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ABSTRACT 
 

 Aeroassist guidance is concerned with providing steering commands to a vehicle 
flying through a planetary atmosphere in the form of an aerodynamic roll angle, or bank 
angle, which results in appropriate direction of the aerodynamic lift force so that the vehicle 
will safely and accurately reach its designated final condition.  Aerocapture guidance is a 
particular subcategory of aeroassist guidance that involves atmospheric entry from an 
interplanetary transfer orbit, a guided flight through the atmosphere, and a final condition 
consisting of a post-atmospheric exit target orbit around the planet.  Using aerocapture 
guidance to establish this target orbit can provide significant propellant mass savings when 
compared to traditional propulsive maneuvers.  No current aerocapture guidance 
algorithms can ensure truly optimal performance in minimizing post-exit orbit insertion 
ΔV requirements.  This thesis investigates the development of a two-phase optimal 
aerocapture guidance algorithm.  This closed-loop guidance algorithm uses a 
mathematically optimal bang-bang bank angle profile structure, in which a vehicle first 
flies with the lift vector pointed straight up, and then flies full lift-down until atmospheric 
exit.  The optimal trajectory is found by determining the switching time between full lift-
up and full lift-down flight.  Results from testing the algorithm in a high-fidelity NASA 
simulation environment are presented and compared with results from existing state-of-
the-art aerocapture guidance algorithms.  These results show that the developed algorithm 
provides the robustness and adaptability of a numerical predictor-corrector guidance 
algorithm while demonstrating a significant reduction in ΔV requirements compared to 
other existing algorithms.
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CHAPTER 1.  INTRODUCTION 
 
 This Chapter provides a definition of the aerocapture guidance problem and the 
specific challenges it entails.  Section 1.2 provides an overview of what has been 
accomplished in the field to date, while Section 1.3 will compare and contrast the Fully 
Numerical Predictor-Corrector Aerocapture Guidance algorithm with current approaches.  
Finally, Section 1.4 delves into the particular accomplishments that will be presented in 
this thesis. 
 

1.1  Problem Definition and Challenges 
 Aeroassist guidance is concerned with providing steering commands to a vehicle 
flying through a planetary atmosphere in the form of an aerodynamic roll angle, or bank 
angle, which results in appropriate direction of the aerodynamic lift force so that the vehicle 
will safely and accurately reach its designated final condition.  Aerocapture guidance is a 
particular subcategory of aeroassist guidance that involves atmospheric entry from an 
interplanetary transfer orbit, a guided flight through the atmosphere, and a final condition 
consisting of a post-atmospheric exit target orbit around the planet [1].  Using propulsive 
maneuvers to slow down a spacecraft on an interplanetary orbital transfer requires a large 
amount of propellant to achieve the desired final condition.  This propellant mass 
requirement can be significantly reduced by entering the atmosphere of the planet and 
dissipating energy through friction [2]. 
 A major limiting factor in carrying out an interplanetary mission is the mass of the 
deliverable payload.  Because the vast majority of the mass of a rocket is comprised of 
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propellant, the deliverable mass is relatively small.  Any reduction in the propellant needed 
to insert a spacecraft into its desired post-exit orbit will lead to reduced fuel costs and an 
increase in payload capacity, allowing for more data-gathering instruments to be included 
in the mission.  The key to reducing these propellant costs and thereby maximizing the 
available payload mass is minimizing the required ΔV budget to successfully establish the 
desired final orbit. 
 The logistical challenges of planning and executing a human mission to Mars are 
especially unique.  Current plans call for a landed mass between 20 and 60 metric tons.  
Slowing a vehicle of this size enough to allow for a safe atmospheric entry, descent, and 
landing by using traditional propulsive methods would require an extremely large 
propellant mass.  Because of this, aerocapture guidance is being strongly considered as an 
alternative to a purely propulsive braking maneuver by NASA’s Evolvable Mars Campaign 
to allow for significant fuel savings and additional room for other mission-critical scientific 
payloads [3]. 
 

1.2  Aerocapture Guidance Algorithm History 
 The idea of using the atmosphere of a planet or other celestial body to reach a final 
orbit around that body as an alternative to a traditional propulsive maneuver was proposed 
as early as 1961 [4].  However, developing a reliable, high-performance aerocapture 
guidance routine is quite difficult.  Because of this difficulty, the implementation of this 
idea into a usable guidance algorithm began a few years later, starting in the early 1980s 
[5].  One of the first attempts at developing an aerocapture guidance algorithm was carried 
out by Hill in 1983 [6].  This algorithm was based on the Apollo skip-entry guidance 
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routine [7].  The Apollo logic was adapted such that instead of targeting a specific 
atmospheric-exit condition to allow a brief exit followed by a re-entry, the algorithm would 
command a specific exit condition to reach a desired orbital condition with a trajectory 
correction burn applied at apoapsis. 
 In 1985, Cerimele and Gamble proposed a more advanced two-phase hybrid lifting 
aeroassist guidance algorithm, using a combination of reference trajectory tracking and a 
predictor-corrector routine [8].  The first phase, known as the “equilibrium glide” phase, 
modulates the bank angle to maintain equilibrium glide until shortly after the vehicle 
reaches its periapsis.  The second phase, called the “exit phase,” uses a predictor-corrector 
scheme to hold a constant altitude rate in order to reach the desired condition at atmospheric 
exit.  In addition to the hybrid longitudinal logic, the algorithm also implemented a lateral 
logic based on a velocity-dependent deadband to manage inclination error at atmospheric 
exit.  This algorithm later became known as the Hybrid Predictor-corrector Aerocapture 
Scheme, and has been used in multiple trade studies for aerocapture missions [9]. 
 Additional algorithms have been developed building off of the success of HYPAS.  
In 1998, Bryant, Tigges, and Ives suggested a HYPAS-derived approach using analytical 
drag control instead of reference dynamic pressure during the equilibrium glide phase [10].  
Unlike HYPAS, this method used online computation of drag reference profiles, allowing 
for a reduction in pre-flight tuning requirements.  In 2008, Casoliva, Lyons, Wolf, and 
Mease combined the drag profile tracking of the equilibrium glide phase with an online 
reference trajectory generator based on a numerical predictor-corrector for use in gravity 
assists [11]. 
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 Because of their high computational demands, numerical predictor-corrector 
algorithms did not see extensive use until the last few decades.  Because they are frequently 
updated based on the current state throughout the trajectory, these algorithms tend to 
provide high degrees of accuracy and adaptability to any dispersions.  One of the first 
numerical predictor-corrector algorithms was developed in 1992 by Braun and Powell [12].  
This algorithm used a predictor-corrector to provide bank angle commands for use in 
aerobraking, and demonstrated superior performance to other approaches [13].  In 2003, a 
numerical predictor-corrector algorithm was developed by Jits and Walberg for use in Mars 
aerocapture missions [14].  Both of these algorithms prescribe a constant bank angle 
magnitude to reach a desired apoapsis altitude after exiting the atmosphere. 
 All of the above aerocapture guidance algorithms are formulated based on the idea 
of minimizing post-exit apoapsis altitude errors and performing a single periapsis raise 
burn to establish a final orbit.  In recent years, approaches based explicitly on minimizing 
post-exit propellant consumption have gained popularity.  In 2011, Lafleur suggested that 
a numerical predictor-corrector algorithm could be used to minimize the sum of two post-
exit trajectory correction burns, one performed at an unrestricted apoapsis to raise the 
periapsis altitude, and a second performed at the new periapsis to establish the final orbit, 
as seen in Fig. 1.1.  This new approach was implemented in an aerocapture algorithm called 
PredGuid+A.  PredGuid+A was adapted from a previously developed numerical predictor 
algorithm known as PredGuid, which was created for use in skip entry guidance [15]. 
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Fig. 1.1.  One-burn vs. two-burn aerocapture approaches. 

 Like the numerical predictor-corrector aerocapture algorithms developed before it, 
PredGuid+A attempts to find a constant bank angle profile to reach a desired target 
condition.  However, this algorithm allows a user to select between two guidance modes:  
one that targets a post-exit apoapsis altitude and uses a single burn to establish a final orbit, 
and one that attempts to minimize the two-burn ΔV requirement, with no explicit post-exit 
apoapsis altitude constraint.  This second mode has been shown to provide significant 
minimization in propellant consumption for certain trajectories [16]. 
 

1.3  Fully Numerical Predictor-Corrector Aerocapture Guidance 
 The Fully Numerical Predictor-Corrector Aerocapture Guidance algorithm, also 
known as the FNPAG algorithm, is the focus of this thesis.  The framework of this 
algorithm was created by Lu in 2014 [1].   As shown in Section 1.2, a number of algorithms 
have been developed that implement numerical predictor-corrector guidance to find a 
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suitable aerocapture trajectory.  However, the FNPAG algorithm differs from existing 
algorithms by using a novel approach:  a formulation that is rooted in the principles of the 
optimal control theory, and that does not necessarily prescribe a constant bank angle 
profile. 
 None of the aerocapture guidance algorithms in existence today explicitly attempt 
to achieve the best performance in minimizing the post-atmospheric-exit ΔV dictated by 
the optimal control theory.  The optimal aerocapture guidance problem deals with highly 
sensitive, nonlinear control.  Because of this, any brute-force numerical approaches to 
finding a solution are unlikely to reach the levels of robustness and efficiency required for 
implementation in an aerocapture guidance algorithm.  As a result of its basis in optimal 
control, the FNPAG algorithm allows for reliable optimal solutions to nonlinear, 
constrained control problems. 
 Another significant advantage of the FNPAG algorithm is its applicability to any 
range of vehicle configurations and lifting capabilities, as well as a variety of different 
missions from atmospheric entry to aerocapture.  In addition, FNPAG requires little to no 
tuning between missions and vehicles, allowing for quick and easy assessment of vehicles 
and mission requirements.  Because of this, FNPAG is ideal for performing trade studies.  
For more information on the formulation of the FNPAG algorithm, refer to Chapter 3 of 
this thesis. 
 

1.4  Thesis Achievements 
 Significant strides have been made in the development of the FNPAG algorithm, 
and will be presented as the main topics of discussion for this thesis.  The first major 
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accomplishment was the implementation of the algorithm in an in-house three-degree-of-
freedom (3-DOF) simulation.  This simulation included inputs for vehicle parameters, the 
initial conditions, and the final target orbit conditions.  Additional capabilities were added 
for dispersed test cases used in Monte Carlo simulations, allowing for user-defined 
dispersions in the initial conditions, the vehicle characteristics such as vehicle mass, and 
atmospheric uncertainties.  Modeling of atmospheric dispersions was accomplished by 
implementing Mars GRAM 2010 code.  Thorough testing of the in-house simulation 
environment was conducted for multiple vehicles, with promising results. 
 The second major accomplishment took place during a Visiting Technology 
Experience at NASA Langley Research Center.  The FNPAG algorithm was integrated into 
a 3-DOF simulation using the Program to Optimize Simulated Trajectories II, a high-
fidelity environment developed by NASA Langley.  The algorithm was tuned and tested 
for three different vehicles: a Hypersonic Inflatable Aerodynamic Decelerator, the 
Adaptable, Deployable Entry Placement Technology, and a rigid aeroshell with a moderate 
lift-to-drag ratio.  More information on these vehicles can be found in Chapter 2.  Two 
target orbits, a 1-sol and 5-sol polar orbit, were considered in the testing.  The simulation 
environment, target conditions, and Monte Carlo dispersions will be further discussed in 
Chapter 4.  Results from these simulations were compared with results from a NASA 
Langley-developed terminal point controller algorithm for the HIAD vehicle and a 1-sol 
target orbit, where the FNPAG algorithm displayed superior performance in terms of ΔV 
minimization.  These results will be thoroughly analyzed in Chapter 5. 
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CHAPTER 2.  AEROCAPTURE GUIDANCE PROBLEM 
 

 This Chapter introduces the formulation of the aerocapture guidance problem, in 
which a vehicle with a given set of initial conditions flies through the atmosphere of a 
celestial object such that it reaches a desired post-atmospheric-exit target orbit.  Section 
2.1 describes the equations of motion used in defining the aerocapture guidance problem, 
while Section 2.2 introduces the methods used to model planetary atmospheres.  Section 
2.3 contains a brief description of each of the vehicle models used in testing the aerocapture 
guidance algorithm and their different properties. 
 

2.1  Equations of Motion 
 Because most celestial bodies are not perfectly spherical, we begin the problem 
formulation by defining the three-dimensional equations of motion of a vehicle flying 
through the atmosphere of an ellipsoidal rotating planet, given by Eqs. (2.1-2.6) [1]: 

 = sin  (2.1) 
 =  cos sin

cos  (2.2) 

 =  cos cos  (2.3) 

 =  − − sin − cos cos  
+ cos  (sin cos − cos sin cos )            (2.4) 

 =  1 [ cos + ( ⁄ −  ) cos +  sin cos  
+ 2 cos sin                                                           
+ cos  (cos cos + sin cos sin )]       

(2.5) 
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 =  1 [ sin
cos +  cos sin tan + sin

cos  
− 2 (tan cos cos − sin )                      
+ cos sin sin cos ]                                   

 

(2.6) 

 
where r is the radial distance from the center of the celestial body to the spacecraft, θ and 
Φ are the longitude and geocentric latitude, respectively, V is the planet-relative velocity, 
γ is the flight-path angle of the planet-relative velocity vector, ψ is the heading angle of 
the planet-relative velocity vector, measured clockwise in the horizontal plane from the 
north, Ω is the celestial body’s rotation rate, and σ is the bank angle, defined as the 
rotation angle of the spacecraft about the relative velocity vector, with a positive bank 
angle occurring when the right wing is angled downward.  It should be noted that the 
bank angle is not the same as the body roll angle if the angle of attack is nonzero. 

Here, L and D are defined as the aerodynamic lift and drag accelerations and 
depend on the lift and drag coefficients CL and Cd, respectively, which depend on the 
angle of attack.  For aerocapture, the angle of attack profile is usually defined as a 
function of the Mach number, and the trim angle-of-attack profile is often used. In this 
case, the inertial velocity vector of the vehicle is given as 

 =  +     (2.7) 
 

where Vr is the planet-relative velocity vector and r and Ω are the position vector of the 
vehicle and the planet’s rotation rate, respectively, in a Cartesian coordinate frame. 
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Because the celestial body is not spherical, we must also account for the 
gravitational acceleration components in the radial and latitudinal directions, gr and gΦ, 
respectively.  When only considering J2 effects, these values are defined as 

 =  1 +  (1.5 − 4.5 )  (2.8) 
 

 =  (3 sin cos )  (2.9) 
 

where μ is the gravitational parameter of the body and R0 is its equatorial radius. 
 
2.1.1  Apoapsis-targeting problem 
 We continue formulating the aerocapture guidance problem with a discussion on 
two specific problems regarding aerocapture, the first of which is known as the apoapsis-
targeting problem.  For this problem, given a set of initial conditions at the initial time t0, a 
bank angle profile is desired to be found such that the vehicle flies a trajectory that reaches 
a user-defined post-atmospheric-exit apoapsis radius, denoted by ra*. This targeting 
condition is defined as follows: 

 ( , , ) −  ∗ = 0 (2.10) 
 

where ra is the apoapsis radius determined by rexit, Vexit, and γexit, the radius, inertial velocity, 
and flight-path angle at the atmospheric exit interface, respectively.  Using two-body 
orbital mechanics, we can solve for ra: 

 
= 1 +  1 −  ( )  (2.11) 
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where a is the semi-major axis of the post-atmospheric-exit orbit, given by 

 =  2 ⁄ −   (2.12) 
 

The solution to this problem is called the apoapsis-targeting solution [1].  However, 
in addition to prescribing the post-exit apoapsis radius, it is often desired to meet user-
defined criteria on the orientation of the orbit.  This is generally accomplished in one of 
two ways.  The first method involves only targeting a desired orbital inclination: 

 − ∗ = 0 (2.13) 
 
where i* is the targeted inclination of the final orbit, i is the orbital plane at atmospheric 
exit, and x = [r  θ  Φ  V  γ  ψ]T is the state vector of the trajectory dynamics given in Eqs. 
(1-6) at tf, the time at atmospheric exit.  The second method is more complex, and involves 
minimizing the wedge angle of the final orbit, defined as follows [17]: 

 =  [cos( −  ∗) sin( ) sin( ∗) + cos( ) cos ( ∗) (2.14) 
 
where i’ is the wedge angle, Ω is the longitude of ascending node of the orbital plane at 
atmospheric exit, and Ω* is the targeted longitude of ascending node of the final orbit.  
These constraints will be discussed in further detail in the following chapters because they 
are addressed by a lateral logic that is independent of the main aerocapture guidance logic. 
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2.1.2  Optimal aerocapture problem 
 The apoapsis-targeting problem has a potentially infinite number of feasible 
solutions depending on the difficulty of reaching the user-defined post-atmospheric-exit 
target orbit.  However, only one of these solutions will also minimize the required 
propellant consumed by an engine burn to reach the desired target orbit.  This particular 
trajectory is the solution to what is known as the optimal aerocapture problem [1].  The 
propellant requirement can be approximated by the in-plane impulsive velocity increment 
ΔV needed to reach the target orbit.  This propellant cost, denoted by P1, can be found using 
the following equation: 

 
=  ∆ =  2 1

∗ − 1
∗ + ∗ − 1

∗ − 1
2  (2.15) 

 
where rp* is the user-defined periapsis radius of the target orbit. 
 Additional improvement in terms of reduction of propellant requirement may be 
obtained by planning for two in-plane impulsive engine burns, ΔV1 and ΔV2, respectively. 
In this case, instead of enforcing the constraint developed in Eq. 2.10, the first burn is 
applied at the unconstrained post-atmospheric apoapsis ra to reach the desired final 
periapsis radius, rp*, and then a second burn is conducted at rp* to reach the final apoapsis 
radius ra*.  We define the post-exit periapsis radius rp before the first burn as follows: 

 
= 1 −  1 −  ( )  (2.16) 

 
It then follows that the propellant cost to be minimized, in this case denoted by P2, can be 
represented as 
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 =  |∆ | +  |∆ |

=  2 1 − 1
+ ∗ − 1 − 1

2

+  1
∗ − 1

∗ + ∗ − 1
∗ − 1

+ ∗  

(2.17) 

 
 The solution to the aerocapture guidance problem involves finding the bank angle 
σ on-board for every call to the guidance algorithm to ensure that the vehicle achieves the 
user-defined target orbit established by the constraints given in Eq. (2.10), while 
simultaneously minimizing the lateral targeting errors given by either Eq. (2.13) or Eq. 
(2.14).  This clearly requires a closed-loop guidance algorithm.  Finding a feasible 
apoapsis-targeting solution for every guidance cycle is the basis of the Fully Numerical 
Predictor Corrector Aerocapture Guidance algorithm.  However, the algorithm takes this 
solution one step further by determining the optimal apoapsis-targeting solution to 
minimize the cost function formulated in Eq. (2.15).  In the case of a two-burn trajectory, 
FNPAG will find the optimal bank-angle profile to minimize Eq. (2.17).  The methodology 
behind finding these solutions will be further explained in Chapter 3. 
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2.2  Atmospheric Models 
 The accuracy of any aerocapture algorithm can be greatly affected by dispersions 
in atmospheric density.  This is especially apparent for planets with relatively thin 
atmospheres, such as Mars, where small errors in predicted and actual atmospheric density 
can have a huge impact on targeting accuracy.  In fact, dispersions due to factors such as 
wind and atmospheric dust can cause density magnitude dispersions of more than 100%, 
as shown in Fig. 2.1.  Because of this, an accurate atmospheric model for any planet is 
absolutely necessary.  In recent years, NASA’s Marshall Spaceflight Center has developed 
a Global Reference Atmospheric Model (GRAM) for many celestial bodies, including 
Earth, Mars, and even Saturn’s moon Titan [18].  Development and testing of the FNPAG 
algorithm was carried out for both Earth and Mars using the 2010 version of GRAM.  
Because the aerocapture flyoff was conducted on Mars, this section will be focused on the 
features of Mars GRAM. 

Mars GRAM 2010 is a Fortran-based tool developed from data gained from the 
Mars Orbiter Laser Altimeter and using the Mars General Circulation Model [19].  The 
code allows users to determine the nominal atmospheric density at any point in the 
atmosphere.  Basic inputs to Mars GRAM include the longitude, latitude, and altitude of a 
vehicle.  The user can also specify the levels of atmospheric dust, the areocentric longitude 
of the Sun from Mars, wind effects, seasonal atmospheric pressure effects, and even the 
location and intensity of dust storms. 
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Fig. 2.1.  Sample Mars atmospheric density dispersion. 

In addition to generating a nominal atmospheric density, Mars GRAM is capable 
of generating Monte Carlo dispersions based on user-defined scale factors for the density 
and winds.  The effect of the Monte Carlo dispersion generator can be seen in Fig. 2.2, 
which shows the altitude vs. density profile for 100 dispersed cases, with the nominal 
density profile shown in red. 
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Fig. 2.2.  Dispersed Mars GRAM density profiles. 

 Unlike the atmosphere of Earth, Mars’ atmosphere undergoes wild swings in 
surface pressure as it orbits around the Sun, as seen in Fig 2.3.  This is commonly attributed 
to the condensation and sublimation of carbon dioxide stored in the Martian polar ice caps 
[20].  This can cause significant changes in the atmospheric density throughout the seasons.  
In addition, the atmosphere is not uniform, displaying large differences in density at 
different locations around the planet.  For these reasons, it is critical to feed the nominal 
density at the location and date of the planned mission to an aerocapture algorithm.  For 
the aerocapture guidance flyoff, Mars GRAM was used both inside the algorithm logic and 
outside in the trajectory model, so this concern was mitigated.  However, in the future, a 
more simplistic atmospheric model will most likely be used in the aerocapture guidance.  
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A current solution is to develop a curve fit based on the nominal density profile, using a 
logarithmic scale on the density magnitude.  This curve fit should be centered and 
normalized using a curve fitter such as Matlab’s cftool suite for best results. 

 
Fig. 2.3.  Martian pressure cycle at two surface locations [20]. 

 
2.3  Vehicle Models 

 An advantage unique to the FNPAG algorithm is that it is applicable to a wide 
variety of spacecraft.  FNPAG was specifically designed to work for anything from 
capsules with an extremely low lift-to-drag ratio to high lift-to-drag experimental 
hypersonic vehicles, and everything in between.  For the aerocapture guidance flyoff, three 
specific vehicles that are currently being evaluated for NASA’s Evolvable Mars Campaign 
were considered:  A low L/D inflatable spacecraft, a slightly higher L/D deployable semi-
rigid aeroshell, and a mid L/D rigid aeroshell vehicle. 
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2.3.1  ADEPT 
 The first vehicle concept examined was the Adaptable, Deployable Entry 
Placement Technology, or ADEPT, spacecraft.  The ADEPT vehicle consists of a woven 
carbon fiber thermal protection system (TPS) that is attached to a series of aluminum struts 
[3].  These struts are commanded to mechanically deploy the TPS around a rigid nose cone 
before atmospheric entry to form a semi-rigid aeroshell.  The ADEPT vehicle modeled in 
the guidance flyoff included an asymmetrical aeroshell with a diameter of 16 meters and a 
nominal spacecraft mass of 52,000 kg, with a hypersonic lift-to-drag ratio of 0.27.  Figure 
2.4 shows a concept of the ADEPT vehicle when deployed. 

 
Fig. 2.4.  ADEPT vehicle concept. 

 



19 
 
2.3.2  HIAD 
 The second vehicle simulated in FNPAG was the Hypersonic Inflatable 
Aerodynamic Decelerator, or HIAD.  The HIAD is a low lift-to-drag vehicle made by 
lashing together a series of inflatable tori constructed of a Kevlar-like material [3].  The 
HIAD remains stowed until shortly before atmospheric entry, when it is deployed and 
inflated to form a protective shield around the vehicle.  Mass savings from using an 
inflatable heat shield could potentially allow for significant cost savings, or could allow 
vehicles to carry larger scientific payloads.  The model used for FNPAG had an 18 meter 
diameter, a nominal mass of 55,320 kg and a nominal hypersonic lift-to-drag ratio of 0.2, 
slightly lower than that of the ADEPT vehicle.  Fig. 2.5 shows a conceptual HIAD vehicle 
in its fully-inflated configuration. 

 
Fig. 2.5.  Fully-inflated HIAD spacecraft. 
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2.3.3  Mid-L/D Rigid Vehicle 
 The last vehicle considered in the aerocapture guidance flyoff was a more 
traditional rigid aeroshell spacecraft, similar to the space shuttle.  This spacecraft is known 
as the Mid-L/D Rigid Vehicle, or MRV [3].  The nominal MRV vehicle model used in the 
simulation had a length of 19.8 meters, a diameter of 8.8 meters, a height of 6.99 meters, a 
nominal vehicle mass of 60,000 kg, and a middle-of-the-road lift-to-drag ratio of 0.55.  A 
depiction of this vehicle concept can be seen in Fig. 2.6. 

 
Fig. 2.6. MRV concept. 
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CHAPTER 3.  FULLY NUMERICAL PREDICTOR-CORRECTOR 
AEROCAPTURE GUIDANCE ALGORITHM OVERVIEW 

 
 This Chapter provides an in-depth look into the inner workings of the Fully 
Numerical Predictor-Corrector Aerocapture Guidance (FNPAG) algorithm, as well as an 
overview of the three other algorithms tested in the aerocapture guidance flyoff described 
in Chapter 1.  Section 3.1 describes the formulation of FNPAG, while Section 3.2 discusses 
the Terminal Point Controller (TPC) guidance algorithm, and Section 3.3 presents the 
Numerical Predictor-Corrector (NPC) algorithm developed at NASA Langley Research 
Center. 
 

3.1  Fully Numerical Predictor-Corrector Aerocapture Guidance 
Algorithm 

3.1.1  Optimal aerocapture solution 
 The defining characteristic of the FNPAG algorithm is its basis in the optimal 
control theory.  Specifically, the algorithm is founded to address a subset of optimal 
aeroassist problems that are rooted in the following two assumptions, as noted by Lu [1]:  
that the performance index and terminal constraints depend explicitly on the terminal 
values of the longitudinal motion variables r(tf), V(tf), and γ(tf), and that the only control 
used is modulation of the bank angle, with a pre-determined angle of attack profile.  This 
set of aeroassist problems includes the optimal aerocapture problem discussed in Chapter 
2, when the only targeting condition addressed in the solution is Eq. (2.10), and also the 
two-burn optimal solution where there are no in-plane terminal constraints.   
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 We begin by establishing a vector containing the longitudinal variables,  
xlon = (r  V  γ)T.  Using this vector, we can develop a performance index for the optimal 
control problem: 

 =  ( ) (3.1) 
 

For this problem, η becomes either Eq. (2.15) for the one-burn solution or Eq. (2.17) for 
the two-burn solution.  In addition, we denote up to 3 terminal constraints k that the 
trajectory must satisfy: 

 = 0 (3.2) 
 
where tf > t0 is free, and s: R3 → Rk, represents a k-dimensional smooth vector function.  
For example, when solving the one-burn apoapsis-targeting problem, k = 1 and Eq. (3.1) 
takes the form of Eq. (2.10).  By further ignoring the relatively small effects of planetary 
rotation and non-spherical gravity, we can reduce the longitudinal dynamics from Eqs. 
(2.1), (2.4), and (2.5) to the following: 

 =  sin ,          ( ) =   (3.3) 
 =  − − sin ,            ( ) =   (3.4) 
 =  1 cos +  − cos ,          ( ) =   (3.5) 

 
where the bank angle σ is used as the control variable, subject to the given magnitude 
constraints: 

 0 ≤   ≤  | |  ≤   ≤   (3.6) 
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Upon further examination, it is clear that the dynamics in Eqs. (3.3), (3.4), and (3.5) are 
decoupled from the rest of the three-degree-of-freedom dynamics given in Eqs. (2.2), (2.3), 
and (2.6).  Because of this, we can develop a solution to the optimal control problem by 
only considering Eqs. (3.3-3.5).  Using the Maximum Principle [21], the optimal bank 
angle is found from the optimality condition and can be seen in Eq. (3.7): 

 =   sin +  − − sin

+  cos + −  cos  
(3.7) 

 
where pr, pV, and pγ are the costates of each variable.  Furthermore, cos σ is monotonic in  

 ∈  [ , ]  ∈  [0, ], the right-hand side of Eq. (3.7) is linear in cos σ, and L/V is 
always positive. Therefore, the optimal bank angle σ* will be of the form: 

 
∗ =  

,            > 0;
 ,           < 0;

∈  [ , ],                          ≡ 0  [ , ] ∈ ,
 (3.8) 

 
If pγ is equal to 0 at any time in the interval t1, t2 , the optimal bank angle could have any 
value between σmin and σmax.  This phenomenon is known as singular optimal control.  
However, for the optimal aerocapture problem, singular optimal control has been 
determined to be impossible. 
 The Hamiltonian can be developed from Eqs. (3.3-3.5) as follows: 

 =  sin +  − − sin +  cos + −  cos  (3.9) 
 
where the costate variables are described by the following costate equations [21]: 
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 =  − =  −  2 sin −   (3.10) 
 =  − =  − sin +  −   (3.11) 
 =  − =  − cos + cos −   (3.12) 

 
where  is the right-hand side of Eq. (3.5): 

  =  1 cos + −  cos  (3.13) 
 
The impossibility of singular control here can be proven by contradiction [1].  If singular 
optimal control exists on the interval [ , ] ∈ , , it follows that ( ) ≡ 0 from Eq. 
(3.8).  If this is the case, we set =  = 0 in Eq. (3.12), and we can rearrange the right-
hand side with the knowledge that cos  ≠ 0 as follows: 

 −  = 0 (3.14) 
 
However, this problem does not have a fixed final time, and the dynamics in Eqs. (3.3-3.5) 
as well as Eq. (3.2) are autonomous.  Using the Maximum Principle [21], the optimal 
trajectory will be subject to the following: 

 = 0, ∀  ∈ [ , ] (3.15) 
 
We can use this to rearrange Eq. (3.9), remembering that = 0: 

 sin −  − sin = 0 (3.16) 
 
If we substitute Eq. (3.14) into the above, noting that D is always positive, we get: 
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 − = 0 →  = 0  (3.17) 
 
If we substitute this solution back into Eq. (3.14), we find that = 0.  As a result, the 
entire costate vector =  ( ) = 0 over the interval [ , ].  Since the costate 
equations are affine in p, and p is continuous over the interval [ , ], then p(t) is 0 over 
the interval [ , ].  However, this contradicts a tenet of the Maximum Principle which 
requires that the costate vector p is nonzero.  This contradiction occurs because a singular 
arc is assumed to exist in the optimal solution, and therefore, singular optimal control 
cannot exist as a solution to the optimal aerocapture problem. 
 Because the existence of singular optimal control is impossible, a guiding principal 
for the subset of optimal aeroassist problems discussed in this section can be developed 
[1]:  for this subset of problems, the optimal bank angle magnitude profile will always have 
a bang-bang structure.  Even when including the effects of planetary rotation and non-
spherical gravity terms, the optimal solution will have a bang-bang bank angle profile as 
long as no terminal equality constraints dealing with lateral variables are included.  This 
assertion has been backed up by numerical studies including [16], showing that the optimal 
aerocapture trajectory subject to three-degree-of-freedom dynamics and even final target 
inclination constraints will fly almost full lift up for the first part of the trajectory, followed 
by an almost full lift down phase.  As shown in [16], this is because the propellant cost 
given in Eq. (2.15) is minimized by minimizing the flight path angle magnitude at 
atmospheric exit, and therefore by maximizing the relative velocity at atmospheric exit.  
Flying full lift up for the first phase of atmospheric flight raises the endo-atmospheric 
periapsis altitude, minimizing the velocity lost in the first phase.  Then, flying full lift down 
for the second phase minimizes the flight-path angle magnitude at exit. 
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 It should be noted that a flight conducted entirely in the full lift down phase is 
possible, where the entire trajectory is spent flying at σ* = σmax.  This special case of bang-
bang control would be caused by allowing a freely specified entry flight-path angle, and 
would result in the best performance in terms of ΔV minimization. However, a nominal full 
lift down trajectory would suffer from a lack of robustness when trajectory dispersions 
were introduced. For these reasons, it is best to select an entry flight path angle which 
allows for a true bang-bang optimal bank angle profile.  It should also be noted that this 
analysis is valid for both the one-burn apoapsis targeting problem and for the two-burn ΔV-
minimization problem.  In both cases, the optimal bank angle profile will display these 
bang-bang characteristics. 
 
3.1.2  FNPAG formulation 
 Once we have analyzed the optimal aerocapture problem and developed a solution, 
we can begin to develop the actual FNPAG algorithm.  We have previously determined 
that for a given entry flight path angle, the optimal bank angle profile is of bang-bang 
structure, with a full lift up phase followed by a full lift down phase.  This is achieved by 
setting a minimum and maximum bank angle of 0 and 180 degrees, respectively.  However, 
if we set these minimum and maximum bank angles, there is no room to adjust the bank 
angle when trajectory dispersions and any other uncertainties are encountered.  In addition, 
using 0 and 180 degrees as the respective minimum and maximum bank angles does not 
allow for any crossrange control, which is needed for the lateral guidance logic to function 
properly.  For these reasons, we must select a larger minimum bank angle magnitude and 
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a smaller maximum bank angle magnitude to allow for guidance robustness and crossrange 
control capabilities. 
 As we discussed in Chapter 2, the optimal aerocapture guidance problem can be 
solved for both a one-burn apoapsis targeting condition and a two-burn ΔV minimization.  
FNPAG has two guidance modes to account for this.  Mode 1 finds the optimal trajectory 
to meet the apoapsis targeting condition in Eq. (2.10) while minimizing the ΔV requirement 
in Eq. (2.15).  Mode 2, on the other hand, finds the trajectory to minimize the two-burn ΔV 
sum in Eq. (2.17), without enforcing an explicit equality constraint. 
 Each of these guidance modes consists of two phases.  Phase 1 begins at the entry 
interface at time t0 and lasts until an unspecified time ts > t0.  Phase 2 begins at ts and lasts 
until atmospheric exit at time tf.  In accordance with the bang-bank optimal bank angle 
profile developed in the previous section, Phase 1 flies at a minimum bank angle magnitude 
of = 15 deg.  This magnitude is chosen based on the minimum bank angle flown by the 
Apollo entry guidance algorithm [7], and its value appears to have a minimal effect on the 
performance of FNPAG.  Phase 2, on the other hand, flies at a relatively large bank angle 
magnitude, denoted σd.  The selection of this value turns out to be the most important tuning 
parameter in finding a balance between excellent ΔV-minimization performance and 
superior robustness.  This tuning process will be examined in more detail in Chapter 5. 
 Once σ0 and σd are specified, the only unknown parameter in Phase 1 is the 
switching time ts to move to Phase 2.  This is the case for both guidance modes.  The 
switching time is determined by the fully numerical predictor corrector algorithm 
developed in [22].  For Mode 1, ts is found at every call to the guidance algorithm to satisfy 
the apoapsis targeting condition in Eq. (2.10).  By performing an onboard numerical 
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integration loop, the atmospheric exit condition becomes a function of ts, and Eq. (2.10) 
becomes a univariate root finding problem: 

 ( ) =  −  ∗ = 0 (3.18) 
 
where the post-exit apoapsis radius ra is a function of switching time ts in Phase 1.  The 
solution to this equation is found by implementing Brent’s method [23].  This method is 
ideal because it offers the assured solution of the bisection method in combination with the 
quicker convergence of cubic interpolation.  For Mode 2, ts is found using the golden-
section method to minimize the ΔV required in Eq. (2.17) [23].  Throughout Phase 1, the 
bank angle commanded is always of magnitude σ0, but the switching time may vary 
between each guidance cycle, since it is calculated based on the current trajectory condition 
at each call to FNPAG.  Figure 3.1 shows the planned bank angle magnitude profile used 
in Phase 1. 

 
Fig. 3.1.  Phase 1 bank angle magnitude profile [1]. 
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 As soon as the current time reaches the switching time ts, FNPAG switches to Phase 
2.  In this phase, each call to the guidance algorithm involves finding a constant magnitude 
bank angle profile to either meet the targeting condition given in Eq. (2.10) or to minimize 
the ΔV requirement in Eq. (2.17).  Once again, Brent’s method is used for Mode 1 and the 
golden-section method is used for Mode 2.  This section also uses the fully-numerical 
predictor corrector guidance algorithm developed in [22], albeit with a shorter time step.  
The bank angle commanded for each guidance cycle in Phase 2 will not necessarily be 
identical to σd due to trajectory dispersions, but should remain relatively close.  This 
commanded bank angle may also change throughout Phase 2, since each guidance update 
uses the current trajectory state, making the FNPAG algorithm essentially a closed loop 
one. 
 In addition to Mode 1 and Mode 2, FNPAG also offers two additional modes.  
These two modes follow the same framework as Mode 1 and 2, but instead find a constant 
bank angle profile to satisfy either Eq. (2.10), used in Mode 3, or Eq.(2.17), used in Mode 
4.  Essentially, Modes 3 and 4 use the same framework as Modes 1 and 2, but with the 
switching time ts equal to 0.  This effectively reduces these modes to fly the entire trajectory 
in Phase 2.  Table 3.1 provides an overview of each of the four guidance modes. 

Table 3.1.  FNPAG guidance modes. 
FNPAG Mode Objective Number of Phases 

Mode 1 Apoapsis-targeting condition (Eq. 2.10) 2 
Mode 2 ΔV-minimization (Eq. 2.17) 2 
Mode 3 Apoapsis-targeting condition (Eq. 2.10) 1 
Mode 4 ΔV-minimization (Eq. 2.17) 1 
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3.1.3  Trajectory constraints 
 FNPAG also includes the option of enforcing inequality path constraints on the load 
factor n and heating rate , given in Eqs. (3.19) and (3.20): 

 =  +  ≤   (3.19) 
 =  .  ≤   (3.20) 

 
where nmax is the peak limit in the load factor,  is the heating rate limit at a stagnation 
point on the spacecraft surface, and kQ is a positive constant [22].  A predictive approach 
has been developed in [22] to enforce these constraints by augmenting the bank angle 
commanded by FNPAG with an altitude-rate feedback, although it was not used in this 
particular guidance flyoff.  This can be applied to any of the 4 modes offered in FNPAG, 
and has been shown to be effective in simulations [22]. 
 
3.1.4  Estimating uncertainties 
 A number of uncertainties exist when it comes to modeling an aerocapture 
trajectory.  Perhaps the most impactful are uncertainties in the lift and drag coefficients CL 
and CD, the pitching moment coefficient Cm, the location of the spacecraft center of gravity, 
atmospheric density, and spacecraft mass.  These uncertainties combine to have a 
cumulative effect on the lift and drag accelerations L and D [1].  As has been demonstrated 
in previous entry guidance efforts [22, 24, 25], first-order fading-memory filters are 
implemented in FNPAG to estimate the following ratios: 

 =  ∗ (3.21) 
 =  ∗ (3.22) 
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where L and D are the sensed aerodynamic lift and drag accelerations and L* and D* are 
the nominal values of lift and drag acceleration.  The scaling factors for the (n + 1)-th 
guidance cycle ( ) and ( ) are found as follows: 

 ( ) =  ( ) + (1 −  ) − ( ) ,    0 <   < 1 (3.23) 
 ( ) =  ( ) + (1 −  ) − ( ) ,    0 <   < 1 (3.24) 

 
where ρL and ρD are based on current sensor data, ( ) and ( ) are the estimated ratios 
from the previous guidance cycle, and β is the time constant for the filters.  Initially, ( ) 
and ( ) are set to 1.  Then ( ) and ( ) are used to scale the nominal lift and drag 
accelerations to find an optimal solution for each guidance cycle.  These fading-memory 
filters are able to accurately account for uncertainties in mass, atmospheric density, and 
aerodynamic coefficients.  They have even shown superior performance when dealing with 
time-varying uncertainties, as seen in [24, 25]. 
 
3.1.5  Lateral logic 
 FNPAG includes two options for use in controlling lateral motion throughout a 
trajectory.  The first option is a velocity-dependent deadband similar to those utilized in 
some of the older aerocapture algorithms discussed in Chapter 1.  Based on the location in 
the trajectory, if the current inclination falls too far from the targeted final inclination, a 
bank reversal will be commanded.  The logic is setup such that larger inclination errors are 
allowed earlier in the trajectory, while the deadband tightens as the vehicle nears the exit 
interface.  While this method is simple and effective, it requires tuning of the deadband 
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threshold to set the number of bank reversals for a nominal trajectory.  In addition, the 
number of bank reversals for the nominal trajectory may not be the same as the number of 
reversals commanded when dispersions are applied. 
 The second lateral logic included in FNPAG uses a technique proposed by Smith 
which allows the user to specify a number of bank reversals [26].  This predictive logic 
uses a numerical predictor-corrector loop to integrate the trajectory twice from the current 
condition to atmospheric exit, one with the current bank sign, and one with the opposite.  
The crossrange error at the exit interface using the current bank sign is denoted as , and 
the error using the opposite sign is denoted as .  As the vehicle travels along the 
trajectory, it loses velocity and therefore the crossrange capability of the vehicle is 
lessened.  By flying at the same bank sign,  will increase, while simultaneously the 
magnitude of  will decrease.  Eventually, the magnitude of  will reach 0, meaning 
even when a bank reversal is performed, the vehicle will not be able to reach the target due 
to a finite bank rate and acceleration. 
 The solution to this problem is to command a bank reversal when the magnitude of 

 is much smaller than that of .  A variable K is denoted to represent the ratio of these 
magnitudes.  When this threshold is reached, a bank reversal is commanded, and the value 
of   is set equal to the old value of .  Then, another bank reversal occurs when this 
new ratio exceeds the value of K.  By doing this, the terminal crossrange of the vehicle is 
reduced by a factor of K for each commanded bank reversal.  This is expressed by the 
following: 
 

 =  | | (3.25) 
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where n is a specified number of bank reversals,  is the crossrange error at atmospheric 
exit, and  is the crossrange error at the initial condition.  Given a user-defined crossrange 
error (the final desired inclination error at atmospheric exit for FNPAG), Eq. (3.25) can be 
solved for K: 

 
=   (3.25) 

 
This equation is adapted into a closed-loop lateral logic by using the current crossrange 
error ( ) and by specifying the number of bank reversals n left to be performed. When 
this is established, Eq. (3.25) becomes: 

 
=  ( )  (3.26) 

 
Then, any time the ratio of ( ) to  exceeds K, a bank reversal is committed and n is 
decreased.  This is repeated for every guidance call until n reaches 0. Testing has shown 
this to be a robust and high-performing algorithm, with the same user-specified number of 
bank reversals remaining constant despite dispersions [22].  For the flyoff, a modified 
version of this logic was implemented using the wedge angle error instead of crossrange 
error.  This method has also proven to be quite successful, as will be demonstrated in 
Chapter 5. 
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3.2  Terminal Point Controller Guidance 
 One of the other aerocapture guidance algorithms used in the guidance flyoff is 
known as the Terminal Point Controller, or TPC.  TPC guidance was derived from the entry 
guidance used on the Apollo mission, and was adapted by changing the existing boundary 
conditions to be applicable to aerocapture trajectories [27].  This algorithm is based on the 
adjoint state method, and was originally developed for use in the Mars Surveyor Program 
in 2001.   

The TPC guidance algorithm uses a reference trajectory generated offline and 
includes a feedback guidance loop to target a desired terminal condition.  In this algorithm, 
the equations of motion are also integrated backwards offline along the previously 
generated reference trajectory from the final target condition and stored for use in the 
algorithm.  From this integration, a set of four controller gains are determined and used in 
conjunction with an energy table, a velocity table, a drag acceleration profile table, and a 
bank angle table to determine the required bank angle command given at each guidance 
cycle.  These gains are scheduled by the orbital energy at each guidance call. The control 
vector u is established using Eq. (3.27): 

 =  − |  (3.27) 

 
where x is the state vector consisting of the downrange s, velocity V, flight path angle γ, 
and altitude h, =  [ ( ) ( ) ( ) ( )]  are the integrating factors for each 
state, and f is the state vector using the equations of motion for a vehicle flying through the 
atmosphere. An illustration of the TPC guidance routine is shown in Fig. 3.2. 
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Fig. 3.2.  TPC feedback guidance loop [27]. 

The TPC guidance algorithm uses a deadband controller to determine when to perform a 
bank reversal.  This deadband is based on the difference between the current inclination of 
the vehicle and the desired inclination of the final orbit.  The width of the deadband 
decreases as the vehicle nears the end of the atmospheric flight.  For more detailed 
information on the development of the TPC algorithm, see [27]. 

 
3.3  Numerical Predictor-Corrector Guidance 

Like the TPC guidance algorithm, the Numerical Predictor-Corrector Guidance, or 
NPC, algorithm was developed at NASA Langley in support of the 2001 Mars Surveyor 
Program.  The NPC algorithm was also originally developed for entry guidance, and an 
aerocapture guidance mode was later developed. 

The NPC algorithm uses a roll reversal numerical predictor-corrector to generate a 
bank angle command [28].  This involves an algorithm consisting of two guidance loops.  
The inner loop contains the numerical predictor-corrector logic, in which the equations of 
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motion are integrated forward throughout the entire trajectory to find a bank angle 
command with a constant magnitude.  The outer loop then adjusts the commanded bank 
angle in real time based on the current state of the vehicle.  It should be noted that no 
optimization routine is performed to minimize the post-atmospheric exit propellant mass 
required to reach the target orbit. 

Although not identical to the predictive lateral logic implemented in FNPAG, the 
NPC algorithm does use some form of predictive logic to determine when to perform a 
bank reversal.  This logic is nested in the inner loop of the algorithm.  It should be noted 
that the specified bank reversal times cannot be adjusted by the outer loop guidance like 
the bank angle magnitude [28].  Bank reversals are determined by a deadband controller 
using inclination as the criteria for reversal.  For more information on the development of 
the NPC guidance algorithm, see [28]. 
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CHAPTER 4.  SIMULATION ENVIRONMENT 
 
 This Chapter discusses the simulation environment used in conducting the 
aerocapture guidance flyoff described in the previous chapters.  FNPAG and the other 
guidance algorithms were implemented and simulated in a high-fidelity simulation 
environment at NASA Langley Research Center.  This environment is known as the 
Program to Optimize Simulated Trajectories II, or POST2.  An overview of POST2 is given 
in Section 4.1.  Section 4.2 introduces the gravity model, the navigation models, and the 
pseudocontroller developed for use in POST2, respectively.  Section 4.3 introduces the 
initial conditions and post-atmospheric-exit target conditions that were selected for the 
guidance flyoff, and section 4.4 provides a description of the dispersions used in executing 
the Monte Carlo simulations for each algorithm, vehicle, and target orbit.  Finally, Section 
4.5 introduces the figures of merit used in evaluating the performance of each algorithm. 
 

4.1  Program to Optimize Simulated Trajectories II Overview 
 The Program to Optimize Simulated Trajectories II, or POST2, is a high-fidelity 
simulation environment developed by NASA Langley Research Center.  The original 
POST software was created in the 1970s to simulate space shuttle trajectories [29].  POST2 
was adapted from the original POST code beginning in 1995, and additional functionality 
has been added throughout the years.  POST2 is capable of compiling code written in both 
C and FORTRAN, giving users a great deal of flexibility in running simulations. 
 While the original POST simulation restricted users to a single vehicle, POST2 
allows users to select and optimize orbital trajectories simultaneously for a plurality of 
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vehicles orbiting any oblate celestial body.  These vehicles may be powered, such as a 
launch vehicle for a lunar orbit, or unpowered, as in the case of an aerocapture trajectory.  
The source code offers a multitude of models for use in simulating trajectories, including 
atmospheric, propulsion, gravity, and controller models, among others.  POST2 also boasts 
both 3 and 6 degree-of-freedom simulation capabilities.  Moreover, these can be run 
simultaneously, i.e. one vehicle can be run in a 3DOF trajectory at the same time as another 
vehicle in a 6DOF trajectory.  In fact, a single vehicle trajectory can be divided into 
multiple segments, with each individual segment being 3DOF or 6DOF [29]. 
 Perhaps the most useful improvements developed for POST2 are its Monte Carlo 
simulation capabilities.  These types of simulations are invaluable for trade studies such as 
the aerocapture guidance flyoff performed in this thesis.  Because it allows vehicle models 
created by the user to be integrated into the simulation, any vehicle can be used to conduct 
a trajectory analysis.  In addition, POST2 contains dispersion capabilities for a number of 
variables that allow for large-scale dispersed trajectory simulations.  Moreover, POST2 
allows users to optimize these trajectories based on user-defined constraints, and although 
this feature was not used for the guidance flyoff, it has the potential to be applied in future 
trade studies. 
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4.2  Gravity, Navigation, and Controller Models 
 POST2 has a wide variety of models that can be included in running trajectory 
simulations.  One such model is the planetary gravitational model.  POST2 includes the 
capability of simulating a simple spherical planetary gravity field all the way up to a 
harmonic field with hundreds of perturbing effects.  For the aerocapture guidance flyoff, 
an 85x85 spherical harmonic gravity field developed by JPL was selected, requiring inputs 
for the Martian rotation rate, equatorial and polar radii, mean radius, and gravitational 
constant. 
 POST2 also includes an in-depth navigational toolbox that allows users to introduce 
anomalies such as biases and uncertainties in inertial measurement units and other sensors.  
Because of the preliminary nature of the guidance flyoff, perfect navigation was used to 
create a baseline of expected performance from each algorithm, although in the future these 
capabilities may be utilized. 
 The last notable model used in the flyoff was a pseudo-controller that simulated the 
effects of controller limits on the commanded bank angle.  For this flyoff, the maximum 
bank rate was limited to 20 deg/s, and the maximum bank acceleration was capped at 5 
deg/s2.  Limiting changes in the commanded bank angle to a finite rate allows for more 
realistic performance from the guidance algorithms.  
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4.3  Initial Conditions and Target Orbit Parameters 
 Each vehicle was run using the same set of initial conditions, simulating an entry 
near the north pole of Mars on a north-south trajectory.  For consistency, all runs were 
conducted with the same starting date, in this case an entry time of midnight on May 10, 
2033, a date in the lower part of the Martian pressure cycle.  The vehicle state was 
initialized at a point in space such that it would reach the atmospheric entry interface at a 
velocity of 6200 m/s after flying for thirty seconds.  The entry interface was set at an 
altitude of 126 km.  Table 4.1 displays a full list of the vehicle state used to initialize each 
trajectory.  It should be noted that the initial flight path angle was free to be chosen by the 
user, so a different entry flight path angle was used for each of the three vehicles.  This will 
be further explored in the results of the nominal runs presented in Chapter 5. 

Table 4.1.  Nominal POST2 initial conditions. 
B-plane angle 270 deg 

Geodetic altitude  185.4 km 
Mars-relative velocity 6.1782 km/s 

Hyperbolic excess velocity 3.76 km/s 
Orbital inclination 90 deg 
Geocentric latitude 84.5 deg 

Longitude 90 deg 
Heading angle 180 deg 

Julian date 2463727.5 days 
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 To test the capabilities of each algorithm used in the flyoff, two final target orbits 
were suggested, a 1-sol and a 5-sol elliptical orbit.  Although both orbits share the same 
periapsis altitude, inclination, and ascending node, the 5-sol orbit has a much higher 
apoapsis altitude, which means it requires a smaller propellant mass to establish the orbit 
after exiting the atmosphere.  However, because it is so eccentric, any small errors at 
atmospheric exit have a much more profound effect on the algorithm’s performance than 
when attempting to reach the 1-sol orbit.  Table 4.2 displays the characteristics of both of 
these target orbits. 

Table 4.2.  Post-atmospheric-exit target orbits. 
Parameter 1-sol orbit 5-sol orbit 

Periapsis altitude 250 km 250 km 
Apoapsis altitude 33793 km 112400 km 

Inclination 90 deg 90 deg 
Longitude of ascending 

node 
270 deg 270 deg 

Argument of periapsis 90 deg 90 deg 
 
 
 
 
 
 



42 
 

4.4  Monte Carlo Dispersions 
 Each vehicle was simulated for both a 1-sol orbit and a 5-sol orbit, with 8,000 
dispersed cases being run for each target orbit.  Dispersions applied to the nominal state 
included aerodynamic uncertainties in the vehicle, uncertainties in the Martian atmospheric 
density, mass uncertainties, and a dispersed initial condition applied through a state 
covariance matrix based on the initial state covariance matrix used in simulating the Mars 
Science Laboratory entry guidance [30].  Vehicle aerodynamic dispersions were applied 
through NASA-provided model databases, using normal dispersions to alter the lift and 
drag coefficients of each vehicle.  Atmospheric dispersions were applied using Mars 
GRAM 2010 with the rpscale variable set to 1.0.  This places a normal dispersion on the 
atmospheric density.  All of the other dispersion types are available for reference in Table 
4.3. 

Table 4.3. Monte Carlo dispersions. 
Variable Dispersion (3σ bounds for 

normal distributions) 
Distribution 

MARS Gram dusttau 0.1-0.9 uniform 
Vehicle mass bias +/- 500 kg normal 

C.G. bias, x-direction +/- 0.05 m normal 
 
4.4.1  Dusttau effects 
 Of all of the applied Monte Carlo dispersions, the dusttau variable has perhaps the 
most dramatic effect.  This variable simulates the effects of dust present in the Martian 
atmosphere on its density at different points around the planet.  Higher values of dusttau 
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lead to more dust and thus higher atmospheric densities, which can cause the vehicle to 
undershoot its apoapsis target and lead to higher ΔV requirements, with some cases 
showing a ΔV increase as high as 30 percent.  In addition, the relationship between dusttau 
and ΔV performance is nonlinear, as seen in Fig 4.1, conducted using a nominal dusttau of 
0.5 for the guidance. 

 
Fig. 4.1.  Dusttau effect on ΔV requirement. 

A simple solution to this problem is to select a guidance dusttau value such that the mean 
ΔV is minimized, as shown in Fig 4.2.  Because this value has proven to be vehicle-
dependent, the dusttau value fed to the guidance algorithm will be discussed further in 
Chapter 5. 
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Fig. 4.2.  Minimizing dusttau effects through nominal dusttau selection. 

 
4.5  Figures of Merit 

 A number of figures of merit were developed for comparing the performance of the 
algorithms participating in the aerocapture guidance flyoff.  The main figure of merit 
involved the sum of the magnitudes of the three post-atmospheric-exit trajectory correction 
burns, used to place the vehicle into its final orbit.  These burns include a periapsis raise 
maneuver conducted near the vehicle’s post-exit apoapsis, an apoapsis correction burn 
conducted at the now-raised periapsis, and final propulsive burn to clean up the wedge 
angle, conducted at the node with the largest altitude to minimize the ΔV cost.  The 99th-
percentile of the total ΔV budget, meaning the ΔV cost which was greater than or equal to 
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the cost in 99 percent of the Monte Carlo trials, was used to determine the overall winner 
of the flyoff. 
 In addition to the ΔV budget, a few other figures of merit were selected to gain 
insight on the performance of each algorithm.  These included the 99th-percentile value of 
the projected apoapsis altitude error at atmospheric exit and the 99th-percentile of the 
projected periapsis altitude at atmospheric exit.  Although these values do not explicitly 
relate to the propulsive cost of reaching the final orbit, they may provide insight into why 
a certain trajectory had a higher ΔV cost than others.  The final figure of merit was the 
number of bank reversals commanded throughout the trajectory, as each bank reversal 
requires additional propellant. 
 A number of variables were output for each simulation to provide a basis of 
comparison between the algorithms.  At the atmospheric entry interface, the inertial flight 
path angle and velocity were selected.  At the periapsis of the atmospheric flight, the 
altitude and wedge angle were analyzed.  Finally, at atmospheric exit, the predicted 
apoapsis altitude, periapsis altitude, the maximum g-load, the maximum stagnation heat 
rate, the maximum stagnation total heat load, and the wedge angle were all recorded.  This 
data was gathered to give a more in-depth picture of the differences between the guidance 
algorithms.  The results of the flyoff and the data gathered from these variables are 
presented in Chapter 5. 
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CHAPTER 5.  SIMULATION RESULTS 
 

 This Chapter presents the results of the aerocapture guidance flyoff conducted at 
NASA Langley Research Center.  Results for FNPAG and TPC guidance using the ADEPT 
vehicle will be compared in Section 5.1.  Additional FNPAG results for the HIAD vehicle 
are shown in Section 5.2.  Section 5.3 displays the results from simulating the Mid-L/D 
rigid aeroshell vehicle.  A table comparing the results from all simulations can be found in 
Section 5.4, while Section 5.5 discusses results of a comparison between FNPAG and NPC. 
 

5.1  ADEPT Simulation Results 
 As discussed in Chapter 4, the entry flight path angle and the value of the dusttau 
Mars GRAM variable to be used by FNPAG were free to be chosen by the user.  For the 
ADEPT vehicle, the value chosen for the inertial entry flight path angle was -11.3 degrees, 
and the nominal dusttau value passed into the guidance was 0.45.  The following 
subsections will present the data gathered from these simulations.  FNPAG was run using 
Mode 2 (minimizing the two-burn in-plane ΔV magnitude) for all sections in Chapter 5, 
using predictive lateral logic and commanding two bank reversals for all cases. 
 
5.1.1  1-sol nominal results 
 Due to time constraints, the only two algorithms able to complete the simulations 
required for the flyoff were FNPAG and the TPC algorithm.  For the nominal case, FNPAG 
outperformed the TPC guidance in terms of total ΔV requirements, with a three-burn ΔV 
magnitude of 18.67 m/s vs. 23.51 m/s for TPC.  This translates to a 20% reduction in 
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propellant required to reach the final target orbit.  Figure 5.1 shows the bank angle profiles 
for the nominal representative case, with FNPAG guidance in red and TPC guidance in 
blue.  This color scheme will be used throughout the algorithm comparison. 

 
Fig. 5.1.  ADEPT nominal bank angle vs. time, 1-sol orbit. 

 It can be seen that through extensive tuning of the TPC algorithm, the bank angle 
profiles turn out to be fairly similar.  However, FNPAG better maintains the bang-bang 
profile described in Chapter 3, and this causes the additional reduction in ΔV requirements.  
In addition, FNPAG flies a trajectory that experiences a lower load on the vehicle, as seen 
in Fig. 5.2.  This could prove useful for future manned missions to Mars, when load factor 
on a human crew is much more limited than that of an unmanned vehicle.  In addition, 
FNPAG allows for a lower maximum convective heat rate on the vehicle than TPC 
guidance as shown in Fig. 5.3, causing less stress on the heat shielding of the ADEPT 
vehicle. 



48 
 

 
Fig. 5.2.  ADEPT nominal g-load vs. time, 1-sol orbit. 

 
Fig. 5.3.  ADEPT nominal heat rate vs. time, 1-sol orbit. 
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 Figure 5.4 shows the nominal planetodetic altitude profile for each of the guidance 
algorithms, and Fig. 5.5 displays the relative velocity profile. At first glance, both of these 
figures seem quite similar.  In fact, the exit velocity for TPC is only 6.2 m/s higher than 
that of the FNPAG trajectory.  This would appear to give the TPC algorithm the upper 
hand.  However, in addition to velocity at the exit interface, the required propellant budget 
also depends significantly on the exit flight path angle, with a shallower angle at 
atmospheric exit leading to a lower ΔV requirement.  As can be seen in Fig. 5.6, the 
FNPAG trajectory exits the atmosphere at a flight path angle that is approximately 0.33 
degrees shallower than the TPC trajectory, and this is the primary factor that leads to a 20% 
difference in propellant mass budget. 

 
Fig. 5.4.  ADEPT planetodetic altitude vs. time, 1-sol orbit. 
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Fig. 5.5.  ADEPT relative velocity vs. time, 1-sol orbit. 

 
Fig. 5.6.  ADEPT inertial flight path angle vs. time, 1-sol orbit. 
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5.1.2  1-sol Monte Carlo results 
 Chapter 4 described the simulation environment and setup for the aerocapture 
guidance flyoff, including the Monte Carlo dispersions and figures of merit.  The flyoff 
consisted of 8,000 dispersed trajectories using the ADEPT vehicle and a 1-sol target 
orbit.  The main figure of merit was the 99th percentile value of the total ΔV requirement 
to reach the final orbit.  FNPAG had a 99th percentile value of 29.91 m/s, while the TPC 
algorithm had a slightly higher 99th percentile value of 31.09 m/s.  Detailed statistics on 
the algorithm performance are given in Table 5.1.  In addition, Fig. 5.7 displays a 
histogram of the ΔV requirement for each algorithm.  Clearly, FNPAG shows more cases 
with a smaller propellant requirement than TPC. 

Table 5.1.  ADEPT total ΔV required (m/s), 1-sol target orbit. 
 FNPAG TPC 

Mean 21.21 21.67 
3-sigma 9.32 10.37 

Min 14.16 15.40 
5.00-percentile 17.09 16.89 

50.00-percentile 20.67 21.30 
95.00-percentile 26.98 27.89 
99.00-percentile 29.91 31.09 

Max 36.50 49.93 
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Fig. 5.7.  ADEPT histogram of ΔV performance, 1-sol orbit. 

 To gain insight into the reasons for FNPAG’s performance advantage over TPC, 
data for a number of other variables will be presented as well.  First, trajectories flown 
using FNPAG guidance tended to have a higher planetodetic altitude at the periapsis point 
during atmospheric flight.  This is shown in Table 5.2 as well as in Fig. 5.8.  Because 
trajectories flown using FNPAG do not fly as low into the Martian atmosphere, they are 
able to follow a longer, flatter profile that allows them to exit the atmosphere at a shallower 
flight path angle, which leads to less post-exit propellant consumption, as discussed in 
Section 5.1.1. 
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Table 5.2.  ADEPT periapsis altitude (km) for aerocapture trajectory, 1-sol orbit. 
 FNPAG TPC 

Mean 45.28 43.56 
3-sigma 2.14 1.54 

Min 43.44 42.14 
5.00-percentile 44.12 42.77 

50.00-percentile 45.37 43.55 
95.00-percentile 46.31 44.42 
99.00-percentile 46.54 44.73 

Max 47.01 45.24 
 

 
Fig. 5.8.  ADEPT histogram of periapsis altitudes, 1-sol orbit. 
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 The next variable to examine is the predicted apoapsis altitude at atmospheric exit, 
at which the first trajectory correction burn is to occur.  It can be seen in Table 5.3 and Fig. 
5.9 that FNPAG displays superior performance in reaching the target apoapsis of 33,793 
km for the 1-sol case.  This occurs despite the fact that FNPAG is being run in Mode 2, 
which does not explicitly target an apoapsis altitude.  It turns out that even though this 
constraint is not enforced, it happens to be the most effective method of minimizing 
propellant costs. 

Table 5.3.  ADEPT predicted apoapsis altitude (km) at atmospheric exit, 1-sol orbit. 
 FNPAG TPC 

Mean 34154.65 34324.13 
3-sigma 2923.60 3139.15 

Min 31486.97 29534.14 
5.00-percentile 32821.74 32651.59 

50.00-percentile 33954.24 34284.70 
95.00-percentile 35939.81 35987.84 
99.00-percentile 36609.10 36579.50 

Max 37939.77 37988.60 
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Fig. 5.9.  ADEPT histogram of predicted apoapsis altitudes, 1-sol orbit. 

 The last variable we will delve into is the predicted periapsis altitude at atmospheric 
exit.  This is the periapsis altitude that the vehicle would reach after passing through 
apoapsis if a periapsis raise burn were not to occur.  When the vehicle exits the atmosphere, 
its trajectory is such that it will re-enter the atmosphere and potentially crash into the 
surface.  To raise the final periapsis altitude to the target of 250 km, a burn must be carried 
out at apoapsis.  Clearly, from Table 5.4 and Fig. 5.10, FNPAG has a higher predicted 
periapsis altitude at atmospheric exit.  This means that less propellant will be required to 
raise the periapsis altitude to 250 km, and is another reason for the FNPAG algorithms 
performance advantage over TPC guidance. 
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Table 5.4.  ADEPT predicted periapsis altitude (km) at atmospheric exit, 1-sol orbit. 
 FNPAG TPC 

Mean 29.30 22.19 
3-sigma 5.47 7.67 

Min 22.33 16.22 
5.00-percentile 26.00 18.45 

50.00-percentile 29.63 21.89 
95.00-percentile 31.75 26.60 
99.00-percentile 32.30 27.47 

Max 33.34 28.63 
 

 
Fig. 5.10.  ADEPT histogram of predicted periapsis altitudes, 1-sol orbit. 
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5.1.3  5-sol nominal results 
 Because no other algorithms were able to complete Monte Carlo simulations of 
vehicles other than the ADEPT 1-sol target orbit test case, the 5-sol FNPAG results will be 
compared with the 1-sol FNPAG results to give insight into the different approaches in 
finding an optimal solution between the two cases.  The 5-sol case used an entry flight path 
angle of -11.25 degrees and a nominal dusttau of 0.45.  For the nominal 5-sol orbit, the 
FNPAG algorithm required a ΔV budget of 7.70 m/s, which is almost 60% less than the 
requirement to reach the 1-sol orbit.  The main reason for this is that the apoapsis altitude 
of the 5-sol orbit is much larger than the 1-sol, so the propellant cost of the periapsis raise 
burn applied at the apoapsis is significantly reduced.  Figure 5.11 shows the bank angle 
profiles for the nominal case, with the 1-sol profile in red and the 5-sol profile in blue.  
Again, this color scheme will be consistent throughout this subsection. 

 
Fig. 5.11.  ADEPT nominal bank angle vs. time, 1-sol vs. 5-sol orbit. 
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 The main difference between these two bank angle profiles occurs in the second 
phase of flight.  For targeting the 5-sol orbit, the second phase is flown at a smaller bank 
angle magnitude.  This choice was made to allow for greater robustness when facing 
trajectory dispersions, as errors in the exit condition tend to have a much more significant 
effect on algorithm performance for the much larger 5-sol target orbit.  If these magnitudes 
were the same, the 5-sol trajectory case would stay in Phase 1 for longer than the 1-sol 
trajectory case.  However, since Phase 2 is flown at a smaller magnitude here, it is 
necessary to switch sooner into the flight in order to avoid overshooting the target. 
 Figures 5.12 and 5.13 show the nominal load and heat rates seen by the vehicle 
throughout each trajectory.  The 5-sol orbit experiences slightly lesser load forces and heat 
rates than the 1-sol, mostly because it must fly a higher altitude trajectory to conserve 
energy needed to reach the much higher apoapsis target altitude.  

 
Fig. 5.12.  ADEPT nominal g-load vs. time, 1-sol vs. 5-sol orbit. 
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Fig. 5.13.  ADEPT nominal heat rate vs. time, 1-sol vs. 5-sol orbit. 

 Figure 5.14 compares the nominal planetodetic altitude profile for the 1-sol ADEPT 
test case with the 5-sol case.  The 5-sol nominal trajectory has an atmospheric periapsis of 
just under 46 km, a little less than a kilometer higher than that of the 1-sol.  Again, this is 
because Phase 2 of the 5-sol case flies at a smaller bank angle magnitude than the 1-sol 
case. 
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Fig. 5.14.  ADEPT planetodetic altitude vs. time, 1-sol vs. 5-sol orbit. 

Another effect of this bank angle difference is that the vehicle spends less time in the 
atmosphere for the 5-sol case, reaching the exit interface about 25 seconds before the 1-sol 
case.  This allows it to exit the atmosphere at a higher velocity and a slightly larger flight 
path angle, as seen in Figs. 5.15 and 5.16, respectively.  The extra velocity and steeper exit 
flight path angle are crucial for reaching the much higher final apoapsis altitude of the 5-
sol target orbit. 
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Fig 5.15.  ADEPT relative velocity vs. time, 1-sol vs. 5-sol orbit. 

 
Fig. 5.16.  ADEPT inertial flight path angle vs. time, 1-sol vs. 5-sol orbit. 
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5.1.4  5-sol Monte Carlo results 
 Once again, results are unavailable for the ADEPT vehicle and the 1-sol target orbit, 
so we will use the FNPAG 1-sol orbit results as a basis for comparison for the 5-sol target 
orbit results.  We begin with the 99th percentile value of the total ΔV budget, as seen in 
Table 5.5.  The 5-sol profiles had a 99th propellant requirement of 21.12 m/s, a reduction 
of about 30% compared to the 1-sol.  However, the mean ΔV requirement of the 5-sol orbit 
is 57% less than that of the 1-sol, and the maximum propellant cost of the 5-sol is actually 
higher than that of the 1-sol.  This is because it is inherently more difficult to reach a high 
energy target orbit from a low energy entry condition.  Since the target apoapsis altitude is 
so large, any small errors at the exit interface have a much larger effect on algorithm 
performance than they do for lower energy targets such as the 1-sol orbit.  This difficulty 
is reflected in the spread of the histograms in Fig. 5.17. 

Table 5.5.  Total ΔV required (m/s), 1-sol target orbit vs. 5-sol target orbit. 
 FNPAG 1-sol FNPAG 5-sol 

Mean 21.21 12.07 
3-sigma 9.32 9.86 

Min 14.16 5.82 
5.00-percentile 17.09 7.61 

50.00-percentile 20.67 11.67 
95.00-percentile 26.98 17.87 
99.00-percentile 29.91 21.12 

Max 36.50 43.07 
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Fig. 5.17.  ADEPT histogram of ΔV performance, 1-sol vs. 5-sol orbit. 

 First, we will examine the planetodetic periapsis altitude from the atmospheric 
flight for each test case, where the periapsis raise burn occurs.  From Table 5.6 and Fig. 
5.18, it is apparent that the 5-sol orbit profiles maintain a slightly higher periapsis altitude.  
This makes sense intuitively, since they need to bleed less energy to reach their target 
orbits. 
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Table 5.6.  Periapsis altitude (km) for aerocapture trajectory, 1-sol vs. 5-sol target orbit. 

 FNPAG 1-sol FNPAG 5-sol 
Mean 45.28 45.77 

3-sigma 2.14 2.31 
Min 43.44 44.06 

5.00-percentile 44.12 44.53 
50.00-percentile 45.37 45.87 
95.00-percentile 46.31 46.86 
99.00-percentile 46.54 47.07 

Max 47.01 47.55 
 

 
Fig. 5.18.  ADEPT histogram of periapsis altitudes, 1-sol vs. 5-sol orbit. 
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 Again, we will compare the predicted apoapsis altitude at atmospheric exit to shed 
light on the differences in algorithm performance.  From Table 5.7 and Fig. 5.19, it is 
immediately apparent that there is a much wider error band for the 5-sol target orbit than 
the 1-sol.  This highlights the effect that small errors in the vehicle state caused by 
dispersions has a much more pronounced effect on the 5-sol orbit.  In fact, the worst-case 
trajectory overshoots the target apoapsis by over 100,000 km!  However, the high energy 
orbit also means that correction burns are much less expensive. An apoapsis error of over 
100,000 km vs. the 1-sol error of around 4,000 km only leads to a ΔV increase of about 7 
m/s. 

Table 5.7.  Predicted apoapsis altitude (km) at exit interface, 1-sol vs. 5-sol target orbit. 
 FNPAG 1-sol FNPAG 5-sol 

Mean 34154.65 115290.41 
3-sigma 2923.60 27512.84 

Min 31486.97 89911.79 
5.00-percentile 32821.74 103399.20 

50.00-percentile 33954.24 113399.30 
95.00-percentile 35939.81 132083.79 
99.00-percentile 36609.10 139323.42 

Max 37939.77 234796.53 
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Fig. 5.19.  ADEPT histogram of predicted apoapsis altitudes, 1-sol vs. 5-sol orbit. 

 The last variable we will compare and contrast is the predicted periapsis altitude at 
atmospheric exit, as shown in Table 5.8 and Fig. 5.20.  Surprisingly enough, these values 
are almost identical.  Despite the large difference in apoapsis altitudes, both the 1-sol and 
5-sol profiles risk capture and crashing into the surface if a periapsis raise maneuver is not 
performed.  However, even though the periapsis is raised to 250 km in both cases, the cost 
of conducting a correction burn at 112,400 km is much less than performing the burn at 
33,793 km.  This is the driving force behind the cost reduction of exiting into a 5-sol orbit 
when compared to a 1-sol final orbit. 
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Table 5.8.  Predicted periapsis altitude (km) at exit interface, 1-sol vs. 5-sol target orbit. 

 FNPAG 1-sol FNPAG 5-sol 
Mean 29.30 28.50 

3-sigma 5.47 4.80 
Min 22.33 23.17 

5.00-percentile 26.00 25.68 
50.00-percentile 29.63 28.71 
95.00-percentile 31.75 30.74 
99.00-percentile 32.30 31.33 

Max 33.34 32.51 
 

 
Fig. 5.20.  ADEPT histogram of predicted periapsis altitudes, 1-sol vs. 5-sol orbit. 
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5.2  HIAD Simulation Results 
 The HIAD vehicle is slightly more massive than the ADEPT vehicle, and has a 
slightly lower lift-to-drag ratio, coming in at 0.2 instead of 0.27.  The inertial entry flight 
path angle was chosen to be -11.12 degrees for the 1-sol target orbit, and a slightly 
shallower -11.07 degrees for the 5-sol target orbit.  The 1-sol Monte Carlo trajectories were 
run using a dusttau value passed to FNPAG of 0.45, while the 5-sol trajectories used a 
dusttau value of 0.4. 
 
5.2.1  HIAD nominal results 
 Since no other algorithm data is available for the HIAD simulations, and in the 
interest of saving paper, the 1-sol and 5-sol HIAD results will be presented together and 
used in a comparison to highlight the differences between the orbits.  For the nominal case, 
the 1-sol HIAD required a ΔV of 15.64 m/s to reach the target orbit, while the 5-sol case 
required about half as much propellant, coming in at 7.41 m/s.  A comparison of the bank 
angle profiles can be seen in Fig. 5.21.  From the figure it is apparent that the 5-sol nominal 
case switches to Phase 2 earlier than the 1-sol case.  This is because the 5-sol case enters 
the atmosphere at a shallower flight path angle, and must switch to lift-down flight to avoid 
overshooting the target orbit. 
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Fig. 5.21.  Nominal bank angle vs. time, HIAD. 

 The next variables to consider are the load factor and heating rate applied to the 
HIAD vehicle throughout the trajectory.  These values are shown in Fig. 5.22 and Fig. 5.23 
below.  It is clear from these figures that the 5-sol trajectory is subjected to lower loads and 
lower heat rates than the 1-sol orbit.  This is most likely because the shallower 5-sol 
trajectory tends not to dive as deep into the Martian atmosphere as the steep 1-sol trajectory 
does. 
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Fig 5.22.  HIAD nominal g-load vs. time. 

 
Fig. 5.23.  HIAD nominal heat rate vs. time. 
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 Figure 5.24 displays the nominal planetodetic altitude profile for both the 1-sol and 
5-sol trajectories, while Figure 5.25 shows their respective relative velocity profiles.  We 
can in fact see that the 5-sol orbit remains higher in the atmosphere than the 1-sol nominal 
orbit, as was indicated by the load and heat rates on the vehicle.  The 5-sol target case also 
has a shorter trajectory, which allows it to exit at the higher velocity needed to reach a 
much larger apoapsis altitude.  The final nominal plot, Fig. 5.26, shows that the 5-sol 
trajectory exits the atmosphere at a slightly shallower flight path angle than the 1-sol 
trajectory. 

 
Fig 5.24.  HIAD planetodetic altitude vs. time. 
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Fig. 5.25.  HIAD relative velocity vs. time. 

 
Fig. 5.26.  HIAD inertial flight path angle vs. time. 
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5.2.2  HIAD Monte Carlo results 
 As was the case with the ADEPT simulations, the HIAD vehicle was tested using 
8,000 dispersed trajectories for each target orbit.  Similar statistics will be analyzed for 
HIAD to provide a basis for comparison between the two vehicles.  The figure of merit 
used will once again be the 99th percentile value of the total ΔV requirement to reach the 
desired target orbit.  For additional comparison benefits, the 1-sol results will be compared 
side-by-side with the 5-sol trajectories, as can be seen in Table 5.9 and in Fig. 5.27.  As 
expected, the 5-sol target orbit displays an approximately 25% reduction in required ΔV.  
Unlike the ADEPT case, however, the worst 5-sol case is still better than the worst 1-sol 
case. 

Table 5.9.  HIAD total ΔV required (m/s), 1-sol vs. 5-sol target orbit. 
 HIAD 1-sol HIAD 5-sol 

Mean 20.47 10.87 
3-sigma 10.77 11.79 

Min 13.28 4.39 
5.00-percentile 15.86 5.93 

50.00-percentile 19.91 10.07 
95.00-percentile 27.10 18.32 
99.00-percentile 30.62 22.77 

Max 45.26 36.81 
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Fig. 5.27.  Histogram of ΔV performance, HIAD 1-sol vs. 5-sol target orbit. 

 From Table 5.10 and Fig. 5.28, it can be seen that the 5-sol orbit cases have a higher 
periapsis altitude than the 1-sol orbit cases.  Additionally, the HIAD cases have higher 
periapsis altitudes than the corresponding 1-sol and 5-sol ADEPT cases.  This is likely due 
to the lower lift-to-drag ratio of the HIAD vehicle compared to the ADEPT vehicle, as it 
experiences larger drag accelerations at the same altitudes. 
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Table 5.10.  HIAD periapsis altitude (km) for trajectory, 1-sol vs. 5-sol target orbit. 
 HIAD 1-sol HIAD 5-sol 

Mean 47.96 48.82 
3-sigma 2.49 2.50 

Min 46.09 46.91 
5.00-percentile 46.62 47.46 

50.00-percentile 48.09 48.95 
95.00-percentile 49.12 49.99 
99.00-percentile 49.36 50.24 

Max 49.80 50.84 
 

 
Fig. 5.28.  Histogram of HIAD periapsis altitudes, 1-sol vs. 5-sol target orbit. 
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 The next step in analyzing the results is comparing the predicted apoapsis altitude 
at atmospheric exit for the 1-sol and 5-sol target orbit cases.  These data can be seen in 
Table 5.11 and Fig. 5.29.  Once again, the 5-sol cases have a larger spread of apoapsis 
error.  However, although the maximum altitude for the 1-sol case is actually farther off 
than the corresponding maximum for the ADEPT vehicle, the HIAD 5-sol maximum 
altitude is actually closer to the target than the ADEPT 5-sol case.  This is why the worst 
case scenario for the 5-sol HIAD in terms of propellant consumption is still better than the 
worst case scenario for the 1-sol HIAD case. 

Table 5.11.  HIAD predicted apoapsis altitude (km) at exit, 1-sol vs. 5-sol target orbit. 
 HIAD 1-sol HIAD 5-sol 

Mean 34102.50 113832.12 
3-sigma 3280.31 31476.36 

Min 30792.89 85883.26 
5.00-percentile 32543.69 99914.77 

50.00-percentile 33920.74 112047.99 
95.00-percentile 36076.72 132903.91 
99.00-percentile 36921.03 146381.21 

Max 40314.59 215775.86 
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Fig. 5.29.  Histogram of HIAD predicted apoapsis altitudes, 1-sol vs. 5-sol target orbit. 

 The last variable to gain insight on the performance of the FNPAG algorithm is the 
predicted periapsis altitude at atmospheric exit, shown in Table 5.12 and Fig. 5.30.  Again, 
these values come out remarkably similar, with the 5-sol cases having a slightly higher 
predicted periapsis altitude.  And like the atmospheric flight periapsis, the HIAD displays 
a higher predicted periapsis altitude than the corresponding ADEPT test cases, although 
the values are still quite close. 
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Table 5.12.  HIAD predicted periapsis altitude (km) at exit, 1-sol vs. 5-sol target orbit. 
 HIAD 1-sol HIAD 5-sol 

Mean 30.32 30.78 
3-sigma 4.59 4.19 

Min 24.99 26.35 
5.00-percentile 27.63 28.43 

50.00-percentile 30.51 30.87 
95.00-percentile 32.52 32.92 
99.00-percentile 33.20 33.67 

Max 34.27 36.47 
 

 
Fig. 5.30.  Histogram of HIAD predicted periapsis altitudes, 1-sol vs. 5-sol target orbit. 
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5.3  Mid-L/D Simulation Results 
 The final vehicle that was used to test the capabilities of the FNPAG algorithm was 
the Mid-L/D rigid aeroshell.  Although this vehicle has a similar mass of 60,000 kg, it has 
a much higher lift-to-drag ratio than the HIAD or ADEPT vehicles.  Because of this, the 
aeroshell is a perfect vehicle to showcase the versatility of the FNPAG algorithm.  For 
these simulations, the Mid-L/D vehicle used an inertial entry flight path angle of -12.4 
degrees for the 1-sol target orbit and -11.7 degrees for the 5-sol target orbit.  Both suites of 
trajectories were run with the internal FNPAG dusttau value set at 0.525, slightly higher 
than the HIAD and ADEPT cases. 
 
5.3.1  Mid-L/D nominal results 
 The 1-sol and 5-sol results for the mid-lift-to-drag ratio aeroshell will be presented 
concurrently and compared both between each other and against the HIAD and ADEPT 
results.  For the nominal case, the 1-sol Mid-L/D vehicle needed a ΔV of 20.81 m/s to reach 
the final target orbit, while the 5-sol trajectory required 17.51 m/s.  The majority of the ΔV 
budget for these cases was utilized to perform the wedge angle correction burn, the cause 
of which will be discussed in Section 5.4.  In this case the 5-sol nominal trajectory switches 
to Phase 2 after the 1-sol case, implying that the guidance is trying to preserve enough 
energy to reach the higher apoapsis target. 
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Fig. 5.31.  Nominal bank angle vs. time, Mid-L/D. 

 The next variables presented are the load factor and heating rates, shown in Fig. 
5.32 and Fig. 5.33, respectively.  It can be seen that the 1-sol nominal profile experiences 
higher maximum g-loads and heat rates than the 5-sol, and both profiles undergo higher 
loads and rates than the 1-sol HIAD or ADEPT.  This occurs because the aeroshell vehicle 
experiences a larger lift acceleration at a given altitude than the other, lower lift-to-drag 
ratio vehicles. 
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Fig. 5.32.  Nominal g-load vs. time, Mid-L/D. 

 
Fig. 5.33.  Nominal heat rate vs. time, Mid-L/D. 
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Fig. 5. 34 shows the nominal planetodetic altitude profile for each of the 1-sol and 5-sol 
trajectories, and Fig. 35 shows their respective relative velocity profiles.  The 5-sol 
trajectory maintains a slightly higher trajectory until periapsis, and then flattens out into a 
longer trajectory until exit, which occurs at a higher velocity to reach the higher apoapsis 
demanded by the 5-sol target orbit.  In addition, like the HIAD and ADEPT cases, the Mid-
L/D vehicle exits with a slightly shallower flight path angle for the 5-sol trajectory than the 
1-sol case, as seen in Fig. 5.36. 

 
Fig. 5.34.  Nominal planetodetic altitude vs. time, Mid-L/D. 
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Fig. 5.35.  Nominal relative velocity vs. time, Mid-L/D. 

 
Fig. 5.36.  Nominal inertial flight path angle vs. time, Mid-L/D. 
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5.3.2  Mid-L/D Monte Carlo results 
 The Mid-L/D Monte Carlo simulations were run in the same manner as the ADEPT 
and HIAD test suites.  A similar set of figures will be developed to compare and contrast 
the results from the three spacecraft.  Again, the 1-sol results will be presented concurrently 
with the 5-sol trajectories to examine the different approaches each entails.  Table 5.13 and 
Fig. 5.37 contain the data on the 99th percentile ΔV performance of the Mid-L/D vehicle.  
These numbers are slightly higher than the performance of the HIAD and ADEPT vehicles, 
although they are still reasonably low.  Like the HIAD trajectories, the worst 5-sol case is 
better in terms of ΔV minimization than the worst 1-sol case. 

Table 5.13.  Mid-L/D total ΔV required (m/s), 1-sol vs. 5-sol target orbit. 
 Mid-L/D 1-sol Mid-L/D 5-sol 

Mean 24.88 14.80 
3-sigma 10.12 13.41 

Min 16.58 5.09 
5.00-percentile 20.21 7.62 

50.00-percentile 24.53 14.91 
95.00-percentile 30.74 22.00 
99.00-percentile 33.57 24.82 

Max 57.29 54.05 
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Fig. 5.37.  Histogram of ΔV performance, Mid-L/D 1-sol vs. 5-sol target orbit. 

 Table 5.14 and Fig. 5.38 contain data on the atmospheric flight periapsis altitude.  
Although the periapsis altitudes of the 5-sol trajectories are higher than those of the 1-sol 
cases, they are still both much lower than either the HIAD or the ADEPT cases.  Since the 
Mid-L/D vehicle has a much higher lift-to-drag ratio, it must fly lower in the atmosphere 
to dissipate the energy necessary to reach its target. 
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Table 5.14.  Mid-L/D periapsis altitude (km) for trajectory, 1-sol vs. 5-sol target orbit. 
 Mid-L/D 1-sol Mid-L/D 5-sol 

Mean 34.42 36.70 
3-sigma 0.79 1.49 

Min 33.58 35.27 
5.00-percentile 34.00 35.85 

50.00-percentile 34.42 36.67 
95.00-percentile 34.85 37.55 
99.00-percentile 35.05 37.83 

Max 35.74 42.12 
 

 
Fig. 5.38.  Histogram of ΔV performance, Mid-L/D 1-sol vs. 5-sol target orbit. 
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 The predicted apoapsis altitude at the atmospheric exit interface is shown in Table 
5.15 and Fig. 5.39.  Here, the 1-sol and 5-sol cases both show improvement over the HIAD 
1-sol and 5-sol trajectories in terms of 99th percentile apoapsis error.  The maximum 
apoapsis error for the 5-sol Mid-L/D vehicle is even more improved than the maximum 5-
sol HIAD case.  Once again, the low cost of conducting the periapsis raise burn at a higher 
apoapsis allows the worst 5-sol case to perform better than the worst 1-sol case, despite 
having a larger apoapsis altitude error. 
Table 5.15.  Mid-L/D predicted apoapsis altitude (km) at exit, 1-sol vs. 5-sol target orbit. 

 Mid-L/D 1-sol Mid-L/D 5-sol 
Mean 34203.79 115341.07 

3-sigma 3345.48 26739.71 
Min 31364.96 70862.87 

5.00-percentile 32757.63 103616.80 
50.00-percentile 33925.40 113266.08 
95.00-percentile 36230.74 131674.50 
99.00-percentile 36784.14 137599.44 

Max 43492.16 149208.86 
 



88 
 

 
Fig. 5.39.  Histogram of predicted apoapsis altitude, Mid-L/D 1-sol vs. 5-sol target orbit. 

 The last variable to be discussed in this section is the predicted periapsis altitude at 
atmospheric exit, the data for which is located in Table 5.16 and Fig. 5.40.  The predicted 
periapsis altitudes for the 1-sol and 5-sol test cases are similar as well, but they are 
markedly lower than the ADEPT or HIAD values.  This suggests that the cost to raise the 
periapsis altitude to the desired 250 km mark will be higher. 
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Table 5.16.  Mid-L/D predicted periapsis altitude (km) at exit, 1-sol vs. 5-sol target orbit. 

 Mid-L/D 1-sol Mid-L/D 5-sol 
Mean 11.47 14.75 

3-sigma 16.80 13.25 
Min -3.71 1.22 

5.00-percentile 2.54 7.42 
50.00-percentile 12.02 14.83 
95.00-percentile 18.87 21.48 
99.00-percentile 20.21 22.43 

Max 30.33 30.50 
 

 
Fig. 5.40.  Histogram of predicted periapsis altitude, Mid-L/D 1-sol vs. 5-sol target orbit. 
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5.4  Overall Algorithm Performance 
 While it may be helpful to delve deeper into the data to determine the reasons 
behind differences in algorithm performance, an equally effective approach is to break 
down the main figure of merit, in this case the 99th percentile total ΔV budget, into its 
components.  This value is a summation of three individual burns:  a periapsis raise burn 
performed at apoapsis, and apoapsis correction burn performed at the newly raised 
periapsis, and a wedge angle correction burn performed at the node at the highest altitude, 
and by extension the lowest velocity.  To start, Table 5.17 contains the overall ΔV cost for 
each vehicle using a 1-sol target orbit.  In theory, a vehicle with a higher lift-to-drag ratio 
should exhibit better performance in terms of ΔV minimization.  If this is the case, why 
does the Mid-L/D vehicle have the highest propellant cost? 

Table 5.17.  Total 1-sol propellant cost (m/s). 
 ADEPT HIAD Mid-L/D 

Mean 21.21 20.47 24.88 
3-sigma 9.32 10.77 10.12 

Min 14.16 13.28 16.58 
5.00-percentile 17.09 15.86 20.21 

50.00-percentile 20.67 19.91 24.53 
95.00-percentile 26.98 27.10 30.74 
99.00-percentile 29.91 30.62 33.57 

Max 36.50 45.26 57.29 
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 The answer to this question lies in the data for the individual burns.  Table 5.18 
contains the data for the periapsis raise burn for each vehicle.  The Mid-L/D vehicle has a 
slightly higher propellant cost here, mostly due to its increased mass. 

Table 5.18.  Periapsis raise burn propellant cost (m/s), 1-sol orbit. 
 ADEPT HIAD Mid-L/D 

Mean 12.66 12.60 13.62 
3-sigma 1.08 1.12 1.90 

Min 11.52 10.86 10.29 
5.00-percentile 12.06 11.98 12.66 

50.00-percentile 12.68 12.62 13.64 
95.00-percentile 13.20 13.17 14.54 
99.00-percentile 13.35 13.37 14.73 

Max 13.64 13.80 15.03 
 

 Next, we will look at the data for the apoapsis correction burn conducted for each 
vehicle, as shown in Table 5.19.  Note that this is the absolute value of the apoapsis 
correction burn, as the actual value may be negative if the vehicle misses the target on the 
high side.  Again, except for the outliers, these values are very close. 
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Table 5.19.  Apoapsis correction burn propellant cost (m/s), 1-sol orbit. 
 ADEPT HIAD Mid-L/D 

Mean 4.37 4.84 4.96 
3-sigma 8.89 10.40 10.08 

Min 0.00 0.00 0.00 
5.00-percentile 0.43 0.43 0.54 

50.00-percentile 3.94 4.26 4.48 
95.00-percentile 9.91 11.27 10.96 
99.00-percentile 12.74 14.84 13.90 

Max 18.62 28.80 42.55 
 

 Finally, we will examine the wedge angle correction burn data, as seen in Table 
5.20.  Clearly, this is where the main discrepancy in the total ΔV budget originates.  
Although the vehicle with the highest lift-to-drag ratio should be able to have the best 
response to dispersions in the longitudinal direction, it appears to be the worst performer 
in terms of crossrange dispersion management.  This makes sense intuitively, since a higher 
lift-to-drag ratio will cause a larger acceleration in the presence of a dispersion. 
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Table 5.20.  Wedge angle correction burn propellant cost (m/s), 1-sol orbit. 
 ADEPT HIAD Mid-L/D 

Mean 4.19 3.03 6.29 
3-sigma 3.05 2.58 3.05 

Min 0.56 0.20 2.10 
5.00-percentile 2.55 1.71 5.05 

50.00-percentile 4.17 2.96 6.17 
95.00-percentile 5.87 4.54 8.00 
99.00-percentile 6.42 5.12 9.76 

Max 8.19 6.66 14.01 
 

 A similar trend may be seen in the results from the cases run with a 5-sol final target 
orbit.  Data for the 99th percentile total ΔV budget are presented in Table 5.21 below.  Just 
like 1-sol total propellant costs, the ADEPT vehicle displays superior performance in terms 
of 99th percentile ΔV minimization, in part because it has the smallest mass.  It appears that 
this lower mass, combined with a slightly higher lift-to-drag ratio than the HIAD, gives the 
ADEPT vehicle a slight edge. 
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Table 5.21.  Total 5-sol propellant cost (m/s). 
 ADEPT HIAD Mid-L/D 

Mean 12.07 10.87 14.80 
3-sigma 9.86 11.79 13.41 

Min 5.82 4.39 5.09 
5.00-percentile 7.61 5.93 7.62 

50.00-percentile 11.67 10.07 14.91 
95.00-percentile 17.87 18.32 22.00 
99.00-percentile 21.12 22.77 24.82 

Max 43.07 36.81 54.05 
 

 We can look deeper into the individual burns for the 5-sol target orbit to try and 
find the reasons behind these performance differences.  The periapsis raise burn propellant 
requirements for each of the tested vehicles can be seen in Table 5.22.  These values are 
all extremely close in magnitude.  This is because the periapsis raise burn is performed at 
such a high altitude that the ΔV cost is quite small, so differences due to post-exit apoapsis 
altitude are essentially negligible. 
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Table 5.22.  5-sol periapsis raise burn propellant cost (m/s). 
 ADEPT HIAD Mid-L/D 

Mean 4.38 4.38 4.63 
3-sigma 1.11 0.99 1.17 

Min 2.30 2.17 3.51 
5.00-percentile 3.75 3.81 3.99 

50.00-percentile 4.42 4.42 4.67 
95.00-percentile 4.94 4.86 5.21 
99.00-percentile 5.17 5.06 5.39 

Max 5.70 5.51 7.38 
 

 Next, we will examine the data for the apoapsis correction burn for each of the 5-
sol target cases.  These results are shown in Table 5.23.  It is clear that the majority of the 
total propellant cost for the 5-sol orbit comes from this burn.  This backs up the earlier 
assertion that small errors in the exit condition can cause large errors in terms of reaching 
the 5-sol target apoapsis.  Additionally, the Mid-L/D vehicle displays superior performance 
when looking at the 99th percentile ΔV cost, which is due to its higher lift-to-drag ratio 
allowing for better response to trajectory dispersions. 
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Table 5.23.  5-sol apoapsis correction burn propellant cost (m/s). 
 ADEPT HIAD Mid-L/D 

Mean 4.39 5.09 4.41 
3-sigma 9.12 11.35 8.65 

Min 0.00 0.00 0.00 
5.00-percentile 0.42 0.44 0.48 

50.00-percentile 3.93 4.35 4.05 
95.00-percentile 9.74 12.09 9.39 
99.00-percentile 12.81 16.61 11.68 

Max 35.61 32.27 42.64 
 

 The last variable to inspect is the wedge angle correction burn cost, shown below 
in Table 5.24.  These data seem to back up the suggestion from the 1-sol data that the higher 
lift-to-drag vehicles tend to display worse performance in terms of lateral errors.  However, 
despite these effects, the algorithm still displays superior performance against existing 
aerocapture algorithms, and exceptional performance compared to traditional fully-
propulsive maneuvers. 
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Table 5.24.  5-sol wedge angle correction burn propellant cost (m/s). 
 ADEPT HIAD Mid-L/D 

Mean 3.30 1.39 5.75 
3-sigma 3.26 2.20 10.21 

Min 0.18 0.00 0.02 
5.00-percentile 1.65 0.47 0.71 

50.00-percentile 3.23 1.23 6.29 
95.00-percentile 5.16 2.89 10.21 
99.00-percentile 5.82 3.44 11.70 

Max 7.98 4.83 17.85 
 
 

5.5  NPC Guidance Comparison 
 Although full results of the NPC algorithm performance were not available at the 
time this thesis was written, an older set of Monte Carlo runs was conducted for the 1-sol 
and 5-sol target orbits using the ADEPT vehicle.  However, unlike the results presented 
above, these simulations did not include a uniform dispersion on the dusttau variable 
discussed earlier, and were run using an earlier initial date of November 3, 2010.  To 
provide a basis of comparison, two Monte Carlo simulations were run using the FNPAG 
algorithm and the same initial conditions, target orbits, and dispersions. 
 Because of the limited availability of the NPC data, the only results compared in 
this section are the total propellant cost statistics for each target orbit.  However, because 
this was the main figure of merit for the aerocapture flyoff, the results still give insight onto 
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the advantages enjoyed by the FNPAG algorithm over traditional numerical predictor-
corrector approaches.  Table 5.25 contains the overall ΔV cost for each algorithm using a 
1-sol target orbit and the ADEPT vehicle.  Clearly, FNPAG displays a significant 
improvement over NPC guidance in terms of total ΔV requirements, with a 56% reduction 
in mean propellant required and a 50% reduction in the 99th percentile ΔV budget.  This 
advantage is due to the use of a bang-bang bank angle magnitude profile instead of the 
constant profile prescribed by other state-of-the-art predictor-corrector approaches in use 
today. 

Table 5.25.  Total 1-sol propellant cost (m/s), FNPAG vs. NPC guidance. 
 FNPAG NPC 

Mean 18.60 42.79 
3-sigma 4.39 3.82 

Min 15.67 36.54 
5.00-percentile 16.72 40.64 

50.00-percentile 18.33 42.84 
95.00-percentile 21.34 44.71 
99.00-percentile 23.04 45.64 

Max 27.54 48.26 
 

 The results for the 5-sol target orbit display a pattern similar to the data from the 1-
sol target orbit, as seen in Table 5.26.  Although both of the algorithms perform better in 
the 5-sol case than the 1-sol case due to the nature of the target orbits, the FNPAG algorithm 
still enjoys a 42% reduction in mean ΔV requirement and a 21% reduction in the 99th 
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percentile ΔV budget compared to the NPC guidance approach.  Clearly, the foundation of 
the FNPAG algorithm in optimal control theory provides significant benefits is terms of 
propellant cost reduction. 

Table 5.26.  Total 5-sol propellant cost (m/s), FNPAG vs. NPC guidance. 
 FNPAG NPC 

Mean 8.29 14.38 
3-sigma 4.70 2.87 

Min 5.67 12.44 
5.00-percentile 6.29 12.91 

50.00-percentile 8.07 14.29 
95.00-percentile 11.21 16.11 
99.00-percentile 13.46 17.05 

Max 19.39 18.63 
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CHAPTER 6.  CONCLUSIONS 
 

 This thesis has explored the feasibility of the Fully Numerical Predictor-Corrector 
Aerocapture Guidance algorithm for use in conducting trade studies of a Mars aerocapture 
mission with multiple vehicle models and post-atmospheric-exit target orbits.  A review of 
past and present aerocapture algorithm was conducted, the formulation of the algorithm 
was explored, and the simulation environment and vehicle characteristics were identified.  
This algorithm is the first to solve the optimal aerocapture guidance problem based directly 
on the optimal control theory.  A rigorous set of testing has been completed, demonstrating 
the algorithm’s superior performance and robustness over two existing state-of-the-art 
aerocapture algorithms. 
 In addition to offering the best performance in terms of post exit propellant 
consumption minimization, the FNPAG algorithm also enjoys a relative lack of tuning 
required to obtain satisfactory results.  Because of its unique formulation, FNPAG can be 
tuned for any mission scenario and vehicle model quickly and easily, as evidenced by its 
completion of the entire suite of test cases for the aerocapture guidance flyoff, an 
accomplishment achieved by none of the other algorithms.  The algorithm shows great 
promise for use in future missions to Mars and beyond. 
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