 
   solution_0.clearSolution(); 
   simulation_0.get(SimulationPartManager.class).removeParts(new NeoObjectVector(new 
Object[] {cadPart_0, cadPart_2})); 
   continue; 
  } 
  UserFieldFunction userFieldFunction_0 = 
simulation_0.getFieldFunctionManager().createFieldFunction(); 
  userFieldFunction_0.setDefinition("mag(grad($MachNumber))"); 
  UserFieldFunction userFieldFunction_1 = 
simulation_0.getFieldFunctionManager().createFieldFunction(); 
  userFieldFunction_1.setDefinition("0.888*pow($Volume,0.3333)"); 
  FvRepresentation fvRepresentation_0 = ((FvRepresentation) 
simulation_0.getRepresentationManager().getObject("Volume Mesh")); 
  CellSet cellSet_0 = fvRepresentation_0.getCellSetManager().createEmptyCellSet(); 
  cellSet_0.addThreshold(userFieldFunction_0, 1, 0.0015, 0.0015);   
 // Mach gradient threshold 
  PrimitiveFieldFunction primitiveFieldFunction_0 = ((PrimitiveFieldFunction) 
simulation_0.getFieldFunctionManager().getFunction("Volume")); 
  cellSet_0.subsetThreshold(primitiveFieldFunction_0, 1, 0.0035, 0.0035);  // 
Volume gradient threshold 
  XyzInternalTable xyzInternalTable_0 = 
simulation_0.getTableManager().createTable(XyzInternalTable.class); 
  xyzInternalTable_0.getParts().setObjects(cellSet_0); 
  xyzInternalTable_0.setFieldFunctions(new NeoObjectVector(new Object[] 
{userFieldFunction_1})); 
  xyzInternalTable_0.extract(); 
  TrimmerMeshingModel trimmerMeshingModel_0 = 
meshContinuum_0.getModelManager().getModel(TrimmerMeshingModel.class); 
  trimmerMeshingModel_0.setMeshSizeTable(xyzInternalTable_0); 
  meshPipelineController_0.generateVolumeMesh(); 
  trimmerMeshingModel_0.setMeshSizeTable(null); 
  simulation_0.getTableManager().remove(xyzInternalTable_0); 
  fvRepresentation_0.getCellSetManager().removeObjects(cellSet_0); 
  simulation_0.getFieldFunctionManager().removeObjects(userFieldFunction_0, 
userFieldFunction_1); 
   
  //============================================== 
  // Monitors & Stopping Criteria 
  //============================================== 
  // force & moment reports 
  ForceReport drag = simulation_0.getReportManager().createReport(ForceReport.class); 
  drag.setPresentationName("Drag"); 
  ForceReport lift = simulation_0.getReportManager().createReport(ForceReport.class); 
  lift.setPresentationName("Lift"); 
  ForceReport side = simulation_0.getReportManager().createReport(ForceReport.class); 
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  MomentReport Mx = simulation_0.getReportManager().createReport(MomentReport.class); 
  MomentReport My = simulation_0.getReportManager().createReport(MomentReport.class); 
  MomentReport Mz = simulation_0.getReportManager().createReport(MomentReport.class); 
  drag.setCoordinateSystem(flow_coord); 
  lift.setCoordinateSystem(flow_coord); 
  side.setCoordinateSystem(flow_coord);   
  Boundary boundary_5 = region_0.getBoundaryManager().getBoundary("Faces"); 
  Mx.getParts().setObjects(boundary_5); 
  My.getParts().setObjects(boundary_5); 
  Mz.getParts().setObjects(boundary_5); 
  drag.getParts().setObjects(boundary_5); 
  lift.getParts().setObjects(boundary_5); 
  side.getParts().setObjects(boundary_5); 
  drag.getDirection().setComponents(-1.0, 0.0, 0.0); 
  lift.getDirection().setComponents(0.0, 0.0, -1.0); 
  side.getDirection().setComponents(0.0, 1.0, 0.0); 
  Mx.getDirection().setComponents(1.0, 0.0, 0.0); 
  My.getDirection().setComponents(0.0, 1.0, 0.0); 
  Mz.getDirection().setComponents(0.0, 0.0, 1.0); 
  ExpressionReport LvsD = 
simulation_0.getReportManager().createReport(ExpressionReport.class); 
  LvsD.setDefinition("$LiftReport/$DragReport"); 
  ReportMonitor reportMonitor_0 = LvsD.createMonitor(); 
  MonitorIterationStoppingCriterion monitorIterationStoppingCriterion_0 = 
reportMonitor_0.createIterationStoppingCriterion(); 
  StepStoppingCriterion stepStoppingCriterion_0 = ((StepStoppingCriterion) 
simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion("Maximum Steps")); 
  ((MonitorIterationStoppingCriterionOption) 
monitorIterationStoppingCriterion_0.getCriterionOption()).setSelected(MonitorIterationStoppingCriterionOpt
ion.ASYMPTOTIC); 
  MonitorIterationStoppingCriterionAsymptoticType 
monitorIterationStoppingCriterionAsymptoticType_0 = ((MonitorIterationStoppingCriterionAsymptoticType) 
monitorIterationStoppingCriterion_0.getCriterionType()); 
  monitorIterationStoppingCriterionAsymptoticType_0.getMaxWidth().setValue(0.0001); 
  stepStoppingCriterion_0.setMaximumNumberSteps(350); 
   
  // cell count report 
  ElementCountReport elementCountReport_0 = 
simulation_0.getReportManager().createReport(ElementCountReport.class); 
  elementCountReport_0.getParts().setObjects(region_0); 
   
  // planform area report 
  FrontalAreaReport frontalAreaReport_0 = 
simulation_0.getReportManager().createReport(FrontalAreaReport.class); 
  Coordinate coordinate_0 = frontalAreaReport_0.getViewUpCoordinate(); 
  Units units_0 = ((Units) simulation_0.getUnitsManager().getObject("m")); 
  coordinate_0.setCoordinate(units_0, units_0, units_0, new DoubleVector(new double[] {1.0, 
0.0, 0.0})); 
  frontalAreaReport_0.getParts().setObjects(boundary_5); 
   
  // span & length reports 
  MaxReport maxReport_0 = simulation_0.getReportManager().createReport(MaxReport.class); 
  MinReport minReport_0 = simulation_0.getReportManager().createReport(MinReport.class); 
  PrimitiveFieldFunction primitiveFieldFunction_1 = ((PrimitiveFieldFunction) 
simulation_0.getFieldFunctionManager().getFunction("Position")); 
  VectorComponentFieldFunction vectorComponentFieldFunction_0 = 
((VectorComponentFieldFunction) primitiveFieldFunction_1.getComponentFunction(0)); 
  VectorComponentFieldFunction vectorComponentFieldFunction_1 = 
((VectorComponentFieldFunction) primitiveFieldFunction_1.getComponentFunction(1)); 
  maxReport_0.setScalar(vectorComponentFieldFunction_1); 
  minReport_0.setScalar(vectorComponentFieldFunction_0); 
  minReport_0.getParts().setObjects(boundary_5); 
  maxReport_0.getParts().setObjects(boundary_5); 
   
  //============================================== 
  // Run 
  //============================================== 
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 velocityProfile_0.getMethod(ConstantVectorProfileMethod.class).getQuantity().setComponents(-
472.11, 0.0, 0.0); 
 
 machNumberProfile_0.getMethod(ConstantScalarProfileMethod.class).getQuantity().setValue(1.6); 
   
  // get 3 initial points 
  for(int i=0; i<=2; i++){ 
    
   solution_0 = simulation_0.getSolution(); 
   solution_0.clearSolution(); 
   flow_coord.setBasis0(new DoubleVector(new double[] {1.0, 0.0, 0.0})); 
   flow_coord.setBasis1(new DoubleVector(new double[] {0.0, 1.0, 0.0})); 
   
 flow_coord.getLocalCoordinateSystemManager().rotateLocalCoordinateSystems(new NeoObjectVector(new 
Object[] {flow_coord}), new DoubleVector(new double[] {0.0, -1.0, 0.0}), new NeoObjectVector(new Object[] 
{rads,rads,rads}), alpha[i]*Math.PI/180.0, flow_coord); 
   try{simulation_0.getSimulationIterator().run(step(10));} 
   catch(java.lang.Exception runerr1){ 
    simulation_0.println(runerr1); 
   
 simulation_0.getSolverStoppingCriterionManager().removeObjects(monitorIterationStoppingCriterion_0
); 
    simulation_0.getMonitorManager().removeObjects(reportMonitor_0); 
    simulation_0.getReportManager().removeObjects(drag, elementCountReport_0, 
LvsD, frontalAreaReport_0, lift, maxReport_0, My); 
    simulation_0.get(SimulationPartManager.class).removeParts(new 
NeoObjectVector(new Object[] {cadPart_0, cadPart_2})); 
    solution_0.clearSolution(); 
    continue; 
   }    
   D[i] = drag.monitoredValue(); 
   L[i] = lift.monitoredValue(); 
   m_x[i] = Mx.monitoredValue(); 
   m_y[i] = My.monitoredValue(); 
   m_z[i] = Mz.monitoredValue(); 
  } 
   
  // fit function to L/D and optimize alpha for L/Dmax 
  Dc[2] = 0.125*D[0] - 0.25*D[1] + 0.125*D[2]; 
  Dc[1] = -1.0*D[0] + 1.5*D[1] - 0.5*D[2]; 
  Dc[0] = 1.875*D[0] - 1.25*D[1] + 0.375*D[2]; 
  Lc[2] = 0.0; 
  Lc[1] = -0.25*L[0] + 0.25*L[2]; 
  Lc[0] = 1.25*L[0] - .25*L[2]; 
  double e = 1.0; 
  double diff = - 0.01; 
  double amax = 5.5; 
  double eval = 0.0; 
  double old = (Lc[1]*amax + Lc[0])/(Dc[2]*Math.pow(amax,2) + Dc[1]*amax + Dc[0]); 
  while(e>Math.pow(10.0,-14.0)){ 
   amax = amax + diff; 
   eval = (Lc[1]*amax + Lc[0])/(Dc[2]*Math.pow(amax,2) + Dc[1]*amax + Dc[0]); 
   if(eval<old) { 
    amax = amax - 2*diff; 
    diff = diff/10; 
    eval = (Lc[1]*amax + Lc[0])/(Dc[2]*Math.pow(amax,2) + Dc[1]*amax + D[0]); 
   } 
   e = Math.abs((eval-old)/eval); 
   old = eval; 
  } 
   
  // evaluate L/Dmax condition 
  solution_0.clearSolution(); 
  flow_coord.setBasis0(new DoubleVector(new double[] {1.0, 0.0, 0.0})); 
  flow_coord.setBasis1(new DoubleVector(new double[] {0.0, 1.0, 0.0})); 
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  flow_coord.getLocalCoordinateSystemManager().rotateLocalCoordinateSystems(new 
NeoObjectVector(new Object[] {flow_coord}), new DoubleVector(new double[] {0.0, -1.0, 0.0}), new 
NeoObjectVector(new Object[] {rads,rads,rads}), amax*Math.PI/180.0, flow_coord); 
  simulation_0.getSimulationIterator().run(); 
  D[3] = drag.monitoredValue(); 
  L[3] = lift.monitoredValue(); 
  m_x[3] = Mx.monitoredValue(); 
  m_y[3] = My.monitoredValue(); 
  m_z[3] = Mz.monitoredValue(); 
   
  // reflect mesh and solve yaw case 
  simulation_0.getRepresentationManager().duplicateRegion(region_0); 
  Region region_1 = simulation_0.getRegionManager().getRegion("FluidDomain 2"); 
  simulation_0.getRepresentationManager().reflectMesh(new NeoObjectVector(new Object[] 
{region_1}), new DoubleVector(new double[] {0.0, 1.0, 0.0}), new NeoObjectVector(new Object[] {reflect, 
reflect, reflect}), labCoordinateSystem_0); 
  meshManager_0.combineRegions(new NeoObjectVector(new Object[] {region_0, region_1}), true, 
true, 0.02, true); 
  region_1 = null; 
  solution_0 = simulation_0.getSolution(); 
  solution_0.clearSolution(); 
  flow_coord.setBasis0(new DoubleVector(new double[] {1.0, 0.0, 0.0})); 
  flow_coord.setBasis1(new DoubleVector(new double[] {0.0, 1.0, 0.0})); 
  flow_coord.getLocalCoordinateSystemManager().rotateLocalCoordinateSystems(new 
NeoObjectVector(new Object[] {flow_coord}), new DoubleVector(new double[] {0.0, 0.0, -1.0}), new 
NeoObjectVector(new Object[] {rads,rads,rads}), beta*Math.PI/180.0, flow_coord); 
  flow_coord.getLocalCoordinateSystemManager().rotateLocalCoordinateSystems(new 
NeoObjectVector(new Object[] {flow_coord}), new DoubleVector(new double[] {0.0, -1.0, 0.0}), new 
NeoObjectVector(new Object[] {rads,rads,rads}), amax*Math.PI/180.0, flow_coord); 
  simulation_0.getSimulationIterator().run(); 
    
  // append results to .csv output file 
  try{ 
   PrintWriter fout = new PrintWriter(new 
FileWriter(resolvePath("..//CCoutput"+start+".csv"), true)); 
  
 //fout.println("Model,Cells,Time,Alpha@LDmax,S,b,L@1,L@3,L@5,L@LDmax,L@Yaw,D@1,D@3,D@5,D@LDmax,D@Y
aw,Mx@1,Mx@3,Mx@5,Mx@LDmax,Mx@Yaw,My@1,My@3,My@5,My@LDmax,My@Yaw,Mz@1,Mz@3,Mz@5,Mz@LDmax,Mz@Yaw,-Y@Yaw"); 
   fout.print(model+","); 
   fout.print(elementCountReport_0.monitoredValue()+","); 
   fout.print(System.currentTimeMillis()/1000 - epoch+","); 
   fout.print(amax+","); 
   fout.print(frontalAreaReport_0.monitoredValue()+","); 
   fout.print(maxReport_0.monitoredValue()+","); 
   fout.print(minReport_0.monitoredValue()+","); 
   fout.print(L[0]+","+L[1]+","+L[2]+","+L[3]+","+lift.monitoredValue()+","); 
   fout.print(D[0]+","+D[1]+","+D[2]+","+D[3]+","+drag.monitoredValue()+","); 
   fout.print(m_x[0]+","+m_x[1]+","+m_x[2]+","+m_x[3]+","+Mx.monitoredValue()+","); 
   fout.print(m_y[0]+","+m_y[1]+","+m_y[2]+","+m_y[3]+","+My.monitoredValue()+","); 
   fout.print(m_z[0]+","+m_z[1]+","+m_z[2]+","+m_z[3]+","+Mz.monitoredValue()+","); 
   fout.println(side.monitoredValue()); 
   fout.close(); 
  }catch(IOException e1){ 
   simulation_0.println(e1); 
  }   
  //cleanup 
  simulation_0.close(ServerConnection.CloseOption.ForceClose); 
  simulation_0 = null; 
  simulation_0 = new Simulation(resolvePath("..//CCworking"+start+".sim")); 
  reflect = simulation_0.getUnitsManager().getPreferredUnits(new IntVector(new int[] {0, 1, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})); 
  rads = simulation_0.getUnitsManager().getPreferredUnits(new IntVector(new int[] {0, 1, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})); 
  labCoordinateSystem_0 = 
simulation_0.getCoordinateSystemManager().getLabCoordinateSystem(); 
  flow_coord = ((CartesianCoordinateSystem) 
labCoordinateSystem_0.getLocalCoordinateSystemManager().getObject("Flow 1")); 
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  physicsContinuum_0 = ((PhysicsContinuum) 
simulation_0.getContinuumManager().getContinuum("Physics 1")); 
  meshContinuum_0 = ((MeshContinuum) simulation_0.getContinuumManager().getContinuum("Mesh 
1")); 
  meshManager_0 = simulation_0.getMeshManager(); 
  meshPipelineController_0 = simulation_0.get(MeshPipelineController.class); 
  partImportManager_0 = simulation_0.get(PartImportManager.class); 
  meshActionManager_0 = simulation_0.get(MeshActionManager.class); 
  region_0 = simulation_0.getRegionManager().getRegion("FluidDomain"); 
  boundary_1 = region_0.getBoundaryManager().getBoundary("inlet"); 
  velocityProfile_0 = physicsContinuum_0.getInitialConditions().get(VelocityProfile.class); 
  machNumberProfile_0 = boundary_1.getValues().get(MachNumberProfile.class); 
  partImportManager_0.importCadPart(resolvePath("..//cad//halfDomain35.x_b"), "SharpEdges", 
30.0, 3, 1.0E-5, true, false);  
  cadPart_1 = ((CadPart) simulation_0.get(SimulationPartManager.class).getPart("Body 2")); 
 } 
 simulation_0.close(ServerConnection.CloseOption.ForceClose); 
  } 
   
  public static double[] scctEngine(double mdot, double M0, double T0, double M2, double Tt2, double Pt2){ 
  
 double alpha = 0.25; //bypass ratio 
 double c[] = {1.4, 1.27, 1005, 42800000.0, 287.0}; //gamma, gamma combusted, Cpc, hf, R 
 double eta[] = {0.0, 0.92, 0.89, 0.998, 0.89}; //component efficiency 
 double pi[] = {0.0, 4.25, 8.25, 0.0, 0.0}; //pressure ratio 
 double tau[] = new double[6]; //temperature ratio 
 double Tt[] = new double[20]; 
 double Pt[] = new double[20]; 
 double T[] = new double[20]; 
 double P[] = new double[20]; 
  
 // 0 diffuser r 
 Tt[2] = Tt2; 
 Tt[0] = 1.0 + (c[0]-1.0)/2.0*pow(M0,2); 
 Pt[2] = Pt2; 
 T[0] = T0; 
 a0 = Math.sqrt(c[0]*c[4]*T[0]); 
 tau[0] = Tt[2]/Tt[0]; 
  
 // 1 fan c' 
 tau[1] = Math.pow(pi[1],(constants[0]-1)/(eta[1]*constants[0])); 
 Pt[13] = Pt[2] * pi[1]; 
 Tt[13] = Tt[2] * tau[1]; 
  
 // 2 compressor c 
 tau[2] = Math.pow(pi[2],(constants[0]-1)/(eta[2]*constants[0])); 
 Pt[3] = Pt[2] * pi[2]; 
 Tt[3] = Tt[2] * tau[2]; 
  
 // 3 burner b 
 Pt[4] = Pt[3] * eta[3]; 
 Tt[4] = 1500.0; 
 tau[3] = Tt[4] / Tt[3]; 
 tau[5] = Tt[4] / To[0]; 
 double f = (tau[5] - tau[0] * tau[2])/(eta[3]*c[3]/c[2]/T[0]-tau[5]); 
  
 // 4 turbine t 
 //tau[4] = 1.0 - (tau[0]/tau[5])*((tau[2]-1.0) + alpha*(tau[1]-1.0)); // oates 5.111 
 tau[4] = 1.0 - (tau[0]/tau[5])*((tau[2]-1.0) + alpha*(tau[1]-1.0))/eta[4]/(1.0+f); // Mattingly 
7.52p 
 Tt[5] = Tt[4]*tau[4]; 
 pi[4] = Math.pow(tau[4],(constants[1]/(constants[1]-1.0)/eta[4])); 
 Pt[5] = Po[3]*pi[4]; 
  
  
 double ST = 1.0 - 1.0/(tau[0]*tau[1]*pow(Pt[9]/Pt[13],(c[0]-1)/c[0])); 
 ST = Math.sqrt(2 .0/(c[0]-1)/(1.0+alpha) * ST * (tau[5]*tau[4]+alpha*tau[0]*tau[1])); 
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 ST = alpha * (ST - M0) 
 double S = f/(1.0+alpha)/ST; 
  
 double answers = {f, ST, S}; 
 return answers; 
  } 
}  
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APPENDIX B  

VBA SOURCE CODE FOR SOLIDWORKS 

 The following source code was used to save collections of CAD geometry from 

Solidworks. It contains a loop over integer-named models and implements the ForceRebuild3 

and SaveAs3 methods [30]. 

 

 

 


	2016
	A high-fidelity approach to conceptual design
	John Thomas Watson
	Recommended Citation


	tmp.1470684968.pdf.bAv7y

