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ABSTRACT 

Miscanthus × giganteus is a woody rhizomatous C4 grass species that is a high 

yielding lignocellulosic material for energy and fiber production. The cellulose and 

hemicellulose fractions of Miscanthus can be converted into energy and chemicals 

through biological conversion.  Since only a fraction of the biomass can be converted into 

chemical energy, bioethanol yields per unit mass of biomass are directly proportional to 

the composition of the biomass, which can vary due to age, stage of growth, growth 

conditions, and other factors. It is advantageous to know these variations prior to 

conversion so that enzyme mixtures, yeast strains, and process control parameters can be 

adjusted accordingly to maximize yields. Knowing the composition at earlier stages of 

the supply chain can also help in the development of quality-based valuations which 

incentivize farmers and suppliers to implement best management practices to ensure a 

uniform and consistent supply system.  

Therefore, in this study, the variability of composition of Miscanthus bales stored 

under a variety of conditions for a period of 3 to 24 months was described, along with the 

compositional variability of its botanical fractions. High throughput assays based on 

Fourier transform near infrared (FT-NIR) spectroscopy, partial least squares regression 

(PLSR), and linear discriminant analyses (LDA) to provide quantitative and qualitative 

measures of Miscanthus composition were developed. Results showed large variations 

(mean ± S.D.) in glucan (40.4 ± 2.70%), xylan (20.7 ± 1.50%), arabinan (1.90 ± 0.40%), 

acetyl (2.84 ± 0.28%), lignin (20.5 ± 1.40%), ash (2.60 ± 1.80%), and extractives (5.60 ± 

0.86%) - contents were observed for samples that were collected from Miscanthus bales 

stored indoors, under roof, outdoors with tarp cover, and outdoors without tarp cover for 
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3 to 24 months after harvest and baling. There was also a wide variability for all 

components: glucan, 32.2 to 46.1%; xylan, 20.9 to 25.3%; arabinan, 0.0 to 6.1%; lignin, 

18.7 to 25.5%; and ash, 0.4 to 8.9%, observed in botanical fractions of Miscanthus. The 

ranges in composition were comparable to corn stover botanical fractions. While the sum 

of glucan, xylan, and arabinan contents for the rind, pith, and sheath fractions were not 

different from each other, the variations across some botanical fractions were significant 

with the blade having lowest glucan, lowest lignin, and highest ash contents.  

PLSR models were developed to predict glucan, xylan, lignin, and ash contents in 

Miscanthus bale samples with RPD values of 4.86, 4.08, 3.74, and 1.71, respectively. The 

geometric mean particle size ranged from 0.36 to 0.49 mm, with the smallest size 

observed with samples from bales stored outdoors for 17 months and the largest size 

observed with samples from bales stored outdoors with a tarp cover for 5 months. On 

average, PLSR predictions of glucan, arabinan, and lignin content were not sensitive to 

the particle size of ground Miscanthus, but predictions of xylan and ash content were. 

The predicted xylan content using the non-sieved samples was lower than those for 

sieved samples and ash levels increased with decreasing particle size.  

When the PLSR models were coupled with LDA to classify the Miscanthus 

samples based on their glucan, lignin, and ash contents, the best classification results 

were found with the PLS-DA lignin model. While the PLSR and PLS-DA models 

developed in this study were based on a small sample size, the approaches presented in 

this study demonstrated FT-NIR spectroscopy is a practical tool for screening biomass at 

different stages of the supply chain, making the delivery of consistent feedstock to 

conversion facilities year round a realistic possibility. 
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CHAPTER 1. INTRODUCTION 

It has been estimated that to replace 30 percent of our current energy demand with 

fuels from an agricultural resource the United States will need to produce one billion tons 

of material annually. Of the one billion tons, 377 million tons need to be from a dedicated 

lignocellulosic feedstock such as Miscanthus × giganteus (Perlack and Stokes, 2005). In 

order to make a technology of this magnitude feasible, many obstacles need to be 

overcome such as the ability to supply the processing facilities with a steady stream of 

material with a known composition to convert throughout the year. Currently this 

presents many challenges as the material will need to be moved multiple times as it 

passes through the feedstock supply chain (Figure 1.1).  

 
Figure 1.1. Biomass supply chain. Adapted from Aden et al. (2002). Images are from 
http://www.biogreentech.com; http://www.rotochopper.com; http://www.123rf.com; 

http://www.feedcentral.com.au; www.praj.ne 

Since harvesting takes place during a short period of the year while processing 

facilities are operational year round, storage of biomass is imminent. The quality will not 

improve from the last day of growth and the biomass is expected to undergo dry matter 

loss and quality losses during storage. The main components of lignocellulosic materials 

Collection Preprocess Storage

HandlingConversion
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(cellulose, hemicellulose, and lignin) will degrade through multiple pathways. The 

theoretical yield of bioenergy is directly proportional to composition, so knowledge of 

the composition at any stage of the supply chain is desirable. Biomass feedstock 

composition affects efficiency and optimization of conversion processes. For example, 

high lignin is preferred for thermochemical conversion because it has a higher heating 

value compared to the structural carbohydrates (Hodgson et al., 2010); however, low 

lignin and high structural carbohydrates are desired for biochemical conversion because 

only the structural carbohydrates can be converted and lignin interferes with pretreatment 

(Claassen et al., 1999). High ash content is not desired in thermochemical and 

biochemical conversions processes since ash cannot be used and, more importantly, it can 

inhibit catalysis and cause slagging in pyrolysis (Kenney et al., 2013). 

Considering these challenges, it would be advantageous (1) to know the variation 

in biomass composition and what factors cause these variations and (2) to have the ability 

to determine chemical composition of the biomass that is being produced, purchased, and 

processed, and be able to classify and utilize variations in optimizing conversion 

processes. While compositional variations can be determined with conventional wet 

chemistry methods, these methods are not readily available or practical in the field as 

they are time consuming, destructive, and usually require extensive sample preparation, 

expensive laboratory equipment, and well trained personnel. One alternative to current 

wet quantification methods is to utilize near infrared (NIR) spectroscopy coupled with 

multivariate analysis. NIR has been used in the agricultural and food industries for years, 

from analysis of moisture and protein content in wheat (Manley et al., 2002), to the 

compositional determination of biomass, such as cornstover, switchgrass, and Miscanthus 
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in plant breeding studies (Ye et al., 2008; Templeton et al., 2009; Liu et al., 2010; Hayes, 

2012; Haffner et al., 2013). NIR spectroscopy has also been used to provide near real 

time assessment of moisture content and the amount of active ingredient in the final 

product for quality control in the pharmaceutical industry (Blanco et al., 1998).  

In this study, Fourier transform near infrared (FT-NIR) spectroscopy was used as 

the basis for developing a high throughput assay for quantifying and classifying 

Miscanthus × giganteus based on its chemical composition after storage. The specific 

objectives were to: 

Objective 1. Describe variability in composition (glucan, xylan, arabinan, lignin, 

ash, acetyl, and extractives content) of Miscanthus samples from bales that were stored 

under a variety of conditions for a period of 3 to 24 months. 

Objective 2. Determine variability in composition of different botanical fractions 

(rind, node, pith, sheath, and blade) of Miscanthus. 

Objective 3. Develop partial least squares regression (PLSR) models to predict 

composition of Miscanthus based on FT-NIR spectra of bale core samples. 

Objective 4. Determine the effects of particle size on FT-NIR spectra of the 

sample and resulting predicted composition using PLSR models from Objective 3.  

Objective 5. Classify Miscanthus bale core samples using the PLSR models from 

Objective 3 and linear discriminant analysis (LDA).  
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CHAPTER 2. LITERATURE REVIEW 

 2.1. U.S. bioenergy demand 

In 1970 the Clean Air Act was implemented, “… to foster the growth of a strong 

American economy and industry while improving human health and the environment 

(Public Law 88-206).” While this Act covered a wide range of technologies to combat 

environmental and health concerns, a portion of the act was to produce energy from 

renewable sources. In doing so, it would allow America to become less dependent on 

foreign fossil fuels while balancing the carbon cycle.  

 To achieve this goal, 209 bioethanol plants have been constructed since 1999 to 

produce ethanol from glucose, which has been derived mainly from cornstarch, a food-

based feedstock. In 2011, the 209 bioethanol plants produced 13.9 billion gallons of 

ethanol (RFA, 2012) and, by 2022, the U.S. has a goal of producing 36 billion gallons of 

biofuel per year according to the Clean Air Act (Public Law 88-206) and the Energy 

Independence and Security Act of 2007 (Public Law 110-140). 

 As demands for bioenergy continue to increase, it is essential to develop 

technologies for a diverse set of feedstocks and not rely solely on food-based materials. 

An alternative to food based feedstocks are lignocellulosic materials. Lignocellulosic 

materials account for 50 percent of the world’s biomass and are composed of three main 

components: cellulose, lignin, and hemicellulose (Claassen et al., 1999). In 

lignocellulosic biofuel production, the cellulose and hemicellulose can be converted to a 

biofuel while the lignin and smaller constituents are typically waste byproducts of the 

process (Limayem and Ricke, 2012). Berndes et al. (2001) studied both food-based and 

lignocellulosic feedstocks and concluded that biofuel production from food-based 
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feedstocks would not be feasible on a large enough scale that is being asked for by the 

US government, but production from lignocellulosic feedstocks would be. 

 The U.S. Department of Energy (DOE) released a study in 2005 titled, “Biomass 

as a Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a 

Billion-Ton Annual Supply”, which is also referred to as “the billion ton study” or 2005 

BTS (Perlack et al., 2005). The 2005 BTS was a strategic analysis to determine if U.S. 

agriculture (e.g., agricultural waste, crop residue, and dedicated herbaceous perennial 

grasses) and forest resources have the capability to produce at least one billion dry tons of 

biomass annually in a sustainable manner, which was the amount of biomass needed for 

bioconversion to meet more than 30% of the U.S. oil consumption.  In the analysis, 55 

million acres were assessed to produce 377 million dry tons of perennial biomass 

feedstock a year.  

In 2011, DOE released an update to the 2005 BTS. Modifications to the projected 

biomass supply in the 2005 BTS were reflected in the 2011 BTS, which included the use 

of fewer forest residues due to a decrease in the paper industry; fewer agricultural 

residues would be used to preserved soil carbon; and more dedicated bioenergy crops 

would be used to counteract the loss in the other categories. The new baseline projections 

for energy crops were set at 400 million dry tons per year, an increase of 23 million tons 

from the 2005 BTS (Perlack and Stokes, 2011).  

2.2. Miscanthus × giganteus 

Since the 2005 BTS, the U.S. government has encouraged research using 

herbaceous feedstocks, such as Miscanthus × giganteus and prairie cordgrass, for 

conversion to ethanol for use as transportation fuel. Miscanthus × giganteus is a highly 
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productive, sterile, rhizomatous, C4 perennial grass that is regarded as an ideal feedstock 

for bioenergy production because of its potential to produce large quantities of biomass 

with minimal inputs (Jones and Walsh, 2001). In a study conducted at the University of 

Illinois, Heaton et al. (2008) reported average yields over a three year period of 20.9, 33.4, 

and 34.6 dry ton/ha, in the north, central and southern parts of the state. Gauder et al. 

(2012) studied the cultivation of four types of Miscanthus in Germany from 1997 to 2010 

and reported plots where Miscanthus × giganteus had the highest average yields ranging 

from 12.6 to 14.1 dry ton/ha over the 14 year period, excluding the first two 

establishment years. By the end of the study, Miscanthus × giganteus yields had 

increased to more than 20 dry ton/ha. In addition to high yields and minimal inputs, 

Miscanthus is also a C4 plant like maize, which are estimated to be 40% more efficient in 

the photosynthetic process than C3 plants like wheat (Monteith, 1978).  

Miscanthus is composed of three main components – cellulose, hemicellulose, 

and lignin – which account for nearly 40, 20, and 20 % (w/w), respectively, while the 

balance is composed of organic acids, ash, and extractives (Sanderson et al., 1996). In 

addition to producing high quantities of materials with desired compositional 

characteristics, Miscanthus is a perennial, has low nutrient input needs, can utilize 

existing harvesting equipment for collection, and can be managed using commercially 

available herbicides if the ground needs to be utilized for food production (Heaton et al., 

2004). Compared to other C4 plants, Miscanthus can tolerate lower temperatures, which 

allows it to utilize the spring and fall months for growth when the temperatures are lower 

(Naidu and Long, 2004). 
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2.3. Botanical fractions of Miscanthus  

Miscanthus is a type of solid body monocot, having similar structural features to 

that of corn and sugarcane (Figure 2.1; Głowacka, 2011; Evert, 2006). The plant can be 

separated into three main parts – the root system, the stalk, and the leaves. The root 

system makes rhizomes, which travel perpendicularly to the force of gravity and can send 

out roots and shoots from its nodes (Evert, 2006). Since Miscanthus × giganteus is a 

sterile plant, it does not produce seeds and the propagation relies on the rhizomes (Heaton 

et al., 2008). In Miscanthus production for bioenergy applications, most of what is 

harvested and utilized are the stalks and leaf structures. The stalk can be further divided 

into nodes and internodes, while the sheath and the blade make up the leaf structures.   

 
Figure 2.1. Diagram of the stalk and leaf of a Miscanthus × giganteus stem. 
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The stalk of the plant can then be broken down into three main tissue systems – 

the dermal, the vascular, and the fundamental (Figure 2.2; Evert, 2006). The dermal 

tissue makes up the epidermis, which is the primary outer protective covering of the plant 

body. The vascular tissue includes the phloem, which conducts food, and the xylem, 

which conducts water. The dermal and vascular tissues are complex and are composed of 

many different types of cells. The fundamental, or ground, tissue is the simplest tissue 

type, usually consisting of only one cell type. Parenchyma cells make up most of the 

fundamental tissues in non-woody plants and often have highly specialized structures 

with thicker, harder, lignified walls. However, collenchyma cells have been observed in 

the fundamental tissue, which are similar to parenchyma calls, but have thicker cell walls. 

 

Figure 2.2. Cross section of a Miscanthus × giganteus stalk, a solid monocot stem. The epidermis, or 
rind, is on the exterior while the vascular tissue is scattered throughout the middle surrounded by the 

ground or fundamental tissue. 

Rind Pith

r = 6mm
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2.4. Chemical composition of Miscanthus 

2.4.1. Cellulose, hemicellulose, and lignin  

The principal component of the plant cell walls of Miscanthus and other 

herbaceous perennial grasses is cellulose, a polysaccharide composed of a chain of       

(1-4)-β-linked-D-glucan molecules. The cellulose chains tend to form hydrogen bonds in 

an antiparallel fashion to form microfibrils that range from 4 to 10 nm in diameter, 

forming a crystalline structure. The microfibrils wind together to form fine threads that 

coil around each other to form cables called macrofibrils, which are approximately 0.5 

µm in diameter (Evert, 2006; Sun, 2010).  Due to the stacking and the β-linkage, the 

cellulose compound is very resistant to chemical and biological degradation (Sun, 2010). 

 The cellulosic macrofibrils are embedded in a cross-linked matrix of 

polysaccharides called hemicellulose. Hemicellulose is a general term for a group of 

noncrystalline polysaccharides that are tightly bound in the cell wall. There are two main 

types of hemicelluloses: xyloglucans, which have a glucan backbone with xylose, 

galactose, and fructose branches, and glucuronoarabinoxylans, which have a (1-4)-β-D-

xylose backbone. While the composition of the hemicellulose will vary in a plant 

depending on the tissue, overall, one type of hemicellulose tends to dominate in a specific 

plant. In Miscanthus, the dominant type is the glucuronoarabinoxylan with the xylan 

backbone.  The xylan backbone has the ability to form hydrogen bonds with the cellulose 

backbone, covalent bonds with the lignin, and form ester linkages with acetyl units (Sun, 

2010).  

 Surrounding the cellulose hemicellulose matrix are lignin structures. Lignins are 

phenolic polymers formed from the polymerization of three main monomeric units – the 
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monolignols p-coumaryl, coniferyl, and sinapyl alcohols. Generally, lignins are classified 

as guaiacyl, which are formed mostly from coniferul and sinapyl alcohols; guaiacyl-

syringyl, which are mostly copolymers of coniferyl and sinapyl alcohols; or guaiacyl-

syringyl-p-hydroxyphenyl lignins, which are formed from all three monomeric units. The 

exact lignin structure will vary greatly from one species to another, organ tissue, along 

with the part of the cell wall that is being observed. The final lignin structure ends up 

covalently linked to the cell wall polysaccharides (Sun, 2010). 

The plant cell wall can then be broken down into three main components – the 

primary wall, the secondary wall, and the middle lamella – all varying in composition; 

proportions of cellulose, hemicellulose, and lignin; and geometry with respect to the 

vertical axes of the plant. The final cell wall structure has linear bundles of cellulose, 

with hemicellulose winding throughout, and lignin filling in the void space (Sun, 2010). 

2.4.2. Other components 

There are two other main components in lignocellulosic materials, extractives and 

ash. The National Renewable Energy Laboratory (NREL) has defined extractives as non-

structural organic compounds in the biomass that are soluble in water or ethanol (Sluiter, 

2005b). Some of the compounds that have been identified in the extractives from wood 

and straw are resin acids, triglycerides, sterol esters, fatty acids, sterols, fatty alcohols and 

various phenolic compounds (Sun, 2010). 

 Ash, on the other hand, is the inorganic material that resides after the sample has 

been heated to 575°C (Sluiter, 2005a). Kenney et al. (2013) discusses two forms of ash: 

structural ash, which is from the plant material and was utilized for physiological 

functions, and introduced ash, which is from materials like soil. 
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2.4.3. Sources of variation in composition and effects on conversion 

The composition of the biomass can vary due to age, stage of growth, growth 

conditions, and other factors (Perez et al., 2002; Hames et al., 2003).  The compositional 

variations in corn stover fractions were studied as the plant matured by Pordesimo et al. 

(2005). In their study, soluble solids, lignin, structural glucan, xylan, and protein in the 

stalk, husk, and leaves were measured with NIR spectroscopy. They found stalk 

increased in lignin content from 15 to 20% and xylan content from 13 to 23% during the 

growing season as the soluble solids content (i.e., extractives) decreased from 17 to 2%. 

The leaves exhibited the highest increases in glucan content, from 17 to 32%; xylan 

content, from 0 to 23%; and lignin content, from 2 to 19%; while their soluble solid 

content, too, decreased with time, from 35 to 6%. Similarly, in a study of switchgrass 

round bales harvested in October 1991 and stored outdoors for 26 weeks, unprotected 

from the weather, Wiselogel et al. (1996) found significant compositional changes in 

cellulose, lignin, ash, and extractives contents. These bales were exposed to high rainfall 

(65 cm) and weathering on the outer layers of the bales was observed.  When the test was 

repeated with switchgrass harvested in August 1992, smaller and less significant 

compositional changes were observed. Shinners et al. (2007) studied the dry matter loss 

(DML) of corn stover baled at different moisture contents and stored under various 

conditions. For wet corn stover (moistures above 35% w.b.), DML after nine months of 

storage was 2.4% when baled and wrapped but could be as high as 5.4% when chopped 

and stored in plastic silo bags. For dry corn stover (moistures from 14.6 to 23.0% w.b.), 

average DML after eight months of storage was 3.3% for round bales stored indoors and 

18.8% for round bales stored outdoors. For outdoor storage, DML could be reduced to 
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10.0% when bales were wrapped with net wrapping but could be as high as 30.4% when 

bales were left uncovered. More recently, Shah and Darr (2011) studied the dry matter 

loss (DML) of corn stover bales stored under three conditions (covered with tarp, covered 

with a breathable film, and indoors) and two initial moisture contents (15-20% w.b. and 

30-35% w.b.) for three and nine months. They observed that tarp covered bales fared 

better than those covered with breathable film. DML for the tarp covered bales were 6 

and 11% for three and nine months of storage, respectively, while DML were 14 and 

17% for the three and nine months of storage, respectively, for those covered with a 

breathable film.  In all the storage conditions tested, more than half of DML occurred 

within the first three months of storage and compositional changes (i.e., neutral detergent 

fiber, acid detergent fiber, and acid detergent lignin contents) were within a narrow range, 

from 1.4 to 3.9% of each other across the different storage conditions.  

With this much variation in composition due to storage conditions alone, 

decision-making in all steps of the supply chain, from plant breeding, crop management, 

harvest, transportation, preprocessing (e.g., size reduction, densification) and storage 

needs to be guided by biomass conversion requirements (Vidal et al., 2011). The cost, 

quality, and volume of lignocellulosic feedstocks are essential in inventory management 

and determine the viability of commercial scale bioenergy production.  

Conversion facilities would like to receive feedstocks that are consistent, or 

uniform, in quality, in moisture content, ash content, and convertible carbohydrates so 

they can operate their chemical pretreatment and conversion processes efficiently 

(Kenney and Ovard, 2013). For example, in combustion and pyrolysis, the lower the 

oxygen level and lower the moisture of the material, the higher the heating value of the 
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material. Since carbohydrates have a high amount of oxygen (500g kg-1) compared to 

lignin (300g kg-1), higher lignin contents will increases the heating value (Lewandowski 

and Kicherer, 1997; Hodgson et al. 2010). For biofuel production, the theoretical yield is 

directly proportional to the cellulose and hemicellulose concentration of the material to 

be converted (Perez et al., 2002). Ye et al. (2008) suggested that corn stover should be 

divided into its botanical fractions so that fractions with high lignin content can be used 

in co-firing while fractions with higher cellulose and hemicellulose are used in 

fermentation processes.  

Tao et al. (2013) demonstrated that the variability in corn stover composition 

strongly impacted the variability of the minimum ethanol selling price (MSEP) due to the 

variability in ethanol yields. The corn stover used in their analysis ranged in total 

carbohydrates from 53 to 64%, which corresponded in decreasing MESP values of $2.50 

to $2.05 per gallon. Therefore, it is advantageous to know the composition prior to 

conversion so that enzyme mixtures, yeast strains, and process control parameters can be 

adjusted accordingly to maximize yields and lower final product costs.  

Knowing the composition at earlier stages of the supply chain can also help in the 

development of quality-based valuations which incentivize farmers and suppliers to 

implement best management practices to ensure a uniform and consistent supply system 

(Kenney et al., 2013). For example, biochemical conversion processes are sensitive to 

carbohydrate content as the ratio of C5 to C6 sugars and accessibility of these sugars are 

important in optimizing pretreatment and fermentation conditions (Öhgren et al., 2007; 

Berlin et al., 2007). In addition to accessibility, C6 sugars are more desirable since most 

commercial yeast strains that are used for fermentation can only ferment glucose, a C6 
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sugar, while they cannot ferment C5 sugars such as xylose (Rudolf et al., 2008). Lignin 

content in biomass represents the recalcitrance of cell walls to saccharification, 

particularly during enzymatic hydrolysis (Öhgren et al., 2007; Chen and Dixon, 2007). 

Such a quality-based valuation is needed for biorefineries to enforce best management 

practices and for biomass to be treated as a traded commodity, like grains and oilseeds, 

with consistent quality standards or “grades” (Kenney et al., 2013). 

2.5. Current methods to determine composition 

 The National Renewable Energy Laboratory has developed a set of protocols to 

determine the chemical composition of various types of biomass. The biomass undergoes 

an extraction process to remove extractives (or nonstructural carbon components), which 

interfere with the downstream compositional analysis. The samples are first subjected to 

water extraction followed by an ethanol extraction taking a minimum 22 hours, extraction 

time (Sluiter et al., 2005b). Following extraction, the structural carbohydrates and lignin 

content are determined. Samples are hydrolyzed with 72% sulfuric acid at a high 

temperature (121°C). Liquid and solids are separated by filtration; the solids are used to 

determine the acid insoluble lignin and ash content while the liquid portion is used to 

determine the structural carbohydrates using a high performance liquid chromatography 

(HPLC) and the acid soluble lignin (ASL) is determined with a spectrophotometer. 

(Sluiter et al., 2005a,b; Sluiter et al., 2011).  

2.6. Near infrared (NIR) spectroscopy 

Current wet chemistry methods for chemical characterization of biomass 

feedstock are not applicable for field or inline monitoring because they are expensive, 

labor-intensive, and cannot provide compositional information in real time for process 
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control (Ye et al., 2008). Hames et al. (2003) estimated that quantification using NREL 

standards can cost from $800 to $2,000 per sample and can take up to one week to get 

results, making the technology not feasible for rapid and cost efficient analysis. One 

approach to reducing the time and cost of compositional analysis is the development of a 

high throughput assay based on NIR spectroscopy and a good calibration obtained from 

multivariate analyses to provide either a quantitative or qualitative measure of biomass 

composition. 

NIR spectroscopy is a type of vibrational spectroscopy that utilizes the optical 

region ranging from 4,000 to 12,500 cm-1 (2,500 to 800 nm). The energy absorbed in this 

region by a biomass sample corresponds to combinations of the fundamental vibrational 

transitions along with overtones associated with each chemical bond present in the 

sample (Blanco and Villarroya, 2002). Depending on which atoms are interacting, 

different anharmonicities give each compound a unique fingerprint (Theander and Aman, 

1984). The NIR region has weaker bands compared to the mid-infrared (MIR) region due 

to the lower number of excitations to the higher states. While the weaker bands are less 

informative in the NIR region than the parent bands in the MIR region, it does allow for 

the sample thickness to vary. Therefore, NIR spectroscopy’s advantage over MIR 

spectroscopy is the ability to use larger sample thickness, which typically translates to 

less sample preparation, allowing for rapid and less costly analyses (Siesler et al., 2002). 

2.6.1. Types of NIR spectrophotometers 

There are two main types of spectrophotometers used in NIR spectroscopy: a 

diffraction grating NIR spectrophotometer and a Fourier transform NIR (FT-NIR) 

spectrophotometer. In a diffraction grating NIR spectrophotometer, light enters a slit and 
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is collimated using a collimating mirror (Tkachenko, 2006). The collimating mirror 

reflects the light towards a diffraction grating. The diffraction grating is used to split the 

light into its respective wavelength. The diffracted light is then reflected to another 

collimating mirror and sent towards a point or array detector. The resolution of the 

diffraction grating spectrophotometer is proportional the spread of the light to the width 

of the detector window. 

FT-NIR spectrophotometers, on the other hand, utilize a Michelson interferometer 

(Figure 2.3). Light enters the interferometer and is sent straight to a beam splitter where 

50% of the light is allowed to pass and the balance is reflected (Tkachenko, 2006). Both 

the reflected and passed light hit their respective mirror and are reflected back to the 

beam splitter, with one of the mirrors being fixed and the other being mobile. The light 

reflected by the mirrors is recombined at the beam splitter. Depending on the difference 

between pathlengths and wavelength, the light either combines to form the initial signal 

or exhibits some degree of destructive interference. The final signal is a maximum when 

the difference between the mirrors and the beam splitter is: 

 ! = !" + !
!  [Equation 2.1] 

where d is the difference in the two mirrors distance from the beam splitter, m is the peak 

number from the central wavelength , and λ is the wavelength of the light.  
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Figure 2.3. Michelson interferometer in a FT-NIR spectrophotometer. 

 

Since the detector sees a sinusoidal pattern, the spectral resolution of the 

interferometer is defined as the full width of the peak at half the maximum intensity, 

which is inversely proportional to the path length of the mirrors. Therefore, to obtain a 

high resolution spectrum, an interferometer with a long mirror travel is needed.  

Although both technologies are currently used today, FT-NIR spectrophotometers 

offer several advantages over diffraction grating spectrophotometers. They offer higher 

resolution spectral data; their detectors are able to collect large amounts of light at a 

single time point, which is referred to as the Jacquinot’s advantage or the advantage of 

high throughput; and, all wavelengths can be collected at a single time point, which is 

referred to as Fellgett’s advantage or the advantage of multiplexing (Siesler et al., 2002). 

2.6.2. Spectral data collection and preprocessing 

The main objective in spectroscopy is to measure the amount of energy that has 

been absorbed by the sample. Depending on the sample type this can be done two 

different ways. The first way is by transmittance, in which light passes through a sample 
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and the difference in incident and transmitted light intensity is proportional to the energy 

absorbed by the material. The second option is to measure the amount of light that is 

reflected off the surface of the material. The light absorbed can then be correlated to the 

amount of light before hitting the sample to the light that is reflected. For transparent 

samples, transmittance is typically utilized while, for opaque samples such as plant 

materials, reflectance is used (Blanco and Villarroya, 2002). 

Once the spectra are collected, they need to be preprocessed. It is important to 

note that while preprocessing is an important step before multivariate calibration can be 

done, preprocessing techniques do not increase the resolution of the spectra. 

Preprocessing is merely conducted to abate noise and nonchemical effects contained in 

spectra (Siesler et al., 2002). 

The first type of preprocessing involves scatter correction, which corrects for 

variations in light scattering properties of the samples like particle size. These methods 

correct for additive and multiplicative effects (Helland et al., 1995). One technique, 

multiplicative scatter correction (MSC), is based on the fundamental principle that 

depending on the physical properties of a sample, the sample will reflect light differently. 

In doing so, it can have an additive effect where the spectra are merely shifted up or 

down from the average spectra and/or it can have a multiplicative effect where the 

intensities of the bands are heightened or damped. To correct for both of these physical 

phenomena, the MSC algorithm first calculates the mean spectra (Figure 2.4; Næs et al., 

1990). Next the spectra are plotted on the x-axis against the mean spectrum on the y-axis. 

A linear regression is then conducted for each of the spectra: 

  ! = !" + !  [Equation 2.2] 
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Keeping in mind that this algorithm assumes that the additive and multiplicative effects 

are non-chemical, the next step is to abate them or to normalize them for all the spectra. 

This is done by correcting the spectra, so the regression models are the same for all, 

 !!,!"# = !!,!"#!!
!   [Equation 2.3] 

where the offset (a) is subtracted from every wavenumber recorded (k)  and then is 

divided by the slope of the regression model (b). This corrects all the spectra so they have 

a slope of one and a null offset (Figure 2.4).  
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Figure 2.4. Demonstration of MSC on FT-NIR spectra with (a) the raw spectra; (b) comparison 
between the raw spectral values to the averaged spectral values; (c) application of the MSC 

algorithm to the comparison; and (d) resulting MSC corrected spectra. 
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The second type of preprocessing involves smoothing the spectra and/or 

conducting a derivative estimation to smoothen the spectral data. The estimated 

derivative curves are used to remove baseline offset and to see if the slopes of the spectra 

contain information by increasing the visual resolution of the spectra (Savitzky and Golay, 

1964; Siesler et al., 2002). While derivatives abate baseline shifts, they can, however, add 

noise to the spectra. Hence derivatives are usually accompanied by smoothing filters to 

remove some of the noise that was added during the derivation (Siesler et al., 2002).  

 One derivative-smoothing algorithm is called the Savitzky-Golay (SG) derivative. 

It works by taking the derivative then smoothing the derivative by fitting a polynomial to 

the data set with a specific window width (Savitzky and Golay, 1964). When 

implementing the SG derivative, the derivative order, the polynomial order, and the 

window width or the region used for the calculation need to be set. Each variable can 

affect the resulting derivative curve by either under- or over-smoothing the spectra 

(Figure 2.5).  Typically, higher order polynomials can fit the steeper peaks better than 

lower order polynomials when using the same window width (Siesler et al., 2002). 

In addition to utilizing the MSC and SG derivative separately they can also be 

utilized together in series. Chen et al. (2013) studied the utilization of the MSC and SG 

filters together and determined that using the SG filter followed by the MSC pretreatment 

yielded better results than conducting vice-versa. However, it has been customary in NIR 

spectral analysis to apply the MSC pretreatment first, followed by the SG filter (Hayes, 

2012; Shetty et al., 2012). 
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Figure 2.5. Demonstration of a first order Savitzky Golay (SG) derivative. The three spectra include 
a first derivative with no smoothing, the second is a first order SG with 50 left and right smoothing 

points and a second order polynomial, and the third is a first order SG with 50 left and right 
smoothing points and a fourth order polynomial.  

2.7. Multivariate analysis of spectral data 

2.7.1. Calibration and validation data sets 

To construct robust models the data set that is used should have a few key 

characteristics such as a wide range that is evenly distributed having a low kurtosis. The 

sample set should also include samples over the range that could be encountered when 

using the model. The sample set size needs to be greater than 100 samples in the 

calibration set and 30 to 50 in the validation set. (AACCI Method 39-00, 1999) 

2.7.2. Development of calibration models 

Multivariate calibration is based on the fundamental principles of taking many 

variables X and projecting them onto a few variables T. This projection compresses the 

data into a more reliable model leaving out much of the noise and collinearity that can 

accompany large data sets such as NIR spectra (Lattin et al., 2003), allowing for a single 

constituent (e.g., lignin content) to be determined in complex samples. In the case of 
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spectral data sets, X are the absorbance, reflectance, or transmittance values at each 

wavenumber while T represents resulting principal components’ scores of the analysis.  

Two of the main multivariate calibration methods are principal component regression 

(PCR) and partial least squares regression (PLSR) (Martens and Næs, 1989). 

PCR is based on using principal components from principal component analysis 

(PCA) and regressing y (e.g., reference data, such as glucan, xylan, or lignin content of 

Miscanthus) onto the principal components’ scores using multiple linear regression 

(MLR) (Lattin et al., 2003; Martens and Næs, 1989). However PCR utilizes eigenvectors 

to determine the axis that will bring the most variability to the data set X without taking 

into consideration y. This can be problematic where there are large variations in the data 

set that are not caused by y but, instead, include other effects such as light scattering, in 

the case of spectral data. PLSR solves those problems by determining the variability of X 

and y simultaneously. 

Similarly, in PLSR, the spectral data matrix, X, are compressed into a few 

predicted factors, while considering the y reference data vector. This lessens the effect 

that noise and non-correlated variables have on the final calibration (Martens and Næs, 

1989). This is done by determining the covariance matrix between X and the reference 

data, y, and maximizing the covariance with the loading weight vector w.  

First, the spectral data are mean-centered by subtracting the mean from each 

measurement. For the spectra data, the mean absorbance ! is subtracted from the 

absorbance measurement X at each wavenumber (or wavelength) while, for the reference 

data set, the mean of the reference data ! is subtracted from each measurement !: 

 !! = !− !  [Equation 2.4] 

T̂
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 !! = !− !  [Equation 2.5] 

 The weight vector ! is calculated by maximizing the covariance between the X and y 

variables, which will expose regions of the spectral data X that have a good correlation to 

the reference y values. This is done by maximizing Equation 2.6 where y is least squares 

fitted to X. 

 !!
�!!!!

� !!!!        [Equation 2.6] 

!!!! = !!!!!! + !                                [Equation 2.7] 

Once the weight vector has been determined, it is used to create the new variables !!, 

called factor scores: 

 !! = !!!!!!  [Equation 2.8] 

With the factor scores determined, the X and y loadings can then be calculated by 

regressing the X matrix on !! for the X loadings and regressing y on !! for the y loadings. 

The regressions are done in a least squares fashion: 

 !! =
!!!!
� !!
!!
�!!

  [Equation 2.9] 

 !! =
!!!!
� !!
!!
�!!

  [Equation 2.10] 

where !! and !! represent the X and y loadings, respectively. 

With the scores and loading that were determined for this factor, the new X and y 

data sets can be created for the next factor: 

 !! = !!!! − !!!�   [Equation 2.11] 

 !! = !!!! − !!!
�  [Equation 2.12] 
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The process is repeated several times, until there are enough factors to explain the 

variance in the spectral data; hence, the variable y can be predicted: 

 ! = !! + !!  [Equation 2.13]  

where,  !! = !− !�! and the regression coefficient matrix is 

! =! !�!
!!
!. ! is the matrix containing all the weight vectors for the factors, ! 

is the matrix containing all the X loadings for the factors, and ! is the vector containing 

all the scalars from the y loadings. 

2.7.3. Development of classification models 

In certain applications, the properties or composition of samples may not need to 

be predicted but, instead, samples need to be classified into certain groups or categories.  

Supervised pattern recognition techniques use the information about the class 

membership of the samples to a certain group or category in order to classify new 

unknown samples based on the pattern of measurements; in the case of near infrared 

spectroscopy, the classification is based on the absorbance spectra of the samples.  The 

general procedure of supervised pattern recognition techniques include the selection of 

calibration and validation sets, in which the class memberships of the samples are known; 

selection of a variables or spectral data; model development using the calibration set 

only; and validation of the model with an independent set of samples.  Several kinds of 

pattern recognition methods have been applied to agricultural, food, and pharmaceutical 

products. Two methods, linear discriminant analysis (LDA) and soft independent 

modeling of class analogy (SIMCA) are often applied. 

There are three main applications of LDA: profiling, differentiation, and 

classification (Lattin et al., 2003). Profiling looks at how groups differ with respect to set 
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variables; differentiation tests variables to see whether they are similar or not; and 

classification is used to determine in which group an unknown variable will lie. LDA 

classification works by taking dependent y variables (class) and independent x variables 

and determining scores for the x variables that maximize the sum of squares between 

groups. However for the LDA to be executed the matrix for each group must have more 

samples than variables. Therefore the spectrum needs to be reduced by PLSR to a few t 

variables. Once the spectrum has been reduced to a few t variables, the new x variables (t 

variables from PLSR) can be imported and the model can be built (Lattin et al., 2003). 

LDA is considered a hard classification method because the algorithm looks at the 

difference between groups, which always classifies a sample into a group; no matter how 

different a sample is from the closest group (Berrueta et al., 2007). SIMCA, on the other 

hand, is a soft classification method that looks at similarities within groups and the 

algorithm may classify a sample into a group or not (Esbensen et al., 2002). This is done 

by grouping the variables into their respective groups, followed by building a PLSR for 

each group. The PLSR models for all the groups are then utilized in the SIMCA. To run 

SIMCA, a sample set is imported and tested in each of the PLSR model. If a sample is 

similar to the samples that were used to create the PLSR model for a specific group, then 

the sample is classified into that group. If it is not similar to any of the groups, the sample 

is not classified. Therefore a sample could be classified into any number of the groups or 

none at all (Esbensen et al., 2002; Berrueta et al., 2007). 

2.7.4. Validation 

Quantification and classification models need to be validated before they are used.  

Validation can be conducted two ways, either by designating a set of samples to be used 
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for the validation or, in quantification, doing a cross validation (Martens and Næs, 1989; 

Esbensen et al., 2002). In the case where a validation set is designated, the calibration 

model is run using an independent validation and the efficacy of the model is determined. 

In cross validation, during calibration, several models are constructed and, each time a 

new model is constructed, a few samples are left out. In a “leave one out” cross validation 

procedure, one sample is left out for validation and the rest are used to construct 

calibration sub models; the sample that was left out is then used to validate the sub-model. 

The process is repeated until each sample has been left out once. With large sample sets, 

this process can become time consuming, so a group of samples, instead of one sample, 

may be used for cross validation. This process of building several submodels and 

validating with a different designated set each time is done until all the samples have 

been in the validation set. The final model is then the average of all the submodels 

created (Martens and Næs, 1989). 

The uncertainty of the submodels during cross validation can be determined using 

the Martens uncertainty test (Esbensen et al., 2002). For each sub-model, a set of model 

parameters – β (regression) coefficients, scores, loadings, and loading weights – have 

been calculated. The Martens uncertainty test utilizes the mean and standard deviation to 

determine if a specific regression coefficient is different from zero. If the regression 

coefficient is not different from zero, it can then be left out in the next model built. The 

test allows for identification of possible wavelengths that are measuring non-chemical 

data and adding noise to the system since those wavelengths will have null regression 

coefficients. The whole process of calibration can then be repeated using a reduced 
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spectrum, i.e., excluding wavelengths with null regression coefficients, and validated 

with an independent sample set. 

The reduced spectrum can then also be confirmed or compared against similar 

materials. While NIR is highly selective and the models can only be used for a single 

material type, similar materials should have similar significant wavenumbers.  

2.7.5. Evaluation of calibration and classification models 

 To evaluate each model, a set of parameters will be considered. In the first level 

of evaluation, the correlation coefficient (R2), mean square error (MSE), standard error 

(SE), and bias will be defined. The correlation coefficient is a measure of the linear 

dependence between and reference, x, and predicted, y, data sets; therefore an R2 = 1 is 

desired showing x and y variables are equal to each other. Since errors are present in the 

data set they need to be measured, one way to do so is with the MSE. The MSE is the 

average square difference between the actual value and the predicted value of a sample. 

However, since the MSC will end up with squared units of measure, the square root of 

the MSE is often taken to get the root mean square error (RMSE). The MSE can be 

broken down into two forms of error – standard error (SE) and bias. The standard error is 

the difference between the deviation from the reference data and the average deviation 

from the reference data. Bias, on the other hand, is a measure of the average deviation 

from the reference value. A bias of zero is desired, showing that the model predicts the 

validation set the same as the calibration set, or that there is no additive offset.  

The second level of evaluation involves comparing errors that are present in the 

model to the data set that was used to validate it. Three measurements are often used - the 

ratio of performance to deviation (RPD), the range to standard error of prediction 
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(R/SEP), and the relative ability of prediction (RAP). The RPD is a comparison of the 

standard deviation of the validation set to the standard error of prediction, the R/SEP is a 

comparison of the range of the validation data set to the standard error of prediction, 

while the RAP is a comparison of the difference between the variance of the validation 

set and the mean square error predicted, to the difference between the variance of the 

validation set and the mean variance of the reference data results (Martens and Næs, 

1989). 

!"# = !!"#$%"&$'(
!"#                                     [Equation 2.14] 

!! !!"# =
!"#$%!"#$%"&$'(

!"#                                   [Equation 2.15] 

!"# = !!"#$%"&$'(! !!"#$
!!"#$%"&$'(! !!!"#!!!!"!                              [Equation 2.16] 

 The American Association of Cereal Chemists International (AACCI) has defined 

Guidelines for RPD and R/SEP values for model development and maintenance (AACCI 

Method 39-00, 1999). For an RPD value greater than 2.5, the model is deemed good for 

screening in breeding programs; greater than 5, the model is acceptable for quality 

control; greater than 8, the model is useful for process control, development, and applied 

research. For an R/SEP value greater than 4; the model is good for screening; greater than 

10, the model is good for quality control; and greater than 15, the model may be used for 

quantification purposes.  

 A good PLSR model also uses a low number of factors; the more factors in a 

model the higher risk of over fitting and explaining noise. The explained variance plot 

should be close for both calibration and validation, where the explained variance is how 

much each factor contributes to the correlation coefficient (Martens and Næs, 1989). 
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2.8. Application of NIR spectroscopy in biomass compositional analysis 

Several studies have shown NIR spectroscopy as a promising technique to 

assessing biomass composition. Aenugu et al. (2011) conducted a review and specified 

where specific organic bonds should have absorption bands. Schwanninger et al. (2011) 

conducted a review of wavenumbers that should correspond to chemicals in wood. The 

review highlighted several regions specific to cellulose, hemicellulose, and lignin.  

Sanderson et al. (1996) demonstrated individual carbohydrates can be estimated 

in woody and herbaceous feedstocks such as straw, corn stover, poplar, etc. using 

standard normal variate-detrend (SNV-D) preprocessing to correct the scatter in the NIR 

spectra collected and regression by PLS. Hames et al. (2003) reported NIR calibration 

models for corn stover feedstock and dilute acid pretreated corn stover. Pordesimo et al. 

(2005) later used the corn stover feedstock model to investigate the variability of stover 

composition with crop maturity at harvest. They took samples from corn plants from 

approximately two weeks before the corn grain reached physiological maturity to 

approximately one month after the grain was at a moisture content suitable for harvesting. 

Their results showed large decreases in the extractives content of the samples, with 

increases in both xylan and lignin content. The corn stover feedstock model was also 

used by Hoskinson et al. (2007) to provide compositional data for a study investigating 

the variation in quality and quantity of corn stover available under different harvesting 

scenarios. PLSR models of NIR spectra were used to evaluate compositional variation 

and sources of variability in 508 commercial hybrid corn stover samples collected from 

47 sites in eight Corn Belt states after the 2001, 2002, and 2003 harvests (Templeton et 

al., 2009). Similarly, Haffner et al. (2013) demonstrated the use of PLS regression models 



 30 

of NIR spectra of 241 Miscanthus × giganteus samples harvested from seven sites in 

Illinois for fast monitoring of Miscanthus in plant breeding studies. 

Besides utilizing the spectral data to construct models that can quantify 

components, NIR spectra have also been utilized to classify materials. Ye et al. (2008) 

fractionated corn stover into botanical fractions (node, leaf, rind, pith, sheath, and husk) 

and scanned them with an FT-NIR spectrophotometer. For each fraction the spectral data 

was taken and a PCA was conducted followed by SIMCA. Results showed that the 

SIMCA model developed could classify 60 additional botanical fractions correctly. 

Similarly, Yang et al. (2007) utilized NIR spectra and SIMCA to classify rotted wood. 

Utilizing PCA models for non-degraded wood, white rot, and brown rot, the SIMCA 

model was able to predict the test set for non-decay, white-rot, and brown-rot, at 100%, 

85%, and 100%, where the misclassified samples were white-rot samples placed into the 

brown rot model. To determine the type of feed that was being fed to ruminant animals, 

Cozzolino et al. (2008) utilized PLSR, PCA, and LDA to classify feed types. Using grain 

silage, grass and legume silage, and sunflower silage, they constructed a PLS-DA model 

and could predict the silage type more than 90% of the time. These studies show NIR 

with either SIMCA or LDA analyses can be a powerful tool in screening or classifying 

samples against a set of quality standards.  

2.9. Development of biomass specifications 

Current feedstock production is driven by cost over quality where the price of the 

material is determined on a dry ton basis and not on the amount of material available for 

conversion. However as biorefineries start to optimize their processes, the focus on the 
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quality of the feedstock will be more important since many components in lignocellulosic 

feedstocks cannot be converted or can inhibit the conversion process.  

 Since variations can be large in agricultural samples and can be contributed to 

many factors such as genetics, growing conditions, plant age, multiple plant fractions and 

tissue types, handling, and storage conditions (Hames et al., 2009), specifications would 

be advantageous to have, to ensure that materials that could hurt the conversion process 

are kept to a minimum or are left out entirely.  

 While the use of biomass for biochemical conversion is still a developing 

technology and industry, the use of biomass for combustion has been around for many 

years. The European Committee for Standardization (CEN) has come up with a set of 

standards that deal with specifications, classifications, and quality assurance of solid 

biofuels, essentially classifying various solid fuels into categories. With these categories 

in place, material can be combined to form blends and mixtures and designed to meet 

certain specifications. CEN defines the terms blends as intentionally mixed biofuels with 

a known composition correlated to a specific heating value while mixtures are 

unintentionally mixed (Alakangas et al., 2006).  

 Bringing that ideology to the lignocellulosic biofuel industry, clean, consistent 

feedstocks that meet quality specifications may be possible by blending different grades 

of material or different feedstock sources. Researchers at DOE’s Idaho National 

Laboratory have proposed the concept of an advanced uniform system for a commodity-

based biomass industry (Hess et al., 2009). In this system, various types of biomass (i.e., 

corn stover, switchgrass, Miscanthus, etc.) and physical characteristics (i.e., bulk 

densities, moisture contents, etc.) are converted into a standardized format (e.g., pellets) 
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early in the supply chain.  As a standard format, the biomass needs to adhere to a set of 

specifications where it can be classified, bought and sold in the market, allow farmers to 

contract directly with biorefineries, and enable large-scale conversion facilities to operate 

with a continuous, consistent, and economic feedstock supply. 

 Because little is known about the variability in all biomass feedstocks and how 

they can be economically mitigated, the development of specifications has been slow. For 

ash content, current conversion process analyses rely upon an average modeled value of 

approximately 5% dry basis (Aden and Foust, 2002) and, in pyrolysis, ash levels must be 

kept below 1% (Kenney et al., 2013). Biorefineries have not yet specified minimum 

carbohydrate contents in biomass, but Humbird et al. (2011) chose to establish a total 

structural carbohydrate specification for corn stover of 59% (w/w) for the 

technoeconomic modeling of cellulosic ethanol production. This specification is 

comparable to the mean structural carbohydrates (i.e., sum of glucan and xylan contents) 

that have been reported for corn stover (53%), corn cobs (59%), Miscanthus (61%), and 

wheat (50%) (Kenney et al., 2013). A specification for moisture content is crucial as 

DML rates in aerobic storage increase with moisture content (Emery and Mosier, 2012). 

The threshold moisture content for safe storage varies among biomass types and 

conditions (e.g., storage indoors, storage outdoors with a tarp, enclosed in a silo bag, etc.) 

but a moisture content of 20% (w.b.) is a generally recognized rule of thumb 

for limiting DML (Darr and Shah, 2012).  
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CHAPTER 3. COMPOSITION OF MISCANTHUS FROM STORED 
BALES 

3.1. Introduction 

Miscanthus, a lignocellulosic bioenergy feedstock, is mainly composed of 

cellulose (40%), hemicellulose (20%), and lignin (20%) with the balance consisting of 

extractives, ash, and other constituents. Variations in composition arise due to age, stage 

of growth, growth conditions, and other factors (Perez et al., 2002; Hames et al., 2003). 

Large variations in composition can be problematic since, with all biochemical 

conversions, the quality of the material entering the conversion process can impact the 

efficiency of the process. Several researchers have stressed the importance of supplying 

conversion processes with a “clean” and consistent feedstock since product yields are not 

proportional to the total mass of the input, but rather the mass of certain components, or 

composition, of the input (Kenney et al., 2013; Liu et al., 2010; Hames et al., 2003).  

As mentioned in Chapter 2, how biomass is stored can affect its composition over 

time. Wiselogel et al. (1996) studied the compositional changes in round switchgrass 

bales and found glucan contents ranging from 35.6 to 40.8%; xylan contents ranging 23.4 

to 26.1%; arabinan contents ranging from 2.9 to 3.4%; lignin contents ranging from 20.1 

to 23%; and ash contents ranging from 4.8 to 6.1% after nine months of storage. These 

data show biomass degrade over time, especially when exposed to the high moistures, 

when not stored properly. 

In this study, in order to develop robust calibration and classification models for 

Miscanthus, samples with a large variability in composition were needed.  To achieve 

this, samples from Miscanthus bales stored under a variety of conditions – indoors, under 

roof, outdoors with tarp cover, and outdoors without tarp cover - for different time 



 34 

periods and different years were used.  The variability in glucan, xylan, arabinan, acetyl, 

lignin, ash, and extractives content across this wide range of storage conditions and 

periods are described in this chapter. 

3.2. Materials and methods 

Bale core samples were collected using a hay probe bale sampler (Part No. 

BHP550C, Best Harvest, St. Petersburg, FL) from stacked bales that were stored in 

Urbana, Griggsville, and Taylorville, IL for a period of 3 to 24 mo. (Figure 3.1). All bales 

measured 0.91 x 1.21 x 2.43 m. The bales stored in Urbana, IL were harvested at the 

senescent stage (December to January) from the Energy Biosciences Institute (EBI) farm 

at the University of Illinois in Urbana-Champaign in 2008 to 2011. The bales stored in 

Griggsville and Taylorville were harvested at the senescent stage in Pana, IL in 

December 2008 to January 2009. The bales were stored under different conditions:  

indoors (Taylorville); under roof (Urbana); outdoors with a tarp (Urbana and 

Griggsville); and outdoors without a tarp (Urbana and Griggsville).  

Each bale sample, approximately 40 g, was a collection of multiple core samples 

from the bale (Table 3.1). After collection, the samples were dried at 60°C for 72 h 

according to ASABE Standard S358.2 (1998). The dried samples were milled using a 

cutting mill (SM 2000, Retsch, Inc., Haan, Germany) fitted with a 2 mm sieve. The dry 

ground samples were bagged and stored at room temperature prior to sending to the EBI 

Analytical Chemistry Laboratory at the University of California in Berkeley campus for 

compositional analysis (glucan, xylan, arabinan, acetyl, lignin, ash, and extractives 

content). Compositional analyses were conducted in duplicates following standard 
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procedures developed by the National Renewable Energy Laboratory (NREL) and 

discussed in Haffner et al. (2013). 

 
Figure 3.1. Sources of Miscanthus × giganteus core samples used in this study. 

Table 3.1 Description of Miscanthus bale samples  

Sample 
Group 

Storage Sample Names 

Location Conditions Period 
(mos.) 

 

1 Taylorville Indoorsa 24 Ty32, Ty33, Ty34 

2 Griggsville Outdoors,  
with tarpb 

24 Gr1, Gr2, Gr3, Gr4,  Gr10, Gr14, Gr16, Gr21 

3 Urbana Under roofc 24 E185, E186, E187, E188, E189, E190 

4 Urbana Under roof 12 E37, E38, E39, E40, E52, E53, E55, E56, 
E59 

5 Urbana Outdoors,  
without a tarp 

12 E43, E44, E45, E46, E73, E74, E75, E76, 
E79, E272 

6d Urbana Under roof 6 E89, E90, E91, E92, E93 

7d Urbana Outdoors,  
without a tarp 

6 E180, E181, E182, E183, E184 

(a) Bale stack in Griggsville, IL. Bales were covered with a tarp 
for 12 months and ripped tarp for the next 12 months.

(b) Bale stack in Taylorville, IL. Bales were 
stored indoors for a period of 24 months.

(c) Bale stacks in the Energy Bioscience Institute (EBI) Farm in Urbana, IL. From left to right, bales were 
stored under roof, outdoors without tarp cover; and outdoors with tarp cover.
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Table 3.1 Continued 

Sample 
Group 

Storage Sample Names 

Location Conditions Period 
(mos.) 

 

8d Urbana Outdoors,  
without a tarp 

6 Z108, Z120, Z132, Z135, Z144, Z153, Z198, 
Z213, Z231 

9 Urbana Outdoors,  
with tarp 

6 Y114, Y123, Y126, Y141, Y150, Y159, 
Y200, Y216, Y234 

10d Urbana Under roof 6 X111, X117, X129, X138, 147, X156, X196, 
X219, X237 

11 Urbana Outdoors,  
without a tarp 

3 O206, O207, O208, O221, O222, O223, 
O239, O240, O241 

12 Urbana Outdoors,  
with tarp 

3 T209, T210, T211, T224, T225, T226, T242, 
T243, T244 

13 Urbana Under roof 3 I203, I204, I205, I227, I228, I229, I245, 
I246, I247 

aBales stored at the Taylorville site where inside a locked storage building, completely protected from 
weather elements for 2 yr. 

bBales stored at the Griggsville site were covered on top with a tarp. After the first 12 mo. of storage, parts 
of the tarp had worn out and blown away. In the second year of storage, therefore, the bale stack was only 
partially covered. 

cBales stored under roof at the Urbana site were placed on a concrete floor but were still exposed to 
ambient temperature, moisture, and wind on all sides. 

dBales in Groups 6 and 10 were harvested from the same field in the same year but stacked separately. 
Likewise, Groups 7 and 8 represent separate stacks of bales harvested from the same field in the same year. 

 
The composition means of each sample group were determined, compared, and 

tested for significance (p < 0.05) using Tukey’s test (Table 3.2). Statistical analyses were 

conducted using R (Version 2.15.2, 2012). 

3.3. Results and discussion 

Compositions of Miscantus bale samples ranged from 25.8 to 44.1% glucan, 16.6 

to 25.1% xylan, 1.0 to 3.1% arabinan, 1.7 to 3.4% acetyl, 17.5 to 26.5% lignin, 0.5 to 

14.0% ash, and 3.6 to 9.1% extractives. Group 2 (outdoors with tarp, 24 mo.) had the 

lowest mean glucan content and the highest standard deviation of all the groups that were 

tested (Table 3.2). Groups 1 (indoors, 24 mo.) and  Groups 4 (under roof, 12 mo.), 5 
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(outdoors without tarp, 12 mo.), and 6 (under roof, 6 mo.) had comparable glucan 

contents to Group 2 even though these bales were stored for less time and under different 

storage conditions as Group 2.  

Table 3.2. Composition of Miscanthus bale samples from different storage conditions and time 
periods. 

Sample 
Group 

 

Meana ± S.D.b (%) 

Glucan        Xylan         Arabinan    Acetyl Lignin Ash         Extractive
s 

1 40.8ab 
± 2.9 

20.5ab 
± 0.7 

1.9abcd 
± 0.4 

3.2a 
± 0.3 

19.8abc 
± 1.6 

2.7a 
± 1.4 

5.2a 
± 0.9 

2 35.8b 
± 5.8 

20.0b 
± 3.2 

1.7bcd 
± 0.4 

2.6ab 
± 0.3 

22.2a 
± 3.1 

4.1a 
± 4.0 

6.1a 
± 1.9 

3 43.2a 
± 0.6 

19.0b 
± 0.4 

1.3d 
± 0.2 

2.9ab 
± 0.1 

21.7ab 
± 0.6 

1.4a 
± 0.4 

6.1a 
± 0.2 

4 40.3ab 
± 1.5 

22.5a 
± 1.1 

2.2abc 
± 0.3 

2.4b 
± 0.1 

19.2bc 
± 0.9 

2.3a 
± 1.3 

5.4a 
± 0.4 

5 38.7ab 
± 2.1 

22.4a 
± 1.6 

2.2ab 
± 0.3 

2.6ab 
± 0.5 

19.0c 
± 0.6 

3.7a 
± 3.4 

5.6a 
± 0.5 

6 38.4ab 
± 2.5 

21.7ab 
± 1.0 

2.6a 
± 0.5 

2.6ab 
± 0.2 

19.7abc 
± 1.4 

0.9a 
± 0.2a 

6.2a 
± 0.7 

7 41.2a 
± 2.1 

20.3ab 
± 0.6 

1.7bcd 
± 0.3 

2.9ab 
± 0.1 

21.0abc 
± 0.8 

3.0a 
± 1.3 

5.0a 
± 0.3 

8 40.9a 
± 1.0 

20.5ab 
± 0.4 

1.6cd 
± 0.2 

3.0a 
± 0.1 

20.9abc 
± 0.7 

2.7a 
± 0.5 

5.7a 
± 1.0 

9 41.4a 
± 0.7 

20.5ab 
± 0.3 

1.7bcd 
± 0.1 

3.0a 
± 0.2 

20.8abc 
± 0.4 

2.4a 
± 0.5 

5.3a 
± 0.6 

10 41.1a 
± 0.9 

20.3ab 
± 0.4 

1.7bcd 
± 0.1 

2.9a 
± 0.2 

20.7abc 
± 0.2 

2.7a 
± 0.6 

5.9a 
± 0.5 

11 41.5a 
± 0.4 

20.4ab 
± 0.2 

1.9bcd 
± 0.1 

2.4ab 
± 0.1 

20.6abc 
± 0.2 

2.4a 
± 0.2 

5.3a 
± 0.6 

12 41.2a 
± 0.4 

20.3ab 
± 0.2 

1.9bcd 
± 0.1 

2.8ab 
± 0.3 

20.6abc 
± 0.3 

2.5a 
± 0.2 

5.5a 
± 0.9 

13 41.3a 
± 0.6 

20.1ab 
± 0.2 

1.8bcd 
± 0.2 

2.9ab 
± 0.1 

20.7abc 
± 0.8 

2.5a 
± 0.2 

5.5a 
± 1.1 

All 
Samples 

40.4 
± 2.7 

20.7 
± 1.5 

1.9 
± 0.4 

2.8 
±0.3 

20.5 
± 1.4 

2.6 
± 1.8 

5.6 
± 0.9 

aComponent values followed by the same lowercase letter in the same column, are not different (p > 0.05). 
bS.D. = one standard deviation. 
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Group 2, along with Group 3 (under roof, 24 mo.), had the lowest mean xylan 

contents. The highest standard deviation in xylan content was also observed with samples 

from Group 2. Groups 4 and 5, which contained Miscanthus samples from the same plot, 

harvested in the same year, and stored for 12 mo., exhibited the highest xylan contents. 

There were no differences in xylan content observed for bales stored for 3 to 6 mo., 

irrespective of storage condition. 

The low glucan and xylan contents in Group 2 translated into high lignin contents 

in this group, with a mean of 22.2% and a standard deviation of 3.1%.  Older bale 

samples (stored for 12 mo. or longer) exhibited the highest variations in lignin content, as 

well, and no differences were observed for bales stored for 6 mo. or less. 

The mean arabinan and acetyl contents across all samples was 1.9 and 2.8%, 

respectively, which were the lowest constituents measured in the analysis. The highest 

arabinan content was observed in Group 6 (stored under roof, 6 mo.) while the highest 

acetyl content was observed in Group 3 (stored indoors, 24 mo.). Overall, however, there 

were no differences observed across all samples for these two components. Likewise, all 

groups had comparable ash contents, with a mean of 2.6% and a standard deviation 1.8%. 

Because of the high standard deviations across all sample groups, the honestly significant 

difference (HSD) was also high, at approximately 3%. While Group 2 (outdoors with tarp, 

24 mo.) had the highest mean ash content, 4.1%, this was due to a wide range of 0.59 to 

14.0%. The sample with 14.0% ash content was likely an outlier since the next highest 

ash content in Group 2 was 4.47%. 

 In terms of extractives content, there were no differences observed among groups. 

It should be noted that Groups 2 and 3 (stored outdoors with tarp and under roof, 
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respectively, for 24 mo.) had visible fungal growth in all samples and these two groups 

had the highest extractives content. Since mold is very similar in composition to plant 

materials, the additional non-structural carbon compounds extracted from the biomass 

may be attributed to the mold contamination. 

  Group 2 (outdoors with tarp, 24 mo.) had a distinct structural carbohydrates 

content (i.e., sum of glucan, xylan, and arabinan contents) at 57% from all the other 

groups, which ranged from 62.8 to 65.0%. This result showed that, while the groups may 

have variation in single components, in terms of available carbohydrates for conversion, 

there were no variations across the conditions tested especially when the biomass was 

stored for less than 24 mo. 

Overall, the composition values of Miscanthus from the stored bales were 

comparable to those reported by Haffner et al. (2013) and Hayes (2012), who used 

Miscanthus samples that were manually cut above ground at either pre-senescent or at 

senescent stages of growth. In contrast, samples from this study came from mechanically 

harvested Miscanthus, cut at the senescent stage, baled, and stored. Haffner et al. (2013) 

reported glucan contents ranging from 36.3 to 45.3% whereas glucan contents found in 

this study has a wider range, from 25.8 to 44.1%. The lower ranges found with stored 

bales was attributable to DML that occur during storage. Xylan, arabinan, acetyl, and ash 

contents reported from the two studies were comparable. Lignin contents in the stored 

bales was as high as 26.5% while the highest lignin content reported by Haffner et al. 

(2013) was 23.2%. This difference was likely due to Haffner et al. (2013) focusing on 

pre-senescent or senescent Miscanthus while this study focused on stored baled samples. 

Additionally, the extractives contents in the stored bales were only as high as 9.1%  − as 
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extractives tended to be lost with storage time (Wiselogel et al., 1996) – whereas higher 

extractives, up to 12.2%, were found by Haffner et al. (2013). 

 Compared to compositional variability observed in corn stover (Templeton et al., 

2009),  Miscanthus exhibited a wider range and higher values in glucan, xylan, and lignin 

contents (Table 3.3). Ash levels in corn stover and Miscanthus were similar except for 

two samples from Groups 2 and 5 in this study. Compared to the compositional 

variability observed in switchgrass (Wiselogel et al., 1996), Miscanthus had a wider 

range in glucan content and lower ash levels. Their xylan and lignin contents were 

comparable. 

Table 3.3. Glucan, xylan, lignin, and ash contents of Miscanthus, corn stover, and switchgrass. 

Component 
 

Range in composition (%) 
Miscanthus ×giganteus 

(this study) 
Corn stover 

(Templeton et al., 2009) 
Switchgrass 

(Wiselogel et al., 1996) 
Glucan 25.8 – 44.1 26.5 – 37.6 35.6 – 40.8 
Xylan 16.7 – 25.1 14.8 – 22.7 23.4 – 26.1 
Lignin 17.5 – 26.5 11.2 – 17.8 20.1 – 23.0 
Ash 0.5 – 14.0a 0.8 – 6.6 4.7 – 6.2 
aTwo samples had ash contents of 12.8% (Group 5) and 14.0% (Group 2). Neglecting these samples, ash 
content ranged from 0.5 to 5.16%. 
 
3.4. Conclusions 

Large variations in Miscanthus compositions were observed in core samples from 

bales that were stored under a variety of conditions (indoors, under roof, outdoors with 

tarp, and outdoors without a tarp) for a period of 3 to 24 mo.  Glucan and lignin contents 

ranged from 25.8 to 44.1% and 17.5 to 26.5%, respectively. In general, few trends were 

observed when looking that the sample sets were examined using a univariate approach. 

However, Group 2, which included bales stored outdoors with a tarp cover for 24 mo., 

exhibited lowest glucan and xylan levels and highest lignin levels compared to the rest of 

the bales. Mold growth was also observed in Group 2 samples. Compared to other 
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lignocellulosic feedstocks, overall, Miscanthus had higher carbohydrate and lower ash 

contents than corn stover while Miscanthus composition was similar to switchgrass. 
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CHAPTER 4. COMPOSITION OF BOTANICAL FRACTIONS OF 
MISCANTHUS 

4.1. Introduction 

Hames et al. (2003) noted that feedstocks can vary with plant genetics, growth 

environment, harvesting method, and storage conditions and the resulting variations are 

difficult to control. Compositional variation also exists among different botanical 

fractions, as each fraction is composed of different types of cells and serves different 

functions in the plant. Ye et al. (2008) found the sheath and pith fractions of corn stover 

had the highest glucan content, 39%; husks had the highest xylan content, 22%; and 

leaves having the highest lignin and ash contents, 23% and 7.4%, respectively. The 

variations can be attributed to the desired structural and physiological qualities of the 

plant fractions. Similarly, Liu et al. (2010) found the internodes of switchgrass had the 

highest glucan content, 40.9%; the node and internode had the highest xylan contents, 

22.7% and 22.6%, respectively; and leaves had the highest lignin, 24.4%, and ash, 4.9%, 

contents. While the glucan, xylan, and lignin contents of corn stover and switchgrass 

were comparable, the difference in the mean ash contents of the leaves was as high as 

2.5%.   

The variation in composition of botanical fractions could also affect glucose 

yields.  Crofcheck and Montross (2004) pretreated corn stover fractions with sodium 

hydroxide prior to hydrolysis and compared the results to a control (non-pretreated) 

sample set. Their results showed that the average glucose released for pretreated cobs, 

leaves and husk, stalks, and whole stover were 0.50, 0.35, 0.28, and 0.36 g/g while the 

control samples corresponded to glucose releases of 0.32 (cobs), 0.23 (leaves and husk), 

0.17 (stalks), and 0.20 (whole stover) g/g respectively.  
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Kenney et al. (2013) also noted that biomass fractionation, i.e., selectively 

removing a particular anatomical fraction or tissue, takes feedstock selection a step 

further and is a solution to meeting specifications and ensuring a uniform format 

feedstock supply. For example, debarking of woody biomass is the current solution for 

meeting the aggressive ash specification, less than 1%, of the thermochemical conversion 

processes. Several studies have consistently shown that corn stover composition changes 

as the different proportions of the plant are harvested, with glucan content increasing with 

higher proportion of stalk and xylan increasing with higher proportions of cob and husk 

fractions (Pordesimo et al., 2005; Prewitt et al., 2007; Hoskinson et al., 2007; Karlen et 

al., 2011). Similar findings were observed with wheat fractions (Duguid et al., 2007). 

In this study, the mass and composition of the botanical fractions of Miscanthus 

were determined and compared to the composition of corn stover and switchgrass 

fractions, as reported in the literature. Doing so provided a better understanding of the 

variability in core samples from bales, as each core sample could contain a mixture of 

botanical fractions different from the next. Furthermore, blending of different botanical 

fractions to demonstrate the delivery of Miscanthus with a wide range of structural 

carbohydrate and lignin contents was explored. 

4.2. Materials and methods 

4.2.1. Miscanthus stalks and plant fractionation 

Miscanthus × giganteus samples (n = 6), each consisting of four stalks from a 

single stand, were harvested by hand in January 2013 from the EBI farm in Urbana, IL. 

Since the stalk samples were harvested during the senescent stage, the leaves (blades) had 

already fallen off and were not included in the mass fraction analysis, but were collected 
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just beneath the stand so the composition could be determined. The samples were taken 

to the laboratory where they were manually separated into stalks and leaf structures. The 

stalks were further separated into nodes and internodes by cutting (Figure 4.1).  The 

internodes were then further separated by manually peeling off the sheath, splitting the 

stalk in half, longitudinally, and scraping the pith from the rind.  

 

Figure 4.1. Miscanthus stalks were fractionated into pith, rind, sheath, leaves, and nodes. 

Once all stalks per sample had been fractionated, the mass of each botanical 

fraction for each sample was determined. The moisture content of the samples was 

determined by drying a 1 g subsample at 103°C for 24 h according to ASABE Standard 

S358.2 (1998) for forage. The rest of the samples were dried at 60°C for 72 h for eventual 

compositional analysis according to the same ASABE Standard.  
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The samples were prepared for compositional analysis and FT-NIR spectra 

collection in a similar fashion as the core samples from the Miscanthus bales. Dried 

botanical fractions were ground using a cutting mill (SM 2000, Retsch, Inc., Haan, 

Germany) fitted with a 2 mm sieve, bagged, and stored at room temperature until 

compositional analysis and FT-NIR scanning. Compositional analysis was conducted in 

Dr. Vijay Singh’s bioprocess engineering laboratory at the University of Illinois. 

 

Figure 4.2. Flow chart of methods for the compositional determination of botanical fractions. 

4.2.2. Chemical composition analysis 

 Chemical composition analyses were conducted in duplicates, except for moisture 

and extractive content, which were done in triplicates following standard procedures 

developed by NREL (Sluiter, 2005a,b; Sluiter, 2011).  

! Sample collection:
-Champaign, IL, January 2013
-Stalks attached to plant (3 Stalks per Samples)
-Leaves on ground
-6 Samples

Fractionate:
30 Samples

6 Rind, 6 Pith, 6 Node, 6 Blade, 6 Sheath

Wet Mass Fraction:
   -Mass of each fraction 

Dried:
     -60°C for 72hr
     -ASABE standard S358.2 

Moisture content:
   -103°C for 24hr
   -ASABE standard S358.2

Dry Mass Fraction:
   -Wet mass fraction  
     corrected for moisture.

Moisture content:
   -ASABE standard S358.2
   -103°C for 24hr

Ground:
      -Cutting mill with 2mm screen

Compositional determination:
      -(Glucan, xylan, arabinan, lignin, 
         extractives, ash)

Spectra 
collected

Estimated 
compositional range
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Moisture and solids content. Prior to chemical analysis, the moisture and solids contents 

of the samples were determined in triplicates by weighing and placing 1 g subsamples in 

a dry disposable aluminum container. The mass of the empty container and mass of the 

container with subsample were recorded. The subsamples were dried in an oven at 105°C 

for 4 hr, cooled in a dessicator, and weighed for final moisture and solids content 

calculations: 

 !"#$%!!"#$%!! % = 100− !!"#!!"#$%&!!!"#!!"#$%& ∙!""
!!"#!!"#$%&!!!"#$%&#'(

  [Equation 4.1] 

 !"# = !!"#!!"#$%&∙!"#$%!!"#$%!!(%)
!""   [Equation 4.2] 

where ODW is the oven dry weight of the sample. 

Extractives content. The extractives content of each sample was determined in triplicates 

using water and ethanol extractions in series. An extraction thimble was first weighed, 

filled with a 0.30 to 0.75 g subsample, and sealed using a heat sealer. The mass of the 

filled thimble was recorded. The subsamples were placed into a 300 ml Soxhlet 

extraction tube and extractives were removed with deionized water at 100°C for 6 h. The 

water was replaced with ethanol (95%) and further extraction was conducted for 16 h, for 

a combined extraction time of 22 h. The extraction tubes were drained and cleaned, and 

the thimbles were placed in an oven at 45°C oven for 24 h.  The three replicates (dried 

thimbles) for each sample were weighed first and then combined for another moisture 

content determination.   

 The extractives content was calculated as follows: 

 !!"#$%& = !!!!"#$%!!"#$%& −!!!!"#$% [Equation 4.3] 

 !!"#$%! = !!"#$%& ∙ !"#$%!!"#$%!!(%) [Equation 4.4] 



 47 

Equation 4.4 was used to determine the solids content of the sample before (!!"#$%!,!) and 

after (!!"#$%!,!) extraction. The mass of the extractives and extractives content of the 

sample were then calculated as follows: 

 !!"#$%&#'(!) = !!!"#$%,! −!!"#$%!,! [Equation 4.5] 

 !"#$%&#'()*! % = !!"#$%&#'(!)
!!"#$%!,!

 [Equation 4.6] 

Acid hydrolysis and solids separation. In duplicates, 0.30 ± 0.01 g subsamples of the 

post-extraction samples were weighed and placed in 90 ml pressure tubes with 3 ml of 

72% sulfuric acid. A set of sugar recovery standards (SRS), specifically, D-(+) glucose, 

D-(+)-xylose, D-(+)-galactose, L-(+)-arabinaose, and D-(+)-mannose, were also prepared 

as control samples.  All samples were placed in an agitated water bath at 30 ± 3°C for 2 h. 

While in the water bath, every 15 min., the samples were manually agitated using a 

Teflon rod to break up the biomass as the acid hydrolyzed the sample. The sample and 

acid mixtures were then diluted with 84 ml of deionized water, Teflon caps were placed 

on the tubes and the tubes were autoclaved at 121°C for 1 h.  

After autoclaving, the solids were separated from the dilute acid using a vacuum 

and placed in filtering crucibles, whose empty weights (!!"#!$%&') had been recorded. 

The solids were used for acid insoluble lignin and ash determination while the recovered 

filtrates were used for sugars and acid soluble lignin quantification. 

Acid insoluble lignin and ash determination. The filtering crucibles containing the 

solids from acid hydrolysis were weighed (!!"#!$%&'!!"#$%!) before being placed in an 

oven at 105°C for 24 h for drying. The dried solids were cooled in a dessicator for 20 min. 

and weighed again (!!"#!$%&'!!"#$%!,!,!"#℃). Afterwards, they were placed in a muffle 

furnace at 525°C for 4 h. where all organic material was incinerated leaving an inorganic 
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residue, or ash, behind. The filtering crucibles were weighed (!!"#!$%&'!!"#$%!,!,!"!℃) so 

that acid insoluble lignin (AIL) and ash contents could be determined as follows: 

 !!"# = !!"#!$%&'!!"#$%!,
!,!"#℃

−!!"#!$%&'!!"#$%!,
!,!"!℃

  [Equation 4.7] 

 !!"! = !!"#!$%&'!!"#$%!,
!,!"!℃

−!!"#!$%&'    [Equation 4.8] 

 !"#!(%) = !!"#
!"#     [Equation 4.9] 

!"ℎ!(%) = !!"!
!"#                           [Equation 4.10] 

Acid soluble lignin (ASL) determination. Within 6 h of acid hydrolysis, it was 

imperative to quantify the ASL content. The ASL content was determined 

colorimetrically using the filtrate samples and an Evolution 60s UV-VIS 

spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA).  A 2 ml subsample 

was diluted 20x with 4% sulfuric acid solution so that the absorbance reading at 280 nm 

fell between 0.3 and 0.7, against a background of 4% (v/v) sulfuric acid solution. 

Absorbance measurements were then converted to ASL content using the following 

equation:  

 !!"#! % = !!"#∙!∙!"
!∙!"#∙!   [Equation 4.11] 

where A280 is the average UV absorption of the sample at 280 nm; V is the volume of the 

filtrate sample, 0.087 L; df is the dilution factor, 20; ε is the absorptivity of the sample at 

280 nm, 10 L/g/cm; ODW!is the mass of the sample in grams,; and b is the path length of 

the cuvette used in the measurement, 1.1 cm.  

Sugar content determination. The remaining filtrate samples were neutralized using 

calcium carbonate powder (Product No. 239216, Sigma Aldrich, St. Louis, MO) to a pH 

value between 5 and 6. Afterwards, the samples were centrifuged at 2000 rpm for 2 min. 
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to remove fine solids. The supernatant were removed and further filtered using a 0.2 µm 

filter and placed into sample vials for high performance liquid chromatography (HPLC) 

analysis. The samples were injected into an HPLC (Pump-Waters 1515, Autosampler-

Waters 2707, Detector-Waters 2414, Waters, Milford, MA) with a Biorad Aminex HPX-

87-P column (Part No. 125-0098, BIO-RAD, Hercules, CA) and a microguard de-ashing 

guard column (Part No. 125-0118, BIO-RAD, Hercules, CA) for glucan, xylan, and 

arabinan contents determination.  

4.2.3. Statistical analyses 

The composition means of each sample group were determined, compared, and 

tested for significance (p < 0.05) using Tukey’s test. Statistical analyses were conducted 

using R (Version 2.15.2, 2012). 

4.2.4. FT-NIR spectra collection, preprocessing, and analysis 

An FT-NIR spectrophotometer (SpectrumTM One NTS, Perkin Elmer, Waltham, 

MA) was used to scan the dry ground botanical fractions (dry basis moisture contents 

were less than 2%). Approximately a 2-5 g subsample was poured in a near infrared 

reflectance accessory (NIRA) cup, leveled with a spatula making sure the spatula touched 

two points on the cup so the material was not packed, and scanned. The 

spectrophotometer was set to collect an average of 32 scans from 4,000 to 10,000 cm-1 at 

a spectral resolution of 4 cm-1. Different blends (w/w) of the rind and blades were also 

scanned to demonstrate the range in composition achievable with blended fractions. 

Unscrambler® (Version 10.1, Camo Software Inc., Woodbridge, NJ) was used to 

preprocess and analyze the spectral data. The data were preprocessed using multiplicative 

scatter correction (MSC) and mean centered. MSC was used to remove multiplicative 
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scatter or interferences resulting from baseline shifts and the sample’s particle size 

distribution. Principal components analysis (PCA) was conducted on the preprocessed 

FT-NIR spectra.  

4.2.5. Estimated Compositional Range (ECR) 

To investigate how the composition of a bale may change as various blends of 

botanical fractions were incorporated into the bale, the estimated compositional range 

(ECR) was determined. The ECR was calculated by taking the compositions of the 

botanical fractions of a given sample, multiplying it by its respective mass fraction, and 

then dividing it by the sum of the mass fractions used: 

 !"#!"#$,! =
!!"#$%&'(,!∙!!"#$%&!",!!

!!!
!!"!#$

 [Equation 4.12] 

where ECR,comp,i is the ECR per component, cfraction is the component content for each 

fraction, mfraction is the mass of the fraction, mtotal is the sum of the mass fractions utilized, 

and i is the ith sample for a total of N = fraction. 

Depending on harvest method and date, different botanical fractions may make up 

a bale so different scenarios were investigated. Early after the plant has dried down, the 

plant will be intact containing all five fractions: rind, node, pith, sheath, and blade. 

Therefore the ECR was calculated for whole Miscanthus containing all five fractions. 

Since the blade mass fraction data was not available when samples were collected in this 

study, the mass fraction of blade was assumed to be equal to the sheath’s since there was 

at least one blade for every sheath while the plant was growing. In addition to the whole 

sample, samples with rind, node, pith, and sheath were made to show a late harvest 

variation, along with an all stalk (rind, node, pith) blend, and an all leaf (blade, sheath) 

blend. 
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The ECR means of each sample group were determined, compared, and tested for 

significance (p < 0.05) using Tukey’s test. Statistical analyses were conducted using R 

(Version 2.15.2, 2012). 

4.3. Results and discussion 

4.3.1. Mass fraction of the botanical fractions 

The majority of the Miscanthus stalks were composed of rind, the hard outer 

portion of the stalk, where the percent dry fraction (% w/w) ranged from 48 to 63% 

(Figure 4.3). All other botanical fractions, except the blade, had lower mass fractions 

ranging from 8 to 13% for the pith, 17 to 28% for the sheath, and 10 to 16% for the nodes. 

Since the stalk samples were harvested during the senescent stage, the leaves (blades) had 

already fallen off and were not included in the mass fraction analysis.  

 

Figure 4.3. Mass fraction of botanical fractions of Miscanthus × giganteus. Median-based box plots 
represent the minimum, maximum, interquartile range (IQR), outliers (! , which are defined as data 

lying at 1.5·IQR distance from the median). The blades were excluded from the analysis as the 
samples were harvested at the senescent stage of plant growth.  
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4.3.2. Chemical composition 

Across the botanical fractions, ranges for each component were as follows: glucan, 

32.2 to 46.1%; xylan, 20.9 to 25.3%; arabinan, 0.0 to 6.1%; lignin, 18.7 to 25.5%; and 

ash, 0.4 to 8.9% (Table 4.1). While large variations were seen among individual sugars, 

the total structural carbohydrate levels for rind, pith, and sheath were not different from 

each other, showing that if glucan content (the main component in cellulose) decreased, 

xylan and arabinan contents (main components in hemicellulose) increased 

proportionally. However, nodes and leaves had the lowest total carbohydrate levels (62.0 

and 59.8%, respectively) compared to rind, pith and sheath.  

Table 4.1. Composition of botanical fractions of Miscanthus × giganteus   

Botanical 
Fraction 

Meana ± S.D.b (%) 
Glucan     Xylan       Arabinan  Lignin    Ash        Extractives Carbohydratesc  

Rind 46.1a 
± 0.7 

20.9a 
± 0.3 

--- 24.2a 
± 0.3 

0.7a 
± 0.1 

5.2ab 
± 0.5 

67.0a  
± 0.8 

Pith 38.5c 
± 0.6 

25.3c 
± 0.7 

2.1a 
± 0.3 

21.1c 
± 0.3 

0.7a 
± 0.1 

6.3ad 
± 1.1 

64.9a  
± 1.8 

Sheath 40.4b 
±1.1 

23.5b 
±0.5b 

3.0b 
± 1.6 

20.5b 
± 0.5 

3.0c 
± 0.5 

4.1b 
± 0.7 

67.0a  
± 1.5 

Node 38.3c 
± 0.3 

23.8b 
± 0.4 

--- 25.5d 
±0.5 

0.4a 
± 0.1 

7.6d 
± 0.6 

62.0b  
± 0.5 

Blade 32.2d 
± 0.6 

21.6a 
± 0.5 

6.1c 
± 0.2 

18.7e 
± 0.4 

8.9b 
± 0.7 

9.5c 
± 0.8 

59.8c  
± 1.0 

aComponent values followed by the same lowercase letter in the same column, are not different (p > 0.05). 
bS.D. = one standard deviation. 
cCarbohydrates = glucan + xylan + arabinan contents. 

Variations in composition within each botanical fraction of Miscanthus were, in 

general, low (Figure 4.4).  The arabinan content of pith samples had the highest 

variability, but this was likely due to arabinan being measureable in only two of the six 

pith samples.   

The compositions of the botanical fractions of Miscanthus were comparable to 

those of corn stover and switchgrass (Liu et al., 2010). Leaves had the lowest glucan 
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contents, respectively, in Miscanthus and corn stover and the rind had the highest glucan 

contents.  In switchgrass, leaves had the lowest and internodes had the highest glucan 

contents.  The glucan contents (mean ± S.D.) of the rind (37.83 ± 0.57%) and pith (39.03 

± 1.34%) of corn stover were comparable but, in the case of Miscanthus, their glucan 

contents were different from each other, with an absolute difference of 7.6%. The 

variations in glucan content of Miscanthus and corn stover were similar, 13.9% and 

13.31%, respectively.  

For the hemicellulose components, the pith fraction for Miscanthus, husk fraction 

for corn stover, and nodes fraction for switchgrass had the highest xylan contents. Liu et 

al. (2010) reported variations in xylan content of up to 13.48% in corn stover and 6.03% 

for switchgrass botanic fractions. Miscanthus was comparable to switchgrass having the 

largest absolute difference, 4.4%, in xylan content found in the rind and pith. Similarly, 

arabinan contents were low in the rind, pith and nodes of corn stover and Miscanthus and 

internodes of switchgrass; high levels were found in the leaves fraction of Miscanthus, 

husk fraction of corn stover, and nodes fraction of switchgrass. The variations in arabinan 

contents for all three feedstocks were below 5%. 

Blades of Miscanthus had the lowest lignin content (18.7%) but, in the blades of 

corn stover and leaf of switchgrass, lignin contents were as high as 23.95% and 25.10%, 

respectively (Liu et al., 2010). In Miscanthus, the nodes had the highest lignin content 

(25.5%), which was comparable in lignin contents reported by Liu et al. (2010) to the 

nodes of corn stover (23.6%) and switchgrass (on average, 21.8%, depending on 

cultivars).  The variations in lignin content of Miscanthus (6.8% difference between 
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nodes and leaves) and switchgrass (4.78% variation) were comparable, but was high in 

corn stover (14.26% variation). 

Lastly, in terms of ash content, the three feedstocks were comparable in that the 

rind, node, and pith fractions had the lowest and the leaves had the highest levels.  Again, 

the largest absolute difference (8.5%) in ash contents was between nodes and leaves of 

Miscanthus.  This time, ash variation was comparable to corn stover (7.61%) than to 

switchgrass (3.79%). 

These observations suggested that as a lignocellulosic feedstock, variations in 

Miscanthus composition were comparable to that of corn stover composition and not as 

consistent as switchgrass composition. This could be attributed to both Miscanthus and 

corn stover having more botanic fractions and, hence, specialized tissues, than 

switchgrass.  

Overall, the carbohydrate levels in Miscanthus were higher than those in corn 

stover and switchgrass. Humbird et al. (2011) looked at the process design and 

economics for biochemical conversion of corn stover. The study set the total 

carbohydrate level to 59% for the analysis, which was the mean carbohydrates content of 

the corn stover samples used in their analysis. The mean carbohydrate levels for the 

fractions of Miscanthus ranged from 59.8% (blade) to 67.0% (rind and sheath), placing 

the lowest mean carbohydrate level fraction (blade) at the average composition of corn 

stover samples.  
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Figure 4.4. Composition of botanical fractions of Miscanthus × giganteus. Median-based box plots 
represent the minimum, maximum, interquartile range (IQR), outliers (! , which are defined as data 

lying at 1.5·IQR distance from the median), and extremes (! , which are defined as data lying at 
3·IQR distance from the median).  

4.3.3. PCA of FT-NIR spectra of botanical fractions and their blends 

The high variability in composition of the different botanical fractions was 

reflected in their FT-NIR spectra (Figure 4.5). Variations can be seen among fractions 

with different absorption intensities across all wavenumbers. The leaf structures – blade 

and sheath – exhibited additional peaks in the combination region from 5,000 to 4,000 
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cm-1, which could be attributed to the differences in tissue types between the leaves and 

stalks and the lower lignin and higher arabinan and ash contents of the leaf structures. 

 
Figure 4.5. MSC spectra of each botanical fraction reflect variations in composition.  

With blade and rind fractions having the largest differences in spectral response, 

blends with different mass fractions of blade and rind were scanned and analyzed using 

PCA. The FT-NIR spectra of the different blends showed the same trends as the pure 

botanical fractions with absorption variations across all wavenumbers and additional 

peaks forming in the combination region as the blade content was increased (Figure 4.6). 

Recall that rind had the highest glucan and lignin contents and one of the lowest 

ash content; while the blade had the lowest glucan and lignin contents and the highest ash 

content among the botanical fractions. A plot of the first principal component (PC1) of 

the PCA against the third principal component (PC3) showed PC1 was sensitive to these 

two components (Figure 4.7), showing as the mass fraction of blade and, presumably, ash 

content of the blend increased, the samples had a positive PC1 value. As the rind portion 

of the blend increased and, presumably, its glucan and lignin content increased, the PC1 

value was negative.  
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Figure 4.6. MSC corrected spectra for five rind (R) and blade (B) blends showed variations in 

composition and distinct absorption bands in the 4250 to 4350 cm-1 range as blade content increased. 

Based on the mean values for glucan, lignin, and ash presented in Table 4.1 and 

the proportions of the blends, glucan and lignin were expected to increase from 32 to 

46% and 18 to 24%, respectively, as PC1 value decreased. Likewise, ash content was 

expected to decrease from 9 to 1%. This result demonstrated the possibility of blending 

fractions to meet a specification and to use FT-NIR spectroscopy as a high throughput 

assay in monitoring the composition of the blends. 

Combining the results from the dry mass fraction with the compositional 

variations, the ECR showed differences for each component across all the mixtures were 

7.4% for glucan, 0.7% for xylan, 3.4% for arabinan, 4.8% for lignin, 5.3% for ash, 1.4% 

for extractives, and 2.5% for carbohydrates (Table 4.2). These large variations could also 

be leveraged in blending Miscanthus botanical fractions to meet quality specifications. 

Wavenumber (cm-1)

M
SC

 c
or

re
ct

ed
 a

bs
or

ba
nc

e

10000 9000 8000 7000 6000 5000 4000
0.3

0.4

0.5

0.6

0.7

0.8

Rind-blade blends (%w/w)
10% rind + 90% blade
30% rind + 70% blade
50% rind + 50% blade
70% rind + 30% blade
90% rind + 10% blade

Wavenumber (cm-1)
4500 4250 4000

0.55

0.60

0.65

10% R + 90% B

30% R + 70% B

50% R + 50% B

70% R + 30% B

90% R + 10% B



 58 

 

Figure 4.7. PCA showed blends of rind and blade fractions can be differentiated across the first 
principal component (PC1). As PC1 decreased, glucan and lignin content (associated with higher 

rind proportions) increased while ash content (associated with higher blade proportions) decreased. 
showed the different blends of rind and blade fractions. The labels represent the percentage of rind 

on a dry %w/w, present in the sample. 

 
Table 4.2. Estimated compositional range (ECR) of different blends of botanical fractions of 
Miscanthus.  

Component ECRa ±  S.D.b (%) 
Allc Harvestd Stalke Leaf structuresf 

Glucan 41.2a ± 0.8 43.1b ± 0.8  43.9b ± 0.7 36.3c ± 0.6 
Xylan 22.1ab ± 0.3 22.3ab ± 0.3 21.9b ± 0.4 22.6a ± 0.2 
Arabinan 1.75a ± 0.5  0.81a ± 0.5 0.15a ± 0.2 4.53b ± 0.8 
Lignin 22.6a ± 0.3 23.4a ± 0.3 24.3a ± 0.3 19.6b ± 0.4 
Ash 2.54a ± 0.4 1.17a ± 0.2 0.65a ± 0.7 5.94b ± 0.5 
Extractives 6.11ab ± 0.4 5.39b ± 0.4 5.74b ± 0.5 6.79a ± 0.3 
Carbohydratesg 65.1ab ± 0.7 66.2a ± 0.6 65.9a ± 0.6 63.4b ± 1.2 
aValues followed by the same letter, per component (or row), are different (p > 0.05). 
bS.D. = one standard deviation. 
cAll = rind (%), pith (%), node (%), sheath (%), blade (%)(w/w). All=(mrcr+mpcp+mncn+mscs+mbcb)/mtotal 
dHarvest = rind (%), pith (%), node (%), sheath (%) (w/w). Harvest=(mrcr+mpcp+mncn+mscs)/mr+p+n+s 
eStalk = rind (%), pith (%), node (%) (w/w) Stalk=(mrcr+mpcp+mncn)/mr+p+n 
fLeaf structures = sheath (50%), blade (50%) Leaf=(mscs+mbcb)/ms_b 
gCarbohydrates = glucan + xylan + arabinan contents (%) 
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4.4. Conclusions 

When Miscanthus was manually harvested at the senescent stage, in terms of 

mass, the highest mass botanical fraction gathered was the rind, followed by node, sheath, 

and pith. Across the different botanical fractions, ranges for each component were as 

follows: glucan, 32.2 to 46.1%; xylan, 20.9 to 25.3%; arabinan, 0.0 to 6.1%; lignin, 18.7 

to 25.5%; and ash, 0.4 % to 8.9%. Overall, however, the sum of glucan, xylan, and 

arabinan contents for rind, pith, and sheath fractions were not different from each other. 

While the compositional variation within each botanical fraction were not high, the 

variations across some botanical fractions were significant. The blade had the lowest 

glucan, lowest lignin, and highest ash contents making them different from the other 

botanical fractions. Variations in Miscanthus composition were comparable to that of 

corn stover composition and not as consistent as switchgrass composition. From the FT-

NIR spectra, variations among botanical fractions can be detected through PCA, showing 

the possibility of constructing classification models such as linear discriminant analysis 

and soft independent modeling class analogy (SIMCA) based on different blends. With 

the variations that were observed it is now evident that the compositional variability 

within a bale core sample can be largely contributed to which fractions make up the core 

sample.   
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CHAPTER 5. PLSR MODELS OF MISCANTHUS COMPOSITION  

5.1. Introduction 

Since conversion facilities would like to receive feedstocks that are consistent, or 

uniform, in quality, moisture content, ash content, and convertible carbohydrates so they 

can operate their chemical pretreatment and conversion processes efficiently. It is 

advantageous to know the feedstock composition prior to conversion so that enzyme 

mixtures, yeast strains, and process control parameters can be adjusted accordingly to 

maximize yields. Knowing composition at earlier stages of the supply chain can also help 

in the development of quality based valuations which incentivize farmers and suppliers to 

implement best management practices to ensure a uniform and consistent supply system 

(Kenney et al., 2013). Current wet chemistry methods for chemical characterization of 

biomass feedstock are not applicable for field or inline monitoring because they are 

expensive, labor intensive, and cannot provide compositional information in real time for 

process control (Ye et al., 2008). One approach to reducing the time and cost of 

compositional analysis is the development of near infrared (NIR) spectroscopy and a 

good calibration based on multivariate analysis to provide either a quantitative or 

qualitative measure of composition. 

Several studies have shown NIR spectroscopy as a promising technique to 

assessing biomass composition (Sanderson et al., 1996; Hames et al., 2003; Pordesimo et 

al., 2005; Hoskinson et al., 2007; Templeton et al., 2009; Hayes, 2012; and Haffner et al., 

2013). In this study, calibration models based on partial least squares regression (PLSR) 

of FT-NIR spectra of Miscanthus to chemical composition (glucan, xylan, arabinan, 

lignin, ash, extractives, and acetyl contents) were developed. In order to get a broad range 
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in the composition of the samples in the calibration data, samples from Miscanthus bales 

stored under a variety of conditions – indoors, under roof, outdoors with tarp cover, and 

outdoors without tarp – for 3 to 24 mo. were used. To date, most calibration models have 

been based on freshly harvested biomass or using different cultivars of a specific biomass 

crop, e.g., upland vs. lowland cultivars of switchgrass.  

5.2. Materials and methods 

5.2.1. Sample collection, preparation, and compositional analysis 

Bale core samples were collected and prepared for chemical compositional 

analysis and NIR scanning according to the procedure outlined in Section 3.2. The 

samples were sent to the Energy Biosciences Institute (EBI) Analytical Chemistry 

Laboratory at the University of California in Berkeley for compositional analysis (glucan, 

xylan, arabinan, lignin, ash, extractives and acetyl content). Compositional analyses were 

conducted in duplicates following standard procedures developed by the National 

Renewable Energy Laboratory (NREL) and details of which were discussed in Haffner et 

al. (2013).  

5.2.2. Scanning and preprocessing of FT-NIR spectra 

An FT-NIR spectrophotometer (SpectrumTM One NTS, Perkin Elmer, Waltham, 

MA) was used to scan the dry ground samples (dry basis moisture contents were less than 

2%). Approximately a 15 g subsample was poured in a near infrared reflectance 

accessory (NIRA) cup, leveled with a spatula, and placed in an automatic spinner. The 

spectrophotometer was set to collect an average of 32 scans from 4,000 to 10,000 cm-1 at 

a spectral resolution of 4 cm-1. 



 62 

Unscrambler® (Version 10.1, Camo Software Inc., Woodbridge, NJ) was used to 

preprocess and analyze the spectral data. The data were mean centered and either 

preprocessed using multiplicative scatter correction (MSC); Savitzy-Golay (SG) first 

derivative using a second, third, or fourth order polynomial; or combination of MSC and 

SG. MSC was used to remove multiplicative scatter or interferences resulting from 

baseline shifts and the sample’s particle size distribution. The SG derivative algorithm 

does smoothing and differentiation of the data by simplified least squares, where each 

point (i.e., the absorbance at a specific wavenumber) became the weighted average 

derivative of the points surrounding it. 

5.2.3. Absorption waveband selection and PLSR modeling 

 PLSR models for each component were first developed in Unscrambler® using 

91 samples for calibration and validated using cross validation. With the cross validation 

results a Martens uncertainty test was performed. A separate test set, including 10 

samples, was created by taking Miscanthus samples that were at the extremes of the 

range for glucan, xylan, arabinan, lignin, and ash. The test set remained fixed in the 

development of PLSR models for all components.  

A series of cross validation models was used to detect null regression coefficients 

with the Martens uncertainty test option (Figure 5.1; Esbensen et al., 2002). Null 

regression coefficients were left out in the next model and the software highlighted 

wavebands that were found to be correlated to the specific component being modeled 

(e.g., glucan, xylan, lignin, etc.).  



 63 

 

Figure 5.1. Wavenumber and preprocessing selection flow chart. 

Once significant wavebands have been identified, PLSR models were re-

calculated using only the significant wavebands and the 91 samples were divided into a 

calibration set (67 samples) and validation set (24 samples; Figure 5.2). In assigning 

calibration and validation sets for each component, the Miscanthus samples were 

arranged from highest to lowest values and every 4th or 5th sample in the range was used 

for validation.  The remaining samples were used for calibration. This procedure ensured 

the calibration and validation sets for each component had a comparable range, mean, 

and standard deviation.     
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Figure 5.2. Flow chart of independent calibration and validation PLSR model building. 

The resulting PLSR models were also compared to regression models for 

Miscanthus and other lignocellulosic feedstocks found in literature. Calibration models 

based on NIR spectra have a high specificity and selectivity and are rarely transferrable 

from one sample type to another; meaning, a model developed for corn stover is rarely 

applicable to Miscanthus or a model developed using 10 mm ground material may not be 

applicable to the same material that has been ground to a smaller or larger particle size. 

However, since lignocellulosic materials essentially have the same components – 

cellulose, hemicellulose, lignin, and ash – the PLSR models predicting composition 

should rely on similar NIR absorption wavebands.  

The PLSR models were then compared and evaluated based on the number of 
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mean square error (RMSE), ratio of performance to deviation (RPD), range to standard 

error of prediction (R/SEP), and relative ability of prediction (RAP). Based on the 

waveband comparison and evaluation results, the best PLSR model for each component 

was chosen and used to predict the composition of an independent test data set        

(Figure 5.2). 

5.3. Results and discussion 

5.3.1. Descriptive statistics 

 For all components, ranges, means, and standard deviations of the samples chosen 

for the calibration, validation, and fixed test sets were comparable to each other (Table 

5.1; kurtosis values for each component in each data set are available in Appendix, Table 

A.2).  Differences were found in the kurtosis, K or degree of “peakedness”, of the 

probability distribution of each data set for each component.  A probability distribution 

with a K = 0 value represents a typical normal distribution curve. Data sets with a high 

kurtosis values (K > 1) refer to data sets centered around the mean while data sets with 

low kurtosis values (K < -1) have a flatter, more uniform distribution across the range 

probability distribution curves.  

In the case of glucan PLSR modeling, the kurtoses of the calibration, validation, 

and test sets were different, with K = 19.2, 10.6, and -1.4, respectively.  When high 

kurtosis is combined with a high range and low standard deviation, there is a tendency to 

overestimate the R/SEP values of the prediction models. This combination was found 

with the glucan, arabinan, and lignin calibration data sets where K > 3; for xylan, acetyl, 

ash, and extractives, K > 1. With high kurtosis the standard deviation of the data set will 

be narrower than the normally distributed data sets that are desired in NIR model building 
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sets. Therefore with the lower standard deviation the RPD will usually be under estimated 

since the standard deviation is in the numerator.  

Table 5.1. Range, mean, and standard deviation (S.D.) of the composition of Miscanthus bale samples 

Component Calibration set (n = 67)  Validation set (n = 24)  Test set (n = 10) 
Range 

(%) 
Mean ± S.D. 

(%) 
 Range 

(%) 
Mean ± S.D. 

(%) 
 Range 

(%) 
Mean ± S.D. 

(%) 
Glucan 26.5-44.0 40.7 ± 2.37  25.8-43.6 39.8 ± 3.70   36.9-43.7 40.5 ± 2.49 
Xylan 17.7-24.2 20.6 ± 1.20  19.3-23.8 20.7 ± 1.02  18.1-24.2 21.6 ± 2.34 
Arabinan 1.05-3.11 1.83 ± 0.36  1.2-2.71 1.85 ± 0.34  1.21-2.75 1.99 ± 0.50 
Acetyl 2.06-3.40 2.74 ± 0.28  1.76-3.29 2.81 ± 0.38  2.09-3.01 2.61 ± 0.34 
Klason 
lignin 

17.7-26.5 20.7 ± 1.35  18.2-25.7 20.5 ± 1.61  17.5-22.2 20.1 ± 1.48 

Ash after 
extraction  

0.59-5.16 2.60 ± 1.64  0.59-4.47 2.53 ± 0.91  0.59-4.25 2.26 ± 1.46 

Extractives 3.61-8.72 5.59 ± 0.86  3.59-9.10 5.66 ± 1.16  4.64-6.60 5.61 ± 0.57 
 

5.3.2. Significant absorption wavebands and PLSR modeling 

The cross validation with Martens uncertainty testing allowed for identification of 

significant absorption wavebands for each component of Miscanthus (Table 5.2). The 

glucan PLSR model utilized 35 wavenumbers; of the regions found useful for modeling, 

only the 8,250 to 8,260 cm-1 was similarly identified as cellulose by Schwanninger et al. 

(2011). Three other wavenumbers were recognized in Aenugu et al. (2011) as a ketone, 

methyl, and methylene. The xylan and arabinan PLSR models consisted of 351 and 57 

wavenumbers, respectively, where within the regions utilized, 11 and 4 wavenumbers had 

been attributed to hemicellulose (Schwanninger et al., 2011).  The lignin PLSR model 

utilized the entire 4,000 to 5,000 cm-1 region; therefore, the entire region was utilized. 

Schwanninger et al. (2011) reported five wavenumbers to be specific in that region. 

Finally, even though ash is an inorganic material, there was a P-OH bond that was 

reported by Aenugu et al. (2011) that matched up with one of the regions utilized for ash. 
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Table 5.2. Significant wavebands identified through cross validation with Martens uncertainty 
testing and their corresponding component or chemical bonds. 

Wavebands (cm-1) 

This study 
Based on Miscanthus samples 

Aenugu et al. (2011) 
Based on fundamental groups   

Schwanninger et al. (2011) 
Based on wood samples 

Glucan 
8605-8602, 8255-8253, 5954-
5941, 5922-5918, 5856-5848, 

4166-4164 

8605 C=O 4th overtone 
8253 CH2 2nd overtone 
1708 CH3 1st overtone 

Cellulose 
8250-8260 

 

Xylan 
7064-7022, 5310-5222, 5190-
5172, 5155-5140, 5110-5100, 
5047-5038, 4829-4813, 4714-
4694, 4450-4415, 4406-4360, 
4340-4314, 4186-4184, 4153-

4133 

 Hemicellulose 
5848, 5865, 5814, 5816, 5245, 
4686, 4546, 4435, 4404, 4401, 

4392 

Arabinan 
5860-5858, 5818-5817, 5780-
5779, 5100-5099, 4684-4683, 
4635-4631, 4585-4582, 4549-
4543, 4486-4481, 4412-4407, 
4392-4390, 4372-4367, 4340-

4338, 4316-4314, 4239 

 Hemicellulose 
5865, 5818, 4686, 4404 

Lignin 
5000-4030 

 Lignin 
4686, 4546, 4411, 4280, 4195 

Ash 
5312-5223, 4779-4662, 4419-
4355, 4277-4248, 4115-4178 

5240 P-OH  

 

Multiple pretreatments and combinations of pretreatments, i.e., MSC, SG first or 

second derivatives, MSC followed by SG, and SG followed by MSC, were tested. While 

many papers have used the second derivative, the best results were obtained from the first 

derivative in this work. Hayes (2012) reported success with using derivative smoothing 

alone, without the use of MSC. However his models also utilized over eight factors for 

glucan, xylan, arabinan, lignin, ash, extractives, and acetyl. 
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Table 5.3. PLS regression models for glucan, xylan, arabinan, lignin, ash, extractives, and acetyl 
contents of Miscanthus. 

 Glucan Xylan Arabinan Lignin Ash Extractives Acetyl 
Preprocessing MSC 

+ SG 
(1,20,20,3)a 

SG 
(1,30,30,3)
+ MSC 

SG 
(1,50,1,4) 
+ MSC 

     SG 
(1,30,30,3) 
+MSC 

MSC 
+ SG 

(1,65,65,4) 

MSC SG 
(1,40,40,4) 

+ MSC 
No. of factors  2 5 4 4 7 2 2 
R2        
      Calibration 0.93 0.87 0.85 0.87 0.84 0.04 0.47 
      Validation 0.95 0.86 0.82 0.93 0.64 0.14 0.16 
      Test 0.52 0.60 0.69 0.70 0.85 N/A N/A 
RMSEb (%)        

Calibration 0.60 0.38 0.13 0.39 0.33 0.90 0.20 
Validation 0.76 0.25 0.14 0.43 0.53 1.04 0.33 
Test 1.62 1.39 0.26 0.75 0.53 N/A N/A 

Biasc (%) 0.10 -0.05 -0.04 0.06 -0.20 -0.002 0.06 
RPDd  4.59 4.20 2.42 3.52 1.86 N/Ag 0.80g 
R/SEPe 22.13 18.75 11.61 16.38 8.05 N/A 3.55 
RAPf 0.96 0.95 0.83 0.94 0.70 N/A 0.00 

aSavitzky-Golay derivative parameters (derivative order, left points, right points, polynomial order) 
bRoot mean square error, !"#$ = !! − ! !!

!!! !, where !! is the individual reference value (from 
wet chemistry assay), ! is the NIR predicted value from the PLS regression model, and ! is the total 
number of samples.   

c!"#$ = ! − !!!
!!! ! − 1  

dRatio of performance to deviation, !"# = !! !"#, where the standard deviation of the reference data is 
!! = !! − !!

!!! ! − 1 , ! is the average reference value, and the standard error of prediction or 
prediction (using the validation set) is !! − ! − !"#$!

!!! !.   
eRatio of the range of the validation data set to the standard error of performance, SEP. 
fRAP= !!"#$%"&$'(! !!"#$

!!"#$%"&$'(! !!!"#!!!!"!                         
gRPD values of models for extractives and acetyl contents were less than 1.0 and not used for prediction.       

 

PLSR models were created for all the components but models for extractives and 

acetyl had RPD < 1. Moldy samples, which could provide an overestimate of extractives 

content, were removed from the calibration and validation data sets in the extractives 

PLSR modeling, but resulting models still had low RPD values. In the case of the acetyl 

model, the Miscanthus samples used had a very narrow range for acetyl content and a 

high mean standard deviation for the wet chemical values (Table 5.1).  
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The glucan model was the best of all the models that were constructed, with a 

calibration and validation R2 = 0.93 and 0.96 and RMSE = 0.61 and 0.76%, respectively. 

The bias for calibration and validation were also low (< 0.1%). The R/SEP signified this 

model useful for quantification and, based on the RPD, it was also useful for sample 

screening in plant breeding programs. The difference between the two evaluation 

parameters is that the range is high compared to the standard deviation or in other terms 

the data set is not evenly distributed and has a high kurtosis. In addition, the RAP is at 

0.96 in which a RAP of 1 means that the only variation in the model is due to the wet 

chemical analysis.  

Similar to the glucan model, the lignin model was very good utilizing only 4 

factors. The R2 for the calibration and validation were 0.87 and 0.83, respectively. The 

RMSE was also low, being less than 0.43 for both the calibration and validation sets. The 

RPD and R/SEP was 3.52 and 16.38, showing that at a minimum the model was good for 

screening and at the best was good for quantification. The RAP also concluded a good 

model at 0.94. 

Similarly, models developed for xylan and arabinan utilized five factors each, 

calibration and validation R2 > 0.80, and a RMSE < 0.4%. Based on its R/SEP and RPD 

values, the PLSR model for xylan was at useful for quantification and sample screening 

while the PLSR model for arabinan was high enough for quality control applications.  

The PLSR model for ash was a not as good as the other models due to a lower 

RPD, R/SEP, RAP, and R2 for validation, but was still promising and likely to improve if 

more samples and a wider range of ash contents are included in the model. The R2 was 

high with the calibration set (0.84) but low for the validation set (0.64). There was a large 
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difference between the RMSE for the calibration and validation models, 0.33% and 

0.53%, respectively. The R/SEP value signified the model was good for screening 

purposes, while the RPD value was too low for this application. This discrepancy could 

be attributed to the low range in ash content and that ash, as an inorganic material, did not 

have enough organic compounds to produce vibrations in the NIR range. 

Comparing the results to other PLSR models developed for biomass, Wolfrum 

and Sluiter (2009) created a model to predict the composition of corn stover. Their model 

included samples with glucan contents between 25.7 – 41.4% and a RMSEP = 1.96%; 

while the ranges were comparable, the RMSEP (RMSE of prediction, which refers to the 

validation set) was almost double than the one for this study. There was a wider range in 

xylan content (11.2 – 30.8%) and a RMSEP = 1.33%; again, double of the RMSEP found 

in this study. The lignin model was similar to the xylan model in that the range was wider 

and the RMSEP was three times the value determined in this study.  

While models for ash, extractives and acetyl were attempted in this study, they 

were unreliable with R2 < 0.50. The main difference between the two studies was that 

cross validation was used on a total of 77 samples in Wolfrum and Slutier (2009), where 

this study used an independent validation and calibration set of 67 and 24 samples. Also 

in this work insignificant wavenumbers were determined and not utilized which reduced 

some of the noise in the model. 

Ye et al. (2008) constructed corn stover models, too, using NIR-PLSR and were 

more successful in terms of R/SEP. The results were similar to those in this study where 

the R/SEP for glucan was 14.31 vs. 22.13 (Miscanthus); xylan, 12.97 vs. 18.75 
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(Miscanthus); arabinan, 13.96 vs. 10.92 (Miscanthus); lignin, 13.71 vs. 16.38 

(Miscanthus); and ash, 7.05 to 7.40 (Miscanthus).  

Haffner et al. (2013) constructed NIR-PLSR models for Miscanthus from newly 

harvested samples. Their samples were ground to a particle size less than 2 mm using a 

ball mill and only a 0.5 g sample was scanned. Recall that, in this study, samples were 

ground using a knife mill fitted with a 2 mm sieve and a 15 g sample was scanned using a 

spinner accessory. The PLSR models for glucan and xylan in this study were comparable 

in R/SEP values to those developed by Haffner et al. (2013), but they reported higher 

R/SEP values for arabinan, lignin, and ash models. They were also able to construct 

models for extractives and acetyl content in Miscanthus, likely owing using clean 

samples from the field that were ball milled. Also in this study a 15 g sample was taken 

to get an average composition of the sample while in Haffner et al. (2013) they only 

scanned a 0.5g sample. Hayes' (2012) NIR-PLSR models for Miscanthus utilized 

independent calibration and validation sets with comparable RPD values for glucan and 

xylan models in this study, but he, too, reported better models for arabinan, lignin, ash, 

and extractives (RPD > 3). Like Haffner et al. (2013), Hayes’ (2012) samples were newly 

harvested and the models included multiple factors (greater than 5 and as high as 17). 

 When the PLSR models were used to predict the composition of the test set, the 

R2 values were 0.52 for glucan; 0.60 for xylan; 0.69 for arabinan; 0.70 for lignin; and 

0.85 for ash. The lower R2 values could be attributed to the low number of samples in the 

set, or that the samples were at the extremes of the glucan, xylan, arabinan, lignin, and 

ash data sets and could have been contaminated with foreign material like microbial 

growth. 
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5.4. Conclusions 

PLSR models were created for glucan, xylan, arabinan, lignin, and ash with RPD 

values of 4.59, 4.20, 2.46, 3.52, and 1.86, respectively, with R/SEP > 8. These values 

indicated the models (except for ash) were useful, at minimum, for screening samples in a 

plant breeding program. PLSR models for extractives and acetyl were also developed but, 

since the mean deviation of the references data was high compared to the mean and range, 

the resulting models had a RPD < 1. These models could be improved by increasing the 

data sets and utilizing botanical fractions, which have a wider range of composition than 

bale core samples. 

 

 

 

 

 

 

  



 73 

CHAPTER 6. EFFECTS OF PARTICLE SIZE ON PREDICTING 
MISCANTHUS COMPOSITION  

6.1. Introduction 

Most applications of NIR spectroscopy in agriculture depends on diffuse 

reflectance and scattering of infrared light. Light reflectance in itself is a complicated 

phenomenon and scattering due to size and shape variations in particulate samples can 

cause shifts in the reflected light (R). These shifts are often perceived as “noise” in the 

absorbance (log 1/R) measurements and distort the information correlated to the sample’s 

chemical composition (Isaksson and Næs, 1988). To correct spectral noise, pretreatments 

such as MSC, standard normal variate-detrend (SNV-D), and derivative smoothing 

functions are used (Geladi et al., 1985).  

Another way to mitigate spectral noise is to get a better understanding of how 

particle size distributions affect light reflection and corresponding absorbance in the first 

place. Rantanen et al. (2000) measured the NIR absorbance of glass Ballotini of different 

particle sizes and noted smaller particles absorbed less light and tended to have lower 

baseline shifts.  Furthermore, longer wavelengths were more affected by the particle size, 

which demonstrated particle size distribution effects were not necessarily linear, but these 

effects could be eliminated by the MSC pretreatment. Conversely, Chen and Thennadil 

(2012) demonstrated how MSC pretreated spectra could be used to predict particle size. 

They found that light scattering effects were also affected by particle concentration and 

their refractive indices.   

In this study, the effects of the particle size distribution of the 2 mm ground 

Miscanthus bale core samples on the NIR spectra and predicted composition were 

investigated. These samples are not only a mixture of botanical fractions, but tend to have 
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a wide particle size distribution since the material can fall vertically through the sieve 

during milling, i.e., a material with a longitudinal axis longer than 2 mm can still fall 

through the sieve. 

6.2. Materials and methods 

6.2.1. Miscanthus samples and collection of FT-NIR spectra 

Bale core samples (40 g) were collected and prepared according to procedures 

described in Section 3.2 from stacked bales in Groups 8-13 (Z284-86, Y287-89, X290-92, 

O293-95, T296-98, I299-301). Once the samples were dried and ground to 2 mm, they 

were placed in a near infrared reflectance accessory (NIRA) cup, leveled with a spatula, 

and scanned with an FT-NIR spectrophotometer (SpectrumTM One NTS, Perkin Elmer, 

Waltham, MA). The spectrophotometer was set to collect an average of 32 scans from 

4,000 to 10,000 cm-1 at a spectral resolution of 4 cm-1. 

A subsample (2 to 4 g) was ran in a sonic sifter separator (L3P, ATM Corporation 

of America, Coraopolis, PA) fitted with U.S standard sieve sizes of 18 (1.12 mm), 20 

(0.850 mm), 40 (0.425 mm), 60 (0.250 mm), 120 (0.125 mm). A pan was also included in 

the separator to catch any remaining sample after sieving. The sonic sifter was run for 2 

minutes and the particle mass in each sieve was weighed and recorded. The procedure 

was repeated for two additional replicates. Afterwards, the FT-NIR spectra of the sieved 

samples were collected.  

6.2.2. Geometric mean diameter 

The geometric mean diameters and geometric standard deviations were calculated 

according to ASABE Standard S319.3 (1997):  

!!" = log!! !! !"#!!!
!!!

!!!
!!!

!!
                      [Equation 6.1] 
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!!"# = log!! !! !"#!!!!"#!!"
!!

!!!
!!!

!!!

!/!
!             [Equation 6.2] 

!!" = 2.3 ∗ !!"#                                 [Equation 6.3] 

!!" = !
!!!" log!! !!" − (log!! !!")!!               [Equation 6.4] 

where dgw is the geometric mean; W represents the weight on the ith sieve; !! is the mean 

between the ith sieve and the sieve above; Slog is the geometric standard deviation of the 

log-normal distribution by mass in log10; Sln is the geometric standard deviation in natural 

log scale; and Sgw is the geometric standard deviation of particle diameter by mass. 

6.2.3. Prediction of composition with PLSR models and statistical analysis 

The spectra were then imported into Unscrambler® and the compositions were 

predicted using the PLSR models described in Chapter 5. The predictions for the non-

sieved samples and for each particle size were compared using Students t test and 

Tukey’s test at an alpla level of 0.05. Statistical analyses were conducted using R 

(Version 2.15.2, 2012). 

6.3. Results and discussion 

6.3.1. Geometric mean diameter 

 The mass fraction for each particle sized ranged from 19.6 to 25.2% for the #20 

sieve, 32.7 to 36.1% for the #40 sieve, 20.2 to 22.3 for the #60 sieve, 12.3 to 15.8% for 

the #120 sieve, and 5.4 to 9.3% for the pan (Figure 6.1). There were no difference 

between the mass fractions for a given particle size. However, bale samples from Groups 

11 to 14 had less material in sieve #120 and in the pan compared to bale samples from 

Groups 8 to 10).  Within year, the bales stored under roof and with tarp cover had a 

higher mass percentage means than bales stored outdoors. The geometric means ranged 
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from 0.36 to 0.49 mm, where the smallest diameter came from the bale that was stored 

outside for 17 mos., and the largest diameter came from a bale that was covered with a 

tarp and was only 5 mos. old. 

 

Figure 6.1. The mean particle size distribution of each of the six samples with three replications.  

 

Table 6.1. Geometric mean diameter and geometric standard deviation of 2 mm ground Miscanthus.  

Group 
Age Storage 

conditions 
 dgw (mm)  Sgw (mm) 

(mo.) 1a 2a 3a Mean ± S.D. 1a 2a 3a Mean ± S.D. 

8 17 Outside 0.42 0.36 0.42 0.40 ± 0.03 0.42 0.44 0.42 0.43 ± 0.01 

9 17 Tarp 0.38 0.44 0.48 0.43 ± 0.05 0.44 0.41 0.40 0.42 ± 0.02 

10 17 Under roof 0.44 0.46 0.41 0.43 ± 0.03 0.41 0.40 0.43 0.41 ± 0.02 

11 5 Outside 0.49 0.43 0.41 0.44 ± 0.04 0.39 0.42 0.43 0.41 ± 0.02 

12 5 Tarp 0.49 0.49 0.44 0.47 ± 0.03 0.39 0.39 0.41 0.40 ± 0.01 

13 5 Under roof 0.46 0.45 0.45 0.45 ± 0.01 0.41 0.41 0.41 0.41 ± 0.00 
aReplicate number. 

 A general trend for the older bales can be observed where the unprotected bale 

had a smaller particle size, which may indicate decay, while bales covered with a tarp or 

stored under roof had larger particle sizes. All the samples except the new bale stored 

under roof had a wide standard deviation of the average geometric mean diameters.  
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6.3.2. Prediction of composition with PLSR models 

The FT-NIR spectra of the samples in each sieve showed the region from 4,500 to 

10,000 cm-1 included additive and/or multiplicative scatter effects for which the MSC 

algorithm was not able to correct (Figure 6.2). In the region from 4,000 to 4,500 cm-1, the 

non-sieved samples and those left in sieve sizes #20 and #40 showed increasing 

absorbance measurements as wavenumber decreased while the rest of the samples 

showed a negative or decreasing absorbance. This trend was also observed by Rantanen 

et al. (2000) – longer wavelengths tended to be more affected by particle size. Since the 

PLSR models developed for Miscanthus composition relied heavily on this combination 

region (4,000 to 5,000 cm-1), the accuracy of their prediction is expected to be size-

dependent.  

 

Figure 6.2. MSC corrected spectra of non-sieved (NS) samples and samples in each sieve size (#20, 40, 
60, 120, and pan). 

 In general, as particle size decreased (i.e., sieve size number increased), the 

predicted composition also increased (Figure 6.3). The variability in predicted glucan 

content was comparable or all bale samples, while the variability in predicted xylan 
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content was larger with younger (Groups 11-13) than older bale (Groups 8-10) samples. 

Predicted arabinan content increased with decreasing particle size with the older bale 

samples but this trend was not apparent with the younger bale samples. As for lignin 

content, predictions based on the FT-NIR spectra of sieved younger bale samples were 

lower than the prediction based on the FT-NIR spectra of non-sieved older bale samples. 

The same trend was observed for older bale samples but the predicted lignin content was 

within 1% absolute difference of the predicted lignin content of the non-sieved samples.  

The predicted ash content of the bales, regardless of storage period, increased with 

decreasing particle size. 

 On average, across predictions of glucan, arabinan, and lignin content were not 

sensitive to particle size (Table 6.2).  The predicted xylan content using non-sieved 

samples was different from sieved samples. Predicted ash content increased with 

decreasing particle size. 
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Figure 6.3. Predicted composition based on FT-NIR spectra of non-sieved samples (NS) and sieved 
samples. 
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Table 6.2. Predicted Miscanthus composition across particle size. 

Sieve size 
(pore size) 

Component Meana ± S.D.b (%) 
Glucan Xylan Arabinan Lignin Ash 

Non-sieved 
(NS) 

41.2a ± 0.4 20.5b ± 0.1 1.85ab ± 0.11  20.7a ± 0.1 2.36c ± 0.12  

#20 
(0.85 mm) 

42.0a ± 1.3  21.1a ± 0.3 1.44b ± 0.11 20.1ab ± 0.5 2.59bc ± 0.14 

#40 
(0.425 mm) 

40.5a ± 1.5 21.3a ± 0.4  1.58b ± 0.25 19.9b ± 0.5  2.80bc ± 0.42 

#60 
(0.25 mm) 

42.3a ± 0.8  21.1a ± 0.3 1.76ab ± 0.29 20.0ab ± 0.4 3.06b ± 0.49  

#120 
(0.125 mm) 

42.0a ± 0.4 21.2a ± 0.2  1.74ab ± 0.08  20.0ab ± 0.3 3.03b ± 0.13 

Pan 40.7a ± 0.8 21.2a ± 0.3 2.06a ± 0.07 20.1ab ± 0.4  4.01a ± 0.23 
aPer component, mean values followed by the same letter were not different (p > 0.05). 
bS.D. = one standard deviation. 

6.4. Conclusions 

The effects of particle size on the predicted composition of ground Miscanthus 

was studied using core samples from 5 and 17 mo. bales. The geometric mean particle 

size ranged from 0.36 to 0.49 mm, with the smallest size observed with samples from 

bales stored outdoors for 17 mo. and the largest size observed with samples from bales 

stored outdoors with a tarp cover for 5 mo. All bale samples except those from the bale 

stored under roof for 5 mo. had a wide standard deviation in geometric mean diameter. 

On average, across predictions of glucan, arabinan, and lignin content were not sensitive 

to particle size, but predictions of xylan and ash content were. The predicted xylan 

content using the non-sieved samples was lower than those for sieved samples. In terms 

of ash content, predicted values increased with decreasing particle size.  
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CHAPTER 7. CLASSIFICATION OF MISCANTHUS BY PLS-DA 

7.1. Introduction  

Miscanthus is a potential dedicated energy crop with high cellulose and 

hemicellulose content (Heaton et al., 2004). However, like all agricultural materials, its 

composition varies greatly with age, stage of growth, storage condition, and genetics 

(Hames et al., 2003). These variations, especially in carbohydrate content, can affect 

process efficiencies during conversion, from pretreatment to fermentation (Öhgren et al., 

2007; Berlin et al., 2007). Therefore, it would be advantageous for conversion facilities to 

receive lignocellulosic feedstocks that are consistent, or uniform in quality in moisture 

content, ash content, and convertible carbohydrates so they can operate their chemical 

pretreatment and conversion processes efficiently (Kenney and Ovard, 2013). Knowing 

the composition at earlier stages of the supply chain can also help in the development of 

quality-based valuations and incentivize farmers and suppliers to implement best 

management practices to ensure a uniform and consistent supply system (Kenney et al., 

2013). To determine the composition of Miscanthus in near real time as it passes through 

the supply chain, high throughput assays based on spectroscopy, such as FT-NIR, has 

been explored (Haffner et al., 2013; Hayes, 2012). In some cases, a qualitative 

assessment, such as classification or “grade” of the Miscanthus material is preferable 

instead of a quantitative measure of its composition. Therefore, in addition to utilizing 

FT-NIR to predict compositional data, this study explored the use of FT-NIR PLSR 

models with linear discriminant analysis (LDA) to classify Miscanthus bale samples in a 

fixed number of groups or “grades”. 
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7.2. Materials and methods 

7.2.1. Classification of Miscanthus 

The resulting PLSR regression models from Section 5.2 for glucan, lignin, and 

ash were further used to develop qualitative discriminant analysis models that may be 

used for screening Miscanthus samples based on these components. The method used in 

discriminant analysis was linear discriminant analysis (LDA), which explicitly attempts 

to model the difference between the classes of data.  

To run the LDA the samples needed to be classified into their respective groups.  

The models were originally grouped into their respective classes by, first, looking for 

natural breaks in the histograms and, secondly, considering the range of the main portion 

of the data set for each component. Since there were few natural breaks, the groups were 

largely based on the range. Once the samples were placed in the groups the LDA was 

constructed with the groups and the scores from the PLSR models from Chapter 5 for 

glucan, lignin, and ash. The validation samples were then run along with the test set in 

the constructed LDA models. 

7.2.2. Statistical analysis of groups 

The resulting PLS-DA models were evaluated on the accuracy of the predicted 

classification and the uniformity of sample composition within each group. The means of 

each component across groups were compared using a Tukey’s test to identify any 

difference between two means that is greater than the expected standard error. The 

Tukey’s test was conducted using R (Version 2.15.2, 2012). 
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7.3. Results and discussion  

7.3.1. Classification groups 

Based on the histograms of the calibration sets, the maximum bin width was set at 

2% and a minimum of three bins were used. For glucan, range was 8 percentage points, 

which led to 4 groupings of the samples (Figure 7.1) – Group G1 (less than 38%), Group 

G2 (38 to 40%), Group G3 (40 to 42%), and Group G4 (greater than 42%).  Similarly, 

samples were split into three groups based on their lignin content (Group L1, less than 

20%; Group L2, 20-22%; and Group L3, greater than 22%) and ash content (Group A1, 

less than 1.75%; Group A2, 1.75 to 3.25%; and Group A3, greater than 3.25%). Care was 

taken so the means of each group were different from each other (Table 7.1). 

 

Figure 7.1 Classification of Miscanthus samples based on glucan, lignin, and ash contents determined 
by wet chemistry assays.  

7.3.2. Accuracy of the PLS-DA classification models  

During classification, three samples were identified as outliers – Gr1 (from a bale 

stored outdoors with tarp cover for 24 months), E44 (from a bale stored outdoors without 

L2
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a tarp cover for 12 months), and E91 (from a bale stored under roof for 6 months). Using 

the PLS regression model for glucan for classification, 29 of 98 samples were 

misclassified into a neighboring group. The overall predictability of the model was 70%. 

A comparison of means showed that each predicted group, G1 to G4, was different from 

each other, whereas G3 and G4 were not. However each group was not different from the 

actual classification groups. 

The classification and prediction results from the PLSR-DA lignin model showed 

that most of the samples were classified as Group L2. The model was able to classify 79 

of 98 samples correctly. Samples with high lignin content tended to be classified 

correctly. The PLS-DA lignin model was able to classify 19 out of 25 samples correctly 

into Group L1; 54 out of 66 samples correctly into Group L2; and 6 out of 7 samples 

correctly in Group L3. When samples were misclassified, they fell into a neighboring 

group, i.e., no sample from Group L1 was misclassified into Group L3 and vice versa. 

Similarly, the PLS-DA model for ash was able to classify 80 out of 98 samples 

correctly. Of the 18 samples that were misclassified they only fell one group away from 

their assigned group. This should be expected since the ash samples cover a continuous 

range but the samples are being classified into fixed groups. The PLS-DA ash model was 

able to classify 12 of 17 samples into Group A1; 56 of 65 samples into Group A2; and 11 

of 15 into Group A3. A comparison of the means was run and all group means were 

different from each other.  
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Table 7.1 Classification of samples based on FT-NIR spectra and PLS-DA models for glucan, lignin, 
and ash contents. 

 Actual classification by reference (wet chemistry) valuesb 
PLS-DA 
Glucan Model Calibration Validation 

Pr
ed

ic
te

d 
cl

as
si

fic
at

io
na    G1 G2 G3 G4  G1 G2 G3 G4  

G1 5 1 0 0  2 2 0 0  
G2 0 6 5 0  2 4 3 0  
G3 0 4 32 3  0 1 8 2  
G4 0 1 7 11  0 1 3 4  

PLS-DA 
Lignin Model Calibration Validation 

Pr
ed

ic
te

d 
cl

as
si

fic
at

io
na 

 

 L1 L2 L3  L1 L2 L3  

L1 10 0 0  9 3 0  

L2 2 45 0  4 8 1  

L3 0 6 4  0 3 2  

PLS-DA  
Ash Model Calibration Validation 

Pr
ed

ic
te

d 
cl

as
si

fic
at

io
na   A1 A2 A3  A1 A2 A3  

A1 8 0 0  4 1 0  

A2 2 44 1  3 12 3  

A3 0 6 7  0 2 4  

aPredicted classification based on the FT-NIR spectra. 
bNumber of samples correctly classified in their groups are presented in italics. 
 
Table 7.2. Mean composition of all samples (calibration and validation) as classified by the PLS-DA 
models for glucan, lignin, and ash contents.  

 Actual classification by reference (wet chemistry) values 
Glucan Model  Lignin Model  Ash Model 

Means of actual 
classification groups (%)a 

34.5 
aA 

39.2 
bB 

41.2 
cC 

43.0 
dD 

 19.1 
aA 

20.8 
bB 

23.4 
cC 

 0.97 
aA 

2.47 
bB 

3.90 
cC 

Means of predicted 
classification groups (%)a 

34.9 
aA 

39.6 
bB 

41.2 
cC 

42.4 
cD 

 19.4 
aA 

20.6 
bB 

22.2 
cC 

 1.06 
aA 

2.40 
bB 

3.57 
cC 

aValues followed by the same lowercase letter in the same row, per PLS-DA model, are not different (p > 
0.05). Means values of actual and predicted classification followed by the same uppercase letter in the same 
column are not different. 
 
7.3.3. Uniformity of the samples after classification  

Taking the predicted classes resulting from the PLS-DA modeling, the effect of 

this grouping on the other six components was evaluated.  The box plots for each 

component showed the range and quartiles, with outliers designated by solid (laying 1.5 
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to 3 interquartile range distances from the mean) and hollow (laying more than 3 

interquartile range distances from the mean) data points.  

The PLS-DA glucan model would be most useful if it could also deliver a uniform 

feedstock within each grouping (Figure 7.2). In terms of xylan and arabinan content, the 

means for Groups G1 and G2 were not different from each other, similarly as the means 

for Groups G3 and G4. All four groups, however, did not differ in lignin and ash content. 

With the PLS-DA lignin model, while there were no difference in ash and extractives 

contents across Groups L1, L2, and L3, there were differences across the groups in terms 

of glucan and lignin contents and the variation within groups is small (Figure 7.3). The 

box plots for glucan, xylan, and lignin were tighter than the other groups for Group L2 

which took 63 of the 98 samples representing a relatively consistent sample while Group 

L3 was wider, but was still relatively consistent. Even though the samples were classified 

into distinct groups when the PLS-DA for ash was applied, across groups, there was little 

variation in the other components (Figure 7.4).  Group A2 had the least variation within 

its group.  Based on these results, the best classification results were found with the PLS-

DA lignin model, which classified the samples into three groups, with small variations 

with each group.    
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Figure 7.2. Variability in composition across groups as classified by the PLS-DA glucan model. 

Groups with the same letters, per component, are not different (p > 0.05).  Median-based box plots 
represent the minimum, maximum, interquartile range (IQR), outliers (! , which are defined as data 

lying at 1.5·IQR distance from the median), and extremes (! , which are defined as data lying at 
3·IQR distance from the median). 

 

 
Figure 7.3. Variability in composition across groups as classified by the PLS-DA lignin model. 

Groups with the same letters, per component, are not different (p > 0.05). Median-based box plots 
represent the minimum, maximum, interquartile range (IQR), outliers (! , which are defined as data 

lying at 1.5·IQR distance from the median), and extremes (! , which are defined as data lying at 
3·IQR distance from the median). 
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Figure 7.4. Variability in composition across groups as classified by the PLS-DA ash model. Groups 
with the same letters, per component, are not different (p > 0.05). Median-based box plots represent 
the minimum, maximum, interquartile range (IQR), outliers (! , which are defined as data lying at 

1.5·IQR distance from the median), and extremes (! , which are defined as data lying at 3·IQR 
distance from the median).  

Tao et al. (2013) evaluated the minimum ethanol selling price (MESP) compared 

to corn stover composition and determined that the carybohydrates content (%) can have 

drastic effects on the conversion cost and final selling point of the ethanol. The corn 

stover used in their analysis ranged in total carbohydrates from 53 to 64%, resulting in an 

MESP range of $2.50 to $2.05 per gallon. The main carbohydrates in Miscanthus are 

cellulose (glucan) and the hemicellulose (arabino-xylan) and, when these components are 

summed up and plotted across groups, there were no differences across Groups G1 to G3 

with G4 having the lowest polysaccharides content (Figure 7.5). Assuming that the 

conversion process is identical to that used by Tao et al. (2013) in their analysis, these 

data suggest Miscanthus as a promising alternative to corn stover since the majority of 

the samples had total carbohydrates contents greater than 60%. In addition to ash not 

A1ab       A2a       A3b

X
yl

an
 (%

)

16

18

20

22

24

26

A1ab       A2a       A3b

A
ra

bi
na

n 
(%

)

0

1

2

3

4

A1a A2b A3a
A1ab       A2a       A3b

G
lu

ca
n 

(%
)

25

30

35

40

45

A1a A2b A3a A1a A2b A3a

A1a       A2a       A3b

Li
gn

in
 (%

)

16

18

20

22

24

26

28

A1a       A2b       A3c

A
sh

 (%
)

0

1

2

3

4

5

6

A1a       A2a       A3a

E
xt

ra
ct

iv
es

 (%
)

2

4

6

8

10

A1a A2ba A3ab A1a A2b A3c A1a A2a A3a

Predicted classification groups



 89 

varying greatly between groups when the samples were classified using the PLS-DA 

models for glucan and lignin, overall, ash content after extraction were lower than those 

for corn stover samples (Templeton et al., 2009).  

 
Figure 7.5 Carbohydrates (glucan + xylan + arabinan) content of the groups as classified by the PLS-

DA models for glucan, lignin, and arabinan. Groups with the same letters, per PLS-DA model 
classification, are not different (p > 0.05). Median-based box plots represent the minimum, 

maximum, interquartile range (IQR), outliers (! , which are defined as data lying at 1.5·IQR 
distance from the median), and extremes (! , which are defined as data lying at 3·IQR distance from 

the median).  

 
7.4. Conclusions 

These data indicate that the FT-NIR spectra and PLSR models from Chapter 5 can 

be used with LDA to classify the samples based on their glucan, lignin, and ash contents. 

The best classification results were based on the PLS-DA lignin model, which classified 

the samples into three groups, with small variations with each group. While the models 

developed in this study were based on a small sample size (less than 100 for calibration) 

and the small size contributed to some of the inaccuracy and imprecision in the 

predictions, the approach demonstrated that FT-NIR spectra and PLS-DA modeling can 

be used to rapidly screen Miscanthus samples at different stages of the supply chain, 

including after long-term storage.  
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS FOR 
FUTURE WORK 

Overall, a large variation in Miscanthus compositions were observed in core 

samples from bales that have been stored under a variety of conditions (indoors, under 

roof, outdoors with tarp, and outdoors without a tarp) for a period of 3 to 24 mo.  Glucan 

and lignin contents ranged from 25.8 to 44.1% and 17.5 to 26.5%, respectively.  

In general, few trends were observed when looking that the sample sets in a univariate 

approach. However, Group 2, which included bales stored outdoors with a tarp cover for 

24 mo., exhibited lowest glucan and xylan levels and highest lignin levels compared to 

the rest of the bales. Mold growth was also observed in Group 2 samples. Compared to 

other lignocellulosic feedstocks, overall, Miscanthus had higher carbohydrate and lower 

ash contents than corn stover while Miscanthus composition was similar to switchgrass.  

When Miscanthus was manually harvested at the senescent stage, in terms of 

mass, the highest botanical fraction gathered was the rind, followed by the node, sheath, 

and pith. Across the different botanical fractions, ranges for each component were as 

follows: glucan, 32.2 to 46.1%; xylan, 20.9 to 25.3%; arabinan, 0.0 to 6.1%; lignin, 18.7 

to 25.5%; and ash, 0.4 % to 8.9%. Overall, however, the sum of glucan, xylan, and 

arabinan contents for the rind, pith, and sheath fractions were not different from each 

other. While the compositional variation within each botanical fraction were not high, the 

variations across some botanical fractions were significant. The blade had lowest glucan, 

lowest lignin, and highest ash contents making them different from the other botanical 

fractions. The variations in Miscanthus composition were similar to that of corn stover 

composition and not as consistent as switchgrass composition. From the FT-NIR and 

PCA exploration, it has shown that PCA can pick up the variations among botanical 
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fractions, showing the possibility of constructing classification models such as linear 

discriminant analysis and soft independent modeling class analogy (SIMCA) based on 

different blends. 

PLSR models were created for glucan, xylan, arabinan, lignin, and ash with RPD 

values of 4.59, 4.20, 2.46, 3.52, and 1.86, respectively, with R/SEP > 8. These values 

indicated the models (except for ash) were useful, at minimum, for screening samples in a 

plant breeding program. PLSR models for extractives and acetyl were also developed but, 

since the mean standard deviation of the reference data was high compared to the mean 

and range of the data set, the resulting models had RPD < 1. 

The effects of particle size on the predicted composition of ground Miscanthus 

was studied using core samples from 5 mo. and 17 mo. old bales. The geometric mean 

particle size ranged from 0.36 to 0.49 mm, with the smallest size observed with samples 

from bales stored outdoors for 17 mo. and the largest size observed with samples from 

bales stored outdoors with a tarp cover for 5 mo. All bale samples except those from the 

bale stored under roof for 5 mo. had a wide standard deviation in geometric mean 

diameter. On average, across predictions of glucan, arabinan, and lignin content were not 

sensitive to particle size, but predictions of xylan and ash content were. The predicted 

xylan content using the non-sieved samples was lower than those for sieved samples. In 

terms of ash content, predicted values increased with decreasing particle size.  

These data indicate that the FT-NIR spectra and PLSR models from Chapter 5 can 

be used with LDA to classify the samples based on their glucan, lignin, and ash contents. 

The best classification results were based on the PLS-DA lignin model, which classified 

the samples into three groups, with small variations with each group. While the models 



 92 

developed in this study were based on a small sample size (less than 100 for calibration) 

and the small size contributed to some of the inaccuracy and imprecision in the 

predictions, the approach demonstrated that FT-NIR spectra and PLS-DA modeling can 

be used to rapidly screen Miscanthus samples at different stages of the supply chain, 

including after long-term storage.  

The models and analyses presented here can be improved by (1) expanding the 

sample size to include variation in Miscanthus due to geographical location or collecting 

samples at different stages of the supply chain (e.g., after harvest, after transportation, 

handling of different forms (e.g., comminution, pelletizing, etc.); (2) blending of different 

fractions (rind, node, pith, sheath, and blade) of Miscanthus, verifying the composition of 

the blends with wet chemistry methods, and predicting the composition of the blends with 

FT-NIR spectroscopy; (3) expanding the classification models to include Miscanthus 

blends and comparing LDA models with SIMCA models. 
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APPENDIX A. CHEMICAL COMPOSITION OF MISCANTHUS  

Table A.1. Composition of Miscanthus × giganteus from stored bales as determined by EBIa.

 



 104 

Table A.1. Continued 
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Table A.1. Continued 

 
aAll measurements, except for extractives content, are reported as a percent of extracted biomass. 
bSamples stored at different sites, conditions, and time. Group 1: Taylorville, indoors, 24 mos.; Group2: 
Griggsville, outdoors with tarp, 24 mos.; Group 3: Urbana, under roof, 24 mos.; Group 4: Urbana, under 
roof, 12 mos.; Group 5: Urbana, outdoors without a tarp, 12 mos.; Group 6: Urbana, under roof, 6 mos; 
Group 7: Urbana, outdoors without a tarp, 6 mos.; Group 8: Urbana, outdoors without a tarp; Group 9: 
Urbana, outdoors with tarp, 6 mos.; Group 10: Urbana, under roof, 6 mos.; Group 11: Urbana, outdoors 
without a tarp, 6 mos.; Group 12: Urbana, outdoors, with tarp, 3 mos.; and Group 13: Urbana, under roof, 
3 mos. 

cS.D. = one standard deviation  
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Table A.2. Range, mean, standard deviation (S.D.) and kurtosis of the composition of Miscanthus bale samples used in PLSR modeling. 

Component Calibration set (n = 67)  Validation set (n = 24)  Test set (n = 10) 

 Range (%) Mean ± S.D. (%) Kurtosis  Range (%) Mean ± S.D. (%) Kurtosis  Range (%) Mean ± S.D. (%) Kurtosis 

Glucan 26.5-44.0 40.7 ± 2.37 19.2  25.8-43.6 39.8 ± 3.70 10.6  36.9-43.7 40.5 ± 2.49 -1.36 

Xylan 17.7-24.2 20.6 ± 1.20 1.28  19.3-23.8 20.7 ± 1.02 3.88  18.1-24.2 21.6 ± 2.34 -1.60 

Arabinan 1.05-3.11 1.83 ± 0.36 3.09  1.20-2.71 1.85 ± 0.34 1.46  1.21-2.75 1.99 ± 0.50 -0.93 

Acetyl 2.06-3.40 2.74 ± 0.28 1.53  1.76-3.29 2.81 ± 0.38 1.50  2.09-3.01 2.61 ± 0.34 -1.15 

Klason lignin 17.7-26.5 20.7 ± 1.35 8.30  18.2-25.7 20.5 ± 1.61 5.01  17.5-22.2 20.1 ± 1.48 -0.06 

Ash after 
extraction 

0.59-5.16 2.60 ± 1.64 1.18  0.59-4.47 2.53 ± 0.91 0.56  0.59-4.25 2.26 ± 1.46 -1.73 

Extractives 3.61-8.72 5.59 ± 0.86 1.35  3.59-9.10 5.66 ± 1.16 3.48  4.64-6.60 5.61 ± 0.57 0.03 
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Table A.3. Composition of botanical fractions Miscanthus × giganteus as determined by bioprocess 
engineering laboratory  

Sample ID Composition (%) 

Extractives Glucan Xylan Arabinan Lignin Ash 

Rind 1 5.73 46.55 20.94 - 23.76 0.56 

Rind 2 5.45 45.57 20.63 - 24.67 0.69 

Rind 3 4.52 46.83 21.37 - 24.10 0.67 

Rind 4 5.75 46.66 20.77 - 24.25 0.65 

Rind 5 5.11 45.23 21.04 - 24.05 0.83 

Rind 6 4.62 45.69 20.61 - 24.09 0.77 

Pith 1 7.55 38.72 25.60 2.94 22.05 0.76 

Pith 2 5.42 39.13 24.25 - 22.92 0.59 

Pith 3 5.70 38.39 25.48 - 24.04 0.85 

Pith 4 7.91 38.76 25.22 - 22.47 0.51 

Pith 5 5.46 37.47 26.37 3.31 23.23 0.76 

Pith 6 5.99 38.68 25.11 - 23.05 0.75 

Sheath 1 3.69 40.50 23.78 3.53 20.75 2.74 

Sheath 2 3.21 39.60 23.94 3.56 21.15 2.66 

Sheath 3 4.17 39.41 22.75 3.51 19.93 3.60 

Sheath 4 3.94 42.54 23.32 2.40 20.73 2.23 

Sheath 5 5.33 40.06 23.51 4.91 19.74 3.26 

Sheath 6 4.27 40.39 24.15 0.05 20.41 3.31 

Blade 1 10.40 32.91 21.76 5.71 19.42 8.04 

Blade 2 10.08 32.01 21.51 6.03 18.27 8.66 

Blade 3 8.23 32.43 21.95 6.16 18.67 8.47 

Blade 4 9.87 32.03 21.83 6.08 18.53 8.92 

Blade 5 8.95 32.46 21.89 6.32 18.36 9.32 

Blade 6 9.32 31.13 20.73 6.15 18.80 10.04 

Node 1 8.13 38.38 23.93 - 25.55 0.43 

Node 2 7.31 38.22 23.54 - 26.22 0.29 

Node 3 6.82 38.15 24.34 - 25.59 0.43 

Node 4 8.33 38.24 23.03 - 25.14 0.41 

Node 5 7.31 38.10 23.92 - 25.71 0.46 

Node 6 7.58 38.91 23.80 - 24.88 0.57 
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APPENDIX B. PLS REGRESSION MODELS OF MISCANTHUS 
COMPOSITION 

B.1. Glucan content 

 

 
Figure B.1. MSC and MSC+SG 1st Derivative preprocessed spectra of select Miscanthus samples. 

The shaded regions represent wavenumbers that were utilized in the model to predict glucan content.  
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Figure B.2. Regression coefficients for the factors utilized in the glucan content model. 

 

 
Figure B.3. Explained variance curves for the cross validation and independent calibration and 

validation models for glucan content. 
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Figure B.4. Comparison of predicted to reference glucan contents after cross validation and 

independent validation.  
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B.2. Xylan content  

 
 

 
Figure B.5. MSC and MSC+SG 1st Derivative preprocessed spectra of select Miscanthus samples. 

The shaded regions represent wavenumbers that were utilized in the model to predict xylan content.  
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Figure B.6. Regression coefficients for the factors utilized in the xylan content model. 
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Figure B.7. Explained variance curves for the cross validation and independent calibration and 

validation models for xylan content. 

 
Figure B.8. Comparison of predicted to reference xylan contents after cross validation and 

independent validation.  
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B.3. Arabinan content  

 

 
Figure B.9. MSC and MSC+SG 1st Derivative preprocessed spectra of select Miscanthus samples. 

The shaded regions represent wavenumbers that were utilized in the model to predict arabinan 
content.  
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Figure B.10. Regression coefficients for the factors utilized in the arabinan model. 
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Figure B.11. Explained variance curves for the cross validation and independent calibration and 

validation models for arabinan content. 

 

 
Figure B.12. Comparison of predicted to reference arabinan contents after cross validation and 

independent validation.  
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B.4. Lignin content  

 

re 
Figure B.13. MSC and MSC+SG 1st Derivative preprocessed spectra of select Miscanthus samples. 

The shaded regions represent wavenumbers that were utilized in the model to predict lignin content.  
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Figure B.14. Regression coefficients for the factors utilized in the lignin content model. 
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Figure B.15. Explained variance curves for the cross validation and independent calibration and 

validation models for lignin content. 

 

 
 

 
Figure B.16. Comparison of predicted to reference lignin contents after cross validation and 

independent validation.  
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B.5. Ash content  

 

 
 

Figure B.17. MSC and MSC+SG 1st Derivative preprocessed spectra of select Miscanthus samples. 
The shaded regions represent wavenumbers that were utilized in the model to predict ash content.  
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Figure B.18. Regression coefficients for the factors utilized in the ash content model. 
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Figure B.19. Explained variance curves for the cross validation and independent calibration and 

validation models for ash content. 

 
 

 
Figure B.20. Comparison of predicted to reference ash contents after cross validation and 

independent validation.  
 

 


