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ABSTRACT

Convex optimization problem can be solved in a centralized or distributed manner.

Compared with centralized methods based on single-agent system, distributed algorithms

rely on multi-agent systems with information exchanging among connected neighbors, which

leads to great improvement on the system fault tolerance. Thus, a task within multi-agent

system can be completed with presence of partial agent failures. By problem decomposi-

tion, a large-scale problem can be divided into a set of small-scale sub-problems that can

be solved in sequence/parallel. Hence, the computational complexity is greatly reduced by

distributed algorithm in multi-agent system. Moreover, distributed algorithm allows data

collected and stored in a distributed fashion, which successfully overcomes the drawbacks

of using multicast due to the bandwidth limitation. Distributed algorithm has been applied

in solving a variety of real-world problems. Our research focuses on the framework and

local optimizer design in practical engineering applications. In the first one, we propose

a multi-sensor and multi-agent scheme for spatial motion estimation of a rigid body. Es-

timation performance is improved in terms of accuracy and convergence speed. Second,

we develop a cyber-physical system and implement distributed computation devices to op-

timize the in-building evacuation path when hazard occurs. The proposed Bellman-Ford

Dual-Subgradient path planning method relieves the congestion in corridor and the exit

areas. At last, highway traffic flow is managed by adjusting speed limits to minimize the

fuel consumption and travel time in the third project. Optimal control strategy is designed

through both centralized and distributed algorithm based on convex problem formulation.

Moreover, a hybrid control scheme is presented for highway network travel time minimiza-

tion. Compared with no controlled case or conventional highway traffic control strategy, the

proposed hybrid control strategy greatly reduces total travel time on test highway network.
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CHAPTER 1. OVERVIEW

1.1 Introduction

1.1.1 Optimization Problems

Nowadays, engineers pay attention not only to the feasibility of system design that

works at a certain level, but also the best design that improves a desired system perfor-

mance [Parkinson et al. (2013)]. This motivation leads to the development and research of

optimization algorithms. Optimization modeling and solution searching methods have been

widely used in business management and finance [Cornuejols and Tütüncü (2006); Zenios

(2002)], chemical [Bhaskar et al. (2000); Rangaiah (2016)], civil [Awad et al. (2012); Bejan

and Lorente (2001)], electrical, and control engineering fields [Goldbergt (1992); Grefen-

stette (1986); Gaing (2004)], and etc.

To find the optimal design of a real-world system, we first formulate the optimization

problem to mathematically describes the purposes and requirements of the system design.

An optimization problem consists of an objective function and a set of constraints to be

satisfied by the optimal design approach. According to work stated in Gershenfeld (1999),

solving an optimization problem finds the optimal solution of unknown variable x ∈ Rn

that minimizes/maximizes the objective function f(x) : Rn → R. The solution is subject

to a set of equality hi(x) and inequality constraints gi(x). A maximizing problem can be

handled as a minimizing problem by assigning the negative objective function.
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The form of a general optimization problem is expressed as follows, where constraints

gi(x) and hi(x) are optional according to the real-world problem definition.

min. f(x) (1.1)

s.t. gi(x) ≤ 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., p

1.1.2 Convex and Non-Convex Optimization

Optimization problems are generally categorized into convex and non-convex problem in

terms of nature of objective and constraints definition. Further classification is specified and

shown in Fig.1.1. As a fundamental formulation, a convex optimization problem minimizes

a convex objective function (or maximize a concave objective) over a convex set [Bertsekas

and Scientific (2015)]. Engineers and researches gain many benefits from solving convex

problem with fast convergence speed, global optimum, and the feasibility to be embedded

in the real-time system design. On the other hand, a non-convex optimization problem is the

one where the objective is non-convex, or the optimal solution is defined within a non-convex

feasible region. Searching for the optimal solution of a non-convex optimization problem

may be trapped at a local optimum and challenged by heavy demands of computational

time. It generally take time in the exponential order to the amount of constraints and

variables to determine feasibility of a problem. Even for a close-to-convex problem, the

optimization can be computationally intractable [Boyd and Vandenberghe (2004)].

1.2 Research Motivation, Methodology, and Purpose

1.2.1 Motivation: Multi-Agent System

Benefit from mathematical modeling of convex optimization, our research focuses on

convex problem formulation and efficient algorithm development. Typically, a convex prob-

lem can be solved in either a centralized manner by a single agent, or a decentralized fashion,
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Optimization Problem

Convex

Nonconvex

Continuous

Discrete
(or mixed-integer)

Linear

Nonlinear

Linear

Nonlinear

Nonlinear Programming, e.g. Quadratic 
Programming

Nonlinear Programming, e.g. Quadratic Programming

Linear Programming

Integer Linear Programming
Mixed-Integer Linear Programming

Mixed-Integer Programming, e.g.
Mixed-Integer Quadratic Programming

Figure 1.1 Classification of Optimization Problem. Blue arrows indicate the corresponding

solving techniques for optimal solution.

a.k.a. distributed optimization method, by introducing multiple agents. For a large-scale

convex optimization problem where there are high-dimensional variables, large number of

constraints, and great amount of data, distributed optimization method could be one of the

critical way to improve the scalability and reliability of the system design. In this case, the

computational efficiency could not reduce too much, or even improve as dealing a huge data

by a sequential/parallel computation grid. Solving a convex optimization problem by dis-

tributed methods in a multi-agents system leads to the following performance improvements

compared with centralized methods based on a single-agent system.

Table 1.1 Comparison of Multi-Agents System with Distributed Optimization Method and

Single-Agent System with Centralized Optimization Method

Multi-Agent System Single-Agent System

Data Collection Type Globally Collecting Locally Collecting

Scale of the Problem Solved High Dimension ( more Low Dimension ( less

in Each Agent constraints & variables) constraints & variables)

Failure Tolerance Single Point Failure No Single Point Failure

Communication with Agent Multicast Local Communication

(high cost) (low cost)
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1.2.2 Methodology: Distributed Optimization Algorithm

Distributed optimization algorithms have attracted the attention of researchers and en-

gineers for decades. Inspired by the well-developed algorithms for solving unconstrained op-

timization problems, Lagrangian relaxation are introduced to construct dual problems. By

doing so, most of constraints can be eliminated in dual problems. Based on Lagrangian re-

laxation with dual variables, dual decomposition is proposed [Everett III (1963)]. This leads

to one classical distributed algorithm that employs dual decomposition and the subgradient

method [Wei et al. (2010)]. Similar to the gradient descent method for solving primal prob-

lem, subgradient is applied in maximizing dual sub-objective in an iterative manner. J. N.

Tsitsiklis and other researchers investigated further on distributed asynchronous gradient-

based optimization method [Tsitsiklis et al. (1986)] and parallel computation [Tsitsiklis

(1984); Bertsekas and Tsitsiklis (1989)]. Recently, dual subgradient distributed method is

widely applied in optimal control [Low and Lapsley (1999); Kelly et al. (1998)], Natural

Language Processing [Rush et al. (2010); Sontag et al. (2012)], Markov Random Fields op-

timization [Komodakis et al. (2011, 2007)], finance problems [Schütz et al. (2009); Berkelaar

et al. (2002)], and etc.

Based on dual decomposition and subgradient method, many calculus-based distributed

algorithms have been proposed and applied in multi-agent system. Back to the 1970’s,

Daniel G., et al. introduced an augmented Lagrangian method [Gabay and Mercier (1976)].

An augmented Lagrangian incorporates a convex quadratic term in addition to ordinary La-

grangian, which equivalently formulates a strictly convex problem. From then on, further

studies on augmented Lagrangian have been conducted. A simple but efficient distributed

algorithm, Alternating Direction Method of Multiplier (ADMM) was established. Benefit

from the dual decomposition, ADMM follows a distributed scheme to update primal and

dual variables. Moreover, ADMM implements augmented Lagrangian by which the appli-

cation is extended to solving a general convex optimization problem without the strict con-

vexity assumption Boyd et al. (2011). At the same time, Accelerated Dual Descent (ADD)



5

method is another significant evolution for distributed algorithm. Michael Z. in his paper

[Zargham et al. (2014); Zarghamy et al. (2013)] presented ADD for network optimization.

Inspired by the fast convergence rate of Newton’s method, Michael Z. and his co-authors

proved the existence of a generalized dual Hessian. Instead of calculating dual Hessian

using global information, they employed local information to compute a generalized dual

Hessian which leads to a fast ascent direction for maximizing dual objective. Meanwhile,

Ermin W., et al. developed the distributed Newton method [Wei et al. (2010, 2013a,b)] and

applied the method to solve Network Utility Maximization (NUM) problem. Primal and

dual iterations are presented for the Newton direction calculation in a distributed fashion.

Another popular distributed algorithm employs a consensus scheme to locally exchange

information among a subsets of agents. Information aggregation is carried out through a

network by using this non-calculus-based algorithm. Two typical approaches solving for

consensus problem are Anti-entropy and Gossiping [Jelasity et al. (2005); Jelasity (2011);

Boyd et al. (2005)]. It has been verified that the difference between the current state and

the consensus state eliminates linearly with some assumptions associated with updating and

network topology [Wei et al. (2010)]. To reach consensus on a scalar value or calculate the

average of the initial value of agents, Gossiping or Anti-entroy is effective and efficient, but

with a slow convergence speed [Nedic and Ozdaglar (2009)]. However, for a more general

problem where additional non-consensus conditions are required, such consensus scheme

may not be applicable.

1.2.3 Purpose and Achievements

Our research is on the basis of calculus-based algorithm, i.e. the gradient-based method.

Distributed algorithm is applied either to dual sub-problem, or directly to primal sub-

problem after decomposition. According to the specific requests in real-world engineering

projects, we try to design efficient and powerful local optimizers by introducing multiple

agents and associated distributed optimization algorithm. In the first project Spacial Motion
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Estimation of 3D Rigid Body, spacial motion estimation is conducted by designing many

local estimators. Dual subgradient and distributed Newton method are verified providing a

higher estimation accuracy and less time spent than using Extended Kalman Filter (EKF)

algorithm based on a single-agent-single-sensor system [Zu et al. (2014b,a)]. In the second

project Path Planning for In-Building Evacuation, a distributed path planning scheme is

proposed for in-building evacuation when hazard occurs. Distributed computation effec-

tively overcomes the system single point failure due to the connection damage, [Zu and Dai

(2017)]. In the third project Intelligent Highway Traffic Management, highway traffic man-

agement problem is converted to convex optimization problem by developing a simplified

solution based on the first-order traffic flow model. This simplified solutions are successfully

applied to minimizing fuel consumption and travel time. The highway traffic management

problem is solved in both centralized and distributed fashion [Zu et al. (2016)]. The rest of

this section describes the projects background and main contributions of the PhD thesis.

1.3 Applications

1.3.1 Spacial Motion Estimation of 3D Rigid Body

Spatial rigid motion with both translational and rotational evolutions has been found in

a variety of dynamical systems, such as robotics, spacecraft, biomechanics, physics engines,

and many others. Precise real-time motion estimation is critical for autonomous motion

control when disturbances that requires frequent tracking of the motion states are consid-

ered. The commonly used motion tracking instrument is the Inertial Navigation System

(INS) equipped with a computer, motion sensors, and rotation sensors to continuously pro-

vide position, orientation, and velocity of a moving object [Savage (2013); Groves ( 163)].

However, when such an INS instrument is not available or the concerned object is not acces-

sible for INS installation, real-time estimation of both translational and rotational motion

of a dynamical system becomes a challenging task.
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One of the challenges comes from the coupled translational and rotational motion, which

requires a compact and efficient mathematical model to describe the combined motion. Non-

linearity of expressions describing translational and rotational motion makes the real-time

estimation extremely difficult, especially when Euler angles are included in the rotational ex-

pression. Quaternions have been introduced as mathematical tools for calculation involving

three-dimensional (3D) rotations to avoid singularity and reduce expensive computational

load created by Euler angle expressions [Hamilton (1844)]. As alternative and powerful

tools for representing object orientation, quaternions have been acknowledged as playing

indispensable role in dynamical systems due to their unambiguous, unencumbered, and

computationally-efficient features [Dai and Sun (2015)]. However, when both rotations and

translations simultaneously occur in dynamical systems, quaternions alone cannot repre-

sent the spatial transformations. Thus, dual quaternions, an extension of quaternions, have

been invented to unify the representation of rotational and translation motion within a

single invariant coordinate frame. In many practical applications, such as robot arms and

satellite attitude control, dual quaternions have demonstrated their advantages in terms

of compactness, non-singularity, and computational efficiency [Filipe and Tsiotras (2014);

Aspragathos and Dimitros (1998); Wu et al. (2005); Wang et al. (2013); Filipe and Tsiotras

(2013); Filipe et al. (2015)]. In this project, the dual quaternion kinematics is introduced

to represent spatial rigid motion. The dual quaternion based representation avoids using

trigonometric functions, which leads to a non-singular representation and also simplifies

its kinematics model as differentiating polynomials with respect to quaternion elements is

simpler than differentiating trigonometric functions with respect to Euler angles.

Existing work relating to rigid motion estimation using dual quaternion models applied

an EKF to estimate translational and rotational motion using a single image sensor [God-

dard and Abidi (1998); Olsson et al. (2003); Chiang et al. (2008); Lin et al. (2010)]. However,

if traditional image-based sensors are used for motion tracking, a portion of the sensing data

will not be available when the tracking points or lines move out of its viewing zone or when
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the sensor vision is blocked by interference. Such missing measurement information due

to visual constraints or sensor malfunction creates difficulty in maintaining continuity and

completeness of the tracking data. Furthermore, the complicated motion, the huge amount

of observation data, and the resulting computational burden motivates the investigation of

an efficient estimation algorithm for processing the observed data in real time.

Considering the challenging observational environment and the constraints of individual

sensors, a distributed estimation scheme, in which the operation of each sensor is indepen-

dent of others while cooperation among sensors is allowed, is more applicable to spatial rigid

motion estimation of complex dynamical systems. The computation burden could be relived

by solving each subproblem with unchanging dimensions. Distributed estimation technol-

ogy has been commonly used in process control, signal processing and information systems

[Mesbahi and Egerstedt (ps 8); Acikmese et al. (2008); Peterson and Paley (2013); Sun

and Xin (2015a)]. A subset of these efforts have generally been focused on the integration

of measurements from all the sensors into a common estimate without using a centralized

processor. For example, literature in [Olfati-Saber (2009)] contributes a great deal of

work towards achieving an average consensus among distributed filters. By implementing a

low-pass or band-pass filter, the estimates will reach an average consensus in a distributed

manner. Continuous efforts relative to such types of work have been applied by extension to

heterogeneous network systems and continuous Kalman filters, producing fast convergence

of a decentralized consensus [Sun and Xin (2015b); Xiao and Boyd (2004); Schizas et al.

(2008); Cattivelli and Sayed (2010); Garin and Schenato (2010)]. In this project, we propose

to solve the distributed estimation problem by formulating it as a multi-agent optimization

problem. We hence firstly propose a distributed estimation scheme via dual decomposition

methodology and subgradient method, named as dual subgradient method, to estimate the

space object motion using multiple sensors, where the kinematics of the object is based on

the dual quaternion model. After that, inspired by the rapid convergence of the Newton’s

method in solving network utility maximization problems [Dolev et al. (2009); Wei et al.
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(2010)], we propose to design a Newton-type distributed estimation algorithm aimed at

increasing the rate of convergence.

The main contribution is to design a multi-sensor framework for estimation of the spatial

rigid motion based on dual quaternions. Two types of distributed algorithms are generated

by formulating the multi-sensor estimation problem as a multi-agent optimization prob-

lem with linearly coupled constraints. We verify that Newton-type distributed estimation

algorithm has faster convergent rate than the one from dual subgradient algorithm when

processing the multi-sensor measurement data in a connected network.

1.3.2 Path Planning for Building Evacuation

In emergency situations, it is extremely important for all of the occupants to evacuate

from dangerous regions through safe paths in public buildings, such as schools, malls, and

supermarkets. Efficient evacuation strategies will significantly reduce casualties in natural

or man-made disasters, e.g., hurricane, earthquake, fire, and terrorist attack. Continuous

efforts on improving techniques related to evacuation, including sensor networks [Filip-

poupolitis et al. (2008); Barnes et al. (2007)], information exchanging [Gorbil et al. (2011);

Shklovski et al. (2008)], and building design [Sagun et al. (2014); Lui et al. (2015)], have

been initiated to protect evacuees during evacuation. The focus of these techniques is to

develop specific approaches based on precise modeling of occupants movement and hazard

spreading modes to obtain an optimal evacuation path regarding to a desired evacuation

performance, for instance, minimum evacuation time.

Existing movement models are classified into two categories, namely macroscopic and

microscopic models [Pelechano and Malkawi (2008)]. Macroscopic models pay attention to

the location, arrangement, and schedule of the evacuee flow among rooms in public build-

ings. Without considering interaction among evacuees, macroscopic model formulates the

evacuation management and schedule problem as a network flow optimization problem [Choi

et al. (1988); Mamada et al. (2004); Tjandra (2003)]. Rooms and available exits are handled
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as nodes or vertices and each feasible path between two nodes is considered as an edge in

a graph. Moreover, each edge has an assigned cost representing a desired evaluation index,

such as the distance or time required for evacuees to transit along the relative edge. Based

on the macroscopic model, the formulated network flow optimization can be solved via ex-

isting optimization algorithms, such as linear programming [Hamacher and Tjandra (2001);

Tan et al. (2011); Yao et al. (2009)], genetic algorithm [Adeli and Cheng (1994); Liu et al.

(2006); Li et al. (2010); Cheng et al. (2008)], and simulated annealing algorithm [Jahangiri

et al. (2011)]. When hazard spreading model is considered in a dynamic evacuation graph,

the edge cost will be updated due to the dynamically changing hazard areas [Tabirca et al.

(2009); Barnes et al. (2007)].

Microscopic models focus on individual social behaviors [Li and Xu (2014)]. For example,

Pelechano and Malkawi [Filippidis et al. (2006)] consider psychological and physiological

activities when modeling human movement. Additionally, they notice that communication

among evacuees is a non-negligible social behavior when building a high precision model.

Another example in Filippidis et al. (2006) considers the evacuees’ interaction with the

signage system, where a visibility catchment area has been developed and a prototype

behavior model has been built for supermarket environments. In addition to the behavior-

based model described above, there are many other types of microscopic model that have

been widely used in evacuation planning, guidance and exit decision strategies. For example,

work in Mesmer and Bloebaum (2014) proposes a novel egress decision model for exit choices

based on utility and game theory. Microscopic behaviors, such as risk preferences, velocity

determination and following others, are considered in the egress decision model. Interaction

of evacuees has also been considered in cellular automata model which divides a large space

into several cells where movement of evacuees in each cell is affected by evacuees in adjacent

cells [Zhao et al. (2008); Psakhie et al. (2001); Miyamoto and Sasaki (1997); Wolfram (1983)].

However, most existing work searching for an efficient evacuation path employs a central-

ized sensing and computational framework and effects of congestion along the evacuation
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path segments and around exits have not been considered. Due to spreading of hazard

areas, the centralized computation node may become available, which leads to failure of

generating evacuation guidance decisions. On the other facet, congestions have significant

effect on evacuation time. In the worst case, jammed flow in vicinity of available exits may

generate panic among evacuees. Thus a designed safe path based on the dynamic graph

may not be available in real scenario if the congestion effects have not been considered.

This work utilizes a Cyber-Physical System (CPS) with networked sensing, information

sharing, and distributed computation capabilities to generate optimal evacuation paths for

scattered evacuees in a public building. The first step builds a dynamic evacuation graph

with time-varying edge cost determined by both the hazard spreading model and decisions

from each evacuee group. In addition, social behaviors are integrated into the graph-based

macroscopic model by assuming that evacuees prefer to follow others in a group rather than

move alone. Next, a Bellman-Ford-Dual-Subgradient (BFDS) algorithm is developed to

search for the optimal evacuation paths while satisfying capacity constraints of corridors

and exits in a distributed manner. Instead of computing evacuation paths for all groups in

a centralized mode by collecting information, e.g., location and number of evacuees, from

the entire graph, the distributed computational framework significantly reduces the scale

and complexity of the original optimization problem. Meanwhile, the capacity constraints of

corridors and exits are satisfied by coordination among individual groups to avoid congestion

along the planned paths and around exits. The goal is to reduce the overall evacuation time

for all evacuee groups by cooperative planning through CPS.

1.3.3 Intelligent Highway Traffic Management

Large scale complex transportation system is one of the indispensable infrastructures

in urban and rural areas. The dramatically increasing demands of transportation service

leads to traffic congestion, energy wasting and pollution, as well as safety issues. To deal

with these issues, intelligent traffic management strategies relying on advanced sensing,



12

communication, and high performance computation techniques are attracting researchers’

attention. Recent work in areas of intelligent transportation systems mostly focuses on

modeling and reducing travel time [Daganzo (1995); Lu et al. (2008)] or minimizing delay

at signalized intersections [Sims and Dobinson (1980); Guler et al. (2014); Li et al. (2016)].

If fuel consumption is considered in evaluating the transportation system performance, it is

necessary to analyze the effectiveness of current traffic control systems in terms of energy

efficiency while guaranteeing the accomplishment of transportation tasks in desired time.

Existing traffic control strategies are categorized into two application areas, i.e., ur-

ban roads and freeways. For traffic control of urban roads, developed work mainly focuses

on signal-timing optimization. For example, a signal control system, named RHODES,

aims to improve throughput and reduce the delay [Mirchandani and Head (2001)]. An-

other example employs the ant colony optimization algorithm to solve large scale traffic

network problems [Putha et al. (2012)]. In areas of freeway traffic control, typical ap-

proaches include ramp metering control, such as ALINEA [Papageorgiou et al. (1991)] and

METALINE [Messner and Papageorgiou (1990)], and dynamic speed limits control, e.g. the

SPECIALIST proposed in Hegyi et al. (2008) for shockwave elimination. Furthermore, some

of these work combine ramp metering and dynamic speed limits control to generate hybrid

control commands. For example, in order to prevent traffic breakdown and relieve conges-

tion, work in Hegyi et al. (2005) presents a predictive control approach for coordination of

both ramp metering and dynamic speed limits.

An energy-efficient transportation system aims to reduce fuel consumption and emis-

sions, e.g. CO, NO, CH4, through eco-driving guidance. Existing eco-driving strategies for

individual driving guidance focuses on training drivers behaviors, i.e., smooth acceleration,

maintaining steady speeds, avoiding too fast speed, and etc., which has been verified to

improve fuel economy on the order of 5-20 percentage [Barkenbus (2010)]. However, chang-

ing drivers’ behaviors is a long-term effort and static driving advices may not guarantee

prominent effects in dynamic traffic environments. Instead, recent studies concentrate on
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traffic control and management strategies. For example, work in Liu et al. (2017) uses model

predictive control (MPC) for traffic network based on a multi-class macroscopic traffic flow

and emission model. Incorporated with end-point penalties, total time spent and emissions

are further reduced. Another MPC-based method descibes an efficient en-route diversion

strategy for real-time traffic flow control in [Luo et al. (2016)]. More energy-efficient traffic

control approaches can be found in [Pasquale et al. (2015); Jamshidnejad et al. (2017);

Han et al. (2016)], where the authors present nonlinear optimal control and gradient-based

method in a MPC framework. However, although macroscopic traffic flow model, e.g.

FASTLANE and METANET, have been adopted in energy-efficient traffic management, it

is time consuming to find a convergent solution when a highly nonlinear traffic flow model

is considered [Zegeye (2011)]. Speed intervals have been used to obtain an approximate

solution without solving highly nonlinear dynamics, which results in accumulative errors

over time [Dai et al. (2015)].

This work focuses on managing dynamic speed limit signs to control traffic flow speeds

in order to reduce total fuel consumption during a specific time period. We adopt Lighthill-

Whitham-Richard (LWR) macroscopic traffic flow model, introduced by Ligthill and Whitham

in the 1950’s (Lighthill and Whitham, 1955), and COPERT fuel consumption estimation

model [Ntziachristos et al. (2000)]. Inspired by Barron-Jensen/Frankowska (B-J/F) solution

for Hamilton-Jacobi (HJ) partial differential equations (PDEs) [Barron and Jensen (1990)],

we use B-J/F solution to Moskowitz HJ PDEs to obtain exact solutions without approx-

imation [Mazaré et al. (2011)]. It generates an explicit expression of solution based on a

pre-specified fundamental diagram associated with initial and boundary conditions [Green-

shields et al. (1935); Claudel and Bayen (2010a)]. Those analytical solutions are handled as

model constraints incorporated in the optimization problem formulation. Furthermore, the

solutions to Moskowitz HJ PDEs are simplified based on roadway decomposition and traffic

status. Combing the simplified solution to Mozkowitz HJ PDEs with the quadratic formu-

lation of COPERT, we formulate the energy-efficient traffic control problem as a convex
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quadratic optimization problem (CQOP). The convex nature of the problem formulation

guarantees convergence to a global optimal solution within polynomial computational time,

which makes the approach feasible for real-time traffic control.

By using simplified solution to describe traffic dynamics, we also formulate a Linear

Programming (LP) problem for travel time minimization. Furthermore, test highway is

extended to a network scenario. Incorporating simplified solution, a mixed-integer quadratic

programming problem with quadratic constraints (MIQQ) problem is constructed and a

real-time traffic control strategy is proposed based on hybrid highway infrastructures.

The contribution include the following aspects. (1) Different from previous work that

adopt triangular fundamental diagram for the derivation of explicit solution to Moskowitz

HJ PDEs, new solution espressions are developed and simplified based on a parabolic shaped

fundamental diagram associated with initial and boundary conditions. (2) By incorpo-

rating simplified solutions in model constraints, we formulate CQOP, LP and MIQQ for

energy-efficient problem, travel time minimization problem in highway section and highway

network, respectively. They are embedded in a real-time traffic management scheme to

efficiently search for optimal commands. (3) Beyond the theoretical development in earlier

work [Yue Zu and Dong (2016)], we implement CQOP, LP and MIQQ in real-world scenarios

through VISSIM simulation by constructing a Component Object Model (COM) interface

to connect MATLAB generated control commands with VISSIM simulation environments.
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CHAPTER 2. CONVEX OPTIMIZATION PROBLEM AND

CALCULUS-BASED CENTRALIZED OPTIMIZATION ALGORITHM

2.1 Introduction

Basically, optimization problem can be categorized into convex and non-convex prob-

lems. A convex optimization problem is characterized by convex functions, such as f(x),

gi(x) mentioned above and affinity for hi(x). The specific definition of convex optimization

problem is described in Section 2.2. As a special case of optimization problem, convex

optimization has been widely applied in many areas. The main advantage of formulating or

modeling a real-world problem as a convex optimization problem is the problem solvabil-

ity and solution reliability. Typically, there are many well-developed numerical algorithms,

e.g. simplex method [Murty (1983)], interior point [Mehrotra (1992)], trust-region-reflective

[Conn et al. (2000)], etc. that can efficiently solve convex optimization problem in a cen-

tralized way.

To derive a distributed algorithm, it is necessary to address classical calculus-based

centralized method for solving unconstrained convex optimization problem. We introduce

two typical algorithm: gradient descent and Newton’s method in Sections 2.3 and 2.4.

As a first-order iterative algorithm, the gradient descent method searches for the solu-

tion in next iteration along negative direction of gradient at current solution. The algorithm

always obtains a decreased objective value as iteration continues. For a strictly convex opti-

mization problem, gradient descent method leads to single global optimum. As a simple but

powerful algorithm, gradient descent is prevalent in finance, statistics, computer science, and

etc. One of the most popular application is in machine learning. Gradient descent method
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is implemented for learning large scale parameters. For example, the back-propagation for

training neural network [Nielsen (2015)]. The detailed algorithm and convergence analysis

are discussed in Section 2.3.

As a second-order iterative algorithm, the Newton’s method tries to find the root of

the differentiable objective, i.e. f ′(x) = 0. It takes the second-order information, i.e. the

Hessian matrix into account. Hence, the Newton’s method requires to compute the twice-

differentiable objective function. Comparing to the gradient method, the Newton’s method

improves the convergence rate to a quadratic one. However, the drawback is the Hessian

matrix calculation increases the computation complexity. When handling an unconstrained

convex problem, the gradient method is the default choice in most cases. The optimizer

performance in terms of objective value and convergence speed is used as the evaluation

criterion. If it fails to fulfill the pre-specified request, some advanced algorithms, e.g. New-

ton’s method, could be employed. We introduce Newton’s method and the corresponding

convergence analysis in Section 2.4.

2.2 Convex Set, Convex Function and Convex Optimization Problem

A convex set C corresponds to a convex region where for every pair of points in this

region, the line segment connecting the two points is also within this region [Morris and

Stark (2015)]. Mathematically, C is a convex set, if and only if (1− t)xi + txj is in C, given

any xi,xj ∈ C and t ∈ [0, 1].

By defining a convex set C, a function f(x) : Rn → R is referred to as a convex function,

if

f(txi + (1− t)xj) ≤ tf(xi) + (1− t)f(xj), ∀xi,xj ∈ C, t ∈ [0, 1]. (2.1)
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In other words, the epigraph is a convex set. Strong convexity holds if t ∈ (0, 1) and

Eq.(2.1) are satisfied. Now we can express the convex optimization problem in a general

form of

min. f(x) (2.2)

s.t. gi(x) ≤ 0, i = 1, ...,m

Ax = b.

Compared with standard form of optimization problem in (1.1), convex optimization prob-

lem is a special case which has more restrictions on objective function f(x), inequality

constraint gi(x) and inequality constraint hi(x). These restrictions include:

• f(x) is a convex function.

• gi(x) is a convex function for all i = 1, ...,m. It formulates a convex feasible region.

• hi(x) is an affine function for all i = 1, ..., p. Therefore, we represent it as a compact

form using matrix A ∈ Rp×n and vector b ∈ Rp.

For a concave maximization problem, we can simply handle it as a convex problem by

minimizing the negative of its original objective. Furthermore, there is at most one optimum

point if the objective is strong convex [Boyd and Vandenberghe (2004)].

2.3 First Order Method: Gradient Descent

2.3.1 The Algorithm

Gradient descent, a.k.a. steepest descent, is an iterative method which searches the state

vector that monotonically decreases the objective value. Searching is conducted along the

direction of negative gradient at current point x. This direction allows fast reduction of the

objective function if f(x) is differentiable in a neighborhood of current point x. Gradient

descent method is summarized as
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Initialization: x in domain of f(x), q = 0

while stopping criterion is not satisfied do

Calculate gradient ∇f(xq) at current point xq.

Calculate and update state point by x = x− αq∇f(xq).

end

Protocol 1 Gradient Descent Method

By linear search to determine a proper step size αq, it guarantees that the objective value

keeps decreasing after each state updating, i.e. f(xq+1) ≤ f(xq) where q is the iteration

index. Therefore, xq converges to local minimum as q → ∞. Particularly, it converges to

the global minimum for a convex optimization problem.

2.3.2 Convergence Analysis

We assume the Hessian of a strictly objective function f(x) satisfies mI � ∇2f(x) �

MI, m and M are two real positive numbers. Moreover, define the function F (α) = f(x′) =

f(x− α∇f(x)).

We first consider a lower bound of a second-order Taylor approximation at point x [Boyd

and Vandenberghe (2004)]:

f(x′) ≈ f(x) +∇f(x)(x′ − x) +
1

2
(x′ − x)T∇2f(x)(x′ − x)

≥ f(x) +∇f(x)(x′ − x) +
m

2
||(x′ − x)||22

≥ f(x)− 1

2m
||∇f(x)||22. (3.3)

The second inequality holds due to ∇2f(x) � mI. We take derivative of the right side of

the second line and obtain the minimum value at x′ = x − 1
m∇f(x), which obviously lead

to the third inequality.
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By the following derivation, we notice that an upper bound of this approximated function

can be obtained.

f(x′) ≈ f(x) +∇f(x)(x′ − x) +
1

2
(x′ − x)T∇2f(x)(x′ − x)

≤ f(x) +∇f(x)(x′ − x) +
M

2
||(x′ − x)||22

= f(x)− α||∇f(x)||22 +
Mα2

2
||∇f(x)||22.

≤ f(x)− 1

2M
||∇f(x)||22. (3.4)

In the above derivation, the second inequality holds due to ∇2f(x) � mI. Then we replace

x′ by the state updating rule x′ = x−α∇f(x) to obtain the third equality in (3.4). Moreover,

the minimum value of f(x) − α||∇f(x)||22 + Mα2

2 ||∇f(x)||22 is obtained at α = 1
M by using

the first order optimality condition on F (α) = f(x′). Hence the last inequality holds in

(3.4).

We apply the result of (3.3) to the optimal solution x∗ to give

f∗(x∗) ≥ f(x)− 1

2m
||∇f(x)||22. (3.5)

Obviously, one has

||∇f(x)||22 ≥ 2mf∗(x∗)f(x). (3.6)

By subtracting f∗(x∗) on both sides of (3.4) and applying (3.6), we have

f(x− α∇f(x))− f∗(x∗) ≤ f(x)− f∗(x∗)− 1

2M
||∇f(x)||22.

≤ (1− m

M
)[f(x)− f∗(x∗)]. (3.7)

We add iteration index q in the state updating steps, i.e. xq = xq−1 − α∇f(xq−1), ...,x1 =

x0 − α∇f(x0). We then repeatedly employ inequality result of (3.7) to get

f(xq)− f∗(x∗) ≤ (1− m

M
)[f(xq−1)− f∗(x∗)] ≤ · · · ≤ (1− m

M
)q[f(x0)− f∗(x∗)]. (3.8)

Since 1− m
M < 1, we conclude the objective value converges to optimum f∗(x∗) as q →∞.

In the following expressions, we found xq converges linearly to the optimal solution x∗.

f(xq)− f∗(x∗)
f(xq−1)− f∗(x∗)

= 1− m

M
(3.9)
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2.4 Second Order Method: Newton’s Method

2.4.1 The Algorithm

As a second order iterative optimization method for unconstrained optimization prob-

lem, the Newton’s method employs the second order Taylor polynomial f(x + ∆x) to ap-

proximate the original objective in the neighbor of x. The second order approximation is

written as

fa(x + ∆x) = f(x) +∇f(x)T∆x+
1

2
∆xT∇2f(x)∆. (4.10)

By taking the derivative with respect to ∆x and making it equal to zero, we have

∇fa(x + ∆x) = ∇f(x) +∇2f(x)∆x = 0. (4.11)

We find the best step ∆x = −∇2f(x)−1∇f(x) which is referred to as Newton step. At

current point x, the Newton’s method leads to the minimum of the approximated quadratic

function fa by taking the Newton step with an appropriate step size. For a state sequence

xq, the Newton’s method is summarized as

Initialization: x in domain of f(x), q = 0.

while stopping criterion is not satisfied do

Calculate gradient ∇f(xq) at current point xq.

Calculate Hessian ∇2f(xq) at current point xq.

∆xq = −∇2f(xq)−1∇f(xq)

Calculate and update state point by xq+1 = xq + αq∆xq.

q = q + 1

end

Protocol 2 Newton’s Method

The step size in the above algorithm is defined by αq ∈ (0, 1). The Newton’s method

follows the similar methodology as in the gradient descent method, i.e. recursively searching
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along the descent direction. Different from the gradient descent method, the second order

approximation is implemented at current point xq. Minimizing this approximated function

could be a very good optimizer of the original objective f if f is nearly quadratic and

twice differentiable. Typically, the approximation perfectly describes the original objective

f if f is a quadratic function. In this case, the Newton’s method results in a one-step

optimization. One can prove that the Newton’s method has a quadratic convergence rate

which is much faster than using gradient method.

2.4.2 Convergence Analysis

The objective function f(x) is assumed to be strictly convex and twice differentiable.

Similar to the proof provided in Section 2.3.2, the Hessian ∇f(x) satisfies mI � ∇2f(x) �

MI, where m and M are two real positive numbers. The Hessian is Lipschitz continuous

for x,y on the domain of f with constant L. The Lipschitz condition on Hessian is stated

as

||∇2f(x)−∇2f(y)||2 ≤ L||x− y||2. (4.12)

The Lipschitz condition is applied to prove the quadratic convergence rate as follows

||∇f(x + α∆x)||2 = ||∇f(x + α∆x)−∇f(x)−∇2f(x)α∆x||2

= ||
∫ 1

0
(∇2f(x + α∆x)−∇2f(x))∆xdα||2

≤
∫ 1

0
||(∇2f(x + α∆x)−∇2f(x))∆x||2dα

≤
∫ 1

0
Lα||∆x||22dα

=
L

2
||∆x||22

=
L

2
||∇2f(x)−1∇f(x)||22

≤ L

2m2
||∇f(x)||22. (4.13)
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The first equality in Eq.(4.13) follows the result of Eq.(4.11). The fourth inequality holds

by applying the Lipschitz condition inside the integral. At last, as it holds for ∇2f(x)−1 �
1
mI, we obtain the last inequality in Eq.(4.13).

Multiplying L
2m2 on both sides of the inequality result in (4.13), we repeatedly apply the

result of (4.13) until it satisfies the stopping criterion. Then the following inequalities hold

for ||∇f(xq)||2 < n,

L

2m2
||∇f(xq)||2 ≤ (

L

2m2
||∇f(xq−1)||2)2 (4.14)

≤ (
L

2m2
||∇f(x0)||2)2

q

≤ 1

2

2q

where 0 < n ≤ m2

L . We then substitute the result of (4.14) into inequality (3.5) to give

f(xq)− f∗(x∗) ≤ 1

2m
||∇f(xq)||22

≤ 1

2m

4m4

L2
(
1

2
)2

q+1

=
2m3

L2
(
1

2
)2

q+1
. (4.15)

Equation (4.15) demonstrates a rapid convergence to the optimal solution x∗ when q →∞.

This result shows a quadratic convergence rate using the Newton’s method. Intuitively, the

maximum difference of two objective values at current point and optimal point is reduces

by 1
2

2q
after each iteration q.

2.5 Conclusion

In this section, we introduces the general form of optimization problem. An optimization

problem is to minimize/maximize the objective by designing the optimal solution from all

feasible solutions. Convex optimization problem is one of the important categories, which

consists of convex objective function, convex feasible region, and a set of affine constraints.

Formulating a real-world problem as convex optimization problem could be beneficial pro-

viding the efficient optimal searching algorithms and guaranteed global optimal solution.
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Since constraints can be eliminated by relaxation, unconstrained optimization algo-

rithms form the foundation of solving constrained optimization problems. Two typical

calculus-based methods are discussed, including algorithm procedures and convergence anal-

ysis. First, gradient descent method only relies on the gradient information and line search

algorithm. The computation is simple at each iteration. However, the primal solution is

guaranteed to be located in a small neighbor of the optimal solution with a slow convergence

rate, i.e. linear convergence. As an improved method, the Newton’s method calculates the

second-order information, i.e. the Hessian, at each iteration to speed up the convergence

rate. By computing gradient and Hessian, the Newton’s method holds a quadratic conver-

gence rate. It requires to compute the second order differentials of a objective function and

the computation is more complex at each iteration. Another drawback is that the Hessian

calculation requires global information of all state elements. In this case, the distributed

computation is difficult to be incorporated in the Newton’s method. Practically, a tradeoff

always exists in between first-order and second-order method. The gradient method re-

quires less computational cost at each iteration. But more iterations are required to get

to the converging point. Reversely, the Newton’s method takes more efforts on the com-

putation at each iteration while leading to less iterations. Basically, the gradient descent

method is the default algorithm in practice. By evaluating the optimization performance

in terms of computational time and the objective value, we could decide which method is

more preferred.
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CHAPTER 3. PROBLEM DECOMPOSITION AND DISTRIBUTED

OPTIMIZATION ALGORITHM

3.1 Introduction

Centralized optimization algorithms rely on a single computational node and centralized

information. This implies many drawbacks when dealing with large scale problems with

large datasets. First, the computational complexity could be extremely high due to the

large datasets and high dimension of state variables. Handling such huge datasets and high

dimensional problems requires not only the usefulness, but also a high quality of the single

processor. Second, in some scenarios, it is difficult to collect and store data in a centralized

manner. Even it can be done so, in cases of multicast, this could be time-consuming and

application-restricted due to the bandwidth limitation. Third, when a single point failure

occurs in the single computational node, it will cause task suspension.

Instead of using centralized optimization algorithm in a single-agent system, we intro-

duce a multi-agent system where a connected network is established by building commu-

nications/connections among agents. This system efficiently improves the computational

performance such that it can be implemented in large-scale problems. First, multi-agent

system greatly reduces the scale of each sub-problem. It dramatically decreases the compu-

tational complexity for solving sub-problem associated with each single agent. To handle a

large-scale problem, the multi-agents system is more scalable than a centralized system. It is

more beneficial to employ a bunch of low performance computing elements than a single high

performance computing workstation in terms of computation efficiency and cost. Second,

agents are distributed for local data collection and storage. Local data processing reduces
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time delay due to the bandwidth limitation and long transferring distance. Third, fault

tolerance can be improved, i.e. a single point malfunction will not fail the entire system. If

some agents crash due to hardware, software, or communication malfunctions, the assigned

task can still be accomplished using the remaining working agents. Based on multi-agent

systems, distributed optimization algorithms are developed in a parallel/sequential compu-

tation manner. In this section, we review typical decomposition methods, dual decompo-

sition, as well as the calculus-based first-order and second-order optimization algorithms

embedded in multi-agents system.

Dual problem, in most cases referred to as Lagrangian dual problem, sometimes leads

to an efficient or distributed method to solve the original problem[Boyd and Vandenberghe

(2004)]. One famous implementation example is the Support Vector Machine (SVM). Solv-

ing associated dual problem successfully avoid constructing a proper mapping function

which is extremely difficult in practice. Instead, SVM relies on kernel function with deter-

ministic pattern and unknown parameters to be determined. Learning process is to solve

a dual problem subject to a set of inequality constraints [Bishop (2006)]. Dual problem

is generated by introducing Lagrangian relaxation. Solving dual problem provides the op-

timal solution for dual variables. Then it is converted into corresponding primal solution

through an optimizer. Minimizing primal objective is equal to maximizing dual objective

with fewer constraints (at least nonnegativity for dual variables) if strong duality holds.

By constructing dual problem, a separable Lagrangian can be decomposed into a sequence

of sub-Lagrangians to generate the dual sub-problems. This process is referred to as dual

decomposition. Dual problem formulation and associated dual decomposition method are

discussed in Section 3.2.

Calculus-based distributed methods can be applied to dual-decomposed sub-problems

or directly to primal problems with a distributed computation scheme. In the rest of this sec-

tion, we describe four typical distributed optimization methods, i.e. dual ascent/subgradient,

projected subgradient, ADMM, and Newton-type distributed method. For each method,
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we first provide the algorithm description and then analyze the convergence property by

giving relative proofs.

Dual ascent, a.k.a. dual subgradient method, is one of the classical decentralized al-

gorithms based on dual decomposition. It consists a x-minimization and a dual-updating

step in each iteration. At x-minimization step, local primal variables are optimized by min-

imizing the decomposed Lagrangian independently. There are many ways to design a local

optimizer. For example, as a first-order method, the steepest decent algorithm leads to a lin-

ear convergence rate, which only relies on the gradient information. However, the Newton’s

method with quadratic convergence rate, requires Hessian matrix calculation in addition to

the gradient. In practice, a tradeoff needs to be considered between computational simplic-

ity with slow convergence speed and complex computation with fast convergence speed. At

the second step, we update the dual variables using current primal solutions. We repeat

these two steps recursively until the primal or dual variables converges. Algorithm and

convergence analysis are discussed in Section 3.3.

As an extension of subgradient method, projected subgradient method can be applied

to either primal or dual problem. When directly applying to a primal problem, it projects

current point to the convex feasible region by using an Euclidean projection operator, which

is followed by updating step of the primal variables. There is no requirement of designing

the optimizer. Primal iteration only depends on simple mathematical computation. In this

case, it typically requires much more iterations than those algorithms based on optimizer

design. When applied to the dual problem, the projected subgradient method projects

dual variables to a non-negative region. We handle this non-negative projection as a dual

variable updating step in the standard subgradient method in Section 3.3. Algorithm and

convergence analysis are discussed in Section 3.4.

ADMM is an efficient and simple distributed algorithm for solving convex optimization

problems in an sequential manner. It follows decomposition-coordination procedure and

progressively solve each sub-problem with local information required. ADMM combines
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the benefits from the method of multipliers and dual decomposition. First, by constructing

augmented Lagrangian, it converts a non-strict-convex objective to a strict one by intro-

ducing additional quadratic relaxation terms in the original objective. Comparing to the

Lagrangian, augmented Lagrangian guarantees the primal convergence even through objec-

tive is not strictly convex or taking value of +∞ [Boyd et al. (2011)]. Second, distributed

computation is achieved by applying x-minimization steps in an sequential fashion after

dual decomposition. Algorithm and convergence analysis are discussed in Section 3.5.

Inspired by the rapid convergence of the Newton’s method, we propose a Newton-type

distributed optimization algorithm, aiming at increasing the rate of convergence. Dis-

tributed Newton method consists of primal iteration and Newton iteration. Instead of

using gradient as the direction factor in steepest descent method, a Newton direction is

applied in primal iteration. Newton direction is updated by a function of gradient, Hessian,

and current optimal solution of a Newton variable w. Optimal Newton variable is obtained

by Newton iteration. The convergence speed has been proved to be faster than dual sub-

gradient method based on dual decomposition. Algorithm and convergence analysis are

discussed in Section 3.6.

3.2 Dual Problem and Dual Decomposition

For an optimization problem in (1.1) to minimize an objective function f(x) under

equality constraints hi(x) = 0, i = 1, . . . , p, and inequality constraints gj(x) ≤ 0, j =

1, . . . ,m, its Lagrangian function is formulated as

L(x,λ,µ) = f(x) +

p∑
i=1

µihi(x) +

m∑
j=1

λjgj(x), (2.1)
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where µi, i = 1, . . . , p and λj , j = 1, . . . ,m are Lagrangian multipliers. If the objective and

constraint functions can be expressed in the summation form of

f(x) =

K∑
k=1

fk(xk)

gi(x) =
K∑
k=1

gki (xk)

hj(x) =

K∑
k=1

hkj (xk)

by partition the state vector x into subvectors x = (x1, . . . ,xK), the Lagrangian is refor-

mulated as

L(x,λ,µ) =

K∑
k=1

(fk(xk) +

p∑
i=1

µih
k
i (xk) +

m∑
j=1

λjg
k
j (xk)).

The above function can be decomposed into K subproblems according to the subvector xk,

where k = 1, . . . ,K. For each subproblem, it can be solved by minimizing kth Lagrangian

Lk(xk,λ,µ),

LkD(λ,µ) = min
xk

Lk(xk,λ,µ)

= min
xk

(fk(xk) +

p∑
i=1

µih
k
i (xk) +

m∑
j=1

λjg
k
j (xk)), (2.2)

where LkD(λ,µ) is dual function for a given pair of multipliers (λ,µ), which is always

concave. Thus the dual problem

max(λ,µ) L
k
D(λ,µ) (2.3)

s.t. λ � 0

is a convex optimization problem.

3.3 Dual Ascent/Sub-Gradient Method

3.3.1 Dual Ascent/Sub-Gradient Method

Sub-gradient method is an iterative procedure to gradually approach the optimization

solution by finding the ascent direction for the dual problem. Detailed procedures regarding
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step size selection and convergence proof can be found in Boyd et al. (2003). At each

sequence q, assuming the multipliers (λq,µq) are given, the subgradient at this point is

expressed as

gs(x
q) =

 g(xq)

h(xq)

 . (3.4)

Then each sub-problem can be solved in parallel by the following x-minimization and La-

grangian updating:

xq+1
k = arg min

xk

Lk(xk,λ
q,µq) (3.5)

λq+1 = max(0,λq + αqλg(xq)) (3.6)

µq+1 = µq + αqµh(xq), (3.7)

where αqλ and αqµ are the step size that will control the convergence speed of the subgradient

method. The maximum number of sequence q is generally defined to satisfy the stopping

criteria of iteration.

3.3.2 Convergence Analysis

Our goal in this section is to exhibit linear convergence for the distributed optimiza-

tion algorithm using dual subgradient method. The following proof is based on linear

convergence conclusion described in Terelius (2010) for iterative subgradient method. The

conclusion related to error upper bound is still valid for dual subgradient method. To verify

the linear convergence of the primal varialbe x, we further introduce two assumptions and

convergence results regarding the dual subgradient method.

Assumption 3.3.1. The norm of dual subgradient gs(x) at each iteration q is bounded by

G such that

‖ gs(x) ‖≤ G, ∀x ∈ Rn. (3.8)
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Assumption 3.3.2. The distance, denoted as D, from the initial primal state x0 to the

optimal set x∗ is bounded by U such that

D(x0,x∗) ≤ U. (3.9)

Theorem 3.3.1. The difference between the best result Jqmbest and objective value J∗ at

optimal points from dual subgradient method is bounded by

Jqmbest − J
∗ ≤

U2 +G2
∑qm

q=0(α
q)2

2
∑qm

q=0 α
q

, (3.10)

where qm is the maximum number of iteration [Terelius (2010)]. The detailed proof can be

found in Appendix A.

Proposition 3.3.2. Let r and β be constant and 0 < β < 1. The dual subgradient method

converges to the optimal solution x∗ with linear rate bounded by U2(1−β)
2r + G2r

2(1+β) using step

size αq = r(β)q.

Proof. Following the conclusion in 3.3.1 and substituting αq = r(β)q into Eq.(3.10), the

difference between Jqmbest and J∗ is bounded by

Jqmbest − J
∗ ≤

U2 +G2r2 1−β
2qm

1−β2

2r 1−β
qm

1−β

=
U2(1− β2) +G2r2(1− β2qm)

2r(1− βqm)(1 + β)

= J qm (3.11)

As qm →∞, above convergence result is simplified as

lim
qm→∞

Jqmbest − J
∗ ≤ lim

qm→∞
J qm

=
U2(1− β)

2r
+

G2r

2(1 + β)

= Jinf (3.12)
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which indicates that the subgradient method using step αq = r(β)q converges to a region

within U2(1−β)
2r + G2r

2(1+β) of optimality. By the definition of convergence rate, one has

lim
qm→∞

|J qm − Jinf |
|J qm−1 − Jinf |

= lim
qm→∞

U2(1− β2) +G2r2(1− βqm)

U2(1− β2)β−1 +G2r2(1− βqm−1)β−1
· 1− βqm−1

1− βqm

= β. (3.13)

Since β ∈ (0, 1), sequence J qm converges linearly to Jinf , i.e. sequence Jqmbest R-linearly

converges to J∗ within U2(1−β)
2r + G2r

2(1+β) of optimality.

From Theorem 3.3.1 and Proposition 3.3.2, they indicate that the convergence speed and

accuracy is highly related to the step size αq. For a significantly small β, it introduces a

large neighborhood around the optimal solution, which reduces the estimation accuracy.

On the other hand, if β is approaching to one, the step size becomes a constant. In

cases when a large value of r is used, it might lead to a divergent result. To balance

between convergence and precision, we select a relatively large step size at the beginning

and decreases it progressively along each iteration.

3.4 Projected Subgradient Method

3.4.1 Projected Subgradient Method

As an extension of subgradient method, projected subgradient method makes a projec-

tion after updating state value such that the current primal solution locates in the feasible

region. To solve the following convex optimization problem constrained by a convex set C

expressed as

min f(x)

s.t. x ∈ C,
(4.14)

the projected subgradient method maps state value on C by employing Euclidean projection

P , expressed by

xq+1 = P (xq − αqgs(xq)), (4.15)
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where gs(x
q) is the subgradient of f at xq. In some cases, projection P only relies on local

information. For example, if the convex set C = {x|Ax = b} is linear, projection P is linear

as well and can be expressed as [Boyd et al. (2003)]

P (y) = y −AT (AAT )−1(Ay − b) (4.16)

Replacing P with Eq.(4.16) in Eq.(4.15), the updating step is expressed by

xq+1 = xq − αq(I −AT (AAT )−1A)gs(x
q). (4.17)

Matrix (I − AT (AAT )−1A) is sparse and non-zero entries appear at certain locations to

represent associated local information of subgradient gs(x
q). Therefore, primal iteration

relies on local information of state vector and subgradient. More specifically, if the convex

objective function follows the summation form of f(x) =
∑K

k=1 fk(xk) and the feasible

convex set is linear as follows,

min
K∑
k=1

fk(xk)

s.t. Ax = b.

(4.18)

Global optimum can be obtained through projected subgradient method in a distributed

scheme as follows,

Initialization: Solve each unconstrained subproblem independently and obtain the each op-

timal state with the initial value x0
k and q = 1.

while q ≤ qmax or not converged do

for k ← 1 to K (in parallel) do

xq+1
k = Pk(x

q − αqgs(xq))

q = q + 1

end

end

Protocol 3 Solving 4.18 Using Projected Subgradient Method
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In the above algorithm, Pk is the projection operator for subproblem k. The projected

subgradient method can be implemented in solving dual sub-problem (2.3). In this case,

the update step for multiplier λ follows Eq.(3.6) which projects λ to the feasible region, i.e.

λ � 0.

3.4.2 Convergence Analysis

For the updating step before projection, i.e. zq+1 = xq −αqgs(xq), we have [Boyd et al.

(2003)]

||zq+1 − x∗||22 = ||xq − αqgs(xq)− x∗||22 (4.19)

= ||xq − x∗||22 − 2αqgs(x
q)(xq − x∗) + (αq)2||gs(xq)||22

≤ ||xq − x∗||22 − 2αqgs(x
q)(f(xq)− f∗) + (αq)2||gs(xq)||22.

By following the proof of Theorem 3.3.1, x converges to the optimal solution x∗ without

projection. After projection using operator P , we notice that

||xq+1 − x∗||22 = ||P (zq+1)− x∗||22

≤ ||zq+1 − x∗||22. (4.20)

The inequality holds due to the fact that a smaller Euclidean distance to the optimal value

x∗ is obtained after projecting zq+1 from an infeasible region to a feasible region. If zq+1

locates in a feasible region, the operator P has no effect on zq+1, i.e. xq+1 = zq+1. Then the

equality holds for the second line. We conclude that projection P reduces the Euclidean

distance between next step state value xq+1 and the optimal one x∗, which proves the

convergence of the projected subgradient method. Linear convergence rate can be proved

by following the proofs in Section 3.3.2.
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3.5 Alternating Direction Method of Multipliers

3.5.1 Alternating Direction Method of Multipliers

ADMM combines the decomposability of dual subgradient method and the superior

convergence of the method of multiplier [Boyd et al. (2011)]. It provides a fast convergence

rate with modest accuracy. The problem in the following form can be solved by ADMM,

min.

k=K∑
k=1

fk(xk)

s.t.

k=K∑
k=1

Akjxk = bj , j = 1, ..., J. (5.21)

The objective in (5.21) is expressed by the summation of K sub-objectives. State vector

is partitioned into K subvectors where each of them is associated with a sub-objective, i.e.

fk(xk).
∑k=K

k=1 Akjxk = bj represents jth linear equality constraint and we have J of them

in total. The augmented Lagrangian is formulated as

La(x,µ) =
k=K∑
k=1

fk(xk) +

j=J∑
j=1

µTj (
k=K∑
k=1

Akjxk − bj)

+
ρ

2

j=J∑
j=1

||
k=K∑
k=1

Akjxk − bj ||22

=
k=K∑
k=1

[fk(xk) +

j=J∑
j=1

(µTj A
k
jxk +

ρ

2
hkj (xk))]−

j=J∑
j=1

µTj bj

=

k=K∑
k=1

Lk(xk,xS ,µ)−
j=J∑
j=1

µTj bj (5.22)

where µ = [µT1 , ...,µ
T
J ]T is the Lagrangian multiplier vector.

We let
∑k=K

k=1 hkj (xk) = ||
∑k=K

k=1 Akjxk− bj ||22 and assume xS is a subset of the collection

of the state vectors excluding xk. xS contains the local information associated with xk due

to the zero matrix for Ak
′
j , where k′ 6∈ {k, S}. xS and µ are numerical vector values in

the following iteration steps. For each subproblem, the x-minimization step updates xk as

follows

arg min
xk

Lk(xk,xS ,µ). (5.23)
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ADMM offers a effective way to approach to the optimal solutions in an iterative manner.

ADMM is similar to dual subgradient method excluding the additional quadratic term in

augmented Lagrangian (5.22). It consists of a sequential state updating at each iteration.

As the step size in dual subgradient method, we employ augmented Lagragian parameter

ρ to update dual variable µ and control the convergence speed and accuracy. ADMM for

solving problem (5.21) can be summerized as

Initialization: Solve each subproblem independently with µ = 0̄ and obtain the each optimal

state as the initial value x0
k.

while p ≤ pmax do

for k ← 1 to K do

xq+1
k = arg minxk

Lk(xk,x
q
S ,µ

q).

Update xqk = xq+1
k .

end

Update µ locally: µq+1
j = µqj + ρ(

∑k=K
k=1 Akjx

q+1
k − bj).

q = q + 1

end

Protocol 4 Solving 5.21 Using ADMM Iterations

3.5.2 Convergence Analysis

To verify the algorithm convergence, two assumptions are introduced. For problem

(5.21), we have the following assumptions regarding each sub-problem and unaugmented

Lagrangian [Boyd et al. (2011)].

Assumption 3.5.1. The objective functions fk(xk), k = 1, ...,K, are closed, proper, and

convex.

Assumption 3.5.1 implies that each sub-problem is solvable. The augmented Lagrangian

can be minimized by x-iteration step sequentially.
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Assumption 3.5.2. The unaugmented Lagrangian L has a saddle point, i.e. L(x∗1, ...,x
∗
K ,µ) ≤

L(x∗1, ...,x
∗
K ,µ

∗) ≤ L(x1, ...,xK ,µ
∗) holds ∀xk, k = 1, ...K and µ.

Assumption 3.5.2 indicates that the value of L on saddle point (x∗1, ...,x
∗
K ,µ

∗) is finite.

We can conclude that (x∗1, ...,x
∗
K) satisfies equality constraints in (5.21) and it is a solution

to (5.21). Moreover, the strong duality holds, which means the solution (x1∗, ...,xK∗) to

dual problem (5.22) are equal to primal problem (5.21). Define the primal residual as

rqj =
∑K

k=1A
k
jx

q
k − bj for each linear constraint. The convergence of primal residual has

been proved by Stephen Boyd in Boyd et al. (2011), i.e. rqj → 0 as q → ∞. Based

on Stephen Boyd’s paper, we extend the case to solving K subproblems and prove the

objective convergence in Appendix B.

3.6 Distributed Newton’s Method

Inspired by the rapid convergence of the Newton’s method in solving network utility

maximization problems [Dolev et al. (2009); Wei et al. (2010)], we propose a Newton-type

distributed optimization algorithm, aiming at increasing the rate of convergence.

3.6.1 Distributed Newton Method

For a network consensus problem defined as

min. f(x)

s.t. xi − xj = 0, i, j = 1, ...,K. (6.24)

where xk ∈ Rn and x ∈ Rn
′
, n′ = Kn. From a feasible starting point x0, the iterative

Newton approach for solving the constrained optimization problem is expressed as

xq+1 = xq + sq∆xq, (6.25)

where ∆xq and sq are the Newton direction and step size, respectively, at iteration step q.
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We incorporate consensus constraints to compact form of Cx = 0. The Newton direction

∆xq is obtained by solving the following linear function,∇2f(xq) CT

C 0


∆xq

wq

 = −

∇f(xq)

0

 , (6.26)

where∇2f(xq) and∇f(xq) are the Hessian matrix and the gradient of the objective function

evaluated at xq, respectively, and wq is the dual variable of the linear constraint. For

notation simplicity, we use ∇2f q = ∇2f(xq) and ∇f q = ∇f(xq) in the following text. From

(6.26), we get

∆xq = −(∇2f q)−1((∇f q) + CTwq) (6.27)

(C(∇2f q)−1CT )wq = −C(∇2f q)−1∇f q. (6.28)

wq can be solved by (6.28) through the decentralized method in Wei et al. (2010). Therefore,

we can find the estimates in a distributed manner. The major steps of obtaining wq is

described below and more details can be referred to Wei et al. (2010). We first split the

matrix C(∇2f q)−1CT as

C(∇2f q)−1CT = (Dq + B̄q) + (Bq − B̄q), (6.29)

where Dq is a diagonal matrix defined by Dq = diag(C(∇2f q)−1CT ), Bq = C(∇2f q)−1CT−

Dq, and B̄q is a diagonal matrix as well with diagonal entries defined as (B̄q)bb = Σm′
d=1B

q
bd,

b = 1, . . . ,m′.

In Eq.(6.28), wq ∈ Rm′ consists of dual variable element corresponding to each proper

link l connecting a pair of local agents for information exchanging. Let wl(0) be an arbitrary

initial value of dual variables at each link l and the sequence wl(t) is generated by the

following iterative manner

wl(t+ 1) =
1

(Dq)ll + (B̄q)ll
((B̂q)llwl(t)− Σi∈S(l)Πi(t)

+Σi∈S(l)(∇2f q)−1ii wl(t)− Σi∈S(l)[(∇2f q)−1]ii∇f qx(i)), (6.30)

where Πi(t) = (∇2f q)−1ii Σl∈E(i)wl(t), l ∈ E(i) denotes to one of the links connecting agent i

with the other agent, and agent i, i ∈ S(l) is one of the agents connected by link l.
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3.6.2 Convergence Analysis

The following discussion focuses on the convergence rate of the distributed estimation

approach using Newton method. The goal is to prove the quadratic convergence rate of

Newton method when applied in the constrained optimization problem. To obtain the

quadratic convergence of Newton method, required conditions are stated below.

Theorem 3.6.1. Consider exact Newton method characterized by Eq.(6.25). If the objective

function f(x) satisfies the following assumptions [Boyd and Vandenberghe ( 488)]:

1. The Hessian He(x) = ∇2f is Lipschitz continuous on Rn′ with constant Lc > 0, i.e.

‖ He(x)−He(y) ‖2≤ Lc ‖ x− y ‖2 ∀ x,y ∈ Rn
′
, (6.31)

2. The function f(x) is strictly convex with constant M , i.e.

‖ He(x)−1 ‖2≤M, (6.32)

3. At time k, the norm of gradient is bounded by η, i.e. ‖ gjk ‖2≤ η where 0 ≤ η ≤ 1
M2Lc

.

Then the Newton method has quadratic convergence rate, denoted as

f(xjk)− f
∗ ≤ 2

M3L2
c

2−2
j
. (6.33)

To proceed with the demonstration of quadratic convergence, it is necessary to verify the

existence of the above assumptions. The verification for the Lipschitz continuous Hessian

of f(x) is obvious since He expressed in objective of (6.24) is independent of xqk. Once

the 1-prediction primal state x−k is obtained, Hessian can be derived before implementing

the Newton method and remains constant during the entire Newton iteration. Therefore,

∃Lc > 0 such that

‖ He(x)−He(y) ‖2≡ 0 ≤ Lc ‖ x− y ‖2, (6.34)

where x,y ∈ Rn
′

and the equality holds when x = y. For the same reason, the 2-norm of

H−1e has an upper bound M which can be obtained from the largest eigenvalue of matrix
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(HT
e He)

−1, denoted as M ≥
√
λmax(HT

e He)−1. Based on the fact that inequality holds in

Eq.(6.34) even if Lc is sufficiently close to zero, Lc can be selected as a sufficiently positive

small value. Furthermore, to achieve fast convergence rate in Eq.(6.33), the smallest value of

M can be set as M =
√
λmax(HT

e He)−1. Thus 1
M2Lc

can be sufficiently large such that ∃ η

satisfying 0 < η ≤ 1
M2Lc

. This conclusion leads to ‖ gjk ‖2< η. Hence, we have theoretically

verified that the Newton method makes the convergence of primal solution faster than the

dual subgradient method when applying to the distributed estimation problem.

3.7 Conclusion

In this section, we introduce calculus-based distributed method for solving convex op-

timization problem. By Lagrangian relaxation, original constrained problems are reformu-

lated to be unconstrained problems. If both objective and constraint functions follow the

summation form, original problem can be divided into a set of subproblems by dual decom-

position. Four typical distributed methods are discussed. First, dual ascent/sub-gradient

method relies on gradient/sub-gradient computation. The primal solution converges to op-

timum with a linear convergence rate. Second, projected subgradient method can be imple-

mented directly in primal problem or dual problem, which leads to distributed computation

scheme in some cases. Third, ADMM combines the decomposability of dual sub-gradient

method and the superior convergence of method of multiplier. It is a simple but effective

method for problems whose objective is not strictly convex or taking value of +∞, e.g. a

linear objective. At last, Newton-type method relies on gradient and Hessian calculation.

It improves the convergence to a quadratic rate with additional Hessian requirement. How-

ever, this requires a twice differentiable objective function. In practice, there always be a

tradeoff between fast convergence (quadratic rate) with more information (state values, gra-

dient and Hessian) , and slow convergence (linear rate) with less information (state values

and gradient).
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CHAPTER 4. DISTRIBUTED OPTIMIZER DESIGN: DISTRIBUTED

STATE ESTIMATION BASED ON EXTENDED KALMAN FILTER

4.1 Problem Statement

The rotational and translational motion, including 3D position (x, y, z), attitude

(pitch, roll, yaw), linear velocity (vx, vy, vz) and angular velocity (ωx, ωy, ωz), can be es-

timated through EKF in an single agent system. The observations are a sequence of 2D

coordination on image plane provided by single sensor (camera). To improve the fault toler-

ance and estimation accuracy, we are required to implement a multi-sensor and multi-agent

system. It turns out a sensor network where each vertex represents a combination of sensor

and agent. The sensor-agent nodes can locally communicate with each other through wire-

less connection. The estimation results obtained from every agents are able to be consensus

under the condition of different sensors with different measurement accuracy. Solving for

such consensus optimization problem follows a distributed fashion and a recursive way.

4.2 Dual Quaternion, Kinematics and Dynamics

Dual quaternion is known due to the characteristics of compactness, geometrically mean-

ingful representation, and non-singularity. It also greatly improves the computational effi-

ciency in solving pose and position related estimation problems. Compared with alternative

representations for spatial transformations, dual quaternions based operations significantly

reduce computational complexity. For example, Euler angles based representations gener-

ates trigonometric entries and highly nonlinear terms in state transition and observation
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matrices when using EKF. It has been verified that unit dual quaternion has 33% reduc-

tion on multiply operations and 26% reduction on plus operations for composition of two

spatial transformation while using only 67% of storage resources compared to the matrix

transform [Funda and Paul (1990); Funda et al. (1990)], not to mention the extra cost of

computing trigonometric functions for elements in the rotational matrix of Euler angle rep-

resentation. Hence we adopt dual quaternions to represent a spatial rigid motion with six

degrees of freedom.

4.2.1 Quaternion

The classical quaternion definition is

q = (q0, ~q), (2.1)

where ~q ∈ R3 and q0 ∈ R are the vector part and scalar part of the quaternion, respectively.

In the following, we use notation H to represent the set of four-dimensional vector, i.e.

q ∈ H. A unit quaternion qu with 2-norm equivalent to one can be used to represent a

rotation of angle θ about a unit axis ~n in the form of

qr = (cos
θ

2
, ~n sin

θ

2
). (2.2)

4.2.2 Dual Quaternion

Dual quaternions, introduced by Clifford [Clifford (1873)], can present six-degrees-of-

freedom rigid transformations by unifying translation and rotation into a single-state frame.

Mathematically, a dual quaternion is defined as

q̂ = qr + qdε, (2.3)

where qr ∈ H denotes the real part, qd ∈ H denotes the dual part, and ε is the dual unit

with ε2 = 0 but ε 6= 0.
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A spatial transformation including both translations and rotations can be expressed as

follows,

qr =
(
cos θ2 , ~n sin θ

2

)
(2.4)

qd = 1
2qr ⊗ tb,

where tb = (0,~tb) ∈ H is a quaternion composed of the position vector ~tb ∈ R3 expressed in

the body frame and a zero scalar part and ‘⊗’ represents the quaternion multiplication.

4.2.3 Dual Quaternion Kinematics

We can find the kinematics of a spatial transformation in terms of dual quaternions,

given as [Goddard and Abidi (1998)]

q̇r =
1

2
qr ⊗ ωb, (2.5)

where ωb = (0, ~ωb) ∈ H and ~ωb = [ωx, ωy, ωz]
T ∈ R3 is angular velocity of the rotating body

evaluated in the body frame. Based on the above derivation of q̇r and expression of qd in

Eq. (2.4), we then find the derivative of the dual part qd, expressed as

q̇d =
1

2
q̇r ⊗ tb +

1

2
qr ⊗ ṫb

=
1

4
qr ⊗ ωb ⊗ tb +

1

2
qr ⊗ ṫb

=
1

2
qr ⊗

(
1

2
ωb ⊗ tb

)
+

1

2
qr ⊗ ṫb

=
1

2
qr ⊗


 0

~ωb × ~tb

+
1

2
tb ⊗ ωb

+
1

2
qr ⊗ ṫb

=
1

2
qr ⊗


 0

~̇tb + ~ωb × ~tb

+
1

2
tb ⊗ ωb


=

1

2
qr ⊗ vb +

1

4
qr ⊗ tb ⊗ ωb (2.6)
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In above expressions, vb =

 0

~̇tb + ~ωb × ~tb

 = (0, ~vb) ∈ H is a quaternion composed of

the velocity vector ~vb = [vx, vy, vz]
T ∈ R3 in the body frame and a zero scalar part. The

forth equality in (2.6) is obtained via the definition of quaternion multiplication,

1

2
ωb ⊗ tb =

 −1
2~ωb · ~tb

1
2~ωb × ~tb


=

 −1
2~ωb · ~tb

~ωb × ~tb + 1
2
~tb × ~ωb


=

 0

~ωb × ~tb

+

 −1
2~ωb · ~tb

1
2
~tb × ~ωb


=

 0

~ωb × ~tb

+
1

2
tb ⊗ ωb. (2.7)

By replacing term 1
2ωb ⊗ tb in the third equality of (2.6) with the result of (2.7), it leads

to the forth equality in (2.6).

4.2.4 Rigid Body Dynamics

The translational and rotational motion of a fully actuated rigid body can be described

by the change rate of linear and angular momentum [Stengel ( 164)] in the form of

~F =

[
d

dt
(m~v)

]
B

= m · ~vb + ~ωb ×m~vb (2.8)

~T =

[
d

dt
(J~ω)

]
B

= J~̇ωb + ~ωb × J~ωb, (2.9)

where [d(·)/dt]B denotes the time derivative in the body frame, m ∈ R is the mass of the

rigid body, J ∈ R3×3 is the inertia tensor. F and T represent the net force and torque,

respectively. As we all known that for a general three-dimensional body, it is always possible

to find three mutually orthogonal axis, i.e. the principal axis for which the products of

inertia are zero. Without losing generality, inertia tensor J therefore can be represented
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as a diagonal matrix with the moment of inertia as J = diag [ Jxx, Jyy, Jzz ]. To further

simplify the estimation process, the three principal axis fixed with rigid body is considered

as the body frame.

4.3 Position Tracking and State Estimation Based on EKF in

Single-Agent System

4.3.1 Introduction to Extended Kalman Filter

Consider a continuous nonlinear system with system dynamics ẋ = f(x)+w and an ob-

servation function z = h(x)+v, where x ∈ Rn are the states, z ∈ Rm are the measurements,

w ∈ Rn is system noise with zero mean Gaussian sequence and covariance Q ∈ Rn×n, and

v ∈ Rm is measurement noise with zero mean Gaussian sequence and covariance R ∈ Rm×m.

By discretizing and linearization, we can find the corresponding discrete linear system

xt+1 = F txt + wt, (3.10)

where F t = ∂f(x)
∂x |x=x̂t∈ Rn×n which is a state transition matrix at time interval t can be

calculated by taking the partial derivative about the estimate x̂t. The discrete observation

model is

zt = Hkx
t + vt, (3.11)

where Ht = ∂h(x)
∂x |x=xt−∈ Rm×n is an observation matrix obtained by taking partial deriva-

tive about 1-step prediction xt− prior to the input of observations. Different from standard

Kalman filer which has constant state and observation matrices, the state and observation

matrices in EKF are updated at each time interval t.

The EKF algorithm for the system described by Eqs.(3.10) and (3.11) finds the maximum-

likelihood estimations x̂k by minimizing the following least-square objective function [Bryson

(1975)],

f(xt) =
1

2
[(xt − xt−)T (P t−)−1(xt − xt−) + (zt − h(xt))TR−1(zt − h(xt)], (3.12)
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where P t− = E[(xt − xt−)(xt − xt−)T ] is the error covariance prior to incorporating the

measurement at time t into the estimation. Given all the information up to time t in terms

of the prediction state xt− and the measurement zt, the optimal solution of Eq. (3.12)

provides a recursive estimation x̂t as following,

x̂t = xt− +K(zt − h(xt−)), (3.13)

with Kalman gain expressed as K = P tHtR−1. P t in the Kalman gain expression is the

covariance matrix of the error vector xt − x̂t , thus

P t = E[(x− x̂t)(x− x̂t)T ]

= ((P t−)−1 +HtTR−1Ht)−1, (3.14)

where P t− = F t−1P t−1F t−1T +Q.

The key elements before applying EKF are to construct the state transition and obser-

vation models. State transition model derived from dual kinematics indicates the evolution

from current to future states. Observation model using single image sensor can be con-

structed through the relationship between two relative frames, the object frame and the

camera frame. Before introducing these models, we first select the following states to rep-

resent the spatial rigid motion of a concerned object. They are

x = [qr
T qd

T ωb
T vb

T ]T . (3.15)
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4.3.2 State Transition Model Based on Dual Kinematics

By discretizing the dual kinematics expressed in Eqs. (2.5) - (2.9) with sampling time

τ using forward Euler method, the state transition model associated with each element of

x becomes [Olsson et al. (2003)]

qr
t+1 = qr

t + τ
2qr

t ⊗ ωbt

qd
t+1 = qd

t + τ
2qr

t ⊗ vb
t + τ

4qr
t ⊗ tb

t ⊗ ωbt.

ωb
t+1 = ωb

t + τ(−Ωωωb
t +

 0

J−1 ~T t

)

vb
t+1 = vb

t + τ(−Ωvvb
t + 1

m

 0

~F t

) (3.16)

By expanding the quaternion multiplication, we find the following relationship,

qr ⊗ ωb = Sωb

qr ⊗ vb = Svb, (3.17)

qr ⊗ tb ⊗ ωb = SMωb

where S=

q0 −~qT

~q q0I +K(~q)

, M=

0 −~tTb
~tb K(~tb)

, the skew-symmetric matrix is defined as

K(~y)=


0 −y3 y2

y3 0 −y1

−y2 y1 0

. Furthermore, Ωv =

 0 01×3

03×1 K(ωb)

 and

Ωω =



0 0 0 0

0 1
Jzz−Jyy
Jxx

ωz 0

0 0 1 Jxx−Jzz
Jxx

ωx

0
Jyy−Jxx
Jzz

ωy 0 1


.
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Assuming the net force and torque are known, based on the relationship developed in

above, the state transition model can be written as compact form as follows.

xt+1 =



I4×4 04×4
τ
2S 04×4

04×4 I4×4
τ
4SM

τ
2S

04×4 04×4 I4×4 − τΩω 04×4

04×4 04×4 04×4 I4×4 − τΩv


k

xt +



09×1

(J−1 ~T )3×1

0

1
m
~F3×1


. (3.18)

4.3.3 Observation Model

The measurement instruments used here to estimate the spatial rigid motion of con-

cerned object are image sensors/cameras. A set of feature points of the object will be

identified before observing process. By recording the images of the feature points in the

camera frame, we aim at estimating both translational and rotational motion of concerned

object. Before we setup the observation model, we first find out the relationship between

the object frame and the camera frame. Figure 4.1 demonstrates the coordinates of one

feature point in body frame (xo, yo, zo) and camera frame (xc, yc, zc). The measurements of

the object are obtained by observing its projection on the image plane, denoted as (xi, yi).

 

Figure 4.1 Observation of feature point in two reference frames.
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By dual multiplication, a dual quaternion transformation between two frames is repre-

sented by

p̂c = q̂⊗̂p̂o⊗̂q̂∗, (3.19)

where p̂c = qI + (xci + ycj + zck)ε and p̂o = qI + (xoi + yoj + zok)ε denote the dual

representation of the feature point in camera frame and object frame, respectively, with

qI = (1, 0i, 0j, 0k) ∈ H. q̂∗ represents the conjugate of dual quaternion q̂. Notation ‘⊗̂’

refers to dual quaternion multiplication. The transformation process can be decomposed

into two parts, pure translation and pure rotation. Under this assumption, Eq. (3.19) can

be rewritten as

p̂c = qI + (qr ⊗ po
d ⊗ q∗r + tc)ε, (3.20)

where tc denotes translational motion of target in camera frame and po
d = (0, xoi, yoj, zok) ∈

H represents the position quaternion in object frame. From the above expression, we can

find the dual part of p̂c, which indicates the position of the feature point in camera frame,

and rewrite it as

pc
d = qr ⊗ po

d ⊗ q∗r + 2qd ⊗ q∗r, (3.21)

where pc
d = (0, xci, ycj, zck) ∈ H represents the position quaternion in camera frame. The

first term in the right side of Eq. (3.21) describes the rotation of the feature point and the

second term indicates its translation. Corresponding projection of the feature point on 2-D

image plane are obtained by [Wang and Wilson (1992)]

xi = Fcxc

Pxzc

yi = Fcyc

Pyzc
, (3.22)

where Fc is the focal length of image sensor, Px and Py are inter-pixel spacing along x and

y axis on the image plane.

Another way to get the relationship between camera frame and object frame is using

homogeneous transformation matrix based on Euler angle representation. However, it may

inevitably cause singularity due to implementation of rotation matrix. If that is the case,
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the columns in homogeneous transformation matrix would be linear dependent, i.e. there

may exists a feature point on the surface of the object excluding the one coincident with the

origin in camera frame, being projected to the origin of the camera frame. It is obviously

a incorrect coordinate transformation and will make Eq. (3.22) become 0
0 which is invalid

for solving image coordinate (xi, yi). Fortunately, dual quaternion avoids the occurrence

of matrix singularity by using a compact form in Eq. (3.19) that successfully prevents the

possible incorrect coordinate transformation.

As shown in Eqs. (3.20)-(3.22), the coordinates on image plane is derived with respect

to the dual quaternion related state. Correspondingly, the true coordinates of feature point

on image plan are captured by digital cameras, which are handled as the measurement,

denoted as z. In order to more precisely estimate the spatial rigid motion of the concerned

object, we track the projection of three feature points on the image plane. In addition,

we put unit constraint on the real part of dual quaternion such that qr
Tqr = 1, as well

as orthogonal constraint, qr
Tqd = 0. Under these assumptions, the components in the

measurements are composed of

z =

[
xi1 yi1 xi2 yi2 xi3 yi3 qr

Tqd qr
Tqr

]T
. (3.23)

According to findings in Eq. (3.22), the measurements are functions of states x, labeled

as h(x). We then can find the discrete observation matrix Ht in Eq. (3.11) according to

Ht = ∂h(x)
∂x |x=xt− .

By now, we have obtained the state transition and observation models for estimation of

spatial rigid motion using a single image sensor. By applying the above described EKF al-

gorithm, we can process the observation data based on the developed models. However, due

to limited field-of-view of single sensor, the tracking data of feature points may not be avail-

able during the observation procedure. Therefore, a multi-sensor observation framework is

developed to improve the estimation performance.
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4.4 Position Tracking and State Estimation Based on EKF in

Multi-Agent System

4.4.1 Multi-Sensor Multi-Agent Networks and Problem Formulation

As we discussed in the introduction section, the disadvantage of using single image

sensor is that when the feature points move of out the view zone, the measurement data

will not be available. The limitation of single image sensor will significantly impacts the

estimation accuracy. Therefore, we propose a multi-sensor network to track the object’s

spatial motion from different sensors simultaneously.

In a connected sensor network as shown in Fig. 4.2, we assume each sensor can communi-

cate with its neighbors. There is no central processor and the network is not fully connected.

However, as long as there is connection which is defined by the entries of the adjacency ma-

trix A between any two nodes in the network, the two connected sensors can communicate

with each other. Furthermore, they are able to spread the information among the connected

network finally. In such system, the information filter or some other data fusion algorithm

that requires fully connected network cannot be applied in partially connected system. In

addition, the fully connected network requires large data communication and storage which

may bring difficulty for implementation with the increase of data numbers. Furthermore,

without consensus constraints, there is no limitation to converge the final result to the av-

erage consensus. For a network system with N sensors described in Fig. 4.2, adjacency

matrix A which is a symmetric matrix with zero diagonal entries indicates the neighbors

for sensor i by the off diagonal entries Ai,j , i, j = 1, . . . , N, i 6= j. If Ai,j = 1, then agent

i can communicate with agent j. It is expected that the estimates obtained from agent i,

x̂i, to be identical to x̂j as well as the other estimates from the connected neighbors. By

passing the identity request from one node to the other in the network, we can transfer

the consensus request in the system. With the neighborhood consensus constraints on the
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Figure 4.2 Communication and framework of a multi-sensor multi-agent network (Agent

is embedded with sensor.)

estimates, we have the following relationships:

ai,jx̂i − ai,jx̂j = 0, i = 1, . . . , N, i > j, (4.24)

where ai,j denotes the element Ai,j in matrix A. If there is a connection between agent i

and j, the consensus condition expressed in Eq. (4.24) will have x̂i = x̂j , otherwise such

consensus constraint between node i and j does not exist. Since matrix A is symmetric,

we will have ai,j = aj,i. As summary, the multi-sensor network estimation problem with

consensus constraints at time step k is formulated as

min. ΣN
i=1(x

t
i − xt−i )T (P t−i )−1(xti − xt−i ) + (zti − hi(xti))TR−1(zti − hi(xtk))

s.t. ai,jx
t
i − ai,jxtj = 0, i = 1, . . . , N, i > j, (4.25)

where xti denotes the state vector in (3.15) estimated from agent i at time instance t and

N is the number of sensors in the connected network.
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4.4.2 Solving with Dual Decomposition and Subgradient Method

Based on Eq.(4.25), we introduce Lagrangian multipliers λ for the additional equality

constraints in EKF objective function so that it becomes

L = ΣN
i=1[(x

t
i − xt−i )T (P t−i )−1(xti − xt−i )

+(zti − hi(xti))TR−1(zti − hi(xti)) +
i∑

j=1

λTi,j(ai,jx
t
i − ai,jxtj)]. (4.26)

Obviously, the above Lagrangian consists of N subproblems and can be solved by

Li = min
xt
i

[(xti − xt−i )T (P ti )
−1(xti − xt−i )

+(zti − hi(xti))TR−1i (zti − hi(xti))

+(

i−1∑
j=1

λTi,jai,j −
N∑

j=i+1

λTj,iaj,i)x
t
i], i = 2, . . . , N − 1. (4.27)

together with

L1 = min
xt
1

[(xt1 − xt−1 )T (P t1))−1(xt1 − xt−1 )

+(zt1 − h1(xt1))TR−11 (zt1 − hk(xt1))

−
N∑

j=i+1

λTj,iaj,ix
t
1], (4.28)

and

LN = min
xt
N

[(xtN − xt−N )T (P tN )−1(xtN − xt−N )

+(ztN − hN (xtN ))TR−1N (ztN − hN (xtN ))

+
i−1∑
j=1

λTi,jai,jx
t
N ]. (4.29)

These subproblems are independent with each other and they can be solved individually.

Therefore, we pay more attention on each Lagrangian subfunctions instead of the summation

problem.
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Consider Ht
i = ∂hi(xi)

∂xi
|xi=xt−

i
and use the first order optimality condition to determine

x̂ti. We take the derivative of Li with respect to xti to give

dLi
dxti

= (P ti )
−1(xti − xt−i )− (Ht

i ))
TR−1i (zti − hi(xt−i ))

+

i−1∑
j=1

λi,jai,j −
N∑

j=i+1

λj,iaj,i, i = 1, . . . , N. (4.30)

Lagrangian function will achieve the minimum value if Eq. (4.30) is zero. Hence, we get

the updated function of x̂ti at time interval k in the form of

x̂ti = x̂t−i + P tiH
tT
i (Rti)

−1(zti − hi(x̂t−i ))− P ti (
i−1∑
j=1

λi,jai,j −
N∑

j=i+1

λj,iaj,i). (4.31)

In the above equation P tiH
tT
i (Rti)

−1 = Kt
i is the Kalman gain for agent i which is similar

to the Kalman gain update in EKF algorithm. The only difference between them is the

last additional term. The extra term can be handled as adjustment of estimates to satisfy

consensus constraints. By using subgradient method, Lagrangian multipliers are updated

by

λq+1
i,j = λqi,j + αqai,j(x̂

t
i − x̂tj), i = 1, . . . , N, j = 1, . . . , i− 1, (4.32)

where αq is the step size to control the speed of the adjustment at qth iteration. In this

estimation problem, the step size is set as αq = r(β)q, where r ∈ R and β ∈ (0, 1] are given

constants.

However, since Euler angle representation needs triangular function which is well known

to be a periodic function, the inverse of that may cause relatively large estimation error

under the fast rotation condition. Although Eq. (4.32) still works well due to the unvary-

ing difference of two estimates x̂ti − x̂ti, the estimates calculated by Eq. (4.31) converge

to consensus, but with relatively large estimation error due to the large bias of one step

estimation x−i . While the state estimation using quaternion representation can be obtained

directly without any periodic function or inverse operation.
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4.4.3 Solving with Distributed Newton Method

The above consensus based distributed estimation approach using dual subgradient

method requires iterative coordination between networked sensors. For each iteration, the

individual sensor must process the new estimates with the updated coordination variables

using EKF. Even though the dual quaternion based models simplified the representation

of spatial rigid motion, at least eight dual elements are included in the estimates for every

iteration, so this process is time and resource consuming. It is imperative to develop a

faster convergent distributed estimation algorithm that will lead to minimum estimation

error with less iterative coordination. Inspired by the rapid convergence of the Newton’s

method in solving network utility maximization problems [Dolev et al. (2009); Wei et al.

(2010)], we propose a Newton-type distributed estimation algorithm, aiming at increasing

the rate of convergence.

Since the objective function is decomposable in terms of xi, Eq.(6.27) and (6.28) can be

expressed locally as

∆xqi = −(∇2f qi )−1((∇f qi ) + CTi w
q
i ) (4.33)

(Ci(∇2f qi )−1CTi )wq
i = −Ci(∇2f qi )−1∇f qi . (4.34)

The diagonal block matrices in Hessian can be calculated individually at iteration q, de-

noted as ∇2f qi = ∂2fi
∂x2

i
|xi=xq

i
. The estimation problem with consensus constraints formulated

in (4.25) can be handled as one of the general constrained optimization problems. We use

∇f qx(i) and ∇2f qx(i) to represent the elements in the gradient vector and Hessian correspond-

ing to x(i) at iteration q. The Hessian and gradient of the objective function are stated as

following,

∇f qi = (P−i )−1(xqi − xq−i )−Hk(i)
TR−1(zi − hi(xqi )) (4.35)

∇2f qi = (P−i )−1 +HT
i R
−1
i Hi, (4.36)

where xqi denotes state vector in (3.15) estimated from agent i at iteration q and time

interval t. For notation simplification, we ignore the time index t in superscript of above
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expressions. After calculating ∇f qi and ∇2f qi and substituting them in (4.36) and (4.35),

ωi and local Newton direction ∆i can be updated by (4.33) and (4.34)

4.5 Simulation and Discussion

Two simulation scenarios are provided in this section, one is general motion tracking

without considering dynamics and the other one is aircraft motion tracking with integrated

dynamics model. In both cases, estimates from distributed Newton method is demonstrated

and compared with those obtained from dual subgradient and individual sensors.

4.5.1 A General Motion Estimation Case

Figure 4.3 demonstrates the layout of image sensors and trajectories of the tracking

points on the moving object. To make it simple, we use two image sensors which can

communicate with each other. Sensor 1 is set 10 meters directly below the object initial

position. Sensor 2 is set at the left hand side of the object initial position with 10 meters

shifting along −yo axis and a rotation of 90o with respect to −xo axis. Three points on

surface of the object are selected as feature points. They are located on the axis of object

frame and are one meter away from the origin. The object is moving along positive xo

axis with constant linear velocity vx = 1m/s. Simultaneously, it is rotating around axis x0

with a constant angular velocity ωx = 2π rad/s. Table 5.2 shows relative parameters of the

observing model. The measurement noise considered when observing the projections in the

image plane is Gaussian white noise with 0.06 pixel2 variance.

Table 4.1 Parameter Settings

Pixel spacing along x, Px 2× 10−5m/pixel

Pixel spacing along y, Py 2× 10−5m/pixel

Sample period, T 0.02 s

Focal length, Fc 0.02m

Measurement noise variance 0.06 pixel2
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Sensor 1

Sensor 2

 Figure 4.3 Demonstration of sensor locations and object movement.

There are two important parameters involved in EKF, process noise covariance matrix

Q and measurement noise covariance matrix R. In our model, the object in the simulation

has constant linear and angular velocity. It is expected that there is no dramatic change

in the system states. Therefore, it is reasonable to use a constant matrix Q, which will not

significantly affect the tracking accuracy. In the simulation, Q is set as a diagonal matrix.

The diagonal elements corresponding to dual quaternion states in Q are set as 0.01. The

elements related to angular and linear velocity are set as 0.1. Another parameter is the

measurement noise covariance matrix R. Since we consider white noise in the observation

model, R is assumed to be a diagonal matrix with 0.06 in diagonal elements, as shown in

Table 5.2.

Before we proceed with EKF, two parameters, the initial states and the covariance

matrix of the estimation error, need to be initialized at the beginning. To demonstrate

the effectiveness of the proposed distributed estimation algorithm, offsets are added to real

initial states. For example, the elements in initial position vector have offset of ±0.1 meters,

the elements in linear and angular velocity vectors have offset of −1 and −2π, respectively.

Correspondingly, we set up the initial covariance matrix of the estimation error, P−0 , as a
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diagonal matrix according to the definition, P−0 = E[(x0−x−0 )(x0−x−0 )T ]. It is expected that

even with the large offsets of initial states, the proposed distributed estimation algorithm

can eventually converge to the real states.

Based on the above simulation scenario, three simulation examples are given below. The

first implements EKF to estimate the time history of dual quaternions, angular and linear

velocities using individual image sensors, where no cooperation is considered between the

sensors. The second uses dual subgradient-based distributed estimation algorithm where co-

operation between the connected two sensors are considered. The third applies the proposed

Newton-type distributed estimation algorithm.

Simulation results using Newton-type distributed method to estimate the spatial motion

are given below. The estimates of dual quaternion elements are provided in Figs.4.4 and

4.5. The estimates of angular velocity and translational velocity are provided in Figs.4.6

and 4.7, respectively. In addition, Fig.4.8 demonstreates the magnified part of ωx obtained

from three methods to verify that the estimates from the Newton-type distributed method

converge to the real values much faster than results from individual sensors or from the

dual subgradient method. The individual sensor will yield different estimates. By using

dual subgradient method, the estimates obtained from two sensors will eventually converge

to consensus. However, the estimation accuracy will be affected by the single sensor which

generates low precision estimates. Consequently, it takes much longer time to converge to

consensus when compared to the Newton-type distributed method.

To save space, the estimation plots from individual sensors and dual subgradient method

are not provided here. Instead, we provide the comparison of average mean square error

(MSE) from individual sensors, dual subgradient, and Newton methods in Table II. It

demonstrates a reduced MSE in pose and position estimation using Newton-type method

when compared with a single EKF or dual subgradient method. Especially for the linear

velocity along y direction, estimation accuracy from Newton-type method is much higher

than other methods. Meanwhile, Newton-type method provides two strictly identical esti-
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mates, which satisfies the exact consensus constraints. Therefore, even though the position

or velocity of the tracked object is unknown, the Newton-type distributed algorithm pro-

vides a reliable estimation under the condition where there are different type of sensors with

different level of accuracy. Moreover, when increasing the number of sensors, the reliability

of the estimates given by distributed Newton method will be enhanced.
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Figure 4.4 Comparison of real (red) and estimated (blue) real part elements of dual quater-

nions from cooperative sensors based on Newton-type distributed algorithm.

4.5.2 Controlled General Rigid Body Motion Estimation Case

Based on the improved performance of Newton-type distributed method in general mo-

tion estimation as verified above. It is now implemented in motion estimation of a general

3-D rigid body. Sensor network is demonstrated in Fig.4.9 where eight cameras are installed

to cover the whole observation region which is demonstrated as the cuboid formed by line

segments connecting neighbor sensors. In additional to the parameters listed in Table 5.2,

the angle of view for each cameras is 94o. Furthermore, the minimum pixel number for a

point to be observed on image plane is 4, i.e. the feature point on object surface is measured
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Figure 4.5 Comparison of real (red) and estimated (blue) trajectory of motion from coop-

erative sensors based on Newton-type distributed algorithm.

0 5 10 15 20 25 30 35 40
0

5

ω x[r
ad

/s
]

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

ω y[r
ad

/s
]

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

Time[sec]

ω z[r
ad

/s
]

Figure 4.6 Comparison of real (red) and estimated (blue) angular velocity from coopera-

tive sensors based on Newton-type distributed algorithm.
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Figure 4.7 Comparison of real (red) and estimated (blue) translational velocity from co-

operative sensors based on Newton-type distributed algorithm.
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Figure 4.8 The magnified part of ωx from three estimation methods.
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Table 4.2 Comparison of MSE from two individual sensors (EKF), Dual Subgradient (DS)

and Newton-Type (Newton) methods.

State MSE MSE MSE MSE MSE

Variables (Sensor1 EKF) (Sensor2 EKF) (Sensor1 DS) (Sensor2 DS) (Newton)

qr0 2.66× 10−6 2.69× 10−6 2.46× 10−6 2.64× 10−6 1.04× 10−6

qr1 3.77× 10−6 3.26× 10−6 5.44× 10−6 3.20× 10−6 1.14× 10−6

qr2 2.25× 10−6 1.49× 10−6 1.92× 10−6 1.47× 10−6 0.48× 10−6

qr3 1.48× 10−6 1.58× 10−6 1.45× 10−6 1.57× 10−6 0.52× 10−6

x 4.78× 10−3 5.15× 10−3 4.51× 10−3 5.02× 10−3 3.64× 10−3

y 4.71× 10−5 1.23× 10−3 4.63× 10−5 1.21× 10−3 2.02× 10−5

z 2.16× 10−3 1.57× 10−3 4.47× 10−3 1.53× 10−3 1.20× 10−3

ωx 0.0813 0.2102 0.2119 0.1860 0.0524

ωy 0.0032 0.0028 0.0024 0.0024 0.0021

ωz 0.0021 0.0172 0.0107 0.0116 0.0021

vx 0.0212 0.0132 0.0019 0.0028 0.0019

vy 0.0281 4.2697 3.5221 3.5024 0.0025

vz 0.0059 0.0157 0.0062 0.0064 0.0035

within a distance, which can be calculated through pinhole projection formula associated

with the size of feature point. Knowing that feature point is a colored circle with diameter

of 0.1m, then the maximum measured distance from feature point to the image plane is

16.686m.

Table 4.3 shows the initial and final position, orientation and velocity information of

the rigid body, as well as the relative transformation of each camera with respect to camera

1, whose camera frame is handled as the reference frame coincidence with inertial frame.

We assume each camera is fixed during the entire observation interval. Moreover, the rigid

body is maneuvered to reach the final position and attitude from the specified initial states.

To guarantee that the maneuver control is accomplished within several seconds, we applied

PID control law and adjust parameters to reduce the time required for the rigid body to

achieve stable states. Figure 4.9 illustrates an observation region defined by a multi-sensor

network. As the controlled rigid body moves in the observation region, partial of the cameras
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may not able to observe all feature points on the surface of the target due to field-of-view

constraints, which leads to a time-varying network topology illustrated in Fig. 4.10. The

varying topology at different time interval is also shown in Fig. 4.10. When any camera,

indexed by a number 1-8, cannot observe all future points, it is assumed to be disconnected

from the network since it is not providing measurements at the moment. The remaining

available cameras automatically form a circular pattern using wireless connection between

two adjacent vertices, denoted as dash links in Fig. 4.10.

By using the distributed Newton-type method, estimation results in terms of the posi-

tion, orientation, and velocity of the rigid body in the body frame are shown in Figs.4.11-

4.14. Red curve indicates the real value and black curve indicates the estimated results

from sensor 1/2.

Table 4.3 Layout of the UAV and Camera 2 w.r.t Camera 1

Position Coordinate/m Attitude (real part)

Initial Rigid Body [12 7 15] [0.4286 0.7047 − 0.3618 0.4345]

Final Rigid Body [0 0 0] [1 0 0 0]

Camera 2 [0 0 16] [0.5 0.5 0 0]

Camera 3 [10 0 0] [0 0 0 0]

Camera 4 [10 0 16] [0.5 0.5 0 0]

Camera 5 [0 10 0] [0 0 0 0]

Camera 6 [0 10 16] [0.5 0.5 0 0]

Camera 7 [10 10 0] [0 0 0 0]

Camera 8 [10 10 16] [0.5 0.5 0 0]

Table 4.4 A general 3-D rigid body Motion Esimation MSE

state x y z

Trajectory 0.0002 0.0036 0.0002

Angular Velocity 0.0015 0.0014 0.0010

Translational Velocity 0.0468 0.0636 0.0476
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Figure 4.9 A general 3-D rigid body motion estimation layout
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Figure 4.11 A general 3-D rigid body real (red) and estimated (black) real part elements of

dual quaternions from cooperative sensors based on Newton-type distributed

algorithm.
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Figure 4.12 A general 3-D rigid body real (red) and estimated (black) trajectory of motion

from cooperative sensors based on Newton-type distributed algorithm.
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Figure 4.13 A general 3-D rigid body real (red) and estimated (black) angular velocity

from cooperative sensors based on Newton-type distributed algorithm.
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Figure 4.14 A general 3-D rigid body real (red) and estimated (black) translational velocity

from cooperative sensors based on Newton-type distributed algorithm.
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4.6 Conclusion

We models spatial rigid motion using dual quaternions. Based on this model, extended

Kalman Filter is implemented to estimate spatial motion in real-time. In particular, we

track the projection of object feature points on image plane and use the two dimensional

tracking data to estimate the motion with six-degree-of-freedom. To avoid the impact of

the limitation of single sensor and improve the system fault tolerance, dual subgradient dis-

tributed estimation algorithm is proposed based on multi-sensor multi-agent network. Due

to the low convergence rate and the low precision of estimation, a new distributed estimation

approach based on distributed Newton method is proposed. The improved computational

efficiency and estimation performance using the integrated dual quaternion modeling and

distributed estimation framework is verified by simulation examples.
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CHAPTER 5. DISTRIBUTED OPTIMIZER DESIGN: DISTRIBUTED

PATH PLANNING FOR BUILDING EVACUATION GUIDANCE

5.1 Problem Statement

In-building evacuation requires evacuees to be guided to the available exits with the min-

imum time spent when hazard happens. We group evacuees in terms of their locations and

assume there is one leader in each group. Each leader has a smart phone or personal digital

assistant (PDA) that can communicate with neighboring evacuees within certain distance

to form a evacuation group, locate position, and retrieve hazard spreading information from

all sensors. The problem is for each group to design individual evacuation path by using

the PDA owned by the leader. And the final decision will be shared among group members

at the same location. The optimal path planning is supposed to be the shortest/evacuation

time minimized. Meanwhile, by following the optimal evacuation path, each group is able

to successfully avoid the possible congestion and hazard happened in corridor or the area

close to the exit.

5.2 Building Evacuation and Hazard Spreading Model

Before constructing the evacuation and hazard spreading models, assumptions associ-

ated with the sensor layout, number of evacuees, social behaviors, and edge cost are stated

first.

Assumption 5.2.1. At least one sensor used for detecting potential hazard, such as fire or

explosion, is installed in each room of the object building. Same type of sensors are installed
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in the corridor with an equivalent distance interval. All of them can report the occurrence

of hazard and predict the hazard arriving time. There are communication devices in each

corridor and exit, which are responsible for communicating and coordinating with distributed

computation nodes.

Assumption 5.2.2. Evacuees are randomly scattered in the building. There are capacity

constraints for each corridor and exit.

Assumption 5.2.3. Individual behavior is affected by group members [Crano (2000)]. For

example, people prefer to follow others rather than find alternative routes during emergent

evacuation if they are not familiar with the building layout.

Assumption 5.2.4. Once a hazard area is detected, there is a delay before all of the edges

involved with the corresponding hazard area become unavailable. After the delay period, the

cost of unavailable edges will be assigned by an infinite number.

The evacuation graph includes essential information, such as graph topology, edge cost,

and hazard spreading consequence along all edges. According to assumption 5.2.1, two

neighboring sensors are directly connected if there is a door between them or they are

adjacent in the corridor. The sensors represent vertices in a evacuation graph and an edge

exists between two connected sensors. Edge cost in the evacuation graph is evaluated by

the time consumption for evacuees to traverse the relative edge. The initial edge cost

is predetermined from off-line investigation and experiment according to the edge length,

individual group size, and moving speed. A simple example of the evacuation graph is

shown in Fig. 5.1.

The hazard spreading model estimates the time required for a hazard area spreading

from one sensor to its neighboring ones. Even though there is a barrier, like a wall between

two sensors, the hazard, such as fire, can propagate through them after a relatively long

duration. Hence, different from the evacuation graph which assumes no connections when

blocked by barriers, the hazard spreading graph includes more edges. The relative edge cost
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Figure 5.1 An example of evacuation graph

is computed by simulating virtual fire or smoke spreading models to evaluate hazard effect on

evacuees [Gorbett et al. (2008)]. Additional parameters, such as lining materials, structural

dimensions, ventilation and etc., are required in the simulation. The corresponding hazard

spreading graph for the scenario depicted in Fig. 5.1 is demonstrated in Fig. 5.2.

The evacuation and hazard spreading graphs can be represented by weighted adjacency

matrices, denoted as Ai(t) for evacuee group i and AH(t) for hazard spreading, respectively.

Both of them are symmetric matrices with zero diagonal entries and non-zero off diagonal

entries, denoted as Aiu,v(t) and AHu,v(t), u, v = 1, . . . , N, u 6= v, where u and v are graph

vertices, (u, v) ∈ G denotes the edge connecting vertices u and v, and G represent the graph.

If there is no available edge between vertices u and v at time instant t, Aiu,v(t), A
H
u,v(t)→∞.

Time consuming of hazard spreading from one spot to another is predicted through simula-

tion model, such as FSSIM [Floyd et al. (2005)], FDS [Gawad and Ghulman (2015)] and so

on. Specifically, based on computational fluid dynamics technique, fire and smoke spreading

dynamics are pre-determined once the building layout and structure is known. Therefore,

without lose of generality, hazard spreading matrix remains constant, i.e. AH(t) = AH .
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Figure 5.2 An example of hazard spreading graph

However, when a great number of evacuees trying to reach the safe region through the same

path simultaneously, congestion along certain edges will slow down the moving speed of the

evacuee flow and consequently increases the corresponding edge cost. Ai(t) is time-varying

due to the dynamic hazard effect and capacity constraints. According to the dimension of

the object building, two parameters are considered. One is the threshold of evacuee number,

nl, before it causes increment of the edge cost and the other one is the edge capacity nc

that reduces moving speed to shuffling status without allowing cross or reverse movement.

When considering the congestion effect and hazard spreading, edge cost is determined by

the number of evacuees, denoted by nu,v(t), along edge (u, v) at time interval t.
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Thus, the edge cost Aiu,v(t), i = 1, . . . ,M, is updated by the following expressions, where

edge cost is related to number of evacuees and hazard spreading time.

Aiu,v(t) =



ciu,v, if nu,v(t) ≤ nl

and t < min{su + du, sv + dv}

f iu,v(nu,v(t)), if nl < nu,v(t) ≤ nc

and t < min{su + du, sv + dv}

F iu,v(nu,v(t)), if nu,v(t) > nc

and t < min{su + du, sv + dv}

∞ if t ≥ min{su + du, sv + dv}

(2.1)

where ciu,v is the cost for group i traverse edge (u, v) and M is the number of evacuee groups.

Functions f iu,v(nu,v(t)) and F iu,v(nu,v(t)) are determined by the walkway service level and

path width [Kisko et al. (1998)] according to user’s guide of NVACNET4 [Lu et al. (2005)].

For example, time consumed for evacuee groups with different number of members passing

through corridors on the second floor of Howe Hall at Iowa State University is determined

by

f iu,v(nu,v(t)) =

 3.1 ∼ 3.4 if 3 < nu,v(t) ≤ 6

3.4 ∼ 3.9 if 7 ≤ nu,v(t) ≤ 9
. (2.2)

If nu,v(t) > 9, one has

F iu,v(nu,v(t)) = [3.9 + w(nu,v(t)− 10)] ∼ [7.5 + w(nu,v(t)− 10)], (2.3)

where w denotes the degree of decreased moving speed when additional evacuees move into

edge (u, v). Equation (2.2) indicates the lower bound nl = 3 and edge capacity nc = 9.

Therefore, a few additional evacuees could significantly increase the time required for a

evacuee group moving through edge (u, v). To analyze the hazard effect on the edge cost

of the evacuation graph, the hazard spreading paths are generated along available edges in

the hazard spreading graph once a specific hazard spot is detected. The spreading time,

su, for the detected hazard to arrive at vertex u is determined by its shortest distance path
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in hazard spreading graph. And su = 0 if u is the sensor vertex at the original hazard

spot. Furthermore, under Assumption 6.6.3, a delay period, denoted by du, is considered

in Eqation (2.1)for an edge to become unavailable starting from the time when the hazard

is detected or arrives.

Different from the traditional adjacency matrix which uses zero for an entry correspond-

ing to a non-existing edge, an unavailable edge is represented by an infinite number in Ai(t)

and AH . Examples of the modified weighted adjacency matrices for hazard spreading and

evacuation without considering congestion effect and hazard occurrence in Fig. 5.2 are ex-

pressed as

AH =



0 120 ∞ ∞ ∞ 80

120 0 120 ∞ ∞ 110

∞ 120 0 80 ∞ 100

∞ ∞ 80 0 120 110

∞ ∞ ∞ 120 0 80

80 110 100 110 80 0


.

and

Ai =



0 ∞ ∞ ∞ ∞ 10

∞ 0 ∞ ∞ ∞ 15

∞ ∞ 0 2 ∞ 12

∞ ∞ 2 0 ∞ 15

∞ ∞ ∞ ∞ 0 10

10 15 12 15 10 0


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5.3 Distributed Path Planning Algorithm for Building Evacuation

under Hazard

5.3.1 Layout of the Cyber-Physical System

The CPS equipped with sensing (solid circles), information transmission (solid rectan-

gles), and computation (white rectangles with group symbols) components for generating

evacuation paths is illustrated in Fig. 5.3. Each evacuee has a smart phone or personal

digital assistant (PDA) that can communicate with neighboring evacuees within certain dis-

tance to form a evacuation group, locate position, and retrieve hazard spreading information

from all sensors. As stated in Assumption 5.2.1, the hazard detecting sensors represented

as vertices (solid circles) are responsible for detecting the potential hazards. Once a hazard

is detected, the spreading time, su, and delay time, du, will be determined based on the

pre-stored hazard graph. These information will be shared by all evacuee groups to update

corresponding edge cost according to (2.1) for each group. A computation node (white

rectangle) is carried by one PDA selected from members of each evacuation group. It will

construct evacuation graph with associated edge cost and search for evacuation paths for

the his/her group only. The number of evacuees in the relative group is then forwarded to

the communication nodes (solid rectangles) along corridors and around exits that will be

visited by this group. The coordination protocol proposed below to prevent congestion will

be performed between the computation node of each group and communication nodes to be

visited.

Groups in the system will plan individual paths in a distributed manner. Each com-

putation node is moving along the group and will plan paths for locally formed group

only. After coordination, the final determined paths will be shared with all group members

through personal phones or PDAs. Compared with a fixed and centralized computational

framework, the mobile and distributed one prevents damages caused by hazards to a fixed

computation node. Each group solves a decomposed subproblem in reduced scale, which
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improves computational performance. Furthermore, it does not require collecting all evac-

uees’ information at a centralized computation node. As long as segments (corridors and

exits) from the planned paths are available, information transmission is required only be-

tween communication nodes of these segments and computation node of the corresponding

evacuee group.

…
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Exit P 
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Group A

…
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Transmission 
ComponentComputation 
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& 
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…

Group C

Group D

…

Figure 5.3 Components and information flow in CPS

5.3.2 Bellman-Ford Algorithm

In this section, Bellman-Ford algorithm [Bellman (1958)] is introduced to find the min-

imum time paths for each evacuee group traveling from the starting vertex to one of the

exits based on the constructed evacuation graph. Bellman-Ford algorithm is an iterative

approach, where current solution is replaced by a less cost solution, to find the shortest

path from a source vertex to an ending vertex in a graph with weighted edges. This process

is repeated until finishing examining all available paths to each ending vertex. The main

procedure is illustrated in Protocol 1.

Bellman-Ford algorithm is applied in both hazard graph to generate the hazard spread-

ing paths and evacuation graph to search for the optimal evacuation paths. For each evacuee
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Define distance evaluation function distance(k) and predecessor(k) which measures the

distance from starting node to current node k and stores predecessor of current node k,

k = 1, ..., N .

Initialization at Time t

for each node k ∈ 1 ... N do

if k is starting vertex then
distance(k) = 0

end

else
distance(k) =∞
predecessor(k) = null

end

end

Relax Edges Repeatedly

for each node k excluding for the exiting node do

for each edge (u, v) ∈ G do

if distance(u) +Aiu,v(t) < distance(v) then
distance(v) = Aiu,v(t) + distance(u)

predecessor(v) = u

end

end

end

Check for Negative-Weight Cycles

for each edge (u, v) ∈ G do

if distance(u) +Aiu,v(t) < distance(v) then
error: graph contains negative-weight cycle.

end

end

Protocol 5 Bellman-Ford Algorithm Applied to Finding Shortest Evacuation Path
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group, Bellman-Ford algorithm searches for the minimum cost paths from the starting ver-

tex representing evacuee group’s current location to the ending vertices, i.e. available exits.

After evaluating cost of available edges connecting to each exit, the optimal path with min-

imum cost is selected. Bellman-Ford algorithm simply relies on topology and edge cost

of a specific weighted graph and thus evacuation path for each group can be determined

separately. An example based on the evacuation graph of Fig. 5.1 is illustrated in Fig. 5.4.

A evacuee group starting from the room of left bottom corner is guided to the exit through

a minimum time path labeled in red color.

Sensor	
  

Evacua-on	
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  &	
  cost	
  

Door	
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Figure 5.4 Example of one evacuation route computed from Bellman-Ford method.

5.3.3 Problem Formulation and Decomposition

A distributed coordination protocol is developed to avoid congestion and thus improve

evacuation efficiency. In the distributed path planning approach, the entire evacuation plan-

ning problem is decomposed into a set of subproblems with associated objective function

and constraints. Each subproblem can be solved individually by the corresponding compu-

tation node using the Bellman-Ford algorithm introduced above. The individual solutions
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are then coordinated through the subgradient method to satisfy the specified constraints.

The integrated Bellman-Ford and dual subgradient algorithm, named as BFDS is described

in this section.

The path planning problem for minimum time evacuation with capacity constraints

along corridors and around exits are expressed as

J = minx ΣM
i=1f

i(xi) (3.4)

s.t. gj(x, t) ≤ 0, j = 1, . . . , P, t = 1, . . . , T

lu,v(x, t) ≤ 0, (u, v) ∈ G, t = 1, . . . , T,

where xi, i = 1, . . . ,M , is the designated edges in the evacuation graph to guide evacuees

of group i to the exit, the objective function f i(xi) represents time consumption for group

i reaching available exit, gj(x, t) ≤ 0 is the capacity constraint at exit j for time interval t,

lu,v(x, t) ≤ 0 is the capacity constraint for the edge (u, v), T is the number of time intervals,

and there are P exits in the building.

The capacity constraints for exits are formulated as

gj(x, t) = nj(t)− nmaxj ≤ 0, j = 1, . . . , P, t = 1, . . . , T,

where nj(t) is the number of evacuees in vicinity of exit j at time interval t, nmaxj is the

capacity of exit j, which represents the maximum number of evacuees allowed in vicinity of

exit j if it is available, and nj(t) at time interval t is obtained via

nj(t) =

 nj(t− 1)+(δ̄T (t)r̄−Vj)τ, if nj(t− 1)+δ̄t(T )r̄τ >Vjτ

0 otherwise,
(3.5)

where Vj is the egress ability of exit j, i.e. the maximum number of evacuees allowed to pass

through exit j per unit time τ , r̄ = [r1, . . . , rM ]T is the set of flow rate for all evacuee groups,

representing the number of evacuees passing through a defined space per unit time [Wang

et al. (2009)], δ̄(t) = [δ1(t), . . . , δM (t)]T and each element in δ̄(t) is determined by

δi(t) =

 1, if group i arrives exit j at time interval t

0, otherwise.
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For exit j, n̄j = [nj(1), . . . , nj(T )]T and each element of n̄j is determined via (3.5). If group

i is going to visit exit j, it will send δi(t) with associated ri to communication node at exit

j. By receiving information from all groups that will visit exit j, n̄j will be determined.

The capacity constraints for edges representing corridors of a building are formulated as

lu,v(x, t) = nu,v(t)− nmaxu,v ≤ 0, (u, v) ∈ G, t = 1, . . . , T,

where nmaxu,v is the capacity of edge (u, v), nu,v(t) is the total number of evacuees passing

through edge (u, v) at time interval t which can be obtained via

nu,v(t) = nu,v(t− 1) + ρ̄T (t)r̄τ (3.6)

where ρ̄(t) = [ρ1(t), . . . , ρM (t)]T and each element in ρ̄(t) is determined by

ρi(t) =


1, if head of group i is in (u, v) and tail is out of (u, v) at time interval t

−1, if tail of group i is in (u, v) and head is out of (u, v) at time interval t

0, otherwise.

Similar to finding nj(t), by collecting information through communication node along edge

(u, v) from all groups that visit this edge at time interval t, nu,v(t) will be determined.

From the above definitions, the Lagrangian for problem (3.4) is expressed as,

L = ΣM
i=1f

i(xi) + ΣP
j=1(λ̄j)

T (n̄j − nmaxj ) + Σ(u,v)∈G(µ̄u,v)
T (n̄u,v − nmaxu,v ), (3.7)

where λ̄j = [λj(1), . . . , λj(T )]T and µ̄u,v = [µu,v(1), ..., µu,v(T )]T are Lagrangian multipliers,

n̄u,v = [nu,v(1), ..., nu,v(T )]T and n̄j = [nj(1), ..., nj(T )]T . Under Assumption 6.6.2, it is

assumed that evacuees in the same room or neighborhood will follow others’ movement.

According to localization and vicinity of scattered evacuees, for M locally formed evacuee

groups, the above optimization problem with constraints can be decomposed into M sub-

problems. As a result, the evacuation path for each group is calculated separately through

independent computation nodes. The ith Lagrangian is formulated as

Li = f i(xi) + ΣT
t=1λj(t)n

i
last,j(t) + Σ(u,v)∈GiΣ

T
t=1µu,v(t)n

i
u,v(t), (3.8)
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where nilast,j(t) denotes the number of evacuees from group i along the last edge connecting

to exit j, niu,v(t) denotes the number of evacuees from group i passing through edge (u, v)

at time interval t, and Gi indicates the evacuation graph for group i. At each iteration,

solution of xi can be determined from Bellman-Ford algorithm to minimize the “phantom”

cost by adding ΣT
t=1λj(t)n

i
last,j(t) + Σ(u,v)∈GiΣ

T
t=1µu,v(t)n

i
u,v(t) to the original cost function,

f i(xi). The Lagrangian multipliers associated with time interval t are updated via

λq+1
j (t) = max[0, λqj(t) + αqggj(x

q(t))] (3.9)

µq+1
u,v (t) = max[0, µqu,v(t) + αql lu,v(x

q(t))]. (3.10)

By utilizing the CPS described in Section 5.3.1, each group will construct the corresponding

evacuation graph by adding “phantom” cost on edges. For example, the additional cost

λj(t)n
i
last,j(t) will be added to the last edge segment connecting to exit j. The iterative

coordination procedure starts by assuming λ̄j = 0 for j = 1, . . . , P and µ̄u,v = 0 for

(u, v) ∈ G in the first step, q = 1. After each group finding their evacuation path, xi,

in the first step, the communication nodes along corridors and around exits will receive

information, i.e., δi, ri, and ρi, from visiting groups. After receiving these information,

the Lagrangian multipliers will be updated through the communication nodes according to

(3.9) and (3.10) and then sent back to relative groups to update evacuation graph for the

next iteration. The local path planning for individual groups and coordination through

communication nodes is repeated until |λ̄q+1
j − λ̄qj | ≤ ελ and |µ̄q+1

u,v − µ̄qu,v| ≤ εµ, where ελ

and εµ are thresholds for stopping criteria. The proposed BFDS algorithm is summarized

as in Protocol 6.

5.4 Simulation and Discussion

This section provides two simulation examples, a simple graph with a few number of

vertices and edges and a real world building with complicated floor plans. without loss

of generality, we assume that each group possesses identical moving capability. Hence the
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superscript i in f iu,v[n(t)], F iu,v[n(t)], and ciu,v are ignored and we simply use fu,v, Fu,v, and

cu,v, respectively.

5.4.1 Case 1: A Simple Graph

In the first case, simulation is carried out based on a simple graph which abstractly

represents a object building including 8 vertices and 11 edges. The corresponding evacuation

model is developed based on a 8 × 8 weighed adjacency matrix with off-diagonal entries

assigned by integer numbers between [1, 10] if an edge exists. We assign all vertices from

one to eight and two exits are labeled as #5 and #8. Each vertex, excluding the two

exits, has one evacuee group starting from there. The number of evacuees in each group

is randomly selected from the range of [1, 10]. The edge cost functions, fu,v and Fu,v, are

assumed to be the same. They are monotonically increasing with increment of the number

of evacuees and expressed as

fu,v = Fu,v = cu,v + 2(nu,v(t)− 7), if nu,v(t) ≥ 7. (4.11)

The above linear function indicates that the edge cost increases 2 seconds when every one

additional evacuee is involved along path segment (u, v) if the group has more than 7

evacuees. Otherwise, the edge cost is equal to cu,v. Relevant parameters are specified in

Table 5.1.

Table 5.1 Parameter settings for case 1

Exit Capacity [nmax5 , nmax8 ] [2, 2] person

Egress Ability [V5, V8] [1, 1] person/s

Edge Capacity nmaxu,v 15 person

Unit Time τ 1s

Simulation Time T 100s

The BFDS algorithm is implemented in the simple case without considering spreading of
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hazards. To demonstrate the improved performance of the proposed method, the shortest

path solution is provided as well. The comparative solution does not consider cooperation

among evacuee groups. Thus, each group find their shortest route individually. Figures 5.5

and 5.6 demonstrate the number of evacuees in vicinity of each exit during the evacuation

process. The comparative results indicate that the peak number at exit 1 is reduced from 15

to 2 using the BFDS algorithm and the exit capacity constraints are satisfied. The shortest

path always guide evacuee groups to the nearest exit without considering congestion along

path segments or near exits. While result from BFDS reduces the overall evacuation time

from 34 to 27 seconds. Figure 5.7 illustrates the successful avoidance of path congestion

and jams at exits through cooperation between group 1 and 2. The planned route from

BFDS algorithm for each evacuee group is represented by dash colored lines in Fig. 5.7 and

the alternative route based on shortest path is represented by corresponding solid colored

lines.

In order to verify performance of the proposed BFDS algorithm, we also solve Case 1

in a centralized manner with evacuation graph information shared among all evacuation

groups. The evacuation path generated from the centralized algorithm yields the same

result as the one from BFDS algorithm, shown in Fig. 5.7. However, the centralized

algorithm considering hazard and capacity constraints depends on reliable communication

channels and high performance computation node to collect all required information and

then generate evacuation paths simultaneously. Any communication disconnection and

sensor malfunction will lead to a failure.

5.4.2 Case 2: Real Application in Building Evacuation

In the real world case, simulation is carried out based on the floor plans of Howe Hall

at Iowa State University. As illustrated in Fig. 5.10, this building includes faculty offices,

class rooms, and graduate student workplaces. There are 79 sensors scattered on this floor

and each room has one sensor for hazard detecting. The rest of those sensors are installed
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Figure 5.5 Case 1: Number of evacuees at exit 1 (red) and exit 2 (blue) using shortest path

in corridors and close to exits. Blue colored segments are used to denote possible egress

paths between rooms, corridors, and exits in Fig. 5.10. By assigning edge cost obtained

through virtual computer simulation and experimental investigation, evacuation graph is

developed and represented by a 79 × 79 weighted adjacency matrix, A. Moreover, three

exits are labeled as #20, #58, and #79.

To avoid congestion and reduce ”faster is slower” effect, strict capacity constraints for

corridors and vicinity area of exits are considered. For the object building in the simulation

case, the parameters related to the exit capacity constraints are set as, nmax20 = 6, nmax58 = 5

and nmax79 = 7. All relevant simulation parameters are listed in Table. 5.2. The number of

evacuees in each group is randomly generated from the range of [a, b]. Distribution of [a, b]

for different room sizes is illustrated in Table. 5.3.

To simulate the dynamic hazard influence on evacuation path planning, we assume the

carpet is ignited close to sensor #5. After detecting the heat and smoke, sensor #5 reports

the hazard location to the guidance system and predicts the fire spreading paths along every

possible edges to obtain tu for each vertex using Bellman-Ford algorithm. When updating

the edge cost of the evacuation graph at each step, the corresponding edge cost is set as
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Figure 5.6 Case 1: Number of evacuees at exit 1 (red) and exit 2 (blue) using BFDS algorithm

an infinite number based on (2.1) if the last person in a particular group cannot reach the

sensor vertex before hazard arrives.

Again, solution from shortest path is provided to compare with results obtained from the

proposed BFDS algorithm. Figures 5.8 and 5.9 demonstrate time history of evacuee numbers

in vicinity of each exit from both methods. It is shown that the proposed BFDS algorithm

significantly reduces the number of evacuees in order to satisfy capacity constraints at exit.

Furthermore, Fig. 5.10 illustrates changing of a typical planned path that successfully

avoid hazard, where the original paths are represented by red solid lines and the changed

paths are represented by red dash lines. The proposed BFDS algorithm also alleviates path

congestion demonstrated by overlapped routes in green, yellow, and purple colors. Finally,

the overall evacuation time from the shortest path is 184 seconds while the one from BFDS

is 64 seconds which is less than half of the time required by the shortest path solution.
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Figure 5.7 Upper Left : evacuation graph in Case 1. Upper Right : evacuation paths by shortest

path algorithm (Solid Arrows). Lower : changed paths (dash arrows) and unchanged

paths (solid arrows) by centralized and BFDS algorithms considering congestion con-

straints.

5.5 Conclusion

We propose a time-efficient evacuation guidance strategy utilizing a cyber-physical sys-

tem. The approach first constructs a graph based dynamic evacuation model with precisely

estimated edge costs considering hazard spreading and congestion effects. Based on the

dynamic graph, we convert the evacuation path planning problem to a network optimiza-

tion problem subject to capacity constraints. By incorporating dual subgradient method

and Bellman-Ford algorithm, a Bellman-Ford-Dual-Subgradient (BFDS) algorithm is pro-

posed to find minimum time evacuation paths in a distributed framework. Compared to

the shortest path algorithm where each group finds corresponding shortest evacuation route

individually, the BFDS algorithm coordinates planned paths among groups via sensing and
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Table 5.2 Parameter settings for case 2

Exit Capacity [nmax20 , nmax58 , nmax79 ] [6, 5, 7] person

Egress Ability [V20, V58, V79] [2, 2, 4] person/s

Edge Capacity nmaxu,v 15 person

Unit Time τ 1s

Simulation Time T 300s

Path Unavailable Time Delay du 5s

Hazard Starting Position #5

Table 5.3 Occupants distribution

Room Classification Distribution Range [a, b]

Large Class Room [0, 30]

Small Class room [0, 15]

Large graduate student workspace [0, 20]

Small graduate student workspace [0, 10]

Windows Computer Lab [0, 30]

Faculty Office [0, 2]

Near Sensor in Corridor [0, 2]

communication networks. Simulation examples verify that the integrated dynamic evacua-

tion model and BFDS algorithm efficiently find routes for all evacuee groups while satisfying

strict exit capacity constraints. Meanwhile, the proposed method alleviates congestion oc-

curred along corridors and around exits during the evacuation. More importantly, the

overall evacuation time will be significantly reduced, especially for cases with large number

of evacuees and limited available exits.
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Figure 5.8 Case 2: Occupant number obstructed at exit 1 (red), exit 2 (blue) and exit 3 (black)

using shortest path finding
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Figure 5.9 Case 2: Occupant number obstructed at exit 1 (red), exit 2 (blue) and exit 3 (black)

using BFDS algorithm
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Initialization: q = 1, λ̄1 = 0, λ̄2 = inf, µ̄1 = 0, µ̄2 = inf;

for Group i← 1 to M do
Use Bellman-Ford method to find minimum cost path for each group by solving Eq.

(3.8).

end

while |λ̄q+1
j − λ̄qj | ≥ ελ or |µ̄q+1

u,v − µ̄qu,v| ≥ εµ, for j = 1, . . . , P and (u, v) ∈ G do
q = q + 1

Update evacuation model for each group based on Eq. (2.1).

for t← 1 to T do
Calculate nj(t) via Eq. (3.5).

gj(x, t) = nj(t)− nmaxj .

Calculate nu,v(t) via Eq. (3.6).

lu,v(x, t) = nu,v(t)− nmaxu,v .

end

for Exit j ← 1 to P do
Update λ̄qj via Eq. (3.9).

for Group i ∈ Nj where Nj represents the set of groups visiting exit j do

Ailast,j = Ailast,j +
∑T

t=1 λ
q
j(t)n

i
last,j(t), where Ailast,j corresponds to the cost for

the last edge connecting to exit j in the evacuation graph of group i.
end

end

for Edge (u, v) ∈ G do
Update µ̄qu,v via Eq. (3.10).

for Group i ∈ Nu,v where Nu,v represents the set of groups going through edge (u, v)

do

Aiu,v = Aiu,v +
∑T

t=1 µ
q
u,v(t)niu,v(t).

end

end

Use Bellman-Ford algorithm to update shortest path for each group.
end

Protocol 6 BFDS in-building path planning algorithm
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CHAPTER 6. DISTRIBUTED OPTIMIZER DESIGN:

INTELLIGENT HIGHWAY TRAFFIC MANAGEMENT

6.1 Problem Statement

A one-dimensional, uniform highway section considered in this project is represented

by [ξ, χ], where ξ and χ are upstream and downstream boundaries. We denote the vehicle

density as ρ(t, x) per unit length for local position x ∈ [ξ, χ] at time t ∈ [0, tM ]. The inflow

and outflow are denoted as Qξ and Qχ, respectively. The vehicle velocity is a function of

ρ and is denoted as v = v(ρ(t, x)). The goal of the proposed traffic control strategy is to

minimize the fuel consumption, or total travel time of vehicles on the concerned highway

section for a desired time interval based on current traffic status by controlling dynamic

speed limit signals, shown as an example in Fig. 6.1, where the arrows represent on-ramps

and off-ramps.

. . . . . . 

Seg. k Seg. k+1 Seg. k+2

Figure 6.1 Example of a traffic control scenario. Arrows at upstream and downstream

boundaries refer to the vehicle flow directions. Arrows along main road section

represent on-ramps and off-ramps. Rectangles indicate installed sensors for

measuring traffic volume. Dynamic speed limit signs are located at the starting

point of each road segment.
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6.2 Traffic Flow Dynamics: LWR Model and Moskowitz Function

The macroscopic traffic flow model was first introduced by Ligthill and Whitham in

the 1950s [Lighthill and Whitham (1955)] and was intensively investigated afterwards. The

fundamental traffic flow model is based on the continuous conservation law in the form

of partial differential equations (PDE). For the one-dimension, uniform highway section

considered above, the total number of vehicles conserved in time interval [t, t+ ∆t] can be

expressed as ∫ χ

ξ
(ρ(t+ ∆t, x)− ρ(t, x))dx = (Qξ −Qχ)∆t. (2.1)

Intuitively, the integral of the changing density with respect to local position x is the number

of conserved vehicle during a small time interval ∆t. Assuming inflow Qξ and outflow Qχ

are constant during the small time interval ∆t, dividing both sides of the above expression

by ∆t gives ∫ χ

ξ

∂ρ

∂t
dx = ρ(t, ξ)v(ρ(t, ξ))− ρ(t, χ)v(ρ(t, χ)). (2.2)

The right hand side of the above equation is based on the traffic flow theory, Q = ρv,

where v is the velocity and it only depends on the density such that v = v(ρ(t, x)). Further

simplifying the above equation follows∫ χ

ξ

∂ρ

∂t
dx = −

∫ χ

ξ

∂(ρv)

∂x
dx. (2.3)

Since equality in (2.3) must be satisfied for all t and x, combining the integrand of both

sides leads to the well-known LWR PDE written as

∂ρ

∂t
+
∂Q(ρ(t, x))

∂x
= 0. (2.4)
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The LWR PDE is the fundamental traffic flow model based on the continuous conser-

vation law. Now introducing the cumulated vehicle count N(t, x), the vehicle density and

flow can be calculated directly from the partial derivatives with respect to local position x

and time t in forms of

ρ(t, x) = −∂N(t, x)

∂x
(2.5)

Q(t, x) =
∂N(t, x)

∂t
. (2.6)

Substituting ρ(t, x) and Q(t, x) in (2.4) by (2.5) and (2.6) and then integrating both sides

with respect to the local position generates Moskowitz HJ PDE,

∂N(t, x)

∂t
−Q(−∂N(t, x)

∂x
) = 0. (2.7)

Considering the initial, upstream, and downstream boundary conditions, i.e. cini(x), cup(t)

and cdown(t), together with the Moskowitz HJ PDE, the Cauchy problem [Mazaré et al.

(2011)] is formulated as,



(2.7)

N(0, x) = cini(x)

N(t, ξ) = cup(t)

N(t, χ) = cdown(t).

(2.8)

The traffic control optimization problem is to minimize the value of a specific objective,

e.g. the fuel consumption, or total travel time, while satisfying the four equality constraints

of the Cauchy problem listed above by designing control variables v(t, x).

6.3 B/J-F Explicit solutions to Traffic Flow Dynamics

Inspired by B-J/F solution for HJ PDEs [Barron and Jensen (1990)], we adopt B-J/F

solution to Moskowitz HJ PDEs [Lighthill and Whitham (1955); Richards (1956); Bayen

et al. (2007)] to obtain the solutions for estimating the traffic flow states in any future time.
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The solution can be explicitly expressed based on a fundamental diagram [Greenshields

et al. (1935)] associated with initial and boundary conditions. Furthermore, the solution to

Moskowitz HJ PDEs can be simplified based on roadway decomposition and traffic status.

6.3.1 Piecewise Affine Initial and Boundary Conditions

We discretize time period [0, tM ] and highway section [ξ, χ] into several small intervals

using time step T and spatial step X. The initial vehicle density, ρ(0, xk), k = 0, 1, 2..., km,

is assumed to be identical within segment [xk, xk+1]. Inflow and outflow remain constant

during each time interval [tn, tn+1] indexed by n = 0, 1, ..., nm. For the time step T , it is

constant during the entire controlling period and cannot be chosen as a large value due

to the assumption of constant density during each time interval. However, T has to be

greater than the lower bound, X
vf

, which is the minimum time for the inflow traffic arriving

the downstream segment of each divided highway segment. By picking such lower bound,

it is possible to observe the inflow traffic at the downstream segment. Another reason of

avoiding small T value is that control information is required to transmit for displaying

and the traffic must have enough time to adjust their speed to obey the newly updated

speed limit. Time step T could be time-varying in the future in accordance with the inflow

traffic measurement and prediction. For the spatial step, the notation X remains consistent

for different highway segments in this section. However, it can be different in real-world

scenario and we have specified the spatial step based on different length of segments for

explicit solution derivation. Highway section is segmented at every location where on-ramp

or off-ramp appears. Due to the assumption of identical density within a highway segment,

each length should be small, e.g. generally hundreds of meters. If that is still a long distance

after spatial decomposition based on ramp location, we further divide such segment.

The initial and boundary conditions, cini, cup, and cdown, can be decomposed into affine,

locally-defined condition set, i.e. ckini, c
n
up, and cndown. For example, the negative initial con-

dition, −ckini(t, x), represents the total number of vehicles at initial time contained between
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[ξ, x]. The upstream condition, cnup(t, x), and downstream condition, cndown(t, x), depicts

total number of vehicles entering and exiting the roadway from initial to current time t.

Hence we summarize the piecewise affine equations regarding initial and boundary condi-

tions as [Canepa and Claudel (2012)],

ckini(t, x) =


−
k−1∑
i=0

ρ(0, xi)X − ρ(0, xk)(x− xk), if t = 0 & x ∈ [xk, xk+1]

+∞, otherwise

(3.9)

cnup(t, x) =


n−1∑
i=0

Q(ti, ξ)T +Q(tn, ξ)(t− nT ), if x = ξ & t ∈ [tn, tn+1]

+∞, otherwise

(3.10)

cndown(t, x) =



n−1∑
i=0

Q(ti, χ)T +Q(tn, χ)(t− nT )−
km∑
k=0

ρ(0, xk)X,

ifx = χ& t ∈ [tn, tn+1]

+∞. otherwise

(3.11)

Based on semi-explicit espressions of solution to Moskowitz HJ PDE, presented in Claudel

and Bayen (2010a), we introduce triangular-model-based solutions in Appendix A. More-

over, Greenshields-model-based B-J/F explicit solution are developed and obtained associ-

ated with initial and boundary conditions. Derivation details and result expressions can be

found in Appendix B. In the following sections, Greenshields-model-based B-J/F explicit

solutions are simplified by considering two assumptions.

6.3.2 General Semi-Explicit Solution

We aggregate initial, upstream, and downstream boundary conditions in a value condi-

tion function, c(t, x). From the work in Aubin et al. (2008); Claudel and Bayen (2010a,b)

the solutions Nc associated by value condition function c is the infimum of infinite number

of value condition functions. Then the B-J/F solution to (2.7) can be represented by

Nc(t, x) = inf
(u,T )∈[w,vf ]×R+

[c(t− T, x− Tu) + TR(u)]. (3.12)
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By using the fundamental diagram which define a flow function of traffic density Q(ρ),

convex transform R(u) is defined as follows

R(u) = sup
ρ∈[0,ρj ]

(Q(ρ)− uρ), ∀u ∈ [w, vf ], (3.13)

with w = dQ
dρ |ρ=ρj < 0, ρj > 0, and vf = dQ

dρ |ρ=0 > 0 denoting the jam density and free-flow

speed, respectively.

6.3.3 Simplified B-J/F Explicit Solution

Due to the piecewise affine property, triangular-model-based B-J/F solution can be

directly incorporated into the model constraints which is introduced in III.F. However,

Greenshields model results in non-determined piecewise nonlinear B-J/F solutions. In order

to construct linear model constraints based on Greenshields-based solutions, we simplify

(2.8-2.11) in this section. First two assumptions are required for solution simplification.

Assumption 6.3.1. A one lane highway with long distance can be decomposed into several

segments with distance Xk. B-J/F solution can be implemented in each segment.

Assumption 6.3.2. The highway section is required to handle cases with relatively large

vehicle flow, i.e. flow at origin and ending is close to the road capacity Qc. In other

word, one has (1 − 1√
q )ρkc ≤ ρkup ≤ ρkc and ρkc ≤ ρkdown ≤ (1 + 1√

q )ρkc , where q is a user-

specified parameter determining bounds of constraints. Substituting the above bounds on ρkup

and ρkdown in T0(ρ
k
up) and T0(ρ

k
down) expressions, respectively, yields T0(ρ

k
up) ≥

√
q x−ξ

k

vkf
and

T0(ρ
k
down) ≥ √q χ

k−x
vkf

.

kth road segment [ξk, χk] is regarded as an individual object with associated length Xk,

jam density ρkj , and free-flow speed vkf after decomposition. Assumption 6.3.1 simply sets

the initial density to be {ρ(0, 0k), ρ(0, Xk)} and denotes ρkini = ρ(0, 0k) as vehicle density for

each segment. 0k denotes the starting point of segment k. Furthermore, the plot of function

(2.10) in Fig. 6.2 demonstrates that the slope of tangent line at each time instance increases
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when t varies from tn + x−ξk
vkf

to
vkfρ

k
j

4 . Similar conclusion can be derived from the solution

curve associated with the downstream boundary condition. Assumption 6.3.2 introduces a

linear approximation for (2.10) when t ≥ tn + T0(ρ
k
up) and (2.11) when t ≥ tn + T0(ρ

k
down).

Based on these discussion, the initial and boundary conditions for each road segment with

modified notation Q
(t,xk)
up = Q(t, 0k), Q

(t,xk)
down = Q(t,Xk), and ρkini, is expressed as

c0ini(t, x) =


− ρkinix, if t = 0 & x ∈ [0k, Xk]

+∞ otherwise

(3.14)

cnup(t, x) =


n−1∑
i=0

Q(ti,xk)
up T +Q(tn,xk)

up (t− nT ), if x = 0k & t ∈ [tn, tn+1]

+∞ otherwise

(3.15)

cndown(t, x)=


n−1∑
i=0

Q
(ti,xk)
down T +Q

(tn,xk)
down (t− nT )− ρkiniXk, ifx = Xk & t ∈ [tn, tn+1]

+∞ otherwise.

(3.16)

( )0n upt T ρ+ ( )1 0n upt T ρ+ +n
f

xt
v
ξ−

+

( ),n
up nc t ξ

nt
t

( ), xn
upc

N t

Figure 6.2 Sketch of function (2.10).

Since initial value condition is reduced to only one segment [0k, Xk], number of vehicles

on [0k, Xk] at initial time can be calculated by ρkiniX
k from (3.14) and (3.16). With the up-
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dated initial and boundary conditions, the B-J/F solution associated with initial conditions

in (3.14)-(3.16) is simplified in (2.8)-(2.11) by setting ξ = 0k and χ = Xk. Furthermore,

from Assumption 6.3.2, we use the formal definition of a linear function as the simplified

solution when time is greater than the corresponding threshold. For initially free-flow case

with 0 ≤ ρkini ≤ ρkc , it reduces to

Nc0ini
(t, x) =


(−
vkf

ρkj
(ρkini)

2 + vfρini)t− ρkinix, if 0 ≤ t ≤ x

Q′(ρkini)

vkf
4
ρkj t+

x2ρkj

4vkf t
− x

2
ρkj , if t ≥ x

Q′(ρkini)

(3.17)

and for initially congested case with ρkc ≤ ρkini ≤ ρkj , it becomes

Nc0ini
(t, x) =


(−
vkf

ρkj
(ρkini)

2 + vkfρ
k
ini)t− ρkinix, if 0 ≤ t ≤ x−X

Q′(ρkini)

vkf
4
ρkj t+

(x−Xk)2ρkj

4vkf t
− x−Xk

2
ρkj − ρkiniXk, if t ≥ x−Xk

Q′(ρkini)
.

(3.18)

The solution components associated with boundary conditions become

Ncnup(t, x) =


(vkf −

x
t−tn )2ρkj

4vkf
(t− tn) +

n−1∑
i=0

Q(ti,xk)
up T, if tn ≤ t ≤ tn +

√
q
x

vkf

a(t− tn) + b, if t ≥ tn +
√
q
x

vkf

(3.19)

Ncndown
(t, x) =



(vkf −
Xk−x
tn−t )2ρkj

4vkf
(t− tn) +

n−1∑
i=0

Q
(ti,xk)
down T − ρ

k
iniX

k,

if tn ≤ t ≤ tn +
√
q
Xk − x
vkf

e(t− tn) + f, if t ≥ tn +
√
q
Xk − x
vkf

(3.20)

where a, e are slopes of the tangent line at corresponding time and b, f are the relative

function values at t = tn +
√
q x
vkf

and t = tn +
√
qX

k−x
vkf

.

6.3.4 Model Constraints

To make the B-J/F solutions compatible with value conditions, a infinit number of

equality constraints must be hold in Cauchy problem 2.8. Based on the Inf-morphism
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property [Claudel (2010)] and Lax-Hopf formula in (3.12), the last three equalities in the

Cauchy problem can be converted into a set of inequalities.

Lemma 6.3.1. Compatibility Conditions, [Li et al. (2014)]: The solution to HJ PDE

is characterized by the Inf-morphism property, i.e. c(t, x) = minl∈L cl(t, x), where L is

the index number of value condition, the solution Nc(t, x) = minl∈LNcl(t, x) for (t, x) ∈

[0, tM ]× [ξ, χ]. The B-J/F solution to (2.7) satisfies the value conditions if and only if

Nci(t, x)≥cj(t, x), ∀(t, x) ∈ Dom(cj), (i, j) ∈ L2. (3.21)

Inequalities in (3.21) represent the model constraints. By considering these constraints,

the B-J/F solutions are reduced to a subset representing the exact solution to the Cauchy

problem. Solution to HJ PDE can be explicitly expressed based on Lax-Hopf formula.

We integrate these expressions with piecewise affine value conditions to formulate model

constraints

As described in §III, B-J/F solution is the exact solution to Cauchy problem if inequality

of (3.21) holds. We reduce these continuous inequalities for ∀(t, x) ∈ Dom(cj) into a series

of discrete inequalities by discretizating the continuous time interval into a set of small time

intervals with step size T = 1 sec. By utilizing the linear interpolation on [pT, (p+1)T ), the

piecewise affine functions are built with respect to time t. Therefore, the discrete inequality

constraints are expressed in (3.22).

(i) Ncnup(0, x) ≥ ckini(0, x) ∀(n, k) ∈ {0, ..., nm} × {0, ..., km} & x ∈ [xk, xk+1]

(ii) Nckini
(t, ξk) ≥ cpup(t, ξk) ∀(k, p) ∈ {0, ..., km} × {0, ..., nm} & t ∈ [pT, (p+ 1)T ]

(iii) Ncndown
(0, x) ≥ ckini(0, x) ∀(n, k) ∈ {0, ..., nm} × {0, ..., km} & x ∈ [xk, xk+1]

(iv) Nckini
(t, χk) ≥ cpdown(t, χk) ∀(k, p) ∈ {0, ..., km} × {0, ..., nm} & t ∈ [pT, (p+ 1)T ]

(v) Ncnup(t, χk) ≥ cpdown(t, χk) ∀(n, p) ∈ {0, ..., nm}2 & t ∈ [pT, (p+ 1)T ]

(vi) Ncndown
(t, ξk) ≥ cpup(t, ξk) ∀(n, p) ∈ {0, ..., nm}2 & t ∈ [pT, (p+ 1)T ]

(3.22)
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Constraints (i) and (iii) in (3.22) are satisfied for x ∈ [ξk, χk], t ∈ [0, tM ] in the simplified

solution [Claudel and Bayen (2010a)]. The remaining constraints in (3.22) are replaced

by corresponding expressions defined in (3.14)-(3.20). For initially free-flow condition with

ρini ≤ ρc and discrete time index p ∈ [n, nm] for t ∈ [pT, (p+ 1)T ], constraints (ii) and (iv)

in (3.22) become

(ii)
vkfρ

k
j

4
t ≥ Q(tp,xk)

up (t− pT ) +

p−1∑
l=0

Q(tl,xk)
up T (3.23)

(iv)



(−
vkf

ρkj
(ρkini)

2 + vkfρ
k
ini)t ≥ Q

(tp,xk)
down (t− pT ) +

p−1∑
l=0

Q
(tl,xk)
down T, if 0 ≤ t ≤ Xk

Q′(ρkini)

(
vkfρ

k
j

4
−Q(tp,xk)

down )t2 + (Q
(tp,xk)
down pT −

p−1∑
l=0

Q
(tl,xk)
down T + (ρkini −

ρkj
2

)Xk)t

+
(Xk)2ρkj

4vkf
≥ 0, if t ≥ Xk

Q′(ρkini)
.

(3.24)

For initially congested conditions with ρkini ≥ ρkc , constraints (ii) and (iv) in (3.22) become

(ii)



(−
vkf

ρkj
(ρkini)

2 + vkfρ
k
ini)t ≥ Q

(tp,xk)
up (t− pT ) +

p−1∑
l=0

Q(tl,xk)
up T if 0 ≤ t ≤ −X

Q′(ρkini)

(
vkfρ

k
j

4
−Q(tp,xk)

up )t2 + (Q
(tp,xk)
up pT −

p−1∑
l=0

Q(tl,xk)
up T + (ρkini −

ρkj
2

)Xk)t

+
(Xk)2ρkj

4vkf
≥ 0, if t ≥ −Xk

Q′(ρkini)
,

(3.25)

(iv)
vkfρ

k
j

4
t ≥ Q(tp,xk)

down (t− pT ) +

p−1∑
l=0

Q
(tl,xk)
down T. (3.26)

For tn ≤ t ≤ tn +
√
qX

k

vkf
, constraints (v) and (vi) in (3.22) become

(v) (
vkfρ

k
j

4
−Q(tp,xk)

down )(t− nT )2 + (W k +Q
(tp,xk)
down (p− n)T

−
p−1∑
l=n

Q
(tl,xk)
down T )(t− nT ) +

(Xk)2ρkj

4vkf
≥ 0 (3.27)

(vi) (
vkfρ

k
j

4
−Q(tp,xk)

up )(t− nT )2 + (−W k +Q
(tp,xk)
up (p− n)T

−
p−1∑
l=n

Q(tl,xk)
up T )(t− nT ) +

(Xk)2ρkj

4vkf
≥ 0, (3.28)



99

where W k =
∑n−1

l=0 (Q
(tl,xk)
up − Q(tl,xk)

down )T + (ρkini −
ρkj
2 )Xk. For t ≥ tn +

√
qX

k

vkf
, constraints

(v) and (vi) in (3.22) become

(v) (a−Q(tp,xk)
down )(t− nT ) +Q

(tp,xk)
down (p− n)T + ρkiniX

k + b

−
p−1∑
l=0

QtldownT ≥ 0 (3.29)

(vi) (e−Q(tp,xk)
up )(t− nT ) +Q

(tp,xk)
up (p− n)T + f −

p−1∑
l=0

Q(tl,xk)
up T ≥ 0. (3.30)

Equations (3.23)-(3.30) are model constraints describing traffic flow dynamics. Con-

straints (ii) in (3.23) and (iv) in (3.26) have been verified since
vkfρ

k
j

4 ≥ maxt∈[0,tM ]{Q
(t,xk)
up , Q

(t,xk)
down }.

Hence both of them are ignored in formulation of the following optimization problem.

6.4 Real-Time Energy-Efficient Traffic Control via Convex Optimization

In the first application of developed model constraints based on Greenshield fundamental

diagram, we build a quadratic cost function in terms of vehicle volume to estimate fuel

consumption rate based on COPERT model. Benefit from the affinity of model constraints,

a convex quadratic optimization problem is then formulated to generate energy-efficient

traffic control decisions in real-time. Simulation results demonstrate significant reduction

of fuel consumption on testing highway sections under peak traffic demands of busy hours.

6.4.1 A General Formulation of Fuel Efficiency Transportation Control Prob-

leml

The COPERT model is a macroscopic model estimating the emission and fuel consump-

tion rate based on average vehicle speed [Zegeye (2011)]. The quadratic form of emission or

fuel consumption objective with respect to average speed for different vehicle classes, such

as vgp and vdp, is expressed as

J = wgp(cgp0v
2
gp + cgp1vgp + cgp2) + wdp(cdp0v

2
dp + cdp1vdp + cdp2) + ..., (4.31)
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where the quadratic parameters are specified in terms of vehicle category, for example,

quadratic coefficients, denoted by cgp are for gasoline passenger cars, cdp for diesel passen-

ger cars, and etc. The weighting factors, such as wgp and wdp, determined from sensor

measurements, are proportional to number of vehicle counted from different classes. In this

work, additional inflow and outflow contributed from on-ramp and off-ramp are considered.

The volume on each off-ramp is assumed to be proportional to corresponding main highway

section volume with a constant ratio Rxkoff . And on-ramp vehicle volume is a constant,

denoted by Cxkon . Thus additional linear equality constraints related to inflow and outflow

are included in the problem formulation. Considering both ramp-effect constraints and the

linear model constraints in terms of Q
(tn,xk)
up and Q

(tn,xk)
down , the fuel efficient traffic control

problem is formulated as

min. J = (4.31)

s.t. Amodely ≤ bmodel

Q
(tn,xk)
down = Q

(tn,xk+1)
up , k = 0, ..., km − 1

if no ramp exists on [xk, xk+1],

(1−Rxkoff )Q
(tn,xk)
down = Q

(tn,xk+1)
up , k = 0, ..., km − 1

if off-ramp exists on [xk, xk+1],

Q
(tn,xk)
down + Cxkin = Q

(tn,xk+1)
up , k = 0, ..., km − 1

if on-ramp exists on [xk, xk+1], (4.32)

where Amodel and bmodel represent the parameter matrix and vector derived from the linear

model constraints. The unknown variable set, y = [Q
(tn,x0)
down , Q

(tn,x0)
up ,

..., Q
(tn,xkm )
down , Q

(tn,xkm )
up ]T , which includes inflow and outflow at time instant tn for all

segments. By solving the above problem, we find the optimized inflow and outflow variables

for each segment during [tn, tn+1]. From the determined Q
(tn,xk)
up and Q

(tn,xk)
down for k =

0, 1, ..., km, the desired vehicle density for next time interval can be obtained from

ρ(tn+1, xk) =
(Q

(tn,xk)
up −Q(tn,xk)

down )T + ρ(tn, xk)X
k

Xk
(4.33)
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based on the conservation law. To reach the desired vehicle density at next time instant

tn+1, the desired speed of each segment, denoted by vd(tn, xk), at time interval [tn, tn+1] is

determined by

vd(tn, xk) = −
vkf

ρkj
ρ(tn+1, xk) + vkf . (4.34)

From (4.34), optimized inflow and outflow decision variables are converted into desired

speed for segment k during [tn, tn+1] which are the control variables and are expressed as,

v = [vd(tn, x0), vd(tn, x1), ..., vd(tn, xkm)]T . (4.35)

6.4.2 Triangular-Model-Based Problem Formulation

To simplify the demonstration of different objective functions in the following sections,

we assume all vehicles belong to class of EURO I or onwards, the speed range is 13.1 −

130 km/h and for each vehicle the cylinder capacity range is 1.41L− 2.01L. Although the

formulation from the triangular fundamental diagram cannot lead to a convex problem that

guarantees real-time optimal solution, the triangular model in (1.1) has been recognized

as a more accurate model when representing the flow-density relationship. Thus the off-

line solution from the triangular model provides a reference to evaluate effectiveness of the

CQOP formulation based on the Greenshields Model. The estimates of the COPERT fuel

consumption in (4.31) using the triangular model is formulated as

J tri =

km∑
k=0

Xk[c0va(tn+1, xk)
2 + c1va(tn+1, xk) + c2]

=

km∑
k=0

Xk[c0ω
2(1−

ρkj
ρa(tn+1, xk)

)2 + c1ω(1−
ρkj

ρa(tn+1, xk)
) + c2]

=

km∑
k=0

Xk[c0ω
2(1− Xkρj

(Q
(tn,xk)
up −Q(tn,xk)

down )T +Xkρ(tn, xk)
)2

+c1ω(1− Xkρj

(Q
(tn,xk)
up −Q(tn,xk)

down )T +Xkρ(tn, xk)
) + c2],

if ρc ≤ ρa ≤ ρj . (4.36)
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The above cost function denotes the fuel consumed on road section [ξ, χ] during time interval

[tn+1, tn+2] given density ρ(tn, xk). In (4.36), we define the average vehicle speed at time t

and location x as va(t, x) ∈ [0, vf ]. Hence the second equality holds due to va = ω(1− ρj
ρ ).

Moreover, we further express the average density at next time interval as ρa(tn+1, xk) =

(Q
(tn,xk)
up −Q(tn,xk)

down )T+ρ(tn,xk)X
k

Xk , which leads to the third equality in (4.36). Since the average

velocity is the free-flow velocity when 0 ≤ ρa < ρc, we ignore the free-flow case. Using the

triangular model, the general formulation for the fuel efficiency transportation problem in

(4.32) is expressed as

min. J tri = (4.36)

s.t. Atrimodely ≤ btrimodel

ramp constraints in (4.32), (4.37)

where Atrimodel and btrimodel are the parameter matrix and vector of linear constraints derived

from the triangular model. However, the objective formulated in (4.36) is nonlinear which

requires a Nonlinear Programming (NLP) solver to solve the above problem without guar-

antee of convergence. For real-time traffic control, the nonlinear formulation and existing

NLP solvers are not reliable.

6.4.3 Greenshields-Model-Based Problem Formulation

From the Greenshields fundamental diagram, one has va = −vf
ρj
ρa(t, x) + vf . Then the

performance index is constructed as

J =

km∑
k=0

Xk[c0va(tn+1, xk)
2 + c1va(tn+1, xk) + c2]

=

km∑
k=0

Xk[c0(−
vkf

ρkj
ρa(tn+1, xk) + vkf )2 + c1(−

vkf

ρkj
ρa(tn+1, xk) + vkf ) + c2]

=

km∑
k=0

Xk[c0(−
vkf

ρkj

(Q
(tn,xk)
up −Q(tn,xk)

down )T + ρ(tn, xk)X
k

Xk
+ vkf )2

+c1(−
vkf

ρkj

(Q
(tn,xk)
up −Q(tn,xk)

down )T + ρ(tn, xk)X
k

Xk
+ vkf ) + c2] (4.38)
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The quadratic form of the objective function is determined by Q
(tn,xk)
up and Q

(tn,xk)
down . More-

over, the Hessian matrix of the above objective function in (4.38) is expressed as

H =



p0 −p0 0 0 ... 0

−p0 p0 0 0 ... 0

0 0 p1 −p1 ... 0

0 0 −p1 p1 ... 0

... ... ... ... ... ...

0 ... 0 0 pkm −pkm

0 ... 0 0 −pkm pkm


where pk = 2c0(

vkf
ρkj

T
Xk )2. Since the Hessian matrix derived above is positive semidefinite,

it implies the cost function in (4.38) is a convex function. The corresponding problem

formulation based on the Greenshields diagram is expressed as

min. JGre = (4.38)

s.t. AGremodely ≤ bGremodel

ramp constraints in (4.32), (4.39)

which is a CQOP, where AGremodel and bGremodel represent the parameter matrix and vector form

for model constraints (3.23)-(3.30). Due to the convexity, a global optimum for (4.39) could

be obtained within polynomial computational time using the existing convex optimization

solver [Grant and Boyd (2008)].

6.4.4 Simulation and Discussion

6.4.4.1 Real-World Scenario and VISSIM Setup

The test highway section is a 7.42km long spatial domain of I-235 from 50th Street to

exit 5B, which is one of the busiest freeways in West Des Moines, Iowa. The existing Iowa

Department of Transportation (Iowa DOT) Wavetronix sensors, which are used to capture
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traffic data, cover the highway network of West Des Moines and Des Moines. The collected

aggregated data was obtained through an online data portal maintained by TransCore. The

weekday data for morning peak (7:00 a.m. to 9:00 a.m.) from May 1st to September 30th,

2015 is used in this work. Based on Greenshields model, linear regression is used to fit the

speed-density line illustrated in Fig. 6.3 where one example fitting line for the highway

segment from Valley West Dr. (NB) to exit 2 is shown. Parameters related to fundamental

diagram can be calculated graphically. By making speed equal to zero, jam density ρkj can

be derived accordingly. Similarly, the free flow speed vkf is obtained when density is zero.

y = -0.8775x + 81.378
R² = 0.8431
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Figure 6.3 Speed-Density line fitted through linear regression

The proposed traffic control strategy by solving the formulated NLP or CQOP is orig-

inally programmed in Matlab. To build the connection of control program with VISSIM

simulation, we generate a COM interface. The COM interface module is designed to ac-

cess all network object attributes and realize the user-defined control algorithms [VISION

(2014)]. Through the COM interface, most of the simulation parameters can be dynamically

handled through programming [Shou-feng et al. (2012); Tettamanti and Varga (2012)].

According to the ramp location, test highway section is divided into 10 segments. As

an example, segment 4 is shown in Fig. 6.4. There are four sensors installed at the starting

point of segment 4, where each of them records volume entering into segment 4 on cor-

responding lanes. Another four volume sensors are set at the ending point of segment 4,



105

collecting the traffic volume flowing out. The volume records return to zero for every 120

seconds. Dynamic speed limit signs are located in accordance with the physical character-

istics of each highway segment. Location of the speed limit sign for the first segment is at

the starting point of the test freeway. Locations of the rest speed limit signs could be right

after an on-ramp or an off-ramp. For example, in Fig. 6.4, the speed limit sign is located

at the starting point of segment 4, which is right after the on-ramp of I-235 EB at Valley

West Dr (NB). The highway segment description is shown in Fig. 6.1. Based on the method

proposed by Shaw and Noyce [Shaw and Noyce (2014)], the traffic volume of study corridor

can be balanced. We offer the raw observation volume in Fig. 6.1 as well. Furthermore,

ramp length is not considered in the simulation scenarios so that there is no ramp length

value provided in Fig. 6.1.

VISSIM has two car following models, Wiedemann 74 for urban traffic, and Wiedemann

99 for freeway traffic. The Wiedemann 99 car following model is used in this study. Driver

behavior parameters are calibrated before simulation. Three parameters, standstill distance

(CC0), headway time (CC1), and ‘following’ variation (CC2), are found to have significant

influences on traffic capacity in calibration. The calibrated CC0 is 3.05m, CC1 is 1.45s,

and CC2 is 7.41m. More details about the calibration is described in Dong et al. (2015).

In the following simulation scenarios, real-time control to minimize fuel consumption is

achieved by the following procedures. First, traffic volume of each segment in time interval

[tn−1, tn] is collected by volume sensors installed before and after each entry or exit point

where the vehicles are guided into or leaving the main highway section. Second, desired

vehicle density at tn is obtained through (4.33) which is assumed to be constant during

[tn, tn+1]. Third, based on current density information at tn, we solve NLP or CQOP so

that optimized inflow and outflow can be determined. Fourth, desired density for tn+1 is

calculated through (4.33). At the last step, we attain desired speed during [tn, tn+1] by

(4.34) and return vd(tn, xk) as corresponding dynamic speed limit sign. The time interval

for speed limit updating is 120 seconds.
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Figure 6.5 illustrates the entire procedures of determining the desired speed during

[tn, tn+1]. To verify improvement of fuel efficiency, the fuel consumption amount with and

without the control strategy is recorded and compared. The default speed limit of the test

section is 120 km/h for the case without speed control. For each scenario, the simulation is

designed to last 4200 seconds. Since traffic status is not stable at the beginning period, only

the simulation results from 600 to 4200 seconds are used for data analysis. To demonstrate

feasibility of the proposed control strategy, we consider four scenarios under different volume

demands, including the original traffic flow on I-235 and inflow from I-35N and 50th Street

N. For scenarios 1-4, the volume demands are specified as, 4500, 5000, 5500, and 6000

veh/h, respectively. Simulation results are discussed in the following section.

Figure 6.4 The Test Segment of I-235 from Valley West Dr (NB) to exit 2 in Des Moines,

IA. Arrows indicate location of volume sensors. Elliptical regions imply the

entry or exit location for on-ramp or off-ramp vehicles. Dynamic speed limit

sign is at the left vertex of the segment.

6.4.4.2 Comparison of Two Types of Formulation

In this section, results obtained from the NLP formulation in (4.37) and CQOP in (4.39)

are presented and discussed. Considering the aforementioned test highway section of I-235,

a quadratic programming (QP) solver is used to solve the CQOP in (4.39). Two types

of NLP solvers, interior-point and sequential quadratic programming (SQP), are used to
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Segment Description Raw Observed Data

Order Station Type Length (km) Volume (vph)

1 I-235 EB @ 50nd St (NB) Starting point 4500 5000 5500 6000

2 Segment 1 Main 0.72 4500 5000 5500 6000
3 Exit 1B Off-ramp 1215 1350 1485 1620
4 Segment 2 Main 0.75 3285 3650 4015 4380
5 I-235 EB @ Valley West Dr (SB) On-ramp 452 452 452 452
6 Segment 3 Main 0.33 3737 4102 4467 4832
8 I-235 EB @ Valley West Dr (NB) On-ramp 660 660 660 660
7 Segment 4 Main 0.50 4397 4762 5127 5492
9 Exit 2 Off-ramp 2111 2286 2461 2633

10 Segment 5 Main 0.99 2286 2476 2666 2859
11 I-235 EB@ 22nd St On-ramp 744 744 744 744
12 Segment 6 Main 0.66 3030 3220 3410 3603
13 Exit 3 Off-ramp 939 1000 1057 1117
14 Segment 7 Main 0.55 2091 2222 2353 2486
15 I-235 EB @ 8th St Loop On-ramp 408 408 408 408
16 Segment 8 Main 0.38 2499 2603 2761 2894
17 Exit 4 Off-ramp 350 341 386 405
18 Segment 9 Main 1.07 2149 2262 2375 2489
19 I-235 EB @ 63rd St On-ramp 260 260 260 260
20 Segment 10 Main 1.47 2409 2522 2635 2749
21 I-235 EB @ 42nd St Off-ramp 554 580 606 632

Table 6.1 Test highway description and balanced observation data

solve the NLP problem formulated in (4.37). Parameters in both QP and NLP solvers are

set to be the same, including function tolerance (10−6), constraints tolerance (10−6), and

maximum iteration number (4000). Table I compares the performance of two NLP solvers

and a QP solver when solving the corresponding formulated problems. In order to analyze

dependence of initial states for NLP solvers, we randomly generate 100 groups of initial

states and percentage of convergence for each NLP solver is shown in Table I. The QP

solver does not require initial guess.

Table 6.2 Performance comparison of NLP solvers (interior-point and SQP) for NLP in

(4.37) and a QP solver for CQOP in (4.39)

interior-point SQP QP

requirement of initial guess YES YES NO

optimal solution type LOCAL LOCAL GLOBAL

# of iterations 189 182 11

computational time 0.65s 0.51s 0.17s

percentage of convergence 16% 66% 100%

From Table. 6.2, it is apparent that convergence of NLP solvers depends on appropriate

selection of initial states. However, it is challenging to find appropriate initial states at each

time instant to guarantee local convergence in real-time computation. Even though local
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Figure 6.5 Real-Time optimal control procedures

convergence is obtained for some cases, performance of the objective value is not guaranteed.

In addition, an NLP solver generally takes more time to find a solution even for converged

cases. On the other side, the CQOP in (4.39) can be solved via a QP solver to obtain a

global optimal solution with much less computational time.

To verify the accuracy of the CQOP formulation, results from CQOP using QP solver

is compared with the convergent solution from NLP formulation using SQP solver in Fig.

6.6, where the optimal controlled speed and traffic density for every highway segments are

shown for both methods. Results from both NLP and CQOP are very close, which indicates

the high precision of CQOP formulation. Moreover, the fuel consumption during this time

interval from both methods is shown in Table 6.3, which again demonstrates the consistency

of two solutions. Based on the above comparison and discussion, in the following simulation,

we choose the Greenshields-model-based CQOP formulation that significantly improves the

computational efficiency without sacrificing accuracy.
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Figure 6.6 Controlled speed and traffic density by solving NLP in (4.37) and CQOP in

(4.39).

Table 6.3 Comparison of fuel consumption formulated in (4.36) and (4.38)

w/o control with control fuel reduction

Amount in (4.36) (g) 388.91 315.18 18.95%

Amount in (4.38) (g) 394.29 317.02 19.60%

relative difference 1.38% 0.58%

6.4.4.3 Simulation Results

As shown in Fig. 6.3, we determine a parallelogram region by shifting fitted speed-

density line up and down. The speed could be slightly different from the theoretical result

provided by linear regression in a neighborhood. Hence, to consider realistic application,

optimal speed value is rounded to the increment of 5 km/h and no less than 15 km/h.

Figure 6.7 illustrates histories of control variables, i.e. suggested driving speed shown

on speed limit signs. Figures 6.8-6.11 demonstrate the density history with and without

speed control for simulation scenarios 1 through 4, respectively. Density history diagram

demonstrates the average density reduction excluding the first two segments. The proposed

control strategy leads to lower average vehicle density compared with uncontrolled one.

Especially for segment 9 that generates a high density value at the end of simulation period,
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our algorithm avoids severe congestion for that segment. Figures 6.9-6.11 demonstrate the

improved performance on congestion alleviation when relatively high demanding (≥ 5000

veh/h) exists. Quantitative comparison of Total Travel Time (TTT) are shown in Table .

Proposed controller effectively reduces the TTT by congestion alleviation.
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Figure 6.7 Histories of Controlled Speed Limit. Upper Left : 4500 veh/h Demand at Origin.

Upper Right : 5000 veh/h Demand at Origin. Lower Left : 5500 veh/h Demand

at Origin. Lower Right : 6000 veh/h Demand at Origin.
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Figure 6.8 Density History of Scenario 1 for 4500 veh/h Demand at Origin. Left : Speed

limit signs are controlled by the rounded optimal solution. Right : Uncontrolled

case with desired speed of 120km/h for each segment.

Total fuel consumption of vehicles on test highway section during simulation time is

provided in Table 6.5. We pick five different seed parameters to initialize five random

generators in VISSIM. Different seed settings allow us to simulate stochastic variations of

vehicles entering test freeway at the origin. Five sets of comparison results are shown in
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Figure 6.9 Density History of Scenario 2 for 5000 veh/h Demand at Origin. Left : Speed

limit signs are controlled by the rounded optimal solution. Right : Uncontrolled

case with desired speed of 120km/h for each segment.
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Figure 6.10 Density History of Scenario 3 for 5500 veh/h Demand at Origin. Left : Speed

limit signs are controlled by the rounded optimal solution. Right : Uncon-

trolled case with desired speed of 120km/h for each segment.

Table 6.5 for scenarios 1 through 4. Comparing to the case without control, our speed control

strategy significantly reduces the fuel consumption amount on test highway. Meanwhile, the

optimal solution can be obtained within average of 1.8 seconds using MATLAB installed

in a standard desktop computer with a 3.50 GHz processor and a 16 GB RAM. The high

computational performance indicates capability of real-time implementation. Therefore,

the proposed method is verified to be applicable to a range of large scale real-world traffic

control scenarios.
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Figure 6.11 Density History of Scenario 4 for 6000 veh/h Demand at Origin. Left : Speed

limit signs are controlled by the rounded optimal solution. Right : Uncon-

trolled case with desired speed of 120km/h for each segment.

Table 6.4 Comparison of TTT with and without control in high demanding profile (≥ 5000

veh/h)

Scenarios TTT w/o control TTT with control TTT Reduction

[veh*h] [veh*h] Percentage

Demands: 217.08 196.84 9.32%

5000 veh/h 223.22 186.15 16.61%

217.59 185.28 14.85%

218.20 195.02 10.62%

208.76 192.26 7.91%

average: 11.86%

Demands: 228.65 186.65 18.37%

5500 veh/h 231.78 186.10 19.71%

227.98 187.98 17.55%

233.51 190.95 18.22%

231.54 192.48 16.87%

average: 18.14%

Demands: 232.48 189.45 18.51%

6000 veh/h 233.42 189.01 19.02%

231.26 184.81 20.09%

235.04 194.01 17.46%

234.45 191.28 18.41%

average: 18.70%
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For each case, t-test is performed to statistically examine the performance of proposed

optimal control strategy. The p-value and 95% confidence interval (CI) are shown in Table

6.5. The samples for taking t-test are fuel consumption resulting from five repeated simula-

tions with different seed parameters. T-test for the difference of controlled and uncontrolled

cases (5th column in Table 6.5) shows that p-value decreases when demanding volume in-

creases. The decreasing trend demonstrates increasing reduction of fuel consumption com-

pared with no controlled cases. Therefore, proposed control strategy is more effective when

applied in sever congested scenarios. Furthermore, negative value of CI demonstrates the

effectiveness of propose control strategy, i.e. fuel consumption is always reduced.

6.5 Distributed Traffic Speed Control for Travel Time Minimization

Using B-J/F solution to HJ Moskowitz function, we formulate a LP problem solved for

travel time minimization. Unlike with previous investigation on optimal control of scalar

conservation law, a distributed framework is constructed using a networked Road Infras-

tructures (RIs). Two distributed algorithms, projected subgradient method and ADMM,

are incorporated in this distributed RIs network. Instead of relying on global information

collection, distributed method only depends on local traffic information.

6.5.1 A General Formulation of Total Travel Time Minimization Problem

As illustrated in Fig. 6.1, a set of dynamic speed limits are controlled for travel time

minimization on the highway mainstream. The travel time of all vehicles on all highway

segments during time interval [tn, tn+1] is expressed as

J =

km−1∑
k=0

(Q(tn,xk)
up −Q(tn,xk)

down )∆t (5.40)

=

km−1∑
k=0

Jk
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Constrained by ramp effect, travel time minimization can be formulated as a LP problem

with respect to Q
(tn,xk)
up and Q

(tn,xk)
down as follows,

min. J = (5.40)

s.t. A
(tn,xk)
model y(tn,xk) ≤ b(tn,xk)model , k = 0, ..., km − 1

Q
(tn,xk)
down = Q

(tn,xk+1)
up , k = 0, ..., km − 1

if no ramp exists on [xk, xk+1],

(1−Rxkoff )Q
(tn,xk)
down = Q

(tn,xk+1)
up , k = 0, ..., km − 1

if off-ramp exists on [xk, xk+1],

Q
(tn,xk)
down + Cxkin = Q

(tn,xk+1)
up , k = 0, ..., km − 1

if on-ramp exists on [xk, xk+1], (5.41)

A
(tn,xk)
model y(tn,xk) ≤ b(tn,xk)model are compact form of local model constraints for segment k at time

tn. In case of real-time traffic controller design, one-time-step optimization is carried out,

which optimize the next speed limit based on current traffic flow and density information.

This optimization process repeats for every time interval [tn, tn+1] until n = M − 1. We

omit the redefining of all parameters including Amodel, bmodel, R
xk
off , Cxkin , as well as variable

set y and keep them consistent with the definition in (4.32). In this case, y(tn,xk) represent

the local set of traffic inflow and outflow at tn. Moreover, desired speed is calculated by

following the same procedure in (4.33)-(4.35).

6.5.2 Applying Projected Subgradient Method in Distributed Traffic Control

In (5.41), we consider the ramp effect by adding affine equality constraints. It can also be

incorporated in a compact form by using a fat and full rank matrix A ∈ R(M∗km)×(2∗M∗km).

It turns out the projection operator is also affine. Hence the update step simply fol-

lows the linear transformation as in (4.17) of section 3.4. We expand matrix A as A=
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
A1 · · · 0

...
. . .

...

0 · · · Akm

. which is a diagonal block matrix. Let B = AT (AAT )−1A and B ∈

R(2∗M∗km)×(2∗M∗km) is still a diagonal block matrix where only the entries associated with

connected highway segments are non-zero. Therefore, updating step only relies on cur-

rent local information y(tn,xk′ ), where k′ is the index set of all segments connecting to the

objective segment.

Another issue is that the local model constraints may not be satisfied if the primal set is

projected to the affine set by (4.17) of section 3.4. In this case, we locally choose any violated

model constraint, i.e. the local A
(tn,xk)
model . Then it is treated as the subgradient to update

the state value. Therefore, state set recursively moves towards into the feasible region after

each updating. If state set is feasible locally, we turn back to using projected updating step

(4.17) until it violates the model constraints. We summarize modified projected subgradient

method as follows.
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Initialization: Initial Density at t0, n = 0, k = 0;

while less than the maximum iteration or not converged do

for each highway segment at time tn (in parallel) do

if A
(tn,xk)
model y(tn,xk) ≤ b(tn,xk)model then

y(tn,xk) = y(tn,xk) − α(I −ATk (AkA
T
k )−1Ak)

∂Jk
∂y(tn,xk)

end

else

g(y(tn,xk)) = A
(tn,xk)
model

y(tn,xk) = y(tn,xk) − α(I −ATk (AkA
T
k )−1Ak)g(y(tn,xk))T

end

end

end

Protocol 7 Solving for Travel Time Minimization Problem with Projected Subgradient

Method

6.5.3 Applying ADMM in Distributed Traffic Control

In the application of ADMM for travel time minimization, we sequentially find the

optimal solution during each time interval. A general form of augmented Lagragian at any

time tn is built as follows. We ignore the time notation tn for simplicity in the following

equations.

L(y,µ) =

K∑
k=0

fk(yxk) + µT (Ayxk − b) +
ρ

2
||Ayxk − b||22 (5.42)

where A and b are parameter matrix and vector to represent ramp effect. By dual decom-

position, each subproblem is solved by minimizing the following Lagrangian

min. Lk(y
xk ,yxS ,µlocal) = fk(yxk) + µTlocaly

xk + (yxk)THkyxk

s.t. Axkmodely
xk ≤ bxkmodel (5.43)
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where in case of k = 2, ..., km − 1

µlocal =



[−µk−1 − ρ(1−Rxkoff )Q
xk−1

down, µk]
T ,

if off-ramp off-ramp exits on[xk−1, xk]

[−µk−1 − ρ(Q
xk−1

down + Cxkin ), µk]
T ,

if on-ramp off-ramp exits on[xk−1, xk]

[−µk−1, µk]T ,

if no ramp exits on[xk−1, xk]

(5.44)

For k = 0 one has

µlocal =



[0, µ0(1−Rxkoff )]T ,

if off-ramp exits on[x0, x1]

[0, µ0]
T ,

if on-rampor no ramp exits on[x0, x1]

(5.45)

Finally for k = km, one has

µlocal =



[−µkm−1 − ρ(1−Rxkoff )Q
xkm−1

down , 0]T ,

if off-ramp exits on[xkm−1, xkm ]

[−µkm−1 − ρ(Q
xkm−1

down + C
xkm
in ), 0]T ,

if on-ramp exits on[xkm−1, xkm ]

[−µkm−1, 0]T ,

if no ramp exits on[xkm−1, xkm ]

(5.46)

Hessian matrix Hk is diagonal which is defined as

Hk =

1 0

0 1−Rxkoff


We first saparetly solve (5.43) and apply optimal solutions from each optimizer as the

initial value yxk0 . Then follow ADMM iterations in the Protocol shown in section 3.5 to
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sequentially obtain yxkq for each segment. Solving for each subproblem relies on the newly

updated solution on segment k − 1 at iteration q, i.e. y
xk−1
q , as well as the last updated

solution on segment k+ 1, i.e. y
xk+1

q−1 . By completing state iteration in a sequential fashion,

we update Lagrangian multiplier µ using local state information. This procedure repeats

at each time instant tn until tM−1.

Comparing with dual subgradient method, ADMM updates state variables in sequential

fashion, which means y
xk+1
p depends on current optimal value of yxkq . While dual subgra-

dient method can be implemented in parallel sense. However, ADMM is still effective and

efficient in solving this problem due to the linearity of the objective. In ADMM, augmented

Lagrangian becomes strict convex by adding quadratic term in (5.42). It guarantees the con-

vergence of primal solution while it does not always hold using dual subgradient method.

In practice, we always find the better performance of ADMM on convergence and non-

sensitivity of stepsize parameter ρ. In numerical example section, we adopt ADMM to

achieve a modest accuracy within tens of iterations.

6.5.4 Simulation and Discussion

In simulation, we adopt the same test highway scenario and the layout of speed limit

signs as in section 6.4.4. To compare ADMM based distributed algorithm in solving traffic

travel time minimization problem, we conduct a set of simulations using different optimiza-

tion approach. First, we directly solve original problem without dual decomposition in a

centralized manner. Then, subproblems are solved by projected subgradient method and

ADMM. The last, no control case is taken into account by setting an identical constant

speed limit for each segment. Demand traffic flow is 4500veh/h and remain constant during

2h simulation time. We record inflow and outflow vehicle count for every 2min and calcu-

late the total number of vehicles on test highways section. Time history of total vehicles

number (vehicle conservations) is plotted in Fig.6.12.

Speed limit control is carried out after the the traffic get to the stable state. Hence
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Figure 6.12 Time History of Vehicles Conserved in test Highway Section

there is no difference prior to 2min. We notice that consistent vehicles counts are recorded

using centralized and distributed optimization algorithm, which numerically verify the ef-

fectiveness of distributed method. To save space, we extract the history of iterations at

the first time instance in Fig. 6.13 and 6.14. Both of them demonstrate the convergence

to global optimal solution using projected subgradient method and ADMM. f∗ and y∗ are

optimal objective value and associated optimal solution obtained by solving 5.41 using LP

solver in centralized fashion. Although both two types of distributed algorithm will finally

converge to the optimal point, ADMM provides a better performance than projected gra-

dient method. First ADMM takes tens of iterations for the convergence. Moreover, there

is one non-sensitive stepsize parameter in ADMM. However, two sensitive stepsize param-

eters are required to determined in projected gradient method. However, we notice that

they result in a overlapping results of reduced vehicle counts shown in Fig.6.13. We make

further comparison regarding total travel time in Table.6.6.

Comparing with no controlled scenario with different fixed speed limit settings, both

centralized and distributed method are numerically verified effective in reducing total travel

time. Since either projected gradient method or ADMM equivalently affects the travel
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Figure 6.13 Iteration history by projected subgradient method. Upper : The difference of

objective value at each iteration and at y∗. Lower : l2 norm of y− y∗ at each

iteration.

Table 6.6 Comparison of TTT

TTT without control TTT with TTT with reduction

centralized optimizer distributed optimizer percentage

291.80 veh ∗ h 270.03 veh ∗ h 270.03 veh ∗ h 7.46%

time, we do not distinguish them in Table.6.6. We notice that increasing speed limit will

not reduce the travel time in case of high traffic demand. Reversely, more vehicles are

conserved in test highway section by simply setting a higher speed limit.

6.6 A MIQQ Based Real-Time Control Strategy for Highway Travel

Time Minimization

The traffic management and control design for travel time minimization is extended to

a highway network scenario in this application. Different from the controller designed in

previous examples where only dynamic speed limits are implemented, we develop an efficient

strategy for controlling the hybrid highway infrastructures including dynamic speed limits,
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Figure 6.14 Iteration history by ADMM. Upper : The difference of objective value at each

iteration and at y∗. Middle: l2 norm of Ay − b at each iteration. Lower : l2

norm of y − y∗ at each iteration.

ramp metering and information board. The traffic density is predicted based on the flow

dynamic model and corrected periodically by measured traffic flow data. The minimum

travel time traffic control problem is then formulated as MIQQ. Numerical simulation of a

real world highway network is provided to demonstrate significant reduction of TTT and

alleviation of traffic congestion compared to results obtained from ALINEA and PI-ALINEA

methods.

6.6.1 Highway Network

6.6.1.1 Components of a Highway Network

A highway network is composed of nodes and edges that connect two distinct nodes, as

illustrated in Fig. 6.15. Each node n ∈ N represents one of the three types of location:

1. The conjunction of different highway mainstreams, specifically, the conjunction node

nic ∈ Ncout , e.g., n2c and n4c in Fig. 6.15, that allows for outgoing traffics, or njc ∈ Ncin , e.g.,

n1c and n5c , that have incoming traffic flow from other highway sections, where Ncout and

Ncin are two subsets of N .
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Figure 6.15 Example of a highway network. Mainstream links are marked as green for

Highway #1, red for Highway #2, and blue for Highway #3. Black arrows:

on-ramps or off-ramps connecting urban/rural roadway to highway. Yellow

arrows: roadway links connecting different highways links.

2. The joint where incoming traffic contributes to the highway mainstream from on-

ramp, denoted as nion ∈ Non.

3. The joint where traffic exits the mainstream via off-ramp, denoted as nioff ∈ Noff .

Based on the above assumptions, the setN contains four subsets,N = {Ncin ,Ncout ,Non,Noff}.

Similarly, three types of edges are defined below:

1. Mainstream link (highway link), denoted by lmmain ∈ Lmain, m = 1, ..., Lmain, that

connects two adjacent nodes to form the mainstream of traffic on highway section, e.g. l7main

represent highway link (n1on, n
4
c) in Fig. 6.15.

2. On-ramp or off-ramp, denoted as lhon ∈ Lon, h = 1, ..., Lon and lgoff ∈ Loff , g =

1, ..., Loff , respectively, that allows the traffic entering or exiting the highway.

3. Roadway, denoted by lrroad ∈ Lroad, r = 1, ..., Lroad, represents the link for which

traffic flow changes the route from one highway section to another, e.g. l3road represents

roadway link (n4c , n
5
c) in Fig. 6.15.

The total number of links is determined by L = Lmain+Lroad+Lon+Loff . Furthermore,

we make the following assumptions to simplify the problem.

Assumption 6.6.1. The on-ramp traffic volume Q
(tp,lhon)
on , is constant and controlled by

ramp metering.
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Assumption 6.6.2. The off-ramp vehicle volume is proportional to the corresponding

downstream volume at mainstream link lmmain with the constant ratio R
(tp,l

g
off )

off during [tp, tp+1].

Assumption 6.6.3. The traffic flow exiting a highway section via roadway link lrroad re-

mains a constant ratio R
(tp,lrroad)

off with respect to the corresponding downstream volume at

mainstream link lmmain during [tp, tp+1]. The downstream flow of link lrroad, denoted by

Q
(tp,lrroad)
on , is controlled by a ramp meter.

6.6.1.2 A Hybrid Traffic Control Infrastructure

A hybrid traffic control infrastructure, consisting dynamic speed limit sign, ramp me-

tering, and highway information board, is expected to improve efficiency of the traffic man-

agement than a single control method. As illustrated in Fig.6.16, the dynamic speed

LED Highway Information Sign

Dynamic Speed Limit Sign

Ramp metering 

Figure 6.16 Example of Hybrid Control Infrastructures.

limit sign is employed as one of the traffic management infrastructures to control flow on

each highway link. The desired volume can be obtained by displaying an appropriate speed

v(tp, l
m
main) on the speed limit sign. According to the time-varying traffic states, the speed

limit on each mainstream link lmmain is adjusted periodically via the control variable set

v=[v(t0, l
1
main), ..., v(t0, l

Lmain
main ), . . . , v(tP−1, l

1
main), ..., v(tP−1, l

Lmain
main )].

The ramp metering controls the outflow of on-ramp traffic, Q
(tp,l)
on for all l ∈ {Lroad,Lon}.

The one vehicle per green principle is adopted in meter control, where one vehicle is allowed

to pass the meter during a short green light cycle. To obtain the desired on-ramp volume,

the meter cycle length T is designed for each time interval at downstream of lrroad and lhon.
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The control variable set for ramp metering is T = [T (t0, l
1
on), ..., T (t0, l

Lon
on ), T (tP−1, l

1
on), ...,

T (tP−1, l
Lon
on ), T (t0, l

1
road), ..., T (t0, l

Lroad
road ), T (tP−1, l

1
road), ..., T (tP−1, l

Lroad
road )].

The highway information board guides the traffic to their destination by selecting the

optimal routes. For example, as shown in Fig. 6.15, traffic from Highway #2 with desti-

nation n5c is guided to travel via l2road or l3road. The highway information board is located

at link l5main in this case. The control variable set determining the route selection is set as

b = [b(t0,l
1
road), ..., b(t0,l

Lroad
road ), ..., b(tP−1,l

1
road), ..., b(tP−1,l

Lroad
road )]. The element in b is defined as

a binary variable according to

b(tp,l
r
road) =


1, if lrroad is allowed

0, if lrroad is not allowed.

(6.47)

In practice, the highway information board closes or activates the links between highway

sections. If a link is closed, alternative route information will be displayed on the information

board. For example, if l2road is closed, then traffic with destination n5c will be guided to travel

trough l3road.

6.6.2 Problem Formulation

6.6.2.1 Intermediate Control Variables and The Objective Function

To minimize the TTT of the highway network, the minimum time traffic management

problem is formulated as a MIQQ problem. The intermediate control variables include

upstream, Q
(tp,lmmain)
up , and downstream traffic flow, Q

(tp,lmmain)
down , of all highway links, the

outflow at the end of all on-ramps, Q
(tp,lrroad)
on and Q

(tp,lhon)
on , as well as the binary variables

for route selection, b(tp,l
r
road), during each time interval [tp, tp+1] for all p = 0, . . . , P − 1.

Therefore, the intermediate control variables include both continuous and binary variable

sets.



126

The TTT for all vehicles in the highway network over the duration [t1, tP ] consists of

traversing time Jm along all highway link lmmain, waiting time Jc in the queue on all roadway

link lrroad, as well as the waiting time Jon on all on-ramp lhon. Accordingly, the objective is

expressed as

J=Jm + Jc + Jon

=

P−1∑
p=0

∆t{
∑

lmmain∈Lmain

[(Q
(tp,lmmain)
up −Q(tp,lmmain)

down )∆t

+ρ
(tp,lmmain)
ini Xlmmain

] +
∑

lrroad∈Lroad

[(Q
(tp,lrroad)
up

−Q(tp,lrroad)
on )∆t+ ρ

(tp,lrroad)
ini Xlrroad

]

+
∑

lhon∈Lon

[(Q
(tp,lhon)
up −Q(tp,lhon)

on )∆t+ ρ
(tp,lhon)
ini Xlhon

]},

(6.48)

whereXlmmain
, Xlrroad

, andXlhon
are the segment length of link lmmain, lrroad, and lhon respectively,

ρini is the initial density and periodically updated by the new measurements from the volume

sensors, and Q
(tp,lhon)
up is obtained from the volume sensors. Q

(tp,lrroad)
up is a quadratic function

of the intermediate variables, expressed as

Q
(tp,lrroad)
up = Q

(tp,lmmain)
down b(tp,l

r
road)R

(tp,lrroad)

off +Qother

where traffic on link lmmain flows into other highway links via lrroad and Qother, measured by

volume sensors, is the volume contributed from other resources excluding lmmain.
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6.6.2.2 MIQQ Problem Formulation

By incorporating the linear model constraints describing the traffic dynamics of each

highway into the objective function, the hybrid traffic control problem to minimize the TTT

of the highway network is formulated as

min
y

J = (6.48)

s.t.(a)Amodely ≤ bmodel

(b) 0 ≤ (Q
(tp,lrroad)
up −Q(tp,lrroad)

on )∆t+ ρ
(tp,lrroad)
ini Xlrroad

<MAX lrroad ,∀ l
r
road ∈ Lroad, p = 0, ..., P − 1,

(c) 0 ≤ (Q
(tp,lhon)
up −Q(tp,lhon)

on )∆t+ ρ
(tp,lhon)
ini Xlhon

<MAX lhon , ∀ l
h
on ∈ Lon, p = 0, ..., P − 1,

(d) (1−R(tp,l)
off )Q

(tp,l
j
main)

down = Q
(tp,lkmain)
up , p = 0, ..., P − 1

if ljmain l
k
mainand l are separated at nioff ∈ Noff

or nqc ∈ Ncout ,

ljmain, l
k
main ∈ Lmain, l ∈ {Loff ,Lroad},

(e)Q
(tp,l

j
main)

down +Q
(tp,l)
on = Q

(tp,lkmain)
up , p = 0, ..., P − 1

if ljmain l
k
mainand l are separated at nion ∈ Non

or nqc ∈ Ncin ,

ljmain, l
k
main ∈ Lmain, l ∈ {Lon,Lroad},

(6.49)

where y represent the intermediate control variable set. The linear model constraints de-

scribing the traffic dynamics in (3.22) are represented in a compact form in (a) of (6.49).

To prevent traffic congestion on ramps due to ramp metering, additional quadratic and

linear inequality constraints are introduced in (b) and (c). The left hand side of (b) and

(c) compute the number of vehicles on links lrroad and lhon for every time interval and are

assumed to be less than the pre-determined maximum allowed vehicle number MAX lrroad
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andMAX lhon , respectively. According to assumptions 6.6.1-6.6.2, equalities (d) and (e) hold

in (6.49). Since the above formulation includes mixed continuous and binary variables and

the objective is a quadratic function subject to quadratic and linear constraints, problem

(6.49) is classified as a MIQQ problem.

6.6.2.3 Conversion from Intermediate Control Variable Set to Final Set

Solution from problem (6.49) generates intermediate control variables. To convert the

intermediate control variables to the final ones, including v, T, and b, to display on the

traffic infrastructures, the following transformations are required.

First, based on the triangular fundamental diagram defined in (1.1), elements in v are

determined by

v(tp, l
m
main)=


v
lmmain
f , if 0 ≤ ρ ≤ ρl

m
main
c

wl
m
main(1−

ρ
lmmain
j

ρ
), if ρ

lmmain
c < ρ≤ρl

m
main
j

(6.50)

where

ρ =
(Q

(tp−1,lmmain)
up −Q(tp−1,lmmain)

down )∆t

Xlmmain

+ ρ
(tp−1,lmmain)
ini . (6.51)

Hence, the parameters in the fundamental diagram of highway link lmmain are represented

by v
lmmain
f , wl

m
main , ρ

lmmain
c and ρ

lmmain
j in (6.50)-(6.51).

Second, the meter cycle length T is set in unit of second and calculated based on the

outflow of on-ramp in form of. Given a constant green phase Tg that allows one vehicle

passing the meter during that cycle, the controlled meter cycle length is determined by

T (tp, l) =
Tg ∗ 3600

Q
(tp,l)
on

, l ∈ {Lroad,Lon}. (6.52)

As the final control variable set b is consistent with the corresponding ones in the interme-

diate control variables, no conversion is required for this set.
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6.6.2.4 Implementation of the Hybrid Traffic Control Strategy

When determining control variables, the traffic flow and density are predicted based

on current density and the traffic flow dynamics model. However, the traffic dynamic

model is not an ideal one due to uncertainties of the fundamental diagram. In order to

improve prediction accuracy, the real world traffic flow data is measured to update real-

time density periodically. During each updating period, the control system integrates the

sensing-optimizing-displaying (SOD) procedure which is illustrated in Fig.6.17.

The volume sensors record the amount of vehicles entering and fluxing out of all highway

links lmmain, roadway links lrroad and on-ramp links lhon during the updating period [tp−p′ , tp].

p′ is defined as time steps in between two consecutive updating times. After receiving the

measured volume data, the traffic density is updated via

ρ
(tp,l)
ini =

N
(tp−p′ ,l)
up −N (tp−p′ ,l)

down

Xl
+ ρ

(tp−p′ ,l)

ini , (6.53)

where l ∈ {Lmain,Lroad,Lon}, N
(tp−p′ ,l)
up and N

(tp−p′ ,l)

down are measured number of vehicles

during [tp−p′ , tp] at upstream and downstream of link l. Before new measurements from the

volume sensors become available at the next updating time tp+p′ , problem (6.49) will be

solved at each time interval tp+i, tp+i+1 for index i and 0 ≤ i < p′ to determine the new

intermediate control variables which are converted into the final control variables based on

(6.50)-(6.52). Values of the final control variables at each time interval are then sent to

corresponding dynamic speed limit signs, ramp metering and highway information boards.

The density will be updated by new measured data at tp+p′ , which initiates the next SOD

procedure.

6.6.3 Simulation and Discussion

6.6.3.1 A Highway Network Example and VISSIM Settings

In this section, a real world scenario is considered as a test highway network. We extract

two sections with 6.08 km length of each one from two major highways, I-35 and US-69,



130

Initialize the knowledge of 
density information 𝜌𝜌 𝑡𝑡𝑝𝑝, 𝑙𝑙

for each link at time 𝑡𝑡𝑝𝑝.

Collect volume data during [𝑡𝑡𝑝𝑝−𝑝𝑝𝑝, 𝑡𝑡𝑝𝑝]
from volume sensors (symbolled as blue 

rectangle) for each link. 

Solve MIQQ optimization problem

Update speed 
limit signs.

Update ramp 
metering.

Update highway 
information signs.

Design corresponding 
control strategy.Mainstream 

Volume 
Sensors

On-Ramp 
Volume 
Sensors

𝑝𝑝 ← 𝑝𝑝 + 1

𝑝𝑝 ← 𝑝𝑝 + 𝑝𝑝𝑝
Send request for 

volume data

Send message of 
volume data

until
𝑝𝑝 ← 𝑝𝑝 + 𝑝𝑝𝑝

Optimizing

Displaying

Sensoring

Figure 6.17 A Sensoring-Optimizing-Displaying (SOD) Procedure for Real-Time Highway

Traffic Control

which are located between the cities Ames and Des Moines in Iowa, as illustrated in Fig.

6.18. Two on-ramps divide the test highway sections into four segments. Two roadways,

with one located in north and another one in south, allows traffic traveling between US-69

and I-35.

Volume sensors are installed at the starting and ending point of each highway segment,

roadway link and on-ramp. Each of them records the number of vehicle entering and fluxing

out of the corresponding link. For every 8 mins, the volume sensors send the sensor data

to the computation center update real time density on highway segments and on-ramps.

VISSIM is connected to the MIQQ solver [K. Holmstrom and Edvall (2005)] through

COM interface in MATLAB. To control speed limit in this study, the desired speed limits

are dynamically adjusted at upstream point of each highway segment for every 2 mins.

Moreover, ramp metering cycle lengths are updated per 2 mins based on the optimal solution

from MIQQ. For ramps that are supposed to be closed from the control results, traffic volume

of the corresponding ramp is assumed to be zero in the simulation.
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Figure 6.18 A Test Highway Network

6.6.3.2 Simulation Results

In order to compare the performance of MIQQ with other control strategies, four typles

of simulation results are provided, including cases without control, ALINEA strategy, PI-

ALINEA ramp metering method, and the proposed MIQQ method. Relative setting from

the four methods are shown in Table 6.7. For each case, the simulation lasts for 3 hours,

where simulation from the 1st 20 mins is ignored due to the unstable traffic status at the

beginning time.

ALINEA is a popular local responsive feedback ramp metering strategy, and has been

verified to be an effective strategy in both field tests and simulation [Hadj-Salem et al.

(1990); Papageorgiou et al. (1997)]. ALINEA determines the metering rates based on the

downstream mainline occupancy from the meter. Its objective is to maximize the mainline

throughout by maintaining occupancy values below the preset threshold. Since it focuses on

preventing merging congestion, ALINEA requires the real-time occupancy measurements

around the merging areas to achieve efficiency. However, bottlenecks may be further away

from the merging areas in real world scenarios, where ALINEA cannot lead to high efficiency.
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Thus, PI-ALINEA, a Proportional-Integral (PI) extension of ALINEA has been proposed

and proved to be an efficient ramp-metering algorithm in the presence of far-downstream

bottlenecks [Kan et al. (2016)].

Table 6.7 Comparison of traffic control strategies

No Control ALINEA PI-ALINEA MIQQ

Speed Limit

Signs
90km/h 90km/h 90km/h Dynamic

Ramp

Metering
Unavailable Dynamic Dynamic Dynamic

Information

Board
Unavailable Unavailable Unavailable Available

TTT

[veh ∗ h]
633.26 634.53 624.53 542.63
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Figure 6.19 Time history of vehicle conservation at highway segment 1 (upper left), high-

way segment 2 (upper right), highway segment 3 (lower left) and highway

segment 4 (lower right).

To verify the feasibility of the proposed MIQQ strategy in high traffic demands, north-

to-south traffic flow are set to 1600 veh per hour (vph) and 1200 vph at source location of

highway I-35 and US-69, respectively. Traffic volumes is 600 vph for on-ramp #3 and #4.
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It is assumed that 20% of traffic flow on US-69 coming from north will transfer to I-35.

During each time interval, they are guided to travel through roadway #1 or #2 by the

highway information board. For every 8 mins, densities are updated by the measured data

on each highway link and on-ramp. The control variables are regenerated and displayed

through the hybrid infrastructures every 2 mins.

Simulation results are shown in Table 6.7 and Fig. 6.19. The proposed MIQQ leads to

further reduced TTT compared to the other three methods. The TTT reduction percentages

are 14.31%, 14.48% and 13.11% compared to cases with no control, ALINEA, and PI-

ALINEA, respectively. Furthermore, less vehicles are observed in each test highway link for

every time interval. The comparative results verify that the proposed MIQQ strategy has

improved efficiency in congestion alleviation during rush hours.
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Figure 6.20 Time history of vehicle conservation at on-ramp 1 (upper) and 2 (lower).

Since not all on ramps have ramp metering in a real world highway network, we assume

only a subset of on-ramps is controlled by ramp metering. In this case, on-ramp 1 and 2

are controlled while on-ramp 3 are 4 have no ramp metering. Time history of vehicle count

of on-ramps 1 and 2 are illustrated in Fig. 6.20. A threshold is considered to restrict queue

length at on-ramps, i.e. maximum 6 vehicles in the waiting queue. Figure 6.20 demonstrates

the queue length restriction is satisfied on each of the two controlled on-ramps.
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6.7 Conclusion

To mathematically model the traffic dynamics, we design a new explicit affine expres-

sions for describing traffic flow in any future time on highway section. Based on Lighthill-

Whitham-Richard partial differential equation, Cauchy problem is modeled as an optimiza-

tion problem. The explicit solution to Cauchy problem is derived based on the Lax-Hopf

formula and Greenshields Fundamental Diagram. Affine model constraints are considered

in the Barron-Jensen/Frankowska solution. Traffic management problem can be formulated

as convex/non-convex optimization problem by incorporating affine model constraints.

In the first application, we propose an efficient convex optimization problem formulation

for fuel consumption minimization. After modeling the performance index as a quadratic

function, the real-time fuel-efficient traffic control problem is formulated as a convex op-

timization problem. Simulation results demonstrate the reduced fuel consumption and

alleviated traffic congestion. The feasibility of proposed optimization method is verified

through VISSIM simulation in which different traffic volume and random seed parameters

are considered.

In the second application, travel time is minimized by LP in distributed manner. We

design two efficient local optimizers based on projected subgradient method and ADMM,

respectively. Numerical simulation shows a consistent result obtained by using centralized

method, which shows reduced TTT on test highway section. Comparing with projected sub-

gradient method, it takes much less iterations of convergence for ADMM. Besides, ADMM

requires only one step size design while two of them are necessary in projected subgradient

method. Hence, we conclude ADMM is better than projected subgradient method in terms

of implementation simplicity and iterative efficiency.

In the last application, we extend to solving a non-convex problem for traffic manage-

ment in a highway network. A time efficient traffic control strategy is presented by using

hybrid highway infrastructures, including dynamic limit signs, ramp metering, and highway

information boards. The minimum time transportation problem for the entire highway net-
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work is formulated as MIQQ. Performance of the proposed MIQQ method is verified in a

real world simulation example using VISSIM. Compared to existing methods, ALINEA and

PI-ALINEA, MIQQ lead to more reduced travel time and alleviation of congestion during

busy hours.
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APPENDIX A. PROOF OF THEOREM 3.3.1

In subgradient method, we develop the fowllowing result associated with Euclidean

distance to optimal set x∗,

||xqm+1 − x∗||22 = ||xqm − αqmgqms − x∗||22

= ||xqm − x∗||22 − 2αqmgqmTs (xqm − x∗) + (αqm)2||gqms ||22

≤ ||xqm − x∗||22 − 2αqm(Jqm − J∗) + (αqm)2||gqms ||22. (0.1)

According to updating step in subgradient method, we expand xqm+1 = xqm − αqmgqms in

the first line in (0.1). Then the third inequality hold due to the definition of subgradient

gs(x
q) at xq. Recursively applying the result of (0.1) until q = 0 gives

||xqm+1 − x∗||22 ≤ ||xqm − x∗||22 − 2αqm(Jqm − J∗) + (αqm)2||gqms ||22

≤ . . .

≤ ||x0 − x∗||22 − 2

qm∑
q=0

αq(Jq − J∗) +

qm∑
q=0

(αq)2||gs(xq)||22. (0.2)

As the Euclidean distance is equal to or greater than zero, the right side of (0.2) yields

non-negativity, which implies the following inequalities where the second line holds by As-

sumption 3.3.2.

2

q∑
q=0

αq(Jq − J∗) ≤ ||x0 − x∗||22 +

qm∑
q=0

(αq)2||gs(xq)||22

≤ U2 +

qm∑
q=0

(αq)2||gs(xq)||22 (0.3)
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Notice that the Euclidean distance achieves the minimum value at J i− J∗ = Jqmbest− J
∗,

where i is the iteration index obtained by i = arg minj(J(xj)−J∗), j = 0, ..., qm. Therefore,

we have

2

qm∑
q=0

αq(Jq − J∗) ≥ 2(

qm∑
q=0

αq)(Jqmbest − J
∗) (0.4)

Combing the result of (0.4) with (0.3), we concludes the following inequalities, where the

second inequality holds by Assumption 3.3.1.

Jqmbest − J
∗ ≤

U2 +
∑qm

q=0(α
q)2||gs(xq)||22

2
∑qm

q=0 α
q

≤
U2 +G2

∑qm
q=0(α

q)2

2
∑qm

q=0 α
q

(0.5)
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APPENDIX B. PROOF OF OBJECTIVE CONVERGENCE BY

ADMM

Since fk(xk) is closed, proper and convex for k = 1, ..., k, f(x) is also convex and

differentiable. We take the partial derivative of Lk(x,µ) with respect to xk to provide

∂Lk(x
q+1
k ,xq+1

k′ ,xqS′ ,µ
q) = ∂fk(x

q+1
k )+

J∑
j=1

Akjµ
q
j+ρ

J∑
j=1

AkTj (
∑
S′

AS
′

j xqS′+
∑
k′

Ak
′
j xq+1

k′ +Akjx
q+1
k −bj)

(0.1)

where k′ ∈ {1, . . . , k − 1} and S′ ∈ {k + 1, . . . ,K}. As µj is updated by µq+1
j = µqj +

ρ
∑K

k=1A
k
jx

q+1
k − bj = µqj + ρrq+1

j , we substitute µqj = µq+1
j − ρrq+1

j into (0.1) as follows,

(0.1) = ∂fk(x
q+1
k ) +

J∑
j=1

AkTj µ
q+1
j (0.2)

−ρ
J∑
j=1

AkTj [rq+1
j − (

∑
S′

AS
′

j xqS′ +
∑
k′

Ak
′
j xq+1

k′ +Akjx
q+1
k − bj)]

= ∂fk(x
q+1
k ) +

J∑
j=1

AkTj µ
q+1
j −

J∑
j=1

∑
S′

AkTj AS
′

j (xq+1
S′ − xqS′) (0.3)

Letting above expression equal to zero implies that xq+1
k minimizes

fk(xk) +
J∑
j=1

(µq+1
j −

∑
S′

AS
′

j (xq+1
S′ − xqS′))

TAkjxk. (0.4)

It turns out that

fk(x
q+1
k ) +

J∑
j=1

(µq+1
j −

∑
S′

AS
′

j (xq+1
S′ − xqS′))

TAkjx
q+1
k

≤ fk(x∗k) +
J∑
j=1

(µq+1
j −

∑
S′

AS
′

j (xq+1
S′ − xqS′))

TAkjx
∗
k (0.5)
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It holds for k = 1, ...,K. Summing up those K inequalities gives the following inequality

expressed as

f(x) +
J∑
j=1

(µq+1
j −

∑
S′

AS
′

j (xq+1
S′ − xqS′))

T
K∑
k=1

Akjx
q+1
k

≤ f(x∗) +

J∑
j=1

(µq+1
j −

∑
S′

AS
′

j (xq+1
S′ − xqS′))

T
K∑
k=1

Akjx
∗
k (0.6)

Notice
∑K

k=1A
k
jx
∗
k = bj . Rearranging above inequality by , we have

f(xq+1)− f(x∗) ≤ −
J∑
j=1

(µq+1
j −

∑
S′

AS
′

j (xq+1
S′ − xqS′))

T rq+1
j (0.7)

Directly apply rqj → 0 as q →∞ as described in Boyd et al. (2011). We conclude

f(xq+1)− f(x∗) ≤ 0. (0.8)

Moreover, Assumption 3.5.2 indicates

L(x∗1, . . . ,x
∗
K ,µ

∗) ≤ L(xq+1
1 , . . . ,xq+1

K ,µ∗) at ρ = 0. (0.9)

According to
∑K

k=1A
k
jx
∗
k = bj , the left side of (0.9) is f(x∗). Based on f(x) =

∑K
k=1 f(xk),

(0.9) is rewritten as

f(x∗) ≤ f(xq+1) + µ∗T
J∑
j=1

rq+1
j . (0.10)

which implies f(x∗)−f(xq+1) ≤ 0 as rqj → 0. Combining (0.8), we have f(xq+1)−f(x∗)→ 0

as rqj → 0, i.e. the objective convergence holds.
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APPENDIX C. B-J/F EXPLICIT SOLUTIONS ASSOCIATED WITH

INITIAL AND BOUNDARY CONDITIONS , AND FUNDAMENTAL

DIAGRAM

C.1 Triangular-Model-Based B-J/F Explicit Solution

The relationship between Q and ρ is represented by a fundamental diagram Q(ρ), which

is established from empirical measurements. Triangular and parabolic shaped diagrams are

two well-known curves representing the flow-density relationship. Triangular fundamental

diagram is defined as,

Q(ρ) =


vfρ, if 0 ≤ x ≤ ρc

w(ρ− ρj), if ρc < x ≤ ρj
(1.1)

Given affine initial and boundary conditions described in (3.9)-(3.11), triangular-model-

based solutions can be found in Mazaré et al. (2011), which are shown as follows.

For initial condition, it includes two cases, initially uncongested case when 0 ≤ ρ(0, x) ≤

ρc, where ρc denotes the critical density,

Nckini
(t, x) =


−
k−1∑
i=0

ρ(0, xi)X + ρ(0, x)(vf t+ xk − x), if
x− xk+1

vf
≤ t ≤ x− xk

vf

−
k−1∑
i=0

ρ(0, xi)X + ρc(vf t+ xk − x), if
x− xk
vf

≤ t ≤ x− xk+1

w
,

(1.2)

and initially congested case when ρc ≤ ρ(0, x) ≤ ρj ,

Nckini
(t, x) =


−
k−1∑
i=0

ρ(0, xi)X + ρ(0, x)(wt+ xk − x)− ρjwt if,
x− xk
w

≤ t ≤ x− xk+1

w

−
k∑
i=0

ρ(0, xi)X + ρc(wt+ xk+1 − x)− ρjwt if, t ≥ x− xk+1

w
.

(1.3)
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For upstream boundary condition, corresponding explicit solution based on Lax-Hopf for-

mula is

Ncnup(t, x) =



n−1∑
i=0

Q(ti, ξ)T +Q(tn, ξ)(t−
x− ξ
v
− tn), if tn+1 +

x− ξ
v
≤ t ≤ tn+1 +

x− ξ
v

n∑
i=0

Q(ti, ξ)T + ρcvf (t− x− ξ
v
− tn+1), if t ≥ tn+1 +

x− ξ
v

.

(1.4)

For downstream boundary condition, the corresponding explicit solution based on Lax-Hopf

formula is

Ncndown
(t, x) =



n−1∑
i=0

Q(ti, χ)T +Q(tn, χ)(t− x− χ
w
− tn)−

km∑
j=0

ρ(t, xj)X − ρj(x− χ),

if tn +
x− χ
w
≤ t ≤ tn+1 +

x− χ
w

n∑
i=0

Q(ti, χ)T + ρcvf (t− x− χ
v
− tn+1)−

km∑
j=0

ρ(t, xj)X,

if t ≥ tn+1 +
x− χ
w

(1.5)

Work in Canepa and Claudel (2012) verified the linearity and concavity associated with

initial and boundary conditions.

C.2 Greenshields-Model-Based B-J/F Explicit Solution

In order to formulate the fuel-efficient traffic control problem as a convex optimiza-

tion problem to improve computational efficiency, Greenshields model is employed which is

defined as

Q(ρ) = −
vf
ρj
ρ2 + vfρ, ρ ∈ [0, ρj ]. (2.6)

Comparison between the two types of diagram in this specific application is described in

section V.B. In the following, the focus is to find the exact solution based on the Greenshields

model.
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We first substitute Q(ρ) in (3.13) by (2.6). Since Q(ρ)− x−xk
t ρ is concave, the supremum

can be found by satisfying the first order necessary condition. Transformation of R(x−xkt )

is expressed as

R(
x− xk
t

) =
vf
4
ρj +

(x− xk)2ρj
4vf t2

− x− xk
2t

ρj . (2.7)

Based on the solutions to Moskowitz function provided in Mazaré et al. (2011), Q and R

are replaced by (2.6) and (2.7), respectively. The B-J/F explicit solutions are obtained

as follows. For initial condition, it includes two cases, initially uncongested case when

0 ≤ ρ(0, x) ≤ ρc, where ρc denotes the critical density,

Nckini
(t, x) =



(−
vf
ρj
ρ(0, xk)

2 + vfρ(0, xk))t+ ckini(0, x),

if
x− xk+1

Q′(ρk)
≤ t ≤ x− xk

Q′(ρk)

vf
4
ρjt+

(x− xk)2ρj
4vf t

− x− xk
2

ρj + ckini(0, xk),

if t ≥ x− xk
Q′(ρk)

(2.8)

and initially congested case when ρc ≤ ρ(0, x) ≤ ρj ,

Nckini
(t, x) =



(−
vf
ρj
ρ(0, xk)

2 + vfρ(0, xk))t+ ckini(0, x),

if
x− xk
Q′(ρk)

≤ t ≤ x− xk+1

Q′(ρk)

vf
4
ρjt+

(x− xk+1)
2ρj

4vf t
− x− xk+1

2
ρj + ckini(0, xk+1),

if t ≥ x− xk+1

Q′(ρk)

(2.9)

where Q′(ρk) = dQ(ρ)
dρ |ρ=ρ(0,xk). For upstream boundary condition, corresponding explicit

solution based on Lax-Hopf formula is

Ncnup(t, x) =



(vf − x−ξ
t−tn )2ρj

4vf
(t− tn) + cnup(tn, ξ), if tn ≤ t ≤ tn + T0(ρup)

− ρup(x− ξ) + cnup(t, x), if tn + T0(ρup) ≤ t ≤ tn+1 + T0(ρup)

(vf −
x− ξ
t− tn+1

)2ρj(t− tn+1)/4vf + cnup(tn+1, ξ),

if t ≥ tn+1 + T0(ρup).

(2.10)
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For downstream boundary condition, the corresponding explicit solution based on Lax-Hopf

formula is

Ncndown
(t, x) =



(vf − χ−x
tn−t)

2ρj

4vf
(t− tn) + cndown(tn, χ), if tn ≤ t ≤ tn + T0(ρdown)

ρdown(χ− x) + cndown(t, x),

if tn + T0(ρdown) ≤ t ≤ tn+1 + T0(ρdown)

(vf −
χ− x
tn+1 − t

)2ρj(t− tn+1)/4vf + cndown(tn+1, χ),

if t ≥ tn+1 + T0(ρdown)

(2.11)

where T0(ρup) = x−ξ
Q′(ρup)

, T0(ρdown) = x−χ
Q′(ρdown)

, ρup = min{ρ ∈ [0, ρj ]|Q(ρ) = Q(t, ξ)}, and

ρdown = max{ρ ∈ [0, ρj ]|Q(ρ) = Q(t, χ)}.
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