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Abstract

Graph signal processing analyzes signals supported on the nodes of a network with respect to

a shift operator matrix that conforms to the graph structure. For shift-invariant graph filters,

which are polynomial functions of the shift matrix, the filter response is defined by the value

of the filter polynomial at the shift matrix eigenvalues. Thus, information regarding the

spectral decomposition of the shift matrix plays an important role in filter design. However,

under stochastic conditions leading to uncertain network structure, the eigenvalues of the

shift matrix become random, complicating the filter design task. In such case, empirical

distribution functions built from the random matrix eigenvalues may exhibit deterministic

limiting behavior that can be exploited for problems on large-scale random networks.

Acceleration filters for distributed average consensus dynamics on random networks pro-

vide the application covered in this thesis work. The thesis discusses methods from random

matrix theory appropriate for analyzing adjacency matrix spectral asymptotics for both

directed and undirected random networks, introducing relevant theorems. Network distri-

bution properties that allow computational simplification of these methods are developed,

and the methods are applied to important classes of random network distributions. Subse-

quently, the thesis presents the main contributions, which consist of optimization problems

for consensus acceleration filters based on the obtained asymptotic spectral density infor-

mation. The presented methods cover several cases for the random network distribution,

including both undirected and directed networks as well as both constant and switching ran-

dom networks. These methods also cover two related optimization objectives, asymptotic

convergence rate and graph total variation.
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Chapter One

Introduction

1.1 Research Motivation

Networks feature prominently in signal processing problems that arise from increasingly inter-

related people, devices, and systems of the modern connected world. Practical applications

often come with challenging aspects that can include large-scale size, uncertain structure,

and changing conditions. Graph signal processing extends methods from classical signal

processing to address data with underlying relationships described by a graph, whether re-

sulting from a physical network or some intangible connection [1]. The associated methods

perform analysis on signals defined as functions on the nodes of a graph with respect to a

shift operator defined as a matrix that conforms to the graph structure. Typically, the shift

matrix is the adjacency matrix, the Laplacian matrix, or a normalized variant thereof [1–5].

Analogies to classical signal processing concepts are drawn in terms of the shift matrix.

Importantly, decomposition of the signal vector in terms of the basis of shift matrix eigen-

vectors (for diagonalizable shift matrices) provides the Graph Fourier Transform [2, 3], where

the eigenvectors are pure-frequency signals [4]. Because of their connection to graph total

variation [5], the eigenvalues of the shift matrix can be interpreted as frequencies [4]. Poly-

nomial functions of the graph shift matrix perform shift-invariant filtering [2], and the filter

polynomial value at each shift matrix eigenvalue provides the filter response in the graph

frequency domain [4]. Consequently, filter design optimization problems for graph signal

processing require knowledge regarding the eigendecomposition of the shift matrix. Random

graphs with random shift matrix eigenvalues must deal with uncertainty by accounting for

the eigenvalue statistics, a significantly more complicated task.
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Large-scale network size can be exploited to deal with uncertainty in network structure

for suitable random network models. While the random matrices that respect the structure

of random networks have random eigenvalues with typically intractable joint statistics, the

empirical distribution built from the set of eigenvalues sometimes approaches a deterministic

function that can be used as an approximation for large-scale networks. Many such limiting

theorems appear in random matrix theory literature. Well known examples that cover simple,

unstructured cases include the Wigner semicircular law [6], the Marchenko-Pastur law [7, 8],

and the Girko circular law [9]. For use with complex networks, results are required that

allow for non-identically distributed random matrices with some entries explicitly zero. This

thesis discusses several results by Girko [9] that are useful for this reason.

Distributed average consensus provides an example application considered in this thesis

for which graph filters can be designed that result in accelerated convergence. In distributed

average consensus, network nodes compute the mean of data initially distributed among the

nodes over several iterations in which they communicate with neighboring nodes [10]. Each

node incorporates the data received from neighbor nodes according to a consensus iteration

matrix W (G) that respects the network structure G and that describes the dynamics of

the consensus process, producing convergence under appropriate conditions [11]. There are

several filtering schemes available in the literature that accelerate convergence [12–28], and

one particular approach updates the state with a linear combination of the past d states [16].

For constant network topology, this can be interpreted as a shift-invariant graph filter. Well

designed filters minimize the graph filter response magnitude at all eigenvalues of W (G) ex-

cept for the one that preserves the averaging eigenspace [16]. Thus, the spectral asymptotics

of large-scale random networks provides relevant information for consensus acceleration filter

design, as described in this work.

This thesis focuses on connecting the deterministic spectral asymptotics of random ma-

trices to optimal graph filter design for large-scale random networks, specifically developing

methods for consensus acceleration filter design and related graph signal processing prob-

lems. The main contributions of the thesis are summarized in Section 1.2. The overall

structure of the thesis is described with previews of each chapter in Section 1.3.

2



1.2 Main Contributions

The main contributions of this thesis are a series of optimization problems for graph filter

design for several categories of large-scale random network distributions. The developed

methods are specifically applied to consensus acceleration filters and related design objec-

tives. These optimization problems each follow a common thread by leveraging the pre-

dictable limiting spectral asymptotics of large-scale network consensus iteration matrices to

approximate optimal filter design, substituting this information for true knowledge of the

consensus iteration matrix eigenvalues. Broadly, the novel contributions of the thesis can

be divided into two categories: results for constant (fixed with respect to time) random

networks presented in Chapter 4 and results for switching (varying with respect to time)

random networks presented in Chapter 5.

For suitable large-scale constant random networks, the support of the approximate spec-

tral densities derived through the methods presented in Chapter 3 provide a good approxima-

tion of the true set of eigenvalues for the random consensus iteration matrix. The following

associated novel contributions appear in Chapter 4.

• Periodic consensus acceleration filters are designed to minimize the convergence rate

through proposed optimization problems that bound the filter response over the sup-

port of the approximate empirical spectral distribution. For undirected networks (with

consensus iteration matrices that have real eigenvalues), this results in a linear pro-

gram (LP). For directed networks (with consensus iteration matrices that have real

eigenvalues), this results in a quadratically constrained linear program (QCLP).

• Motivated by two related filter design objectives, weighted variants of the above con-

sensus acceleration linear program and quadratically constrained linear program are

proposed for undirected and directed networks, respectively. This generalization en-

ables filter design with respect to worst case graph total variation and expected case

graph total variation for both undirected networks and for directed networks.
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For large-scale constant switching random networks, approximate spectral densities de-

rived through the methods presented in Chapter 3 provide a good approximation for the

moments of the true empirical spectral distributions for the random consensus iteration

matrix. The following associated novel contributions appear in Chapter 5.

• An optimization problem to minimize the expected consensus error norm after one

filter application is posed as a linearly constrained quadratic program (LCQP). The

objective function matrix is the expected Gram matrix of consensus error vectors from

the filtering terms with respect to the sequence of matrices and the input error vector.

• An approximation for the expected Gram matrix in the above quadratic program is

derived based on stated simplifying assumptions regarding the random eigenvectors.

The resulting approximation depends only on the switching probability and on the

approximate spectral distribution moments. When possible, the approximate is derived

via the methods in Chapter 3. When not possible, a slightly different formulation based

on the simulated expected spectral distribution is employed.

1.3 Thesis Overview

This section describes the overall organization of the thesis and briefly describes the topics

contained in each remaining chapter. The content of this thesis is organized as follows:

• Chapter 2 provides background context and notation referenced throughout the the-

sis. Essential terminology regarding graphs and networks are introduced in Section 2.2.

Random matrix theory concepts, definitions, and classic results appear in Section 2.3,

which Chapter 3 further supplements with discussion of Girko’s methods and their

application to networks. The motivating application for this work, distributed aver-

age consensus on networks, is described in Section 2.4. The graph signal processing

framework provides an essential perspective for the work in this thesis, as introduced

in Section 2.5. In particular, consensus acceleration filters designed to produce faster

4



convergence of distributed average consensus dynamics can be viewed as graph filters,

as discussed in Section 2.6. Several filter design tasks in this thesis are Chebyshev

approximation problems, with background described in Section 2.7.

• Chapter 3 introduces detailed background on Girko’s stochastic canonical equation

methods [9] for approximating the spectral distribution of large-scale matrices. The

chapter additionally provides an in-depth tutorial describing the application of these

methods to the adjacency matrices of random networks. The discussion covers three

theorems relevant to random matrices associated with random networks: Girko’s K1

theorem, Girko’s K27 theorem, and Girko’s K25 theorem. Girko’s K1 theorem ap-

pears as Theorem 3.1 in Section 3.2 and pertains to random symmetric matrices with

independent entries (except as related by symmetry) and thus to undirected link-

percolation networks. Girko’s K27 theorem appears as Theorem 3.2 in Section 3.3 and

pertains to random symmetric matrices with independent block submatrices (except as

related by symmetry) and thus to undirected link-percolation networks with localized

link dependencies. Girko’s K25 theorem appears as Theorem 3.3 in Section 3.4 and

pertains to random potentially non-Hermitian matrices with independent entries and

thus to directed link-percolation networks.

• Chapter 4 addresses filter design problems for constant (not time-varying) large-scale

random networks using spectral asymptotics. Filter design methods for accelerated

consensus on large-scale undirected random network models appear in Section 4.2,

which poses a linear program (LP) to minimize the worst case filter response. Filter

design methods for accelerated consensus on large-scale directed random network mod-

els appear in Section 4.3, which poses a linearly constrained quadratic program (LCQP)

to minimize the worst case filter response. Both sections provides supporting simula-

tion results. Filter design methods for closely related objectives (worst case graph total

variation and expected graph total variation) on large-scale random network models

(both directed and undirected) appear in Section 4.4, which poses weighted variants

5



of the LP (for the undirected case) and the LCQP (for the directed case). For the

weighted cases, supporting simulation results appear in Section 4.5.

• Chapter 5 addresses filter design problems for constant (not time-varying) large-scale

undirected random networks using spectral asymptotics. Specifically, the filters design

method presented in this chapter approximately minimize the expected consensus error

with respect to the input consensus error and with respect to the consensus iteration

matrix sequence. The resulting optimization problem for the expected norm squared

of the consensus error becomes a linearly constrained quadratic program (LCQP), in

which the matrix in the objective function can be approximated in terms of approxi-

mate spectral density moments. For the unnormalized Laplacian-based iteration ma-

trix W = I−αL, Section 5.2 accomplishes this approximation in terms of the expected

spectral density as described in Proposition 5.1. For the row-normalized Laplacian-

based iteration matrix W = I − αLR, Section 5.2 accomplishes this approximation

in terms of the approximate spectral density (computed using Girko’s methods from

Section 3.2 and Section 3.3 of Chapter 3) as described in Proposition 5.2. Supporting

simulation results appear in each section.

• Chapter 6 concludes the thesis by summarizing the work presented in the preceding

chapters, reiterating the main contributions of the thesis. Potential topics for contin-

uations of this work are described to guide future efforts.

6



Chapter Two

Background and Notation

2.1 Introduction

Before proceeding to present spectral distribution approximation methods for random net-

work consensus iteration matrices and the proposed consensus acceleration filter design

methods, this chapter provides background context. Section 2.2 defines graph concepts

and notation used throughout the thesis, including basic definitions, random graph models,

and useful notions of symmetry. Section 2.3 considers tools from random matrix theory

to describe the spectral behavior of large-scale random matrices along with classic example

results, which will be furthered by discussion of Girko’s methods in Chapter 3. Section 2.4

introduces distributed average consensus, for which accelerated convergence of the state dy-

namics motivates this work. Section 2.5 discusses graph signal processing terminology so

that consensus acceleration filters can be understood from the graph signal processing per-

spective. Section 2.6 describes the consensus acceleration filter design problem, including

analysis of related literature and existing approaches. Finally, Section 2.7 discusses Cheby-

shev filter design methods, of which the filter design methods presented in this thesis are

modified versions. Finally, Section 2.8 summarizes the presented background concepts.

2.2 Graphs and Networks

This thesis studies spectral distribution approximation and graph filter design problems for

networks described by graphs that can be undirected or directed, deterministic or random,

constant or time-varying, and with distribution having or lacking various types of symme-

tries. This section introduces basic concepts, definitions, and notation regarding graphs and

networks that will be used throughout the document.
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An undirected graph (undirected network) consists of a pair G = (V , E) in which V

denotes a set of nodes (vertices) and E denotes a set of undirected links (undirected edges)

that are unordered pairs {vi, vj} = {vj, vi} of nodes vi, vj ∈ V . Defined similarly, a directed

graph (directed network) consists of a pair G = (V , E) in which V again denotes a set of nodes

(vertices) and E instead denotes a set of directed links (directed edges) that are ordered pairs

(vi, vj) of nodes vi, vj ∈ V , with vi as the tail node and vj as the head node. Note that self-

loops, links formed as (vi, vj) for i = j, are typically excluded from these definitions. A

subgraph Gsub of graph G is a graph (Vsub, Esub) with Vsub ⊆ V and Esub ⊆ E , and G is said

to be a supergraph of Gsub.

For undirected graphs, the degree of a node d (v) is the number of undirected links

incident to that node. For directed graph nodes, the in-degree din (v) of a node is the

number of directed links with that node as head and the out-degree dout (v) of a node is the

number of links with the node as tail. Let D (G) be the diagonal matrix of node degrees for

undirected graphs. Let Din (G) and Dout (G) be the diagonal matrices of node in-degrees and

out-degrees, respectively, for directed graphs.

For both undirected and directed graphs, the graph adjacency matrix A (G) encapsulates

the graph information withA (G)ij = 1 if (vj, vi) ∈ E andA (G)ij = 0 if (vj, vi) /∈ E . For undi-

rected graphs, normalized versions of the adjacency matrix can variously be defined, such

as the row-normalized adjacency matrix AR (G) = D (G)−1A (G), the column-normalized

adjacency matrix AC (G) = A (G)D (G)−1, the symmetrically-normalized adjacency ma-

trix AS (G) = D (G)−1/2A (G)D (G)−1/2, and the spectrally normalized adjacency matrix

AE (G) = A (G) /ρ (A (G)) where ρ is the spectral radius. For directed graphs, the defini-

tions for these normalized adjacency matrices must be adjusted in terms of the in-degrees

and out-degrees, with the row-normalized adjacency matrix AR (G) = Din (G)−1A (G), the

column-normalized adjacency matrix AC (G) = A (G)Dout (G)−1, and the spectrally normal-

ized adjacency matrix AE (G) = A (G) /ρ (A (G)) where ρ is the spectral radius.

For undirected graphs, the Laplacian matrix closely relates to the adjacency matrix and

degree matrix by L (G) = D (G) − A (G). The Laplacian matrix has the vector of ones 1
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as both a left and right eigenvector of L (G) with eigenvalue 0. For this reason consensus

iteration matrices for undirected networks are sometimes defined from the Laplacian by

W (G) = I − αL (G) for some α because W (G) 1 = 1 and 1>W (G) = 1>, an important

property for consensus iteration matrices. For directed graphs, directed versions of the

Laplacian matrix are sometimes defined using the in degrees Lin (G) = Din (G) − A (G) or

using the out-degrees Lout (G) = Dout (G) − A (G). These each have 1 as either a left-

eigenvector or a right-eigenvector. As with the adjacency matrix, normalized versions of

the Laplacian can be defined, with the row-normalized Laplacian especially important to

this thesis work. For undirected graphs these are given by the row-normalized Laplacian

matrix LR (G) = I −AR (G) = I −D (G)−1A (G), the column-normalized Laplacian matrix

LC (G) = I − AC (G) = I − A (G)D (G)−1, the symmetrically-normalized Laplacian matrix

LS (G) = I−AS (G) = I−D (G)−1/2A (G)D (G)−1/2. For directed graphs, the definitions for

these normalized Laplacian matrices must be adjusted in terms of the in-degrees and out-

degrees, with the row-normalized Laplacian matrix LR (G) = I−AR (G) = I−Din (G)−1A (G)

and the column-normalized Laplacian matrix LC (G) = I −AC (G) = I −A (G)Dout (G)−1.

For random networks, the associated graph has uncertain structure described by a graph-

valued random variable. When the network exists over several time iterations, it may either

remain constant or vary over time. In addition to constant (non-time-varying) random

networks, this thesis also considers independently switching networks, a simple time-varying

network model. In such switching models, the network can change at each iteration according

to the result of an independent Bernoulli trial, with the new network formed as a new sample

from the random network distribution independent from the previous network value.

An example class of random network models, Bernoulli link-percolation models include

links from a supergraph that describes all potential connections according to independent

random variables for each supergraph link. The simplest of these, the Erdős-Rényi model,

consists of a network with N nodes in which links between each pair of nodes are included

according to independent trials with some probability θ [29]. Because all links are possible,

this represents a Bernoulli percolation model with a complete supergraph [30]. The adja-
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cency matrices of Erdős-Rényi networks are closely associated with Wigner matrices and are

well studied in random matrix theory [31]. They also have important asymptotic connect-

edness properties [32]. Stochastic block models represent a generalization of Erdős-Rényi

networks. In random networks described by stochastic block models, each node belongs to

a population, and links between each pair of nodes are included according to independent

trial with some probability that depends on the two node populations [33]. Due to the avail-

ability of compatible random matrix theory results [9], stochastic block models with various

properties will provide the example distribution for many of the simulations included later

in the thesis.

For the analysis of random matrices arising from random graphs, symmetry properties of

the random graph distribution will be important for computational simplification. A graph

automorphism is a permutation φ of the graph nodes that preserves the graph links, such

that (vi, vj) ∈ E if and only if (φ(vi), φ(vj)) ∈ E . A graph is said to be node-transitive if for

every pair of nodes vi, vj ∈ V there is a graph automorphism φ such that φ(vi) = vj. Auto-

morphisms and node-transitivity can be naturally extended to random graph distributions,

with an automorphism defined as a permutation of the random graph nodes that preserves

the random graph distribution. Define a random graph distribution to be node-transitive if

for every pair of nodes vi, vj ∈ V there is an automorphism of the random graph distribution

such that φ(vi) = vj. For directed graphs, node-transitive symmetry of a random graph

distribution must be distinguished from link-reversability-symmetry of a random graph dis-

tribution, which corresponds to transpose-symmetry of the associated random adjacency

matrix distribution. Of course, all undirected random graph distributions are automatically

transpose-symmetric.

2.3 Random Matrix Theory

Because graph signal processing on random networks requires a random shift matrix respect-

ing the random network topology, results from the mathematical theory of random matrices

have relevance for the filter design work in this thesis. This section introduces background

10



context for random matrix theory definitions, transforms, and examples in a general sense,

without examining methods specifically applicable to matrices arising form random net-

works. Chapter 3 discusses random matrix theory results by Girko that this thesis applies

to random network models, relying on the notation discussed in this section.

While the joint distribution of eigenvalues would be useful, it is unobtainable in practice

for most random matrix distributions. An exception, the Gaussian ensembles, which are

among the simplest random matrices, provide models for which the joint distribution of the

eigenvalues may be explicitly found [34]. However, the joint distribution of the eigenvalues is

inaccessible for most other random matrix models. Nevertheless, for suitable random matrix

distributions, the asymptotic behavior of the eigenvalues as the matrix size increases may

be described through the empirical distribution and empirical density functions built from

the set of random matrix eigenvalues.

For a N × N matrix ΞN with real eigenvalues (e.g., Hermitian), the empirical spectral

distribution FΞN and corresponding empirical spectral density fΞN are defined as

FΞN (x)=
1

N

i=N∑
i=1

χ(x≤λi(ΞN)) (2.1)

fΞN (x)=
1

N

i=N∑
i=1

δ(x−λi(ΞN)) (2.2)

where χ is the indicator function and δ is the Dirac delta function. For a N × N ma-

trix ΞN with potentially complex eigenvalues, the empirical spectral distribution FΞN and

corresponding empirical spectral density fΞN are defined as

FΞN (x,y)=
1

N

i=N∑
i=1

χ(x≤Re{λi(ΞN)},y≤Im{λi(ΞN)}) (2.3)

fΞN (x,y)=
1

N

i=N∑
i=1

δ(x−Re{λi(ΞN)},y−Im{λi(ΞN)}) (2.4)

where χ is the indicator function and δ is the two-dimensional Dirac delta function. Al-

though the empirical spectral distribution and density are random functions depending on

the random eigenvalues, for large-scale random matrices these functions may approach a
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(a) Wigner Semicircular Law (b) Marchenko-Pastur Law (c) Girko Circular Law

Figure 2.1: The above figures show example random matrix asymptotic ESD laws. Each
plot shows the deterministic law (black curve/contour) and the empirical eigenvalue density
histogram for a single sample of the random matrix (blue shaded).

deterministic limit. Well known examples that cover simple, unstructured cases include the

Wigner semicircular law [6], the Marchenko-Pastur law [7, 8], and the Girko circular law [9].

Each of these cases will be briefly described below to provide context.

The Wigner semicircular law describes the limiting spectral distribution of Wigner ma-

trices, Hermitian matrices ΞN such that the entries ΞN,ij for i ≤ j are independent and

identically distributed with mean E [ΞN,ij] = 0 and variance E[|ΞN,ij|2] = 1/N [6]. Asymp-

totically as N increases, the sequence of empirical spectral distributions FΞN for a sequence

of Wigner matrices almost surely converges in measure to a deterministic distribution with

density function [6]

f(x) =

 1
2π

√
4− x2 x ∈ R[−2, 2]

0 x /∈ R[−2, 2]
. (2.5)

For a Wigner matrix with independent, identically distributed entries selected with equal

probability from points ±
√

1/N , Figure 2.1a shows the Wigner semicircular law density

(black curve) along with the binned empirical spectral density of a simulated matrix of size

N = 104 (blue shaded).

The Marchenko-Pastur law describes the limiting spectral distribution of certain N ×N

Gram matrices ΞN = XN,M(N)X
∗
N,M(N) where the dimensions N ×M(N) of XN,M(N) satisfy

lim
N→∞

N

M(N)
= c > 0 (2.6)
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and where the entries XN,M(N),ij are independent and identically distributed with mean

E
[
XN,M(N),ij

]
= 0 and variance E

[∣∣XN,M(N),ij

∣∣2] = 1/M(N) [8]. Asymptotically as N

increases, the sequence of empirical spectral distributions FΞN for a sequence of these matrices

almost surely converges in measure to a deterministic distribution with density function

f(x) =



(1−c−1)δ(x)+...

1
2πcx

√
(x−a)(b−x)

c > 1,...

x ∈ R[a,b]

1
2πcx

√
(x−a)(b−x)

c < 1,...

x ∈ R[a,b]

0 x /∈ R[a,b]

(2.7)

where a = (1−
√
c)

2
and b = (1 +

√
c)

2
[8]. For a Gram matrix with N/M(N) = 0.3

and where the independent, identically distributed entries of XN,M(N) are selected with

equal probability from points ±
√

1/M , Figure 2.1b shows the Marchenko-Pastur law density

(black curve) along with the empirical spectral density of a simulated matrix ΞN formed from

XN,M(N) of size N = 3× 103, M = 104 (blue shaded).

The Girko circular law describes the limiting spectral distribution of non-Hermitian ma-

trices ΞN such that the entries ΞN,ij for all i, j are independent and identically distributed

with mean E [ΞN,ij] = 0 and variance E[|ΞN,ij|2] = 1/N [8]. Asymptotically as N increases,

the sequence of empirical spectral distributions FΞN for a sequence of the above matrices

almost surely converges in measure to a deterministic distribution with density function

f(xR, xI) =

 1
π
|xR + xIi| ≤ 1

0 |xR + xIi| > 1
, (2.8)

which is a uniform distribution on the unit disk. For a matrix with independent, identically

distributed entries selected with equal probability from points ±
√

1/N , Figure 2.1c shows

the outline of the Girko circular law disk (black closed curve) along with the binned empirical

spectral density of a simulated matrix of size N = 104 (blue shaded).
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The preceding limiting spectral distribution laws all describe random matrices with in-

dependent, identically distributed entries, which do not describe random network adjacency

matrices apart from the Erdős-Rényi case. Two methods suitable for analysis of adjacency

matrices of large-scale random undirected networks are presented in Chapter 3, namely

Girko’s K1 equation for symmetric matrices with independent entries (except as related by

symmetry), which is introduced in Section 3.2, and Girko’s K27 equation for symmetric

matrices with independent block submatrices (except as related by symmetry), which is in-

troduced in Section 3.3. A method suitable for analysis of adjacency matrices of large-scale

random directed networks is also introduced in Chapter 3, namely Girko’s K25 equation

for non-Hermitian matrices with independent entries in Section 3.4. Each of these methods

requires solving a potentially large system of non-linear equations involving the matrix dis-

tribution parameters. Chapter 3 also enhances this background by discussing computational

simplifications that enable faster numerical computation of approximate empirical spectral

distributions and providing detailed application to example random network models.

Analysis of the empirical spectral distribution for Hermitian matrices often involves the

Stieltjes transform [8]

SF (z) =

∫ ∞

−∞

1

x− z
dF (x) , Im {z} 6= 0. (2.9)

The Stieltjes transform can be inverted to obtain the corresponding distribution and density

by computing the following expressions [8].

F (x) = lim
ε→0+

1

π

∫ x

−∞
Im {SF (λ+ εi)} dλ (2.10)

f (x) = lim
ε→0+

1

π
Im {SF (x+ εi)} (2.11)

For the empirical spectral distribution FΞN of an N ×N Hermitian matrix ΞN , the Stieltjes

function computes to

SFΞN
(z) =

1

N
tr
(
(ΞN−zIN)−1), Im{z} 6= 0, (2.12)
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the normalized trace of the resolvent (ΞN − zIN)−1 [8]. Girko’s methods for symmetric

matrices compute the Stieltjes transform of a deterministic approximation to the empirical

spectral distribution, and the inversion formula in (2.10)-(2.11) must be used to obtain the

approximate distribution and density functions.

2.4 Distributed Average Consensus

Distributed average consensus refers to a network agreement task in which each network

node has an initial scalar data element and must compute the average of these data elements

through a distributed process [10]. Through several network iterations, the nodes update

their data according to a linear combination of their local data and data received by com-

municating with neighboring nodes [11]. Thus, for constant networks, this process can be

described by the linear dynamics

xn = W (G) xn−1 (2.13)

where the node states at iteration n are collected in vector xn, the initial node data elements

are collected in vector x0, and the network iteration matrix W (G) respects the local structure

of the network as described by graph G. The state vector asymptotically converges to the

average consensus value

lim
n→∞

xn = J`x0 =
(

`>x0

`>1

)
1 (2.14)

if the consensus iteration matrix satisfies the conditions

W (G) 1 = 1, `>W (G) = `>, ρ (W (G)− J`) < 1, (2.15)

where ` is the left eigenvector of W (G) corresponding to eigenvalue λ = 1, J` = 1`>/`>1

is the `-weighted average consensus matrix, and ρ is the spectral radius. That is, the state

at each node approaches the average of the initial data elements weighted according to the

corresponding entries of `. The ability to reach distributed average consensus has practi-

15



cal relevance in applications such as processor load balancing [35], sensor data fusion [36],

coordination of multi-agent systems [37], and distributed inference [11].

Faster convergence of the system (2.13) implies that a given level of accuracy can be

achieved in fewer iterations, thereby reducing communication cost, or that improved accuracy

can be achieved in a given number of iterations. Under the conditions (2.14), the system

converges exponentially at a rate governed by ln [ρ (W (G)− J`)] as can be seen by applying

Gelfand’s formula to the asymptotic per-iteration convergence rate.

lim
k→0

∥∥∥W (G)k − J`
∥∥∥1/k

= lim
k→0

∥∥∥(W (G)− J`)k
∥∥∥1/k

= ρ (W (G)− J`) (2.16)

Therefore, methods to achieve fast convergence focus on minimizing this spectral radius. For

a given network topology G, [38] designs the optimal iteration matrix for fast convergence.

For a given iteration matrix scheme, W (·) and some constraints on the network topology, [39]

designs the optimal topology. In contrast, the main results of this thesis (related to the

published works [22–28]) design consensus acceleration filters that can be applied at each

node to achieve faster convergence, as will be described with greater depth in Section 2.6.

2.5 Graph Signal Processing

Much of the increasingly vast amount of data available in the modern day exhibits nontriv-

ial underlying structure that does not fit within classical notions of signal processing. The

theory of graph signal processing has been proposed for treating data with relationships and

interactions best described by complex networks. While the consensus acceleration filter

design work presented in this thesis could be described without the language of graph signal

processing, the periodic consensus acceleration filters designed in this thesis have a natural

interpretation as shift invariant graph filters, with the consensus iteration matrix as shift

matrix. Furthermore, much of the research on consensus acceleration filters is done by mem-

bers of the graph signal processing research community. Therefore, this section introduces

concepts from graph signal processing useful for interpreting the results of this thesis.
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Within the graph signal processing framework, signals manifest as functions on the nodes

of a network. The shift operator used to analyze these signals is provided by a matrix related

to the network structure, such as the adjacency matrix, Laplacian matrix, or normalized

versions thereof [1–5]. Decomposition of a signal according to a basis of eigenvectors of

the shift operator serves a role similar to that of the Fourier Transform in classical signal

processing [3]. In this context, multiplication by polynomial functions of the chosen shift

operator matrix performs shift invariant filtering [2].

The eigenvalues of the shift operator matrix play the role of graph frequencies and are

important in the design and analysis of graph signals and graph filters. If W is a diagonal-

izable graph shift operator matrix with eigenvalue λ for eigenvector v such that Wv = λv

and, for example, if a filter is implemented on the network as p (W ) where p is a polynomial,

then p (W ) has corresponding eigenvalue p (λ) for v by simultaneous diagonalizability of

powers of W [13]. The framework of graph signal processing regards p (λ) as the frequency

response of the filter [4]. Hence, knowledge of the eigenvalues of W informs the design of

the filter p when the eigenvalues of p (W ) should satisfy desired properties. Furthermore,

the eigenvalues relate to a notion of signal complexity known as the signal total variation,

which has several slightly different definitions depending on context [1, 3–5]. For purposes of

motivation, taking the shift operator to be the row-normalized adjacency matrix AR, define

the lp total variation of the signal x as

TVG (x) = ‖(I −AR) x‖pp = ‖LRx‖pp (2.17)

which sums over all network nodes the pth power of the absolute difference between the value

of the signal x at each node and the average of the value of x at neighboring nodes [4, 5].

Thus, if v is a normalized eigenvector of the row-normalized Laplacian LR with eigenvalue

λ, v has total variation |λ|p. The eigenvectors that have higher total variation can be viewed

as more complex signal components in much the same way that classical signal processing

views higher frequency complex exponentials.
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As an application, consider a connected, undirected network on N nodes with row-

normalized Laplacian LR with the goal of achieving distributed average consensus via a

graph filter. For such a network, there is a simple Laplacian eigenvalue λ1(LR) = 0 cor-

responding to the averaging eigenvector v1 = 1 and other eigenvalues 0 < λi(LR) ≤ 2 for

2 ≤ i ≤ N . Any filter p such that p (0) = 1 and |p(λi(LR))| < 1 for 2 ≤ i ≤ N will

asymptotically transform an initial signal x0 to a weighted average consensus signal upon

iterative application [16]. If the eigenvalues λi(LR) for 2 ≤ i ≤ N are known, consensus can

be achieved in finite time by selecting p to be the unique polynomial of degree N − 1 with

p (0) = 1 and p(λi(LR)) = 0 [13]. Note that the averaging eigenvector has total variation 0

by the above definition (2.17) and that all other, more complex eigenvectors are completely

removed by the filter. Thus, a finite time consensus filter represents the most extreme version

of a non-trivial lowpass filter. With polynomial filters of smaller fixed degree d, knowledge

of the eigenvalues can be used to design filters of a given length for optimal consensus con-

vergence rate, as will be discussed further in Section 2.6. This can also be attempted for

situations in which the graph is a random variable leading to uncertainty in the eigenvalues,

which represents the main focus of this thesis.

2.6 Consensus Acceleration Filters

This section describes background information and literature pertaining to consensus accel-

eration filters, which can be applied to the record of states at each node in order to achieve

faster convergence. One such approach periodically applies a filter to the states every d

iterations, where d is the filter degree, in addition to the typical consensus dynamics.

xn :=
k=d∑
k=0

akxn−d+k, n ≡ 0 (mod d) (2.18)

For constant network topologies, this can be understood as a graph filter since the resultant

transformation is the polynomial

p (W (G)) =
k=d∑
k=0

akW (G)k (2.19)
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in the iteration matrix. Note that p (1) = 1 to satisfy the modified consensus convergence

conditions.

p(W (G))1=1, `>p(W (G))=`>, ρ(p(W (G))−J`)<1 (2.20)

The convergence rate of the modified system is governed by

lim
k→∞

∥∥∥p(W (G)k
)
−J`

∥∥∥1/k

2
= lim
k→∞

∥∥∥(p(W )−J`)k
∥∥∥1/k

2
(2.21)

which equals ρ (p (W )− J`) by Gelfand’s formula [40]. Hence,

1

d
ln [ρ (p (W (G))− J`)] (2.22)

gives the per-iteration exponential convergence rate. By the spectral mapping theorem [41],

the eigenvalues of p (W (G)) are p (λ) for every eigenvalue λ of W (G). Subtracting J` elim-

inates the λ = 1 eigenvector, so the spectral radius is the maximum response magnitude of

the polynomial at the eigenvalues of W (G).

Exact finite time consensus provides the most extreme example of a consensus accelera-

tion filter when the graph G and iteration matrix W (G) are known by achieving this exactly

with a degree K − 1 filter where K is the number of distinct eigenvalues of W [19]. Of

course, this method designs very large degree filters when K is large, which is likely undesir-

able. Furthermore, it depends on exact knowledge of the eigenvalues, making it unsuitable

for network models with probabilistic uncertainty. Similarly, given a known graph G and

consensus iteration matrix W (G), the optimal acceleration filter of fixed degree d ≤ K − 1

can be found. This problem was posed in [16], which provides the following semidefinite

program to minimize the spectral radius (where 4 and < denote Loewner ordering [42]).

min
η,p

η

s.t. p (W )− J 4 ηI

p (W )− J < −ηI

p (W ) 1 = 1

(2.23)
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This approach thoroughly and adequately addresses the case in which W is deterministic

and constant. Additionally, [16] also attempts to address optimal filter design for network

stochastic processes. The paper proposes two methods, one based on Newton’s interpolating

polynomial and one based on the above semidefinite program applied to the mean matrix.

However, it can be shown that both of these methods can produce undesirable results in

some network model cases.

The first method designs a Newton interpolating polynomial that is zero valued and is as

smooth as possible at a selected point λ∗, typically a lower bound for the least eigenvalue but

possibly some other spectrum point. While satisfying the constraint p (1) = 1, this method

determines the polynomial of degree d that has a zero at λ∗ and that has d − 1 derivatives

that are zero at λ∗. This tends to produce polynomials with all zeros closely concentrated

around the selected point λ∗, and, therefore, produces results with negligible improvement

over increasing degree. The paper [16] claims this method shows good robustness to changing

network topologies. However, this is likely due to the fact that it behaves similarly to fixed

iteration consensus because all roots are near λ∗.

The second method applies the above semidefinite program to the mean of the network

stochastic process, which is assumed to be mean stationary. Noting that minimizing the

expected spectral radius would be a convex problem, the paper [16] also notes that this

would require extensive simulation. Using Jensen’s inequality, [16] provides intuition as to

why the mean matrix is used to approximate the true matrix in the semidefinite program.

This method takes into account more information regarding the random graph distribution

than the Newton polynomial method and, thus, sometimes achieves better results. By using

the mean to approximate the iteration matrix W in the semidefinite program, the method

essentially approximates the eigenvalues of the matrices by the eigenvalues of the mean

matrix E [W ].

However, there are problems with this method, some of which are noted in [16]. The

paper [16] observes that the filter can lead to results that diverge in switching networks

with high switching rate. However, it can also be shown that anomalous and suboptimal
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Figure 2.2: The plot shows the expected convergence rate (on a per iteration basis) for
filters of varying degree based on the Newton interpolating polynomial with λ∗ = 0 [16]
(black circle) and based on the semidefinite program [16] (purple triangle) in (2.23) for a 3-D
lattice stochastic block model network with 3×3×3 populations and percolation probabilities
(0.10, 0.60, 0.70, 0.80). This network model allows nodes to connect if the lattice coordinates
of their populations differ by at most one symbol. The results show flat behavior with
increasing filter degree for the Newton polynomial method and slowing convergence rate with
increasing filter degree for the semidefinite program method, displaying poor performance.

behavior can be produced in static random networks. In reality, the true eigenvalues spread

from those of E [W ], leading to poor results for some network models, especially for high

filter degrees relative to the number of distinct eigenvalues of E [W ]. For instance, Figure 2.2

shows a case in which the convergence rate actually slows with increasing filter degree for a

constant, random network model. For additional examples, see Figures 4.16-4.23.

Finally, it is only possible to apply the mean matrix semidefinite program method when

designing filters up to degree K − 1 where K is the number of distinct mean matrix eigen-

values. To show this, consider the following argument. There is a unique polynomial p∗K−1

of degree K− 1 with p∗K−1 (1) = 1 and p∗K−1 (λ) = 0 for each distinct eigenvalue λ 6= 1 of the

mean iteration matrix E [W ], such that

p∗K−1 (E [W ]) = J. (2.24)

When designing filters of degree d > K − 1, there are multiple solutions to the semidefinite

program with the same objective function value. Namely, for any polynomial q (λ) of degree
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at most d− (K − 1) with q (1) = 1, the polynomial

p∗d (λ) = q (λ) p∗K−1 (λ) (2.25)

is a solution for which η = 0 because the linear matrix inequalities in (2.23) become zero

on the left when applied to E [W ]. However, the performance of these filters will vary

significantly when applied to the true random iteration matrices, in which the eigenvalues

spread from the mean matrix eigenvalues. The mean matrix semidefinite program method

does not specify how to select within this class, so any results from a solver for degree

d > K− 1 would be unpredictable. Therefore, this work does not consider it in comparisons

beyond degree d ≤ K − 1. This can be very restrictive when the mean matrix has few

distinct eigenvalues. For instance, this method could only produce a first degree filter for an

Erdős-Rényi model or for a random geographic network model, which only have two mean

matrix eigenvalues due to network distribution symmetries.

The mean matrix semidefinite program method of [16] provides a reasonable approach to

the problem that can be accomplished with relatively little computation. However, the mean

iteration matrix eigenvalues are a coarse approximation of the potential true eigenvalue set,

especially when the mean matrix has relatively few eigenvalues. Noting this, our method

is inspired by [16] to optimize with respect to a notion of width or spread about each of

the mean eigenvalues to better approximate the support intervals. Hence, a more complete

characterization of random graph matrix eigenvalues should inform the filter design process.

The requisite information may sometimes be obtained through the methods of random matrix

theory, which describes asymptotic behavior of the empirical distribution of the eigenvalues

for suitable random graph models [6, 8, 9, 43, 44]. The methods presented in this thesis

for constant random network topologies, both undirected and directed, then employ this

characterization of the empirical distribution of the eigenvalues in the optimal design of

consensus acceleration filters of given degree d.

Before concluding this section, some additional related literature regarding accelerated

consensus algorithms will be explored. An alternative approach to filtering in which random
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link rewiring in small world graphs was shown to improve the convergence rate was devel-

oped in [45]. A Chebyshev polynomial based filtering scheme was detailed in [17], in which a

sequence of iteration matrix polynomials are computed through the Chebyshev recurrence to

produce a polynomial of increased degree at each iteration. The parameters of this algorithm

define an elliptical convergence region for the iteration matrix eigenvalues, govern the conver-

gence rate, and have optimal values determined by the largest and smallest eigenvalues. The

autoregressive moving average filters designed in [12] perform filtering of graph signals by

approximating specified filter responses, although the target responses are formed separately

from information about the graph. More recently, some additional information regarding

the eigenvalue support has been incorporated, such as in [20] where two spectral clusters are

formed from knowledge of the smallest and second largest eigenvalue modulus and then used

to design the filter response. Also some contemporary works also use asymptotic results for

random matrices, such as [18] which approaches design for Erdős-Rényi networks by different

tools than used in this thesis work.

2.7 Chebyshev Approximation

Function approximation by a polynomial of given degree on some interval of interest fre-

quently appears in signal processing filter design problems. When the worst case absolute

error gives the criterion for choosing the approximating function, the solution is known

as the minimax polynomial approximation [46]. For space of polynomials Pd of degree d

approximating target function f over the real interval X, the problem may be expressed as

min
p∈Pd

max
x∈X
|f (x)− p (x)| . (2.26)

Furthermore, with the additional consideration of a positive, continuous weight function w,

a weighted version of the problem may be posed as

min
p∈Pd

max
x∈X
|w (x) (f (x)− p (x))| . (2.27)
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The work presented in this thesis employs this optimal polynomial problem to design filters

for graph signal processing, specifically for consensus.

Minimax polynomial approximations to continuous functions on an interval exhibit an im-

portant property that allows the optimal solution to be identified. The Chebyshev equioscil-

lation theorem states that p ∈ Pd provides the minimax approximation of degree d to con-

tinuous function f on interval X if and only if there are d + 2 points x0, . . . , xd+1 ∈ X

ordered such that x0 < . . . < xd+1 where the approximation errors f (xn)− p (xn) are equal

in magnitude and alternating in sign [46]. Furthermore, given an approximating polynomial

q ∈ Pd and set of d + 2 points x0, . . . , xd+1 ∈ X ordered such that x0 < . . . < xd+1 where

the approximation errors f (xn)− q (xn) alternate in sign, the De la Vallée-Poussin theorem

establishes that minn |f (xn)− q (xn)| provides a lower bound for the minimax error [46].

Based on these theorems, the Remez exchange algorithm iteratively finds the minimax

optimal polynomial approximating a continuous function on an interval [46]. More generally,

the above two theorems apply not only to polynomial approximation using the monomial

basis but also to approximation over any space with a basis that satisfies the Haar condi-

tion, known as a Chebyshev system. This allows the Remez algorithms to apply to other

approximation schemes, such as those using Chebyshev polynomials and those using ratio-

nal functions [46], which are useful for IIR filters. The algorithm begins with a set of d + 2

ordered reference points on the interval of interest and iterates over two steps. The first

of these steps computes the coefficients of the degree d polynomial with minimum absolute

error at the set of reference points such that the sign of the error alternates, which is the

solution to a linear system of equations. The second step selects a new set of reference points

by selecting the d+ 2 local extrema of the approximation error. If the error values at these

local maxima are alternating in sign and, within tolerance, equal in value, the algorithm

terminates with the minimax polynomial solution [46]. With careful attention to numerics,

very large degree filters can be designed, such as done in [46] with the barycentric Remez

algorithm. Figure 2.3 shows the resulting polynomial approximation to a function, with

oscillating error function demonstrating equal local extrema.

Alternatively, linear programming may be employed to solve minimax polynomial ap-
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(a) Minimax Approximation (b) Approximation Error

Figure 2.3: The plot in Figure 2.3a (left) shows the unweighted minimax polynomial ap-
proximation of degree d = 6 (red dash) to f(x) = x+ cos (2πx) (blue solid) on the interval
R[−1, 1]. The approximation error (black solid) in Figure 2.3b (right) demonstrates the
equiripple property, with the d + 2 = 8 error local maxima equal in value and alternating
in sign.

proximation problems. Linear program formulations are sometimes preferable as they permit

additional constraints to be applied to the optimization problem [46]. Given a region X on

which the function f should be approximated and a subset of points XS ⊆ X, the follow-

ing linear program computes the coefficients {ai}i=Ni=1 corresponding to the basis functions

{φi}i=Ni=1 that provide the minimax approximation to f on the sample points XS.

min
{an},ε

ε

s.t. f(xi)−
N∑
j=1

ajφj (xi) < ε

− f(xi) +
N∑
j=1

ajφj (xi) < ε

for all xi ∈ XS

(2.28)

For the constant random network filter design problems in this thesis, this approach will be

applied at filtering regions defined by the support of deterministic approximations to the

empirical spectral distribution.
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2.8 Summary

In summary, this chapter presented background concepts to provide context and notation

necessary to discuss graph filter design for accelerated convergence of distributed average con-

sensus dynamics. The terms, definitions, and random matrix models introduced for graphs

and networks will appear throughout the thesis. The random matrix theory definitions will

also be referenced throughout the document, especially in Chapter 3 which will introduce

methods that can handle random matrix models that are more complex and relevant to

networks than the classic examples displayed in this chapter. The material discussed for dis-

tributed average consensus, graph signal processing, and consensus acceleration filters, and

Chebyshev filter design directly ties into the filter design methods for consensus acceleration

on large-scale random networks that are presented in Chapter 4 and Chapter 5.
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Chapter Three

Spectral Asymptotics:

Girko’s Methods

3.1 Introduction

For graph filter design on large-scale random networks, methods suitable for approximating

the empirical spectral distribution of random symmetric matrices that respect the network

structure provide useful information. This chapter introduces random matrix theory results

by Girko that provide suitable methods to derive deterministic approximations for the empir-

ical spectral distributions of certain random graph adjacency matrices, discussing properties

of random networks that allow computational simplification. These methods are then ap-

plied to the adjacency matrices of example network models, which will later be used in the

numerical simulations for consensus acceleration filter design in Chapter 4 and Chapter 5.

Specifically, this chapter discusses two results by Girko [9] that handle symmetric random

matrix cases, Girko’s K1 equation for random symmetric matrices with independent entries in

Theorem 3.1 of Section 3.2 and Girko’s K27 equation for random symmetric matrices with

independent block submatrices in Theorem 3.2 of Section 3.3. Additionally, this chapter

discusses a result, Girko’s K25 equation, that handles random, potentially non-Hermitian

matrices with independent entries in Theorem 3.3 of Section 3.4. Unlike the symmetric case,

there is not an analogous result contained in [9] for matrices organized into independent

block submatrices. Finally, Section 3.5 summarizes the chapter in conclusion.

Importantly, unlike many random matrix theory methods, these theorems place few con-

ditions on the entries of the matrix, allowing non-identically distributed entries and explicitly

zero entries (with some justification necessary for Girko’s K25 equation), which are both im-
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portant for random networks. These theorems are applicable to scaled adjacency matrices

of suitable undirected link-percolation networks, random networks in with links are chosen

from a supergraph according to some random variables. Note that the presentation of Theo-

rem 3.1, Theorem 3.2, and Theorem 3.3 in this thesis differs from Girko’s presentation in [9]

to improve clarity and avoid notation conflicts.

3.2 Symmetric Matrices: Girko’s K1 Method

For random symmetric matrices with independent entries except as related by symmetry,

Girko’s K1 equation, presented below as Theorem 3.1, computes an approximate empirical

spectral distribution with approximation error to the empirical spectral distribution converg-

ing to zero for large-scale matrices almost surely at almost all points [9]. The result applies to

a family ΞN of random matrices indexed by size N , provided the total absolute mean in (3.1)

and total variance in (3.2) along any row or column have finite supremum and provided that

the Lindberg-like condition in (3.3) that prevents the variance from concentrating in too few

entries is satisfied. Under such conditions, the Stieltjes transform of a deterministic equiv-

alent distribution can be found by solving the system of equations in (3.6). The theorem

guarantees existence of a unique solution to this system of equations where the solution

function has imaginary component of the function value matches the imaginary component

of the input parameter. Under the additional condition (3.8), the supremum converges [9].

Theorem 3.1 (Girko’s K1 Equation [9]) Let ΞN be a family of symmetric, real-valued

N × N random matrices indexed by size N with expectation BN = E [ΞN ], centralization

HN = ΞN −BN , and entry variance σ2
N,ij = E[(HN)2

ij]. Furthermore, let ΞN have indepen-

dent entries, except as related by symmetry, that satisfy the following regularity conditions.

sup
N

max
i

j=N∑
j=1

∣∣∣(BN)ij

∣∣∣ <∞ (3.1)

sup
N

max
i

j=N∑
j=1

E
[
(HN)2

ij

]
<∞ (3.2)
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lim
N→∞

max
i

j=N∑
j=1

E
[
(HN)2

ij χ
(∣∣∣(HN)ij

∣∣∣ > τ
)]

= 0 for all τ > 0 (3.3)

Then for almost all x,

lim
N→∞

∣∣∣FΞN (x)− F̂ΞN (x)
∣∣∣ = 0 (3.4)

almost surely, where F̂ΞN is the distribution with Stieltjes transform

SF̂ΞN
(z) =

1

N

k=N∑
k=1

Ckk(z), Im {z} 6= 0 (3.5)

and the functions Ckk (z) satisfy the system of equations

Ckk(z)=

[(
BN−zIN−

(
δ`j

s=N∑
s=1

Css(z)E
[
(HN)2

js

])̀ ,j=N

`,j=1

−1
kk

(3.6)

for k = 1, . . . , N . The notation (·)`,j=N`,j=1 indicates a matrix built from the parameterized

contents of the parentheses, such that M = (M`j)
`,j=N
`,j=1 , and δ`j is the Kronecker delta

function. There exists a unique solution Ckk(z) for k = 1, . . . , N to the system of equations

(3.6) among

L={X(z)∈C|X(z) analytic, Im{z}Im{X(z)}>0}. (3.7)

Furthermore, if

inf
i,j
N E

[
H2
ij

]
≥ c > 0, (3.8)

then

lim
N→∞

sup
x

∣∣∣FΞN (x)− F̂ΞN (x)
∣∣∣ = 0 (3.9)

almost surely, where F̂ΞN is defined as above.

For every point x at which the value f̂ΞN (x) is required, the solution to (3.6) must be

found at z = x+ εi for a small ε > 0, such that the density can be approximately computed

by approximately inverting the Stieltjes transform according to (2.11). For clarity, define
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C (z) as the full-matrix solution to (3.6) of which Ckk (z) is the kth diagonal entry.

C(z)=

BN−zIN−

(
δij

s=N∑
s=1

Css(z)E
[
(HN)2

js

])`,j=N

`,j=1

−1

(3.10)

For any random matrix model satisfying the conditions, the solution C (z) can be found

through brute force by performing an iterative fixed point search for the unique solu-

tion guaranteed to exist by Theorem 3.1 from an initial candidate values for the entries

Ckk (z) , k = 1, . . . N . However, this involves repetitively inverting N ×N matrices for large

N , a computationally costly step.

The computational cost can be considerably reduced if the symmetry group of the ran-

dom matrix model with respect to equal row and column permutations acts transitively

on {1, . . . , N}. Under this condition, it is clear that Ckk (z) = C`` (z) := c (z) and that∑s=N
s=1 E [H2

ks] =
∑s=N

s=1 E [H2
`s] for all k, ` = 1, . . . , N by symmetry. Therefore, the last term

in (3.10) becomes a scalar matrix c (z)
(∑s=N

s=1 σ
2
js

)
IN . Note that c (z) = 1

N
trC (z). By ap-

plying the trace function to each part of (3.10) and writing the trace of the right expression as

the sum of eigenvalues, for such matrices the Stieltjes transform of the approximate empirical

spectral distribution can be found via iterative search using the following modified equation.

c (z) =
1

N

k=N∑
k=1

1

λk (BN)− z − c (z)
∑s=N

s=1 σ
2
sj

(3.11)

For random network models that are node-transitive in distribution, the associated random

adjacency matrices will have this property and can be analyzed through (3.11) (if they

satisfy the conditions of Theorem 3.1). That is, no node is statistically distinguishable from

any other node in the random network. (Note that the actual networks sampled from the

distribution need not be node-transitive.) The iterative process for finding the solution to

this system of equations does not depend on the matrix size but only on the number of

distinct mean matrix eigenvalues, as equal terms in the sum can be grouped and multiplied

by algebraic multiplicity.
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For use in the filter design problems for undirected networks in Section 4.2, the empirical

spectral distribution of the row-normalized adjacency matrix must be approximated. In or-

der to apply Girko’s method, a random matrix with independent entries must be defined such

that the spectral density will be a good approximation. For this purpose, initial work [22–28]

used the scaled adjacency matrix Ξ′N = 1
γ1
A (GN) where γ1 = λmax (E [A (G)]), which is also

the expected row sum if all rows have equal expected sum like in node-transitive distributions.

However, this introduces a bias in the expected largest eigenvalue if E [λmax (A (GN))] >

λmax (E [A (GN)]) (i.e., E [ρ (A (GN) /γ1)] = E [ρ (A (GN))] /ρ (E [A (GN)]) ≥ 1), which should

be exactly λmax = 1 for the row-normalized Laplacian. This must be true for node-transitive

distributions since λmax (A (GN)) ≥ davg (A (GN)) where davg (A (GN)) is the average de-

gree [47], so it follows that E [λmax (A (GN))] ≥ E [davg (A (GN))] = λmax (E [(A (GN))]). (Note

that previous results are not invalidated as for large matrices this bias is observed to be

asymptotically eliminated. However, it is problematic for large but finite network size.) To

partially correct this bias without affecting the variance, define

ΞN =
1

γ1

(A (GN)− E [A (GN)]) +
1

γ2

E [A (GN)] (3.12)

where γ1 = λmax (E [A (GN)]) and γ2 = E [λmax (A (GN))]. That this reduces the bias is

unproven, but the results match significantly better in practice.

Example 3.1: Undirected SBM with Transitive Population Structure

Stochastic block models (SBMs) are random network models that generalize Erdős-Rényi

networks and are used to describe networks with a population structure [33]. Each pair of

nodes potentially form a link according to an independent Bernouli trial with link probability

Θij that depends on the populations containing the two nodes [33]. Note that a stochas-

tic block model is a node-transitive random network distribution if the population graph

(showing populations where nodes connect with non-zero probability), with nodes labeled

with intra-population link probabilities and edges labeled by inter-population link probabil-

ities, is a node-transitive labeled graph and the populations are all equal size. Large-scale

stochastic block models can be grown by increasing the node population sizes. Therefore,
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the adjacency matrices of such networks provide convenient examples for which to derive

spectral density approximations.

Consider an undirected stochastic block model withM1×M2 node populations each of size

S with N = M1M2S nodes in total, and label each population by an ordered pair (m1,m2).

Suppose that two populations are adjacent, allowing their nodes to randomly connect, if they

differ by at most one in each symbol, with the last symbol considered adjacent to the first

symbol. Suppose that random intra-population links occur independently with probability

θN,0. Also suppose that random inter-population links occur independently with probability

θN,1 if the populations differ by one in the first symbol with equal second symbol, θN,2 if the

populations differ by one in the second symbol with equal first symbol, θN,3 if the populations

differ by one in both symbols.

Clearly, this example random network model is node-transitive. The link probability

between nodes (i, j) are described by the entries of the following matrix where Cn is the

adjacency matrix of a length n directed cycle and 1n×n is the n× n matrix of ones.

ΘN =θN,0
(
IM1

)
⊗
(
IM2

)
⊗ (1S×S − IS)

+θN,1
(
CM1 + C>M1

)
⊗
(
IM2

)
⊗ (1S×S )

+θN,2
(
IM1

)
⊗
(
CM2 + C>M2

)
⊗ (1S×S )

+θN,3
(
CM1 + C>M1

)
⊗
(
CM2 + C>M2

)
⊗ (1S×S )

(3.13)

Therefore, E [A (G)] = ΘN and the eigenvalues of the mean adjacency matrix are easily

computed from the eigenvalues of undirected cycles and Kronecker product relationships.

The variance of each entry is described by ΘN ◦ (1N×N −ΘN).

The approximate empirical spectral distribution for ΞN can be computed through the

reduced equation (3.11) for Girko’s K1 method based on its mean eigenvalues and total row

variance, which can be found though appropriate transformation of the adjacency matrix

mean eigenvalues and total row variance. Because the approximation will be numerically

computed at a large fixed value of N and fixed probability parameters, the conditions (3.1)-

(3.3) are not verifiable without making assumptions about how the model would change
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with increasing N . For a percolation model, such as this example, where each probability

paramter scales asymptotically with N in the same way (i.e., maintain a ratio) and where

each parameter governs a number of entries in each row proportional to N , the conditions

are satisfied for ΞN if NθN → ∞. Then the first condition (3.1) is automatically satisfied.

The second condition (3.2) is satisfied if each parameter NθN 6→ 0. The third condition (3.3)

is satisfied if additionally NθN →∞.

Assume that the network model of interest is a particular point in a larger family of

network models indexed by N such that the conditions are satisfied by this family of models.

The resulting density will be used to approximate the empirical spectral distribution of the

row-normalized adjacency matrix. Simulation results comparing the expected spectral den-

sity and approximate spectral density (of a transformation of the row-normalized adjacency

matrix) appear in Figure 3.1. Filter design results using the approximate empirical spectral

distribution for this model can be found in Figures 4.1-4.3 of Section 4.2 in Chapter 4 for

this model with specific numerical parameters.

Figure 3.1: Expected empirical spectral distribution E
[
fAR(G)

]
of the normalized adjacency

matrix (simulated over 1000 Monte-Carlo trials) compared agains the deterministic approx-

imation f̂ΞN computed using Girko’s K1 method (ε = 10−5) for the model in Example 3.1
with M1 = 3, M2 = 4, S = 100, θ0 = 0.10, θ1 = 0.07, θ2 = 0.06, θ3 = 0.02
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3.3 Symmetric Matrices: Girko’s K27 Method

For random symmetric matrices with independent block submatrices except as related by

symmetry (but with potentially correlated entries within block submatrices), Girko’s K27

equation, presented below as Theorem 3.2, computes an approximate empirical spectral

distribution with approximation error to the empirical spectral distribution converging to

zero for large-scale matrices almost surely at almost all points [9]. The result applies to

a family ΞN of random matrices indexed by size N , provided the total 2-norm of mean

blocks in (3.14) and Frobenius norm squared of centralized blocks (total entry variance)

in (3.15) along any block row or block column have finite supremum and provided that the

Lindberg-like condition in (3.16) that prevents the variance from concentrating in too few

block submatrices is satisfied. Under such conditions, the Stieltjes transform of a deter-

ministic equivalent distribution can be found by solving the system of equations in (3.19).

The theorem guarantees existence of a unique solution to this system of equations where

the solution function has imaginary component of the function value matches the imaginary

component of the input parameter.

Theorem 3.2 (Girko’s K27 Equation [9]) Let ΞN be a family of symmetric, real-valued

N×N random matrices indexed by size N with expectation BN = E [ΞN ] and centralization

HN = ΞN − BN . Let ΞN have a block structure with N1 blocks of size N2 × N2 such

that N = N1N2, and denote the block in position (i, j) by (ΞN)[ij]. Furthermore, let ΞN

have independent random matrix blocks, except as related by symmetry, that satisfy the

following regularity conditions. Note that the random matrix blocks may have internal

statistical dependencies.

sup
N

max
i

j=N1∑
j=1

∥∥∥(BN)[ij]

∥∥∥
2
<∞ (3.14)

sup
N

max
i

j=N1∑
j=1

E

[∥∥∥(HN)[ij]

∥∥∥2

F

]
<∞ (3.15)
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lim
N→∞

max
i

j=N1∑
j=1

E

[∥∥∥(HN)[ij]

∥∥∥2

F
χ
(∥∥∥(HN)[ij]

∥∥∥
F
>τ
)]

=0 for all τ>0 (3.16)

Then for almost all x,

lim
N→∞

∣∣∣FΞN (x)− F̂ΞN (x)
∣∣∣ = 0 (3.17)

almost surely, where F̂ΞN is the distribution with Stieltjes transform

SF̂ΞN
(z) =

1

N

k=N1∑
k=1

tr
(
C[kk](z)

)
, Im {z} 6= 0 (3.18)

and the N2 ×N2 matrix functions C[kk] (z) satisfy the system of equations

C[kk](z)=

BN−zIN−

(
δ`j

s=N1∑
s=1

E
[
(HN)[js]C[ss](z)(HN)>[js]

])̀ ,j=N1

`,j=1

−1
[kk]

(3.19)

for k = 1, . . . , N1. The notation (·)`,j=N`,j=1 indicates a matrix built from the parameterized

contents of the parentheses, such that M =
(
M[`j]

)`,j=N1

`,j=1
, and δ`j is the Kronecker delta

function. There exists a unique solution C[kk](z) for k = 1, . . . , N1 to the system of equations

(3.6) among

LN2×N2=
{
X(z)∈CN2×N2

∣∣X(z) analytic, Im{z}Im{X(z)}>0
}
. (3.20)

As before, for every point x at which the value f̂ΞN (x) is required, the solution to (3.19)

must be found at z = x + εi for a small ε > 0, such that the density can be approximately

computed by approximately inverting the Stieltjes transform according to (2.11). For clarity,

define C (z) as the full-matrix solution to (3.19) of which C[kk] (z) is the kth diagonal block.

C(z)=

BN−zIN−

(
δ`j

s=N1∑
s=1

E
[
(HN)[js]C[ss](z)(HN)>[js]

])̀ ,j=N1

`,j=1

−1

(3.21)

For any random matrix model satisfying the conditions, the solution C (z) can be found
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through brute force by performing an iterative fixed point search for the unique solution

guaranteed to exist by Theorem 3.2 from an initial candidate values for the block matrix

entries C[kk] (z) , k = 1, . . . N . However, this involves repetitively inverting N ×N matrices

for large N , a computationally costly step.

Computational simplification conditions are more complicated in this scenario. The com-

putational cost can be considerably reduced if the symmetry group of the random matrix

model with respect to equal block-row and block-column permutations acts transitively on

{1, . . . , N1}. Under this condition, it is clear by symmetry that C[kk] (z) = C[``] (z) := Cblk (z)

and that
∑s=N

s=1 E
[
HksCblk (z)H>ks

]
=
∑s=N

s=1 E
[
H`sCblk (z)H>`s

]
:= X [Cblk (z)] for all k, ` =

1, . . . , N . Therefore, the last term in (3.21) becomes the block-scalar matrix IN1⊗X [Cblk (z)].

Suppose that BN is block-diagonalizable with diagonal blocks (ΛBN )[kk] for k = 1, . . . , N1.

Suppose that this block diagonalization preserves IN1 ⊗ X [Cblk (z)] and, furthermore, that

each (ΛBN )blk is simultaneously diagonalizable with X [Cblk (z)]. Then all terms of (3.21)

are simultaneously diagonalizable.

Suppose that the form of C (z) is known (inferred from symmetries) with eigenvalues com-

puted from its parameters. Finally, suppose that the eigenvalue of X [Cblk (z)] that matches

to λk (BN) and λk (C (z)) can be determined as a function gk

(
{λ` (C (z))}`=N`=1

)
of the eigen-

values of C (z), through the parameters inherited by the diagonal blocks Cblk (z). Then the

eigenvalues of C (z) can be written as the solution to the following system of equations.

λk(C(z))=
1

λk(BN)−z−gk
(
{λ`(C(z))}`=N`=1

)
for k=1,...N

(3.22)

As before, the solution to this system of equations describing the eigenvalues can be found

through an iterative fixed point search. The iterative process for finding the solution to this

system of equations would appear to depend on the matrix size N , but only depends on the

number of distinct equations, which may be much fewer. Note that the sum of these eigenval-

ues computes the trace in (3.18), providing the Stieltjes transform of the approximate empiri-
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cal spectral distribution. While the above conditions are complicated and must be verified on

a case-by-case basis, they allow analysis of adjacency matrices for some node-block-transitive

random network models with intra-block correlations as shown in Example 3.2.

For use in the filter design problems for undirected networks in Section 4.2, the empirical

spectral distribution of the row-normalized adjacency matrix must be approximated. In or-

der to apply Girko’s method, a random matrix with independent entries must be defined such

that the spectral density will be a good approximation. For this purpose, initial work [22–28]

used the scaled adjacency matrix Ξ′N = 1
γ1
A (GN) where γ1 = λmax (E [A (G)]), which is also

the expected row sum if all rows have equal expected sum like in node-transitive distributions.

However, this introduces a bias in the expected largest eigenvalue if E [λmax (A (GN))] >

λmax (E [A (GN)]) (i.e., E [ρ (A (GN) /γ1)] = E [ρ (A (GN))] /ρ (E [A (GN)]) ≥ 1), which should

be exactly λmax = 1 for the row-normalized Laplacian. This must be true for node-transitive

distributions since λmax (A (GN)) ≥ davg (A (GN)) where davg (A (GN)) is the average de-

gree [47], so it follows that E [λmax (A (GN))] ≥ E [davg (A (GN))] = λmax (E [(A (GN))]). (Note

that previous results are not invalidated as for large matrices this bias is observed to be

asymptotically eliminated. However, it is problematic for large but finite network size.) To

partially correct this bias without affecting the variance, define

ΞN =
1

γ1

(A (GN)− E [A (GN)]) +
1

γ2

E [A (GN)] (3.23)

where γ1 = λmax (E [A (GN)]) and γ2 = E [λmax (A (GN))]. That this reduces the bias is

unproven, but the results match significantly better in practice.

Example 3.2: Modified Undirected SBM with Transitive Population

Structure and Dependent Block Submatrices

Consider a modified undirected stochastic block model with M populations for which

each population is composed of S1 sub-populations of S2 nodes, such that each population

has S = S1S2 nodes and such that the network has N = M ∗ S nodes. Dependencies

between random links will be permitted if those potential links join the same unordered pair

of sub-populations, such that the resulting random adjacency matrix has independent block
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structure (except as related by symmetry) with N1 = M ∗ S1 and N2 = S2 in Girko’s K27

theorem. Specifically, for each unordered pair of sub-populations {i, j} with 1≤ i, j ≤ N1,

links will be random variables that are conditionally independent given another random

variable (specific to that sub-population pair and independent of the random variable for

any other sub-population pair) that controls the common link probability for that sub-

population pair. If the two sub-populations are the same (i.e., i = j), let the possible

link probabilities {θN,0,k} each be chosen with probabilities {φN,0,k} (Note:
∑

k φN,0,k = 1).

If the two sub-populations are different but part of the same population (i.e., i 6= j but

mS1 < i, j ≤ (m+ 1)S1 for some integer m = 0, ...,M − 1), let the possible link probabilities

{θN,1,k} each be chosen with probabilities {φN,1,k} (Note:
∑

k φN,1,k = 1). If the two sub-

populations are in different populations entirely, let the possible link probabilities {θN,2,k}

each be chosen with probabilities {φN,2,k} (Note:
∑

k φN,2,k = 1). In order to achieve good

results from Girko’s K27 method, note that S1 in particular must be large so there are a

large number of blocks of the intra-sub-population type.

Clearly, this example random network model is node-transitive and node-block-transitive.

The mean matrix has the following form.

BN =
1

γ2

E [A (GN)]

=
1

γ2

(∑
k

φN,0,kθN,0,k

)
(IM )⊗ (IS1 )⊗ (1S2×S2 − IS2)

+
1

γ2

(∑
k

φN,1,kθN,0,k

)
(IM )⊗ (1S1×S1 − IS1)⊗ (1S2×S2 )

+
1

γ2

(∑
k

φN,2,kθN,0,k

)
(1M×M − IM)⊗ (1S1×S1 )⊗ (1S2×S2 )

(3.24)

The eigenvalues of BN are easily computed from Kronecker relationships. Collect these

eigenvalues in a vector λB. (Note that there are at most 8 distinct eigenvalues, so we can
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assume λB is 8× 1.) By symmetry, it can be inferred that C (z) is of the form

C (z) =c1 (z) (IM )⊗ (IS1 )⊗ (IS2 )

+c2 (z) (IM )⊗ (IS1 )⊗ (1S2×S2 − IS2)

+c3 (z) (IM )⊗ (1S1×S1 − IS1)⊗ (IS2 )

+c4 (z) (IM )⊗ (1S1×S1 − IS1)⊗ (1S2×S2 − IS2)

+c5 (z) (1M×M − IM)⊗ (IS1 )⊗ (IS2 )

+c6 (z) (1M×M − IM)⊗ (IS1 )⊗ (1S2×S2 − IS2)

+c7 (z) (1M×M − IM)⊗ (1S1×S1 − IS1)⊗ (IS2 )

+c8 (z) (1M×M − IM)⊗ (1S1×S1 − IS1)⊗ (1S2×S2 − IS2)

(3.25)

for some parameters c1 (z) , . . . c8 (z) collected into vector c (z). The eigenvalues of C (z),

collected into a vector λC (z) and be written as

λC (z) = TCc (z) (3.26)

for appropriate transformation TC computed from (3.25). (Note that there are at most 8

distinct eigenvalues, so we can assume λC (z) is 8× 1 and TC is 8× 8. Also, note that TC is

invertible.) The diagonal blocks arise from the first two terms such that

Cblk (z) =c1 (z) (IS2 )

+c2 (z) (1S2×S2 − IS2)
(3.27)

To compute X [Cblk (z)] note that

Xk` =c1 (z)

s=N1∑
s=1

r,t=N2∑
r,t=1
r=t

E
[ (

(HN)[js]

)
kr

(
(HN)[js]

)
`t

]

+c2 (z)

s=N1∑
s=1

r,t=N2∑
r,t=1
r 6=t

E
[ (

(HN)[js]

)
kr

(
(HN)[js]

)
`t

] (3.28)
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There are many cases for E
[(

(HN)[js]

)
kr

(
(HN)[js]

)
`t

]
where HN = 1

γ1
(A (G)− E [A (G)]).

These depend on whether k = t or k 6= t, whether r = s or r 6= s, and whether j = s, j 6= s

but j, s are in the same population, or j, s are in different populations. Thus, there are a

total of 12 cases, which will not be listed here, but are easily computed. Hence,

X [Cblk (z)] = (a1c1 (z) + a2c2 (z)) (IS2 )

+ (a3c1 (z) + a4c2 (z)) (1S2×S2 − IS2)
(3.29)

and the eigenvalues of IN2⊗X [Cblk (z)], collected into a vector λI⊗X (z) can be computed as

λI⊗X (z) = TXc (z) . (3.30)

All terms are simultaneously diagonalizable. Because of the Kronecker form, it is easy to

match corresponding eigenvalues of each term. Assume this has been done properly in the

vectors λC (z), λI⊗X (z), and λB and the matrices TC and TX . Then the functions g relating

the eigenvalues in (3.22), collected into a vector function g, are

g (λC (z)) = TXT
−1
C λC (z) = λI⊗X (z) . (3.31)

The approximate empirical spectral distribution for ΞN can be computed through the

reduced system of equations (3.22) for Girko’s K27 method based on the above derivations.

Because the approximation will be numerically computed at a large fixed value of N and

fixed probability parameters, the conditions (3.14)-(3.16) are not verifiable without making

assumptions about how the model would change with increasing N . For a percolation model,

such as this example, where each probability paramter scales asymptotically with N in the

same way (i.e., maintain a ratio) and where each parameter governs a number of entries in

each row proportional to N , the conditions are satisfied for ΞN if NθN →∞. Then the first

condition (3.14) is automatically satisfied. The second condition (3.15) is satisfied if each

parameter NθN 6→ 0. The third condition (3.16) is satisfied if additionally NθN →∞.
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Assume that the network model of interest is a particular point in a larger family of

network models indexed by N such that the conditions are satisfied by this family of models.

The resulting density will be used to approximate the empirical spectral distribution of the

row-normalized adjacency matrix. Simulation results comparing the expected spectral den-

sity and approximate spectral density (of a transformation of the row-normalized adjacency

matrix) appear in Figure 3.2. Filter design results using the approximate empirical spectral

distribution for this model can be found in Figures 4.4-4.6 of Section 4.2 in Chapter 4 for

this model with specific numerical parameters.

Figure 3.2: Expected empirical spectral distribution E
[
fAR(G)

]
of the normalized adjacency

matrix (simulated over 1000 Monte-Carlo trials) compared agains the deterministic approx-

imation f̂ΞN computed using Girko’s K27 method (ε = 10−5) for the model in Example 3.2
with M = 5, S1 = 30, and S2 = 10 and with probabilities {φ0,k} = {0.333, 0.333, 0.334},
{θ0,k} = {0.300, 0.600, 1.000}, {φ1,k} = {0.333, 0.333, 0.334}, {θ1,k} = {0.030, 0.060, 0.100},
{φ2,k} = {0.333, 0.333, 0.334}, {θ2,k} = {0.003, 0.006, 0.010}

3.4 Non-Symmetric Matrices: Girko’s K25 Method

For random non-Hermitian matrices with independent entries, Girko’s K25 equation, pre-

sented below as Theorem 3.3, computes an approximate empirical spectral distribution with

approximation error to the empirical spectral distribution converging to zero for large-scale

matrices almost surely [9]. The result applies to a family ΞN of random matrices indexed
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by size N , provided the total absolute mean in (3.32) and total variance in (3.33) along

any row or column have finite supremum and provided other conditions (3.34)-(3.35) hold.

Note that while it would appear that the condition in (3.34) would prevent application of

this theorem to network adjacency matrices, this objection can be dismissed for reasons dis-

cussed later. Under these conditions, a deterministic equivalent distribution can be found

by solving the system of equations in (3.39)-(3.40) and then computing the density function

through (3.37)-(3.38). The theorem guarantees existence of a unique solution to this system

of equations where the solution function has imaginary component of the function value

matches the imaginary component of the input parameter.

Theorem 3.3 (Girko’s K25 Equation [9]) Let ΞN be a family of complex-valued N ×N

random matrices indexed by size N with expectation BN=E [ΞN ], centralization HN=ΞN−BN ,

and entry variance σ2
N,ij = E[| (HN)ij |2]. Furthermore, let ΞN have independent entries that

satisfy the following regularity conditions.

sup
N

max
i

j=N∑
j=1

∣∣∣(BN)ij

∣∣∣<∞, sup
N

max
j

i=N∑
i=1

∣∣∣(BN)ij

∣∣∣<∞ (3.32)

sup
N

max
i

j=N∑
j=1

E
[
(HN)2

ij

]
<∞, sup

N
max
j

i=N∑
i=1

E
[
(HN)2

ij

]
<∞ (3.33)

Also let ΞN satisfy

E

[∣∣∣(HN)ij

∣∣∣2] > c/N (3.34)

for some c > 0 and

max
i,j

E

[∣∣∣(HN)ij

∣∣∣2+κ
]
≤ c/N (2+κ)/2 (3.35)

for some κ > 0, c < ∞. Also suppose that the densities of the real or imaginary part of
√
NHkk exist and are integrable when raised to τ for some τ > 1. Then

lim
β→0+

lim
N→∞

∥∥∥FΞN (x, y)− F̂ΞN ,β (x, y)
∥∥∥ = 0 (3.36)
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almost surely, where

∂2F̂ΞN ,β(t,s)

∂x∂y
=

−
1

4π

∫∞
β

(
∂2

∂t2
+ ∂2

∂s2

)
mN (u,t,s)du (t,s)/∈G

0 (t,s)∈G
(3.37)

(with the region G defined below) and

mN (u, t, s)= 1
N

tr
[(
C1 (u, s, t) + . . .

(BN − (t+ is)IN)C2 (u, s, t)−1 (BN − (t+ is)IN)∗
)−1
] (3.38)

for u > 0. The matrices C1 (u, s, t) and C2 (u, s, t) are diagonal matrices with entries that

satisfy the system of equations

(C1)kk (u, s, t) = u+

j=N∑
j=1

σ2
N,kj

[(
C2 (u, s, t) + . . .

(BN − (t+ si)IN)∗C1 (u, s, t)−1 (BN − (t+ si)IN)
)−1
]
jj

(3.39)

(C2)`` (u, s, t) = 1 +

j=N∑
j=1

σ2
N,j`

[(
C1 (u, s, t) + . . .

(BN − (t+ si)IN)C2 (u, s, t)−1 (BN − (t+ si)IN)∗
)−1
]
jj

(3.40)

for k, ` = 1, . . . N . There exists a unique solution to this system of equations among real

positive analytic functions in u > 0. The region G is given by

G =

{
(t, s)

∣∣∣∣∣lim sup
β→0+

lim sup
N→∞

∣∣∣∣ ∂∂βmN (β, t, s)

∣∣∣∣ <∞
}
. (3.41)

For every point z = x+yi at which the value f̂ΞN (x, y) is required, the solution to (3.39)-

(3.40) must be found at (u, x, y) for a range of u values such that the density can be ap-

proximately computed by the numerical integration in (3.37). These u values should range

from a small value of β > 0 (10−6 used for simulations) to a large upper limit (102 used

for simulations). Because the function mn (u, s, t) changes quickly for small β within the
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complement of the region G, logarithmically spaced integration points over the integration

interval are recommended. For any random matrix model satisfying the conditions, the

solution C1 (u, s, t) , C2 (u, s, t) can be found through brute force by performing an itera-

tive fixed point search for the unique solution guaranteed to exist by Theorem 3.3 from

an initial candidate values for the entries (C1)kk (u, s, t) , (C2)kk (u, s, t) for k = 1, . . . , N .

However, this involves repetitively multiplying and inverting N × N matrices for large N ,

computationally costly steps.

The computational cost can be considerably reduced if the symmetry group of the ran-

dom matrix model with respect to equal row and column permutations acts transitively

on {1, . . . , N} and if the mean matrix BN is normal. Note that such transitivity does

not guarantee normal matrices [48], so normality must be verified for each model with

transpose-asymmetric distribution. By transitive symmetry of the distribution with re-

spect to row and column permutations, the diagonal solution matrices must be scalar

matrices C1 (u, s, t) = c1 (u, s, t) IN , C2 (u, s, t) = c2 (u, s, t) IN . Furthermore, note that∑k=N
k=1 σ

2
N,ki =

∑k=N
k=1 σ

2
N,kj for all 1 ≤ i, j ≤ N . By summing each expression of (3.39) with

respect to k and each expression of (3.40) with respect to ` the variance terms no longer

depend on j and can be factored from the sum with respect to j. Recognizing the resulting

traces and writing them as the eigenvalue sums, this results in the following simplified system

of equations where z = t+ si.

c1 (u, s, t) = u+

(
1

N

k=N∑
k=1

σ2
N,kj

)
r=N∑
r=1

(c2 (u, s, t) + . . .

. . . 1/c1 (u, s, t)λr [(Bn − zIN)∗ (BN − zIN)])
−1

(3.42)

c2 (u, s, t) = 1 +

(
1

N

`=N∑
`=1

σ2
N,`j

)
r=N∑
r=1

(c1 (u, s, t) + . . .

. . . 1/c2 (u, s, t)λr [(Bn − zIN) (BN − zIN)∗])
−1

(3.43)

Thus, the original system of 2N equations (3.39)-(3.40) reduces to the system of 2 equa-

tions (3.42)-(3.43) under the transitive symmetry group condition. However, because the

eigenvalues of (BN − zI) (BN − zI)∗ are required for every z = t + si of interest, the prob-
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lem can still be computationally costly due to the large number of eigenvalue computations

required. For random matrix distributions in which the mean matrix BN is not a normal

matrix, these eigenvalues must be recomputed for each z. For random matrix distributions

in which the mean matrix BN is a normal matrix, the eigenvalues can be quickly computed

from the eigenvalues of BN as follows [49].

λr ((BN − zI) (BN − zI)∗)) = |λr (BN)− z|2 . (3.44)

Therefore, it is only necessary to compute the eigenvalues of BN once and then determine

the eigenvalues of (BN − zI) (BN − zI)∗ through simple arithmetic. Note that this automat-

ically includes all transpose-symmetric distributions and need only be verified for transpose-

asymmetric distributions. To simplify (3.42)-(3.43) further, eigenvalues can be grouped

according to algebraic multiplicity such that the computation only depends on the number

of distinct eigenvalues.

For use in the filter design problems for undirected networks in Section 4.3, the empirical

spectral distribution of the row-normalized adjacency matrix must be approximated. In order

to apply Girko’s method, a random matrix with independent entries must be defined such

that the spectral density will be a good approximation. For this purpose, initial work [22–

28] used the scaled adjacency matrix Ξ′N = 1
γ1
A (GN) where γ1 = λmax (E [A (G)]), which

is also the expected row sum if all rows have equal expected sum like in node-transitive

distributions. However, this introduces a bias in the expected largest eigenvalue (though

much less prominent than in the undirected case) if E [λmax (A (GN))] > λmax (E [A (GN)])

(i.e., E [ρ (A (GN) /γ1)] = E [ρ (A (GN))] /ρ (E [A (GN)]) ≥ 1), which should be exactly λmax =

1 for the row-normalized Laplacian. This must be true for node-transitive distributions since

λmax (A (GN)) ≥ davg (A (GN)) where davg (A (GN)) is the average degree [47], so it follows

that E [λmax (A (GN))] ≥ E [davg (A (GN))] = λmax (E [(A (GN))]). (Note that previous results

are not invalidated as for large matrices this bias is observed to be asymptotically eliminated.

However, it is problematic for large but finite network size.) To partially correct this bias
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without affecting the variance, define

ΞN =
1

γ1

(A (GN)− E [A (GN)]) +
1

γ2

E [A (GN)] (3.45)

where γ1 = λmax (E [A (GN)]) and γ2 = E [λmax (A (GN))]. That this reduces the bias is

unproven, but the results match significantly better in practice.

Before applying this method to example percolation network models, the objection

that (3.34) would prevent analysis of random matrices arising from structured networks,

where some entries must be dismissed. (Indeed, with the scaling used by ΞN , the variance of

individual entries falls as approximately 1/
(
N2 (ΘN)ij

)
, making this problematic regardless

of sparsity.) However, Girko also provides an alternate form of this theorem (see Corollary

25.1 on page 379 of [9]) that does not suppose the condition (3.34) but does suppose doubly

stochastic variance (which is suitable for node-transitive distributions). Furthermore, the

proof is closely related to the theorem for Girko’s K7 equation, which does not assume the

condition (3.34). Instead, random matrices analyzed through the alternate form of Girko’s

K25 equation and through Girko’s K7 equation must satisfy a Lindberg-like condition. How-

ever, statement of the problem according to the alternate version of Girko’s K25 equation is

significantly more cumbersome than the main formulation of Girko’s K25 equation presented

in [9]. Therefore, this thesis references the main version of Girko’s K25 equation for these

problems while dismissing the condition (3.34).

Example 3.3: Directed SBM with Symmetric, Transitive Population Structure

Consider a directed stochastic block model with M node populations each of size S with

N = MS nodes in total. Suppose that the populations are arranged in a cycle and that two

nodes from the same population or from adjacent populations can potentially connect, with

probability that does not depend on cycle direction. Suppose that random intra-population

links occur independently with probability θN,0. Also suppose that random inter-population

links occur independently with probability θN,1 between adjacent populations.

Clearly, this example random network model is node-transitive, and the associated ran-

dom adjacency matrix distribution is transpose-symmetric. This implies that its mean adja-
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cency matrix is symmetric and, thus, normal. The link probability between nodes (i, j) are

described by the entries of the following matrix where Cn is the adjacency matrix of a length

n directed cycle and 1n×n is the n× n matrix of ones.

Θ =θN,0
(
IM

)
⊗ (1S×S − IS)

+θN,1
(
CM + C>M

)
⊗ (1S×S )

(3.46)

Therefore, E [A (G)] = Θ and the eigenvalues of the mean adjacency matrix are easily com-

puted from the eigenvalues of directed cycles and Kronecker product relationships. Further-

more, the mean matrix is normal. The variance of each entry is described by Θ◦(1N×N −Θ).

The approximate empirical spectral distribution for ΞN can be computed through the re-

duced equations (3.42)-(3.42) for Girko’s K25 method based on its mean eigenvalues and total

row variance, which can be found though appropriate transformation of the adjacency matrix

mean eigenvalues and total row variance. Because the approximation will be numerically

computed at a large fixed value of N and fixed probability parameters, the conditions (3.32)-

(3.35) are not verifiable without making assumptions about how the model would change

with increasing N . For a percolation model, such as this example, where each probability

paramter scales asymptotically with N in the same way (i.e., maintain a ratio) and where

each parameter governs a number of entries in each row proportional to N , the conditions are

satisfied for ΞN if NθN →∞. Then the first condition (3.1) is automatically satisfied. The

second condition (3.2) is satisfied if each parameter NθN 6→ 0. The Lindberg-like condition

of the modified formulation is satisfied if additionally NθN →∞.

Assume that the network model is a particular point in a larger family of network models

indexed by N such that the conditions are satisfied by this family of models (except con-

dition (3.34) as previously noted). The resulting density will be used to approximate the

empirical spectral distribution of the row-normalized adjacency matrix. Simulation results

comparing the expected spectral density and approximate spectral density (of a transfor-

mation of the row-normalized adjacency matrix) appear in Figure 3.3. Filter design results

using the approximate empirical spectral distribution for this model can be found in Fig-

ures 4.7-4.10 of Section 4.3 in Chapter 4 for this model with specific numerical parameters.
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(a) Expected empirical spectral density

(b) Approximate emprirical spectral density

Figure 3.3: Expected empirical spectral distribution E
[
fAR(G)

]
of the normalized adjacency

matrix (simulated over 1000 Monte-Carlo trials) compared agains the deterministic approx-

imation f̂ΞN computed using Girko’s K25 method (β = 10−6, umax = 102, 200 logarith-
mically spaced integration points) for the model in Example 3.4 with M = 6, S = 200,
θ0 = 0.05, θ1 = 0.01

Example 3.4: Directed SBM with Asymmetric, Transitive Population Structure

Consider a directed stochastic block model with M node populations each of size S with

N = MS nodes in total. Suppose that the populations are arranged in a cycle and that two

nodes from the same population or from adjacent populations can potentially connect, with

probability permitted to depend on cycle direction. Suppose that random intra-population
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links occur independently with probability θN,0. Also suppose that random inter-population

links occur independently with probability θN,1 along one population graph cycle direction

and with θN,2 along the other population graph cycle direction.

Clearly, this example random network model is node-transitive, but the associated ran-

dom adjacency matrix distribution is not transpose-symmetric. The link probability between

nodes (i, j) are described by the entries of the following matrix where Cn is the adjacency

matrix of a length n directed cycle and 1n×n is the n× n matrix of ones.

ΘN =θN,0
(
IM
)
⊗ (1S×S − IS)

+θN,1
(
CM
)
⊗ (1S×S )

+θN,2
(
C>M
)
⊗ (1S×S )

(3.47)

Therefore, E [A (GN)] = ΘN and the eigenvalues of the mean adjacency matrix are easily

computed from the eigenvalues of directed cycles and Kronecker product relationships. Fur-

thermore, the mean matrix is circulant and, thus, normal. The variance of each entry is

described by ΘN ◦ (1N×N −ΘN).

The approximate empirical spectral distribution for ΞN can be computed through the re-

duced equations (3.42)-(3.42) for Girko’s K25 method based on its mean eigenvalues and total

row variance, which can be found though appropriate transformation of the adjacency matrix

mean eigenvalues and total row variance. Because the approximation will be numerically

computed at a large fixed value of N and fixed probability parameters, the conditions (3.32)-

(3.35) are not verifiable without making assumptions about how the model would change

with increasing N . For a percolation model, such as this example, where each probability

paramter scales asymptotically with N in the same way (i.e., maintain a ratio) and where

each parameter governs a number of entries in each row proportional to N , the conditions are

satisfied for ΞN if NθN →∞. Then the first condition (3.1) is automatically satisfied. The

second condition (3.2) is satisfied if each parameter NθN 6→ 0. The Lindberg-like condition

of the modified formulation is satisfied if additionally NθN →∞.

Assume that the network model is a particular point in a larger family of network models

indexed by N such that the conditions are satisfied by this family of models (except con-
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dition (3.34) as previously noted). The resulting density will be used to approximate the

empirical spectral distribution of the row-normalized adjacency matrix. Simulation results

comparing the expected spectral density and approximate spectral density (of a transfor-

mation of the row-normalized adjacency matrix) appear in Figure 3.4. Filter design results

using the approximate empirical spectral distribution for this model can be found in Fig-

ures 4.11-4.14 of Section 4.3 in Chapter 4 for this model with specific numerical parameters.

(a) Expected empirical spectral density

(b) Approximate emprirical spectral density

Figure 3.4: Expected empirical spectral distribution E
[
fAR(G)

]
of the normalized adjacency

matrix (simulated over 1000 Monte-Carlo trials) compared agains the deterministic approxi-

mation f̂ΞN computed using Girko’s K25 method (β = 10−6, umax = 102, 200 logarithmically
spaced integration points) for the model in Example 3.4 with M = 6, S = 200, θ0 = 0.05,
θ1 = 0.01, θ2 = 0.00
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3.5 Summary

In summary, this chapter introduced random matrix theory methods suitable for analysis of

the spectral asymptotics of large-scale random network row-normalized adjacency matrices.

Two methods for symmetric random matrices were introduced, namely Girko’s K1 equation,

which describes the spectral asymptotics of matrices with independent entries (except as re-

lated by symmetry), and Girko’s K27 equation, which describes the spectral asymptotics of

matrices with independent block submatrices (except as related by symmetry). One method

for potentially non-Hermitian random matrices was introduced, namely Girko’s K25 equa-

tion, which describes the spectral asymptotics of matrices with independent entries. For

each method, conditions on the network distribution that enable computational simplifi-

cation were discussed, and the reduced systems of equations to provide the approximate

density were derived. For Girko’s K1 equation, node-transitivity yields significant computa-

tional reduction. For Girko’s K27 equation, node-transitivity with additional simultaneous

diagonalizability properties and known eigenvalue relationships yields significant computa-

tional reduction. For Girko’s K25 equation, node-transitivity with a normal mean matrix

yields significant computational reduction. The random matrix ΞN with independent entries

(except as related by symmetry for the undirected network case) used to approximate the

row normalized adjacency matrix was posed as a transformation of the adjacency matrix.

For each case, application to one or more example random network distribution was demon-

strated. Approximate spectral densities obtained using the methods in this chapter inform

filter design problems for constant random network models in Chapter 4 as well as filter

design problems for switching random network models in Section 5.3 of Chapter 5.
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Chapter Four

Consensus Filter Design:

Constant Networks

4.1 Introduction

Distributed average consensus refers to the network agreement task in which network nodes

each begin with state set to an initial data element and must compute the average of all net-

work data through local communications and iterative linear updates to the local state [10].

Under the correct conditions, the resulting dynamic system has each state converge to the

(potentially weighted) mean of the initial state values at a rate governed by the spectral

radius of the difference between the iteration matrix and the averaging matrix, which de-

scribes the convergence of the worst case error vector [11]. Section 2.4 describes distributed

average consensus in greater detail. For constant networks, the convergence rate can be ac-

celerated by periodically updating the state value at each node every d iterations by applying

a degree d filter to previous state values at that node. This filter design problem can be

understood in terms of graph signal processing, where the response magnitude of the filter to

the eigenvalues of the consensus iteration matrix W (G) (other than λ (W (G)) = 1) should

be minimized. Section 2.6 describes consensus acceleration filters and related literature more

fully. For random matrices, uncertainty in the eigenvalues complicates the design process.

One existing method [16] attempts to handle the random network case through the mean it-

eration matrix, but this can produce poor or even diverging results when the true eigenvalues

differ significantly from the mean eigenvalues. A more complete understanding of the eigen-

value spread should therefore inform the filter design process, which this thesis obtains for

large-scale random matrices from the spectral density approximation methods in Chapter 3.
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This chapter presents the proposed optimization methods for periodic consensus accel-

eration filter design and other related graph filtering problems on large-scale constant (not

time-varying) random networks along with supporting simulation results. Section 4.2 exam-

ines undirected random network models, posing a linear program for consensus acceleration

filter design based on the real empirical spectral density approximations obtained using

the methods in Section 3.2 and Section 3.3 for symmetric matrices. Simulation results for

the large-scale constant, undirected random network case are also provided. Section 4.3

examines directed random network models, posing a quadratically constrained linear pro-

gram for consensus acceleration filter design based on the complex empirical spectral density

approximations obtained using the methods in Section 3.4 for non-Hermitian matrices. Sim-

ulation results for the large-scale constant, directed random network case are also provided.

Section 4.4 presents filter design methods for worst case and expected total variation mini-

mization for both the undirected case and directed case. These optimization problems are

variants of those presented in Section 4.2 and Section 4.3 with weighted filter response. Sec-

tion 4.5 provides simulations for these weighted problems. Finally, Section 4.6 summarizes

the chapter in conclusion.

4.2 Constant, Undirected Random Networks

For large-scale constant (not time-varying) undirected random networks, this section in-

troduces an optimization problem for consensus acceleration filter design based on spectral

asymptotics. Let GN be the random graph with N nodes describing the random network,

where A (GN) is the unnormalized adjacency matrix, D (GN) is the diagonal matrix of node

degrees, and L (GN) = D (GN)−A (GN) is the unnormalized Laplacian matrix. Additionally,

let AR (GN) = D (GN)−1A (GN) be the row-normalized adjacency matrix and LR (GN) =

I −D (GN)−1A (GN) be the row-normalized Laplacian matrix. One common choice for con-

sensus iteration matrix is the Laplacian weights W (G) = I − αL (G) which produces an un-

weighted average consensus for suitable values of α. However, for this filter design problem,
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the consensus iteration matrix will be derived from the row-normalized Laplacian matrix.

WN = W (GN) = I − αLR (GN) (4.1)

While this selection typically results in a weighted average, advantages include the ability

to approximate the spectral density using Girko’s methods (as discussed in Section 3.2 and

Section 3.3 of Chapter 3) and good spectral density localization properties for many large-

scale percolation matrices. Furthermore, the left eigenvector of W (GN) dictating the weights

is `k = dk (GN) where dk (GN) is the degree of the kth node. Note that if each node knows

the average degree

davg =
d (GN)> 1

1>1
(4.2)

of the network, the weighted average can be corrected through pre-multiplication of the

initial data x0 by davg (GN)D (GN)−1 producing an unweighted average. That, is

J1 = J` (davg(GN)D (GN)−1). (4.3)

In order to analyze the spectral asymptotics of WN , consider the random matrix

ΞN =
1

γ1

(A (GN)− E [A (GN)]) +
1

γ2

E [A (GN)] (4.4)

where γ1 = ρ (E [A (GN)]) and γ2 = E [ρ (A (GN))]. A deterministic approximation for the

empirical spectral distribution of ΞN can be used to approximate the empirical spectral

distribution of AR (GN). Note that

AR (GN) =
1

α
(W (GN)− I) + I (4.5)

relates W (GN) to AR (GN). Therefore, an approximate empirical spectral density f̂WN
for

WN relates to an approximate empirical spectral density f̂ΞN for ΞN via the following expression.

f̂WN
(x) =

1

α
f̂ΞN

(
x− 1

α
+ 1
)

(4.6)
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The approximate density f̂ΞN may be obtained through methods such as from Section 3.2

and Section 3.3 for suitable random network distributions. To optimize the convergence rate

of the filtered consensus process, the following optimization minimizes the filter response

magnitude over regions where the approximate density is nonzero.

min
p∈Pd

max
λ∈Λκ,τ

|p (λ)|

s.t. p (1) = 1

Λκ,τ =
{
λ ∈ R

∣∣∣1− λ > κ, f̂WN
(λ) > τ

} (4.7)

where Pd is the space of polynomials of degree at most d. The set Λκ,τ ⊆ R defines the filtering

regions, where κ and τ are small constants (e.g., τ = 10−3, κ = 10−2 for the first simulation in

this section). The constant κ serves as a transition distance designed to exclude the region

containing λ = 1 where the equality constrain must be satisfied, since the approximate

density generally does not perfectly localize the density at λ = 1. The constant τ serves

as a threshold for detecting non-zero density content, as numerically evaluated approximate

densities arising from Girko’s equations are small nonzero in the excluded regions.

While it would be possible to apply methods like the Remez algorithm to optimize over

this set, optimizing the response at a suitable discretization can provide a good approxima-

tion. A set of sample points ΛS ⊆ Λκ,τ can be selected to capture the structure of Λκ,τ , for

instance through intersection with a sufficiently fine grid of points. Introducing a variable η

to bound the response magnitude at the sample points (i.e., |p (λ)| < η), the problem in (4.7)

can be approximately solved through the following optimization.

min
η∈R+
p∈Pd

η

s.t. p (1) = 1

p (λ) < η

−p (λ) < η

for all λ ∈ ΛS

(4.8)
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Collecting the coefficients {ak}k=d
k=0 of p into the column vector a = [a0, . . . , ad]

>, this can be

rewritten as the linearly constrained linear program (LP)

min
η∈R+

a∈Rd+1

η

s.t. 1>a = 1

v (λ)> a < η

−v (λ)> a < η

for all λ ∈ ΛS

(4.9)

where v (λ) is the (d+ 1)× 1 Vandermode column vector

v (λ) =
[
λ0, . . . , λd

]>
(4.10)

such that p (λ) = v (λ)> a.

To evaluate the presented filter design method, this section provides simulation results for

two undirected random network models, one with independent links and one with indepen-

dent block structure. For the first simulation results that appear in Figures 4.1-4.3, consider

a stochastic block model that follows the structure described in Example 3.1 of Section 3.2

in Chapter 3. The specific parameters used for this simulation are M1 = 4, M2 = 5, S = 100,

θ0 = 0.05, θ1 = 0.03, θ2 = 0.03, θ3 = 0.01. This random network model can be analyzed

through Girko’s K1 method in Theorem 3.1 as described by Example 3.1.

For the second group of simulation results that appear in Figures 4.4-4.6, consider a mod-

ified stochastic block model with dependencies within node blocks that follows the structure

described in Example 3.2 of Section 3.3 in Chapter 3. The specific parameters used for

this simulation are M = 10, S1 = 20, S2 = 5, {φ0,k} = {0.50, 0.50}, {θ0,k} = {0.50, 1.00},

{φ1,k} = {0.50, 0.50}, {θ1,k} = {0.05, 0.10}, {φ2,k} = {0.50, 0.50}, {θ2,k} = {0.01, 0.02}.

This random network model can be analyzed through Girko’s K27 method in Theorem 3.2

as described by Example 3.2.
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For each of these random network models, a deterministic approximation f̂ΞN to the

empirical spectral distribution of ΞN was computed (first simulation: ε = 10−6, second

simulation: ε = 10−5) to approximate the empirical spectral distribution of AR. This was

transformed to form an approximation f̂WN
to the empirical spectral distribution fWN

of the

consensus iteration matrix through (4.6) (where α = 1). Figure 4.1 and Figure 4.4 show

both the approximate spectral density f̂WN
(black curve) and expected spectral density (blue

shaded) as simulated through 1000 Monte-Carlo trials with 500 histogram bins. As expected,

these plots closely correspond, suggesting the approximation should be useful.

Consensus acceleration filters of degrees d = 1, . . . , 10 were designed according to the

method proposed in this section (first simulation: κ = 10−2, τ = 10−3, second simulation:

κ = 10−1, τ = 10−3) as the optimization problem (4.9). For purpose of comparison, filters

of degrees d = 1, . . . K − 1 were designed using only the mean iteration matrix eigenvalues

(equivalent to the mean matrix semi-definite program (SDP) method proposed in [16]), where

K is the number of distinct mean iteration matrix eigenvalues (K = 10 for the first model,

K = 4 for the second model). Note that optimal mean matrix SDP method filters cannot be

uniquely defined for d > K − 1. Hence, results are only shown for d ≤ K − 1 for the mean

matrix SDP filters.

For the two simulations, Figure 4.2 and Figure 4.5 display the expected convergence rates

per iteration on a logarithmic scale to compare the performance of the proposed filter (blue

square curve) and the mean matrix SDP filter (purple triangle curve) along with the trivial

filter (black circle curve, no filter applied) and the optimal filter designed with the exact

matrix known for each matrix drawn from the distributions (green diamond curve). Note

that a smaller value of this plot indicates faster convergence and that the proposed filters

perform nearly as well as the optimal filters, which improve significantly over no filtering.

Furthermore, the convergence rates achieved using only the mean matrix eigenvalues do not

compare well for this model (and can fail to produce convergence in other models), indicating

a need to properly model the spread of the eigenvalues under these conditions. For each filter

type and degree, the empirical distribution of convergence rate results over the Monte-Carlo
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Figure 4.1: Expected den-
sity E [fWN

] and approxi-

mate density f̂WN
for first

simulation (SBM described
in Sec. 3.2)

Figure 4.2: Expected con-
vergence rates for each filter
type with result distribu-
tion shown vertically (first
simulation)

Figure 4.3: Filter response
magnitudes for degree d =
4 filters of each type with
Λκ,τ shaded blue (first sim-
ulation)

Figure 4.4: Expected den-
sity E [fWN

] and approxi-

mate density f̂WN
for sec-

ond simulation (SBM de-
scribed in Sec. 3.3)

Figure 4.5: Expected con-
vergence rates for each filter
type with result distribu-
tion shown vertically (sec-
ond simulation)

Figure 4.6: Filter response
magnitudes for degree d =
4 filters of each type with
Λκ,τ shaded blue (second
simulation)

sample is plotted as a vertical histogram with the extreme results marked by bars. The

results have small spread, so these are somewhat difficult to see. Finally, filter responses

for each filter type are visualized in Figure 4.3 at degree d = 4 for the first simulation

and in Figure 4.6 at degree d = 4 for the second simulation, with the blue shaded region

showing the filtering region Λκ,τ . The figures show that the response for the proposed filter

is nearly identical to the response for the optimal filter for an example matrix drawn from

the distribution.

The filter design method proposed in this section for undirected random networks is

subject to some practical limitations that should be noted.

• First, the method may only be applied to random network models for which an asymp-

totic spectral approximation can be derived for the random network description, for

instance by using Girko’s methods. Pragmatic solution to Girko’s equations relies on

the computational reduction justified by node-transitivity. This favors random net-
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work distributions with many permutation symmetries such that no two nodes are

statistically distinguishable, requiring costly brute force for more general models.

• Second, numerical precision and tolerances of the optimization software limit the degree

of filters that can be accurately designed. Further increase in the filter degree may not

improve the convergence rate of the filters output from the optimization once the

convergence rate has been reduced close to these tolerances and may produce results

that cannot be trusted.

• Third, the method relies on the support of the approximate spectral distribution cap-

turing the full set of eigenvalues of the actual consensus iteration matrix. The presence

of outlier eigenvalues could lead to reduced worst-case performance or, if the outliers are

far from the filtering regions, even possible loss of convergence. However, this problem

is much more pronounced when only the eigenvalues of the mean consensus iteration

matrix are known. As evident from the small spread of convergence rates in the simu-

lations, this is not a severe problem and only occurs with low probability. Furthermore,

it would be possible to add constraints to force convergence robustness by limiting the

response magnitude over all possible eigenvalues (i.e, for W = I − αLR the interval

[1−2α, 1) contains all eigenvalues apart from λ = 1) at the cost of reducing optimality.

4.3 Constant, Directed Random Networks

For large-scale constant (not time-varying) directed random networks, this section intro-

duces an optimization problem for consensus acceleration filter design based on spectral

asymptotics. This section adopts the convention that each node in the directed network

receives data from its in-neighbors and sends data to its out-neighbors. Let GN be the

random graph with N nodes describing the random network, where A (GN) is the unnor-

malized adjacency matrix such that Aij (GN) = 1 if node j is an in-neighbor of node i

and such that Aij = 0 otherwise. Also let Din (GN) be the diagonal matrix of node in-

degrees and Lin (GN) = Din − A (GN) be the in-degree directed Laplacian matrix. Finally,
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let AR (GN) = Din (GN)−1A (GN) be the row-normalized adjacency matrix and LR (GN) =

I−Din (GN)−1A (GN) be the row-normalized directed Laplacian matrix. For this filter design

problem, the consensus iteration matrix will be derived from the row-normalized directed

Laplacian matrix via

WN = W (GN) = I − αLR (GN) (4.11)

for suitable values of α. As with the undirected case, while this selection typically results

in a weighted average, advantages include the ability to approximate the spectral density

using Girko’s methods (as discussed in Chapter 3) and good spectral density localization

properties for many large-scale percolation matrices. Unlike the undirected case, it is not

simple to compute and adjust for the left eigenvector inducing the weighted average.

In order to analyze the spectral asymptotics of WN , consider the random matrix

ΞN =
1

γ1

(A (GN)− E [A (GN)]) +
1

γ2

E [A (GN)] (4.12)

where γ1 = ρ (E [A (GN)]) and γ2 = E [ρ (A (GN))]. A deterministic approximation for the

empirical spectral distribution of ΞN can be used to approximate the empirical spectral

distribution of AR (GN). Note that

AR (GN) =
1

α
(W (GN)− I) + I (4.13)

relates W (GN) to AR (GN). Therefore, an approximate empirical spectral density f̂WN
for

WN relates to an approximate empirical spectral density f̂ΞN for ΞN via the following ex-

pression.

f̂WN ,β (x, y) =
1

α2
f̂ΞN ,β

(
x− 1

α
+ 1,

y

α

)
(4.14)

The approximate density f̂ΞN may be obtained through methods such as from Section 3.4.

For suitable random network distributions. To optimize the convergence rate of the filtered

consensus process, the following optimization minimizes the filter response magnitude over
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regions where the approximate density is nonzero.

min
p∈Pd

max
λ∈Λκ,τ

|p(λ)|

s.t. p(λ) = 1

Λκ,τ =
{
λ∈C

∣∣∣|1−λ|>κ,f̂WN ,β (Re{λ} ,Im{λ})>τ
} (4.15)

The set Λκ,τ ⊆ C defines the filtering regions, where κ and τ are small constants (e.g.,

τ = 10−3, κ = 10−2 in the simulations for this section). The constants κ and τ serve the

same purposes as in the formulation for undirected networks in Section 4.2, respectively

representing a transition distance and a non-zero density numerical threshold.

As before, a set of sample points ΛS ⊆ Λκ,τ can be selected to capture the structure of

Λκ,τ , for instance through intersection with a sufficiently fine grid of points. Introducing a

variable η to bound the squared response magnitude at the sample points (i.e., |p (λ)|2 < η),

the problem in (4.15) can be approximately solved through the following optimization.

min
η∈R+
p∈Pd

η

s.t. p (1) = 1

|p (λ)|2 < η

for all λ ∈ ΛS

(4.16)

Collecting the coefficients {ak}k=d
k=0 of p into the column vector a = [a0, . . . , ad]

>, this can be

rewritten as the quadratically constrained linear program (QCLP)

min
η∈R+

a∈Rd+1

η

s.t. 1>a = 1

a>Q (λ) a < η

for all λ ∈ ΛS

(4.17)
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where Q (λ) is the (d+ 1)× (d+ 1) real, positive semi-definite matrix

Q (λ) =
1

2

(
v (λ) v (λ)∗ + v

(
λ
)

v
(
λ
)∗)

(4.18)

and v (λ) is the (d+ 1)× 1 Vandermode column vector

v (λ) =
[
λ0, . . . , λd

]>
(4.19)

such that |p (λ)|2 = 1
2

(
|p (λ)|2 +

∣∣p (λ)∣∣2) = a>Q (λ) a. The matrices Q (λ) in the con-

straints are positive semidefinite, making this a convex optimization problem [50].

To evaluate the presented filter design method, this section provides simulation results for

two directed random network models, one with transpose-symmetric structure and one with

transpose-asymmetric structure but normal mean matrix. For the first simulation results

that appear in Figures 4.7-4.10, consider a stochastic block model that follows the structure

described in Example 3.3 of Section 3.4 in Chapter 3. The specific parameters used for this

simulation are M = 6, S = 200, θ0 = 0.05, θ1 = 0.01. This random network model can be

analyzed through Girko’s K25 method in Theorem 3.3 as described by Example 3.3.

For the second group of simulation results that appear in Figures 4.11-4.14, consider a

stochastic block model with that follows the structure described in Example 3.4 of Section 3.4

in Chapter 3. The specific parameters used for this simulation areM = 8, S = 200, θ0 = 0.05,

θ1 = 0.03, θ2 = 0.00. This random network model can be analyzed through Girko’s K25

method in Theorem 3.3 as described by Example 3.4. Because the mean matrix is normal,

the transpose-asymmetry of the distribution does not incur additional computational cost.

For each of these random network models, a deterministic approximation f̂ΞN to the em-

pirical spectral distribution of ΞN was computed (β = 10−6, umax = 102, 200 logarithmically

spaced integration points) to approximate the empirical spectral distribution ofAR. This was

transformed to form an approximation f̂WN
to the empirical spectral distribution fWN

of the

consensus iteration matrix through (4.14) (where α = 1). Figure 4.7 and Figure 4.11 show the

expected spectral densities E [fWN
] for each model as simulated through 1000 Monte-Carlo trials

62



Figure 4.7: Expected den-
sity E [fWN

] for first sim-
ulation (SBM described in
Sec. 3.4) with Λκ,τ bound-
ary marked

Figure 4.8: Approximate
density f̂WN ,β for first sim-
ulation (SBM described in
Sec. 3.4) with Λκ,τ bound-
ary marked

Figure 4.9: Expected con-
vergence rates for each filter
type with result distribu-
tion shown vertically (first
simulation)

(a) Trivial Filter
(for d = 4)

(b) Mean SDP Filter
(for d = 4)

(c) Proposed filter
(for d = 4)

(d) Optimal filter
(for d = 4)

Figure 4.10: Filter response magnitudes for filters of degree d = 4 of each type with boundary
of the filtering region Λκ,τ marked by black closed curves and filter zeros marked by white
circles located in the dark blue regions (first simulation)

Figure 4.11: Expected den-
sity E [fWN

] for second sim-
ulation (SBM described in
Sec. 3.4) with Λκ,τ boundary
marked

Figure 4.12: Approximate
density f̂WN ,β for secondsim-
ulation (SBM described in
Sec. 3.4) with Λκ,τ boundary
marked

Figure 4.13: Expected con-
vergence rates for each fil-
ter type with result distri-
bution shown vertically (sec-
ond simulation)

(a) Trivial Filter
(for d = 6)

(b) Mean SDP Filter
(for d = 6)

(c) Proposed filter
(for d = 6)

(d) Optimal filter
(for d = 6)

Figure 4.14: Filter response magnitudes for filters of degree d = 6 of each type with boundary
of the filtering region Λκ,τ marked by black closed curves and filter zeros marked by white circles
located in the dark blue regions (second simulation)
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with 300 real histogram bins and 100 imaginary histogram bins. Figure 4.8 and Figure 4.12 show

the approximate spectral densities f̂WN
as computed. For each of these plots, the boundary of

the filtering region Λκ,τ is encircled by closed black curves (κ = 10−2, τ = 10−3). As expected,

these plots closely correspond, suggesting the approximation should be useful.

Consensusaccelerationfiltersofdegreesd = 1, . . . , 10weredesignedaccordingtothemethod

proposed in this section as the optimization problem (4.17). For purpose of comparison, filters

of degrees d = 1, . . . K − 1 were designed using only the mean iteration matrix eigenvalues

(equivalent to the mean matrix semi-definite program (SDP) method proposed in [16]), where

K is the number of distinct mean iteration matrix eigenvalues (K = 5 for the first model,K = 9

for the second model). Note that optimal mean matrix SDP method filters cannot be uniquely

defined for d>K−1. Hence, results are only shown for d≤K−1 for the mean matrix SDP filters.

For the two simulations, Figure 4.9 and Figure 4.13 display the expected convergence rates

per iteration on a logarithmic scale to compare the performance of the proposed filter (blue

square curve) and the mean matrix SDP filter (purple triangle curve) along with the trivial

filter (black circle curve, no filter applied) and the optimal filter designed with the exact matrix

known for each matrix drawn from the distributions (green diamond curve). Note that a smaller

value of this plot indicates faster convergence and that the proposed filters perform nearly as

well as the optimal filters, which improve significantly over no filtering. Furthermore, the

convergence rates achieved using only the mean matrix eigenvalues do not compare well for this

model and can fail to produce convergence, indicating a need to properly model the spread of the

eigenvalues under these conditions. For each filter type and degree, the empirical distribution

of convergence rate results over the Monte-Carlo sample is plotted as a vertical histogram with

the extreme results marked by bars. The results have small spread, so these are somewhat

difficult to see. Finally, filter responses for each filter type are visualized in Figure 4.10a-4.10d

at degree d = 4 for the first simulation and in Figure 4.14a-4.14d at degree d = 6 for the second

simulation, with the boundary of the filtering region Λκ,τ indicated with closed black curves.

The figures show that the response for the proposed filter is nearly identical to the response for

the optimal filter for an example matrix drawn from the distribution.
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The filter design method proposed in this section for directed random networks is subject

to some practical limitations that should be noted. Many of these are shared by the method for

undirected networks in Section 4.2, but are more pronounced for the directed networks case as

will be described.

• First, the method may only be applied to random network models for which an asymptotic

spectral approximation can be derived for the random network description, for instance

by using Girko’s methods. Pragmatic solution to Girko’s equations relies on the computa-

tional reduction justified by node-transitivity. This favors random network distributions

with many permutation symmetries such that no two nodes are statistically distinguish-

able, requiring costly brute force for more general models. Note that compared to Girko’s

K1 system of equations for undirected graphs, the reduced form of Girko’s K25 system of

equations has twice as many equations.

• Second, numerical precision and tolerances of the optimization software limit the degree

of filters that can be accurately designed. Further increase in the filter degree may not

improve the convergence rate of the filters output from the optimization once the conver-

gence rate has been reduced close to these tolerances and may produce results that cannot

be trusted. Because the quadratic constraints for the directed case are on the magnitude

squared, which falls more quickly than the magnitude in the linear constraints for the

undirected case, this may become problematic more quickly for the optimization problem

proposed in this section.

• Third, themethodrelies on the supportof theapproximate spectraldistributioncapturing

the full set of eigenvalues of the actual consensus iteration matrix. The presence of outlier

eigenvalues could lead to reduced worst-case performance or, if the outliers are far from the

filtering regions, even possible loss of convergence. However, this problem is much more

pronounced when only the eigenvalues of the mean consensus iteration matrix are known.

Asevident fromthe small spreadof convergence rates in the simulations, this is nota severe

problem and only occurs with low probability. The results for the directed case experience
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more variability due to outlying eigenvalues, and these outlying are somewhat more likely

to be real due to a phenomenon of the circular law (and related laws) sometimes called the

“Saturn effect”, in which eigenvalues concentrate on the real line for finite matrix size [51].

This effect disappears asymptotically as the matrix size increases. At the cost of some

optimality, the optimization problem could compensate for this effect by considering the

set Λκ,τ as a lower bound for the filtering region, which can be slightly expanded to capture

close outlying eigenvalues, especially on the real axis. Furthermore, it would be possible

to add constraints to force convergence robustness by limiting the response magnitude

over all possible eigenvalues at the cost of reducing optimality.

4.4 Weighted Filter Response Optimization

More generally, the filter design problem can be modified by applying penalties dependent on

λ that weight the frequency response. This leads to the more general problems

min
p∈Pd

max
λ∈Λκ,τ

|g (λ) p (λ)|

s.t. p (1) = 1

Λκ,τ =
{
λ ∈ R

∣∣∣1− λ > κ, f̂WN
(λ) > τ

} (4.20)

for undirected networks and

min
p∈Pd

max
λ∈Λκ,τ

|g (λ) p (λ)|

s.t. p (λ) = 1

Λκ,τ =
{
λ ∈ C

∣∣∣|1− λ| > κ, f̂WN ,β (Re {λ} , Im {λ}) > τ
} (4.21)

for directed networks where g is a nonnegative weight function. For undirected networks, the

following linear program results from inclusion of the weights
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min
η∈R+

a∈Rd+1

η

s.t. 1>a = 1

g (λ) v (λ)> a < η

−g (λ) v (λ)> a < η

for all λ ∈ ΛS

(4.22)

where v (λ) is the (d+ 1)× 1 Vandermode column vector

v (λ) =
[
λ0, . . . , λd

]>
(4.23)

such that p (λ) = v (λ)> a. For directed networks, the following linear objective with quadratic

constraints results from inclusion of the weights

min
η∈R+

a∈Rd+1

η

s.t. 1>a = 1

(g (λ))2 a>Q (λ) a < η

for all λ ∈ ΛS

(4.24)

whereQ (λ) is the (d+ 1)× (d+ 1) real, positive semi-definite matrix

Q (λ) =
1

2

(
v (λ) v (λ)∗ + v

(
λ
)

v
(
λ
)∗)

(4.25)

and v (λ) is the (d+ 1)× 1 Vandermode column vector

v (λ) =
[
λ0, . . . , λd

]>
(4.26)

such that |p (λ)|2 = a>Q (λ) a.

When optimizing worst case distributed consensus convergence rate as in (4.9) and (4.17),

the proper weight function is simply

g1 (λ) = 1. (4.27)
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This choice for g minimizes the error for the worst eigenvector to produce fastest asymptotic

convergence. Alternatively, the `2 graph total variation of the states after a single application

of the filter may be considered. Intuitively, signals of low total variation have node values close

to the average of neighboring node values. In terms of the row-normalized Laplacian, the total

variation TVG(x) = ‖LR (G) x‖2 of the filter output corresponding to normalized eigenvector

vi ofW (G) = I − αLR (G) with eigenvalue λi (W (G)) is

TVG (p (W (G)) vi) =
∣∣ 1
α

(1− λi (W (G))) p (λi (W (G)))
∣∣ , (4.28)

penalizing high |λi (LR (G))| =
∣∣ 1
α

(1− λi (W (G)))
∣∣. The worst case total variation of the filter

output normalized by the magnitude of the initial error relates to the spectral radius by

ρ (LR (G) p (W (G))− J`) ≤ . . .

. . . ‖LR (G) p (W (G))− J`‖2 ≤ . . .

. . . ‖V ‖2

∥∥V −1
∥∥

2
ρ (LR (G) p (W (G))− J`)

(4.29)

where V diagonalizesW (G) and LR (G). Hence, the proper weight function for this problem is

g2 (λ) =
∣∣ 1
α

(1− λ)
∣∣ . (4.30)

If the filter was, instead, designed to minimize expected total variation, the frequency response

magnitude should be minimized for values of λ for which the empirical spectral distribution is

more dense as well as large values of
∣∣ 1
α

(1− λ)
∣∣. Hence, a reasonable weight function to optimize

expected total variation would be

g3 (λ) =
∣∣ 1
α

(1− λ)
∣∣ fN (λ) . (4.31)

Note that the factor of 1
α

could be removed from g2 and g3 without changing the optimization

problem but is included to more clearly show the relationship to the total variation. Simu-

lated results for the undirected case of each of these design problems appear in Section 4.5 for

several random network models.
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4.5 Simulations for Weighted Problems

To demonstrate the efficacy of the filter design methods proposed in the previous section, this

section provides extensive simulations establishing performance improvement over existing

methods for several random network models and filter design objectives. First, this section

introduces each network model considered and briefly discusses derivation of deterministic

equivalents for the iteration matrix empirical spectral distribution, which is primarily in the

scope of [22, 23]. Subsequently, it describes the simulation procedure for each design objective

and interprets results that appear in Figures 4.16-4.23.

Several practical random network models lead to random graph matrices with eigenvalues

that are amenable to analysis through the methods of random matrix theory. The Erdős-Rényi

model and stochastic block models have already been introduced. The simulations in this

section will make use of stochastic block models with the following structure. (This serves to

introduce a new example, but it requires no new analysis beyond those already presented in

Chapter 3.) Consider aD-dimensional lattice structured stochastic block model in which node

populations correspond to D-tuples and in which nodes can connect only if their populations

differ by at most one tuple symbol. Thus, the populations form a lattice in the sense of [52].

Nodes connect through a link with a fixed probability that depends on the tuple symbol, if any,

that differs between populations. Hence, nodes in the same population connect with probability

θ0 and nodes in different populations differing in the kth tuple connect with probability θk. For

instance, this could arise if the populations were organized by responses toD categorical random

variables and nodes only communicate with sufficiently similar nodes. For theD = 2 case, this

percolation model leads to supergraph and different percolation probabilities like those shown

in Figure 4.15c. The adjacency matrix spectral statistics of this model were analyzed in [22, 23],

using Girko’s K1 method (see Section 3.2), simplifying the problem using model symmetry and

simultaneous diagonalizability. Transforming the computed deterministic equivalents for the

adjacency matrix empirical spectral distribution to approximate the row-normalized Laplacian

empirical spectral distribution, simulations using each of these random network models test the

proposed filter design methods.
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(a) An Erdős-Rényi network model supergraph
is illustrated above for N = 7. It has com-
plete supergraph with links included acording
to some percolation probability θ.

(b) A simple stochastic block model (1-D lat-
tice) supergraph is illustrated above for 5 pop-
ulations with 4 members. Different colors cor-
respond to different percolation probabilities
θ0, θ1.

(c) A 2-D lattice stochastic block model super-
graph is illustrated above for 3× 4 populations
with 4 members. Different colors correspond to
different percolation probabilities θ0, θ1, θ2.

(d) A random geographic location model is illus-
trated above. Nodes are independently placed
at random in a unit area and connected through
a link if within the communication radius r.

Figure 4.15: Illustrations for example random network models

Additionally, the paper [16] examines a random geographic location model [53] when test-

ing the filter design methods it introduces. Therefore, the simulations in this section will

include a slight generalization of this model to enable more direct comparison. Under this

model, nodes are randomly placed in a unit area and connected by a link if the distance is

less than communication radius r = c
√

ln (N) /N [16]. An illustration depicting this appears

in Figure 4.15d. Because this network distribution is not amenable to analysis using Girko’s

methods, the eigenvalues will be characterized by simulating the expected histogram over 104

Monte-Carlo samples for test purposes. Similarly the mean row-normalized Laplacian is com-
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puted by simulation for this model. For comparison, the Monte-Carlo approximation of the

expected empirical spectral density requires several minutes (≈55.1 minutes on a 2014 Mac-

book Pro laptop computer in the simulations), depending linearly on the number of samples and

scaling rapidly with the number of network nodes, while the analytic computation for the other

graph models require a few seconds (≈5.0 seconds on a 2014 Macbook Pro laptop computer in

the simulations), depending on the number of computation points and required accuracy but

not scaling with the number of network nodes.

In the first group of simulations, filters of varying degree were designed to improve the con-

vergence rate of the distributed average consensus process using iteration matrix W (GN) =

I − αLR (GN) for α = 1. For each network model, a deterministic equivalent for the adja-

cency matrix empirical spectral distribution was computed (or simulated) as described above

[22, 23, 33]. After transformation, this information was used to approximate the empirical spec-

tral distributions ofAR (GN) and, thus,W (GN) [22, 23]. Using this information, filters of degree

d = 1, . . . , 10 were designed to minimize the convergence rate bound using (4.22) with weight

function g1. The resulting convergence rates are compared against those of the Newton inter-

polating polynomial (with critical point at λ∗ = 0) and mean matrix SDP method from [16].

Note that the maximum degree for the mean matrix SDP methods is limited by the number of

distinct mean matrix eigenvalues. Thus, for the Erdős-Rényi and random geographic location

models, which have highly symmetric distributions, only first order filters are available for that

method. Additionally, the results are compared against filters designed with full knowledge of

the iteration matrix eigenvalues after the network is realized.

Figures 4.16-4.22 show results for an Erdős-Rényi model, 2-D lattice stochastic block model,

3-D lattice stochastic block model, and random location network, respectively, with model

parameters listed in the corresponding caption. Figures 4.16a-4.22a show the computed de-

terministic approximation and the simulated expected empirical spectral distribution of W .

Figures 4.16b-4.22b show filter responses for degree d = 4 filters. Figures 4.16c-4.22c compare

the expected convergence rate bounds for the filter design methods. That is, the plotted curves

show the filter response for the worst eigenvalue averaged over 1000 simulation trials. The
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outlying maximum and minimum over the 1000 trials for the proposed method are plotted as

whiskers to show the extent of the extremes (whiskers for other methods omitted for clarity).

Note that the minimum is often too close to the mean to be easily visible, but the maximum

outliers are sometimes substantial. However, most results are extremely close to the mean,

resulting in a sample standard deviation size too small to effectively include in the plot. Note

that the proposed method (blue square) performs almost exactly as well as when full knowl-

edge of the eigenvalues is available (green diamond) and outperforms the Newton polynomial

method (black circle) and mean matrix SDP method (purple triangle) from [16] in all cases.

Figures 4.16d-4.22d, 4.16e-4.22e, and 4.16f-4.22f show the consensus convergence error over

time for filter lengths d = 2, d = 4, and d = 6.

In the second group of simulations, filters of varying degree were designed to improve the

worst case `2 graph total variation of the data after a single filter application for iteration matrix

W (GN) = I − αLR (GN) with α = 1. Using the previously computed deterministic empirical

spectral distribution approximations, filters of degree d = 1, . . . , 10 were designed to minimize

the worst case total variation bound using (4.22) with weight function g2. The results are

compared against those of the Newton interpolating polynomial (with critical point at λ∗ = 0)

and mean matrix SDP method from [16] as well as filters designed with full knowledge of the

iteration matrix eigenvalues after the network is realized.

Figures4.17a-4.23acompare theexpectedworst case totalvariationaftera singleapplication

ofeachfilter type forvaryingfilterdegrees, eachaveragedover1000simulationtrails. Again, note

that the proposed method (blue square) performs almost exactly as well as having full knowledge

of the eigenvalues (green diamond) and outperforms the Newton polynomial method [16] (black

circle) and mean matrix SDP method [16] (purple triangle) in all cases. This simulation was

also repeated for filters designed to improve the expected `2 graph total variation of the data

after a single filter application for iteration matrix W (GN) = I − αLR (GN) with α = 1. For

this problem, filters of degree d = 1, . . . , 10 were designed using (4.22) with weight function g3.

The results, averaged over 1000 simulation trials, appear in Figures 4.17b-4.23b and display the

same performance patterns among the filter types.
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(a) Expected empirical spectral density (blue
shaded) and analytically computed determinis-
tic equivalent distribution (black) for LR of an
Erdős-Rényi model with N = 1500 nodes and
percolation probability θ = 0.03

(b) Frequency response plot for filters designed
according to the listed methods. The shaded
blue region shows Λκ,τ . Dotted lines indicate
each worst eigenvalue response for a sample ma-
trix. Note that the blue and green curves are
nearly indistinguishable.

(c) Consensus convergence rate comparison (average over 1000 trials) for filter design
methods including Newton (with critical point λ∗= 0) [16] (black circle), SDP [16] (purple
triangle), g1-optimal with deterministic equivalent (blue square, min/max bars), and g1-
optimal with eig. oracle (green diamond). Note that the mean iteration matrix has K = 2
eigenvalues, so the SDP is defined for d ≤ 1. Also note that the green curve is near (but
slightly below) the blue curve.

(d) Example worst case con-
sensus convergence error over
time using degree d = 2 fil-
ter for design methods listed in
Figure 4.16c

(e) Example worst case con-
sensus convergence error over
time using degree d = 4 fil-
ter for design methods listed in
Figure 4.16c

(f) Example worst case con-
sensus convergence error over
time using degree d = 6 fil-
ter for design methods listed in
Figure 4.16c

Figure 4.16: Consensus filter design for Erdős-Rényi network
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(a) Worst case total variation comparison for filter design methods in-
cluding Newton (with critical point λ∗ = 0) [16] (black circle), SDP [16]
(purple triangle), g3-optimal with deterministic equivalent (blue square),
and g3-optimal with eig. oracle (green diamond)

(b) Expected total variation comparison for filter design methods including
Newton (with critical point λ∗ = 0) [16] (black circle), SDP [16] (purple
triangle), g3-optimal with deterministic equivalent (blue square), and g3-
optimal with eig. oracle (green diamond)

Figure 4.17: Worst case and expected total variation filter design for Erdős-Rényi
network (parameters from Figure 4.16). Note that K = 2 so the mean iteration
matrix SDP method is only defined for d ≤ 1. (Results are averaged over 1000 trials.)
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(a) Expected empirical spectral density (blue
shaded) and analytically computed determin-
istic equivalent distribution (black) for LR of
a 2-D Lattice SBM with 4 × 5 populations
each of 100 nodes and percolation probabilities
θ = (0.15, 0.10, 0.10)

(b) Frequency response plot for filters designed
according to the listed methods. The shaded
blue region shows Λκ,τ . Dotted lines indicate
each worst eigenvalue response for a sample ma-
trix. Note that the blue and green curves are
nearly indistinguishable.

(c) Consensus convergence rate comparison (average over 1000 trials) for filter design
methods including Newton (with critical point λ∗= 0) [16] (black circle), SDP [16] (purple
triangle), g1-optimal with deterministic equivalent (blue square, min/max bars), and g1-
optimal with eig. oracle (green diamond). Note that the mean iteration matrix has K = 5
eigenvalues, so the SDP is defined for d ≤ 4. Also note that the green curve is near (but
slightly below) the blue curve.

(d) Example worst case con-
sensus convergence error over
time using degree d = 2 fil-
ter for design methods listed in
Figure 4.18c

(e) Example worst case con-
sensus convergence error over
time using degree d = 4 fil-
ter for design methods listed in
Figure 4.18c

(f) Example worst case con-
sensus convergence error over
time using degree d = 6 fil-
ter for design methods listed in
Figure 4.18c

Figure 4.18: Consensus filter design for 2-D Lattice SBM network
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(a) Worst case total variation comparison for filter design methods in-
cluding Newton (with critical point λ∗ = 0) [16] (black circle), SDP [16]
(purple triangle), g3-optimal with deterministic equivalent (blue square),
and g3-optimal with eig. oracle (green diamond)

(b) Expected total variation comparison for filter design methods including
Newton (with critical point λ∗ = 0) [16] (black circle), SDP [16] (purple
triangle), g3-optimal with deterministic equivalent (blue square), and g3-
optimal with eig. oracle (green diamond)

Figure 4.19: Worst case and expected total variation filter design for 2-D Lattice SBM
network (parameters from Figure 4.18). Note thatK = 5 so the mean iteration matrix
SDP method is only defined for d ≤ 4. (Results are averaged over 1000 trials.)
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(a) Expected empirical spectral density (blue
shaded) and analytically computed determinis-
tic equivalent distribution (black) for LR of a
3-D Lattice SBM with 2 × 2 × 3 populations
each of 100 nodes and percolation probabilities
θ = (0.20, 0.14, 0.10, 0.06)

(b) Frequency response plot for filters designed
according to the listed methods. The shaded
blue region shows Λκ,τ . Dotted lines indicate
each worst eigenvalue response for a sample ma-
trix. Note that the blue and green curves are
nearly indistinguishable.

(c) Consensus convergence rate comparison (average over 1000 trials) for filter design
methods including Newton (with critical point λ∗= 0) [16] (black circle), SDP [16] (purple
triangle), g1-optimal with deterministic equivalent (blue square, min/max bars), and g1-
optimal with eig. oracle (green diamond). Note that the mean iteration matrix has K = 9
eigenvalues, so the SDP is defined for d ≤ 8. Also note that the green curve is near (but
slightly below) the blue curve.

(d) Example worst case con-
sensus convergence error over
time using degree d = 2 fil-
ter for design methods listed in
Figure 4.20c

(e) Example worst case con-
sensus convergence error over
time using degree d = 4 fil-
ter for design methods listed in
Figure 4.20c

(f) Example worst case con-
sensus convergence error over
time using degree d = 6 fil-
ter for design methods listed in
Figure 4.20c

Figure 4.20: Consensus filter design for 3-D Lattice SBM network

77



(a) Worst case total variation comparison for filter design methods in-
cluding Newton (with critical point λ∗ = 0) [16] (black circle), SDP [16]
(purple triangle), g3-optimal with deterministic equivalent (blue square),
and g3-optimal with eig. oracle (green diamond)

(b) Expected total variation comparison for filter design methods including
Newton (with critical point λ∗ = 0) [16] (black circle), SDP [16] (purple
triangle), g3-optimal with deterministic equivalent (blue square), and g3-
optimal with eig. oracle (green diamond)

Figure 4.21: Worst case and expected total variation filter design for 3-D Lattice SBM
network (parameters from Figure 4.20). Note thatK = 9 so the mean iteration matrix
SDP method is only defined for d ≤ 8. (Results are averaged over 1000 trials.)
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(a) Expected empirical spectral density (blue
shaded) for LR (analytic computations not
available for this network model) of a random
geographic network with N = 1000 nodes and
c = 1.4

(b) Frequency response plot for filters designed
according to the listed methods. The shaded
blue region shows Λκ,τ . Dotted lines indicate
each worst eigenvalue response for a sample ma-
trix. Note that the blue and green curves are
quite similar.

(c) Consensus convergence rate comparison (average over 1000 trials) for filter design
methods including Newton (with critical point λ∗= 0) [16] (black circle), SDP [16] (purple
triangle), g1-optimal with deterministic equivalent (blue square, min/max bars), and g1-
optimal with eig. oracle (green diamond). Note that the mean iteration matrix has K = 2
eigenvalues, so the SDP is defined for d ≤ 1.

(d) Example worst case con-
sensus convergence error over
time using degree d = 2 fil-
ter for design methods listed in
Figure 4.22c

(e) Example worst case con-
sensus convergence error over
time using degree d = 4 fil-
ter for design methods listed in
Figure 4.22c

(f) Example worst case con-
sensus convergence error over
time using degree d = 6 fil-
ter for design methods listed in
Figure 4.22c

Figure 4.22: Consensus filter design for random geographic network
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(a) Worst case total variation comparison for filter design methods in-
cluding Newton (with critical point λ∗ = 0) [16] (black circle), SDP [16]
(purple triangle), g3-optimal with deterministic equivalent (blue square),
and g3-optimal with eig. oracle (green diamond)

(b) Expected total variation comparison for filter design methods including
Newton (with critical point λ∗ = 0) [16] (black circle), SDP [16] (purple
triangle), g3-optimal with deterministic equivalent (blue square), and g3-
optimal with eig. oracle (green diamond)

Figure 4.23: Worst case and expected total variation filter design for random ge-
ographic network (parameters from Figure 4.22). Note that K = 2 so the mean
iteration matrix SDP method is only defined for d ≤ 1. (Results are averaged over
1000 trials.)
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4.6 Summary

In summary, this chapter presented filter design methods for periodic consensus acceleration fil-

ters and other closely related graph filtering problems on constant large-scale random networks.

These methods rely on the limiting behavior that can emerge in the eigenvalues of large-scale

matrices, using the support of the approximate spectral densities for the row-normalized adja-

cency matrix obtained using the methods in Chapter 3 to define filtering regions with respect to

the consensus iteration matrix. For undirected networks, minimizing the convergence rate leads

to a linear program that minimizes a bound on the filter response magnitude over the support of

the approximate density function. Similarly, for directed networks, minimizing the convergence

rate leads to a quadratically constrained linear program that minimizes a bound on the squared

filter response magnitude over the support of the approximate density function. Significant

improvements for the filters designed with the proposed method over the filterless convergence

rate and over the convergence rate of the mean SDP filter were observed in simulations for each

of these design problems. Furthermore, the performance of the proposed filter methods is near

that of the optimal filters designed with exact knowledge of the iteration matrix after the net-

work is drawn from its distribution. Practical limitations of this filtering approach, including

computational requirements, possible loss of robustness, and numerical issues. Subsequently,

these optimization problems were generalized to minimize worst case weighted filter response

magnitude, which handles optimization objectives such as the worst case total variance and the

expected total variation. Simulation results for the undirected case of these related problems

were also provided. For each filter design problem, the filters derived using the proposed method

and the approximate spectral density obtained via Girko’s methods perform nearly as well as

the optimal solution designed with exact knowledge of the iteration matrix after the network is

drawn from its distribution.
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Chapter Five

Consensus Filter Design:

Switching Networks

5.1 Introduction

For networks that change over time, the concept of a shift-invariant graph filter breaks down

because the graph shift operator changes along with the network. This significantly complicates

the graph filter design process for consensus acceleration, as the same notion of filter response

does not apply. However, for some random network models analysis is still possible with respect

to the sequence of graph shift matrix eigendecompositions, just as graph signal processing for

constant network analyzes data with respect to the eigendecomposition of the constant graph

shift operator. For instance, this chapter considers switching random networks, a time-varying

random network model. In the switching random network models considered in this thesis, the

marginal distribution of the network model at each iteration has some known distribution. At

each iteration, thenetworkeither remainsunchangedorpotentially changes toan independently

drawn sample from the distribution according to the result of a Bernoulli random variable with

switching probability θsw.

This chapter presents optimization methods for consensus filtering on large-scale random

undirected switching networks. These optimization methods are designed with the objective to

approximately minimize the consensus error norm after a single filter application. Section 5.2

focuses on filter design for unnormalized Laplacian-based consensus iteration matrices of undi-

rected graphs based on simulated expected empirical spectral distribution data. The filter

design optimization problem to minimize the expected consensus error vector norm squared

results in a quadratic program, where the matrix in the quadratic objective function can be
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approximated from the empirical spectral distribution moments given certain assumptions on

the eigenvectors. Section 5.3 focuses on filter design for row-normalized Laplacian-based con-

sensus iteration matrices of undirected switching networks based on the approximate spectral

density obtained through Girko’s methods as described in Chapter 3. The filter design opti-

mization problem to minimize the expected consensus error vector norm squared results in a

quadratic program nearly identical to that for the unnormalized Laplacian-based consensus

iteration matrix case in Section 5.2, with the exception of employing the approximate spectral

density. However, the derivation must be modified to account for the asymmetry of the iteration

matrices and resulting non-orthogonal bases of eigenvectors. Finally, Section 5.4 summarizes

the chapter in conclusion.

5.2 Switching, Undirected Random Networks:

Symmetric Iteration Matrix Case (W=I−αL)

This section proposes design criteria for consensus acceleration filters on random switching

networks, a relatively simple class of time-varying network models, for certain large-scale ran-

dom network distributions using the unnormalized Laplacian based consensus iteration matrix

W (G) = I−αL (G). Each network is drawn from some specified random network distribution.

At each time iteration, the network either remains constant or switches to a new, independent

sample from the random network distribution according to a Bernoulli trial with fixed probabil-

ity. The proposed quadratic optimization objective involves an approximation of the expected

Gram matrix of error in the state vectors over a filtering window. The derived approximation

depends only on the moments of the expected empirical spectral distribution (obtainable via

Monte-Carlo simulation) of the iteration matrices and on the switching probability.

Consider distributed average consensus with respect to a time-varying sequence of iteration

matrices {W (GN,n)} arising from a random switching network with N nodes and switching

probability θsw. To compute an unweighted mean of the initial data x0, the network implements
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a dynamic system with state xn at time iteration n described by

xn = W (GN,n) xn−1 (5.1)

Provided the iteration matrices satisfy the consensus conditions

W (GN,n) 1 = 1, 1>W (GN,n) = 1>,

ρ (W (GN,n)− J1) < 1
(5.2)

where J1 = 11>/1>1, the agreement error in the state vector is asymptotically eliminated,

converging to the unweighted mean. This section examines undirected graphs and employs the

iteration matrix scheme

WN,n = W (GN,n) = I − αL (GN,n) , (5.3)

which satisfies the properties in (5.2) when the network graphs {GN,n} are connected and α is

chosen suitably. To improve the convergence rate, a degree d filter with coefficients {ak}k=d
k=0 will

be periodically applied to previous state values to update the current state vector according to

the following equation.

xn :=
k=d∑
k=0

akxn−d+k, n ≡ 0 (mod d) (5.4)

for k = 0, . . . , d. Thus, for initial vector x0 the state vector terms used for filtering (written

for the first filtering operation only to simplify notation) are given by xk = φk

(
{WN,n}n=d

n=1

)
x0

where

φk

(
{WN,n}n=d

n=1

)
= WN,k . . .WN,1

φ0

(
{WN,n}n=d

n=1

)
= IN

(5.5)

Because each iteration matrix has eigenvalue λ = 1 corresponding to the consensus eigen-

vector 1, the filter coefficients must have unit sum to preserve this eigenvalue in the filtered

transformation. Collecting the filter coefficients into a vector

a = [a0, . . . , ad] (5.6)

this constraint can be expressed as 1>a = 1.
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Attempting to directly optimize the expected norm of the filter output error for the worst

case input proves challenging. Instead of directly optimizing the convergence rate, the filters

designed inthis sectionapproximatelyminimize theexpectednormof thefilteroutputconsensus

error vector with respect to the random iteration matrix sequence and with respect to the initial

error vector. Let x0 = x01 + xe where xe is orthogonal to 1, and assume for simplicity that xe is

uniformly distributed on unit norm vectors orthogonal to 1. By Jensen’s inequality, the square

root of the expected norm squared provides a lower bound for the expected norm. Thus, rather

than minimizing the expected norm of the filter error directly, the expected norm squared will

be minimized as follows, where xe is uniformly distributed on
{
xe ∈ RN |xe⊥1, ‖xe‖ = 1

}
.

min
a∈Rd+1

E
xe,{WN,n}n=d

n=1

∥∥∥∥∥(I − J1)
k=d∑
k=0

akφk

(
{WN,n}n=d

n=1

)
xe

∥∥∥∥∥
2

2


s.t. 1>a = 1

(5.7)

The objective function in the above equation can be written in terms of the Gram matrix

of consensus error vectors corresponding to each filtering term. The entries of this matrix are

given by

(Qerr)ij =
〈

(I − J1)φi−1

(
{WN,n}n=d

n=1

)
xe,

(I − J1)φj−1

(
{WN,n}n=d

n=1

)
xe

〉
.

(5.8)

Thus, the optimization problem can be rewritten in the following quadratic form.

min
a∈Rd+1

a> E
xe,{WN,n}n=d

n=1

[Qerr ] a

s.t. 1>a = 1

(5.9)

Denote by s the network switching sequence where s1 = 1 and, for all n > 1, sn = 1 if

WN,n = WN,n−1, and sn = 0 otherwise. That is, sn determines whetherWN,n is a new iteration

matrix (within the filtering window), with WN,1 always counted. The space of all possible
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switching sequences are the d-tuples

Sd = {1} × {0, 1} × · · · × {0, 1} , (5.10)

and the total number of independent networks is

#s =
k=d∑
k=1

sk, s ∈ Sd (5.11)

with #s− 1 total switching events. For a switching process governed by independent Bernoulli

trials with switching probability θsw, switching sequence s ∈ Sd has probability mass given by

fS (s) = (θsw)(#s−1) (1− θsw)(d−1)−(#s−1) (5.12)

Thedistributionof the iterationmatrixsequence{WN,n}n=d
n=1 canbe factored intothedistribution

of the switching sequence s and distribution of {WN,n (s)}n=d
n=1 given the switching sequence.

The Gram matrix of filter term consensus error vectors can also be conditioned on the switching

sequence as follows.

(Qerr (s))ij =
〈

(I − J1)φi−1

(
{WN,n (s)}n=d

n=1

)
xe,

(I − J1)φj−1

(
{WN,n (s)}n=d

n=1

)
xe

〉 (5.13)

In terms of the factored distributions, the optimization problem in (5.9) can be reformulated as

follows.

min
a∈Rd+1

a> Es

[
E
xe,{WN,n(s)}n=d

n=1

[Qerr (s) |s]

]
a

s.t. 1>a = 1

(5.14)

The above optimization problem could be used for filter design by computing the values

of E{WN,n(s)},v [Q (s) |s] through simulation. However, the intent of this section is to connect

information regarding the empirical spectral distribution of the iteration matrices to filter

design for large-scale random switching networks, as done for constant random networks in
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Chapter 4. Therefore, an analytical approximation (under suitable conditions) based on the

expected empirical spectral distribution will be described below.

Before proceeding, some notation must first be introduced. Note that each switching se-

quence s corresponds to an integer composition of d with #s partitions, namely

c (s) = (c1 (s) , . . . , c#s (s)) (5.15)

where each cm (s) is the number of iterations the mth network is used before switching. Let

c′m (s, n) be the number of iterations the mth network is used up to (and including) iteration

n ≥ 1 with c′m (s, 0) = 0. More explicitly,

c′m (s) =


0 n <

∑m−1
k=1 ck (s)

cm (s) n >
∑m

k=1 ck (s)

n−
∑m−1

k=1 ck (s) otherwise

(5.16)

Let{un,k (s)}k=N−1
k=1 ∪{un,N (s) = 1/

√
N}beaorthonormalbasisof eigenvectors forWN,n (s)

with {vk}k=N−1
k=1 ∪ {vN = 1/

√
N} an orthonormal basis of eigenvectors for I − J1. Note that if

the network does not switch, the basis of eigenvectors remains the same. This motivates redefin-

ing some terms with respect to the number of independent networks to avoid duplication. Let

W ′
N,m (s) be the mth independently drawn network for m = 1, . . . ,#s. Let the corresponding

orthonormal bases of eigenvectors be
{
u′m,k (s)

}k=N−1

k=1
∪
{
u′m,N (s) = 1/

√
N
}

. Let the basis

change coordinates for this sequence of eigenvector bases be ψ′(m,m+1),rmrm+1
, which gives the

coordinate of u′m,rm corresponding to u′m+1,rm+1
for 1 ≤ m < #s. Furthermore, let the coordi-

nate of xe in u′1,r1 be ψ′(0,1),r1
. Finally, let the coordinate of v` in u′#s,r#s

be ψ′(#s,#s+1)r#s`
. Note

that because all bases are orthogonal, these are all inner products.

These basis change coordinates are random (except for the ones corresponding to the consen-

sus eigenvector, which remains constant), and assumptions must be made regarding their nature

to enable computation. The results will vary in quality depending on how well these simplifying

assumptions hold. Assume that the basis change coordinates have the following properties
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(divided into four sets). While it may look like there are many cases, they are generated from

simple intuitions.

Assumption 1: First, note that the consensus eigenvector is always present and does not

change. This will give the following conditions

ψ′(0,1),N = 0 (5.17)

ψ′(m,m+1),NN = 1, m = 1, . . . ,#s− 1 (5.18)

ψ′(m,m+1),Nrm+1
= 0, m = 1, . . . ,#s− 1, rm+1 6= N (5.19)

ψ′(m,m+1),rmN = 0, m = 1, . . . ,#s− 1, rm 6= N (5.20)

ψ′(#s,#s+1)r#sN
= 1, r#s = N (5.21)

ψ′(#s,#s+1)r#sN
= 0, r#s 6= N (5.22)

ψ′(#s,#s+1)N` = 0, ` 6= N (5.23)

The remaining assumptions deal with the coordinates corresponding to the other eigenvectors.

Assumption 2: Second, assume that basis change coordinates (other than the ones that

remain constant) for different switching events are statistically independent.

Assumption 3: Third, assume that pairs of basis change coordinates for the same switching

event are uncorrelated.

E
[
ψ′(0,1)r1

ψ′(0,1)t1

]
= 0, r1 6= t1, r1, t1 6= N (5.24)

E
[
ψ′(m,m+1)rmrm+1

ψ′(m,m+1)tmtm+1

]
= 0,

rm 6= tm and/or rm+1 6= tm+1,

m = 1, . . . ,#s− 1 , rm, rm+1, tm, tm+1 6= N
(5.25)

E
[
ψ′(#s,#s+1)r#s`1

ψ′(#s,#s+1)t#s`2

]
= 0,

r#s 6= t#s and/or `1 6= `2,

r#s, t#s, `1, `2 6= N
(5.26)

Assumption 4: Fourth, assume the following second moments for each basis change coor-

dinate. This is motivated by assumption of even distribution of the signal energy among the

eigenvectors.
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E
[(
ψ′(0,1)r1

)2
]

=
1

N − 1
, r1 6= N (5.27)

E
[(
ψ′(m,m+1)rmrm+1

)2
]

=
1

N − 1
, rm, rm+1 6= N, m = 1, . . .#s− 1 (5.28)

E

[(
ψ′(#s,#s+1)r#s`

)2
]

=
1

N − 1
, r#s, ` 6= N (5.29)

Then E{Wn(s)},v [Q (s) |s] can be approximated as follows.

Proposition 5.1 (Approximate Gram Matrix)

Given a random switching network that satisfies the listed assumptions and the expected

empirical spectral density E [fWN
], the following expression approximates the entries of the

expected Gram matrix of consensus error in the filter terms conditioned on the switching

sequence. (
Q̂err (s)

)
ij

=

m=#s∏
m=1

Ef̂∗WN

[
λc
′
m(s,i−1)+c′m(s,j−1)

]
(5.30)

f̂ ∗WN
(x) =

 N
N−1

E [fWN
(x)] x 6= 1

0 x = 1
(5.31)

The approximation depends only on the moments of the transformed approximate empirical

spectral distribution and on the number of independent networks in the sequence. The

unconditional expected Gram matrix of consensus error in the filter terms is then as follows.

Q̂err = Es

[
Q̂err (s)

]
(5.32)

The matrix Q̂err (s) is positive semidefinite for any switching sequence s and spectral distri-

bution f̂ ∗WN
. Thus, the matrix Q̂err is also positive semidefinite.

Proof

For the proof of this theorem, refer to the proof of Proposition 5.2 in Section 5.3. Proposition 5.2

provides the statement of the analogous result using the row-normalized Laplacian, which has
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non-orthogonal right-eigenvector bases. The proof of this theorem is nearly identical to that

for Proposition 5.2. Note that the only difference is the use of the expected empirical spectral

distribution in place of an approximation derived form Girko’s methods. Additionally, for this

case the basis change coordinates are inner products due to orthogonality. �

Substitution of the computed value of Q̂ (s) for E{Wn(s)},v [Q (s) |s] in equation (5.14) results

in the final form of the optimization problem.

min
a∈Rd+1

a>Q̂err a

s.t. 1>a = 1

(5.33)

This formulation is a positive semidefinite linearly constrained quadratic program (LCQP).

Because the expected norm squared is the sum of the squared expected norm and the variance

of the norm, this formulation tends to reduce both mean and variance.

In order to evaluate the proposed Gram matrix approximation and filter design method, this

section also provides simulation results. Figure 5.1 demonstrates the results on an Erdős-Rényi

model. Figure 5.2 demonstrates the results on a stochastic block model. The precise details of

each network model are listed in the figure captions. For each respective group of simulations,

Figure 5.1a and Figure 5.2a shows the expected empirical spectral distributions. Figure 5.1b

and Figure 5.2b show the approximation error (matrix 2-norm) between the sample mean

1
n

∑k=n
k=1 Qerr,k of simulated consensus error Gram matrices and the estimate for the expected

consensus error Gram matrix Q̂err over increasing sample size n. Figure 5.1c and Figure 5.2c

show the expected consensus error norm achieved with the proposed filter against the results

with no filter applied (simulated over 1000 Monte-Carlo trials). Figure 5.1d and Figure 5.2d

show the expected consensus error for worst case input (expected consensus error matrix 2-

norm) achieved with the proposed filtered system against the results with no filter applied

(simulated over 1000 Monte-Carlo trials). To show the behavior of the filtering results as the

switching probability is varied, Figure 5.3 repeats the results for an Erdős-Rényi network model

at three different switching probabilities. Note that it is not possible to claim that this improves

the asymptotic convergence rate, but only the worst case response (in expectation with respect

to the network) over the first filtering window.
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While the presented method represents an interesting result, it is subject to several lim-

itations that must be acknowledged here. The choice of iteration matrix weights based on

the row-normalized Laplacian, chosen to enable analysis using Girko’s methods, produces a

weighted average consensus. Furthermore, the method can only be applied to models for which

the empirical spectral distribution can be approximated (or simulated as done in the preceding

section). Furthermore, the assumptions of Proposition 5.2 must approximately hold, making

it mostly applicable to random network models with a high degree of symmetry. As shown in

Figure 5.3 the reduction in the expected consensus error norm provided by filters designed with

the proposed method rapidly diminishes with increasing switching probability.
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(a) Expected density E [fWN
] (computed over

1000 Monte-Carlo trials)
(b) Approximation error (matrix 2-norm) be-
tween the approximate Gram matrix Q̂err and
the sample mean of simulated Gram matrices
1
n

∑k=n
k=1 Qerr,k for increasing sample size n

(c) Expected consensus error norm with respect
to the both the network and the input (com-
puted over 1000 Monte-Carlo trials) for the triv-
ial filter (no filtering, red) and the proposed fil-
ter (blue)

(d) Expected worst case consensus error of the
filtered transform with respect to the network
(computed over 1000 Monte-Carlo trials) for the
trivial filter (no filtering, red) and the proposed
filter (blue)

Figure 5.1: The plots show results for an Erdős-Rényi model with N = 1200 nodes and per-
colation probability θ = 0.02. The network switching probability is θsw = 0.10. The iteration
matrixW = I − αL is used with parameter α = 1/γ1 where γ1 = θ(N − 1).
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(a) Expected density E [fWN
] (computed over

1000 Monte-Carlo trials)
(b) Approximation error (matrix 2-norm) be-
tween the approximate Gram matrix Q̂err and
the sample mean of simulated Gram matrices
1
n

∑k=n
k=1 Qerr,k for increasing sample size n

(c) Expected consensus error norm with respect
to the both the network and the input (com-
puted over 1000 Monte-Carlo trials) for the triv-
ial filter (no filtering, red) and the proposed fil-
ter (blue)

(d) Expected worst case consensus error of the
filtered transform with respect to the network
(computed over 1000 Monte-Carlo trials) for the
trivial filter (no filtering, red) and the proposed
filter (blue)

Figure 5.2: The plots show results for a stochastic block model with M = 10 populations each
of size S = 100 nodes and percolation probabilities θ0 = 0.50 within populations and θ1 = 0.02
between different populations. The network switching probability is θsw = 0.20. The iteration
matrixW = I − αL is used with parameter α = 1/γ1 where γ1 = θ0(S − 1) + θ1(M − 1)S.
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(a) Expected consensus error
norm with respect to the both
the network and the input
(computed over 1000 Monte-
Carlo trials) for the triv-
ial filter (no filtering, red)
and the proposed filter (blue)
at θsw = 0.10

(b) Expected consensus error
norm with respect to the both
the network and the input
(computed over 1000 Monte-
Carlo trials) for the triv-
ial filter (no filtering, red)
and the proposed filter (blue)
at θsw = 0.20

(c) Expected consensus error
norm with respect to the both
the network and the input
(computed over 1000 Monte-
Carlo trials) for the triv-
ial filter (no filtering, red)
and the proposed filter (blue)
at θsw = 0.30

(d) Expected worst case con-
sensus error of the filtered
transform with respect to the
network (computed over 1000
Monte-Carlo trials) for the
trivial filter (no filtering, red)
and the proposed filter (blue)
at θsw = 0.10

(e) Expected worst case con-
sensus error of the filtered
transform with respect to the
network (computed over 1000
Monte-Carlo trials) for the
trivial filter (no filtering, red)
and the proposed filter (blue)
at θsw = 0.20

(f) Expected worst case con-
sensus error of the filtered
transform with respect to the
network (computed over 1000
Monte-Carlo trials) for the
trivial filter (no filtering, red)
and the proposed filter (blue)
at θsw = 0.30

Figure 5.3: The plots show results for an Erdős-Rényi model withN = 1000 nodes and percola-
tion probability θ = 0.03. Three network switching probability values θsw = {0.10, 0.20, 0.30}
are tested to show the changing degree of benefit as the switching probability increases. The
iteration matrixW = I − αL is used with parameter α = 1/γ1 where γ1 = θ(N − 1).
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5.3 Switching, Undirected Random Networks:

Asymmetric Iteration Matrix Case (W=I−αLR)

This section proposes design criteria for consensus acceleration filters on random switching net-

works, a relatively simple class of time-varying network models, for certain large-scale random

network distributions using the row-normalized Laplacian based consensus iteration matrix

W (G) = I − αLR (G). Each network is drawn from some specified random network distri-

bution. At each time iteration, the network either remains constant or switches to a new,

independent sample from the random network distribution according to a Bernoulli trial with

fixed probability. The proposed quadratic optimization objective involves an approximation

of the expected Gram matrix of error in the state vectors over a filtering window. The derived

approximation depends only on the moments of the approximate empirical spectral distribution

of the iteration matrices (obtainable via Girko’s methods) and on the switching probability.

Consider distributed average consensus with respect to a time-varying sequence of iteration

matrices {W (GN,n)} arising from a random switching network with N nodes and switching

probability θsw. To compute a weighted mean of the initial data x0, the network implements a

dynamic system with state xn at time iteration n described by

xn = W (GN,n) xn−1 (5.34)

Provided the iteration matrices satisfy the consensus conditions

W (GN,n) 1 = 1, `>nW (GN,n) = `>n ,

ρ (W (GN,n)− J`n) < 1
(5.35)

where J`n = 1`>n /`
>
n1, the agreement error in the state vector is asymptotically eliminated.

This section examines undirected graphs and employs the iteration matrix scheme

WN,n = W (GN,n) = I − αLR (GN,n) , (5.36)
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which satisfies the properties in (5.35) when the network graphs {GN,n} are connected and α is

chosen suitably. To improve the convergence rate, a degree d filter with coefficients {ak}k=d
k=0 will

be periodically applied to previous state values to update the current state vector according to

the following equation.

xn :=
k=d∑
k=0

akxn−d+k, n ≡ 0 (mod d) (5.37)

for k = 0, . . . , d. Thus, for initial vector x0 the state vector terms used for filtering (written

for the first filtering operation only to simplify notation) are given by xk = φk

(
{WN,n}n=d

n=1

)
x0

where

φk

(
{WN,n}n=d

n=1

)
= WN,k . . .WN,1

φ0

(
{WN,n}n=d

n=1

)
= IN

(5.38)

Because each iteration matrix has eigenvalue λ = 1 corresponding to the consensus eigen-

vector 1, the filter coefficients must have unit sum to preserve this eigenvalue in the filtered

transformation. Collecting the filter coefficients into a vector

a = [a0, . . . , ad] (5.39)

this constraint can be expressed as 1>a = 1.

Attempting to directly optimize the expected norm of the filter output error for the worst

case input proves challenging. Instead of directly optimizing the convergence rate, the filters

designed inthis sectionapproximatelyminimize theexpectednormof thefilteroutputconsensus

error vector with respect to the random iteration matrix sequence and with respect to the initial

error vector. Let x0 = x01 + xe where xe is orthogonal to 1, and assume for simplicity that xe is

uniformly distributed on unit norm vectors orthogonal to 1. By Jensen’s inequality, the square

root of the expected norm squared provides a lower bound for the expected norm. Thus, rather

than minimizing the expected norm of the filter error directly, the expected norm squared will

96



be minimized as follows, where xe is uniformly distributed on
{
xe ∈ RN |xe⊥1, ‖xe‖ = 1

}
.

min
a∈Rd+1

E
xe,{WN,n}n=d

n=1

∥∥∥∥∥(I − J1)
k=d∑
k=0

akφk

(
{WN,n}n=d

n=1

)
xe

∥∥∥∥∥
2

2


s.t. 1>a = 1

(5.40)

The objective function in the above equation can be written in terms of the Gram matrix

of consensus error vectors corresponding to each filtering term. The entries of this matrix are

given by

(Qerr)ij =
〈

(I − J1)φi−1

(
{WN,n}n=d

n=1

)
xe,

(I − J1)φj−1

(
{WN,n}n=d

n=1

)
xe

〉
.

(5.41)

Thus, the optimization problem can be rewritten in the following quadratic form.

min
a∈Rd+1

a> E
xe,{WN,n}n=d

n=1

[Qerr ] a

s.t. 1>a = 1

(5.42)

Denote by s the network switching sequence where s1 = 1 and, for all n > 1, sn = 1 if

WN,n = WN,n−1, and sn = 0 otherwise. That is, sn determines whetherWN,n is a new iteration

matrix (within the filtering window), with WN,1 always counted. The space of all possible

switching sequences are the d-tuples

Sd = {1} × {0, 1} × · · · × {0, 1} , (5.43)

and the total number of independent networks is

#s =
k=d∑
k=1

sk, s ∈ Sd (5.44)

with #s− 1 total switching events. For a switching process governed by independent Bernoulli
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trials with switching probability θsw, switching sequence s ∈ Sd has probability mass given by

fS (s) = (θsw)(#s−1) (1− θsw)(d−1)−(#s−1) (5.45)

Thedistributionof the iterationmatrixsequence{WN,n}n=d
n=1 canbe factored intothedistribution

of the switching sequence s and distribution of {WN,n (s)}n=d
n=1 given the switching sequence.

The Gram matrix of filter term consensus error vectors can also be conditioned on the switching

sequence as follows.

(Qerr (s))ij =
〈

(I − J1)φi−1

(
{WN,n (s)}n=d

n=1

)
xe,

(I − J1)φj−1

(
{WN,n (s)}n=d

n=1

)
xe

〉 (5.46)

In terms of the factored distributions, the optimization problem in (5.42) can be reformulated

as follows.

min
a∈Rd+1

a> Es

[
E
xe,{WN,n(s)}n=d

n=1

[Qerr (s) |s]

]
a

s.t. 1>a = 1

(5.47)

The above optimization problem could be used for filter design by computing the values

of E{WN,n(s)},v [Q (s) |s] through simulation. However, the intent of this section is to connect

informationregarding theempirical spectraldistributionof the iterationmatrices tofilterdesign

for large-scale random switching networks, as done for constant random networks in Chapter 4.

Therefore, an analytical approximation (under suitable conditions) based on a deterministic

approximation of the empirical spectral distribution will be described below.

Before proceeding, some notation must first be introduced. Note that each switching se-

quence s corresponds to an integer composition of d with #s partitions, namely

c (s) = (c1 (s) , . . . , c#s (s)) (5.48)

where each cm (s) is the number of iterations the mth network is used before switching. Let

c′m (s, n) be the number of iterations the mth network is used up to (and including) iteration
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n ≥ 1 with c′m (s, 0) = 0. More explicitly,

c′m (s) =


0 n <

∑m−1
k=1 ck (s)

cm (s) n >
∑m

k=1 ck (s)

n−
∑m−1

k=1 ck (s) otherwise

(5.49)

Let {un,k (s)}k=N−1
k=1 ∪ {un,N (s) = 1/

√
N} be a basis of unit norm (not necessarily orthog-

onal) right-eigenvectors for WN,n (s) with {vk}k=N−1
k=1 ∪ {vN = 1/

√
N} an orthonormal basis

of eigenvectors for I − J1. Note that if the network does not switch, the basis of eigenvectors

remains the same. This motivates redefining some terms with respect to the number of indepen-

dent networks to avoid duplication. LetW ′
N,m (s) be themth independently drawn network for

m = 1, . . . ,#s. Let the corresponding bases of unit norm (not necessarily orthogonal) right-

eigenvectors be
{
u′m,k (s)

}k=N−1

k=1
∪
{
u′m,N (s) = 1/

√
N
}

. Let the basis change coordinates for

this sequence of eigenvector bases be ψ′(m,m+1),rmrm+1
, which gives the coordinate of u′m,rm cor-

responding to u′m+1,rm+1
for 1 ≤ m < #s. Furthermore, let the coordinate of xe in u′1,r1 be

ψ′(0,1),r1
. Finally, let the coordinate of v` in u′#s,r#s

be ψ′(#s,#s+1)r#s`
.

These basis change coordinates are random (except for the ones corresponding to the consen-

sus eigenvector, which remains constant), and assumptions must be made regarding their nature

to enable computation. The results will vary in quality depending on how well these simplifying

assumptions hold. Assume that the basis change coordinates have the following properties

(divided into four sets). While it may look like there are many cases, they are generated from

simple intuitions.

Assumption 1: First, note that the consensus eigenvector is always present and does not

change. This will give the following conditions

ψ′(0,1),N = 0 (5.50)

ψ′(m,m+1),NN = 1, m = 1, . . . ,#s− 1 (5.51)

ψ′(m,m+1),Nrm+1
= 0, m = 1, . . . ,#s− 1, rm+1 6= N (5.52)
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ψ′(m,m+1),rmN = 0, m = 1, . . . ,#s− 1, rm 6= N (5.53)

ψ′(#s,#s+1)r#sN
= 1, r#s = N (5.54)

ψ′(#s,#s+1)r#sN
= 0, r#s 6= N (5.55)

ψ′(#s,#s+1)N` = 0, ` 6= N (5.56)

The remaining assumptions deal with the coordinates that do not correspond to the consensus

eigenvector.

Assumption 2: Second, assume that basis change coordinates (other than the ones that

remain constant) for different switching events are statistically independent.

Assumption 3: Third, assume that pairs of basis change coordinates for the same switching

event are uncorrelated.

E
[
ψ′(0,1)r1

ψ′(0,1)t1

]
= 0, r1 6= t1, r1, t1 6= N (5.57)

E
[
ψ′(m,m+1)rmrm+1

ψ′(m,m+1)tmtm+1

]
= 0,

rm 6= tm and/or rm+1 6= tm+1,

m = 1, . . . ,#s− 1 , rm, rm+1, tm, tm+1 6= N
(5.58)

E
[
ψ′(#s,#s+1)r#s`1

ψ′(#s,#s+1)t#s`2

]
= 0,

r#s 6= t#s and/or `1 6= `2,

r#s, t#s, `1, `2 6= N
(5.59)

Assumption 4: Fourth, assume the following second moments for each basis change coordi-

nate. This ismotivatedbyassumptionof evendistributionof the signal energy if theeigenvectors

were orthogonal.

E
[(
ψ′(0,1)r1

)2
]

=
1

N − 1
, r1 6= N (5.60)

E
[(
ψ′(m,m+1)rmrm+1

)2
]

=
1

N − 1
, rm, rm+1 6= N, m = 1, . . .#s− 1 (5.61)

E

[(
ψ′(#s,#s+1)r#s`

)2
]

=
1

N − 1
, r#s, ` 6= N (5.62)

Then E{Wn(s)},v [Q (s) |s] can be approximated as follows.

100



Proposition 5.2 (Approximate Gram Matrix)

Given a random switching network that satisfies the listed assumptions, an approximate

empirical spectral density f̂WN
, and small constant κ used to isolate the eigenvalue λ = 1 so

it can be removed, the following expression approximates the entries of the expected Gram

matrix of consensus error in the filter terms conditioned on the switching sequence.

(
Q̂err (s)

)
ij

=

m=#s∏
m=1

Ef̂∗WN,κ

[
λc
′
m(s,i−1)+c′m(s,j−1)

]
(5.63)

f̂ ∗WN ,κ
(x) =

 N
N−1

f̂WN
(x) x < 1− κ

0 x > 1− κ
(5.64)

The approximation depends only on the moments of the transformed approximate empirical

spectral distribution and on the number of independent networks in the sequence. The

unconditional expected Gram matrix of consensus error in the filter terms is then as follows.

Q̂err = Es

[
Q̂err (s)

]
(5.65)

The matrix Q̂err (s) is positive semidefinite for any switching sequence s and spectral distri-

bution f̂ ∗WN ,κ
. Thus, the matrix Q̂err is also positive semidefinite.

Proof

In order to prove the result, first express (I − J1)φk

(
{WN,n (s)}n=d

n=1

)
xe in terms of the

sequence of bases for each independent matrix given the switching sequence. That is, ex-

press (I − J1)φk

(
{WN,n (s)}n=d

n=1

)
xe in terms of the normalized (but not necessarily orthog-

onal) right-eigenvector bases
{{

u′m,rm (s)
}rm=N

rm=1

}m=#s

m=1
for
{
W ′
N,m

}m=#s

m=1
and the orthonormal

eigenvector basis {v` (s)}`=N`=1 for I − J1 using the basis change coordinates ψ′(m,m+1),rmrm+1
for

m = 1, . . .#s − 1 and rm, rm+1 = 1, . . . , N . (Recall that
{
ψ′(0,1),r1

}
are the coordinates of xe

in
{
u′1,r1 (s)

}r1=N

r1=1
. Additionally, recall that

{
ψ′(#s,#s+1),r#s`

}
are the coordinates of the vectors{

u′#s,r#s

}
in {v`}`=N`=1 .) Note that themth independent matrix is used for the network iteration
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c′m (s, k) times before switching up to (and including) the kth iteration, implying its eigenvalues

are raised to exponent c′m (s, k) in that portion of the product. Thus, the following expression

emerges. Note that the first and last sums range from 1 to N − 1 because xe is orthogonal to

u1,N = 1/
√
N by hypothesis and because (I − J1) annihilates vN .

(I − J1)φk

(
{WN,n (s)}n=d

n=1

)
xe =

=

r1=N−1∑
r1=1

ψ′(0,1),r1

[
λr1
(
W ′
N,1

)]c′1(s,k)

. . .

(
r2=N∑
r2=1

ψ′(1,2),r1r2

[
λr1
(
W ′
N,2

)]c′2(s,k)

· · ·

. . .

(
r#s=N∑
r#s=1

ψ′(#s−1,#s),r#s−1r#s

[
λr#s

(
W ′
N,#s

)]c′#s(s,k)

. . .

(
`=N−1∑
`=1

ψ′(#s,#s+1)r#s`
v`

))
. . .

)

=

r1=N−1∑
r1=1

r2=N∑
r2=1

· · ·
r#s=N∑
r#s=1

(
m=#s∏
m=1

ψ′(m−1,m),rm−1rm

[
λrm

(
W ′
N,m

)]c′m(s,k)

)
. . .

. . .
`=N−1∑
`=1

ψ′(#s,#s+1),r#s`
v`

(5.66)

Next, approximate the value of E
xe,{WN,n(s)}n=d

n=1

[
(Qerr (s))ij

∣∣∣s] through computing the ex-

pected inner product

E
[〈

(I − J1)φi−1

(
{WN,n (s)}n=d

n=1

)
xe, (I − J1)φj−1

(
{WN,n (s)}n=d

n=1

)
xe

〉]
(5.67)

using the statedassumptions regarding thebasis changecoordinates. (Note: Several simplifying

steps will be made at once due to the size of the equations.) First, observe that because the basis

{v`} is orthonormal, only like terms with respect to ` need be considered in the inner product.

By independence of the basis change coordinates at different time iterations, expectations of
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like terms with respect to time can be factored from other time iterations. Finally, by the

assumption that E
[
ψ′(m,m+1)k`ψ

′
(m,m+1)rt

]
= 0 for different basis change coordinates (k 6= r or

r 6= t) at the same time iteration, many terms can be removed. The remaining terms in the

approximation are as follows.

(
Q̂err (s)

)
ij

=

r1=N−1∑
r1=1

r2=N∑
r2=1

· · ·
r#s=N∑
r#s=1

(
m=#s∏
m=1

E
[(
ψ′(m−1,m),rm−1rm

)2
]
. . .

. . .
[
λrm

(
W ′
N,m

)]c′m(s,i−1) [
λrm

(
W ′
N,m

)]c′m(s,j−1)

)
`=N−1∑
`=1

E

[(
ψ′(#s,#s+1),r#s`

)2
]

(5.68)

Applying the assumptions thatψ′(m,m+1)rmN
= 0 for rm < N , that E

[(
ψ′(m,m+1)rmrm+1

)2
]

=

1
N−1

for m < #s and rm, rm+1 < N , and that E

[(
ψ′(#s,#s+1)r#s`

)2
]

= 1
N−1

for all r#s, ` < N ,

the following is derived. (Note: Because of the first assumption for this step, some of the upper

ranges of the sum could be reduced.)

(
Q̂err (s)

)
ij

=

r1=N−1∑
r1=1

r2=N−1∑
r2=1

· · ·
r#s=N−1∑
r#s=1

(
m=#s∏
m=1

1

N − 1
. . .

. . .
[
λrm

(
W ′
N,m

)]c′m(s,i−1)+c′m(s,j−1)

)
`=N−1∑
`=1

1

N − 1

(5.69)

The last term simply sums to one. Finally, observe that within this equation, moments of the

empirical spectral distribution (modified to exclude λ = 1) are hidden. These moments with

respect to the true empirical spectral distribution will be approximated by the moments of the

approximate empirical spectral distribution f̂WN
(after suitably modified). Thus, the following

expression (
Q̂err (s)

)
ij

=

m=#s∏
m=1

Ef̂∗WN,κ,m

[(
λ
(
W ′
N,m

))c′m(s,i−1)+c′m(s,j−1)
]

(5.70)

is derived where

f̂ ∗WN ,κ,m
(x) =

 N
N−1

f̂WN ,m(x) x < 1− κ

0 x > 1− κ
(5.71)
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and κ is a small constant to exclude the 1/N of the density near λ = 1. (Assume it excludes

exactly 1/N of the density such that the above is a valid probability density function.) Finally,

noting that each of the matrices are identically distributed, the final form

(
Q̂err (s)

)
ij

=

m=#s∏
m=1

Ef̂∗WN,κ

[
λc
′
m(s,i−1)+c′m(s,j−1)

]
(5.72)

is derived where

f̂ ∗WN ,κ
(x) =

 N
N−1

f̂WN
(x) x < 1− κ

0 x > 1− κ
(5.73)

and κ is as small constant as before. Thus the result is derived given the approximating assump-

tions.

It remains to be proven that each matrix Q̂err (s) is positive semidefinite. This will be

accomplished by showing it is an expected Gram matrix (not just an approximation of one). Let

λ1, . . . , λ#s be independent, identically distributed random variables with distribution f̂ ∗WN ,κ
.

And consider the column vector λ with

λi =

m=#s∏
m=1

λc
′
m(s,i−1)
m . (5.74)

Note that

Q̂err (s) = E
[
λ>λ

]
(5.75)

making it an expectation of a Gram matrix and, therefore, positive semidefinite. Consequently,

Q̂err = Es

[
Q̂err (s)

]
is also positive semidefinite. �

Substitution of the computed value of Q̂ (s) for E{Wn(s)},v [Q (s) |s] in equation (5.47) results

in the final form of the optimization problem.

min
a∈Rd+1

a>Q̂err a

s.t. 1>a = 1

(5.76)

This formulation is a positive semidefinite linearly constrained quadratic program (LCQP).
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Because the expected norm squared is the sum of the squared expected norm and the variance

of the norm, this formulation tends to reduce both mean and variance.

In order to evaluate the proposed Gram matrix approximation and filter design method,

this section also provides simulation results. Figure 5.4 demonstrates the results on an Erdős-

Rényi model. Figure 5.5 demonstrates the results on a stochastic block model. The precise

details of each network model are listed in the figure captions. For each respective group

of simulations, Figure 5.4a and Figure 5.5a shows the expected and approximate empirical

spectral distributions. Figure 5.4b and Figure 5.5b show the approximation error (matrix 2-

norm) between the sample mean 1
n

∑k=n
k=1 Qerr,k of simulated consensus error Gram matrices

and the estimate for the expected consensus error Gram matrix Q̂err over increasing sample

size n. Figure 5.4c and Figure 5.5c show the expected consensus error norm achieved with

the proposed filter against the results with no filter applied (simulated over 1000 Monte-Carlo

trials). Figure 5.4d and Figure 5.5d show the expected consensus error for worst case input

(expected consensus error matrix 2-norm) achieved with the proposed filtered system against

the results with no filter applied (simulated over 1000 Monte-Carlo trials). To show the behavior

of the filtering results as the switching probability is varied, Figure 5.6 repeats the results for

an Erdős-Rényi network model at three different switching probabilities. Note that it is not

possible to claim that this improves the asymptotic convergence rate, but only the worst case

response (in expectation with respect to the network) over the first filtering window.

While the presented method represents an interesting result, it is subject to several lim-

itations that must be acknowledged here. The choice of iteration matrix weights based on

the row-normalized Laplacian, chosen to enable analysis using Girko’s methods, produces a

weighted average consensus. Furthermore, the method can only be applied to models for which

the empirical spectral distribution can be approximated (or simulated as done in the preceding

section). Furthermore, the assumptions of Proposition 5.2 must approximately hold, making

it mostly applicable to random network models with a high degree of symmetry. As shown in

Figure 5.6 the reduction in the expected consensus error norm provided by filters designed with

the proposed method rapidly diminishes with increasing switching probability.
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(a) Expected density E [fWN
] (computed over

1000 Monte-Carlo trials) and approximate den-
sity f̂WN

computed via Girko’s K1 method as
described in Chapter 3

(b) Approximation error (matrix 2-norm) be-
tween the approximate Gram matrix Q̂err and
the sample mean of simulated Gram matrices
1
n

∑k=n
k=1 Qerr,k for increasing sample size n

(c) Expected consensus error norm with respect
to the both the network and the input (com-
puted over 1000 Monte-Carlo trials) for the triv-
ial filter (no filtering, red) and the proposed fil-
ter (blue)

(d) Expected worst case consensus error norm
of the filtered transform with respect to the net-
work (computed over 1000 Monte-Carlo trials)
for the trivial filter (no filtering, red) and the
proposed filter (blue)

Figure 5.4: The plots show results for an Erdős-Rényi model with N = 1200 nodes and per-
colation probability θ = 0.02. The network switching probability is θsw = 0.10. The iteration
matrixW = I − αLR is used with parameter α = 1.
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(a) Expected density E [fWN
] (computed over

1000 Monte-Carlo trials) and approximate den-
sity f̂WN

computed via Girko’s K1 method as
described in Chapter 3

(b) Approximation error (matrix 2-norm) be-
tween the approximate Gram matrix Q̂err and
the sample mean of simulated Gram matrices
1
n

∑k=n
k=1 Qerr,k for increasing sample size n

(c) Expected consensus error norm with respect
to the both the network and the input (com-
puted over 1000 Monte-Carlo trials) for the triv-
ial filter (no filtering, red) and the proposed fil-
ter (blue)

(d) Expected worst case consensus error norm
of the filtered transform with respect to the net-
work (computed over 1000 Monte-Carlo trials)
for the trivial filter (no filtering, red) and the
proposed filter (blue)

Figure 5.5: The plots show results for a stochastic block model with M = 10 populations each
of size S = 100 nodes and percolation probabilities θ0 = 0.50 within populations and θ1 = 0.02
between different populations. The network switching probability is θsw = 0.20. The iteration
matrixW = I − αLR is used with parameter α = 1.
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(a) Expected consensus error
norm with respect to the both
the network and the input
(computed over 1000 Monte-
Carlo trials) for the triv-
ial filter (no filtering, red)
and the proposed filter (blue)
at θsw = 0.10

(b) Expected consensus error
norm with respect to the both
the network and the input
(computed over 1000 Monte-
Carlo trials) for the triv-
ial filter (no filtering, red)
and the proposed filter (blue)
at θsw = 0.20

(c) Expected consensus error
norm with respect to the both
the network and the input
(computed over 1000 Monte-
Carlo trials) for the triv-
ial filter (no filtering, red)
and the proposed filter (blue)
at θsw = 0.30

(d) Expected worst case con-
sensus error norm of the fil-
tered transform with respect
to the network (computed over
1000 Monte-Carlo trials) for
the trivial filter (no filtering,
red) and the proposed filter
(blue) at θsw = 0.10

(e) Expected worst case con-
sensus error norm of the fil-
tered transform with respect
to the network (computed over
1000 Monte-Carlo trials) for
the trivial filter (no filtering,
red) and the proposed filter
(blue) at θsw = 0.20

(f) Expected worst case con-
sensus error norm of the fil-
tered transform with respect
to the network (computed over
1000 Monte-Carlo trials) for
the trivial filter (no filtering,
red) and the proposed filter
(blue) at θsw = 0.30

Figure 5.6: The plots show results for an Erdős-Rényi model withN = 1000 nodes and percola-
tion probability θ = 0.03. Three network switching probability values θsw = {0.10, 0.20, 0.30}
are tested to show the changing degree of benefit as the switching probability increases. The
iteration matrixW = I − αLR is used with parameter α = 1.
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5.4 Summary

In summary, this chapter presented filter design methods for minimizing the expected consen-

sus error norm squared for large-scale random switching networks, a particular time-varying

random network model. This problem formulation leads to an optimization problem in the form

of a quadratic program where the positive semidefinite matrix in the objective function is the

expected Gram matrix of consensus error in each filtering term. The expected Gram matrix

can be approximated by conditioning the expectation on the switching sequence and making

some simplified. The expected Gram matrix given each switching sequence can be approxi-

mated in terms of the consensus iteration matrix empirical spectral distribution moments, as

shown by Proposition 5.1 and Proposition 5.2. This was first accomplished for Laplacian-based

consensus iteration matrices of the form W (G) = I − αL (G) using the expected empirical

spectral distribution as computed through simulation. Subsequently, this was extended to row-

normalized Laplacian-based consensus iteration matrices of the form W (G) = I − αLR (G)

using the approximate expected empirical spectral distributions computed through Girko’s

methods (in Section 3.2 or Section 3.3 of Chapter 3). Simulation results support the proposed

filter optimization method for both cases. The filters designed using the proposed method tend

to reduce both the mean and the variance of the consensus error norm. While consistently

observed in the simulation, the reductions in the mean error norm compared to the results with

no filtering quickly diminish with increasing switching probability, limiting the applicability of

this method. It is possible that models with greater correlation between adjacent random ma-

trices in the sequence would have greater alignment between sequential eigenvector bases and

thus admit more substantial filtering results. However, these models are much more difficult to

analyze and are, therefore, reserved for future work along with extension to directed models.
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Chapter Six

Conclusion

6.1 Thesis Summary

The uncertain conditions of random networks represent a significant challenge for graph signal

processing applications. Graph signal processing techniques rely on the eigendecomposition

of graph shift matrices that conform to the graph structure. For instance, the graph shift

matrix eigenvalues define the domain for the filter response of shift-invariant graph filters.

Consequently, graph filter design methods that operate with respect to the random network

distribution must account for the induced spectral uncertainty. However, statistical knowledge

regarding the eigendecomposition is difficult to obtain in a stochastic setting for most random

network distributions.

This thesis leverages the predictability that emerges from large-scale random networks for

suitable network models to enable such analysis. Specifically, the empirical distribution built

from the eigenvalues of a large-scale random matrix may admit a deterministic limit obtainable

through methods from random matrix theory literature. For graph shift matrices that conform

to the random network structure, random matrix theory methods that accommodate non-

identically distributed matrix entries and deterministic explicitly zero matrix entries provide

the most relevance. In particular, methods published by Girko [9] provide results suitable for

analysis of the adjacency matrix spectral asymptotics for random link-percolation networks

subject to mild regularity conditions. Several such results are available covering cases relevant

to both directed networks and undirected networks.

After Chapter 2 detailing basic background concepts and definitions used throughout the

thesis, Chapter 3 introduced and discussed these spectral asymptotics theorems, focusing on

three specific results: Girko’s K1 method, Girko’s K27 method, and Girko’s K25 method.
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Girko’s K1 method handles symmetric random matrices with independent entries (except as

related by symmetry), and thus undirected Bernoulli link-percolation networks. Girko’s K27

method handles symmetric random matrices with independent block submatrices (except as

related by symmetry), and thus link-percolation networks with some localized correlations.

Girko’s K25 method handles potentially non-Hermitian random matrices with independent

entries, and thus directed Bernoulli link-percolation networks. Each of these methods involves

solving a system of nonlinear equations, the solution to which yields the approximate spectral

distribution. Introduction of each result was supplemented by providing a detailed tutorial ex-

plaining the application of each method to approximate spectral densities for row-normalized

network adjacency matrices. For each case, this included describing computational simplifica-

tion conditions that reduce the system of equations. Node-transitivity of the random network

model represents the most important of these. Each method was applied to an example random

network model, with simulation visually demonstrating the quality of the approximation.

For shift-invariant filter design with respect to constant random networks, the graph shift

matrix spectral asymptotics informed the filter design approach proposed in this thesis. Given

a target filter response specification, the methods proposed design a filter to optimally approx-

imate the target filter response on the support of the approximate spectral distribution. Use

of the approximate spectral density support represents the critical intuition of this work (for

constant networks), from which the results are derived. This enables filter design with respect

to the random network distribution, such that the network nodes can be preprogrammed with

the filter before deployment.

The particular graph filter application considered in this thesis is filter design for accelerated

convergence of distributed average consensus state dynamics. Such filters produce more rapid

or more accurate results in a variety of practical network agreement scenarios. For a constant

network topology, the rate of convergence is governed by the largest eigenvalue modulus, apart

from the consensus eigenvalue λ = 1. Therefore, the target graph filter response for consensus

acceleration maps all eigenvalues to zero and filter optimality is defined in the minimax sense,

resulting in a Chebyshev filter design problem. Related problems such at worst case graph total
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variation minimization and expected graph total variation minimization were approached by

generalizing to formulations of the optimization problems with weighted filter response error.

Chapter 4 posed periodic shift-invariant graph filter design optimization problems for con-

sensus acceleration (and closely related problems) informed by the spectral asymptotics of

large-scale networks (both undirected and directed). Included simulation results for each case

support the proposed filter design methods. The main contributions of this thesis that appear

in Chapter 4 are as follows:

• For undirected networks, Section 4.2 posed a linear program (LP) to minimize the worst

case filter response magnitude over the filtering region defined by the approximate spec-

tral density (obtained by the methods in Section 3.2 or Section 3.3). Simulation results

for several random network models demonstrated convergence rates nearly equal to the

optimal filter designed with exactly known consensus iteration matrix. Furthermore, the

improvement over results obtained for filters designed to minimize response at only the

mean eigenvalues is substantial.

• For directed networks, Section 4.3 posed a quadratically constrained linear program

(QCLP) to minimize the worst case filter response magnitude squared over the filtering re-

gion defined by the approximate spectral density (obtained by the methods in Section 3.4).

Simulation results for several random network models demonstrated convergence rates

nearly equal to the optimal filter designed with exactly known consensus iteration ma-

trix. Furthermore, the improvement over results obtained for filters designed to minimize

response at only the mean eigenvalues is substantial.

• Variants of the above optimization problems with weighted error minimization were posed

in Section 4.4, including both a linear program (LP) for undirected networks and a

quadratically constrained linear program (QCLP) for directed networks. This allows

filter design for minimized graph total variation and expected total variation on large-

scale random graphs. Simulation results for the undirected network case are provided and

support the proposed method by demonstrating increased filter performance.
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For filter design with respect to time-varying networks, many intuitions from shift-invariant

graph signal processing break down. This scenario results in a sequence of graph shift operators

with a sequence of eigendecompositions that should be used to perform graph signal processing

analysis. For random networks, assumptions must be made regarding how the eigenvector

bases relate to each other to enable analysis. To that end, this thesis examined switching

networks, in which the network changes randomly to an independently drawn random network.

The critical intuition of this work (for switching networks) consists of eigenvector assumptions

proposed for switching networks and use of the approximate spectral density, specifically its

moments. The particular graph filter application for switching again relates to accelerated

consensus but differs slightly in objective. More precisely, the problem seeks to minimize the

consensus error vector norm in expectation with respect to both the input consensus error vector

and the network sequence.

Chapter 5 posed the graph filter design optimization problems for expected consensus error

norm minimization (after a single filter application) informed by the spectral asymptotics of

large-scale undirected switching networks . Included simulation results for each case support the

proposed filter design methods. The main contributions of this thesis that appear in Chapter 5

are as follows:

• For large-scale switching undirected random networks, the norm squared of the consensus

errorwasexpressedasaquadraticobjective function. Thematrix inthisobjective function

is the expected (with respect to the network sequence and input error vector) Gram

matrix of consensus error in the filter terms. This led to posing a linearly constrained

quadratic program (LCQP) for approximate expected consensus error norm minimization

on switching networks (in both Section 5.2 and Section 5.3).

• An approximation of the expected Gram matrix of consensus error in each term was de-

rived (Proposition 5.1 and Proposition 5.2) based on assumptions regarding the sequence

of eigenvector bases and the moments of the approximate spectral distribution. This was

done for unnormalized Laplacian-based weights W (G) = I − αL (G) in Section 5.2 us-
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ing the simulated expected empirical spectral distribution and done for row-normalized

Laplacian-based weightsW (G) = I − αLR (G) in Section 5.3.

In conclusion, this thesis examined graph signal processing on large-scale random networks,

performing filter design optimization with respect to the spectral distribution asymptotics as

obtained through random matrix theory results. For constant random network models, shift in-

variant graph filters for accelerated distributed average consensus convergence were designed to

minimize the filter response over the support of the approximate spectral density. For switching

random network models, graph filters were designed to minimize the expected consensus error

using assumptions on the sequence of consensus iteration matrix eigenvectors and the approx-

imate spectral distribution moments. Simulation results for each case demonstrate the utility

of asymptotic spectral methods for graph signal processing on large-scale random networks.

This suggests similar approaches would benefit other graph filtering applications on large-scale

random networks.

6.2 Future Work

This thesis closes by presenting several possible directions for continuing research efforts on

graph signal processing using the methods described in this thesis as a point of departure.

The suggested topics can be divided into the following three groups: expansion of asymptotic

spectral analysis of networks, further analysis of filter design for constant random networks, and

further analysis of filter design for time-varying random networks. This section briefly discusses

potential continuations within each category.

To apply the methods presented in this thesis to broader classes of large-scale random

networks, further search random matrix theory literature for applicable methods. The three

methods for empirical spectral distribution approximation from Girko that were employed in

this thesis pertain to networks in which a directed link and the reverse of the link are either

completely dependent (bidirectional) or completely independent. However, partial correlation

between these links represents a well motivated but unhandled case. The conditions imposed
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by Girko’s methods that pertain to matrices with such partial correlations are too severely

limiting to allow application to network adjacency matrices. However, the existence of these

nearly applicable theorems suggests extensive search through more recently published literature

could reveal suitable methods. Additionally, Girko’s methods apply to large-scale matrices,

but the results do not specify convergence error bounds for the spectral approximation. Such

information, if found, would important in more precisely quantifying the meaning of “large-

scale” networks. Furthermore, it could potentially extend the practical relevance of the filter

design methods in this thesis to networks of smaller size.

For large-scale constant random networks continuing efforts could focus on connecting spec-

tral asymptotics with non-minimax filter design objectives. It is possible to combine `1, and

`2 (least-squares), and `∞ (minimax) constraints and objectives in various ways to produce

several different linear program (LP), linearly constrained quadratic program (LCQP), and

quadratically constrained quadratic program (QCQP) formulations, some of which may be

more suitable for given problems. For instance, filter response approximation with respect to

least squares optimization has particular relevance to minimizing norm squared objectives in

expectation with respect to random inputs. Finally, because the presented optimization meth-

ods for large-scale constant random networks can be used to approximate any specified target

filter response, the methods in this thesis could find use in additional graph signal processing

applications beyond consensus acceleration.

For large-scale time-varying random networks, the results provided in this thesis demon-

strate that the improvement in consensus error minimization derived from the designed filters

rapidly diminishes with increasing switching probability. However, network models character-

ized by more gradual change (compared to abrupt switches to an independently drawn network)

may maintain greater alignment between eigenvector bases at consecutive network changes and

produce more significant improvements using graph filters. For instance, percolation networks

with links governed by independent Markov processes, which are well motivated in terms of link

failure and recovery processes, may experience more gradual change and represents a potential

opportunity for continuing research.
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[44] A. M. Tulino and S. Verdú, Foundations and Trends in Communications and Information

Theory: Random Matrix Theory and Wireless Communications, 2004, vol. 1, no. 1.

[45] R. Olfati-Saber, “Ultrafast consensus in small-world networks,” Proceedings of the 2005

American Control Conference (ACC 2005), pp. 2371–2378, June 2005.

[46] R. Pachón and L. N. Trefethen, “Barycentric-Remez algorithms for best polynomial ap-

proximation in the chebfun system,” Springer Science + Business Media, pp. 1–21,

Oct. 2009.

[47] L. Hogben, Handbook of Linear Algebra. Chapman & Hall/CRC, 2007.

[48] D. Lyubshin and S. Savchenko, “Cayley digraphs with normal adjacency matrices,” Dis-

crete Mathematics, vol. 309, no. 13, pp. 4343–4348, July 2009.

[49] Gregoire Allaire and Sidi Mahmoud Kaber, Numerical Linear Algebra. Springer, 2008.

[50] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[51] A. Edelman and Y. Wang, “Random matrix theory and its innovative applications,” in Ad-

vances in Applied Mathematics, Modeling, and Computational Science (Fields Institute

Communications vol. 66). Springer Science+Business Media, 2013, pp. 91–116.

120



[52] R. Laskar, “Eigenvalues of the adjacency matrix of cubic lattice graphs,” Pacific Journal

of Mathematics, vol. 29, no. 3, pp. 623–629, July 1969.

[53] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE Transactions on

Information Theory, vol. 46, no. 2, pp. 388–404, March 2000.

121


	List of Figures
	Introduction
	Research Motivation
	Main Contributions
	Thesis Overview

	Background and Notation
	Introduction
	Graphs and Networks
	Random Matrix Theory
	Distributed Average Consensus
	Graph Signal Processing
	Consensus Acceleration Filters
	Chebyshev Approximation
	Summary

	Spectral Asymptotics: Girko's Methods
	Introduction
	Symmetric Matrices: Girko's K1 Method
	Symmetric Matrices: Girko's K27 Method
	Non-Symmetric Matrices: Girko's K25 Method
	Summary

	Consensus Filter Design: Constant Networks
	Introduction
	Constant, Undirected Random Networks
	Constant, Directed Random Networks
	Weighted Filter Response Optimization
	Simulations for Weighted Problems
	Summary

	Consensus Filter Design: Switching Networks
	Introduction
	Switching, Undirected Random Networks: Symmetric Iteration Matrix Case (W=I-L)
	Switching, Undirected Random Networks: Asymmetric Iteration Matrix Case (W=I-LR)
	Summary

	Conclusion
	Thesis Summary
	Future Work

	Bibliography

