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ABSTRACT 

 

Characterized by their low modulus and high stretchability, soft composites have recently 

attracted great interest from researchers in related areas.  The main objective of the present study 

is on the fracture property and toughening mechanism of soft composites.  Two types of soft 

composites will be studied: soft elastic foam and the double-network (DN) composite.  A 

theoretical/numerical study is carried out over soft elastic foams.  By using the analogy between 

the cellular structure of foams and the network of rubbery polymers, a scaling law for the 

fracture energy is proposed for soft elastic foams.  A phase-field model for the fracture processes 

in soft elastic structures is further developed to study the crack propagation in an elastic foam, 

and results have all achieved good agreement with the scaling law.  Simulations have shown that 

an effective fracture energy one order of magnitude higher than the base material can be reached 

by using the soft foam structure.  To further enhance the fracture and mechanical toughness, the 

second part of the thesis presents a combined experimental and theoretical study of the DN soft 

composite, which consists of stacked layers of fabric mesh and 3M VHB tapes.  The composite 

exhibits a damage evolution process very similar to that in the well-known DN hydrogels. The 

testing results show that the strength and toughness of the DN composite is highly dependent on 

the composition, and in certain range, the DN composite exhibits much higher mechanical 

strength and toughness compared with the base materials.  A 1D shear-lag model is developed to 

illustrate the damage-distribution toughening mechanism of the double network composite. The 

prediction of the model agrees well with the measured properties of the composite in various 

compositions.  The DN composite may also be regarded as a macroscopic model of the DN gel 

for understanding its structure-property relation. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Single network soft elastic foam  

Solid foam, a state of material characterized by the highly porous cellular structure, is 

commonly found in nature and in everyday life.  In industrial applications, solid foams are 

well known for their superior energy-absorbing capability under compression [2-4].  Their 

fracture properties have also attracted great interests [4-9].  Scaling laws between fracture 

properties and porosity have been proposed and widely accepted [4,5].  However, most 

existing theories are based on linear elastic fracture mechanics and the cell walls of the foams 

are assumed to be linear elastic prior to rupture.  While such theories and predictions can be 

applied to foams of relatively stiff materials (e.g. ceramics and metals), their applicability 

becomes questionable to those consisting of soft and highly stretchable materials, such as 

elastomers.  For example, an early experimental study on polyurethane foams found the 

fracture energy to be less dependent on the density, and even exhibiting a slight decrease 

when density increases [10], while the scaling laws of rigid foams all demonstrate linear or 

power-law dependence of the fracture energy over density [4,5]. 

The major difference between stiff brittle foam and soft elastic foam lies in the 

porosity and the slenderness of cell walls (or ligaments for an open cell foam).  For 

simplicity, in the following discussion at chapter 2, the two types of foams will be referred to 

as rigid foam and soft foam, respectively.  In contrast to the cell walls of rigid foam which 

partially shares the load after rupture, a fractured cell wall of soft foam merely dangles over 

the rest of the structure.  Such a structural difference induces the dramatic distinction in 
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energy transmission during fracture.  Upon rupture, the remaining elastic energy in a cell 

wall of rigid foam could be redistributed according to the crack-tip advancement, while that 

in a slender component could hardly be transferred to its neighbors.  The elastic energy in a 

ruptured slender component is mostly dissipated through local vibration or viscoelastic 

deformation.  As a result, the effective fracture energy would have to include the energy of 

the entire component rather than just that at the vicinity of the crack faces (i.e. the surface 

energy). 

To better understand this unique mechanism of toughening, one may consider the 

fracture process of a rubber, in which the crosslinked network of long polymer chains could 

be regarded as an extreme case of soft foam when each slender ligament shrinks down to a 

molecular scale.  In their classic paper, Lake and Thomas suggest the fracture mechanism of 

rubber fracture: the energy needed to rupture a polymer chain is much larger than that of a 

single bond as the entire chain is subject to virtually the same breaking force [11].  After 

fracture, the broken chains recoil and their entropic elastic energy would not be forwarded to 

neighboring chains.  Thus, the intrinsic fracture energy of rubber scales approximately as 

UlNn mrubber
2
3

~ , with N  being the number of chains per unit volume, n  the number of 

monomers per chain, ml  the length of each monomer, and U  the energy needed to rupture 

each monomer [11].  This model has been widely used on rubber, but has seldom been 

related to the fracture of soft foam.  Just by using the analogy, we may also deduce the 

scaling relation for the fracture energy of soft foam as 

 lWc  (1.1) 
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Here, we use cW  to represent the critical energy density of cell wall at rupture,   for the 

volume fraction (i.e. the relative density) of the solid phase, and l  for the characteristic size 

of the foam (e.g. the height of a cell wall).   is a dimensionless geometric factor.  One may 

arrive at the same result from a different perspective.  Due to the special geometry of foam, 

the sharpness of a crack is always limited by l .  The fracture energy is thus given by Wl~  

[12], with cWW   being the effective strain energy density at the crack tip.  In the limiting 

case when the material is stiff enough and the fracture process can be modeled by linear 

elastic fracture mechanics, by using the effective modulus of the structure 2

eff ~E , this 

scaling law (1) reduces to the model of stiff foams with the fracture toughness given by 

lEK 2
3

~~ effIC   (for open cells) [4].  However, the applicability of the latter, which 

was derived from linear elastic fracture mechanics by assuming a square-root singularity in 

the stress field [4], to soft elastic foams undergoing large deformation remains unknown. 

It is noteworthy that due to the presence of defects, the rupture strength and thus cW  

is usually size dependent, unless the cell walls are thinner than the critical size for theoretical 

strength.  The energy-dissipation mechanism of the soft foam structure, on the other hand, is 

never limited to microscopic scale.  One may refer to a two dimensional macroscopic 

analogy of soft foam, a net or a netted structure (e.g. a string bag), commonly known for its 

toughness and notch insensitiveness. 

Even though the scaling law (1) seems natural and plausible, it could be hard to verify 

it directly through experiments.  In practice, it is difficult to control the porosity and cell size 

independently during polymer processing, not to mention the size dependency of cW .  

Alternatively, chapter 2 seeks to verify the scaling law through numerical modeling.  In the 
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following sections, a phase-field model for rubber fracture will be adopted to simulate the 

damage initiation and evolution in hyperelastic cellular structures.  The phase-field model for 

fracture, which is capable of calculating the crack growth according to the energy criterion 

without a predetermined crack path, is very suitable for structures with complex geometries 

such as soft elastic foams.  The scaling law and the special toughening mechanism will then 

be demonstrated with the phase-field model.  The dependence on the detailed geometry of 

the foam cells will also be studied.  

 

1.2 Double network composite  

Double-network (DN) hydrogels have drawn much attention as a soft material having 

both high mechanical strength and toughness, while containing up to 90% of water [29]. DN 

gel consists of two interpenetrating polymer networks: one consisting of relatively short and 

stiff chains (the 1st network) and the other with much longer and initially coiled chains (the 

2nd network). The toughness of a DN gel is orders of magnitude higher than that of a single 

network gel of either polymer, and is close to that of some biological tissues, such as articular 

cartilage and connective tissues [30]. The mechanical performances obtained in the 

optimized double network hydrogel is excellent in both strength and toughness. After solving 

the brittleness problem of common hydrogels, DN hydrogels substantially extend the 

potential applications range in smart structures and biomedical engineering [31-33]. 

Due to excellent performances of DN gels, the mechanical behavior and the 

toughening mechanism is of great interest to researchers. It is now understood DN gel’s 

increased strength and toughness is due to the following process: energy is dissipated by the 

large deformation in vicinity of crack tip induces sacrificial breakage of 1st network, while 
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the intact 2nd network preserves the integrity of the solid structure. The yielding phenomenon 

is discovered in DN gels, which could also be attributed to the fragmentation of the 1st 

network [34]. During tensile test, some necking zones form and grow in the DN gel sample 

and a plateau region appears in the loading curve. The DN gels also show superior 

extensibility with nearly complete recovery [34]. In addition, a significant hysteresis during 

the first loading cycle has been found in uniaxial tension and compression loading and 

unloading experiments for DN gels [35]. While such large hysteresis was never observed for 

the second loading cycle. This behavior also serves as another evidence for the toughing 

mechanism of DN gels. It is also believed that the large hysteresis in 1st loading cycle is 

related to the high toughness of the DN gel. 

The classical Lake-Thomas theory predicts the intrinsic fracture energy of polymer 

scales approximately as UlNn mrubber
2
3

~ , with N  being the number of chains per unit 

volume, n  the number of monomers per chain, ml  the length of each monomer, and U  the 

energy needed to rupture each monomer [36]. The theory explains the fracture of single 

network gels very well [37], while for DN gels, is quite different. Brown [38] and Tanaka 

[39] have independently proposed a similar phenomenological fracture model which suggests 

by comparing necking zone in uniaxial tension to highly stretched material at crack tip, the 

energy consumption could be estimated using size of necking hysteresis.  

To further understand the superior mechanical properties of a DN gel and to enable 

quantitative prediction, Wang and Hong’s model [40] proposed a phenomenological model 

for damage evolution and pseudo-elasticity. The model introduced two internal variables to 

describe two distinct irreversible damage processes in DN gels: the softening due to fracture 

of the 1st network and the extension of the stretching limit induced by the pullout of the 2nd 
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network [40]. The model also captured the Mullins effect as well as the stable necking 

phenomenon of a DN gel under tension, which dissipate a significant amount of energy, and 

are directly related to the fracture toughness of a DN gel. A mechanistically motivated model 

has also been developed by integrating the interpenetrating network model and network 

alteration theory [41]. 

Inspired by the structure and toughening mechanism of DN gels, a highly stretchable 

soft composite was designed and fabricated. The experimental samples were made by 

stacking layers of fabric mesh and VHB acrylic tapes. The two constituents serve the same 

purpose as the two networks in a DN gel: the stiff but brittle mesh provides the high strength 

as the 1st network of a DN gel, and the soft but stretchable VHB tape serves as the ductile 

substrate, just like the 2nd network. The two materials were well-bonded initially, but exhibit 

significant sliding after the fracture and fragmentation of the mesh, which enables distributed 

partial damage in the mesh. In this study, the tensile, loading-unloading and crack tolerance 

properties are investigated for a series of DN composites. A similar necking behavior in DN 

gel has been found in the tensile tests of DN composites. During tensile loading and 

unloading test, a significant hysteresis was observed in first loading cycle and second loading 

cycle attributed to the fracture and sliding of first network fabric mesh. With a preset crack 

tensile test, fabric mesh break into many small pieces at crack tip to resist facile propagation 

perpendicular to loading. A 1D shear-lag model will demonstrate that such sliding are the 

keys to the damage-distribution mechanism of the DN composite. With the optimized 

components ratio, the DN composite is as strong as the mesh, and at the same time the 

stretchability is comparable to the VHB tape. With the energy dissipation mechanism similar 
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to that in the DN gels, the DN composite has a fracture work much higher than either of the 

base materials. 

It is noteworthy that the DN composite itself may be regarded as a macroscopic 

model for the study of DN hydrogels. On the other hand, it also shows this kind of macro-

structure can lead to great enhancement of strength and toughness in composite. Through 

elucidating the roles of various structural parameters, chapter 3 presents a macrostructure 

model with optimized structure of DN composite. 

 

1.3 Organization of thesis  

The tough network structure materials have recently attracted broad attentions and 

interests. The main objective of the present study is on the fracture property and toughening 

mechanism of soft composites.  Two types of soft composites will be studied in the following 

chapters: soft elastic foam and the double-network (DN) composite.  In the chapter 2, a 

theoretical study is carried out over soft elastic foams.  By using the analogy between the 

cellular structure of foams and the network of rubbery polymers, a scaling law for the 

fracture energy if proposed for soft elastic foams.   To verify the scaling law, a phase-field 

model for the fracture processes in soft elastic structures is developed.  The numerical 

simulations in two-dimensional foam structures of various unit-cell geometries have all 

achieved good agreement with the scaling law.  In addition, the dependences of the 

macroscopic fracture energy on geometric parameters such as the network connectivity and 

spatial orientation have also been revealed by the numerical results.  Simulations have shown 

that an effective fracture energy one order of magnitude higher than the base material can be 

reached by using the soft foam structure.  
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The chapter 3 presents a combined experimental and theoretical study of the DN soft 

composite, which consists of stacked layers of fabric mesh and 3M VHB tapes. The 

composite exhibits a damage evolution process very similar to that in the well-known DN 

hydrogels. The testing results show that the strength and toughness of the DN composite is 

highly dependent on the composition, and in certain range, the DN composite exhibits much 

higher mechanical strength and toughness compared with the base materials. The tensile, 

loading-unloading and crack tolerance properties are investigated for a series of DN 

composites. A similar necking behavior in DN gel has been found in the tensile tests of DN 

composites. During tensile loading and unloading test, a significant hysteresis was observed 

in first loading cycle and second loading cycle attributed to the fracture and sliding of first 

network fabric mesh. With a preset crack tensile test, fabric mesh break into many small 

pieces at crack tip to resist facile propagation perpendicular to loading.  To further 

understand the toughening mechanism of the composite and its relation to DN gels, a 1D 

shear-lag model I developed to study the damage evolution process.  The model suggests the 

finite sliding over the interface between the mesh and the tape layers serves as the key to the 

energy dissipation and damage-distribution mechanisms of the DN composite.  The model 

also predicts the stress-stretch relation of the DN composite with various compositions, the 

results agrees well with experiments. Even though the base materials may not be the best to 

compose the DN composite, the results demonstrate the possibility of constructing novel 

macroscopic composites by using the toughening mechanism of DN gels.  It is also 

noteworthy that the DN composite itself may be deemed as a macroscopic model for the 

study of DN hydrogels. 
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CHAPTER 2 

 

 FRACTURE OF SOFT ELASTIC FOAMS 

 

 

 

2.1 Phase-field model of fracture 

Numerical simulation of fracture processes has the inherited difficulties in dealing 

with discontinuities, singularities, and moving boundaries which causes large geometric and 

even topologic changes.  To overcome some of these difficulties, phase-field models of 

brittle fracture have been developed [1, 13-18, 22].  Recently, phase-field models have also 

been applied to the brittle fracture of rubbery polymers [23].  Numerical experiments have 

already shown that these models are capable of capturing both the onset of crack propagation 

and the damage morphologies of dynamic cracks [19-21].  Without the need to track 

individual crack or to prescribe a crack path, the phase field method becomes a promising 

candidate for modeling the fracture of structures with relatively complex geometries, such as 

the soft elastic foam.   The model used in this chapter closely follows these developments, 

especially those by Karma et al [13] and Hakim and Karma [14].  

To describe the state of material damage and to avoid tracking the crack front and 

faces, a phase field  t,X  varying continuously between the intact region ( 1 ) and a fully 

damaged region ( 0 ) is introduced.  The loss of integrity in the solid is modeled by 

writing the elastic strain energy density as a monotonic increasing function of the damage 

variable,    F
0

sWg  , where 0

sW  is the strain-energy density of the intact material under the 

same strain, and g  is an interpolation function in the interval  1,0  with vanishing derivatives 

on both ends.  In this study, we choose the interpolant   43 34  g .  As a common 

practice of hyperelasticity, the deformation gradient tensor F  is used to represent the state of 
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strain.  Following Karma et al. [13], we write the free energy density function to include 

three contributing terms: 

          20

2
1,, 


  cs WgWgW FF . (2.1) 

The second term on the right hand side of Eq. (2) represents the energy associated with 

material damage.  When the strain energy at a material particle exceeds the threshold cW , the 

damaged state with 0  becomes energetically favorable.  Just as in almost all phase-field 

models, the gradient energy term is added to regulate a smooth transition between the 

coexisting states.  In this chapter, the material constituting the solid phase of the foam is 

assumed to be isotropic, so that only a scalar coefficient   is needed for the gradient energy 

term.  In equilibrium, the combination of the second and third terms on the right hand side of 

Eq. (2) gives the surface energy, i.e. half of the intrinsic fracture energy.  The fracture energy 

of the material modeled by the energy function is approximately cW2  [13].  Here, in a 

body undergoing finite deformation, all energy densities are measured with respect to the 

volume in the reference state. 

Countless number of constitutive models have been developed for hyperelastic solids.  

Although specific stress-strain relations of the solid phase may affect the ultimate fracture 

properties of soft foam, such dependence is beyond the scope of the current study.  Here for 

simplicity, we will limit the discussion to a neo-Hookean material of the strain energy 

function 

    3
2

0  F:FF


sW , (2.2) 
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where   is the initial shear modulus.  In contrast to linear elastic solids, rubbery polymers 

are often modelled as incompressible.  To enforce volume incompressibility, approaches 

such as the application of the Lagrange multiplier are often taken, e.g. by adding to the free 

energy function a term  1det  Fp  with a Lagrange multiplier p  representing the pressure 

field.  A physically meaningful model needs to degrade the compressibility simultaneously 

with the shear stiffness.  Directly multiplying the Lagrange multiplier term by  g  

obviously does not serve the purpose.  Instead, we modify the Lagrange multiplier term 

slightly by modeling the material as slightly compressible: 

   
K

p
pg

2

2

1
1det  F . (2.3) 

By taking the variation of (2.3) with respect to p , one will arrive at an equation of state with 

a degrading bulk modulus:    1det  FKgp  .  In the intact state, the large bulk modulus 

K  ensures volume conservation; in the fully damaged state, the added term does not 

affect the field of deformation, and the ad-hoc field p  is regulated numerically by the 

quadratic term in (2.3). 

With all the aforementioned energy contributions, the total free energy of the system 

is simply the volume integral of the energy density, including the terms in (2.3), and the 

surface integral of the potential of external tractions t : 

     dAWdV xtx, , (2.4) 

where  t,Xx  symbolizes the current coordinates of a material particle located at X in the 

reference state.  The total free energy   is a functional of the field of damage  t,X  and the 

field of deformation characterized by  t,Xx .  Following Hakim and Karma [14], we neglect 
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inertia and body forces, and assume the system to be in partial mechanical equilibrium, so 

that 0x    or 

 0s  , (2.5) 

in the bulk, and tsN   on the surfaces.  Here Fs  W  is the nominal stress, and N  is 

the unit normal vector on a surface.  For the evolution of the phase field  , on the other 

hand, we assume a linear kinetic law with isotropic mobility m : 

    cs WpWgmm 


 Fdet02 



 . (2.6) 

To simulate quasi-static fracture processes, a large enough mobility is taken to achieve rate-

independent results.  Further, to model the irreversibility of fracture processes and to prevent 

the damaged phase from healing, we force   to be a monotonically decreasing function of 

time by taking only the positive part of the driving force [22]: 

     20 det  cs WpWgm F , (2.7) 

where the angular brackets indicate an operation of taking the positive values, 

  2  .  Supplemented by proper initial and boundary conditions, Eqs. (2.5) and 

(2.7) constitute a partial differential system for the coevolution of deformation and damage 

fields,  t,Xx  and  t,X . 
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Fig. 2.1 The rupture and retraction process of a ligament (or cell wall) in a foam structure.  

Because of its slenderness, a soft filament will tend to buckle or coil and could not effectively 

transduce energy. 

 

2.2 Energy dissipation and numerical implementation 

The major difference between soft and stiff foams and the primary means of energy 

dissipation during fracture can be qualitatively understood with the aid of Fig. 2.1.  For ease 

of description, we will refer to the solid dividing segments in both open and closed foams as 

ligaments from now on.  Upon rupture from stretched states, a ligament will first be 

accelerated by its own retracting forces, and the elastic energy stored prior to rupture is 

mostly converted to kinetic energy.  When the ligament retracts further, the difference 

between stiff and soft ligaments is revealed: while a stiff ligament will remain straight and 

decelerate and transfer the energy further to the neighboring components, a soft ligament will 

tend to buckle or coil due to its slenderness, and the energy could not be effectively 

transferred.  The ultimate factor is the stiffness ratio between the surrounding structure and 

the broken ligament (a buckled ligament has very low stiffness), as elastic wave cannot 

propagate from a compliant medium to a rigid one.  As a result, the elastic energy of a soft 

ligament is mostly damped through subsequent vibration of itself. 

a 
stif

f 

sof

t 

a 

stretched ruptured 
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The detailed process and the dependence on the structural geometry, such as the 

aspect ratio of each ligament and the spatial connectivity at each node, can be simulated by 

computing the full dynamic response of a ligament and the surrounding structure.  Such 

analysis, however, is not of particular interest to the current study.  We will focus on soft 

foams with very slender ligaments, and hypothesis that most part of the elastic energy stored 

in the broken ligaments will be dissipated through this process.  The results are thus 

inapplicable to relatively stiff foams.  On the other hand, it is also computationally less 

feasible to model the full dynamic behavior of each ligament in a foam structure of complex 

geometry.  Instead, we will neglect the inertia and model the fracture process as quasi-static.  

In this limit, the dissipation through crack propagation is negligible, and the fracture energy 

is mainly dissipated through viscosity.  Without considering dynamics, the snap back of the 

ligaments are fully damped after each rupture event.  Instead of a proof or evidence, the 

calculations presented as follows are the consequence of the proposed energy-dissipation 

mechanism. 

Similar as in many other methods for fracture and damage simulation (e.g. cohesive 

element and element deletion), without inertia, the damage-induced softening is intrinsically 

unstable.  To stabilize numerical procedures, and more importantly to dissipate the redundant 

strain energy in the dangling ligaments after rupture, we introduce a Newtonian-fluid-like 

damping term to the nominal stress 

 x
F

s 





2

W
 (2.8) 

with   being the numerical viscosity.  For relatively small viscosity  , the viscous stress 

only has significant contribution at the regions of high deformation rate, which is expected to 
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occur only in a retracting ligament upon rupture.  Numerical experiments have shown that 

when a small value of   is taken, the artificial viscosity only changes the rate of structural 

unloading at the wake of a propagating crack, and does not affect the energy consumption. 

Substituting Eq. (2.8) into (2.5), one may obtain the coevolution of deformation and 

damage fields by solving the partial differential system (2.5) and (2.7) simultaneously.  The 

system has an intrinsic length scale, cWr  , which is approximately the thickness of the 

transition zone from the intact region to a full damaged region.  It could be argued that r  

physically characterizes the width of the fracture process zone in the condensed solid phase.  

Without losing generality, we rewrite the governing equations into a dimensionless form by 

normalizing all energy densities and stresses by cW , all lengths by r , and time by cmW1 .  

After normalization, the dimensionless fracture energy of the solid phase is approximately 2, 

and the system has only three dimensionless parameters: the normalized shear modulus 

cW , bulk modulus cWK , and viscosity m .  In the following numerical examples, we 

will take dimensionless modulus 2.0cW , which corresponds to the representative values 

of a soft elastomer: MPa10~ , μm1~r , and mN50~ .  The dimensionless bulk 

modulus is taken to be 200cWK , and the viscosity 410m .  It should also be noted 

that the ligament thicknesses of most structures calculated in the current study are 

comparable to the intrinsic length scale r .  In this limit, the calculations could as well be 

done by using the regular strength-based material degradation approach.  Here, the phase-

field approach is taken so that the direct comparison with the fracture process of a bulk 

material with the same property could be made when needed. 
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The dimensionless equations are implemented into a finite-element code through the 

commercial software COMSOL Multiphysics 4.3b.  For numerical robustness under large 

deformation, the geometries are discretized by using triangular elements, and both the 

displacement and damage fields are interpolated with linear Lagrange shape functions.  To 

capture the transition at the interface between the damaged and intact phases, a maximum 

mesh size of r5.0  is prescribed.  The model is integrated over time via a fully coupled 

implicit scheme, with adaptive step size.  To numerically enable damage nucleation, spatial 

random distributions of the initial shear modulus and the intrinsic fracture energy has been 

introduced to each model, with standard deviation at 1% of the corresponding magnitudes. 

 

Fig. 2.2.  Sketch of the loading conditions for the foam structures 

To compute the fracture energy, we load the pre-cracked structures in a similar way 

as the pure-shear test for rubber.  As sketched in Fig. 2.2, the right and bottom edges are 

constrained by rollers, and the top edge is loaded by a uniform displacement.  For symmetric 

structures and if the crack propagates along a symmetry line, only half of the structure is 

calculated and a symmetry boundary condition is prescribed along the symmetry line.  A 

ramping displacement load is applied within a short time and then held constant.  The crack 

will start to propagate when the applied displacement exceeds certain value.  In a steady state 

when the crack tip is far from either ends, the energy release rate is independent of the crack 

length, 
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 HWG eff , (2.9) 

where H  is the undeformed height of the structure.  effW  is the effective strain-energy 

density in the absence of the crack, and is averaged over the volume including the space of 

the pores.  In contrast to the standard pure-shear test, the entire structure is under plane-strain 

condition, and is allowed to shrink horizontally.  The corresponding 2D results are closer to 

the behavior of 3D closed foam.  Although the effective strain-energy density effW  can be 

calculated by integrating W at the region far ahead of the crack tip, here we calculate it 

separately by subjecting a non-cracked structure to plane-strain uniaxial tension. 

 

2.3 Results and discussion 

The simulations are first carried out on hexagonal (honeycomb) structures, as shown 

schematically in Fig. 3a.  In order to reduce boundary effect, the actual computational 

domain is much larger than that shown.  Fillets of dimensionless radius 1 have been applied 

to all corners to reduce stress concentration, as the preferential damage of the triple junctions 

may result in a different scaling law.  The local deformation and damage fields of a 

representative result are shown in Fig. 3b, in which the preexisting crack has propagated 

through three ligaments. 
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Fig 2.3. (a) Part of the 2D honeycomb foam structure being simulated.  (b) The calculated 

deformation and damage fields of a honeycomb structure, during the propagation of a 

preexsting crack.  The shades represent the dimensionless strain energy density cWW .  The 

crack profile is indicated schematically by the dash line, which goes through the the 

transition zone from the intact to the fully damaged regions in terms of  .  The deformation 

is shown to scale, and only part of the structure near the crack tip is shown.  The actual 

computational domain is much larger than that shown to circumvent size-effect. 

In a steady state, a crack is propagating through the structure at a constant speed, the 

energy release rate G  is given by Eq. (2.9).  However, due to the discrete nature of the 

structure, the crack propagation appears staggered.  To capture the effective crack velocity, 

we identify each event of ligament rupture, and record the time of the event and the 

horizontal coordinate of the corresponding ligament in the undeformed state, as shown by 

Fig. 2.4a.  It is found that when the crack front is far from the edge, the ligament-rupture 

events are almost equally distributed in time, indicating a steady-state crack propagation.  

The slope of the linear fit to the rupture events under each loading condition is taken to be the 

nominal crack velocity v .  In consequence of the kinetic law, Eq. (2.6) or (2.7), the energy 

release rate G , i.e. the driving force of the crack, is rate dependent.  As shown by Fig. 4b, the 

Crack tip 

b a 
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effective fracture energy of the structure is a monotonic increasing function of the crack 

velocity.  Here, to compare between different structures, we use the threshold value   

calculated from the vertical intercept of the fracture-energy-velocity curve, as shown by Fig. 

4b.  The threshold corresponds to the fracture energy of a crack propagating quasi-statically 

at zero velocity.  Following such a procedure, we compute the quasi-static fracture energy of 

various foam structures, presented as follows. 

 

Fig. 2.4.  (a) Undeformed coordinates of the ligaments as a function of the times of rupture.  

The line is the best linear fit.  The slope indicates the dimensionless crack velocity.  (b) 

Dimensionless fracture energy (energy-release rate) crW  as a function of the 

dimensionless crack velocity crmWv .  The line is the best linear fit, and the vertical 

intercept shows the quasi-static fracture energy of the soft foam. 

The scaling relation (1.1) is verified first through the simulation on the fracture 

processes of hexagonal soft foams.  A set of two-dimensional hexagonal foams of the same 

volume fraction 09.0  but different ligament lengths are modelled, and their quasi-static 

fracture energies are computed via the same procedure as described above.  The resulting 

fracture energies of two different orientations are plotted against the ligament length in Fig. 

a b 
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2.5a.  In both cases, the dimensionless fracture energy crW  is approximately linear in the 

ligament length rl .  Similarly, we fix the length of each ligament at 2.4rl , and vary the 

solid volume fraction from 025.0  to 17.0 .  The resulting fracture energies of the 

two orientations are plotted as functions of the solid volume fraction in Fig. 2.5b.  As 

expected, at relatively small volume fraction, the fracture energy is approximately 

proportional to the volume fraction  . 

Comparing between the two orientations, it is found that the fracture energy in an 

“armchair” orientation is consistently higher than that of the same structure in a “zigzag” 

orientation.  Such a difference could be attributed to the anisotropy in ligament density.  As 

illustrated by Fig. 2.6, a horizontal crack mainly goes through the inclined ligaments in the 

“armchair” orientation, while a crack through a foam in the “zigzag” orientation mainly 

breaks the vertical ligaments.  The numbers of ligaments cut by unit crack length in the two 

orientations differ by a factor of 32 , which explains the difference in the effective fracture 

energies.  The same phenomena may also be understood by considering the effective 

sharpness of a crack.  As shown by Fig. 2.6, the crack path in a “zigzag” orientation is nearly 

straight, while that in an “armchair” orientation is often meandering.  With the crack front 

randomly selects one of two inclined ligaments, which has almost identical strain energies, 

the effective crack tip can be regarded as encompassing the region of both ligaments, and 

thus the crack is blunter.  



21 

 

 

Fig. 2.5.  Calculated fracture energy of the hexagonal soft foams versus (a) the normalized 

ligament length rl  at constant volume fraction %9 , and (b) the volume fraction of the 

solid phase   at constant ligament length 2.4rl .  Two different orientations are 

simulated as indicated by the insets (with horizontal cracks). 

   

Fig. 2.6.  Damage patterns of hexagonal soft foams in (a) “zigzag” and (b) “armchair” 

orientations.  The color scale represents the damage variable  , plotted in the undeformed 

geometry.  The dash curves show the approximate paths of crack propagation. 

The simulations on the crack propagation processes in soft foam structures of various 

geometries, including those with triangular and square unit cells at different orientations, all 

exhibit the similar linearity as that observed in the honeycomb foam, which further supports 

a b 
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the scaling relation (1.1).  The effect of unit-cell geometry is only reflected in the 

dimensionless coefficient  , as summarized by Fig. 2.7.  Although the relatively high 

fracture energy of the square-cell foam with vertical/horizontal ligaments may be explained 

by the higher ligament density than that of the hexagonal foam (one ligament per crack 

length l  versus one ligament per l3  or l2 ), the foams of other patterns do not follow the 

same trend.  Despite the higher ligament densities, the effective fracture energies of the 

triangular foam or the rotated square foam are actually lower.  To understand the relatively 

low fracture energies, let us revisit the physical origin of the polymer-network-like 

toughening mechanism.  Two necessary conditions must be met for the mechanism to be 

effective: (a) the ligaments must be relatively long and uniform, so that the elastic strain 

energy everywhere along a ligament is close to critical prior to rupture; (b) the network 

structure must be sufficiently compliant, so that the remaining strain energy after rupture is 

not passed to the neighboring ligaments.  Even with the same aspect ratio and uniformity in 

the ligaments, the network connectivity in either the triangular foam or the square-cell foam 

is higher than that in the hexagon foam.  Each node is connected to six ligaments in a 

triangular foam, and four in a square-cell foam, but only three ligaments are connected to 

each node in a hexagonal foam. Therefore, at the tip of a propagating crack in a triangular 

foam of square-cell foam, two or more ligaments connected to the same node will be 

stretched and almost aligned in the direction perpendicular to the crack.  Once one of them 

ruptures, the remaining elastic strain energy may be partially transferred through the common 

node to the other ligaments which are still standing and carrying the load along the same 

direction.  The strain energy carried over may contribute to the further propagation of the 

crack, and the overall fracture energy is thus lower.  It should be noted that the square-cell 
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foam with vertical and horizontal ligaments represents a special case, in which the two lateral 

ligaments are connected at the direction almost perpendicular to the load, and thus the 

macroscopic fracture energy is less affected by the relatively high connectivity.  

 

Fig.2.7. Geometric effect on the fracture energy of soft foams. The geometries and 

orientations are represented by the sketch insets, with cracks running horizontally. 

Despite the apparent linear relation between the effective fracture energy and the 

solid volume fraction   (or the ligament length l ), the polymer-network-like toughening 

mechanism is unlikely to make a soft cellular material with macroscopic pores tougher than 

the bulk solid.  By using the same method on a bulk solid, we have confirmed that the 

dimensionless fracture energy of a condensed structure is approximately 2, just as shown in 

the literature [23].  The factor which has not been taken into consideration here is the size-

dependency of material strength.  It is well-known that, due to the presence of defects, larger 

samples of the same material would exhibit a lower tensile strength.  The critical energy 

density cW  which scales with the squared of the rupture strength, is dependent on the 
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ligament thickness d  (and is usually a decreasing function).  On the other hand, without 

resolving microscopic defects, the phase-field model used in the current chapter will not 

predict any size effect, and cW  is taken as a material parameter for normalization.  Instead, if 

we assume the scaling relation of brittle solids from linear elastic fracture mechanics 

n

c dW 2~   with the scaling index 21n  [25], and follow the geometric relation for regular 

closed-cell foams ld ~ , we will arrive at an effective fracture energy almost independent 

of   or l .  For non-brittle materials, the scaling index n  is usually less than 21 , and the 

effective fracture energy will be weakly dependent on   and l .  Furthermore, in the limiting 

case when the ligaments are thin enough that the theoretical strength could be achieved, cW  

will become size-independent, and the scaling law (1) could be fully recovered.  The size-

dependency of tensile strength, which has been extensively studied [24], is not a main focus 

of the current research. 

Here we further investigate geometric effects by studying soft elastic foams with non-

straight ligaments.  The scaling relation, ld ~ , represents the geometry of closed-cell 

foams with relatively straight ligaments (or flat cell walls).  In general, if one allows non-

straight or folded ligaments, the volume fraction   can be varied independently from the 

ligament thickness d .  In other words, one may increase the solid volume fraction   while 

keeping the ligament thickness small to achieve higher fracture toughness in the structure. 
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Fig. 2.8.  (a) Sketch of the unit cell of a soft elastic foam containing serpentine ligaments. (b) 

Simulated deformation and fracture process in the soft elastic foam.  The shading shows the 

dimensionless strain energy density cWW .  The deformed shape is plotted by downscaling 

the actual displacement value to 10%. 

As an illustrative example, we construct a numerical model by repeating the unit cell 

as sketched in Fig. 2.8 (a).  Unlike in the above examples, the initial geometry of a ligament 

takes a serpentine form.  The material is taken to be soft enough so that the ligaments are 

insensitive to the stress concentration at the folding corners.  During deformation, the 

ligaments will first be straightened and then rupture.  As shown by Fig. 2.8b, the strain-

energy distribution in the ligaments at the crack tip is still close to uniform, with the value 

close to cW  prior to rupture.  By varying the width of the serpentine pattern and using the 

same method as in previous examples, we evaluate the fracture energy of several structures 

with ligament thickness taken to be r  and the unit cell size rr 8.188.18  , and plot it as a 

function of the solid volume fraction.  As shown by Fig. 2.9., the scaling law (1.1) still holds 

for the foam structures with serpentine ligaments.  Despite the different geometries of the 

unit cells, the extrapolation of the curve to lower volume fractions will give similar fracture 

a b 
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energy levels as structures with straight ligaments.  However, due to the much more 

condensed nature of the folding structures, the fracture energy is significantly improved.  For 

the structure shown by Fig. 2.8, the volume fraction reaches %75 , and the dimensionless 

fracture energy is 25 crW , more than one order of magnitude higher than the foam 

structures with straight ligaments or the same material in a bulk form. 

 

Fig.2.9. Calculated fracture energy of soft foam structures with serpentine ligaments, as a 

function of the solid volume fraction .  The structures have identical unit-cell size and 

ligament thickness.  The volume fraction is controlled by changing the width of the 

serpentine pattern, as indicated by the insets. 

Without realistic material models or optimized design parameters, this numerical 

example is just an illustration of the toughening mechanism.  Nevertheless, it is evident that 

the fracture energy of a material may be significantly increased by adopting similar structural 

designs.  More interestingly, such a toughening mechanism is not just limited to soft solids, 
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especially when the ligament size is small.  It should also be noted that the fracture energy 

increase is obtained at the expense of the initial structural stiffness.  As shown by Fig. 2.10., 

the effective initial modulus is more than two orders of magnitude lower than that of the 

constituting solid.  Such a relation between structural compliance and fracture toughness is 

similar to that in the microcrack-toughening mechanism, although the latter is usually studied 

in the context of linear elastic fracture mechanics [26-28]. 

 

Fig. 2.10.  The calculated nominal-stress-stretch curve of a soft foam with serpentine 

ligaments as shown by Fig. 8 (without a pre-existing crack).  The initial stiffness of the 

structure is more than two orders of magnitude lower than the solid material.  The stress-

stretch curve exhibits a strain-stiffening behavior, even though the material is taken to be 

neo-Hookean. 

Moreover, even though the material is taken to be neo-Hookean, the stress-stretch 

curve exhibit a clear strain-stiffening segment at relatively large stretch, just like the behavior 

of elastomers at the stretch limit of polymer chains.  Here, the strain stiffening corresponds to 
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the straightening of the serpentine ligaments.  To some extent, such a structure can be 

regarded as a macroscopic model system for the fracture of elastomers. 

The detailed design and optimization of structures of the kind, although interesting, is 

beyond the scope of the current research.  We are eagerly awaiting the designs and 

manufacturing of tough materials by utilizing this mechanism. 
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CHAPTER 3  

 

MECHANISM AND FRACTURE OF HIGHLY STRETCHABLE DOUBLE NETWORK 

COMPOSITE 

 

 

 

3.1 Design and fabrication of double network composite 

The DN composite samples were prepared by stacking fabric mesh with hexagonal grids 

alternatingly with VHB acrylic tape 4910 [42], as shown in Fig. 3.1a. The fabric mesh is cut 

from a roll of Nylon Mandel Fabrics Tulle [43], which is 100 percent Nylon. Owing to the high 

stickiness of VHB tape, the fabric mesh sticks into the interlayer of two cohesive VHB tapes. 

The interlayer bonding is due entirely to the adhesion of the VHB tape.   

                                       

Figure 3.1. (a) The process of fabricate the DN composite. Stacking nylon fabric mesh with 

hexagonal grids alternatingly with varying ratios of VHB acrylic tape 4910. (b) Image of a test 

sample of DN composites. 

 

The mechanical tests were carried out over an Instron 5960 dual column testing system.  

Plastic frames are the used to mount the samples before testing, as shown by Fig.1b. Before any 
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tests on samples, the test methods were run sans sample to check for any vibrations. Since 

faster extension rates inherently resulted in larger “noise” in the data, several loading rates 

were tested. By running the same sample type at 15, 30, 60, and 120mm/min, the rate-

dependent effect was found to be trivial. The primary test method used was a constant 

extension rate of 30mm/min and extension distance of 700mm to minimize data noise and 

have a relatively quick test for different samples while assuring all the samples would break. 

For the initial tests, a high-speed camera setup was used to capture the predicted “island” 

formation of the matrix and the fracture behaviors of each sample.  

 

3.2 Experimental results 

Tensile tests. In this work, each sample was cut into rectangular shapes of width 25mm 

and height 50mm (gauge length between grips). As the mesh has negligible thickness compared 

to the tapes, the sample thickness is approximately the total thickness of the VHB tapes. To get 

the optimal structure, mesh to VHB tapes ratios of 1:1, 2:3, 1:2, 1:3, 1:4, and 1:5 were 

fabricated and tested. Here, we use a ½ thinner VHB tape to manufacture the 1:1 sample. The 

base material: fabric mesh and VHB tape have been also tested. 

Figure 3.2 shows typical nominal tensile stress – overall stretch curves of DN 

composite samples with different composition ratios. The nominal stress was calculated by 

dividing the force by the original cross-sectional area of the sample. The overall stretch is the 

deformed sample length divided by initial length. The trend is obvious that the peak nominal 

stress decreases as the VHB tapes composition increase, while the extension limit increase as 

the VHB tapes composition increase. The extension limit reaches a plateau when we increase 
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the VHB tapes from 1:4 sample to 1:5 sample, which is comparable to the extension limit of 

VHB tape. 

 

Figure 3.2.  Nominal stress-stretch curve of the DN composite at various compositions, from 

2:3 to 1:5. 

 

Figure 3.3 show a comparison force and overall stretch curve for the representative 

1:2 DN composite sample. The DN composite shows excellent extensibility comparable to 

the VHB tape, which is much larger than that of fabric mesh. As shown by the snapshots C-F 

in Fig.3a, the DN composite exhibits stable necking during uniaxial tension, just as the DN 

hydrogels [6]. The necking zone corresponds to the area of partially damaged fabric mesh, as 

shown by the enlarged picture in Fig.3b. After partial damage in the mesh, the load is carried 

locally by the much softer tape with large deformation. Due to the ductility of the tape, the 

subsequent step is the fracture of the mesh in other areas, instead of the rupture of the tape. 
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Similar as DN hydrogel, the propagation of the partial damage zone (necking) corresponds to 

the stress plateau on the loading curve, as shown by Fig.3.3a.  

 

Figure 3.3. (a) Force-stretch curves of a VHB tape, a fabric mesh, and the DN composite 

with 1 layer of mesh and 2 layers of VHB tape. For comparison, the force of the VHB tape is 

multiplied by 2 due to DN composite contains 2 VHB tape layers. The insets A-F are 

snapshots of the sample correspond to the specific points along the loading curves. The 

damage zone in C-F stage are marked by the black shaded area. At G stage, the sample is 

almost damaged everywhere. (b) Comparison between the undamaged and partially damage 

zones in the DN composite, and a similar mechanism in DN gels. 

 

Experimental observations also suggested significant sliding between the mesh and 

the VHB tape in the partially damaged area, as shown in Fig. 3b. The following simple 1D 

model will demonstrate that such sliding and the consequent non-affine deformation are the 

keys to the damage-distribution mechanism of the DN composite. It is believed that such a 

 

Partial damage 

DN Composite 

DN gel 
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damage-distribution mechanism is the key to the toughness of the DN composite as well as 

the DN gels [2].  

Loading-unloading test. We also perform the tension loading and unloading test for 

the sample with the same sample size in tensile test. Here, we use a 1:2 (mesh to VHB tapes 

ratio) sample as a representative sample. We observed a significant hysteresis during the first 

loading cycle and second loading cycle. Fig. 3.4 shows subsequent cycles of nominal tensile 

stress- stretch curves. For 1st cycle, the stress increased strongly at first and reaches the peak 

stress. While for 2nd cycle, the stress increases slowly compared with the 1st cycle, which is 

corresponding to softening effect of DN composite due to the partial damage of mesh in the 

sample. Finally, the sample breaks in the 3rd cycle.  Here the difference between the stress of 

unloading region and that of loading region in the following cycle also serves as an evidence 

for the sliding behavior between the mesh and the VHB tape. 

 

Figure 3.4. Loading and unloading curves for one 1:2 DN composite. 
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Preset crack test. To test the crack tolerance behavior of DN composite, a preset 

30mm crack is cut on one side of the specimen with the dimension of 100 mm x 100 mm. 

The fabric mesh, VHB tape and DN composites with different composition ratios from 1:2 to 

1:6 were fabricated and tested. 

 

Figure 3.5. Illustration of local damage zone at damage zone at the crack front of DN 

composites. Three different samples are selected, which are VHB sample, 1:2 and 1:4 DN 

composites. The process zone for each DN composite is marked by the black dash line. For 

each sample, the 1st snapshot is the initial stage under the same stretch. The 2nd snapshot is 

the moment after which the crack starts to propagate. The 3rd snapshot is captured during 

the crack propagation. 

 

From experimental observations in Fig. 3.5, the crack propagation process can be 

divided into two stages. First, the fabric mesh failure at very small stretch, and it break into 

VHB 

1:2 
 

1:4 
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many small pieces at crack tip before the VHB tape crack propagated. Several damaged 

zones around the crack tip are bridged by the VHB tape and the DN composite remains 

continuous. The second stage of failure involves crack propagation in the VHB tape. The 

damaged region around crack tip is the process zone where the fabric mesh has been broken 

up. As the number of VHB layers increase, the process zone size increases, which can be 

seen in Fig.3.5b. The process zone size in 1:4 sample is much larger than that in 1:2 sample. 

In addition, the 1:4, 1:5 and 1:6 DN composite samples almost have whole region before the 

crack tip damaged. 

The force-stretch curve and nominal stress-stretch curve are plotted in Fig. 3.6. From 

the force-stretch curve in Fig. 3.6a we can clearly see the extension limit of the DN 

composite with one layer of fabric mesh increase significantly compared with the fabric 

mesh. In addition, the nominal stress-stretch curve in Fig. 3.6b shows the strength of the 

VHB tape can be enhanced by making it to the DN composites. To compare the toughness 

for all the samples with different layer ratio, we calculate the fracture work for each sample 

and plotted it in Fig. 3.7. The results show the DN composites are much tougher than the 

VHB tapes and also the optimal layer ratio is 1 fabric mesh with 4 layer of VHB tapes. 
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Figure 3.6. (a) Force-stretch curve for crack tolerance test of the DN composite at various 

compositions and mesh only. (b) Nominal stress-stretch curve for crack tolerance test of the 

DN composite at various compositions and VHB tapes only. 

 

Figure 3.7.  Fracture work of VHB tape and DN composites with different ratios. 

 

By comparing the nominal stress-stretch curves of preset crack samples and those of 

intact samples, we found the damage tolerance behavior of DN composites is very good. For 

the optimal layer ratio 1:4 sample, the peak stress for preset crack sample is almost the same 

with the intact sample, which gives equal strength for damaged sample. In addition, the 

optimal layer ratio agrees with the best one in tensile test.  

 

3.3 Modeling results and discussion  

We propose a simple shear-lag model to measure the strength of the DN composite. 

Consider a partially damaged state of the composite, which corresponds to a point on the 

plateau of the stress-strain curve.  The mesh is fragmented into discontinuous islands, while 
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the underlying VHB tape is still one piece, with the sliding indicated by the sliding traces in 

Fig.8.  The interaction between the mesh and the tape, as well as the stress and force 

distribution in each layer, are illustrated in Fig. 3.8.  A relatively large island of the 

fragmented mesh can be divided into three regions along the direction of the load.  On both 

sides, two relatively large regions (B and D on Fig. 3.8) exhibiting interlayer sliding are 

present, and a center region (C on Fig.3.8) where the mesh and the tape deform coherently.  

The characteristic sizes of the two regions are denoted by L  and r  in the deformed 

configuration.  In general, there should be a transition zone between the two regions which 

scales with the thickness of the tape.  In the current research, the effect of the transition zone 

will be neglected and the deformation in both layers will be assumed to be uniaxial.  It is 

noteworthy that the membrane force f  is defined as a homogenized quantity in the mesh 

layer, averaged over a region larger than the mesh grid. 

 

Figure 3.8. The interaction between the mesh and the tape. The force distribution in the mesh 

and stress distribution in the tape. 
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Due to the sliding, a shear stress is present between the mesh and the tape, which 

transfers the axial load gradually between the two layers, as sketched in Fig. 8.  Here for 

simplicity, we approximate this interaction by a shear-lag model with constant shear stress   

in the deformed configuration.  Under such an assumption, the resulting axial stress and force 

distributions in the mesh and the tape are qualitatively shown by Fig. 8.  The stress in the 

tape maximizes in zone A where bare tape is exposed due to sliding, and the membrane force 

in the mesh is maximized in the middle of each island, zone C.  For effective energy 

dissipation, it is essential to have the partially damaged mesh (the 1st network) to fragment 

further rather than the tape (the 2nd network) fracture right under an existing crack of the 

mesh.  Therefore, the force in the mesh at zone C should reach the tensile strength f , while 

that in the tape at zone A should be below the strength of the tape 2nds .  Such a 

requirement sets the size of the sliding zone (B and D) in a steady state, 

 





f

L . (3.1) 

The fragmentation will continue until the size of the middle zone r  becomes comparable or 

smaller than the intrinsic fracture process zone size, st1r , below which the rupture of the 

material is insensitive to stress concentration and the effective strength significantly 

increases.  Here, the intrinsic fracture process zone is approximately the mesh size. 

Let us first consider the deformation in the mesh layer.  From the testing results on 

the bare mesh, we assume it to be linearly elastic, with the membrane force f  proportional 

to the strain  : 

 kf  , (3.2) 
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where k  is the effective tensile stiffness of the mesh.  In zone C, when the mesh is in a 

critical state and the island is about to further fragment into smaller ones, *ff  , the 

deformed width r  is related to the undeformed one 0r  by  kfrr  10 . 

In the sliding zone B, the lateral force balance of the mesh layer dictates a linear 

distribution of the membrane force: 

 xf  . (3.3) 

Utilizing (3.2) and (3.3) and considering (3.1), we obtain the relation between the deformed 

length L  and the corresponding length before deformation 0L : 
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 . (3.4) 

 Now let us turn to the deformation in the VHB tape.  Due to the finite sliding, the part 

of the tape that was beneath the mesh island becomes much longer.  Denote the total 

deformed length of the sliding segment by l .  The horizontal equilibrium of the tape gives 

the stress distribution 
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where 
0  is the stress in the non-sliding segment C, and H  the original thickness of the 

tape.  In the absence of relative sliding, the strain in the VHB tape in zone C matches with 

that in the mesh, and 
0  is the corresponding axial stress.  When a certain constitutive model 

for the VHB tape selected, and the stress-stretch relation    is prescribed, Eq. (3.5) can be 

used to determine the deformation field in the tape layer.  Here by referring to the test result 
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of the VHB tape, we select the incompressible neo-Hookean model.  The uniaxial stress is 

related to stretch as 
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where   is the initial shear modulus.  When the mesh in zone C reaches the critical point, 

 ff , the stress in the underlying tape layer is 

 









2*

*0 1


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where kfrr  10

* . 

By integrating the inverse of stretch over the deformed length of the sliding zone on 

the tape, a relation between its original length 0L  and the deformed length l  can be obtained: 

  


L

lL

dx
L


0

. (3.8) 

The integral can be evaluated numerically with the stretch values obtained from Eqs. (3.5-

3.7). The system has two dimensionless parameters: the stretch at fracture of the 

mesh kf 1* , and the ratio between the strength of the mesh and the stiffness of the 

tape Hf  .  Just as the first network in the DN gel, the mesh provides the overall stiffness 

of the composite and acts as the sacrificial component.  With limited stretchability, the range 

of the critical stretch 
*  is relatively small and is thus not a major contributor to the 

toughness of the composite.  Here we take the representative value from the experimental 

measurements (Fig. 3), 1.1*  .  On the other hand, the strength-stiffness ratio Hf   plays 

an important role in the stretchability and toughness of the composite.  Here through 
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integrating (3.8) numerically, we plot the average stretch 0Ll  in the sliding zone of the VHB 

tape as a function of the dimensionless parameter Hf   in Fig. 3.9. 

 

Figure 3.9.  The average stretch in the sliding segment of the tape, plotted as a function of 

the ratio between the strength of the mesh and the stiffness of the tape, Hf  . 

 

Over the stress plateau, subdivide larger islands into smaller ones will take place until 

each island is too small to be subdivided, i.e. the half-size of the island becomes smaller than 

f .  For a smaller island, the axial force accumulated from the shear lag can no longer 

reach *f .  In those islands, the non-sliding zone r  shrinks to 0, and thus the stretches in the 

two layers do not need to match.  The stress in the tape 0  is no longer determined by Eq. 

(3.7) and would keep increasing until the tape layer ruptures.  The cessation of the island-

fragmentation mechanism corresponds to the end point of the plateau on the stress-strain 

curve.  In the absence of the non-sliding zones, the overall stretch of this point is given by 
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0lim Ll .  As shown by Fig. 3.10, for relatively large Hf  , 0Ll  simply scales linearly 

with it.  We thus arrive at the approximate scaling law for the limiting stretch of the plateau: 

 
H

f






lim . (3.9) 

By using the model presented above, the effective stress-stretch curve of the 

composite can be reconstructed theoretically.  The deformation and damage process of the 

DN composite can be divided into three stages.  In stage I, before any damage, the behavior 

of the composite is close to linear elastic, with the effective stress 
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By writing Eq. (3.10), the thickness of the mesh layer is neglected and the thickness of the 

composite is assumed to be identical to that of the constituting VHB tapes.  At a critical 

stretch, * , the partial damage in the mesh initiates.  Upon further stretch, the deformation is 

manifested through the further fragmentation of the mesh (or the propagation of the damage 

to the undamaged region when necking is present).  In stage II, the stress is maintained at a 

level close to that of fracturing the mesh: 
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f
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The stress plateau extends all the way to a stretch Hf  lim , beyond which the stress 

will increase again.  The monotonic increasing curve in stage III is mainly governed by the 

behavior of the tape layer, and the stress is bounded by a value set by the strength of the tape: 

nd2s .  While the accurate stress-stretch relation can be obtained by numerically solve Eqs. 

(3.5) and (3.6) and integrating Eq. (3.7), for relatively small range of deformation, the 
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behavior is close to linear.  The behavior in stage III can be approximately characterized by 

shifting the stress-stretch curve of the VHB tape up to the point  s,lim .   

We take the values measured from independent experiments on the mesh and tape 

individually: -1Nm 1170k , -1* Nm 420f , and kPa 38 , calculate the stress-stretch 

relation numerically from the model, and plotted in Fig. 3.10.  Comparing to the experiment 

results in Fig. 3.2, the agreement between the shear lag model and experiments is reasonably 

well. 

 

 

Figure 3.10. Theoretical prediction by considering the interaction in the sliding zone with a 

shear-lag model. The five curves have the same mesh to VHB tape ration as Fig. 3.2, which 

are 2:3 to 1:5. Material parameters are extracted from independent experiments on base 

materials. 
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We can reconstruct Eq.11a to the following equation, 

 
k

f

H
fs


 

31
. (3.11B) 

The peak stress and plateau stress during the tensile test of DN composites is plotted versus 

1/H as in Fig. 3.11. The agreement in peak stress between the shear lag model and 

experiments is also very well comparing to the experiment results. 

 

Figure 3.11. Theoretical peak stress, experimental peak stress and experimental plateau 

stress versus 1/H. 

 

 If the sample is unloaded from a point in Stage II, the unloading curve is 

approximately the weighted average between the undamaged and damaged behavior.  If the 

effect of the sliding stress  is negligible, the behavior of the fully damaged material will be 

close to that of the tape.  The unloading stress is thus given by 
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where   is the volume fraction of the undamaged phase, and can be easily determined from 

the stretch at the onset of the unloading, where the stress equals the plateau value s .  Without 

the friction from sliding, the unloading and reloading curves coincide with each other.  

However, testing results show a small hysteresis between the unloading and reloading curves, 

as in Fig. 3.4.  This, in turn, could serve as the evidence of the sliding, and the size of the 

hysteresis may be used to estimate the sliding stress  .  Such a practice, however, is beyond 

the scope of the current study. 

While the presence of the sliding between the mesh and the tape is essential to the 

energy dissipation in the damage process, according to the simple model, the actual value of 

the sliding stress   does not affect the ultimate stretch or the resulting toughness of the 

composite.  However, a smaller sliding stress will lead to a larger sliding area, and thus the 

approximate which corresponds to the extreme case when 00 Lr   will be more accurate. 
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CHAPTER IV 

CONCLUSIONS 

 

 

Drawing an analogy between the compliant ligaments in a soft elastic foam and the 

polymer chains in an elastomer, chapter 2 proposes a polymer-network-like toughening 

mechanism and derives the scaling relation between the macroscopic fracture energy and the 

structural characteristics of soft foam structures.  Different from the energy absorbing 

mechanism of rigid foams which is mainly effective at compression, the polymer-network-

like toughening mechanism allows a soft foam to effectively dissipate energy when the 

structure is subject to tension.  Through a phase-field model developed specifically for the 

fracture of elastomers, the toughening mechanism as well as the scaling relation is then 

verified on soft foam structures of various geometries.  In addition to the scaling law, it is 

found that the geometric parameters such as the ligament density and the network 

connectivity will also affect the fracture energy of soft foams.  Finally, to increase the 

volume fraction of the solid phase without affecting the thickness or slenderness of each 

ligament, a type of soft foam structures of serpentine ligaments is proposed.  Numerical study 

suggests that such structures may reach an effective fracture energy much higher than that of 

the corresponding bulk material.  In other words, one may toughen a soft material just by 

cutting slots or holes in it. In chapter 3, using a fabric mesh and a VHB acrylic tape, a soft 

but highly stretchable DN composite is manufactured. The DN composite follows the same 

damage-distribution and toughening mechanisms as in the well-known DN hydrogels. The 

DN composite exhibits stable necking as the DN gel, possesses large hysteresis during tensile 

loading-unloading test and shows good crack tolerance. The DN composite is as strong as the 
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mesh, as stretchable as the tape, and much tougher than both materials. By using a simple 

shear lag model to capture the finite interlayer sliding, a theory is developed and its 

prediction in the stress-strain behavior agrees well with the experiments. On the other hand, 

the DN composite itself may be regarded as a macroscopic model for the study of DN 

hydrogels. It also provides another kind of macro-structure composite which can lead to great 

enhancement of strength and toughness. 
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