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Abstract

Many applications collect a large number of time series, for example, tem-

perature continuously monitored by weather stations across the US or neural

activity recorded by an array of electrical probes. These data are often referred

to as unstructured. A first task in their analytics is often to derive a low di-

mensional representation – a graph or discrete manifold – that describes the

interrelations among the time series and their intrarelations across time.

In general, the underlying graphs can be directed and weighted, possibly

capturing the strengths of causal relations, not just the binary existence of re-

ciprocal correlations. Furthermore, the processes generating the data may be

non-linear and observed in the presence of unmodeled phenomena or unmea-

sured agents in a complex networked system. Finally, the networks describing

the processes may themselves vary through time.

In many scenarios, there may be good reasons to believe that the graphs

are only able to vary as linear combinations of a set of “principal graphs” that

are fundamental to the system. We would then be able to characterize each

principal network individually to make sense of the ensemble and analyze the

behaviors of the interacting entities.

This thesis acts as a roadmap of computationally tractable approaches for

learning graphs that provide structure to data. It culminates in a framework

that addresses these challenges when estimating time-varying graphs from col-

lections of time series. Analyses are carried out to justify the various models

proposed along the way and to characterize their performance. Experiments

are performed on synthetic and real datasets to highlight their effectiveness and

to illustrate their limitations.
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Chapter 1

Introduction

This chapter describes the main problem addressed by this thesis: learning meaningful

network structures from time series.

1.1 Uncovering Graphs from Data

There is an explosion of data, generated, measured, and stored at very fast rates in many

disciplines, from finance and social media to geology and biology. Much of this data takes

the form of simultaneous, long running time series. Examples include protein-to-protein

interactions in organisms, patient records in health care, customer consumptions in (power,

water, natural gas) utility companies, cell phone usage for wireless service providers, com-

panies’ financial data, and social interactions among individuals in a population. The

internet-of-things (IoT) is an imminent source of ever increasing large collections of time

series. This data is often referred to as unstructured.

Graph signals

Networks or graphs are becoming prevalent as models to describe the relationships

among the nodes and the data they produce. These low-dimensional graph data represen-
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tations are used for further analytics, for example, to compute statistics, make inferences,

perform signal processing tasks [1, 2, 3], or quantify how topology influences diffusion in

networks of nodes [4]. These methods all use the structure of the known graphs to extract

knowledge and meaning from the observed data supported on the graphs.

Uncovering Graphs

However, in many problems the graph structure itself may be unknown, and a first

issue is to infer from the data the unknown relations between the nodes. The diversity and

unstructured nature of the data challenges our ability to derive models from first principles;

alternatively, because data is abundant, it is of great significance to develop methodologies

that, in collaboration with domain experts, assist extracting low-dimensional representa-

tions that structure the data.

Early work in estimating low-dimensional graph-like structure includes dimensionality

reduction approaches such as [5, 6]. These methods work on a static snapshot of data and

do not incorporate the notion of time. Other methods [7, 8] consider multiple independent

snapshots of data, again not incorporating time. We consider the data to be linked through

time, so that the graphs in the corresponding model should represent a dynamic process.

Encapsulating the structure of a graph among entities in time series can be achieved

with sparse optimization methods, in which estimated nonzero values correspond to actual

edges in the graph, while zeros correspond to absence of edges in the graph. Vector

autoregression [9, 10] yields graphs related to Granger causality structure [11] that lets the

edges of the graph be further interpreted as corresponding to the existence of relationships

between the nodes at the endpoints.

Latent variables

While these sparse methods can be powerful for establishing these interpretable rela-

tionships, it is often the case that not all relevant variables to the system can be measured.
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This leads to observing relationships among the measured entities that may in fact be

caused by common dynamics induced by unobserved variables. One way to address the

effects of hidden variables is via sparse plus low-rank optimization [12]. There are of course

other non-optimization methods to address these issues as well. However, not just for the

beauty of the mathematics but given the types of guarantees available in the field of struc-

tured optimization and that we can develop for our problems (which we will later discuss

in further detail), we focus on these optimization methods as the basis for our algorithms

and analysis.

Time-varying graphs: Principal networks

While we may learn a single network structure for a time series data set, it may be the

case that this structure itself is also dynamic over the course of the non-stationary time

series. There have been several attempts at extending the methods for estimating single

networks to this non-stationary setting [13, 14]. However, in many cases, there may be good

reason to believe that the graphs are well described by a time varying linear combination

of a set of “principal graphs” that are fundamental to the system. This description would

additionally provide a more compact summary of the process. We would then ideally be

able to characterize each principal network individually to make sense of the ensemble and

analyze the behaviors of the interacting entities.

1.2 Summary of Thesis

This thesis attempts to address these various challenges of learning meaningful networks

that describe unstructured time series data. We will expand on these challenges and

review existing literature with greater detail within each chapter. We first estimate graph

structure from stationary time series. We start with the linear setting with Gaussian noise

3



and have in mind applications to Graph Signal Processing in chapter 2. Next, we expand

towards non-linear processes and address the presence of unobserved variables in chapter 3.

Next, we extend the ideas taken from these stationary methods to non-stationary settings

to estimate time-varying graphs in chapter 4. Finally, we conclude in chapter 5.
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Chapter 2

Causal Graph Processes

This chapter focuses on estimating the network structure capturing the dependencies

among time series in the form of a possibly directed, weighted adjacency matrix A. Much

of the current work on estimating network structure largely associates it with assuming

that the process supported by the graph is Markov along the edges [7, 15] or aims to recover

causality [9] in the sense popularized by Granger [11]. This chapter instead associates the

graph with causal network effects, drawing inspiration from the Discrete Signal Processing

on Graphs (DSPG) framework [3, 16].

We provide a brief overview of the concepts and notations underlying DSPG and then

introduce related prior work in section 2.1 and our new network process in section 2.2.

Next, we present algorithms to infer the network structure from data generated by such

processes in section 2.3. We provide analysis on the convergence of our algorithms and

the performance of the models for prediction in section 2.4. Finally, we show simulation

results in section 2.5 and conclude the chapter in section 2.6.
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2.1 Relation to Prior Work

We briefly review DSPG and then describe previous models and methods used to esti-

mate graph structure. Section 2.1.1 considers sparse Gaussian graphical model selection,

Section 2.1.2 sparse vector autoregression, and Section 2.1.3 other graph signal processing

approaches.

DSPG review

Consider a graph G = (V,A) where the vertex set V = {v0, . . . , vN−1} and A is the

weighted adjacency matrix of the graph. A graph signal is defined as a map, x : V → C,

vn 7→ xn, that we can write as x = (x0 x1 . . . xN−1)T ∈ CN .

We adopt the adjacency matrix A as a shift [16], and assuming shift invariance and

that the minimal polynomial mA(x) of A equals its characteristic polynomial, graph filters

in DSPG are matrix polynomials of the form h(A) = h0I + h1A + . . .+ hLhA
Lh .

2.1.1 Sparse Graphical Model Selection

Sparse inverse covariance estimation [8, 15, 17] combines the Markov property with the

assumptions of Gaussianity and symmetry using Graphical Lasso [8]. Let the data matrix

representing all the K observations is given,

X =
(
x1 x2 . . . xK

) ∈ RN×K , (2.1)

where xk ∼ N (0,Σ), {xk} are i.i.d., and an estimate for Θ = Σ−1 is desired. The

regularized likelihood function is maximized, leading to

Θ̂ = argmin
Θ

tr (SΘ)− log |Θ|+ λ ‖Θ‖1 , (2.2)

where S = 1
K

XXT is the sample covariance matrix and ‖Θ‖1 =
∑
i,j

|Θij|.

6



Given time series data generated from a sparse graph process, the inverse covariance

matrix Θ can actually reflect higher order effects and be significantly less sparse than

the graph underlying the process. For example, if a process is described by the dynamic

equation with sparse state evolution matrix A and ‖A‖ ≤ 1,

xk = Axk + wk,

where wi ∼ N (0,Σw) is a random noise process that is generated independently from wj

for all i 6= j, then

Σ = E
[
xkx

T
k

]
=
∞∑
i=0

AiΣw

(
AT
)i

=⇒ Θ =

(
∞∑
i=0

AiΣw

(
AT
)i)−1

.

Even though the process can be described by sparse matrix A, the true value of Θ repre-

sents powers of A and need not be as sparse as A. In addition, A may not be symmetric,

i.e., the underlying graph may be directed, while Θ is symmetric, and the corresponding

graph is undirected.

2.1.2 Sparse Vector Autoregressive Estimation

For time series data, instead of estimating the inverse covariance structure, sparse vector

autoregressive (SVAR) estimation [9, 18, 19] recovers matrix coefficients for multivariate

processes. This SVAR model assumes the time series at each node are conditionally in-

dependent from each other according to a Markov Random Field (MRF) with adjacency

structure given by A′ ∈ {0, 1}N×N . This A′ is related to Granger causality [20, 21] as

shown in [9]. This problem assumes given a data matrix of the form in equation (2.1) that

is generated by the dynamic equation with sparse evolution matrices {Am},

xk =
M∑
m=1

Amxk−m + wk,

7



where wj is a random noise process independent from wj, i 6= j, and Am all have the

same sparse structure, A′ij = 0 =⇒ [Am]ij = 0 ∀m, where [A]ij is element i, j in matrix

A. Then SVAR solves,

{Âm} = argmin
{Am}

1

2

K∑
k=M+1

∥∥∥∥∥xk −
M∑
m=1

Amxk−m

∥∥∥∥∥
2

2

+ λ
∑
i,j

‖aij‖2, (2.3)

where aij =

(
[A1]ij . . . [AM ]ij

)T
and ‖aij‖2 promotes sparsity of the (i, j)-th entry

of each Am simultaneously and thus also sparsity of A′. This optimization can be solved

using Group Lasso [8]. SVAR estimates multiple weighted graphs Am that can be used to

estimate the sparsity structure A′.

In contrast, our model is defined by a single weighted A, a potentially more parsi-

monious model than (2.3). The corresponding time filter coefficients (introduced in sec-

tion 2.2) are modeled as graph filters. Using this single adjacency matrix A and graph

filters to describe the process enables principled analysis using the toolbox provided by the

DSPG framework.

2.1.3 Graph Signal Processing using the Laplacian

Frameworks for signal processing on graphs using the weighted (and/or possibly nor-

malized) Laplacian matrix rather than the weighted adjacency matrix have been pro-

posed [22, 23, 24]. For example, with a known graph Laplacian matrix, the polynomial

coefficients for optimal graph filters can be learned and used to describe and compress

signals [25].

The symmetric Laplacian is positive semidefinite with all real nonnegative eigenvalues

and a real orthonormal eigenvector matrix. Most Laplacian-based Graph Signal Processing

methods assume the Laplacian to be symmetric and implicitly take advantage of these

properties in various ways.
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Recently, methods for estimating symmetric Laplacians have been proposed [26, 27, 28].

These methods estimate Laplacians for independent graph signals with an interpretation

similar to the (inverse) covariance matrix in section 2.1.1, and do not take into account

the temporal structure and dependencies of the data. In addition, these methods all

depend implicitly on the symmetry of the Laplacian, which yields an orthonormal eigen-

basis. Furthermore, they depend on the conic geometry of the space of symmetric positive

semidefinite matrices, which allows the utilization of convex optimization.

Symmetric Laplacians correspond to undirected graphs, having nonnegative real eigen-

values. This may be restrictive in applications, since it assumes symmetric relations among

time series data. Asymmetric Laplacians are also now being studied, but they are restricted

to having zero row (or column) sums, which is often undesirable.

In contrast, the directed adjacency matrix A that we assume may have positive as well

as negative weights on edges and can have complex eigenvalues. We add that knowing the

adjacency matrix does allow us to compute the Laplacian. In this chapter, we adopt the

adjacency matrix as the basic building block.

2.2 Causal Graph Processes

Consider xn,k, a discrete time series on node vn in graph G = (V,A), where n indexes the

nodes of the graph and k indexes the time samples. Let N be the total number of nodes

and K be the total number of time samples, and

xk =
(
x0,k x1,k . . . xN−1,k

)T ∈ CN

represents the graph signal at time sample k.

We consider a Causal Graph Process (CGP) [29, 30, 31, 32] to be a discrete time series

9



xk on a graph G = (V,A) of the following form,

xk =wk +
M∑
i=1

Pi(A, c)xk−i = wk +
M∑
i=1

(
i∑

j=0

cijA
j

)
xk−i (2.4)

=wk + (c10I + c11A)xk−1 +
(
c20I + c21A + c22A

2
)

xk−2 + . . .

+
(
cM0I + . . .+ cMMAM

)
xk−M ,

where Pi(A, c) is a matrix polynomial in A, wk is statistical noise, cij are scalar polynomial

coefficients, and

c =
(
c10 c11 . . . cij . . . cMM

)T
is a vector collecting all the cij’s.

Note that the CGP model does not assume Markovianity in the nodes and edges of

the graph adjacency matrix. Instead, the CGP is an autoregressive process (Markov) in

the time series as in (2.4) whose coefficients Pi(A, c) are graph filters; thus, the CGP can

incorporate the influence of many more (sometimes all) other nodes in a single step. Matrix

polynomial Pi(A, c) is at most of order min(i, NA), reflecting that xk cannot be influenced

by more than i-th order network effects from i time steps ago and in addition is limited

(mathematically) by NA, the degree of the minimum polynomial of A. Typically, we take

the model order M � NA, and for the remainder of the chapter assume this holds for sake

of notational clarity.

This model captures the intuition that activity on the network travels at some fixed

speed (one graph shift per sampling period), and thus the activity at the current time

instant at a given network node cannot be affected by network effects of order higher than

that speed allows. In this way, the CGP model can be seen as generalizing the spatial

dimension of the light cone [33] to be on a discrete manifold rather than only on a lattice

corresponding to uniformly sampled space.
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The current parameterization of the CGP model in (2.4) raises issues with identifiabil-

ity. To address them, we assume that P1(A, c) 6= αI for α ∈ R. Then, without loss of

generality, we can let c10 = 0 and c11 = 1 so that P1(A, c) = A. To verify this, consider

the full parameterization using (A′, c′). We show that we can instead use the reduced

parameterization (A, c) with P1(A, c) = A to represent the same process. First, we start

with

P1(A′, c′) = c′10I + c′11A
′ = A = P1(A, c) =⇒ A′ = (c′11)−1(A− c′10I). (2.5)

We can invert c11, since by assumption c′11 6= 0. Then consider the i-th polynomial,

Pi(A
′, c′) =

i∑
j=0

c′ij(A
′)j =

i∑
j=0

c′ij(c
′
11)−j(A− c′10I)j

=
i∑

j=0

c′ij(c
′
11)−j

j∑
k=0

 j

k

 (−c′10)j−kAk

=
i∑

k=0

i∑
j=k

c′ij(c
′
11)−j

 j

k

 (−c′10)j−kAk (2.6)

=
i∑

k=0

cikA
k = Pi(A, c),

when we define

cik =
i∑

j=k

c′ij(c
′
11)−j

 j

k

 (−c′10)j−k.

In the remainder of this chapter, we assume that P1(A, c) 6= αI and use the reduced

parameterization with c10 = 0 and c11 = 1 so that c ∈ Rn where n = (M − 1)(M + 4)/2 to

ensure that A and c are uniquely specified without ambiguity.
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2.3 Estimating Adjacency Matrices

Given a time series x(t) on graph G = (V,A) with unknown A, we wish to estimate the

adjacency matrix A. We assume the data follows the CGP model (2.4). A first approach

to its estimation can be formulated as the following optimization problem,

(A, c) = argmin
A,c

1

2

K−1∑
k=M

∥∥∥∥∥xk −
M∑
i=1

Pi(A, c)xk−i

∥∥∥∥∥
2

2

+ λ1‖vec(A)‖1 + λ2‖c‖1, (2.7)

where vec(A) stacks the columns of the matrix A.

In equation (2.7), the first term in the right hand side models xk by the CGP model (2.4)

in section 2.2, the regularizing term λ1‖vec(A)‖1 promotes sparsity of the estimated adja-

cency matrix, and the term λ2‖c‖1 promotes sparsity in the matrix polynomial coefficients.

Regularizing c corresponds to performing autoregressive model order selection. If the true

model has Pi(A, c)=0 ∀j ≤ i ≤ M for some 0 < j < M , then regularization of c encour-

ages the corresponding values to be 0. The matrix polynomial in the first term makes this

problem nonconvex. That is, using a convex optimization based approach to solve (2.7)

directly may result in finding a solution (Â, ĉ), minimizing the objective function locally,

that is not near the true globally minimizing (A, c).

Instead, we break this estimation down into three separate, more tractable steps:

1. Solve for Ri = Pi(A, c)

2. Recover the structure of A

3. Estimate cij

12



2.3.1 Solving for Pi(A, c)

As previously stated, the graph filters Pi(A, c) are polynomials of A and are thus shift-

invariant and must mutually commute. Then their commutator

[Pi(A, c), Pj(A, c)] = Pi(A, c)Pj(A, c)− Pj(A, c)Pi(A, c) = 0, ∀i, j.

Let Ri = Pi(A, c), R = (R1, . . . ,RM), and R̂i be the estimate of Pi(A, c). This leads to

the optimization problem,

R̂ =argmin
R

1

2

K−1∑
k=M

∥∥∥∥∥xk −
M∑
i=1

Rixk−i

∥∥∥∥∥
2

2

+ λ1 ‖vec(R1)‖1 + λ3

∑
i 6=j

‖[Ri,Rj]‖2
F . (2.8)

While this is still a non-convex problem, it is multi-convex. That is, when R−i = {Rj :

j 6= i} (all Rj except for Ri) are held constant, the optimization is convex in Ri. This

naturally leads to block coordinate descent as a solution,

R̂i = argmin
Ri

1

2

K−1∑
k=M

∥∥∥∥∥xk −
M∑
j=1

Rjxk−j

∥∥∥∥∥
2

2

+ λ1‖vec(R1)‖1 + λ3

∑
j 6=i

‖[Ri,Rj]‖2
F . (2.9)

Each of these sub-problems for estimating Ri in a single sweep of estimating R is formulated

as an `1-regularized least-squares problem that can be solved using standard gradient-based

methods [34]. We compute a rough estimate of the computational cost for solving (2.9).

Assume that finding the gradient is the most costly step in the optimization, and naively

estimate matrix-matrix products to take O(N3) operations; then the optimization has

worst-case complexity O(M2N3 + KMN2) incurred from minimizing over M separate

blocks. The cost of the i-th problem is dominated in each iteration by K−M matrix-vector

products Rixk−i with worst case total complexity O((K −M)N2) and by matrix-matrix

products RiRj for j 6= i with worst case complexity O((M−1)N3). We now improve these
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cost estimates by noting that, due to the sparsity in the Ri matrices, the factor of O(MN3)

resulting from matrix multiplications can be reduced to O(MS2
N) when implemented using

sparse matrix multiplications, where SN is the sparsity of the Ri (i.e., maxi ‖Ri‖0 = SN).

In addition, the sparse matrix-vector products can also be reduced to O(MSN). Then, the

total complexity is better estimated to be O(MS2
N), which scales more amenably for large

data applications.

2.3.2 Recovering A

After obtaining estimates R̂i, we find an estimate for A. One approach is to take Â = R̂1.

This appears to ignore the information from the remaining R̂i. However, this information

is taken into account during the iterations when solving for R̂, especially if we begin one

new sweep to estimate R1 using (2.9) with i = 1. A second approach is also possible,

explicitly using all the R̂i together to find A,

Â = argmin
A

∥∥∥R̂1 −A
∥∥∥2

2
+ λ1‖vec(A)‖1 + λ3

M∑
i=2

∥∥∥[A, R̂i

]∥∥∥2

F
. (2.10)

This can be seen as similar to running one additional step further in the block coordinate

descent to find R̂1, except that this approach does not explicitly use the data. This

has worst-case complexity O(MN3) dominated by matrix-matrix products ARi for i 6=

1. However, when matrices A and Ri are sparse, we again have reduced complexity of

O(MS2
N).

2.3.3 Estimating c

We can estimate cij in one of two ways: we can estimate c either from Â and R̂i or from

Â and the data X.
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To estimate cij from Â and R̂, let

Qi =
(

vec(I) vec(Â) . . . vec(Âi)
)

ci =
(
ci0 ci1 . . . cii

)T .

We set up the optimization,

ĉi = argmin
ci

1

2

∥∥∥vec
(
R̂i

)
−Qici

∥∥∥2

2
+ λ2‖ci‖1. (2.11)

Alternatively, to estimate cij from Â and the data X, we can use the optimization,

ĉ = argmin
c

1

2

∥∥∥Y(Â)−B(Â)c
∥∥∥2

F
+ λ2‖c‖1 (2.12)

where

Y(Â) = vec
(
XM − ÂXM−1

)
B(Â) =

(
vec (XM−2) . . . vec

(
ÂjXM−i

)
. . . vec

(
ÂMX0

))
Xm =

(
xm xm+1 . . . xm+K−M−1

)
,

where in B(Â) the i and j indices increment in correspondence to the indexing of cij in c.

That is, first set i = 2; then j is incremented from 0, . . . , i, and i is incremented, and this

repeats until (i, j) = (M,M). Then (2.12) can also be solved using standard `1-regularized

least squares methods with worst-case complexity O(M4) per iteration, dominated by

computing (dense) matrix-vector products with B>B ∈ Rn×n and B>Y ∈ Rn, with n =

(M − 1)(M + 4)/2 = O(M2). While this may seem daunting, we note that M , the lag

order of the autoregressive process, is usually much lower than the total number of time

samples K, so that the optimization to find c is unlikely to be the bottleneck in the overall

model estimation.
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2.3.4 Base Estimation Algorithm

The methods discussed so far can be interpreted as assuming that 1) the process is a linear

autoregressive process driven by white Gaussian noise and 2) the elements in parameters

A and c a priori follow zero-mean Laplace distributions. Under these assumptions, the

objective function in (2.7) approximately corresponds to the log posterior density and its

optimization to an approximate maximum a posteriori (MAP) estimate.

This framework can be extended to estimate more general autoregressive processes,

such as those with a non-Gaussian noise model and certain forms of nonlinear dependence

of the current state on past values of the state. In this case, we can formulate the general

optimization as

(Â, ĉ)=argmin
A,c

f1

(
vec(XM), vec

( M∑
i=1

Pi(A, c)XM−i

))
+ g1

(
A
)

+ g2(c), (2.13)

where matrices Xm are defined under (2.12), f1(·, ·) is a loss function that corresponds to

a log-likelihood function dictated by the noise model, and g1(·) and g2(·) are regularization

functions (usually convex norms) that correspond to log-prior distributions imposed on

the parameters and are dictated by modeling assumptions. Again, the matrix polynomials

Pi(A, c) introduce nonconvexity, so similarly as before, we can separate the estimation into

three steps to reduce complexity. This leads to analogous formulations for the optimization

problems (2.7)-(2.12) that we omit for brevity and clarity. In the remainder of this chapter,

we refer to the specific formulations given in (2.7)-(2.12).

Algorithm 1 summarizes the 3-step algorithm outlined in this section for obtaining

estimates Â and ĉ for the adjacency matrix and filter coefficients; it is a more efficient and

well-behaved alternative to directly using (2.13).

We call this 3-step procedure the base algorithm. In Algorithm 1, superscripts denote

the iteration number, R̂
(t)
<i denotes {R̂(t)

j : j < i} and likewise R̂
(t)
>i denotes {R̂(t)

j : j > i}.
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Algorithm 1 Base estimation algorithm

1: Initialize, t = 0, R̂(t) = 0

2: while R̂(t) not converged do

3: for i = 1 : M do

4: Find R̂
(t)
i with fixed R̂

(t)
<i, R̂

(t−1)
>i using (2.9).

5: end for

6: t← t+ 1

7: end while

8: Set Â = R̂
(t)
1 or estimate Â from R̂(t) using (2.10).

9: Solve for ĉ from X, Â using (2.11) or from X, R̂ using (2.12).

2.3.5 Simplified Estimation Algorithm

The base algorithm can still be moderately expensive to evaluate computationally when

scaling to larger problems and is difficult to analyze theoretically, mainly due to the noncon-

vexity of the commutativity-enforcing term. For further ease of computation and analysis,

we consider a simplified version of the base algorithm in which the commutativity term of

the optimization problem (2.9) is removed,

R̂ = argmin
R

f1

(
vec(XM), vec

( M∑
i=1

RiXM−i

))
+

M∑
i=1

g1i

(
R
)
. (2.14)

Note that we have recombined the optimization to be joint over all the Ri, since this

is convex without the commutativity term. This can be followed by the same steps to

find Â and ĉ as in the base algorithm, taking Â = R̂1 or as the solution to (2.10), and

then solving (2.11) or (2.12) for ĉ. We call this the Simplified Algorithm, described in

Algorithm 2. Using standard solvers for the estimation in (2.14) with `2 and `1 norms

as seen before [34], the worst-case cost is O(M(K − M)N2), dominated by computing

the matrix-vector product Rixk−i for i = 1, . . . ,M and for k = M, . . . ,K. Again, by
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implementing sparse matrix-vector products, we can reduce the complexity to O(M(K −

M)SMN) in the best case.

Algorithm 2 Simplified estimation algorithm

1: Initialize R̂ = 0

2: Estimate R̂ using (2.14)

3: Set Â = R̂1 or estimate Â from R̂ using (2.10).

4: Solve for ĉ from X, Â using (2.11) or from X, R̂ using (2.12).

2.3.6 Extended Estimation Algorithm

As an extension of the base algorithm, we can also choose the estimated matrix Â and

filter coefficients ĉ to initialize the direct approach of using (2.13). Starting from these

initial estimates, we may find better local minima than with initializations at A = 0 and

c = 0 or at random estimates. We call this procedure the extended algorithm, summarized

in Algorithm 3.

Algorithm 3 Extended estimation algorithm

1: Initialize A(0) = 0 and c(0) = 0.

2: Estimate A(0), c(0) using basic algorithm.

3: Find local minimum Â, ĉ using initialization A(0), c(0) from nonconvex problem (2.13)

using convex methods to find a local optimum.

2.4 Convergence of Estimation

In this section, we discuss the convergence of the basic, extended, and simplified algorithms

described above. Convergence of the Base Algorithm, Algorithm 1, and of the Extended
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Algorithm, Algorithm 3 follow by direct application of the results available in literature,

as discussed in Sections 2.4.1 and 2.4.2. Performance of the Simplified Algorithm, Algo-

rithm 2, is proven in Section 2.4.3.

2.4.1 Base Estimation Algorithm

In estimating A and c, as illustrated in equations (2.10) and (2.12), the forms of the

optimization problems are well studied when choosing `2 and `1 norms as loss and regu-

larization functions [10, 35]. However, using these same norms, step 2 (the while loop) of

the Base Algorithm is a nonconvex optimization. Hence, we would like to ensure that step

2 converges.

When using block coordinate descent for general functions (i.e., repeatedly choosing

one block of coordinate directions in which to optimize while holding all other blocks

constant), neither the solution nor the objective function values are guaranteed to converge

to a global or even a local minimum. However, borrowing results from [36], under some

mild assumptions, using block coordinate descent to estimate Ri will converge. In fact, in

equation (2.13), if we assume the objective function to be continuous and to have convex,

compact sublevel sets in each coordinate block Ri (for example, if the functions for f1,

g1, and g2 are the `2, `1, and `1 norms respectively as in equation (2.7)), then the block

coordinate descent will converge.

2.4.2 Extended Estimation Algorithm

Now we discuss the convergence of the extended estimation algorithm described in Al-

gorithm 3 of section 2.3.6 assuming that in step 1 of Algorithm 3, the Base Algorithm

has converged to an initial point (A(0), c(0)). We assume that the objective function

F = f1 + g1 + g2 in equation (2.13) has compact sublevel sets and is bounded below.
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Then an iterative (sub-)gradient method with appropriately chosen step sizes that pro-

duces updates of (A(t+1), c(t+1)) such that F (A(t+1), c(t+1)) ≤ F (A(t), c(t)), may converge

to a local optimum (which is not necessarily the global optimum). If the functions f1, g1,

and g2 are the `2, `1, and `1 norms as in equation (2.7), these conditions are satisfied and

the algorithm converges to a local optimum.

2.4.3 Simplified Estimation Algorithm

Here, we consider the convergence of the Simplified Algorithm, Algorithm 2. We state in

this section formally the underlying assumptions and the results; we also outline the main

arguments underlying the proofs. The proofs themselves are detailed in Appendices A.1-

A.3. We consider the theoretical performance guarantees provided by Algorithm 2 of the

simplified estimate (Â, ĉ) when using `1 regularized least squares to estimate R̂,

R̂ = argmin
R

1

σu

K−1∑
k=M

∥∥∥∥∥xk −
M∑
i=1

Rixk−i

∥∥∥∥∥
2

2

+ λ1‖vec(R)‖1, (2.15)

which is a special case of (2.14), where σu = ‖E[wkw
>
k ‖, and then using Â = R̂1 and the

optimization (2.12) to find ĉ. Dividing by σu makes the estimation unitless, although in

practice we might incorporate its value into the λ1 parameter.

Our error metric of interest will be:

ε =E
[

1

N

∥∥∥xk − f(Â, ĉ,X′k−1)
∥∥∥2

2

]
− E

[
1

N

∥∥∥xk − f(A, c,X′k−1)
∥∥∥2

2

]
, (2.16)

where

X′k−1 =

(
x>k−1 x>k−2 . . . x>k−M

)>
∈RMN

and

f(A, c,X′k−1) =
M∑
i=1

Pi(A, c)xk−i.
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This error ε is the average excess prediction risk, the difference between the error of esti-

mating xk by the estimated CGP (first term in (2.16)) and the variance of the noise wk in

the CGP given in (2.4) (second term in (2.16)). The expectations in (2.16) are taken over

a new sample

zk =
(
x>k X′>k−1

)>
∈ R(M+1)N (2.17)

drawn independently of the samples used to estimate
(
Â, ĉ

)
. We now state the assump-

tions underlying the main results.

Assumptions

First, we list the assumptions we make about the true process in order to derive our

performance guarantees:

(A1) The CGP model class (2.4) is accurate:

E[xk |X′k−1] = f(A, c,X′k−1).

(A2) The noise process is uncorrelated with the CGP and its own past values:

E
[
xjw

>
k

]
=0 and E

[
wjw

>
k

]
=0 for j < k. Further, the noise sequence {wk} is i.i.d.

multivariate Gaussian with distribution wk ∼ N (0,Σw), and there exists σ` such

that 0 < σ` ≤
∥∥Σ−1

w

∥∥−1

2
, the singular values of Σw are strictly bounded away from

0. Then we can represent the condition number of Σw as σu/σ`, where σu is given

in (2.15).

(A3) The CGP is stationary and is already in steady state when we begin sampling. Under

this assumption, the marginal distributions and expectations are E[xk] = 0, Σ0
∆
=

E
[
xk x>k

]
, and Σ

∆
= E

[
zkz

>
k

]
where zk is defined as in (2.17).

(A4) The stationary correlation matrices of the process xk are absolutely summable in

21



induced norm:

∞∑
i=−∞

∥∥E [xkx>k−i]∥∥2
= G <∞.

This is a slightly stronger condition than stability (see proof of Lemma 2 in ap-

pendix A.1).

(A5) The true adjacency matrix and filter coefficients are sparse and bounded:∥∥∥∥( A P2(A, c) . . . PM (A, c)

)∥∥∥∥
0

≤ SMN �MN2

and max1≤i≤M(‖Ai‖2) ≤ L, max1≤i≤M(‖Ai‖0) ≤ tN � N2, and ‖c‖0 ≤ sM and

‖c‖1 ≤ ρ, where the matrix `0−“norm” ‖A‖0 is the total number of nonzero entries

in matrix A. The quantities SMN and sM may grow with M and N , and tN may

grow with N .

(A6) The following holds for the bounds L and ρ in (A5):

(1 + L)(1 + ρ) = Q ≤ 2.

This is also a slightly stronger condition than stability (see proof of Lemma 2 in

Appendix A.1).

(A7) The sample size K is large enough relative to the “stability” of the process, the log

of the network size, and the sparsity. Also the autoregressive model order M is low

relative to the length of the sample size K:

T = K −M ≥ Cω2 SMN (logM + logN)

M . o(logK)

for some universal constant C > 0 and ω = σu
σ`

Q2

µmin(Ã)
, where ω and µmin(Ã) are

related to measures of “stability” of the process [10], and their explicit forms are

given in appendix A.1 in equations (A.1) and (A.3), and Q is given in (A6).

(A8) The matrix E[B(A)>B(A)] is invertible, or alternatively, its minimum singular value
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is strictly positive:

∥∥∥(E[B(A)>B(A)]
)−1
∥∥∥−1

2
≥ κBNT > 0.

We point out that assumptions (A1)-(A3), (A7), and (A8) correspond to fairly standard

assumptions in stationary time series analysis and studying performance of parameter

estimation. (A7) assumes enough samples to do meaningful estimation, which is standard

in high-dimensional estimation. In this assumption, the minimum number of samples is

linked to the properties of the process. Assumption (A8) makes sure that c is identifiable

when given the true value of A.

As noted (A4) and (A6) are slightly stronger than “stability.” This is because these

assumptions are not necessarily implied by stationarity. We note that (A5) is perhaps the

most restrictive assumption, as it imposes explicit sparsity conditions on the polynomials

Pi(A, c) and vector c. In network science terms, this assumption roughly corresponds to

graphs with relatively longer node-to-node paths, so that higher order powers of A are not

all dense. However, this assumption has the same flavor as the explicit sparsity assumptions

made in other sparse estimation work. It would be interesting to relax this assumption to

recent notions of approximate sparsity rather than exact sparsity, and that could be the

direction of future work.

Theoretical Performance

Here, we present the main guarantee and a brief sketch for its proof, providing several

lemmas of intermediate results used in the main result. The full proof is presented in

Appendices A.1-A.3.

Theorem 1 (Main Result). For any 0 < β < ν < 1/2, and some universal constant d1,
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assumptions (A1)-(A8) are sufficient for the error ε in (2.16) to satisfy

ε ≤
(
δA

(
1 + (ρ+ δc)L̂M (δA)

)
+ (1 + L)δc

)2
tr(Σ0)/N (2.18)

with probability at least 1− εA − εc, where

L̂M(δ) = max
1≤i≤M

(L+ δ)i − Li

δ

εA ∼ d1 exp{−O(K)}

εc ∼ 2 exp{−O(K1−2ν)}

δA = O
(√

logN/K
)

δc = O

(√
logN/K2(ν−β)

)
.

(2.19)

The exact expressions for εA, εc, δA, and δc can be found in the appendices. This

theorem states that, as the number of nodes N and the number of time observations K

grow, with high probability, the average excess prediction risk of the simplified estimate

is not too large. The dependence of δ on K and L are through T = K − M and Q,

respectively, where L is defined in (A5), and Q is defined in (A6). The AR order M and

network size N may also grow, as long as they grow slowly enough with respect to K. Note

that, for large K, we have δ � L, and the factor L̂M(δ) = O(MLM−1). The full proof of

Theorem 1 is in Appendix A.3, but we provide a brief overview here.

Before we outline the proof of the theorem, we first present two intermediate results.

These two results use sparse vector autoregression estimation results to show that ‖Â−A‖2

and ‖ĉ− c‖1 are small with high probability. Then, with small errors in estimating A and

c, we can demonstrate that the error ε is also small.

Lemma 2. Assume (A1) that xk is generated according to the CGP model with A satisfy-

ing (A5). Suppose (A7) that the sample size K is large enough. Let di>0 with i=1, ..., 3

be universal constants, and let g(Q) = d3

(
1 + 1+Q2

(2−Q)2

)
and `MNK =

√
(logM + logN)/K.
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With εA = d1 exp{−d2K/ω
2}, λ1 = 4g(Q)`MNK, and R̂ = (R̂1, . . . , R̂M) the solution

to (2.15), with probability at least 1− εA, Â = R̂1 satisfies the inequalities

‖Â−A‖1 ≤ 256SMN`MNKQ
2g(Q)σu/σ`

‖Â−A‖2 ≤ ‖Â−A‖F ≤ δA
∆
= 64

√
SMN`MNKQ

2g(Q)σu/σ`

where ω = σu
σ`

Q2

µmin(Ã)
as defined in (A7).

This lemma states that, with the appropriate choice of λ1, the assumptions (A1)-(A8)

are sufficient to allow good estimation of A with high probability. That is, for each increase

of sample size K, we choose the optimal value of the regularization parameter λ1, and this

choice yields consistency with high probability.

Lemma 3. Suppose that assumptions (A1)-(A8) hold. Then for any 0 < β < ν < 1/2,

and sparsity sM ≤ d4K/ log n where d4 > 0 is a universal constant, and λ2 ≥ q1 =

Θ(N
√

logNK1−β), the solution to (2.12) satisfies

P (‖c− ĉ‖1 ≥ δc) ≤ εc

where

δc = O

(√
logN/K2(ν−β)

)
εc ∼ 2 exp{−O(K1−2ν)}.

In a similar vein as Lemma 2, this lemma states that, for appropriate choice of λ2, the

assumptions (A1)-(A8) are sufficient to yield a good estimate of c with high probability.

Proof Overview for Theorem 1. Lemma 2 shows that we can achieve good performance

in estimating A with high probability. With considerable effort and several additional

insights, we show that good performance in estimating A, translates into good estimation

of c with high probability in Lemma 3.
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Then, small errors ‖Â−A‖2 ≤ δA and ‖ĉ−c‖1 ≤ δc naturally lead to small prediction

errors ε. Concretely, we proceed with some algebra, showing that

ε =
1

N
E
[∥∥∥f (Â, ĉ,X′k−1

)
− f

(
A, c,X′k−1

)∥∥∥2

2

]
≤ 1

N
E
[(
‖f(Â, ĉ,X′k−1)−f(A, ĉ,X′k−1)‖2 + ‖f(A, ĉ,X′k−1)−f(A, c,X′k−1)‖2

)2
]
.

Given small estimation errors, we can bound these two norms separately. The first can

be bounded using both Lemmas 2 and 3, and the second can be bounded with Lemma 3.

Applying the union bound, we arrive at our result. Again, the full detailed proof is in the

appendices A.1-A.3.

2.5 Experiments

We test our algorithms on two types of datasets, a real temperature sensor network time

series (with N = 150 and K = 365) and a synthetically generated time series (with

varying N and K). With the temperature dataset, we compare the performance of the

different algorithms (1, 2, and 3) for estimating the CGP model (2.4) against that of the

sparse vector autoregresssive Markov random field model (2.3) labeled as MRF, where

f1(x,y) = 1
2
‖x − y‖2

2 and g1(x) = λ1‖x‖1; with the synthetic dataset, we compare the

estimates of the model parameters to the ground truth graph used to generate the data

for Algorithm 2, and we evaluate the performance of the prediction by averaging through

Monte Carlo simulations to empirically test Theorem 1.

To solve the regularized least squares iterations for estimating the CGP matrices, we

used a fast implementation of proximal quasi-Newton optimization for `1 regularized prob-

lems [37]. To estimate the MRF matrices, we used an accelerated proximal gradient descent

algorithm [38] to estimate the SVAR matrix coefficients from equation (2.3) since the code

used in [9] is not tested for large graphs.
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2.5.1 Temperature Data

The temperature dataset is a collection of daily average temperature measurements taken

over 365 days at 150 cities around the continental United States [39]. The time series

xi = (xi,1 . . . xi,K), K = 365, i = 0, . . . , 149, is detrended by a 4th order polynomial at

each measurement station i to form x̃i. The data matrix X is formed from stacking the

detrended data x̃i.

We compare the prediction errors of assuming the detrended data x̃i are generated by

the CGP or the MRF models, or by an undirected distance graph as described in [3]. The

distance or geometric graph model uses an adjacency matrix Adist to model the process

xk = wk +
M∑
i=1

hi(A
dist)xk−i,

where hi(A
dist) =

Lh∑
j=0

cji(A
dist)j are polynomials of order Lh of the distance matrix with

elements chosen as

Adist
mn =

e−d
2
mn√∑

j∈Nαn
e−d

2
nj
∑

`∈Nαm
e−d

2
m`

with N α
n representing the neighborhood of the α cities nearest to city n and dmn being

the geographical Euclidean distance between cities m and n. In this model, the number of

time lags M is taken to be fixed, and the polynomial coefficients cji are to be estimated.

In our experiments, we assumed M = 2.

We separated the data into two subsequences, one consisting of the even time indices

and one consisting of the odd time indices. One set was used as training data and the other

set was left as testing data. This way, the test and training data were both generated from

almost the same process but with different daily fluctuations. In this experiment, we

compute the prediction MSE as

MSE =
1

N(K −M)

K∑
i=M+1

‖xi − x̂i‖2 .

Here, since we do not have the ground truth graph for the temperature data, the exper-

27



iments can be seen as corresponding to the task of prediction. The test error indicates

how well the estimated graph and corresponding estimated model can predict the data

at the following time instance from past observations. The models are estimated using

Algorithms 1, 2, and 3 with

f1(x,y) =
1

2
‖x− y‖2

2

g1(x) = λ1‖x‖1.

We repeated the training step for all values of λ1, λ2, λ3 on a grid discretizing the interval

(0, 500]. We used the values of the polynomial coefficient regularization parameter λ2 and

the commutativity regularization parameter λ3 corresponding to the lowest training error

to estimate the model on test data and determine the test error; the sparsity regularization

parameter λ1 directly affects the nonzero proportion and number of nonzero parameters,

as expected.

Figure 2.1a shows the performance of the basic, extended, and simple Algorithms 1, 2,

and 3, as well as the distance graph and MRF models, as a function of edge sparsity

of the respective graphs. We see that directed graphs estimated from data (either CGP

or MRF) perform better in testing than the undirected distance graphs that are derived

independently of the data. In addition, for high sparsity or low number of nonzero entries

in the estimated Â, (pnnz = Nnnz

N(N−1)
< 0.3, where pnnz is the proportion of nonzero edges in

the graph and Nnnz is the number of nonzero edges in the graph, not including self-edges),

the performance of the CGP is competitive with the MRF model. At lower sparsity levels

(pnnz > 0.3), i.e., denser graphs, the MRF model performs better than the CGP model in

minimizing training error (not shown), but not in testing.

Figure 2.1b shows the prediction performance of the same algorithms as in 2.1a as a

function of the total number of nonzero parameters of the respective models. The same

trends are present here as in the discussion above. Here, for the CGP model, the number
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(a) Testing Errors vs Sparsity

(b) Testing Errors vs Nonzero Parameters

Figure 2.1: Compression and Prediction Error vs Nonzeros using order M = 2 model

of nonzero parameters is calculated as NCGP
param = NCGP

nnz + N + MCGP
nnz , where N includes

the diagonal entries and MCGP
nnz ≤ M(M + 1)− 3 counts the nonzeros in c. For the MRF

model, the number of nonzero parameters is calculated as NMRF
param = M(NMRF

nnz +N), where

N includes the diagonal entries and the factor of M accounts for the fact that the nonzero

entries of A(i) can be different across i. We can see that for the same level of sparsity,
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the MRF model has more nonzero parameters than the CGP model by approximately a

factor of M . Here, the CGP has lower test error than MRF with fewer nonzero parameters

(Nnnz < 2000).
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Figure 2.2: Estimated CGP temperature graph using order M = 2 model with sparsity

pnnz = 0.05

In figure 2.2, we visualize the temperature network estimated on the entire time series

using the CGP model that has sparsity level pnnz = 0.05. The x-axis corresponds to

longitude while the y-axis corresponds to latitude. We see that the CGP model clearly

picks out the predominant west-to-east direction of wind in the x ≥ −95 portion of the

country, as single points in this region are seen to predict multiple eastward points. It also

shows the influence of the roughly north-northwest-to-south-southeast Rocky Mountain

chain at −110 ≤ x ≤ −100. This CGP graph paints a picture of US weather patterns that

is consistent with geographic and meteorological features. This consistency may be the

most pleasing and surprising observation of this experiment. This also helps intuitively
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explain why the distance graph, which is not derived from data, is not as good at predicting

weather trends, since cities that are geometrically close may be geographically separated.

2.5.2 Synthetic Data

We test our simplified algorithm with

f1(x,y) = ‖x− y‖2
2

g2(x) = ‖x‖1

on larger synthetic datasets to empirically verify the theory developed in section 2.4.

(a) True A (left) and Estimated Â (right) for

K-Regular graph

(b) True A (left) and Estimated Â (right) for

Stochastic Block-Model graph

(c) True A (left) and Estimated Â (right) for

Erdös-Renyi graph

(d) True A (left) and Estimated Â (right) for

Power Law graph

Figure 2.3: True (left) and estimated (right) edge weights (absolute values) for K-Regular

(top left), Stochastic Block-Model (top right) Erdös-Renyi (bottom left), and Power Law

(bottom right) graphs for N=1000

The random graphs corresponding to A were generated with 4 different topologies: K-
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regular (KR), Stochastic Block-Model (SBM) [40], Erdös-Renyi (ER) [41], and Power Law

(PL).

The KR graph was generated by taking a circle graph and connecting each node to itself

using a weight of −1 and to its ξ = 3 neighbors (we use ξ for this quantity rather than K,

since we have used K to denote a different quantity) to each side on the circle with weights

drawn from a random uniform distribution U(0.5, 1). This resulted in a (2ν + 1)-diagonal

(in this case heptadiagonal) matrix. Finally the matrix was normalized by 1.5 times its

largest eigenvalue.

The SBM graph was generated by creating 10 clusters with each of the 1000 nodes

having uniform probability of belonging to a cluster. Edges between nodes were generated

according to assigned intra- and inter- cluster probabilities summarized by a 10×10 matrix

(intra-cluster probabilities were on the diagonal, and inter-cluster probabilities on the non-

diagonal entries). This matrix was generated randomly and sparsely. Starting with 0.05I,

we added an independent random quantity to each element, where the variables were

uniformly distributed on [0, 0.04). Then, entries below 0.025 were thresholded to 0. The

edges generated were assigned weights from a Laplacian distribution with rate λe = 2.

Finally, the matrix was normalized by 1.1 times its largest eigenvalue.

The ER graph was generated by taking edges from a standard normal N (0, 1) distri-

bution and then thresholding edges to be between 1.6 and 1.8 in absolute value to yield

an effective probability of an edge pER ≈ 0.04. The edges were soft thresholded by 1.5 to

be between 0.1 and 0.3 in magnitude. Finally, the matrix was normalized by 1.5 times its

largest eigenvalue.

The PL graph was generated by starting with a 15 node ER graph with connection

probability 0.8. New nodes were connected by two new edges to and from an existing node

of weight drawn as N (0, 1) and then offset 0.25 away from 0. The connections were made
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according to a modified preferential attachment scheme [42] in which the probability of

the new node connecting to an existing node was proportional to the existing node’s total

weighted degree. The diagonal was set to −1/2. Lastly, the matrix was normalized by 1.5

times its largest eigenvalue.

Examples of these topologies with their weighted edges and representative estimates Â

can be seen in figure 2.3 (higher absolute weights are displayed in darker blue). Because

of the large number of nodes, these topologies are difficult to visualize. So, for display

purposes only, we chose parameters that lean towards fewer false alarms at the expense of

having more missed edges—since more false alarms obstruct and obscure the layout. For

KR, see figure 2.3a, we used a circular layout in which the true edges are along the perimeter

and not through the interior. This is replicated in the estimated graph1. For the KR graph

whose results are in figure 2.3a (false alarm rate (PFA) 3× 10−4 and miss rate (PM) 0.16),

we used a circular layout (as previously mentioned); for SBM, see figure 2.3b (displayed

plot has PFA = 7 × 10−3 and PM = 0.22), and ER, see figure 2.3c (displayed plot with

PFA = 4×10−4 and PM = 0.58), we used force-directed edge bundling [43] to group nearby

edges into few thicker “strands” in addition to circular layouts; and for PL, see figure 2.3d

(displayed plot with PFA = 4×10−3 and PM = 0.69), we used a Fruchterman-Reingold [44]

node positioning. If we lower the value of the sparsity regularization parameter λ1 on our

grid, we can reduce the miss rate, while increasing the false alarm rate. Just for reference,

we provide another pair of corresponding PFA and PM values: for KR, PFA = 0.01 and

PM = 0.07; for SBM, PFA = 0.01 and PM = 0.40; for ER, PFA = 0.03 and PM = 0.25;

for PL, PFA = 0.03 and PM = 0.52. Playing with λ1 we can get other tradeoffs more

suitable to specific applications. Just from these experiments, it seems that the SBM and

1In the estimated graph, there are some edges through the interior with much lower weights relative to

the weights on the edges along the perimeter, which are not visible when visualized.
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PL models are more difficult to estimate than the KR and ER models. This could be

due to the average degree of SBM being high and the maximum degree of PL being high

while the number of time observations K is held constant throughout these experiments,

which would violate Assumption (A5) or (A7). A more thorough understanding of these

tradeoffs, such as what additional conditions need to be satisfied for relevant guarantees to

hold, and what broad classes of graphs satisfy these conditions, is left as a topic of future

investigation.

Once the A matrix was generated with N ∈ {1000, 1500} nodes, for fixed M = 3, the

coefficients cij for 2 ≤ i ≤ M and 0 ≤ j ≤ i were generated sparsely from a mixture

of uniform distributions 2i+jcij ∼ 1
2
U(−1,−0.45) + 1

2
U(0.45, 1) and normalized by 1.5 to

correspond to a stable system.

The data matrices X were formed by generating random initial samples (with 500 burn

in samples to reach steady state) and zero-mean unit-covariance additive white Gaussian

noise wk computing K ∈ {750, 1000, 1500, 2000} samples of xk according to (2.4). Then 20

such Monte-Carlo data matrices were generated independently, and (Â, ĉ) was estimated

using the simplified algorithm for varying values of λ1 and ρ. The average error of the A

matrix was computed as

MSE =
1

N2
‖A− Â‖2

F .

The empirical value of the error metric ε̂ from (2.16) was also measured by generating

another 20 independent sets of time series zk (as in (2.17)) at steady state and using the

estimates to predict xk using X′k−1.

In figure 2.4, we show the errors in A and the empirical estimates of ε for different values

of N and K. We performed the estimation across a grid of λ3 and ρ and choose the lowest

observed error to be ε̂. We see several different behaviors. We observe that the average

errors in A and empirical averages for ε for the KR graph decrease with both larger N and
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(a) Error in A (left) and ε (right) for KR graph

(b) Error in A (left) and ε (right) for SBM graph

(c) Error in A (left) and ε (right) for ER graph

(d) Error in A (left) and ε (right) for PL graph

Figure 2.4: Error in A (left) and ε (right) for K-Regular (top left), Stochastic Block-Model (top

right), Erdös-Renyi (bottom left), and Power Law (bottom right) graphs for N=1000,1500
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K. We observe similar behavior for the SBM graph. This suggests that graphs generated

according to these topologies might satisfy the assumptions in section 2.4. On the other

hand, the error in A for ER does not display a clear trend in N , although observing more

samples still improves the estimate of A and the model prediction performance as expected.

For the PL model, the error in estimating A decreased with increasing N and K, but the

error ε fluctuated around 0 with no clear trend.

This varied behavior arises because the different structured and random graph topolo-

gies examined tend to exhibit certain network properties that do not all correspond directly

to the assumptions in section 2.4. In particular, the K-regular graph by its construction

does satisfy the assumptions. This is because taking the n-th power of the adjacency

matrix of a ξ-regular graph of this form results in an (nξ)-regular graph, which satisfies

the sparsity (A5) with some constants that do not grow too fast with N and K. Thus,

the results of the KR graph empirically conform to the predictions given by the theory

in section 2.4. With the other topologies, the behavior of the sparsity constants is not as

immediately clear, but the observed results suggest that some of the assumptions could

be slightly loosened, or that other network statistics (e.g., diameter or maximum degree)

could play a role in the performance.

2.6 Conclusions

This chapter presents a methodology to estimate the network structure (graph) capturing

spatial (inter) and time (intra) dependencies among multiple time series. These data may

arise in many different contexts. The data time dependencies are modeled by an auto-

regressive (AR) process. The spatial dependencies are captured by describing the matrix

coefficients of the AR process as graph polynomial filters [16]. The chapter presents three
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algorithms to estimate the graph adjacency matrix and parameters of the graph polynomial

filters. These algorithms optimize cost functions that combine a model following functional,

e.g., an `2 error metric, with sparsity regularizers, e.g., `1 metric. The chapter carries out

the convergence and performance analysis of these algorithms under a set of appropriate

assumptions. Finally, the chapter illustrates the performance of these algorithms with

a set of real data (temperature data collected by 150 weather stations covering the US)

and with simulated data for four different types of networks. These experiments show the

advantages and limitations of the approach.
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Chapter 3

Single Index Latent Variable Models

How real is this relationship? This is a ubiquitous question that presents itself not only in

judging interpersonal connections but also in evaluating correlations and causality through-

out science and engineering. Two reasons for reaching incorrect conclusions based on ob-

served relationships in collected data are chance and outside influences. For example, we

can flip two coins that both show heads, or observe that today’s temperature measurements

on the west coast of the continental USA seem to correlate with tomorrow’s on the east

coast throughout the year. In the first case, we might not immediately conclude that coins

are related, since the number of flips we observe is not very large relative to the possible

variance of the process, and the apparent link we observed is up to chance. In the second

case, we still may hesitate to use west coast weather to understand and predict east coast

weather, since in reality both are closely following a seasonal trend.

Establishing interpretable relationships between entities while mitigating the effects of

chance can be achieved via sparse optimization methods, such as regression (Lasso) [35]

and inverse covariance estimation [8]. In addition, the extension to time series via vector

autoregression [9, 10] yields interpretations related to Granger causality [11]. In each

of these settings, estimated nonzero values correspond to actual relations, while zeros
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correspond to absence of relations.

However, we are often unable to collect data to observe all relevant variables, and this

leads to observing relationships that may be caused by common links with those unobserved

variables. The hidden variables in this model are fairly general; they can possibly model

underlying trends in the data, or the effects of a larger network on an observed subnetwork.

For example, one year of daily temperature measurements across a country could be related

through a graph based on geographical and meteorological features, but all exhibit the

same significant trend due to the changing seasons. We have no single sensor that directly

measures this trend. In the literature, a standard pipeline is to de-trend the data as a

preprocessing step, and then estimate or use a graph to describe the variations of the data

on top of the underlying trends [3, 16, 32].

Alternatively, attempts have been made to capture the effects of hidden variables via

sparse plus low-rank optimization [17]. This has been extended to time series [12], and even

to a non-linear setting via Generalized Linear Models (GLMs) [45]. What if the form of

the non-linearity (link function) is not known? Regression using a GLM with an unknown

link function is also known as a Single Index Model (SIM). Recent results have shown good

performance when using SIMs for sparse regression [46].

So far, when choosing a model, current methods will impose a fixed form for the (non-

)linearity, assume the absence of any underlying trends, perform separate pre-processing

or partitioning in an attempt to remove or otherwise explicitly handle such trends, or

take some combination of these steps. To address all of these issues, we propose a model

with a non-linear function applied to a linear argument that captures the effects of latent

variables, which manifest as unmodeled trends in the data. Thus, we introduce the Single

Index Latent Variable (SILVar) model, which uses the SIM in a sparse plus low-rank

optimization setting to enable general, interpretable multi-task regression in the presence
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of unknown non-linearities and unobserved variables. That is, we propose the SILVar model

not only to use for regression in difficult settings, but also as a tool for uncovering hidden

relationships buried in data.

First, we establish notation and review prerequisites in Section 3.1. Next, we introduce

the SILVar model and discuss several paradigms in which it can be applied in Section 3.2.

Then, we detail the numerical procedure for learning the SILVar model in Section 3.3.

Finally, we demonstrate the performance via experiments on synthetic and real data in

Section 3.5.

3.1 Background

In this section, we introduce the background concepts and notation used throughout the

remainder of the chapter.

3.1.1 Bregman Divergence and Convex Conjugates

For a given convex function φ, the Bregman Divergence [47] associated with φ between y

and x is denoted

Dφ(y‖x) = φ(y)− φ(x)−∇φ(x)>(y − x). (3.1)

The Bregman Divergence is a non-negative (asymmetric) quasi-metric. Two familiar spe-

cial cases of the Bregman Divergence are Euclidean Distance when φ(x) = 1
2
‖x‖2

2 and

Kullback-Liebler Divergence when φ(x) =
∑
i

xi log xi in the case that x is a valid proba-

bility distribution (i.e., x ≥ 0 and
∑
i

xi = 1).

The convex conjugate φ∗ of a function φ is given by

φ∗(x)
∆
= sup

y
y>x− φ(y). (3.2)

The convex conjugate arises naturally in optimization problems when deriving a dual form
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for the original (primal) problem. For closed, convex, differentiable, 1-D function φ with

invertible gradient, the following properties hold

φ∗(x) = x(∇φ)−1(x)− φ((∇φ)−1(x))

(∇φ)−1 = ∇φ∗ (φ∗)∗ = φ

(3.3)

where (·)−1 denotes the inverse function, not the multiplicative inverse. In words, these

properties give an alternate form of the conjugate in terms of gradients of the original

function, state that the function inverse of the gradient is equal to the gradient of the

conjugate, and state that the conjugate of the conjugate is the original function.

3.1.2 Generalized Linear and Single-Index Models

The Generalized Linear Model (GLM) can be described using several parameterizations.

We adopt the one based on the Bregman Divergence [48]. For observations yi ∈ R and

xi ∈ Rp, let y = (y1 . . . yn)>, X = (x1 . . .xn). The model is parameterized by 1) a

non-linear link function g = (∇φ)−1 where φ is a closed, convex, differentiable, invertible

function; and 2) a vector a ∈ Rp. We have the model written as

E[yi|xi] = g
(
a>xi

)
, (3.4)

(note that some references use g−1 as the link function where we use g) and the corre-

sponding likelihood function written as

P (yi|xi) = exp
{
−Dφ

(
yi‖g

(
a>xi

))}
(3.5)

where the likelihood is expressed with respect to an appropriate base measure [49], which

can be omitted for notational clarity.

Let G = φ∗ and g = ∇G = (∇φ)−1. Then, for data {xi, yi} with conditionally inde-

pendent yi given xi (note that this is not necessarily assuming that xi are independent),
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learning the model a assuming g is known can be achieved via empirical risk minimization,

â = argmax
a

n∏
i=1

exp
{
−Dφ

(
yi‖g

(
a>xi

))}
= argmin

a

n∑
i=1

Dφ

(
yi‖g

(
a>xi

))
= argmin

a

n∑
i=1

[
φ (yi)− φ

(
g
(
a>xi

))
−∇φ

(
g
(
a>xi

)) (
yi − g

(
a>xi

))]
(a)
= argmin

a

n∑
i=1

[
G∗ (yi)− yi

(
a>xi

)
− φ

(
g
(
a>xi

))
+
(
a>xi

)
g
(
a>xi

)]
(b)
= argmin

a

n∑
i=1

[
G∗ (yi) +G

(
a>xi

)
− yi

(
a>xi

)]
= argmin

a
F̂1 (y,X, g, a)

(3.6)

where equality (a) arises from the second property in (3.3), equality (b) arises from the

first property, and we introduce

F̂1(y,X, g,a)
∆
=

1

n

n∑
i=1

[
G∗(yi) +G

(
a>xi

)
− yi

(
a>xi

)]
(3.7)

for notational compactness.

The Single Index Model (SIM) [50] takes the same form as the GLM. The crucial

difference is in the estimation of the models. When learning a GLM, the link function g

is known and the linear parameter a is estimated; however when learning a SIM, the link

function g needs to be estimated along with the linear parameter a.

Recently, it has been shown that, when the function g is restricted to be monotonic

increasing and Lipschitz, learning SIMs becomes computationally tractable [49] with per-

formance guarantees in high-dimensional settings [46]. Thus, with scalar u defining the

set

Cu = {g : ∀y > x, 0 ≤ g(y)− g(x) ≤ u(y − x)} (3.8)
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of monotonic increasing u-Lipschitz functions, this leads to the optimization problem,

(ĝ, â) = argmin
g,a

F̂1(y,X, g, a)

s.t. g = ∇G ∈ C1.

(3.9)

3.1.3 Lipschitz Monotonic Regression and Estimating SIMs

The estimation of g with the objective function including terms G and G∗ at first appears

to be an intractably difficult calculus of variations problem. However, there is a marginal-

ization technique that cleverly avoids directly estimating functional gradients with respect

to G and G∗ [49] and admits gradient-based optimization algorithms for learning. The

marginalization utilizes Lipschitz monotonic regression (LMR) as a subproblem. Thus,

before introducing this marginalization, we first review LMR.

LMR

Given ordered pairs {xi, yi} and independent Gaussian wi, consider the model

yi = g(xi) + wi, (3.10)

which intuitively treats {yi} as noisy observations of a function g indexed by x, sampled

at points {xi}. Let ĝi = g(xi), an estimate of the function value, with ĝ = (ĝ1 . . . ĝn)>, and

x[j] denote the jth element of the {xi} sorted in ascending order. Then LMR is described

by the problem,

ĝ
∆
= LMR(y,x) = argmin

g

n∑
i=1

(g(xi)− yi)2

s.t. 0 ≤ g
(
x[j+1]

)
−g
(
x[j]

)
≤ x[j+1]−x[j] for j = 1, . . . , n− 1.

(3.11)

While there may be in fact infinitely many possible (continuous) monotonic increasing

Lipschitz functions g that pass through the points ĝ, the solution vector ĝ is unique. We

will introduce a simple yet effective algorithm for solving this problem later in Section 3.3.1.
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Estimating SIMs

We now return to the objective function (3.9). Let ĝ = LMR(y,X>a). Then the gradient

w.r.t. a can be expressed in terms of an estimate of g without explicit computation of G

or G∗,

∇aF1 =
n∑
i=1

[(ĝi − yi) xi] . (3.12)

This allows us to apply gradient or quasi-Newton methods to solve the minimization in a,

which is itself a convex problem since the original problem was jointly convex in g and a.

3.2 Single Index Latent Variable Models

In this section, we build the Single Index Latent Variable (SILVar) model [51] from funda-

mental concepts.

3.2.1 Multitask Regression and Latent Variables

First, we extend the SIM to the multivariate case and then examine how latent variables

can affect learning of the linear parameter. Let

yi = (y1i . . . ymi)
>

g(x) = (g1(x1) . . . gm(xm))>

A = (a1 . . . am)> .

Consider the vectorization,

E [yji|xi] = gj
(
a>j xi

)
=⇒ E [yi|xi] = g (Axi) . (3.13)

For the remainder of this chapter, we make an assumption that all gj = g for notational

simplicity, though the same analysis readily extends to the case where gj are distinct.

Now, let us introduce a set of latent variables zi ∈ Rr with r � p and the corresponding
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linear parameter B = (b1 . . .bm)> ∈ Rm×r (note we can incorporate a linear offset by

augmenting the variable z← (z> 1)> and adding the linear offset as a column of B). This

leads to the asymptotic maximum likelihood estimate,(
g,A,B

)
= argmin

g,A,B
F2 (yi,xi, zi, g,A,B)

s.t. g = ∇G ∈ C1,

(3.14)

where

F2(yi,xi, zi, g,A,B)
∆
= E

[
m∑
j=1

[
G∗(yji) +G(a>j xi + b>j zi)

]
−y>i (Axi + Bzi)

]
. (3.15)

Now consider the case in which the true distribution remains the same, but we only

observe xi and not zi,

(ĝ, Â) = argmin
g,A

F3(yi,xi, g,A)

s.t. g = ∇G ∈ C1,

(3.16)

where

F3(yi,xi, g,A)
∆
= E

[
m∑
j=1

[
G∗(yji) +G(a>j xi)

]
−y>i (Axi)

]
. (3.17)

We now propose a relation between the two models in (3.14) and (3.16), which will finally

lead to the SILVar model. Here we present the abridged theorem, and relegate the full

expressions and derivation to Appendix B.1. To establish notation, let primes ( ′) denote

derivatives, hats (̂) denote a parameter estimate with only observed variables, overbars

( ) denote an underlying parameter estimate when we have access to both observed and

latent variables, and we drop the subscripts from the random variables x and z to reduce

clutter.

Theorem 4. Assume that ĝ′(0) 6= 0 and that |ĝ′′| ≤ J and |g′′| ≤ J for some J < ∞.

Furthermore, assume in models (3.15) and (3.16) that maxj
(
‖âj‖1, ‖aj‖1 + ‖bj‖2

)
≤ k,

max
(
E[‖x‖2‖x‖2∞],E[‖x‖2‖x‖∞‖z‖2],E[‖x‖2‖z‖22]

)
≤ sNr,

where subscripts in sNr indicate that the bounds may grow with the values in the subscript.
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Then, the parameters Â and A from models (3.15) and (3.16) are related as

Â = q(A + L) + E,

where q = g′(0)
ĝ′(0)

, µx = E[xi],

L =
(
BE[zx>] + (g(0)− ĝ(0))µ>x

) (
E[xx>]

)†
⇒rank(L) ≤ r + 1,

and E = Â− q(A + L) is bounded as

1

MN
‖E‖F ≤

2Jσ`
√
N

ĝ′(0)M
sNrk

2,

where σ` =
∥∥∥(E [xx>

])†∥∥∥
2
, the largest singular value of the pseudo-inverse of the covari-

ance.

The proof is given in Appendix B.1. The assumptions require that the 2nd order Taylor

series expansion is accurate around the point 0, that the model parameters A and B are

bounded, and that the distributions generating the data are not too spread out (beyond

0 where the Taylor series expansion is performed). These are all intuitively reasonable

and unsurprising assumptions. Though the theorem poses a hard constraint on |ĝ′′|, we

hypothesize that this is a rather strong condition that can be weakened to be in line with

similar models.

The theorem determines certain scaling regimes under which the sparse plus low-rank

approximation remains reasonable. For instance, consider the case where M ∼ N and

the moments scale as sNr ∼
√
N , which is reasonable given their form (i.e., very loosely,

‖x‖∞ ∼ 1 and ‖x‖2 ∼
√
N and small latent power ‖z‖2 ∼ 1 relative to N). Then, to

keep the error of constant order, the power of each row of the matrix would need to stay

constant k ∼ 1. If we see A as a graph adjacency matrix, then, in rough terms, this

can correspond intuitively to the case in which the node in-degrees stay constant so that

the local complexity remains the same even as the global complexity increases while the

network grows. Again, we hypothesize that this overall bound can be tightened given more
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assumptions (e.g., on the network topology). Thus, we propose the SILVar model,

ŷ = ĝ
((

Â + L̂
)

x
)
, (3.18)

and learn it using the optimization problem,

(ĝ, Â, L̂) =argmin
g,A,L

F̂3(Y,X, g,A + L) + h1(A) + h2(L)

s.t. g = ∇G ∈ C1, (3.19)

where

F̂3(Y,X, g,A)=
1

n

n∑
i=1

 m∑
j=1

[
G∗(yji)+G

(
a>jxi

)]
−y>i (Axi)

 , (3.20)

the empirical version of F3, and h1 and h2 are regularizers on A and L respectively. Two

natural choices for h2 would be h2(L) = λ2‖L‖∗ the nuclear norm and h2(L) = I{‖L‖∗ ≤

λ2} the indicator of the nuclear norm ball, both relating to the nuclear norm of L, since

L is approximately low rank due to the influence of a relatively small number of latent

variables. We may choose different forms for h1 depending on our assumptions about the

structure of A. For example, if A is assumed sparse, we may use h1(A) = λ1‖v(A)‖1, the

`1 norm applied element-wise to the vectorized A matrix. These examples are extensions

to the “sparse and low-rank” models, which have been shown under certain geometric

incoherence conditions to be identifiable [17]. In other words, if the sparse component is

not too low-rank, and if the low-rank component is not too sparse, then A and L can be

recovered uniquely.

3.2.2 Connection to Related Problems

In this section, we show how the SILVar model can be used in various problem settings

commonly considered throughout the literature.
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Generalized Robust PCA

Though we posed our initial problem as a regression problem, if we take our measurement

vectors to be xi = ei the canonical basis vectors (i.e., so that the overall data matrix

X = I), then we arrive at

Ŷ = ĝ(Â + L̂). (3.21)

This is precisely the model behind Generalized Robust PCA [52], but with the twist of

estimating the link function as well [53]. What is worth noting is that although we arrived

at our model via a regression problem with latent variables, the model itself is also able to

describe a problem that arises from very different assumptions on how the data is generated

and structured.

We also note that the SILVar model can be modified to share a space with the General-

ized Low-Rank (GLR) Models [54]. The GLR framework is able to describe arbitrary types

of data with an appropriate choice of convex link function g determined a priori, while the

SILVar model is restricted to a certain continuous class of convex link functions but aims

to learn this function. The modification is simply a matrix factorization L = UV (and

“infinite” penalization on A). The explicit factorization makes the problem non-convex

but instead block convex, which still allows for alternating convex steps in U with fixed

V (and vice versa) to tractably reach local minima under certain conditions. Nonetheless,

due to the non-convexity, further discussion of this particular extension will be beyond the

scope of this work and remains as an interesting direction for future investigation.

Extension to Autoregressive Models

We can apply the SILVar model to learn from time series as well. Consider a set of N time

series each of length K, X ∈ RN×K . We assume the noise at each time step is independent

(note that, with this assumption, the time series are still dependent across time), and take
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in our previous formation, yi ← xk and xi ← xk−1:k−M = (x>k−1 . . .x
>
k−M)> so that the

model of order M takes the form,

x̂k = g

(
M∑
i=1

(
A(i) + L(i)

)
xk−i

)
, (3.22)

and learn it using the optimization problem,

(ĝ, Â, L̂) = argmin
g,A,L

F̂4(X, g,A + L) + h1(A) + h2(L)

s.t. g = ∇G ∈ C1,

(3.23)

where A =
(
A(1) . . .A(M)

)
and L =

(
L(1) . . .L(M)

)
and

F̂4(X, g,A)=
1

K−M

K∑
k=M+1

 N∑
j=1

[
G∗(xjk)+G

(
M∑
i=1

a
(i)
j xk−i

)]
−x>k

(
M∑
i=1

A(i)xk−i

) ,
where A(i) =

(
a

(i)
1 . . . a

(i)
N

)>
, similarly to before. Note that the analysis in the previous

section follows naturally in this setting, so that here rank(Li) ≤ r+1. Then, the matrix A

may be assumed to be group sparse, relating to generalized notions of Granger Causality [9,

20], and one possible corresponding choice of regularizer taking the form

h1(A) = λ1

∑
i,j

∥∥∥(a(1)
ij . . . a

(M)
ij

)∥∥∥
2
.

Another structural assumption could be that of the Causal Graph Process model

h1(A) = λ1‖v(A(1))‖1 + λ2

∑
i 6=j

‖A(i)A(j) −A(j)A(i)‖2
F

from the previous chapter (2.4). Since this particular regularization is again block convex,

convex steps can still be taken in each A(i) with all other blocks A(j) for j 6= i fixed, for

a computationally tractable algorithm to reach a local minimum under certain conditions.

However, further detailed discussion will remain outside the scope of this chapter.

The hidden variables in this time series model can even possibly model underlying trends

in the data. For example, one year of daily temperature measurements across a country

could be related through a graph based on geographical and meteorological features, but

all exhibit the same significant trend due to the changing seasons. In previous work, a
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standard pipeline is to detrend the data as a preprocessing step, and then estimate or use

a graph to describe the variations of the data on top of the underlying trends [3, 16, 32].

Instead, the time series can also be modeled as a modified autoregressive process, depending

on a low-rank trend L′ = (`′1 . . . `
′
K) ∈ RN×K and the variations of the process about that

trend,

x̂k = g

(
`′k +

M∑
i=1

A(i)
(
xk−i − `′k−i

))
. (3.24)

Substituting this into Equation (3.22) yields

`′k+
M∑
i=1

A(i)
(
xk−i−`′k−i

)
=

M∑
i=1

(
A(i)+L(i)

)
xk−i =⇒

M∑
i=1

L(i)xk−i=`
′
k−

M∑
i=1

A(i)`′k−i (3.25)

Thus we estimate the trend using ridge regression for numerical stability purposes but

without enforcing L′ to be low rank. We can accomplish this via the simple optimization,

L̂′=argmin
L′

K∑
k=M+1

∥∥∥∥∥`′k−
M∑
i=1

A(i)`′k−i−
M∑
i=1

L(i)xk−i

∥∥∥∥∥
2

2

+ λ‖L′‖2
F (3.26)

with λ being the regularization parameter. In this way, the extension of SILVar to autore-

gressive models can allow joint estimation of the effects of the trend and of these variations

supported on the graph, as will be demonstrated via experiments in Section 3.5.

3.3 Efficiently Learning SILVar Models

In this section, we describe the formulation and corresponding algorithm for learning the

SILVar model. Surprisingly, in the single-task setting, learning a SIM is jointly convex in

g and a as demonstrated in [49]. The pseudo-likelihood functional F̂3 used for learning the

SILVar model in (3.23) is thus also jointly convex in g, A, and L by a simple extension

from the single-task regression setting.

Lemma 5 (Corollary of Theorem 2 of [49]). The F̂3 in the SILVar model learning prob-

lem (3.18) is jointly convex in g, A, and L.

This convexity is enough to ensure that the learning can converge and be computation-
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ally efficient. Before describing the full algorithm, one detail remains: the implementation

of the LMR introduced in Section 3.1.3.

3.3.1 Lipschitz Monotonic Regression

To tackle LMR, we first introduce the related simpler problem of monotonic regression,

which is solved by a well-known algorithm, the pooled adjacent violators (PAV) [55]. The

monotonic regression problem is formulated as

PAV(y,x)
∆
= argmin

g

n∑
i=1

(g(xi)− yi)2

s.t. 0 ≤ g
(
x[j+1]

)
− g

(
x[j]

)
for j = 1, . . . , n− 1.

(3.27)

The PAV algorithm has a complexity of O(n), which is due to a single complete sweep

of the vector y. The monotonic regression problem can also be seen as a standard `2

projection onto the convex set of monotonic functions.

We introduce a simple generalization to the monotonic regression,

GPAVt(y,x)
∆
= argmin

g

n∑
i=1

(g(xi)− yi)2

s.t. t[j+1] ≤ g
(
x[j+1]

)
− g

(
x[j]

)
for j = 1, . . . , n− 1.

(3.28)

This modification allows weaker (if ti < 0) or stronger (if ti > 0) local monotonicity

conditions to be placed on the estimated function g. Let t[1] = 0 and s[i] =
i∑

j=1

t[j], and in

vectorized form,

s
∆
= cusum(t). (3.29)

Then, we can rewrite,

GPAVt(y,x) = argmin
g

n∑
i=1

(g(xi)− si − (yi − si))2

s.t. 0 ≤ g
(
x[j+1]

)
−s[j+1]−

(
g
(
x[j]

)
−s[j]

)
for j = 1, . . . , n− 1,

(3.30)

which leads us to recognize that

GPAVt(y,x) = PAV(y − s,x) + s. (3.31)
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Returning to LMR (3.11), we pose it as the projection onto the intersection of 2 convex

sets, the monotonic functions and the functions with upper bounded differences, for which

each projection can be solved efficiently using GPAV (for the second set, we can use GPAV

on the negated function and negate the result). Thus to perform this optimization effi-

ciently utilizing PAV as a subroutine, we can use an accelerated Dykstra’s Algorithm [56],

which is a general method to find the projection onto the non-empty intersection of any

number of convex sets. The accelerated algorithm can has a geometric convergence rate for

O(log n) passes, with each pass utilizing PAV with O(n) cost, for a total cost of O(n log n).

We make a brief sidenote that this is better than the O(n2) in [57] and simpler than the

O(n log n) in [58] achieved using a complicated tree-like data structure, and has no learn-

ing rate parameter to tune compared to an ADMM-based implementation that would also

yield O(n log n). We provide the steps of LMR in Algorithm 4 as a straightforward appli-

cation of the the accelerated Dykstra’s algorithm, but leave the details of the derivation

of the acceleration to [56]. In addition, the numerical stability parameter is included to

handle small denominators, but in practice we did not observe the demoninator falling

below ε = 10−9 in our simulations before convergence.

While the GPAV allows us to quickly perform Lipschitz monotonic regression with our

particular choice of t, it should be noted that using other choices for t can easily generalize

the problem to bi-Hölder regression as well, to find functions in the set

Cu,β`,α = {g : ∀y > x, `|y − x|α ≤ g(y)− g(x) ≤ u|y − x|β}.

This set may prove interesting for further analysis of the estimator and is left as a topic

for future investigation.
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Algorithm 4 Lipschitz monotone regression (LMR)

1: Let t1 = 0 and compute t[i+1] = x[i+1] − x[i], s = cusum(t). Set numerical stability

parameter 0 < ε < 1, error =∞, and tolerance 0 < δ < 1.

2: Initialize g
(0)
` = PAV(y,x), g

(0)
u = −PAV(−y + s,x) + s, v0 = 0, v1 = gu−g`, w = gu,

k = 0

3: while error ≥ δ do

4: g
(k+1)
` ← PAV

(
g

(k)
u − v0,x

)
5: g

(k+1)
u ← −PAV

(
−(g

(k+1)
` − v1) + s,x

)
+ s

6: v0 ← g
(k+1)
` − (g

(k+1)
u − v0)

7: v1 ← g
(k+1)
u − (g

(k+1)
` − v1)

8: if
∣∣∣‖g(k)

` −g
(k)
u ‖2

2+(g
(k+1)
` −g

(k+1)
u )>(g

(k)
` −g

(k)
u )
∣∣∣≥ε then

9: α(k+1) ← ‖g(k)
` −g

(k)
u ‖22

‖g(k)
` −g

(k)
u ‖22+(g

(k+1)
` −g(k+1)

u )>(g
(k)
` −g

(k)
u )

10: z← g
(k)
u + α(k+1)(g

(k+1)
u − g

(k)
u )

11: else

12: z← 1
2
(g

(k+1)
` + g

(k+1)
u )

13: end if

14: error ← ‖z−w‖2

15: w← z

16: k ← k + 1

17: end while

18: return z
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3.3.2 Optimization Algorithms

With LMR in hand, we can outline the algorithm for solving the convex problem (3.19).

This procedure can be performed for general h1 and h2, but proximal mappings are efficient

to compute for many common regularizers. Thus, we describe the basic algorithm using

gradient-based proximal methods (e.g., accelerated gradient [38], and quasi-Newton [59]),

which require the ability to compute a gradient and the proximal mapping.

In addition, we can compute the objective function value for purposes of backtrack-

ing [60], evaluating algorithm convergence, or computing error (e.g., for validation or test-

ing purposes). While our optimization outputs an estimate of g, the objective function

depends on the value of G and its conjugate G∗. Though we cannot necessarily determine

G or G∗ uniquely since G+ c and G both yield g as a gradient for any c ∈ R, the value of

G(x) +G∗(y) is unique for a fixed g. To see this, consider G̃ = G+ c for some constant c.

Then,

G̃(x) + G̃∗(y) = G(x) + c+ max
z

[zy − G̃(z)]

= G(x) + c+ max
z

[zy −G(z)− c]

= G(x) + max
z

[zy −G(z)]

= G(x) +G∗(y)

(3.32)

This allows us to compute the objective function by performing the cumulative nu-

merical integral of ĝ on points v(Θ) (e.g., G=cumtrapz(theta,ghat) in Matlab). Then,

a discrete convex conjugation (also known as the discrete Legendre transform (DLT) [61])

computes G∗.

We did not notice significant differences in performance accuracy due to our implemen-

tation using quasi-Newton methods and backtracking compared to an accelerated proximal

gradient method, possibly because both algorithms were run until convergence. Thus, we

show only one set of results. However, we note that the runtime was improved by imple-
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menting the quasi-Newton and backtracking method.

Algorithm 5 Single Index Latent Variable (SILVar) Learning

1: Initialize Â = 0, L̂ = 0

2: while not converged do Proximal Methods

3: Computing gradients:

Θ← (Â + L̂)X

ĝ← LMR(v(Y), v(Θ))

∇AF3 = ∇LF3 =
∑
i∈I

(ĝ(θi)− yi) x>i

4: Optionally compute function value:

Ĝ← cumtrapz(v(Θ), ĝ)

Ĝ∗ ← DLT(v(Θ), Ĝ, v(Y))

F̂3 =
∑
ij

Ĝ∗(yij) + Ĝ(θij)− yijθij

5: end while

6: return (ĝ,A,L)

Algorithm 5 describes the learning procedure and details the main function and gra-

dient computations while assuming a proximal operator is given. The computation of the

gradient and the update vector depends on the particular variation of proximal method

utilized; with stochastic gradients, the set I ⊂ {1, . . . , n} could be pseudorandomly gen-

erated at each iteration, while with standard gradients, I = {1, . . . , n}. The cumtrapz

procedure takes as input the coordinates of points describing the function ĝ. The DLT

procedure takes as its first two inputs the coordinates of points describing the function Ĝ,

and as its third input the points at which to evaluate the convex conjugate Ĝ∗.

Here, an observant reader may notice the subtle point that the function G∗ may only be
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defined inside a finite or semi-infinite interval. This can occur if the function g is bounded

below and/or above, so that G has a minimum/maximum slope, and G∗ is infinite for

any values below that minimum or above that maximum slope of G (to see this, one may

refer back to the definition of conjugation (3.2)). Fortunately, this does not invalidate our

method. It is straightforward to see that ĝ(x) = x is always a feasible solution and that

Ĝ∗(y) = y2/2 is defined for all y; thus starting from this solution, with appropriately cho-

sen step sizes, gradient-based algorithms will avoid the solutions that make the objective

function infinite. Furthermore, even if new data yj falls outside the valid domain for the

learned Ĝ∗ and we incur an “infinite” loss using the model, evaluating ĝ
((

Â + B̂
)

xj

)
is still well defined. This problem is not unique to SIM’s, as assuming a fixed link func-

tion g in a GLM can also incur infinite loss if new data does not conform to modeling

assumptions implicit to the link function (e.g., the log-likelihood for a negative y under a

non-negative distribution), and making a prediction using the learned GLM is still well-

defined. Practically, the loss for SILVar computed using the DLT may be large, but will

not be infinite [61].

3.4 Performance

We now provide conditions under which the optimization recovers the parameters of the

model.

First let us establish a few additional notations needed. Let (g̃, Ã, L̃) be the best

Lipschitz monotonic function, sparse matrix, and low-rank matrix that models the true

data generation. Let Ã be sparse on the index set S of size |S| = sA and

L̃ = UΛV>
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be the SVD of L̃, where

U ∈ RM×rL

Λ ∈ RrL×rL

V ∈ RN×rL

where rL = rank(L̃). Then, for a generic matrix A, let AS be equal to A on S and 0 on

Sc, so that

ÃS = Ã

AS + ASc = A,

and for a generic matrix L, let

LR = L− (I−UU>)L(I−VV>)

LRc = L− LR

so that L̃R = L̃ and trivially LRc + LR = L. Consider the set of approximately S-sparse

and R-low-rank matrices

Bγ(S,R) = {(Φ,Ψ) : γ‖ΦSc‖1 + ‖ΨRc‖∗ ≤ 3(γ‖ΦS‖1 + ‖ΨR‖∗)}.

Intuitively, this is the set of matrices for which the energy of Φ is on the same sparsity set

as Ã and similarly the energy of Ψ is in the same low-rank space as L̃. Finally, let the

marginalization of the loss functional w.r.t. g be

m̂(Y,X,A) = min
g∈C1

F̂3(Y,X, g,A),

the value of the marginalized function at the true matrix parameters be

̂̃g = min
g∈C1

F̂3(Y,X, g, Ã + L̃),

the Hessian of the marginalized functional w.r.t. the matrix parameter be

Ĩ = ∇2
v(A)m̂(Y,X, Ã + L̃),
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and denote the quadratic form in shorthand

‖v‖Ĩ = v>Ĩv.

Now, consider the following assumptions:

1. There exists some α > 0 such that

‖Φ + Ψ‖Ĩ ≥ α‖Φ + Ψ‖2
F , ∀(Φ,Ψ) ∈ Bγ(S,R).

This is essentially a Restricted Strong Convexity condition standard for structured

recovery [62].

2. Let
̂̃
Γ ∈ RM×K be the matrix with columns given bŷ̃

Γk = ̂̃g((Ã + L̃)xk)− yk, k = 1, . . . , K.

Then for some λ > 0 and γ > 0,

1

K

∥∥∥̂̃ΓX>
∥∥∥
∞
≤ λγ/2

1

K

∥∥∥̂̃ΓX>
∥∥∥

2
≤ λ/2

where ‖A‖∞ is the largest element of A in magnitude, and ‖A‖2 is the largest singular

value of A.

This states that the error is not too powerful and is not too correlated with the

regression variables, and it is also similar to standard conditions for structured re-

covery.

3. Let τ = γ
√

sA
rL

and µ = 1
32rL(1+τ2)

, then

max(‖Φ‖2, ‖Ψ‖∞/γ)

γ‖Φ‖1 + ‖Ψ‖∗
≤ µ, ∀(Φ,Ψ) ∈ Bγ(S,R).

This is a condition on the incoherence between the sparsity set S and low rank sub-

space R (see [17, 52, 63, 64] for other similar variations on rank-sparsity incoherence

considered previously). Basically, this states that S should be such that S-sparse

matrices are not approximately low-rank, while R should be such that R-low-rank

matrices are not approximately sparse.

59



Then we have the following result,

Theorem 6. Under Assumptions 1-3, the solution to the optimization problem (3.23)

satisfies

‖Â− Ã‖F ≤
3λγ
√
sA

α

(
2+

√
2

2+τ 2

)
≤

9λγ
√
sA

α
(3.33)

‖L̂− L̃‖F ≤
3λ
√
rL

α

(
2+

√
2τ 2

1+2τ 2

)
≤

9λ
√
rL

α
. (3.34)

We give the proof for this theorem in Appendix B.2. The theorem relates the perfor-

mance of the optimization to conditions on the problem parameters. Of course, in practice

these conditions are difficult to check, since they require knowledge of ground truth. Even

given ground truth, verifying Assumption 3 requires solving another separate non-convex

optimization problem. Thus, future directions for work could include investigation into

which kinds of sparse matrix (or network) models for A and low-rank models L produce

favorable scaling regimes in the problem parameters with high probability.

3.5 Experiments

We study the performance of the algorithm via simulations on synthetically generated data

as well as real data. In these experiments, we show the different regression settings, as

discussed in Section 3.2.2, under which the SILVar model can be applied.

3.5.1 Synthetic Data

The synthetic data corresponds to a multi-task regression setting. The data was generated

by first creating random sparse matrix Af = (A B) where B ∈ Rm×H and H = bhpc the

number of hidden variables, and h is the proportion of hidden variables. The elements of

Af were first generated as i.i.d. Normal variables, and then a sparse mask was applied
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to A choose bm log10(p)c non-zeros, and B was scaled by a factor of 1
3
√
H

. Next, the

data Xf = (X> Z>)> were generated with each vector drawn i.i.d. from a multivariate

Gaussian with mean 0 and covariance matrix Σf ∈ R(p+H)×(p+H). This was achieved by

creating Σ
1/2
f by thresholding a matrix with diagonal entries of 1 and off-diagonal entries

drawn from an i.i.d. uniform distribution in the interval [−0.5, 0.5] to be greater than

0.35 in magnitude. Then Σ
1/2
f was pre-multiplied with a matrix of i.i.d. Normal variables.

Finally, we generated

Y = g(AfXf ) + W (3.35)

for 2 different link functions

g1(x) = log(1 + ec1x)

g2(x) =
2

1 + e−c2x
− 1,

(3.36)

and W is added i.i.d. Gaussian noise. Then, the task is to learn (ĝ, Â, L̂) the SILVar

model (3.18) from (Y,X) without access to Z. As comparison, we use an Oracle GLM

model, in which the true g is given but the parameters (Âo, L̂o) still need to be learned. We

note that while there is a slight mismatch between the true and assumed noise distributions,

the task is nonetheless difficult, yet our estimation using the SILVar model can still exhibit

good performance with respect to the Oracle.

The experiments were carried out across a range of problem sizes. The dimension of

yi was fixed at m = 25. The dimension of the observed xi was set to p ∈ {25, 50}, and

the proportion of the dimension of hidden zi was set to h ∈ {0.1, 0.2}. The number of

data samples was varied in k ∈ {25, 50, 100, 150, 200}. Validation was performed using a

set of samples generated independently but using the same Af and g, and using a grid

of (λS, λL) ∈
{

10i/4
∣∣i ∈ {−8,−7, . . . , 7, 8}

}2
. The whole process of data generation and

model learning is repeated 20 times for each experimental condition. The average `1 errors

between the true A and the best estimated Â (determined via validation) are shown in
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Figure 3.1.
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Figure 3.1: Different errors for estimating A in Toy Data

The first row is for the function g1 and the second row is for the function g2 for the

various experimental conditions. The empirical results show that the SILVar model and

learning algorithm lose out slightly on performance for estimating the link function g but

overall still match the Oracle fairly well in most cases. We also see that SILVar performs

better than just the sparse SIM [46], but that the purely sparse Oracle GLM can still

provide an improvement over SILVar for not knowing the link function. We also see several

other intuitive behaviors for both the SILVar and Oracle models: as we increase the amount

of data n, the performance increases. Note that due to the scaling of weights B by the factor
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of 1/
√
H to keep the average power ‖B‖F roughly constant, increasing the proportion of

hidden variables (from h = 0.1 to h = 0.2) did not directly lead to significant performance

decreases. We also note that g2 seems to be somehow more difficult to estimate than g1,

and additionally that the performance of the SILVar model w.r.t. the Oracle model is worse

with g2 than with g1. This could have something to do with the 2 saturations in g2 as

opposed to the 1 saturation in g1, corresponding in an intuitive sense to a more non-linear

setting that contains more information needing to be captured while estimating ĝ.

3.5.2 Temperature Data

In this setting, we wish to learn the graph capturing relations between the weather patterns

at different cities. The data is a real world multivariate time series consisting of daily

temperature measurements (in ◦F) for 365 consecutive days during the year 2011 taken at

each of 150 different cities across the continental USA.

Previously, the analysis on this dataset has been performed by first fitting with a 4th

order polynomial and then estimating a sparse graph from an autoregressive model using

a known link function g(x) = x assuming Gaussian noise [32].

Here, we fit the time series using a 2nd order AR SILVar model (3.22) with regularizers

for group sparsity

h1(A) = λ1

∑
i,j

∥∥∥(a(1)
ij . . . a

(M)
ij

)∥∥∥
2

(3.37)

where a
(m)
ij is the ij entry of matrix A(m), and nuclear norm

h2(L) = λ2

M∑
i=1

∥∥L(i)
∥∥
∗ . (3.38)

We also estimate the underlying trend using (3.26).

In Figure 3.2, we plot the original time series, estimated trends, the estimated network,

and residuals. The plots are all from time steps 3 to 363, since those are the indices for the
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Figure 3.2: Time series, link function, trends, and prediction errors computed using the

learned SILVar model

trends that we can reliably estimate using the simple procedure (3.26). In Figure 3.2a, we

show the original time series, which clearly exhibit a seasonal trend winter–summer–winter.

Figure 3.2b shows the estimated link function ĝ, which turns out to be linear, though a

priori we might not intuitively expect a process as complicated as weather to behave this
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way when sampled so sparsely. Figures 3.2c and 3.2d show the full prediction

x̂k =
M∑
i=1

(Â(i) + L̂(i))xk−i (3.39)

and the residuals

xk − x̂k, (3.40)

respectively. Note the much lower vertical scale in Figure 3.2d. Figures 3.2e and 3.2f show

the trend L̂′ learned using (3.26) and the time series with the estimated trend removed,

respectively. The trend estimation procedure captures the basic shape of the seasonal

effects on the temperature. Several of the faster fluctuations in the beginning of the year are

captured as well, suggesting that they were caused by some larger scale phenomena. Indeed

there were several notable storm systems that affected the entire USA in the beginning of

the year in short succession [65, 66].

Figure 3.3 compares two networks Â′ estimated using SILVar and using just sparse

SIM without accounting for the low-rank trends, both with the same sparsity level of 12%

non-zeros for display purposes, and where

â′ij =
∥∥∥(â(1)

ij . . . â
(M)
ij

)∥∥∥
2
.

Figure 3.3a shows the network Â′ that is estimated using SILVar. The connections imply

predictive dependencies between the temperatures in cities connected by the graph. It is

intuitively pleasing that the patterns discovered match well previously established results

based on first de-trending the data and then separately estimating a network [32]. That

is, we see the effect of the Rocky Mountain chain around −110◦ to −105◦ longitude and

the overall west-to-east direction of the weather patterns, matching the prevailing winds.

In contrast to that of SILVar, the graph estimated by the sparse SIM shown in Figure 3.3b

on the other hand has many additional connections with no basis in actual weather pat-

terns. Two particularly unsatisfying cities are: sunny Los Angeles, California at (−118, 34),

with its multiple connections to snowy northern cities including Fargo, North Dakota at
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(a) Weather graph learned using SILVar

(b) Weather graph learned using Sp. SIM (without low-rank)

Figure 3.3: Learned weather stations graphs
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(−97, 47); and Caribou, Maine at (−68, 47), with its multiple connections going far west-

ward against prevailing winds including to Helena, Montana at (−112, 47). These do not

show in the graph estimated by SILVar and shown in Figure 3.3a.

3.5.3 Bike Traffic Data

The bike traffic data was obtained from HealthyRide Pittsburgh [67]. The dataset contains

the timestamps and station locations of departure and arrival (among other information)

for each of 127,559 trips taken between 50 stations within the city from May 31, 2015 to

September 30, 2016, a total of 489 days.

We consider the task of using the total number of rides departing from and arriving

in each location at 6:00AM-11:00AM to predict the number of rides departing from each

location during the peak period of 11:00AM-2:00PM for each day. This corresponds to

Y ∈ N50×489
0 and X ∈ N100×489

0 , where N0 is the set of non-negative integers, and A,L ∈

R50×100. We estimate the SILVar model (3.18) and compare its performance against a

sparse plus low-rank GLM model with an underlying Poisson distribution and fixed link

function gGLM(x) = log(1 + ex). We use n ∈ {60, 120, 240, 360} training samples and

compute errors on validation and test sets of size 48 each, and learn the model on a grid

of (λS, λL) ∈
{

10i/4
∣∣i ∈ {−8,−7, . . . , 11, 12}

}2
. We repeat this 10 times for each setting,

using an independent set of training samples each time. We compute testing errors in

these cases for the optimal (λS, λL) with lowest validation errors for both SILVar and

GLM models.

We also demonstrate that the low-rank component of the estimated SILVar model

captures something intrinsic to the data. Naturally, we expect people’s behavior and thus

traffic to be different on business days and on non-business days. A standard pre-processing

step would be to segment the data along this line and learn two different models. However,
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as we use the full dataset to learn one single model, we hypothesize that the learned

low-rank L̂ captures some aspects of this underlying behavior.
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Figure 3.4: (a) Root mean squared errors (RMSEs) from SILVar and Oracle models; (b)

Link function learned using SILVar model

Figure 3.4a shows the test Root Mean Squared Errors (RMSEs) for both SILVar and

GLM models for varying training sample sizes, averaged across the 10 trials. We see that

the SILVar model outperforms the GLM model by learning the link function in addition

68



to the sparse and low-rank regression matrices. Figure 3.4b shows an example of the link

function learned by the SILVar model with n = 360 training samples. Note that the learned

SILVar link function performs non-negative clipping of the output, which is consistent with

the count-valued nature of the data.
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Figure 3.5: Receiver operating characteristics (ROCs) for classifying each day as a business

day or non-business day, using the low-rank embedding provided by L̂ learned from the

SILVar model and using the full data

We also test the hypothesis that the learned L̂ contains information about whether a

day is business or non-business through its relatively low-dimensional effects on the data.

We perform the singular value decomposition (SVD) on the optimally learned L̂ = ÛΣ̂V̂>

for n = 360 and project the data onto the r top singular components X̃r = Σ̂rV̂
>
r X. We

then use X̃r to train a linear support vector machine (SVM) to classify each day as either a

business day or a non-business day, and compare the performance of this lower dimensional

feature to that of using the full vector X to train a linear SVM. If our hypothesis is true
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then the performance of the classifier trained on X̃r should be competitive with that of

the classifier trained on X. We use 50 training samples of X̃r and of X and test on the

remainder of the data. We repeat this 50 times by drawing a new batch of 50 samples each

time. We then vary the proportion of business to non-business days in the training sample

to trace out a receiver operating characteristic (ROC).

In Figure 3.5, we see the results of training linear SVM on X̃r for r ∈ {1, ..., 6} and

on the full data for classifying business and non-business days. We see that using only

the first two singular vectors, the performance is fairly poor. However, by simply taking 3

or 4 singular vectors, the classification performance almost matches that of the full data.

Surprisingly, using the top 5 or 6 singular vectors achieves performance greater than that

of the full data. This suggests that the projection may even play the role of a de-noising

filter in some sense. Since we understand that behavior should correlate well with the day

being business or non-business, this competitive performance of the classification using

the lower dimensional features strongly suggests that the low-rank L̂ indeed captures the

effects of latent behavioral factors on the data.

Finally, in Figure 3.6, we plot the (i, i) entries of the optimal Â at n = 360. This

corresponds to locations for which incoming bike rides at 6:00AM-11:00AM are good pre-

dictors of outgoing bike rides at 11:00AM-2:00PM, beyond the effect of latent factors such

as day of the week. We may intuitively expect this to correlate with locations that have

restaurants open for lunch service, so that people would be likely to ride in for lunch or

ride out after lunch. This is confirmed by observing that these stations are in Downtown

(-80,40.44), the Strip District (-79.975, 40.45), Lawrenceville (-79.96, 40.47), and Oak-

land (-79.96, 40.44), known locations of many restaurants in Pittsburgh. It is especially

interesting to note that Oakland, sandwiched between the University of Pittsburgh and

Carnegie Mellon University, is included. Even though the target demographic is largely
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Figure 3.6: Intensities of the self-loop at each station

within walking distance, there is a high density of restaurants open for lunch, which may

explain its non-zero coefficient. The remainder of the locations with non-zero coefficients

aii are also near high densities of lunch spots, while the other locations with coefficients

aii of zero are largely either near more residential areas or near restaurants more known

for dinner or nightlife rather than lunch, such as Shadyside (x ≥ −79.95) and Southside

(y ≤ 40.43)).

3.6 Conclusion

Data exhibit complex dependencies, and it is often a challenge to deal with non-linearities

and unmodeled effects when attempting to uncover meaningful relationships among various

interacting entities that generate the data. We introduce the SILVar model for perform-

ing semi-parametric sparse regression and estimating sparse graphs from data under the
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presence of non-linearities and latent factors or trends. The SILVar model estimates a non-

linear link function g as well as structured regression matrices A and L in a sparse and

low-rank fashion. We justify the form of the model and relate it to existing methods for

general PCA, multi-task regression, and vector autoregression. We provide computation-

ally tractable algorithms for learning the SILVar model and demonstrate its performance

against existing regression models and methods on both simulated and real data sets,

namely 2011 US weather sensor network data and 2015-2016 Pittsburgh bike traffic data.

We see from the simulated data that the SILVar model matches the performance of an

Oracle GLM that knows the true link function and only needs to estimate A and L; we

show empirically on the temperature data that the learned L can capture the effects of

underlying trends in time series while A represents a graph consistent with US weather

patterns; and we see that, in the bike data, SILVar outperforms a GLM with a fixed link

function, the learned L encodes latent behavioral aspects of the data, and A discovers

notable locations consistent with the restaurant landscape of Pittsburgh.
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Chapter 4

Time Varying Graphs and Principal

Network Analysis

Until this chapter, we have considered stationary models in which the parameters of the

models – the networks – stay constant through time. Now, we wish to extend these models

to the non-stationary case for estimating graph structures that themselves vary in time.

We wish to capture significant changepoints of the graphs that otherwise vary smoothly

between these points if they exist. Furthermore, we desire an interpretable basis that

characterizes the variation of these graphs.

4.1 Notation and Related Works

In this section, we will describe some possible modifications to the previously considered

models to capture non-stationarity, several existing methods for time varying graphs in

these settings, and the challenges that can arise.

We continue to consider multivariate generalized linear models, so that different as-

sumptions about the nature of the non-linearity and non-stationarity lead to various esti-
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mators and algorithms.

To reduce notational clutter when convenient, define

A = (v(A1) . . . v(AK))> ∈ RK×MN , (4.1)

which collects matrices Ak ∈ RM×N through time index k, and v(A) denotes the vector-

ization of a matrix A. Also, we use the various shorthand forms

θkj = θj(Ak) = θ(Ak,xj) = Akxj (4.2)

so that the model is allowed to change at each time step k, and the interpretation for θkj

is the linear part of the model prediction made by using the network from time k on data

from time j. The actual model itself only makes sense at k = j, but we will see shortly

why we wish to have the notational flexibility to describe these offset k 6= j quantities.

Returning to our model, we have the familiar

E[yk|xk] = g (Akxk) = g (θkk) , (4.3)

with a possibly non-linear link function g and an associated loss functional at time k of

the general offset form

fj(Ak) =
1

N

[
1>
(
G∗(yj) +G(θkj)

)
− θ>kjyj

]
(4.4)

where g = ∇G. As currently specified, the model is overdetermined. In the following,

we review assumptions from prior art that restrict the model space and make the model

estimation statistically tractable.

4.1.1 Related Works

The main assumptions take the form that the model does not change “too quickly” (or

“too often”) through time. This is characterized with respect to some metric for signal

smoothness. This assumption tends to take on two primary variants: 1) bounded total

variation (TV); or 2) Lipschitz temporal gradient. The behavior of these variants can lead
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to strikingly different qualitative interpretations. Low total variation can be viewed as

switching between networks at discrete changepoints, whereas Lipschitz gradient can be

viewed as a slowly evolving network.

One method for enforcing smoothness on the learned model is to impose a hidden

Markov model in a nonparametric Bayesian setting [68]. This model is flexible in imposing

low TV by allowing the number of switched networks to be learned simultaneously with the

networks themselves. However, it requires Markov Chain Monte Carlo (MCMC) sampling

to learn, which provides a more detailed picture about the final learned model than a point

estimate but for which convergence of the sampler is in general known to be difficult to

determine [69]. For this reason, theory for the resulting estimate is harder to establish.

It additionally does not address the presence of latent variables, although it is possible

to incorporate into the framework. Instead, we put our emphasis on optimization based

approaches and deal with the effects of latent variables.

Optimization based methods also come in several flavors. One approach to impose

Lipschitz gradient is to simply use a kernel estimator [13] to obtain locally stationary

solutions [70] using our offset loss functionals from (4.4),

Âk = argmin
Ak

K∑
j=1

wkjfj(Ak) + h(Ak), (4.5)

where wkj is the kernel weight of a symmetric kernel with some bandwidth η centered at

k evaluated at j, and h(A) is a regularizer on the sparsity of the network whose form

we omit for simplicity. This is embarrassingly parallel, and allows estimating the network

at a single time point without needing to compute those at other time points if deemed

irrelevant. However, the smoothness of the kernel makes it more challenging to interpret

for detecting discrete changepoints as the low TV setting allows.

Alternatively, an approach for enforcing low total variation [14] is to regularize the
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difference between neighboring time points

Â = argmin
A

K∑
k=1

fk(Ak) +
K∑
k=2

‖Ak −Ak−1‖F . (4.6)

This group sparse regularizer encourages the difference between networks at adjacent time

points to either be all zero or non-zero. This minimization is over all networks A1, . . . ,AK

through A defined in (4.1). It couples the problem across time points, so that the solution

is a joint estimator and is no longer so simply parallelized. Furthermore, while this model

can capture significant changepoints, it is less able to describe smoother variation.

4.1.2 Local Linear Regression and Changepoints

The main conceptual workhorse for our approach is still kernel regression. However, we

consider a locally linear regression instead of a vanilla kernel regression. This has the

benefit of a lower bias near boundaries of the dataset, so it is natural to adopt for our

purposes of changepoint detection. Changepoints can be thought of as a boundary that

appears in the middle of the data; alternatively, the boundaries can be thought of as

changepoints at the edges of the data domain.

The local linear regression estimator is defined similarly to the kernel estimator. For

a clean signal xk, noise signal vk, and noisy observations yk = xk + vk, the local linear

regression estimator is

(âk, b̂k) = argmin
ak,bk

K∑
j=1

wkj‖yj − (ak + (j − k)bk)‖2
2, (4.7)

where âk is an estimate for the value of the clean signal xk at time k, while b̂k represents

an estimate for the slope of the clean signal xk at time k. This estimator, as compared to

kernel regression, has a lower bias near the edges of the data [71].

We will be borrowing a clever use of the local linear regression [72, 73] that estimates

smooth 1D signals with discrete discontinuities. They formulate several related problems
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with varying kernels,

(â
(i)
k , b̂

(i)
k ) = argmin

ak,bk

K∑
j=1

w
(i)
kj ‖yj − (ak + (j − k)bk)‖2

2, (4.8)

for i ∈ {`, c, r} denoting left, center, and right, respectively, for which the difference be-

tween the estimators is in the kernel weights. Specifically, w
(c)
kj is still a symmetric kernel

centered at k evaluated at j, but

w
(r)
kj =


w

(c)
kj j ≥ k

0 j < k

w
(`)
kj = w

(r)
jk .

(4.9)

The intuition behind this suite of estimators is that, qualitatively, each estimator will

perform best in certain settings depending on the presence and location of changepoints.

Consider a single changepoint at location k′. For some small enough κ relative to the kernel

bandwidth η, if k ∈ [k′−κ, k′), then both the right and center estimators will smooth data

with two different local signal values from across the changepoint, while the left estimator

will only use data with one local signal value; hence, we would expect the left estimator to

be the best. Similarly, we expect the right estimator to perform best when k ∈ (k′, k′+ κ].

Finally, when there is no changepoint, we would expect the center estimator to be the best

since it uses more relevant data and the underlying signal is actually smooth, matching

the model assumption.

Given this intuition, how do we quantitatively decide which estimator of the three to

use? At each time point, we can compute the empirical residuals of each estimator for

i ∈ {`, c, r},

ε̂
(i)
k

∆
=

K∑
j=1

w
(i)
kj ‖yj − (ak + (j − k)bk)‖2

2. (4.10)
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Letting γc = γ ≥ 0 and γ` = γr = 1, we take the index and estimator

Ik = argmin
i∈{`,c,r}

γiε̂
(i)
k

âk = â
(Ik)
k .

(4.11)

The exact value of γ depends on assumptions about various problem settings, including

those on the noise variance, minimum magnitude of the changepoints, and kernel width

and shape, just to name a few. Some practical considerations for choices of γ are discussed

below equation (4.20) in section 4.2.1.

4.1.3 Matrix Decompositions

Consider the problem of expressing a given matrix as the product of two matrices

A = CB> (4.12)

where A ∈ RM×N , C ∈ RM×R, and B ∈ RN×R for some R > 0. In general, if rank(A) ≤ R

for some positive integer R, then there can be infinite solutions for the matrices C and B.

Particular structure may be imposed on C and/or B to obtain desired properties or inter-

pretations. These two matrices can be determined by any number of matrix factorization

algorithms, such as a straightforward R-rank singular value decomposition in which

A = UΣV>

C =UΣβ B = VΣ1−β
(4.13)

for some choice of β ∈ [0, 1], typically.

This solution can be seen as a common starting point that can give rise to other

solutions, since the existence of the SVD is guaranteed while its computation is stable [74],

and it yields one nice structure, with U and V defining orthonormal bases. However,

since we expect in our application the networks to have different types of structure both

temporally (smooth) and spatially (sparse), we would naturally expect any reasonably

interpretable decomposition to exhibit qualitatively similar behavior. The SVD does not
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necessarily give us these behaviors. Thus, we consider matrix factorization techniques that

can give rise to a temporally smooth U and a spatially sparse V (where we associate time

with U and network structure with V indirectly via our arbitrary choice of how to stack

A as in (4.1)).

There are many algorithms for performing matrix factorization, such as probabilistic

frameworks that utilize sampling [75]. Again, we focus on optimization based frameworks.

Many of these tend to center around variational methods [76] or ADMM [77, 78]. Ulti-

mately, we choose to use inertial Proximal Alternating Linear Minimization (iPALM) [79].

The iPALM method has similarities in form with ADMM, as they both utilize the sepa-

rability of the objective function and computationally fast proximal operators. However,

iPALM guarantees that certain types of nonconvex optimization problems, including reg-

ularized matrix factorization, converge to local minima via an adaptive choice of step size.

We provide more details on implementation in section 4.3.

4.2 Smooth Regression with Changepoints

We propose an optimization based approach that learns time varying graph structure

jointly based on the full time series data and attempt to bridge the gap between a smooth

solution and the estimation of changepoints, as previously discussed. Our method offers

the parallelizability of the previous smooth approach while being able to capturing both

smooth variation and significant jumps.

4.2.1 Formulation and computation

To reduce notational clutter, we omit the low-rank component, but the formulations follow

exactly analogously from Chapter 3 (i.e., we can consider the additive low-rank contribution
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from latent variables as A←A+L). We formulate three related locally linear regression

based optimization problems,

(Â(i), Â′(i)) = argmin
A,A

F (i)(A,A′)

∆
= argmin

A,A

K∑
k=1

K∑
j=1

w
(i)
kj fj(Ak + (j − k)A′k) + λh(A)

(4.14)

for i ∈ `, c, r, and where h(A) is a regularizer on the structure of A, the N × N matrix

A′ corresponds to the instantaneous time derivative of A and is essentially a nuisance

parameter in our setting, and the superscripts of `, c, r denote left, center, and right,

respectively. For h1(A), we can consider for example a group sparsity that corresponds to

Granger causality if A is autoregressive (AR) coefficient matrices, similar to before,

h(A) =
K∑

k=M+1

∑
i,j

‖akij‖2 (4.15)

where akij =
(

[Ak,1]ij . . . [Ak,M ]ij

)
, the vectors collecting the ij elements of the respective

AR coefficient matrices across all lag orders. Again, as before, we can consider alternate

forms of prior assumptions, including the commutativity corresponding to graph filters

in the Causal Graph Process model from chapter 2. However, since it is a non-convex

penalty, further discussion will remain outside the scope of this chapter but is noted as an

interesting direction for future work.

With each of these three estimators, we can see that they remain still trivially paral-

lelizable across time points k,

(Â
(i)
k , Â

′(i)
k ) = argmin

Ak,A
′
k

F
(i)
k (Ak,A

′
k)

∆
= argmin

Ak,A
′
k

K∑
j=1

w
(i)
kj fj(Ak + (j − k)A′k) + λh1(Ak)

(4.16)

where h1(Ak) simply acts on one of the Ak.

Then following the intuition from section 4.1.2, at each time point, we can compute the
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empirical residuals of each estimator for i ∈ {`, c, r},

ε̂
(i)
k

∆
=

K∑
j=1

w
(i)
kj fj

(
Â

(i)
k + (j − k)Â

′(i)
k

)
(4.17)

In general, we can also use our favorite loss functions between the estimates and the true

values,

ε̃
(i)
k

∆
=

K∑
j=1

w
(i)
kjD

(
g
(
θj

(
Â

(i)
k + (j − k)Â

′(i)
k

)) ∥∥∥yj

)
. (4.18)

Letting γc = γ ≥ 0 and γ` = γr = 1, we take the estimate

Ik = argmin
i∈{`,c,r}

γiε̂
(i)
k

Âk = Â
(Ik)
k ,

(4.19)

where again γ is determined by the problem setting, and in practice could be chosen via

some validation procedure. Finally, the changepoints can be detected by considering the

set of indices for which

Ĵ =
{
k : (Ik = `)

⋂
(Ik+1 = r)

}
. (4.20)

This tends to produce smooth behavior except near the changepoints, where the one-

sided estimators are used. As an extra post-processing step, we may compute the central

estimate on the boundaries of the contiguous segments to ensure smoothness in these

regions.

For γ = 0, we always choose the central estimator and declare no changepoints, while

for γ → ∞ we never choose the central estimator. This range of γ values draws out the

ROC for the changepoint detector. In fact, it is shown in [72, 73] that, when λ = 0, even

γ > 1 implies (theoretically) never using the central estimator in the interior of the interval,

and thus they advise against this. However, we argue that, if a quick implementation is

desired, we could implicitly choose γ = ∞ by forgoing the computation of the central

estimator altogether in the first pass. We would instead compare the crossover points for

the errors of the left and right estimators to estimate changepoints.

Then, as a smooth solution is desired, we can run the central estimator on the contiguous

81



segments as in the optional post-processing step described previously. This gives us one

fewer parameter and lower computation at the cost of some robustness, as this requires

both left and right estimators to be estimated reasonably well. Using this modification,

we would detect more false changepoints that might otherwise be classified as being best

fit by the central estimator under a regime for which γ ≤ 1.

This intuition leads to a speedup of the original detection scheme for generic γ as well.

We can first find all the potential changepoints as determined by these crossovers. Then

only at the two time points on either side of the crossover, compute the central estimators

to verify that the left and right estimators are indeed better fit than the central (i.e., that

Ik 6= 0 for either of these points).

Finally, we point out that formulating this problem as a generic regression allows us

to consider graphs as either directed or undirected, as established previously (Chapter 3,

Section 3.2.2). To estimate directed graphs on a time series, we may for example use an

autoregressive model 
yk

xk

Ak

←


xk

(x>k−1 . . . x>k−M)>

(Ak,1 . . . Ak,M)

 (4.21)

and to estimate undirected graphs, for example,
yk

xk

Ak

←


xk

xk

(11> − I)�Ak

 (4.22)

where in row i we regress [xk]\i (all indices of xk except for the ith) on [xk]i (the ith index

of xk) by enforcing Ak to have 0’s on the diagonal. In general, we can also enforce any

arbitrary nonzero structure J ∈ {0, 1}M×N on Ak if we have corresponding prior structural

information on the graph matrix.
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4.2.2 Estimation Procedure

Since our optimization problems (4.14) are convex, to produce our estimates, we can use

any number of convex algorithms to solve the formulation. For concreteness, we provide

an outline for one such approach using proximal gradient methods.

The gradient computations required are,

∂F (i)

∂Ak

∆
= Ek = J�

K∑
j=1

w
(i)
kj (g(θkj)− yj) x>j

∂F (i)

∂A′k

∆
= Hk = J�

K∑
j=1

(j − k)w
(i)
kj (g(θkj)− yj) x>j

(4.23)

where J is the binary mask enforcing the 0 structure. We can let E and H collect and

stack {Ek} and {Hk} (respectively) the same way as A collects and stacks {Ak},

E = (v(E1) . . . v(EK))>

H = (v(H1) . . . v(HK))> .

(4.24)

Finally, we need the proximal operators for the regularizers,

prox1(Ak, t) = argmin
Y

1

2
‖Ak −Y‖2

F + th1(Y) (4.25)

For h1(Ak) =
∑

i,j ‖akij‖2, we have

Sk = prox1(Ak, t)

=⇒skij =


(
‖akij‖

2
−t

‖akij‖
2

)
akij ‖akij‖2 > t

0 ‖akij‖2 ≤ t

,
(4.26)

where the indexing of skij within Sk is the same as that of akij within Ak, which corresponds

to a form of group soft thresholding that can be performed quickly.

To put it all together, algorithm 6 describes the full proximal gradient implementation.
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4.3 Principal Network Analysis

While our method for estimating time-varying networks is fairly general, in many cases we

might expect that the graphs vary in time as a linear combination of some small set of so

called “Principal Networks.” Thus, we can decompose the estimated set of time varying

graphs as

A = CB>, (4.31)

where C ∈ RK−M×R collects the time-varying weights and B ∈ RMN2×R are the vectorized

Principal Networks. The matrices C and B can be determined by any number of matrix

factorization algorithms. We use an inertial version of Proximal Alternating Linearized

Minimization (PALM, or iPALM for the inertial version) because of its theoretical guar-

antee of convergence to stationary points without requiring a tuning parameter [79, 80].

We perform matrix factorization on the output from algorithm 6 directly. To reduce

notational clutter, we omit the low-rank component, but the formulations follow exactly

analogously from Chapter 3 (i.e., we can consider the additive low-rank contribution from

latent variables as A←A+L). Before we pose the optimization problem, we introduce the

regularization to be used. For some R > 0, let

Ãk = Ã(B, ck) =
R∑
r=1

c
(r)
k B(r), (4.32)

where

ck = (c
(1)
k . . . c

(R)
k )> ∈ RR×1

C = (c1 . . . cK)> ∈ RK×R

B(r) ∈ RM×N

B =
(
v(B(1)) . . . v(B(R))

)
∈ RMN×R

Ã = CB> ∈ RK×MN .

(4.33)

Let our sparsity regularizer be h1(B). For concreteness, in the autoregressive (AR)
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setting we may choose a group regularization corresponding to Granger Causality,

h1(B) =
R∑
r=1

‖brij‖2
(4.34)

where similarly to before brij =

([
B

(r)
1

]
ij
. . .

[
B

(r)
M

]
ij

)
, the vectors collecting the ij

elements of the respective AR coefficient matrices across all lag orders.

Also, let our low rank regularizer be

h∗(Ã) =
1

2

(
‖C‖2

F + ‖B‖2
F

)
. (4.35)

Now, we give the matrix factorization optimization problem,

argmin
B,C

Fmf(B,C)
∆
=

1

2
‖Â −CB>‖2

F + λ∗h∗(Ã) + λ1h1(B). (4.36)

The Principal Network Analysis (PNA) yields sparse B that can be viewed as our

principal networks, which fundamentally underlie the process and are present at any given

time point in some linear combination with each other, with temporally smoothly varying

weights C potentially with changepoints as a result of A being estimated in the same

way. We could alternatively regularize C to be smooth (e.g., via a grouped sparse version

of Total Generalized Variation [81]) while not regularizing B or even to regularize both.

However, since we perform this factorization on the estimated Â, which is already sparse

and smooth, it is somewhat redundant and only increases the computational complexity.

To solve our nonconvex problem (4.36) using iPALM, we require a gradient computation

on the smooth parts of the loss function and proximal operator computations for the non-

smooth parts. Let

H(B,C) =
1

2
‖Â −CB>‖2

F + λ∗h∗(Ã). (4.37)

The gradient computations required are
∂H

∂B
= Q>C + λ∗B

∂H

∂C
= QB + λ∗C,

(4.38)

where Q = CB> − Â. To apply iPALM, we also need to compute an upper bound for the
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following Lipschitz constants,

LB(C)
∆
=

∥∥∂H
∂B (U ,C)− ∂H

∂B (V ,C)
∥∥
F

‖U − V‖F

Lc(B)
∆
=

∥∥∂H
∂C

(B,U)− ∂H
∂C

(B,V)
∥∥
F

‖U−V‖2

.

(4.39)

Thus we consider∥∥∥∥∂H∂B (U ,C)− ∂H
∂B

(V ,C)

∥∥∥∥
F

= ‖(U − V)C>C + λ∗(U − V)‖F

≤
(
‖C>C‖F + λ∗

)
‖U − V‖F

=⇒ LB(C) ≤ LB(C)
∆
= ‖C‖2

F + λ∗.

(4.40)

Similarly, ∥∥∥∥∂F∂C
(B,U)− ∂F

∂C
(B,V)

∥∥∥∥
F

= ‖(U−V)B>B + λ∗(U−V)‖F

=⇒ LC(B) ≤ LC(B)
∆
= ‖B‖2

F + λ∗.

(4.41)

These upper bounds on the Lipschitz constants adaptively determine the step sizes in

each coordinate block at each iteration, and thus they are slightly loose but more straight-

forward to compute than some other possible tighter bounds. Thus iPALM requires a bit

more derivation up front to apply, but does not need tuning for step sizes, as compared to

ADMM, which does not require the Lipschitz computation, but has a step size or learning

rate parameter that can require properly tuning or setting in more challenging non-convex

problems [77, 78].

Finally, we need the proximal operators for the regularizers,

prox1(B, t) = argmin
Y

1

2
‖B − Y‖2

F + th1(Y)

proxs(C, t) = C,

(4.42)

which can be solved quickly using soft thresholding. Putting everything together, we have

algorithm 7.

We note that a natural direction for an interesting line of future work would be to

combine these two steps of first estimating a time varying graph and then performing

matrix factorization into a single joint formulation that directly learns the factors, or
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iterates between the two steps as subproblems. This could bridge the gap between a full

temporally coupled solution and its computation, since the factorized form would have

fewer total parameters to estimate.

4.4 Experiments

We test the time varying graph estimation on simulated and real data sets. We perform

principal network analysis on the results of a US Senate voting record data set to yield the

principal networks that we show has interpretable meaning in the context of the contem-

porary political climate.

4.4.1 Simulated Data

We generated networks of size N ∈ {25, 50} of length K ∈ {100, 250}. We generated A

randomly as Erdös-Rényi in structure and N (0, 1) in weight with a diagonal uniformly

generated in [1, 2). We generate the time-varying weights as piecewise constants with mag-

nitude generated uniformly at random in [2, 4) plus a sinusoid of magnitude also generated

uniformly at random in [1/4, 1/2), in which changepoints are generated uniformly at ran-

dom in
[
K−M
R+1

(i− 1
8
), K−M

R+1
(i+ 1

8
)
)

for i = 1, . . . , R where R is the number of changepoints.

This is a fairly difficult setting conceptually, as the non-zero structure of the graphs is actu-

ally constant throughout the duration of the time series as all of the true underlying graphs

are present, but the magnitudes change, so that the changepoints are jumps in magnitude

rather than structural changes in existence of edges. In figure 4.1, we see that the near the

detected changepoint, using the same sparsity regularization parameter λ, the networks

estimated with the changepoints are somewhat better able to capture the weights on either

side of the changepoint, while the central estimator seems to average too strongly across
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Figure 4.1: Graphs of the top 50 edges

the changepoint, resulting in weaker edges. We show in figure 4.2 the performance of our

Figure 4.2: Time series of elements of graph adjacency matrix and corresponding errors
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estimation method as compared to the central estimator for λ = 0.1 and w
(c)
kj ∝ e−

(j−k)2
200 . In

figure 4.2 each line represents the time series of the weights corresponding to one edge. We

see that using our method, the changepoint is estimated well, and the overall error is less

than that of the normal central kernel estimate. We note that the estimated magnitudes

of the edge weights for the graph are shrunken as a result of the regularization, and also

that there is still some bias towards 0 at the boundaries. This suggests an extension of the

method would be to let the regularization parameter λ vary through the interval rather

than stay constant. A proper time profile of the λ value would be of interest.

4.4.2 US Senate Voting Data

We also compiled K = 500 votes from the United States senate roll call records of ses-

sions 111-112, corresponding to a period from 2010-2011 [82, 83]. There are 2 senators

from each of 50 states, so that there are at most N = 100 senators voting on each item.

However, instead of directly tracking a growing and shrinking network composed of in-

dividual senators, we track the seat that the senator occupies, so that the time series of

votes generated by senators continue being produced by their replacements. We treat yes

votes as +1, no votes as −1, and abstentions/vacancies as 0 so that the time series is

X ∈ {−1, 0,+1}100×500 (see figure 4.3).

Since a significant portion of votes is nearly unanimous and/or procedural as according

to senate rules, as opposed to actually debated and/or legislative and thus truly infor-

mative, it is unclear that modeling the effect that temporally neighboring votes have on

each other is more meaningful than recovering the reciprocal relations (at least using the

frameworks presented in this chapter). For some examples of such unanimous or procedu-

ral votes, see table 4.1 [83]. Thus, we apply the undirected graph estimation model from

equation (4.22) with the low-rank component included to track the network of relations
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Figure 4.3: Time series of votes by seat, yellow (+1) for Yea, blue (-1) for Nay, and green

(0) for abstention/vacant seat.

Table 4.1: Examples of unanimous/procedural votes

Yea - Nay Outcome Purpose

97 - 0 Agreed to A resolution honoring the victims and heroes of the

shooting. . . in Tucson, Arizona.

96 - 1 Agreed to . . . to provide penalties for aiming laser pointers at air-

planes. . .

100 - 0 Confirmed Confirmation Robert S. Mueller, III, of California, to be

Director of the Federal Bureau of Investigation

0 - 97 Rejected . . . budget request for the United States Government for

fiscal year 2012, and. . . budgetary levels for fiscal years

2013 through 2021.
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among the senate.

We use a slightly different sparsity regularization to account for the symmetric structure

of the adjacency matrix to be estimated,

h(A) =
∑
k

∑
i<j

‖([Ak]ij [Ak]ji)‖2 .

Figure 4.4: Top: time series of entries of estimated graph adjacency. Each color is one

time element of the matrix. Middle: Changepoints detected by algorithm. Bottom: Actual

party affiliations for each seat, yellow for Republican, blue for Democrat.

We see at the top of figure 4.4 the N2 = 104 individual elements of the estimated

adjacency matrix, one color for each ij entry plotted as a function of time k. In the middle,

we see that the algorithm detected a changepoint at timepoint 349. In the bottom of the

figure, we see evidence that there was actually the start of a new session (transition from

111-112) at timepoint 264 (Jan. 2011) in which 5 new senators were elected of the opposite

political party to the previous senator they replaced (Republicans replacing Democrats).

This happened as the so-called “Tea Party,” which started as a vocal grassroots movement

and was active in organizing national demonstrations, had gained major traction in the
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US Republican Party [84]. However, there is a significant lag in the detection of this

changepoint. We conjecture that this is due to the large segment of largely uninformative

unanimous votes in the beginning of the new session (see figure 4.3) that were predicted

equally well (or poorly) under either left or right model.

In figures 4.5 and 4.6, we compare estimated networks using our method and the cen-

tral kernel estimate from k = 175 and k = 425, corresponding to two points respectively

before and after the start of the new session as well as the detected changepoint. The top

layouts are achieved by using a planar force-directed embedding based on the edges esti-

mated in Âk (in particular, we use the Fruchterman-Reingold [44] layout as implemented

in MATLAB R© version 2018a). Intuitively, shorter average path lengths between nodes

correspond to larger forces and lower distances in the planar embedding. The bottom lay-

outs are computed using the top layouts as initialization points. Neighboring points vote

more similarly, signifying ideological closeness. We additionally label seats according to the

ground truth party of the senator occupying them at that time, with Republicans in red,

Democrats in blue, and the Independent in yellow. In figure 4.5, we can see that the graph

clearly shows the polarization between the two parties. Interestingly, the Independent is

shown as ideologically closer to the democrats but on the closest edge to the Republi-

cans. Indeed, the Independent is Senator Sanders, whom we know to hold views that are

espoused by both parties, but in 2016 ultimately ran in the Democratic primary race to

try to become the party’s presidential candidate. In addition, we point out two seats, 7

(Arkansas) and 27 (Indiana) who were Democratic prior to the election, but switched to

Republican afterwards. These senators were on the boundary of the Democratic cluster to

begin with, which is consistent with the fact that both states historically lean Republican

as measured by the previous 8 presidential elections (2008 was in fact an exception for

Indiana, while 1992 and 1996 were exceptions for Arkansas as the Democratic candidate
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Figure 4.5: Top: Estimated adjacency graph from middle of first session; Bottom: Esti-

mated adjacency graph from middle of second session; Left: Our method; Right: Central

estimator

was from Arkansas) [85, 86]. Also, we note that the shapes of the clusters change, with the

Democratic clique flattening while the Republican clique stretches. We must be careful in
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drawing any conclusions from this phenomenon, but this could weakly support (i.e., not

provide any evidence to disprove) the conclusions drawn by political researchers claiming

that official recognition of the “Tea Party Movement” and its unity resulted in the Re-

publican Party moving ideologically further away from the previous center of the political

space [87, 88]. Finally, we see that the two methods estimate very similar graphs, showing

that our method performs a similar estimation to the smooth central kernel estimator in

regimes away from changepoints.

In figure 4.6, we visualize graphs estimated on either side of the detected changepoint

at k = 349, this time much closer to the changepoint. We see that the central kernel

shows less change between the two timepoints, while there is a noticeable difference across

the changepoint in our method. In the top row, there is also some movement relative to

the timepoints visualized in figure 4.5, possibly corresponding to posturing ahead of the

election. Continuing our previous interpretations, this could be the existing Republicans

trying to maintain their seats over “Tea Party” primary challengers [87]. We clarify one

subtlety on this theory: though the visualized timepoint is actually after the beginning of

the new session, the kernel bandwidth is such that the votes from before in the old session

still influence the estimated graph in both methods, as the visualized timepoint still occurs

before the detected changepoint. Finally, in figure 4.7 we visualize the result of PNA applied

to this dataset, again using a force-directed layout. This time, note that we do not label the

nodes by color since these networks are now across all time, so several seats could be either

red or blue depending on the time. We find that the first two Principal Networks (PN)

capture the main overall polarized structure of the two parties. PN 3, on the other hand,

seems to highlight the most salient and influential seats in the senate. In this case, we see

visually that the time series for PN 3 has the largest time derivatives, so that the network

corresponds to the edges that had the largest changes throughout the dataset. Again,
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Figure 4.6: Top: Estimated adjacency graph from the first session near the detected change-

point; Bottom: Estimated adjacency graph from the second session near the detected

changepoint; Left: Our method; Right: Central estimator

Independent senator Sanders (89) is seen towards the interior of the network, indicating

the existence of many edges with many seats with all manner of ideologies. We see that
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Figure 4.7: Principal Networks of the senator voting record; Bottom-right: relative time-

varying weights for each network

seat 25 is also towards the center of this network. Interestingly, this is Democratic senator

Burris from Illinois, who was specially appointed by the governor as a result of then-senator

Obama’s resignation after his election to the presidency in 2008, who retired prior to the
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beginning of the new session to be replaced by Republican senator Kirk. This change in

ideologies occurring before the single detected changepoint was clearly not large enough in

magnitude to result in another changepoint, but rather it led to the seat seeming to share

ideologies across both parties and a strong presence in PN 3 as a seat with many large

enough edges changing smoothly.

4.5 Conclusion

We have presented a framework for learning the fundamental graphs that underlie a system

described by smooth graphs with potential changepoints. This framework includes a time-

varying graph estimation method that is easily parallelized, as a middle ground to existing

methods for estimating time-varying graphs. The framework additionally uses a provably

convergent matrix factorization to find the fundamental graphs. We demonstrate the use

of this framework on simulated data as well as real US senate voting records for identifying

interesting entities within the network and the times at which salient events occurred.
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Algorithm 6 TV Graphs using proximal gradient descent

Require: Threshold factor γ > 0, regularization parameter λ > 0, max. iterations tmax.

1: Initialize (A(i),A′(i)) = (0,0) or randomly, set iteration t = 0, initial step size s0.

2: while not converged and t < tmax do (in parallel over k)

3: Compute gradients using equation (4.23):

Ek ←
∂F (i)

∂Ak

Hk ←
∂F (i)

∂A′k
. (4.27)

4: Compute proximal step

Ak ← prox1(Ak − stEk, stλ)

A′k ← A′k − stHk.

(4.28)

5: t← t+ 1

6: end while

7: for k ∈ {M + 1, . . . , K} do (in parallel)

8: Compute empirical errors and select indices

ε̃
(i)
k =

K∑
j=1

w
(i)
kjD

(
g
(
θj

(
Â

(i)
k + (j − k)Â

′(i)
k

)) ∥∥∥yj

)
Ik = argmin

i∈{`,c,r}
γiε̃

(i)
k

Âk = Â
(Ik)
k ,

(4.29)

9: end for

10: Compute changepoints

Ĵ =
{
k : (Ik = `)

⋂
(Ik+1 = r)

}
. (4.30)

11: (Optional for smoothness) Compute central estimate near boundaries

12: return Â, Ĵ
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Algorithm 7 PNA using iPALM with two coordinate blocks

1: Let t = −1. Set ε = ∞, and tolerance δ > 0. Overloading superscripts to denote the

iteration, initialize C−1 = C0 = rand(K−M × R) and B−1 = B0 = rand(MN2 × R)

or with R-rank SVD.

2: while ε ≥ δ and t < tmax do

3: t← t+ 1

4: Set inertial coefficient ζ = t
t+3

5: Update B with fixed C:

Use inertia: Y = Bt + ζ(Bt − Bt−1)

Compute gradient and Lipschitz constant for B from (4.38) and (4.41):

Gb = ∂BF (Y) Lb = LB(Ct)

Apply Proximal operator from (4.42):

Bt+1 = prox1(Y − Gb/Lb, λ1,b/Lb)

(4.43)

6: Update C with fixed B:

Use inertia: Z = Ct + ζ(Ct −Ct−1)

Compute gradient and Lipschitz constant for c from (4.38) and (4.40):

GC = ∂CF (z) Lc = LC(Bt+1)

Apply Proximal operator from (4.42):

Ct+1 = proxs(Z−Gc/Lc, λs,c/Lc) = Z−Gc/Lc

(4.44)

7: Compute error ε←

∥∥∥∥∥
(
Bt+1

Ct+1

)
−

(
Bt

Ct

)∥∥∥∥∥
F

/∥∥∥∥∥
(
Bt

Ct

)∥∥∥∥∥
F

8: end while

9: return (Bt,Ct)
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Chapter 5

Conclusion

This thesis addressed several challenges associated with learning meaningful networks that

describe unstructured time series data. Techniques for estimating graphs from data should

produce an interpretable result even in the presence of noise. In addition, we are often not

able to directly measure or control for every possible variable that might have an influence

on our observed data. Finally, the graph itself may change through time as the process

evolves on top of it. We provided a thorough collection of problem formulations, accompa-

nying algorithms, and theoretical analysis to tackle these various issues. Our approach in-

volved utilizing sparse and low-rank optimization methods to produce interpretable results

in presence of noise and latent variables; non-parametric regression to describe nonlineari-

ties; and kernel estimation and matrix factorization to capture non-stationary behavior of

the networks in time.

In chapter 2, we started with applications to Graph Signal Processing in a linear setting

under Gaussian noise. We detailed computationally friendly algorithms for learning these

networks. We evaluated the performance of the algorithms theoretically and empirically.

We analyzed estimation error and conducted experiments on simulated data and real US

temperature sensor network data.
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In chapter 3, we built on this by then considering non-linear processes and addressing

the presence of unobserved variables. We established bounds on the modeling error incurred

by the effects of the nonlinearity on the influence of the hidden variables. Then we outlined

the tractable algorithm for learning the graph, the effects of hidden variables, and the non-

linearity. We provide conditions under which the estimation of the graph structure performs

well. Then we wrapped up the chapter by using the algorithm to estimate networks on

simulated data, to revisit the US temperature dataset, and to find insights about a bicycle

sharing network in our beloved Pittsburgh, Pennsylvania.

Finally, we arrived at Principal Network Analysis (PNA) in chapter 4. We extended

the ideas taken from these stationary methods to non-stationary settings to estimate time-

varying graphs in chapter 4. We propose a scheme for simultaneously detecting change-

points in the graphs while allowing the intermediate intervals to be smooth. We also

describe a method for decomposing the time series of graphs into a collection of “principal

networks” that may be somehow foundational to the system while we observe it and are

present with differing weights throughout the course of the process. We demonstrate the

method on US Senate voting records and find that the results from performing PNA iden-

tified a salient election and transition, highlighted important senate seats, and provided a

picture for the overall dynamics of the country’s contemporary political climate consistent

with some prevailing theories.

The major contributions of this thesis are:

1. Providing a comprehensive optimization-based approach for estimating graphs from

time series data;

2. Effectively handling both directed and undirected networks by framing the problem

generically such that we may apply structural constraints to the graph adjacency

matrix to be learned;
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3. Inferring the effects of trends and latent variables on the observed data and separating

out its presence from that of the desired graph;

4. Applying the developed methods to learn time-varying networks, with a particular

focus on the case in which we suspect the networks vary as a combination of a set of

“Principal Networks” that are fundamental to the system.

One direction for future analysis would be to relax the strict sparsity assumption for

Causal Graph Process estimation. Instead, one could consider matrices that are approxi-

mately sparse, with weights that fall off in magnitude.

Another idea would be to characterize how graph topology affects the assumptions

made in establishing the performance of the CGP estimator of chapter 2. This could be

either statistically as random ensembles or via summary statistics on an instantiated graph.

Though we briefly explored this question empirically, it would be enlightening to have a

quantitative description of the behavior we observed.

A next step in the analysis for SILVar presented in chapter 3 would be to provide

further conditions on the data generation that could guarantee estimation performance.

This could include showing that the assumptions are satisfied either with high probability

or exactly by: considering noise from a certain family of random variables; enforcing a

deterministic bound on the range of the data; or imposing some limits on the abilities or

knowledge of an attacker in an adversarial setting.

One natural extension for Principal Network Analysis as described in chapter 4 would

be to combine the matrix factorization with the time-varying graph estimation, perhaps in

an interative fashion. This extension would correspond to one possible point in the tradeoff

space between a fully-coupled solution and the embarrassingly parallel solution.

An additional interesting area of exploration would be providing performance guaran-

tees on the time-varying estimation. This includes results for accuracy in learning both the
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graph and the locations of the changepoints. It also includes convergence results for the

combined formulation described in the previous paragraph, since the full iterative problem

does not automatically inherit convergent behavior from its subproblems.

A promising future application for this work is in analysis of neuroscience data. In fact,

it is a collection of binary neural probe array spiking time series that inspired the directions

for chapters 3 and 4 (specifically the nonlinearities in the binary data and the time-varying

nature of the tasks in the experiments from which the data was generated). Learning

the time-varying functional connectivity between the neurons observed by probe arrays

could inform neuroscientists of how the information flows during certain tasks and yield

insights into how the brain regions operate and interact. Some preliminary experiments

of our methods on such data gave results consistent with basic sanity checks. However,

a thorough analysis still requires both more care in the application of the method and

domain expertise guiding the interpretation of the results.
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Appendix A

Proofs for Chapter 2 on Causal

Graph Processes

A.1 Proof of Lemma 2

Lemma 2. Assume (A1) that xk is generated according to the CGP model with A satisfy-

ing (A5). Suppose (A7) that the sample size K is large enough. Let di>0 with i=1, ..., 3

be universal constants, and let g(Q) = d3

(
1 + 1+Q2

(2−Q)2

)
and `MNK =

√
(logM + logN)/K.

With εA = d1 exp{−d2K/ω
2}, λ1 = 4g(Q)`MNK, and R̂ = (R̂1, . . . , R̂M) the solution

to (2.15), with probability at least 1− εA, Â = R̂1 satisfies the inequalities

‖Â−A‖1 ≤ 256SMN`MNKQ
2g(Q)σu/σ`

‖Â−A‖2 ≤ ‖Â−A‖F ≤ δA
∆
= 64

√
SMN`MNKQ

2g(Q)σu/σ`

where ω = σu
σ`

Q2

µmin(Ã)
as defined in (A7).

First we define several quantities that correspond to the “stability” of the system and

are used throughout the proof. Let A(z) = I−
M∑
i=1

Pi(A, c)zi and Ã(z) = I− zÃ where Ã
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is the system matrix for the stacked state in companion form. That is,

Ã=



A P2(A, c) . . . PM−1(A, c) PM(A, c)

I 0 . . . 0 0

0 I . . . 0 0

...
...

. . .
...

...

0 0 . . . I 0


, (A.1)

x̃k = Ãx̃k−1 + w̃k where x̃k = (x>k . . . x>k−M)> and w̃k = (w>k 0> . . . 0>)>. Then define

µmax(A) = max
|z|=1
‖A(z)‖2

µmin(A) = min
|z|=1
‖(A(z))−1‖−1

2 .

Now we proceed with the proof.

Proof of Lemma 2. To use Propositions 4.1-4.3 from [10], we bound the quantities µmin(A)

and µmax(A). Letting B(z) = I−A(z),

√
µmax(A) ≤ 1+max

|z|=1
|z| ‖A‖2+

M∑
i=2

max
|z|=1

|zi| ‖Pi(A, c)‖2

≤ 1 + L+
M∑
i=2

i∑
j=0

|cij | ‖Aj‖2

≤ 1 + L+ L
M∑
i=2

i∑
j=1

|cij |+
M∑
i=2

|ci0|

≤ (1 + L+ Lρ+ ρ) = Q (A.2)

by assumption (A5), and similarly√
µmin(A) = min

|z|=1

∥∥(I− B(z))−1
∥∥−1

2

(a)

≥ 1−max
|z|=1
‖(B(z))‖2 ≥ 2−Q,

where the inequality marked (a) is due to assumption (A5) and the rest follows from similar

logic as (A.2). Propositions 4.2-4.3 hold with high probability when T ≥ d0SMN ω̃
2(logM+
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logN), where

ω ≥ ω̃ =
‖Σw‖∥∥Σ−1

w

∥∥−1

µmax(A)

µmin(Ã)
. (A.3)

Thus, we take ω = ω̃, and when assumption (A7) holds, this condition is satisfied as well.

Finally, we substitute these upper and lower bounds for µmin(A) and µmax(A) into the

statements of Proposition 4.1 to yield the statement of Lemma 2.

A.2 Proof of Lemma 3

Lemma 3. Suppose that assumptions (A1)-(A8) hold. Then for any 0 < β < ν < 1/2,

and sM ≤ d4K/ log n and λ2 ≥ q1, the solution to (2.12) satisfies

P (‖c− ĉ‖1 ≥ δc) ≤ εc

where

δc = 64sMλ2/α1

and

εc =εRe + εA + exp{−d4K
1−2β}

+ εDe + (6M + 1) exp{−d4T
1−2β},

where εRe and εDe are defined in Propositions 3.C and 3.D found in subsections C-D,

respectively, εA is defined in Lemma 2, and α1 and q1 are given as

α1 = κBNT/(2K
ν) + δReK(tr(Σ0) +G

√
N)

q1 = 2LT 1−β
√
NtNπσug(Q) + δAL̂M(δA)

√
Nu,

where

u =2T 1−β√tNπσug(Q)

+ (L+δAL̂(δA))MρK1−β(tr(Σ0) +G
√
N)

and δRe = δAL̂M(δA)n
(

2(1 + L) + δAL̂M(δA)
)

.

We see that the interpretation of this lemma is similar to that of Lemma 2, so that
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taking λ2 = q1 is sufficient to achieve the performance in the lemma. We know that

δA = Θ(
√

logN/K). Then with this choice of λ2, we have α1 = Θ(NK1−ν+G
√
NKδRe) =

Θ(NK + G
√
NKδA) = Θ(NK1−ν +

√
(N logN)K) = Θ(NK1−ν) and u = Θ(

√
NK1−β)

(from the second term) so that q1 = Θ(
√
NK1−β+

√
(N logN)/Ku) = Θ(N

√
logNK1−β);

thus δc = O(q1/α1) = O
(√

logN/K2(ν−β)
)

. Also, note that

εc ∼2 exp{−O(K1−2ν)}+ d1 exp{−O(K)}

+ (12M + 2) exp{−O(T 1−2β)}

∼2 exp{−O(K1−2ν)}+ (12M + 2) exp{−O(T 1−2β)}

∼2 exp{−O(K1−2ν)},

since K1−2ν is the slowest growing exponent.

To prove this lemma, we need two intermediate results showing that 1) a restricted

eigenvalue (Re(α, τ)) condition holds with high probability; and 2) a deviation (De(q)) con-

dition holds with high probability. These two conditions, which will be described shortly,

describe the geometric properties of the objective function in the sparse optimization prob-

lem. Together, these conditions imply the desired result. These conditions are commonly

encountered in sparse estimation, and the proof follows closely [10].

A.2.1 Eigenvalue and Deviation Conditions

We begin with the statements of the two conditions. Let n = (M−1)(M+4)/2, the length

of c.

The Re(α, τ) condition is satisfied for Γ ∈ Rn×n if for all vectors θ ∈ Rn

θ>Γθ ≥ α‖θ‖2
2 − τ‖θ‖2

1. (A.4)

In sparse estimation, this condition is used to show curvature of the objective function

is large enough near the true value of the parameter in sparse directions [89]. In other
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words, large perturbations in the objective function correspond to small perturbations in

the parameter estimate.

The De(q) condition is satisfied for (Γ, γ) ∈ Rn×n × Rn if for the true value of the

parameter c,

‖γ − Γc‖∞ ≤ q. (A.5)

In sparse estimation, this condition intuitively states that the gradients of objective func-

tion are small near the true parameter value [89]. In other words, the estimated parameter

value that minimizes the objective function is near the true parameter value.

A.2.2 Discussion

For our problem, we wish to show that Re(α1, τ) and De(q1) are satisfied for (Γ̂, γ̂) =(
B(Â)>B(Â),B(Â)>Y(Â)

)
with high probability. If these two conditions hold for these

matrices, then the estimate ĉ will satisfy ‖ĉ− c‖1 ≤ 64sMλ2/α1 for λ2≥q1.

Usually, in performance analysis of sparse estimation, these two restricted eigenvalue

and deviation conditions would be shown using the true data (i.e., in our problem, that

Re(α0, τ) and De(q0) are satisfied for (Γ, γ) =
(
B(A)>B(A),B(A)>Y(A)

)
). Matrices

B(A) and Y(A) have entries that can be described by a multivariate Gaussian variable,

so showing the two conditions on (Γ, γ) is relatively straightforward. However in our two-

stage estimation, we can only use the estimated parameter Â instead of the true parameter

A. Thus, the challenge in showing that these two conditions are satisfied comes from only

being able to use the matrices B(Â) and Y(Â) that are complicated random functions

of the true parameters and data, and are no longer described by a multivariate Gaussian

variable.

Our approach is to show that if the two conditions are satisfied on the matrices B(A)

and Y(A), then the two conditions will also be satisfied on the matrices B(Â) and Y(Â)
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that are actually available at the second stage. Thus, we rely on two additional interme-

diate results, which we prove first, showing that these two conditions are indeed satisfied

on the matrices B(A) and Y(A) with high probability. We additionally point out that

although the problem of estimating c is overdetermined, it may still be ill-conditioned due

to the possibly highly correlated form of the data matrices B(A) and Y(A). Since it

is not immediately obvious that the performance would be good, it is important to still

demonstrate that these conditions hold.

To summarize the above discussion, for our problem we first show that Re(α0, τ) and

De(q0) are satisfied for (Γ, γ) =
(
B(A)>B(A),B(A)>Y(A)

)
, and then show that this

implies that Re(α1, τ) and De(q1) are satisfied for (Γ̂, γ̂) =
(
B(Â)>B(Â),B(Â)>Y(Â)

)
.

We show Re(α1,τ) in Proposition 3.C and De(q1) in Proposition 3.D.

A.2.3 Proof of Supplementary Proposition 1

Proposition 3.C. Suppose that assumptions (A1)-(A8) hold. Then for any θ ∈ Rn and

any 0 < ν < 1/2,

P
(
‖B(A)θ‖2

2 ≤ α0‖θ‖2
2 − τ‖θ‖2

1

)
≤ εRe

where τ = d5α0(1+L)4n2G2Kν/(2(log n)κ2
BNT

2), α0 = κBNT/2, and εRe = 2 exp{−d4κ
2
BT/((1+

L)4n2G2K2ν)}.

That is, Re(α0, τ) holds for estimating c using B(A)>B(A) with probability at least 1−εRe.

Proof. This proof follows loosely the proof of Proposition 4.2 in [10], first bounding the

quadratic form of B(A)>B(A) using the Hanson-Wright concentration inequality followed

by a discretization argument.

Let D(A, θ) =

(
D0(A, θ)> D1(A, θ)> ... DK−M−1(A, θ)>

)>
where the block rows of

D(A, θ) are
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Di(A, θ) =

(
0N×Ni P2(A, θ) ... PM (A, θ) 0N×N(K−M−2−i)

)
. Then consider any vector

‖θ‖ ≤ 1,

‖B(A)θ‖22 =
K∑

k=M+1

∥∥∥∥∥
M∑
i=2

Pi(A, θ)xk−i

∥∥∥∥∥
2

2

= ‖D(A, θ)x1:K−2‖22,

(A.6)

where x1:K−2 =

(
x>1 ... x>K−2

)>
. By an extension of Gershgorin’s Circle Theorem to

block matrices [90],

‖D(A, θ)‖2 ≤
M∑
i=2

‖Pi(A, θ)‖2 ≤
M∑
i=2

∥∥∥∥∥
i∑

j=0

θijA
j

∥∥∥∥∥
2

≤
M∑
i=2

i∑
j=0

|θij|‖Aj‖2 ≤ (1+L)
M∑
i=2

i∑
j=0

|θij|

= (1 + L)‖θ‖1 ≤ (1 + L)
√
n‖θ‖2

≤ (1 + L)
√
n.

Now,

‖B(A)θ‖2
2 − E

[
‖B(A)θ‖2

2

]
=‖D(A, θ)x1:K−2‖2

2−E
[
‖D(A, θ)x1:K−2‖2

2

]
(a)

≤ ‖D(A, θ)‖2
2‖Σ0‖NKη ≤ (1 + L)2nGNKη (A.7)

with probability at least 1 − 2 exp{−d4NK min(η, η2)} for some universal constant d4,

where (a) follows from the Hanson-Wright inequality [91]. Then from the discretization

argument of Lemma F.2 [10], for an integer s ≥ 1 (to be specified later) and set K2s =

{θ ∈ Rn : ‖θ‖ ≤ 1, ‖θ‖0 ≤ 2s},

P

(
sup
θ∈K2s

‖B(A)θ‖2
2 − E

[
‖B(A)θ‖2

2

]
≥(1 + L)2nNKGη

)
≤2 exp{−d4NK min(η, η2)+2smin(log n, log(21en/2s))}.

Finally, from Lemmas 12 and 13 in [89] and taking

s= dd4NKη
2/(4 log n)e and η=κBNT/[54(1 + L)2nGNKν ]≤1 with 0 < ν < 1/2 so that

η2 ≤ η where κBNT is the minimum singular value of E[B(A)>B(A)] as defined in (A8),
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we have B(A)>B(A) satisfies Re(κBNT/(2K
ν), κBNT/(2sK

ν)) with probability at least

1− 2 exp{−d4κ
2
BT/((1 + L)4n2G2K2ν)}.

A.2.4 Proof of Supplementary Proposition 2

Proposition 3.D. Suppose that assumptions (A1)-(A8) hold. Then for any 0 < β < 1/2,

P (‖B(A)>e‖∞ ≥ q0) ≤ εDe,

where q0 = 2LT 1−β√NtNπσug(Q) and εDe = 6M exp{−d4T
1−2β}.

That is, De(q0) holds for estimating c using Y(A)B(A) with probability at least 1− εDe.

Proof. The proof is a straightforward application of Proposition 2.4 from [10] and the union

bound (as in the proof of Proposition 4.3). Letting e=Y(A)−B(A)c and T = K −M ,∥∥B(A)>e
∥∥
∞ = max

1≤ i≤M

1≤j≤ i

∣∣∣∣∣
(

K∑
k=M+1

x>k−i(A
j)>wk

)∣∣∣∣∣
≤ max

1≤i≤M

1≤j≤ i

∣∣tr ((Aj)>wM+1:Kx>M−i+1:K−i
)∣∣

≤ max
1≤ i≤M

1≤j≤ i

T‖Aj‖1

∥∥wM+1:Kx>M−i+1:K−i/T
∥∥
∞

(a)

≤ T max
1≤j≤M

√
tN‖Aj‖F

(
πσu

(
1+

1+µmax(A)

µmin(A)

)
η

)
(b)

≤ 2
√
tNT max

1≤j≤M

√
N‖Aj‖2 (πσug(Q)η)

≤ 2LT
√
NtNπσug(Q)η

with probability at least 1−6M exp{−d4T min(η, η2)}, where tN is the maximum sparsity

of Aj as defined in assumption (A5), (a) is implied by Proposition 2.4 from [10] and (b)

is implied by the analysis in Lemma 2. To finish the proof, we take η = T−β for any

0 < β < 1/2, noting that for this choice, η2 < η.

112



A.2.5 Proof of Lemma 3

Armed with these two results, we resume with our lemma.

Proof. From Lemma 2, we have that P (‖Â−A‖2 ≥ δA)≤ εA. First, we consider the Re

condition. Let ∆α = α1 − α0 and B̃ = B(Â)>B(Â)−B(A)>B(A). Then,

P
(
‖B(Â)θ‖22 ≤ α1‖θ‖22 − τ‖θ‖21

)
=P

(
‖B(Â)θ‖2 ≤ (α0+∆α)‖θ‖2−τ‖θ‖21

⋂
‖B̃‖2<∆α

)
+ P

(
‖B(Â)θ‖22 ≤ α1‖θ‖22 − τ‖θ‖21

⋂
‖B̃‖2 ≥ ∆α

)
≤ P

(
‖B(Â)θ‖22≤α0‖θ‖22+θ>B̃θ−τ‖θ‖21

⋂
‖B̃‖2<∆α

)
+ P

(
‖B̃‖2 ≥ ∆α

)
≤P

(
‖B(A)θ‖22 ≤ α0‖θ‖22−τ‖θ‖21

)
+P

(
‖B̃‖2≥∆

⋂
‖Â−A‖2≤δA

)
+P

(
‖Â−A‖2≥δA

)
≤ εRe + εA + P

(
‖B̃‖2 ≥ ∆α

⋂
‖Â−A‖2 ≤ δA

)
.

We bound the last probability by manipulating the first term,

‖B̃‖2 = ‖B(Â)>B(Â)−B(A)>B(A)‖2

≤ ‖B(Â)>B(Â)−B(Â)>B(A)‖2 + ‖B(Â)>B(A)−B(A)>B(A)‖2

≤ ‖B(Â)−B(A)‖2
(

2‖B(A)‖2+‖B(Â)−B(A)‖2
)
.

(A.8)

Under the constraint ‖Â −A‖2 ≤ δA, for any vector ‖θ‖2 ≤ 1 following from the same

logic as (A.7),

‖(B(Â)−B(A))θ‖2
2 = ‖(D(Â, θ)−D(A, θ))x[0 :K − 3]‖2

2

≤
(
δAL̂M(δA)

)2

n‖X‖2
F

and

‖B(A)‖2
2 ≤ (1 + L)2n‖X‖2

F . (A.9)

Thus, letting

δRe
∆
= δAL̂M(δA)n

(
2(1 + L) + δAL̂M(δA)

)
,

we have

‖B̃‖2 ≤ δRe‖X‖2F =⇒P
(
‖B̃‖2≥∆α

⋂
‖Â−A‖2≤δA

)
≤P (‖X‖2F ≥∆α/δRe) ≤ εB, (A.10)
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where by the Hanson-Wright inequality [91], taking ∆α = δReK
1−β(tr(Σ0) + G

√
N), we

have εB = exp{−d4K
1−2β}. Finally,

P
(
‖B(Â)θ‖22 ≤ α1‖θ‖22 − τ‖θ‖21

)
≤ εRe + εA + εB. (A.11)

Second, letting e=Y(A)−B(A)c and ê=Y(Â)−B(Â)c and ∆q = q1 − q0, we consider

the De condition.

P
(∥∥∥B(Â)>ê

∥∥∥
∞
≥ q1

)
≤ P

(∥∥∥B(A)>e
∥∥∥
∞
≥ q0

)
+ P

(∥∥∥B(Â)>ê−B(A)>e
∥∥∥
∞
≥ ∆q

)
≤ εDe+P

(∥∥∥(B(Â)>−B(A)>)e
∥∥∥
∞
≥∆q1

)
+P

(∥∥∥B(Â)>(ê−e)
∥∥∥
∞
≥∆q2

)
,

where ∆q = ∆q1 + ∆q2 . We examine the term∥∥∥∥(B(Â)−B(A)
)>

e

∥∥∥∥
∞

= max
1≤ i≤M

1≤j≤ i

∣∣∣∣∣
(
T−1+i∑
k=i

x>k−i(Â
j −Aj)>wk

)∣∣∣∣∣ (A.12)

= max
1≤ i≤M

1≤j≤ i

∣∣∣tr((Âj−Aj)>wM+1:Kx>M−i+1:K−i

)∣∣∣
≤δAL̂M(δA)

√
NtNmax

1≤i≤M

∥∥wM+1:Kx>M−i+1:K−i
∥∥
∞

(a)

≤ 2δAL̂M(δA)T 1−β
√
NtNπσug(Q)

with probability at least 1− 6M exp{−d4T
1−2β}, where tN is defined in (A6), and in (a)

we again invoke Proposition 2.4 from [10] similarly as in Proposition 3.D.

To finish, we see that

ŵk −wk =
M∑
m=1

m∑
`=1

cm`(Â
`−A`)xk−m

and that ‖Âj‖2 ≤ ‖Aj + (Âj −Aj)‖2 ≤ L+ δAL̂(δA).
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These imply,∥∥∥B(Â)>(ê− e)
∥∥∥
∞
≤ max

1≤ i≤M

1≤j≤ i

∣∣∣∣∣
(
T−1+i∑
k=i

x>k−i(Â
j)>(ŵk−wk)

)∣∣∣∣∣
(a)

≤(L+ δAL̂(δA))δAL̂(δA)
√
N × max

1≤i≤M

M∑
m=1

∥∥∥∥∥
(
T−1+i∑
k=i

‖cm·‖x>k−ixk−m

)∥∥∥∥∥
F

≤(L+ δAL̂(δA))δAL̂(δA)
√
NMρ‖X‖2

F

(b)

≤ (L+ δAL̂(δA))δAL̂(δA)
√
NMρK1−β(tr(Σ0) +G

√
N)

with probability at least 1− exp{−d4K
1−2β} where (a) follows from similar logic as (A.12)

and (b) from similar logic to (A.10).

Finally, we arrive at

∆q=δAL̂M (δA)
√
Nu,

where

u = 2T
√
tNπσug(Q)+(L+δAL̂(δA))MρK(tr(Σ0) +G

√
N) and P

(∥∥∥B(Â)>ê
∥∥∥
∞
≥ q1

)
≤ εDe +

(6M + 1) exp{−d4T} since T < K.

A.3 Proof of Theorem 1

Finally, with the two lemmas in hand, we return to the proof of the main theorem, which

we restate for convenience.

Theorem 1. For any 0 < β < ν < 1/2, and some universal constant d1, assump-

tions (A1)-(A8) are sufficient for the error ε in (2.16) to satisfy

ε ≤
(
δA

(
1 + (ρ+ δc)L̂M (δA)

)
+ (1 + L)δc

)2
tr(Σ0)/N (A.13)

with probability at least 1− εA − εc, where

L̂M(δ) = max
1≤i≤M

(L+ δ)i − Li

δ

115



εA ∼ d1 exp{−O(K)}

εc ∼ 2 exp{−O(K1−2ν)}

δA = O
(√

logN/K
)

δc = O

(√
logN/K2(ν−β)

)
.

(A.14)

Proof of Theorem 1. First, applying the union bound to results from Lemmas 2 and 3, we

see that

P
((
‖Â−A‖2 ≤ δA

)⋂
(‖ĉ− c‖1 ≤ δc)

)
≥ 1− εA − εc.

Thus, we proceed using ‖Â−A‖2 ≤ δA and ‖ĉ−c‖1 ≤ δc. Then, ‖Â‖2 ≤ ‖A+(Â−A)‖2 ≤

L+ δA. Similarly, ‖ĉ‖1 ≤ ρ+ δc. Then,

max
1≤i≤M

‖Âi −Ai‖2 ≤ ‖Â−A‖2 max
0≤i≤M−1

∥∥∥∥∥
i∑

j=0

ÂjAi−j

∥∥∥∥∥
2

≤ δA max
0≤i≤M−1

i∑
j=0

∥∥∥Â∥∥∥j
2
‖A‖i−j2 (A.15)

≤ δA max
0≤i≤M−1

i∑
j=0

(L+ δA)jLi−j

≤ δAL̂M(δA).

Note that L̂M(δ) = O(MLM−1) when δ → 0.

Next, dropping from the list of arguments for the function f(A, c,X′k−1) defined below
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equation (2.16) the explicit dependence on X′k−1 for compactness of notation,

ε = E
[
‖xk−f(Â, ĉ)‖22

]
−E
[
‖xk−f(A, c)‖22

]
= E

[(
f(A, c)−f(Â, ĉ)

)> (
2xk−f(A, c)−f(Â, ĉ)

)]
(a)
= E

[(
f(A, c)−f(Â, ĉ)

)> (
2wk+f(A, c)−f(Â, ĉ)

)]
= E

[
‖f(Â, ĉ)−f(A, c)‖22

]
= E

[
‖f(Â, ĉ)−f(A, ĉ)+f(A, ĉ)−f(A, c)‖22

]
≤ E

[(
‖f(Â, ĉ)−f(A, ĉ)‖2+‖f(A, ĉ)−f(A, c)‖2

)2
]

(b)

≤
(
‖D(Â,ĉ)−D(A,ĉ)‖2+‖D(A,ĉ)−D(A,c)‖2

)2
E
[
‖X′k−1‖22

]
=
(
‖D(Â, ĉ)−D(A, ĉ)‖2︸ ︷︷ ︸

V1

+‖D(A, ĉ−c)‖2︸ ︷︷ ︸
V2

)2
Mtr(Σ0),

where D(A′, c′) =

(
A′ P1(A′, c′) . . . PM(A′, c′)

)
, and where (a) is due to xk −

f(A, c) = wk ⊥ xj ∀j < k, and (b) is due to D(A′, c′)X′k−1 =f(A′, c′). Now consider the

term V1,

V1≤
M∑
i=1

‖Pi(Â, ĉ)−Pi(A, ĉ)‖2≤δA+
M∑
i=2

i∑
j=1

|ĉij|‖Âj−Aj‖2

≤δA + δAL̂M(δA)‖ĉ‖1 ≤ δA

(
1 + (ρ+ δc)L̂M(δA)

)
.

Next we similarly bound V2,

V2 ≤
M∑
i=1

‖Pi(A, ĉ− c)‖2 ≤
M∑
i=2

i∑
j=0

|ĉij − cij|‖Aj‖2

≤
M∑
i=2

|ĉi0 − ci0|+
M∑
i=2

i∑
j=1

|ĉij − cij|‖Aj‖2

≤ ‖ĉ− c‖1 + L‖ĉ− c‖1

(a)

≤ (1 + L)δc.

where (a) follows from ‖ĉ− c‖1 ≤ δc proven in lemma 3, and the result follows.
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Appendix B

Proofs for Chapter 3 on Single Index

Latent Variable Models

B.1 Proof of Theorem 4

We first restate the theorem for convenience.

Theorem 4. Assume that ĝ′(0) 6= 0 and that |ĝ′′| ≤ J and |g′′| ≤ J for some J < ∞.

Furthermore, assume in models (3.15) and (3.16) that maxj
(
‖âj‖1, ‖aj‖1 + ‖bj‖2

)
≤ k,

max
(
E[‖x‖2‖x‖2∞],E[‖x‖2‖x‖∞‖z‖2],E[‖x‖2‖z‖22]

)
≤ sNr,

where subscripts in the parameters on the RHS indicate that the bounds may grow with the

values in the subscript. Then, the parameters Â and A from models (3.15) and (3.16) are

related as

Â = q(A + L) + E,

where q = g′(0)
ĝ′(0)

, µx = E[xi],

L =
(
BE[zx>] + (g(0)− ĝ(0))µ>x

) (
E[xx>]

)†
=⇒ rank(L) ≤ r + 1,
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and E = Â− q(A + L) is bounded as

1

MN
‖E‖F ≤

2Jσ`
√
N

ĝ′(0)M
sNrk

2,

where σ` =
∥∥∥(E [xx>

])†∥∥∥
2
, the largest singular value of the pseudo-inverse of the covari-

ance.

Proof. We begin with the Taylor series expansion, using the Lagrange form of the remain-

der,

E
[(

ĝ(0)+ĝ′(0)Âx−g(0)−g′(0)(Ax+Bz)
)
x>
]

=E
[(

ĝ′′(ξ)�(Âxi).
∧2−g′′(η)�(Axi+Bz).∧2

)
x>
]
,

(B.1)

where

|ξj| ≤ |âjx|, |ηj| ≤ |ajx + bjz|,

B=
(
b1 . . .bm

)>
similarly to before, x�y denotes the element-wise (Hadamard) product,

and x.∧2 = x� x denotes element-wise squaring. First let us consider the quantity

(ajx+bjz)2 = (ajx)2+2ajxbjz + (bjz)2

≤ (‖aj‖1‖x‖∞ + ‖bj‖2‖z‖2)2

Then,

‖
(
(Ax+Bz).∧2

)
x>‖F≤ ‖(Ax+Bz).∧2‖2‖x‖2

≤ ‖x‖2

√√√√ N∑
j=1

(ajx+bjz)4

(a)

≤ ‖x‖2
N∑
j=1

(ajx+bjz)2

≤‖x‖2
N∑
j=1

(‖aj‖1‖x‖∞+‖bj‖2‖z‖2)2

=⇒E[‖
(
(Ax+Bz).∧2

)
x>‖F] ≤sNr

N∑
j=1

(‖aj‖1+‖bj‖2)2

≤sNrNk2
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where (a) follows from the fact that ‖x‖4 ≤ ‖x‖2 ∀x ∈ RN .

Similarly, we have

=⇒E[‖((Âx).∧2)x>‖F] ≤ ‖x‖2

N∑
j=1

(‖âj‖1‖x‖∞)2

≤sNrNk2

To finish off, substituting the definition of E and q into (B.1) we have

‖E‖F≤JE
[∥∥∥((Âxi).

∧2+(Axi+Bzi).
∧2
)
x>i

∥∥∥
F

]∥∥∥∥(ĝ′(0)E[xix
>
i ]
)†∥∥∥∥

F

≤ 2Jσ`
ĝ′(0)

sNrk
2N
√
N.

B.2 Proof of Theorem 6

First, we present and prove some intermediate results. For convenience of notation, for the

remainder of this section let Φ = Â− Ã and Ψ = L̂− L̃.

B.2.1 Propositions

Proposition 4.1. Under Assumption 2, the solution (Â, L̂) to the optimization prob-

lem (3.23) satisfies

γ‖ΦSc‖1+‖ΨRc‖∗ ≤ 3(γ‖ΦS‖1+‖ΨR‖∗)

γ‖Φ‖1+‖Ψ‖∗ ≤ 4
√
rL(τ‖Φ‖F +‖Ψ‖F ).

Proof. We start with the convexity of the marginalized objective functional at (Ã, L̃),

m(Â+L̂)≥m(Ã+L̃)+tr

([
1

K
̂̃
ΓX>

]>
(Â+L̂−(A+L))

)
Then consider the optimality of the full objective functional at (ĝ, Â, L̂),

m(Â + L̂) + λ(γ‖Â‖1 + ‖L̂‖∗)
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= F̂3(Y,X, ĝ, Â + L̂) + (γ‖Â‖1 + ‖L̂‖∗)

≤ F̂3(Y,X, ̂̃g, Ã + L̃) + (γ‖Ã‖1 + ‖L̃‖∗)

= m(Ã + L̃) + λ(γ‖Ã‖1 + ‖L̃‖∗)

=⇒m(Â+L̂)−m(Ã + L̃) ≤ λ(γ‖Ã‖1+‖L̃‖∗)−λ(γ‖Â‖1+‖L̂‖∗)

=⇒tr

([
1

K
̂̃
ΓX>

]>
(Â+L̂−(Ã+L̃))

)

≤ λ(γ(‖Ã‖1−‖Â‖1)+‖L̃‖∗−‖L̂‖∗)

where the last inequality utilizes convexity of the marginalized objective. Then using

Assumption 2,

−λγ
2
‖Φ‖1−

λ

2
‖Ψ‖∗≤λγ(‖Ã‖1−‖Â‖1)+λ(‖L̃‖∗−‖L̂‖∗)

=⇒0 ≤ γ

2
‖Φ‖1+γ(‖Ã‖1−‖Â‖1)+

1

2
‖Ψ‖∗+(‖L‖∗−‖L̂‖∗)

=⇒0 ≤ γ

2
(‖ΦS‖1+‖ΦSc‖1)+γ(‖ΦS‖1−‖ΦSc‖1)+

1

2
(‖ΨR‖∗+‖ΨRc‖∗)+(‖ΨR‖∗−‖ΨRc‖∗)

=⇒0 ≤ −(γ‖ΦSc‖1+‖ΨRc‖∗)+3(γ‖ΦS‖1+‖ΨR‖∗)

where the penultimate inequality arises from decomposability of the norm. Specifically,


∣∣∣[Ã]s

∣∣∣− ∣∣∣[Â]s

∣∣∣ ≤ ∣∣∣[Ã]s − [Â]s

∣∣∣ = |[Φ]s| , s ∈ S∣∣∣[Ã]s

∣∣∣− ∣∣∣[Â]s

∣∣∣ = −
∣∣∣[Â]s

∣∣∣ = − |[Φ]s| , s /∈ S
Thus, we have the first inequality

γ‖ΦSc‖1+‖ΨRc‖∗ ≤ 3(γ‖ΦS‖1+‖ΨR‖∗)

Finally, for the second inequality,

γ‖Φ‖1+‖Ψ‖∗ ≤ 4(γ‖ΦS‖1+‖ΨR‖∗)

≤ 4(γ
√
sA‖ΦS‖F +

√
rL‖ΨR‖F )

≤ 4
√
rL(τ‖ΦS‖F +‖ΨR‖F )
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≤ 4
√
rL(τ‖Φ‖F +‖Ψ‖F )

Proposition 4.2. Under Assumptions 2 and 3, the solution of (Â, L̂) to the optimization

problem (3.23) satisfies

2|tr(Φ>Ψ)| ≤ µ(γ‖Φ‖1 + ‖Ψ‖∗)2.

Proof. This follows directly from Proposition 4.1, Assumption 3, and applying Cauchy-

Schwarz twice

2|tr(Φ>Ψ)| ≤ ‖Ψ‖∞‖Φ‖1 + ‖Ψ‖∗‖Φ‖2

≤ µγ(γ‖Φ‖1 + ‖Ψ‖∗)‖Φ‖1 + µ(γ‖Φ‖1 + ‖Ψ‖∗)‖Ψ‖∗.

B.2.2 Theorem 6

Now we restate the theorem again for convenience.

Theorem 6. Under Assumptions 1-3, the solution to the optimization problem (3.23)

satisfies

‖Â− Ã‖F ≤
3λγ
√
sA

α

(
2+

√
2

2+τ 2

)
≤

9λγ
√
sA

α

‖L̂− L̃‖F ≤
3λ
√
rL

α

(
2+

√
2τ 2

1+2τ 2

)
≤

9λ
√
rL

α
.

Proof. Starting with Proposition 4.1, since our solution is in this restricted set, we can use

the stronger convexity condition implied by Assumption 1,

m(Â+L̂)≥m(Ã+L̃)+tr

([
1

K
̂̃
ΓX>

]>(
Â+L̂−(A+L)

))
+ α‖Φ + Ψ‖2

F

Revisiting the objective functional at optimality and skipping repetitive algebra (see
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proof for Proposition 4.1),

α‖Φ+Ψ‖2
F ≤

λ

2
(3(γ‖ΦS‖1+‖ΨR‖∗)−(γ‖ΦSc‖1+‖ΨRc‖∗))

≤ 3λ

2
(γ‖Φ‖1+‖Ψ‖∗)

≤ 6λ
√
rL(τ‖Φ‖F +‖Ψ‖F )

Now from Proposition 4.2, we have

‖Φ+Ψ‖2
F ≥‖Φ‖F +‖Ψ‖2

F − 2|tr(Φ>Ψ)|

≥ ‖Φ‖F +‖Ψ‖2
F − µ(γ‖Φ‖1 + ‖Ψ‖∗)2

Combining the previous two inequalities, we have

α(‖Φ‖2F +‖Ψ‖2F )−αµ(γ‖Φ‖1+‖Ψ‖∗)2≤6λ
√
rL(τ‖Φ‖F +‖Ψ‖F )

=⇒α(‖Φ‖2F +‖Ψ‖2F )−16αµrL(τ‖Φ‖F +‖Ψ‖F )2

≤6λ
√
rL(τ‖Φ‖F +‖Ψ‖F )

=⇒ζ>Qζ ≤ 0

where

ζ = (‖Φ‖F ‖Ψ‖F 1)>

Q =


α
(

2+τ2

2(1+τ2)

)
−α
(

τ
2(1+τ2)

)
−3λ′τ

−α
(

τ
2(1+τ2)

)
α
(

1+2τ2

2(1+τ2)

)
−3λ′

−3λ′τ −3λ′ 0

 ,

which is a conic in standard form, λ′ = λ
√
rL, and the entries of Q follow from taking µ

given in Assumption 3.

Checking its discriminant, (
2 + τ 2

)
(1 + 2τ 2)− τ 2 > 0

so we have that the conic equation describes an ellipse, and there are bounds on the values

of ‖Φ‖F and ‖Ψ‖F .

For these individual bounds, we consider the points at which the gradients of ζ>Qζ
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vanish w.r.t. each of ‖Φ‖F and ‖Ψ‖F . For ‖Φ‖F ,

∂‖Φ‖F ζ
>Qζ = 0

=⇒α
(

2 + τ 2

2(1 + τ 2)

)
‖Φ‖∗F = 3λ′τ + α

(
τ

2(1 + τ 2)

)
‖Ψ‖∗F .

Plugging this into the equation defined by ζ>Qζ = 0 yields

‖Φ‖∗F =
3λ′τ

α

(
2±

√
2

2 + τ 2

)
.

Since we are seeking an upper bound for ‖Φ‖F , it can be seen that we take the positive

root,

‖Φ‖F ≤
3λ′τ

α

(
2 +

√
2

2 + τ 2

)
≤ 9λ′τ

α

Similarly, for ‖Ψ‖F ,

∂‖Ψ‖F ζ
>Qζ = 0

=⇒α
(

2 + τ 2

2(1 + τ 2)

)
‖Ψ‖∗F = 3λ′τ + α

(
τ

2(1 + τ 2)

)
‖Φ‖∗F .

Finally, plugging this into ζ>Qζ = 0 and solving for the upper bound yields

‖Ψ‖F ≤
3λ′

α

(
2 +

√
2τ 2

1 + 2τ 2

)
≤ 9λ′

α
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