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Abstract 

Lagrangian particle tracking (LPT) is important for the study of turbulence and the inertial 

behavior of particles in natural and industrial flow fields. This work describes the development 

of a new scalable real-time LPT system which is able to track particles in large scale 3D 

turbulent flow fields. A statistical accumulator grid concept was developed to attribute the 

measured Lagrangian velocities and accelerations of particles to a Cartesian framework for 

comparison with Eularian based measurements and simulations. Real-time processing was 

achieved through development of parallel frameworks based on fine and coarse grain problem 

decomposition for heterogeneous computing architectures. The first framework is based on 

exposing task and data parallelism through a streaming pipeline within each multi-core 

processor node. The second framework is based on pipelining temporal data through a unique 

message passing algorithm in order to utilize large clusters containing hundreds of processor 

nodes. A sensitivity analysis was completed based on the derivation of measurement uncertainty. 

It was shown that by utilizing groups of four cameras in the 3D reconstruction process, the 

overall sensitivity to camera location, image noise and propagated uncertainty could be reduced 

significantly.  

A six camera prototype system was developed and an experimental analysis was conducted to 

assess the uncertainty in the 3D position, velocity and acceleration measurements of observed 

particles. The 3D position combined standard uncertainty was 0.16 mm and accuracy was 

comparable to a caliper in measuring distances between static particles. The velocity 

measurements were shown to be less than 1% of the calculated value for an object rotating with 

constant angular velocity. Acceleration was accurate to within 1% for low frame rates but 

diverged from the calculated value at higher frame rates. The system was used to characterize 

the dynamic motion of neutrally buoyant helium filled soap bubbles in an unconfined round 

turbulent jet. The results for axial velocity decay and transverse velocity profile all matched 

well with widely accepted models. In addition, the profiles of Reynolds shear stress and axial 

turbulence intensity were in good agreement in both profile and magnitude of those found in 

literature. The validated LPT system was then applied to a turbulent forced air vortex and 

particles were successfully tracked with complex 3D paths.  
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1 Introduction 

 Motivation 1.1

Vision based particle tracking techniques have been widely developed and implemented over 

the last two decades. A large base of the particle tracking research has focused on hardware and 

algorithm development for 3D fluid velocity measurement. Particle tracking in this field, often 

referred to as particle tracking velocimetry (3D-PTV) or Lagrangian Particle Tracking (LPT), is 

emerging as a vital research tool for its benefits over statistic based image correlation 

approaches such as particle image velocimetry (PIV). These benefits include the ability to 

measure velocity fields with higher spatial resolution through sub-pixel accuracy in particle 

localization (Pereira, Stuer, Graft, & Gharib, 2006) and the ability to reconstruct long particle 

trajectories with high temporal resolution(Ouellette, Xu, & Bodenschatz, 2006).  Higher order 

spatial and temporal derivatives can be directly evaluated from these long particle trajectories, 

which enable many new studies in fundamental fluid mechanics including experimental 

characterization of anisotropic turbulence (B. Lüthi, Tsinober, & Kinzelbach, 2005; Virant & 

Dracos, 1997). 

Often a goal of particle tracking experiments is to build a statistical representation of chaotic 

object motion through the largest number of observations possible. Naturally there is motivation 

to develop particle tracking systems with higher resolution and accuracy, which are inherently 

limited by the hardware (cameras, computers, illumination, etc.) employed. To increase spatial 

resolution, the number of resolved tracer particles per unit volume must be increased. This can 

be most readily achieved through three imaging hardware improvements: 1) increase image 

sensor resolution ( > 1  mega pixel ) (Hoyer et al., 2005; Ouellette et al., 2006) , 2) add more 

cameras to increase the chance of particles being observed in three or more view planes  (Straw, 

Branson, Neumann, & Dickinson, 2010; Virant & Dracos, 1997), and 3) Increase the camera 

frame rate to increase the particle spacing-displacement ratio allowing higher particle densities 

to be resolved in time (Malik, Dracos, & Papantoniou, 1993) .  

The resolution and accuracy of the particle tracking systems are naturally limited by the 

hardware (cameras, computers, illumination, etc.) they employ.  Enormous data generation rates, 

low transfer rates, and finite camera memory combine to severely limit recording time to only a 
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few seconds in most cases.  For example, a PTV system with four 1 mega-pixel cameras 

recording at 500 frames per second generates 120 GB in just 60 seconds. This limit leads to 

convergence issues in statistical analysis of Lagrangian motion (Hoyer et al., 2005). Processing 

on the computer has also been limited as the data does not fit into the faster Random Access 

Memory (RAM) for a single processor, which is usually about 4 GB.  Such limitations prevent 

the possibility of efficiently handling the ever growing data sets and eventually achieving real-

time analysis.  

Fueled by algorithmic development, most particle tracking systems have reached their current 

limits of accuracy and resolution by riding a steady wave of hardware improvements including; 

increased sensor resolution (pixels and frame rate), cheaper memory, and faster CPU clock 

frequencies.   Recently, “smart cameras” for machine vision have emerged that utilize 

embedded architectures such as Field Programmable Gate Arrays (FPGA) and provide real-time 

image processing capabilities on the camera, reducing data transfer by up to 1000x (M. Kreizer 

& Liberzon, 2010). However, CPU clock frequencies have begun to level off as limits on heat 

dissipation have emerged. CPU manufacturers have shifted their focus to increasing the number 

of cores on multi-core processors.  At the same time, accelerator technologies such as the 

Graphic Processing Unit (GPU) have emerged to introduce a finer grain parallelism that can 

speed up current algorithms by over 100x (NVIDIA, 2012). At the time of writing this 

dissertation, the June 2012 Top 500 list of the world’s most powerful supercomputers listed 

three heterogeneous systems, clusters which combine multi-core CPU nodes with GPU 

accelerators, among the top ten fastest. Leading this pack was the Chinese Tianhe-1 

supercomputer, which shows the power of harnessing multiple levels of parallelism with the 

GPU.   However, efficient utilization of these state-of-the art architectures through parallel 

programming remains a challenging endeavor.  For particle tracking systems to continue to 

improve in accuracy, resolution and processing speed, they must make full utilization of the 

technologies available. 

The question that motivates this proposed research is: Can we utilize the latest parallel 

processing architectures and computing paradigms to develop a scalable Lagrangian particle 

tracking system that can observe larger volumes, longer time frames, and visualize the data in 

real-time? 
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 Objectives 1.2

The main goal of this research is to develop a new Lagrangian Particle Tracking (LPT) platform 

capable of efficiently utilizing state-of-the-art parallel computing architectures for real-time 

application.  The following objectives were set to meet this goal. 

1) Create a conceptual design of a real-time particle tracking system: 

 

This concept design will include high-level hardware and software specification and 

define the future real-time LPT instrument that will be prototyped and validated.  

 

2) Develop scalable real-time LPT algorithms :  

 

Design new particle tracking algorithms for processing on CPU and GPU computing 

architectures. Show that real-time processing is achievable for hundreds of particles at a 

frame rate of 120 frames per second. Show that the new parallel algorithms are scalable 

up to hundreds of processors and an arbitrary number of cameras.   

 

3) Validate the real-time particle tracking platform: 

 

Derive procedures to determine measurement uncertainty and validate the 3D position, 

velocity and acceleration measurements with experimental analysis. Complete an 

uncertainty and sensitivity analysis to identify important factors impacting experimental 

design. Show that the real-time LPT platform can accurately track particles in turbulent 

flow fields.  

 

4) Apply the real-time platform to analyze inertial particle motion in turbulent flows: 

 

Develop guidelines for setting up the LPT system and conduct the experiment to 

measure particle acceleration and velocity in unconfined stationary flows of a round 

turbulent jet and an unconfined forced vortex.  Compare the experimentally measured 

particle velocity statistics with literature. 
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 Approach 1.3

Much research in the area of optical based particle tracking focuses on developing increasingly 

complex algorithms in order to gain resolution, reduce errors and uncertainty, and improve 

system usability, as hardware was extremely limiting.  In the past this approach was necessary 

for particle tracking techniques to provide value to the research community as the camera and 

computing technology was indeed the limiting factor. Now, however, the pace of technology 

has far surpassed our ability to utilize it for Lagrangian particle tracking with current algorithms.  

In this research, it is hypothesized that by integrating state-of-the art technologies (parallel 

computing paradigms, heterogeneous computing architectures, smart cameras, and open source 

programming tools) the particle tracking limitations can be solved in a scalable way. Therefore 

our approach is fundamentally different and can be summarized by the following four 

guidelines.  

1. Use more cameras to image the flow from more points of view 

a. Addresses the particle overlap issues 

b. Addresses the observable volume issue 

2. Use higher frame rate cameras to minimize the particle displacement in each frame 

a. Addresses the tracking issues and reduces ambiguity 

b. Addresses the ability to track higher densities of seed particles 

3. Use smart cameras to do image processing and segmentation  

a. Addresses the data transfer bottleneck between camera and computer 

b. Addresses the data storage issue by eliminated full image storage 

4. Use parallel computing to handle the data 

a. Addresses the influx of data from increasing the number of cameras/frame 

rates 

b. Addresses data storage issues through real-time processing and discarding 

unneeded intermediate data (images, etc.).  

With this approach, it is hypothesized that by “over observing” the flow through many camera 

angles and at higher frame rates the particle tracking task can be completed with simpler and 

faster algorithms to facilitate real-time processing. This dissertation is comprised of seven 
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chapters. Chapter two will cover the background literature which guides the algorithm selection 

and system design.  Chapter three discusses algorithm development for real-time LPT and 

discusses their implementation. Chapter four covers the development of the real-time processing 

framework where the LPT algorithms are parallelized and tested on shared memory systems 

(multi-core processors and GPUs) and on large scale distributed memory clusters.  Chapter five 

discusses the hardware used in the real-time LPT system prototype and covers the derivation of 

measurement uncertainty followed by a sensitivity analysis to help guide experimental setup.  

Chapter six contains the validation tests for the measurement of particle position, velocity and 

acceleration.  The second half of Chapter six covers the application of the LPT system to 

characterize particle motion in turbulent round jet and unconfined forced vortex air flow fields.   

 Justification 1.4

Lagrangian analysis of turbulence is one of the most important applications of Lagrangian 

particle tracking systems.  Current LPT techniques are limited to small volumes and therefore 

limit the range of Reynolds numbers that can be observed in the Lagrangian reference frame 

(Toschi & Bodenschatz, 2009).  One of the goals for researchers in this field is to be able to 

observe turbulent motion over the entire inertial range of eddies. To observe these 

characteristics at higher Reynolds numbers, this means reducing the kinematic viscosity of the 

fluid or drastically increasing the length scale (Toschi & Bodenschatz, 2009).  Therefore, an 

LPT system that is scalable to large volumes has great potential to make an immediate impact in 

the field of turbulence research.  Current commercial particle tracking velocimetry 

(PTV) systems are only capable of measuring flow field velocities, without particle trajectory 

reconstruction, in small scale flows (<0.001 m
3
) due to imaging and illumination system 

limitations (Toschi & Bodenschatz, 2009). Several studies have been published for large 

volume application of prototype 3D-PTV systems, however they were limited in scale by the 

number of cameras available (Biwole, Yan, Zhang, & Roux, 2009; Lobutova, Resagk, & Putze, 

2010). 

One major aspect of the new LPT platform will be the ability to scale up to an arbitrary number 

of cameras.  Currently most PTV or LPT systems only work with a fixed number of cameras 

between three and four. Adding more cameras increases the observable volume and reduces the 
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number of ambiguities when matching particle images between cameras (H.G. Maas, 1992).  

Straw proved this concept by synchronizing up to eleven low cost cameras to track a few flies in 

motion (Straw et al., 2010).   Solving the multi-camera correspondence problem in real-time for 

a large number of tracer particles remains a challenge.   

Through this research a complete real-time LPT system has been developed including: particle 

detection, multi-camera correspondence, 3D reconstruction, tracking and interactive 

visualization.  Real-time processing alleviates data accumulation in memory and eliminates 

current limits on experimental duration, which allows better statistical characterization of 

chaotic phenomena, such as turbulence and inertial particle motion.  By redesigning these 

algorithms for massively parallel processing on modern computing architectures, the LPT 

system can readily scale-up with rapidly improving camera technology.    
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2 Literature review  

 Lagrangian study of particles in turbulent flow 2.1

One of the most significant applications of Lagrangian Particle Tracking (LPT) is the study of 

particle motion in turbulent flow fields (Toschi & Bodenschatz, 2009). The study of inertial 

particle dynamics in turbulent flow has direct relevance to basic sciences related to climate and 

atmospheric sciences in addition to many industrial applications including combustion of liquid 

fuel sprays.  In fundamental research, LPT has potential to shed light on the nature of inertial 

particle dynamics in fluid turbulence. Ni (2012) applied particle tracking techniques to evaluate 

Lagrangian acceleration in turbulent Rayleigh-Bénard convection, one of the most studied 

fundamental flow fields (Ni, Huang, & Xia, 2012). Mercado (2012) used LPT to study 

Lagrangian statistics of light micro-bubbles in water (Mercado, Prakash, Tagawa, Sun, & Lohse, 

2012).    

Particles in a fluid flow can behave inertially for two reasons, 1) their density is greater or less 

than the surrounding fluid, and 2) their size is finite and large compared to the eddy dissipation 

scale (Mercado et al., 2012; Ouellette, O'Malley, & Gollub, 2008; Qureshi, Bourgoin, Baudet, 

Cartellier, & Gagne, 2007; Toschi & Bodenschatz, 2009).  A pair of useful dimensionless 

numbers   and   can be used to characterize a particle’s size and density relative to the 

dissipation scale and flow density as defined in equations 2-1 and 2-3 respectively (Qureshi et 

al., 2007).  

d


 

         (2-1) 

p

f




 

        (2-2) 

Where d is the diameter of the particle, p  is the density of the particle, f is the density of the 

fluid,  
1

3 4    and is the eddy dissipation scale (also called the Kolmogorov length),   is 

the kinematic viscosity of the fluid, and 
 
is the average dissipation rate of turbulence kinetic 

energy per unit mass.  



8 

 

Traditionally, the dimensionless Stokes number is considered a good indicator of how well a 

certain type of particle will follow the underlying flow field. The Stokes number, pSt   , is 

defined as the particle’s response time p , divided by the characteristic eddy time  
1

2
   .  

At small Stokes numbers, particles are believed to move as ideal fluid tracers and their 

trajectories match those of infinitesimally small fluid particles. At larger Stokes numbers, St > 

0.1 (Ouellette et al., 2008), the particles’ trajectories are believed to deviate significantly from 

the underlying flow. This deviation has been observed as preferential concentration of inertial 

particles, where particles accumulate in areas of the flow field after being expelled from small 

eddies, and changes in the probability distribution function of acceleration variance (Ouellette et 

al., 2008). 

However, recent research has called into question the significance of the Stokes number at 

predicting how inertial particles will behave in a turbulent flow field (Bourgoin, Qureshi, 

Baudet, Cartellier, & Gagne, 2011; Ouellette et al., 2008; Qureshi et al., 2007; Toschi & 

Bodenschatz, 2009).  Qureshi and coworkers (2007) studied the dynamics of millimeter scale 

helium filled soap bubbles in grid generated turbulence for bubble size and density ranges of 10 

<   < 30 and 1 <   < 70.  They found that the particle single point velocity statistics, 

characterized by the probability distribution functions of mean particle velocity and variance, 

were not affected by changes in bubble size or density compared with ideal fluid tracers. In 

addition, they observed that the single point acceleration mean PDF was also not significantly 

impacted. Only the variance of acceleration was significantly impacted by the fact that the 

particles were inertial (Bourgoin et al., 2011; Qureshi et al., 2007).  Ouellette (2008) conducted 

an experimental study with an LPT system to simultaneously observe the motion of small (d = 

80 µm, St 10
-4

) and large (d = 2 mm,  St   10
-2

) inertial particles (Ouellette et al., 2008). 

From their study they confirmed that there was no observable difference in the single point 

velocity or acceleration statistics of the particles and that acceleration variance was significantly 

affected. In addition, Ouellette observed significant differences in the actual trajectories of the 

large particles compared with the smaller tracers. Since the single point PDFs of mean velocity 

and acceleration were unaffected by the size or density of the particles within the range tested , 

they concluded that inertial effects do not scale with Stokes number as is traditionally thought 

(Ouellette et al., 2008).  
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Although it was confirmed that finite-size inertial particles do follow different paths than much 

smaller flow tracers (Ouellette et al., 2008), the single point velocity and acceleration statistics 

of inertial particles tend match those of the underlying flow. Therefore, in anisotropic turbulent 

flows, the location of turbulence intensities observed through the motion of inertial particles 

will be displaced from the true location of those values. However, the scale of this effect is still 

an open question in the field and there may be flows where large neutrally buoyant particles, 

such as helium filled soap bubbles, may provide a close approximation to the characteristics of 

the flow field.  Kerho and Bragg (1994) found through experimental and numerical analysis that 

neutrally buoyant helium soap bubbles, which ranged in diameter from 1 to 5 mm, could follow 

the flow streamlines around an airfoil if their density was in fact equal to the surrounding fluid 

(Kerho & Bragg, 1994) .  However, they also observed deviations from the streamlines 

proportional to the density ratio when neutral buoyancy was not achieved. The study of inertial 

particles dynamics in turbulent flow remains an open question and traditional thought of the 

Stokes number as a key indicator for particle behavior in turbulent flow has been called into 

question. LPT tools can play a role in better understanding the interaction of inertial particles in 

turbulence (Toschi & Bodenschatz, 2009). 

 Particle tracking techniques 2.2

This section will provide a brief overview common particle tracking methods. While many 

variations of 3D Lagrangian Particle Tracking (LPT) techniques have been developed for over 

two decades, most share the same basic underlying approach (H. G. Maas, Gruen, & 

Papantoniou, 1993; Shindler, Moroni, & Cenedese, 2010).  This basic particle tracking 

technique is generally divided into six major tasks as given below (Beat Lüthi & Liberzon, 

2012). The hardware components of a traditional particle tracking system (Figure 1) include: 

particle seeding and illumination systems, cameras, data transfer and storage, and data 

processers.  In this traditional system, particles are seeded into the flow field and imaged by two 

to four cameras. All images obtained during an experiment are digitized and stored to a hard 

drive for offline processing.   
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a) Image acquisition and processing:  Images of a particle laden flow from three or four 

cameras are first processed to segment the particle images from the background  

 

b) Particle detection and centroid localization: The particle “blob” images are detected 

and analyzed to determine the centroid of individual particles in pixel coordinates.   

 

c) Image correspondence: The image correspondence problem between particles imaged 

in multiple camera planes is solved using epipolar geometry.  

 

d) 3D reconstruction: The matched 3D location of each particle is reconstructed in object 

space from the corresponding 2D pixel locations and camera calibration parameters. 

 

e) Temporal tracking: The reconstructed 3D particle data is analyzed from frame to frame 

to identify the temporal correspondence of particles in object space.  

 

f) Post processing and visualization: The reconstructed trajectories are used to calculate 

the particles’ instantaneous velocity and acceleration. The Lagrangian velocities and 

accelerations can be interpolated to a fixed grid for calculation and visualization of 

Eularian properties (velocity, vorticity, etc.). 

              

Figure 1: Particle tracking system diagram; image credit (Beat Lüthi & Liberzon, 2012) 

 

Particle Detection 
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 Image processing, particle detection and centroid localization 2.2.1

In 3D particle tracking experiments, the first step is processing the image to segment the particle 

“blob” images from the background and identify the image centroids of each. A common 

method for image segmentation and particle localization consists of the following: 1) remove 

the background through image subtraction, 2) apply a high-pass filter and Gaussian blur to 

remove noise, 3) perform a pixel intensity threshold operation to create a binary image, and 4) 

identify the centroid through a mass-weighted average or a Gaussian estimator (Biwole et al., 

2009; H. G. Maas et al., 1993). The difficult task in this technique is selecting the proper 

threshold value which maximizes the number of particle identifications in the presence of image 

noise, non-uniform illumination, and overlapping particle images (Shindler et al., 2010). This 

crucial step defines the spatial density of particle information and amount of measurement error 

propagated through to the 3D position reconstruction step. Ouellette (2006) tested several 

particle image centroid localization methods: weighted average, 1D and 2D Gaussian estimators, 

and a neural network approach (Ouellette et al., 2006). Their work showed that for low noise 

images the 1D Gaussian estimator is more accurate and computationally efficient, but for 

images containing noise the neural network approach was superior. Shindler (2010) created a 

feature based particle identification and centroid calculation technique, using the optical flow 

equation and the 1D Gaussian estimator. This method was shown to perform better in the 

presence of noise and non-uniform illumination than the basic intensity threshold and weighted 

average centroid identification technique (Shindler et al., 2010). Currently, a single all-purpose 

algorithm optimal for all cases does not exist. 

 Image correspondence and 3D reconstruction 2.2.2

The problem of identifying image correspondence between particles located in different image 

planes has been solved traditionally using the geometric epipolar constraint which has been 

thoroughly discussed in the publication by (H. G. Maas et al., 1993) and derived in detail by 

Trucco (Trucco & Verri, 1998). When only the epipolar constraint is used to solve the image 

correspondence problem, a minimum of three cameras must be employed.  Adding cameras 

beyond this minimum number significantly reduces the correspondence ambiguities in a real 

camera system (H.G. Maas, 1992).  If the epipolar constraint for a single particle can be 

satisfied in four or more image planes then its spatial correspondence is identified with nearly 
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100% confidence (H.G. Maas, 1992; Virant & Dracos, 1997).  The cameras are calibrated to 

determine both the intrinsic and extrinsic parameters which can be used to derive the proper 

transformations from 2D pixel to 3D object space. Several techniques have been attempted to 

reduce image correspondence ambiguity include using additional particle information such as 

size, color, intensity, and temporal correspondence between particle images within each image 

plane (Willneff & Gruen, 2002).  Willneff found that the most effective of these methods is to 

use the temporal correspondence of particles images within each image plane to resolve 

unmatched or missing particles in the set of 3D reconstructed particles. This extra step resulted 

in an average 20% more particles for which the image correspondence and 3D reconstruction 

problems could be solved (Willneff & Gruen, 2002).   

 Temporal tracking 2.2.3

The temporal tracking algorithm establishes the temporal correspondence of particles from one 

time step to the next through object space in order to reconstruct trajectories.  Many variations 

of the temporal tracking algorithm exist, but at the most general level, they share a common 

structure. Nearly all take the input of 3D particle coordinates grouped by time step (frame) and 

output the reconstructed trajectories. The most common include the two-frame and multi-frame 

algorithms, but several others have shown promise including the neural network approach 

(Pereira et al., 2006) and the Extended Kalman Filter approach (Straw et al., 2010).  

The multi-frame algorithm has been shown to be superior for reconstructing long trajectories in 

the presence of image noise (Kitzhofer & Bruecker, 2010; Ouellette et al., 2006; Shindler et al., 

2010). In a multi-frame temporal tracking algorithm the next position of each particle is 

predicted based on its location in up to five previous time steps using a kinematic model of 

velocity and acceleration (equation 2-3).  This use of the trajectory’s history allows particles to 

be tracked over extended periods of time in the presence of position errors introduce through 

image noise.  In general, the multi-frame temporal tracking algorithm has the following 

procedure: 
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1) For an initial frame n-1, initiate two point trajectories by adding the nearest neighboring 

particle in frame f to each particle in frame n-1.  

 

2) Extrapolate the trajectories to estimate the particle’s position in the following frame n+1 

(
1

i
ˆ n
x ) with an approximation of velocity ( iun

) and acceleration ( ia n
).  

 
1 2

i i i i
ˆ u an n n nt t     x x

      (2-3) 

 

3) Evaluate the quality of each candidate particle for addition to each trajectory using a cost 

function.  

 

4) Move to the next frame and complete steps 2-4 until all frames have been processed.   

 

Common trajectory extrapolation methods include; 1
st
 order finite difference approximation of 

velocity, 1
st
 order velocity approximation with 2

nd
 order acceleration approximation (Malik et 

al., 1993; Shindler et al., 2010), and 2
nd

 order polynomial regression (Li, Zhang, Sun, & Yan, 

2008).  Multiple cost functions have been proposed for selecting particles for addition to a 

trajectory including; nearest  neighbor (Malik et al., 1993), minimum acceleration (Malik et al., 

1993), minimum change in acceleration (Malik et al., 1993), four frame best estimate (Ouellette 

et al., 2006), and ratio of regression residual to geometric mean displacement (Biwole et al., 

2009; Li et al., 2008).    

 Real-time approaches  2.3

A real-time system is defined by an explicit constraint on the system's response time (Dougherty 

& Laplante, 1995).  For a real-time particle tracking system this response time can be based on 

two different scenarios, 1) preventing data accumulation in the camera or computer which limits 

experiment run time (Chan, Stich, & Voth, 2007; Hoyer et al., 2005) and 2) active monitoring 

of dynamic objects for feedback in an online control system (Straw et al., 2010). The former has 

been the focus of most researchers seeking real-time particle tracking because it stands as a 

current limitation for measurement durations and inhibits a thorough statistical analysis of 

chaotic phenomena. The latter represents a more strict time constraint and would enable entirely 

new applications of particle tracking including online industrial control systems.  Straw and 

coworkers (2010) have demonstrated the online control concept by developing a real-time 

tracking system for behavioral investigations of flying insects (Straw et al., 2010). In their work 

they developed a tracking system that could trace the trajectory of several flies and trigger a 
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secondary high speed camera based on a fly's location in real-time.  Straw concluded that to 

track hundreds or thousands of objects (flies) in real-time, parallel processing would be required 

(Straw et al., 2010).  

To achieve a real-time particle tracking system which meets both real-time scenarios for 

thousands of particles, all aspects of the particle tracking method need to be accelerated. This 

effort can be characterized by two fundamental approaches: (1) reducing the net data transfer 

from the cameras (M. Kreizer & Liberzon, 2010) and (2) increasing data processing throughput 

in the computer (Meinhart, Prasad, & Adrian, 1993).  These approaches will be discussed in the 

following two subsections.  

 Data accumulation limitation 2.3.1

As the resolution of particle tracking systems has increased with advancing camera technology, 

the ability to efficiently to transfer, process and store the enormous amount of image data has 

persisted as a limiting factor to achieving higher spatial-temporal resolution, longer 

observations, and real-time processing (Adrian, 1991; M Kreizer, Ratner, & Liberzon, 2009). 

The main bottleneck occurs in data transfer between camera and computer. With enormous data 

generation rates, the cameras must store images in buffer memory. For example, a PTV system 

with four 1 mega-pixel 8-bit monochrome cameras recording for 60 seconds at 500 frames per 

second will generate 120 GB of image data.  Hoyer (2005) observed that the measurement 

duration with their 500Hz cameras was limited to only four seconds due to camera memory, 

which led to convergence issues in their statistical analysis (Hoyer et al., 2005).   

This limit on recording time can be derived from the net data accumulation rate (B/s) and 

memory capacity of the camera.  The net data accumulation rate is equal to the data generation 

rate minus the data transfer rate.  Using this analysis and assuming an 8-bit monochrome 

camera connected to a host computer with a 1 Gigabit IEE-802.3 standard cable, Figure 2 shows 

the theoretical maximum recording time per gigabyte of camera memory with respect to frame 

rate over several common sensor resolutions.  
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 Relevant work in real-time image processing 2.3.2

Recently there has been significant work with new camera technologies that can eliminate the 

memory transfer bottleneck for most applications. Chan (2007) developed a data compression 

system that reduced data transfer between the camera and computer by up to 1000 times, 

increasing the continuous recording time from 6.5 seconds up to a week (Chan et al., 2007). 

Kreizer (2010) has shown significant progress towards real-time 3D-PTV by addressing the data 

accumulation limitation through the use of smart cameras with embedded Field Programmable 

Gate Arrays (FPGA). The FPGA processes each pixel in parallel offering a fast method to filter 

noise, remove background and locate particle centroids in real-time prior to transferring data to 

the host computer (M. Kreizer & Liberzon, 2010).  Therefore, instead of transferring an image, 

these smart cameras only output the pixel coordinates of the particles' centroids, thus the overall 

data transfer was reduced by factor of up to 1000 (M. Kreizer & Liberzon, 2010). The impact of 

using FPGA based cameras on experimental run time is shown in Figure 2; assuming a 

1280x1024 pixel CMOS camera, 1024 particles per frame, and 20 Bytes per particle. The FPGA 

smart camera is theoretically able to record indefinitely at up to about 2000 Hz, while a 

traditional camera of similar resolution at that frame-rate would be limited to only a few 

seconds per GB of buffer memory.   

 

Figure 2: Camera recording time per GB of memory consumed as a function of frame rate and sensor resolution 
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 Relevant work in parallel processing 2.3.3

Many researchers have predicted that parallel processing will speed up particle tracking run-

times and is necessary to achieve real-time measurements (Pereira et al., 2006; Straw et al., 

2010). By parallelizing the particle tracking algorithm, processing time can be greatly reduced, 

allowing for higher fidelity experiments: more particles, higher frame rates, and longer 

measurements. In addition, memory limitations can be overcome by distributing data across 

multiple processors. However, very few parallel particle tracking algorithms have been 

published and data processing in the computer has become a bottleneck for real-time processing. 

Computationally intensive algorithms such as holographic PTV, which may run for 10 hours for 

only a few seconds of image data, have led to a few specialized parallel implementations 

(Satake et al., 2008; Satake et al., 2007).  

Parallel processing has been used since the early days of 3D particle tracking and related PIV 

research as a means of expediting processing times. Most have focused on parallelizing the 

expensive Fast Fourier Transform (FFT) used in PIV cross-correlation and holographic PTV.  

Meinhart (1993) was one of the first in PIV research to use parallel processing to gain speedup. 

At that time, processing a thousand PIV generated vectors required about three hours.  They 

parallelized the FFT operation and achieved a speedup of ten-fold (Meinhart et al., 1993).  This 

approach was platform specific since multi-platform standard parallel programming paradigms 

had not yet been developed. Satake (2007) developed a parallel algorithm for holographic PTV 

based on the Message Passing Interface (MPI) parallel programming library and achieved a 

100x speedup for the FFT operation (Satake et al., 2007).  Satake continued this work and 

developed a Windows-based grid system and evaluated both spatial and temporal data 

decomposition methods for parallelization of the FFT. They concluded that temporal 

decomposition of the image video provided an efficient method of parallelization and suggested 

that this approach could be useful for both PIV and PTV in the future (Satake et al., 2008). 

However, there is still no general parallel particle tracking algorithm that can efficiently utilize 

multiple processors, and current algorithms are not scalable and unable to complete real-time 

tracking at higher frame rates (> 500 fps). 
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 Parallel processing  2.4

Performance of computer architectures has been steadily increasing over the last 30 years, 

roughly doubling in processor speed every 18 months. However, in the last decade processing 

speeds of CPUs have begun to level off and manufacturers have shifted their focus toward 

increasing the number of processors per chip. At the same time, the computer gaming market 

has fueled development of graphics processor units (GPUs) capable of making massively 

parallel computations as needed for pixel rendering in 3D games.  Recently GPUs have 

transitioned from the consumer market into the computational science arena as accelerators for 

data-parallel operations.    

GPU accelerators have become widely accepted for inexpensive general purpose computing due 

to their ability to achieve over 100 times speed-up for common data-parallel tasks versus 

commodity CPUs (Wu, 2008).  This style architecture is now under heavy development in 

industry and can achieve nearly 100 fold increase in processing throughput and bandwidth 

compared with CPUs.  The reason for this is because the GPU devotes more transistors to data 

processing than the CPU  (Wu, 2008).   

Both CPU and GPU can conduct parallel processing, however the relative size of the parallel 

work unit or thread is different.  Since the CPU devotes more transistors to control and data 

management, they are ideal for processing larger units of work or heavy threads such as 

simultaneously running two programs.  The GPU on the other hand is ideal for very lightweight 

threads, such as simultaneously increasing pixel intensity for an entire digital image. Therefore 

if a big data intensive problem can be decomposed into large threads, each of which can be 

further decomposed into finer threads, then an entire cluster of CPUs and GPUs could be used 

in unison to achieve significant speedups over sequential processing.     

Efficient parallel programming remains a paramount challenge due to added complexity 

required for synchronous and asynchronous thread execution and management.  Several 

programming models such as MPI, Charm++ and NVIDIA's Compute Unified Device 

Architecture (CUDA) have been designed to help programmers fully utilize available 

hardware. The Charm++ framework allows algorithm performance to scale efficiently from 

single dual-core desktops to supercomputing clusters without code modification (Kale & 
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Krishnan, 1993), and CUDA allows algorithms to execute on NVIDIA GPU's inherently 

parallel architecture (NVIDIA, 2012).     

 Summary and conceptual design 2.5

The smart camera with embedded FPGA makes it possible to build Lagrangian particle tracking 

systems that can record indefinitely while achieving both a higher frame rate and higher spatial 

resolution than was previously possible.  For a future real-time LPT system, it makes sense to 

utilize these “smart” cameras to conduct the image acquisition, processing and particle detection. 

The higher frame rate achievable will make temporal tracking easier, which increases the 

number of particles to process through the remaining steps.  In this case, the processing 

bottleneck is eliminated in the camera but the remaining steps including; solving the 

correspondence problem, 3D reconstruction, and temporal tracking become the bottlenecks.   

To handle the increased amount of data due to increased resolution, a scalable method is 

required to spread the data across a heterogeneous (CPU/GPU) computer cluster.  The cameras 

would send data over the internet, which provide significant flexibility in installation, allowing 

the cameras to be physically separated from the computer system.  The conceptual design used 

as the basis for the proposed work is as follows: A network of FPGA smart cameras will be 

used to conduct image processing and particle detection, while a heterogeneous cluster 

processes the multi-camera correspondence, 3D reconstruction, temporal tracking and result 

visualization (Figure 3).  
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Figure 3: Real-time Lagrangian Particle Tracking system concept 

In an experiment, the cameras send the identified particle pixel coordinates or segmented image 

in real-time to a cluster of computers located in the cloud.  The cluster would be comprised of 

an array of nodes each with multi-core CPU processors and GPU accelerators.  The cluster will 

process frames of particles in parallel across the array of nodes in a streaming pipeline as they 

are received.  Each node will receive a small set of frames, then divide the particles within each 

frame and process them in parallel on the GPU to determine the multi-camera correspondence 

of particle images, followed by 3D reconstruction, and tracking.  Each node will communicate 

with a local group to merge trajectory segments to form longer trajectories.  The resulting 

trajectories will be processed to determine Lagrangian and Eularian properties of the particle 

flow field and send the results back to the researcher for real-time visualization.  
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3 Lagrangian particle tracking algorithms 

 Overview and objectives 3.1

The objective of this chapter is to identify the algorithms that will be used to develop the real-

time Lagrangain Particle Tracking (LPT) system.  The algorithms are broken down and will be 

described in five sections; 1) image processing and object detection, 2) multi-camera 

correspondence, 3) 3D reconstruction, 4) temporal tracking and 5) result processing and 

visualization.   For each algorithm the relevant literature and fundamental mathematics will be 

provided and then the selected algorithm will be discussed. 

The implementation approach for the real-time LPT system is to leverage high quality open 

source libraries for proven algorithms to maintain a high quality scalable code.  The algorithms 

discussed were all implemented in C++, and some of the methods were selected from open 

source C++ libraries listed in Table 1. 

Table 1: Open source libraries used to implement the LPT algorithms 

Open source C++ library Usage 

Open source Computer Vision 
(OpenCV) 

Camera calibration, image processing, object detection 

Visualization Toolkit (VTK) 
Foundation building blocks for the interactive 

rendering 
environment 

Boost C++ Libraries Statistical accumulator framework 

 Image processing and particle detection 3.2

The image processing and particle detection algorithm is the first step in the LPT process. The 

selection of image processing methods and detection schemes is dependent on the type of 

illumination and seed particles used. For this project, helium filled soap bubbles were selected 

as the seed particle for LPT experiments in large volume flow fields. Therefore, the image 

processing and particle detection algorithm was based on the work by Biwole (Biwole et al., 

2009). Biwole and coworkers (2009) found that the 1D Gaussian estimator used by Ouellette 

(2006) did not fare well when used with neutrally buoyant helium filled soap bubbles as tracer 
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particles because the bubbles’ transparency caused non uniform images. Biwole concluded that 

for bubbles the following method works best:  

1. Image Segmentation: Apply a uniform threshold operation to create a segmented binary 

image, where pixels with higher intensity than the threshold value are assigned a value 

of one and the remaining background pixels are set to zero. The threshold is selected 

empirically and the optimal threshold depends on illumination intensity, particle size, 

exposure time, and sensitivity of the sensor.  

2. Structural image transformations: iteratively dilate and erode the image to fill in the 

non-uniformities of the segmented particle images.  

3. Calculate the centroid of each processed particle image through the weighted-average 

technique, where the distorted particle centroid pixel locations are given by equation 3-1 

and the pixel intensity at pixel position (x,y) is represented by I(x,y). 
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       (3-1) 

 

Image processing and particle detection was implemented with the open source computer vision 

library (OpenCV)(Itseez, 2012), which provides a number of functions for image processing, 

object detection and camera calibration. The final algorithm was as follows.   

1. Apply a three point kernel Gaussian filter to the image to effectively blur the image and 

reduce the impact of pixel noise.  

2. Threshold the image based on a user defined value from 0-255. All pixels below the 

threshold are assigned 0 and all above are assigned 1. The result is each particle “blob” 

image becoming white against a dark background. 

3. Apply the findContours function of OpenCV which identifies the perimeter contour of 

each segmented “blob” in the binary image. The x and y pixel coordinates of the 

perimeter pixels are stored in an array for each contour found. 

4. The spatial moments of each contour found are calculated and the distorted pixel 

coordinates of the particle image centroid is then determined based on equation 3-2.   
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Lens distortion can be significant in real lenses and needs to be removed numerically to reduce 

uncertainty in the reconstructed 3D particle positions.  The goal is to create a transformation 

that will correct the observed particle image centroid location (as determined by equation 3-2) 

for lens distortion based on a distortion model and calibration coefficients. In this study, 

distortion is approximated through the nonlinear model given in equation 3-3 and 3-4 (Itseez, 

2012). This model includes up to six radial distortion coefficients (k1 to k6) and two tangential 

distortion coefficients (p1 and p2). These eight coefficients together with the focal length (fx, fy) 

and principle point (cx, cy) are the camera’s intrinsic parameters.   
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(3-3)

 

2 2 2r x y           (3-4) 

In equations above and below, ( x , y ) and ( x , y ) represent the distorted and undistorted 

homogeneous coordinates of an image respectively. The homogeneous camera coordinates are 

non-dimensional and simply the in plane camera coordinates xc and yc normalized by the out-of-

plane coordinate zc. The undistorted homogenous coordinates ( x , y ) are determined by 

iteratively solving the nonlinear equations in 3-3, where the distorted homogenous camera 

coordinates are found from the intrinsic parameters and the observed distorted pixel coordinates 

of an image point pdx  and pdy as shown in equation 3-5.  
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Once the undistorted homogeneous coordinates of a particle image are known, the undistorted 

image pixel coordinates can be found through equation 3-6 given the focal length and principle 

point of the lens. 

p x x

p y y

x f x c

y f y c

 
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(3-6) 

 Multi-camera correspondence 3.3

The criterion used in this research to determine spatial correspondence between particle images 

in multiple image planes is called the epipolar geometry constraint.  The epipolar geometry 

between two cameras is shown in Figure 4. Point X represents a point in object space and XR 

and XL are the corresponding image coordinates of X for the right and left image plane 

respectively.  

 

Figure 4: Epipolar geometry in stereo vision: image credit (Nordmann, 2007)  

The epipolar line eRXR on the right image plane is created from the ray between the origin of the 

left image plane OL and point X.  Correspondence ambiguities in the right camera can exist 
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along the epipolar line as shown in the figure. For example, the right image can clearly 

distinguish the four points X, X1, X2 and X3 along ray OL X, while the left image can only 

distinguish one point represented by XL. In this case a third camera is required to eliminate the 

ambiguities and conclude that XL and XR correspond to X and not the other three points.  The 

epipolar constraint equation for a stereo camera pair is derived next. 

For two cameras, the image coordinates  XR and XL corresponding to a single object point X can 

be related through a rotational matrix R and translational vector t as in equation 3-7 (Trucco & 

Verri, 1998).   

( )R L X R X t        (3-7) 

The epipolar plane as shown in the figure above is defined by the location of object point X and 

the origins of the right and left image planes (OR and OL). This geometry creates the coplanar 

condition in equation 3-8 for the left and right image coordinates.  

T( ) 0L R  X t t X        (3-8) 

Substituting the coplanar condition into equation 3-8 results in 3-9 

T T( ) 0R L R X t X        (3-9) 

Trucco and Verri (1998) showed that by using a vector product rule for rank deficient matrices 

equation 3-9 can be refactored to the form given in equation 3-10.   
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t X SX X      (3-10) 

The epipolar constraint in equation 3-11 is the result of this derivation and E is the essential 

matrix which is defined as E=RS where R is the rotation matrix.   Using this constraint, two 

points in camera coordinates can be inserted into equation 3-11 and if the result is zero then the 

points satisfy the epipolar constraint, if the result is greater than zero then no match is made.  

T 0R L X EX         (3-11) 
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The epipolar constraint can be rewritten in terms of the image pixel coordinates using the 

camera intrinsic parameters, such the matrix M is the camera matrix is: 

0
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M        (3-13)
 

Then the image pixel coordinates xL relate to the point’s camera coordinates as 3-14. 

1

L L

X M x         (3-14) 

The fundament matrix F then relates to the essential matrix through the camera matrices of the 

stereo pair as follows.  

T 1

R L

 F M EM
        

(3-15) 

The epipolar constraint can then be written in terms of the pixel coordinates of the object in the 

right and left image planes ( Rx and Lx ) as shown in 3-16.
 

T 0R L x Fx         (3-16)
 

Since the epipolar constraint leaves ambiguities for stereo cameras a third camera is needed. 

The following four step process describes how matches are made in a three camera system: 1) 

For a particle imaged in camera one an epipolar line is projected in camera two, 2) for all 

particles in camera two falling within a set distance from the epipolar line of camera one, 

respective epipolar lines are projected from cameras one and two into camera three, 3) Any 

particle within the intersecting epipolar lines from camera one and two in camera three is a 

correct match.  However, as described by Maas (1992), three cameras may still not be able to 

eliminate all correspondence ambiguities completely.  
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Maas (1992) concluded that, for higher seed particle densities, the use of four cameras is best to 

drive down the ambiguities by a factor of 100 and nearly eliminates them all together (H.G. 

Maas, 1992). The challenge with the four camera epipolar matching algorithm is that it is 

computationally expensive. For each particle found by camera one an epipolar line has to be 

projected into the other three cameras to search for particle images that satisfy the epipolar 

constraint.   

For the real-time LPT system, the correspondence algorithm needed to be scalable to more than 

four cameras. Therefore this algorithm was implemented to scan over an arbitrary number of 

cameras searching for particles that satisfy the four camera matching criteria described by Maas 

(1992).  This multi-camera correspondence algorithm was separated into two stages where the 

first stage identifies particles image pairs from each unique two-camera combination that 

satisfies the epipolar constraint within a tolerance. For a six camera system, this leads to 15 

unique cameras combinations from which to search for matching particle image pairs.  If the 

result of evaluating equation 3-16 is less than a set threshold then the corresponding particle 

image pair will be stored and passed on to stage two. This first stage is shown in pseudo code 

below: 

Multi-camera Correspondence Algorithm: Stage 1 – Find all epipolar matches in  

                                           stereo pairs 

 
for all camera two combinations (A, B) 

 
 for all camera A particles x

A,i

 

 
  for all camera B particles x

B,j

 

 
      Solve d = x

A,i

TF
A,B

x
B,j  

(Equation 3-16) 

 
   if (d < threshold) 

    Add x
A,i

 to camera B’s match list 

Add x
B,j

 to camera A’s match list 

 

 

In the second stage all unique four-camera combinations will be evaluated to determine if the 

matched two-camera particle image pairs satisfy the epipolar constraint for all four cameras. 

This involves searching all possible combinations of cameras within unique four-camera groups, 

labeled A, B, C, and D. For a 6 camera LPT system this results in 15 unique four-camera groups. 

This search becomes a combinatorial nested loop as shown in pseudo code below. 
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Multi-camera Correspondence Algorithm: Stage 2–Evaluate four-camera epipolar  

                                         constraint 

n = total number of cameras 
for a = 0 to n 

 
 for b = a to n  

 
  for c = b to n - 1 

 
       for d = c to n - 1 

 
Search each camera’s match list for corresponding 

particles (x
A

 , x
B 

 , x
C

 , x
D

) 

 
If four camera correspondence is found 

Add x
A

, x
B

, x
C

, x
D

 to list for 3D reconstruction 

 

 

The reason this algorithm was split into two parts was to separate the computation (evaluation 

of the epipolar constraint equation) from the judgment (comparing each two-camera particle 

image pair list to find unique four-camera correspondence). This exposes parallelism in stage 1 

where computational cost is high.  Chapter 4 describes how this parallelism is utilized to create 

a real time algorithm for an arbitrary number of cameras.  Once all four-camera 

correspondences are found they are sent to the 3D reconstruction algorithm.  

 3D reconstruction 3.4

The 3D reconstruction algorithm is responsible for taking the four-camera matched particle 

images centroid locations (in pixel coordinates) from the multi-camera correspondence 

algorithm and computing a single 3D position in object world coordinates. This is accomplished 

through the classic camera projection model, which relates camera and world coordinate 

systems through a rotation R and translation t, which are known as the extrinsic camera 

parameters (Figure 5).  Given a pinhole camera model as described by Trucco and Verri (1998) 

equation 3-10 describes the a projection from a point with world coordinates Xw to an camera 

coordinates Xc assuming the 3 x 3 rotation matrix R and 3x1 translation vector t are known.    
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Figure 5: Transformation from world to camera coordinates 
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X RX + t = R t      (3-17) 

 

The goal is to utilize equation 3-17 to create a transformation from camera coordinates, given as 

pixel locations, to world coordinates. Equation 3-17 can be written in element notation as 

follows.   

11 12 13c w w w xx r x r x r x T          (3-18) 

21 22 23c w w w yy r x r y r z T       

31 32 33c w w w zz r x r y r z T     

 

The camera coordinates can be normalized to for the homogeneous coordinates ( x , y ). 

c

c

x
x

z
             

c

c

y
y

z
          (3-19) 

 

Then substituting equation 3-18 into 3-19 provides a simple linear function relating the 

homogenous camera coordinates to the world coordinates through the external parameters of the 

camera. 

 

Camera coordinates 

xc 

yc 
zc 

World coordinates 

xw 

yw zw 

Xc 

Xw 

R, t 
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11 12 13

31 32 33

w w w x

w w w z

r x r y r z T
x

r x r y r z T

  
 

  
      (3-20) 

21 22 23

31 32 33

w w w y

w w w z

r x r y r z T
y

r x r y r z T

  
 

  
  

 

The intrinsic camera parameters, focal length (fx, fy) and image center (cx, cy) in units of pixels, 

along with the undistorted pixel coordinates ( px , py ) can be used to calculate the homogenous 

coordinates for substitution into 3-21. 

p x

x

p y

y

x c
x

f

y c
y

f


 


 

        (3-21)

 

The direct transformation from 2D undistorted image pixel coordinates to 3D world coordinates 

is complete. This transformation can be given in two equations for each camera, which can be 

rearranged into the form
w AX b as shown in equations 3-22 to 3-24. 

31 11 32 12 33 13( ) ( ) ( )w w w x zx r r x x r r y x r r z T x T            (3-22) 

31 21 32 22 33 23( ) ( ) ( )w w w y zy r r x y r r y y r r z T y T           

       

Where A and b are comprised of sub matrices Ai and bi for each camera i to N:   

1

i

N

 
 
 
 
 
 

A

A
A

A

             

1

i

N

 
 
 
 
 
 

b

b
b

b

      (3-23) 

, 31 11 , 32 12 , 33 13

, 31 21 , 32 22 , 33 23

n i n i n i

i

n i n i n i

x r r x r r x r r

y r r y r r y r r

   
  

   
A ;    

,

,

x n i z

i

y n i z

T x T

T y T

 
  

 
b    (3-24) 

This linear system of equations can be solved for 3D coordinates Xw using a linear least squares 

solver including QR factorization, such as a Householder rotation and backward substitution, or 

Singular Value Decomposition (SVD) (Heath, 2002).  The resulting 3D reconstruction 

algorithm is shown in pseudo code below. 
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     3D Reconstruction Algorithm 

for camera i = 1 to N    

      k = i * 2; 
  x’ = ( xp,i – cx,i ) / fx,i 
  y’ = ( yp,i – cy,i ) / fy,i 
     

A(k-1, 1) =  x’ * Ri(3,1) - Ri(1,1) 
A(k-1, 2) =  x’ * Ri(3,2) - Ri(1,2) 
A(k-1, 3) =  x’ * Ri(3,3) - Ri(1,3) 
A(k, 1)   =  y’ * Ri(3,1) - Ri(2,1) 
A(k, 2)   =  y’ * Ri(3,2) - Ri(2,2) 
A(k, 3)   =  y’ * Ri(3,3) - Ri(2,3) 
    
B(k-1)    =  Ti(1) – x’ * Ti(3) 
B(k)      =  Ti(2) – y’ * Ti(3)   

end 

 

Solve AXw=B for world coordinate Xw using QR factorization or SVD 

 

While 3D reconstruction can be completed with a minimum of two cameras, it is hypothesized 

that the utilization of all four cameras from each four-camera correspondence group will 

improve the conditioning and sensitivity of the least squares problem. This hypothesis is tested 

and discussed in Chapter 5.  

 Temporal tracking 3.5

The temporal tracking algorithm establishes temporal correspondence between reconstructed 

particles from consecutive image frames to form trajectories through space and time. Two 

temporal tracking algorithms were ultimately implemented in this research. 1) a multi-frame 

regression based tracking algorithm developed by Li (Li et al., 2008) and 2) a new algorithm, 

called particle priority strict matching, based on finite difference approximation of particle 

velocity and strict two judgment approach with computationally inexpensive cost functions.  

 Multi-frame regression based tracking algorithm 3.5.1

A multi-frame algorithm base on linear regression was implemented due to its proven 

robustness against input noise and cross-gap (missing frame) tracking capability. This multi-

frame algorithm is described in detail by Li  for 2D (Li et al., 2008), and was extended in this 

research to 3D as described below. 
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1) Initialize trajectories: for all particles in the current frame n, draw a search sphere 

around the i
th

 particle’s location 
n

ix and identify all particles at the next frame, n+1 

within the sphere. Create a two point trajectory for each of these candidate particles and 

the original particle in frame n. 

 

2) Extrapolate trajectory: proceed to next frame and fit existing trajectories with 

polynomials through linear least squares regression. The order of the polynomial used is 

a function of the number of particles in the trajectory; two point trajectories are fit 

exactly with first order polynomials while longer trajectories use a second order 

approximation as shown in equation 3-25. The i
th

 particle's extrapolated position in the 

next frame
1ˆ n

i


x  can then be determined by equation 3-25.  A, B and C are 3 by 1 vectors 

determined by regression where tn+1 is the time at the n+1 frame.  

1 2

1 1
ˆ n

i n nt t

   x A B C      (3-25) 

 

3) Establish search region: create a search sphere with radius r around 
1ˆ n

i


x based on the 

estimated velocity from the previously connected points in the trajectory as shown in 

equation 3-26, where t is time corresponding to the frame index subscript and  is a user 

defined constant. Then identify all particles that fall inside this sphere as candidates for 

the trajectory. 

  11

1

n nn n
i i

n n

t t
r

t t
 




 


x x      (3-26) 

 

4) Evaluate cost function: for each candidate, a cost function is evaluated based on the 

smoothness of the trajectory. A candidate particle j with a cost value Φj below a given 

threshold is added to the trajectory. If more than one candidate particle falls within the 

cost threshold then the trajectory is copied and a new trajectory branch is tracked in 

future frames. The cost function used in this study is based on the work of Li (2008) 

equation 3-27. 
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

 



 







D G H

D

     (3-27) 

 

ˆ
k k D G H        (3-28) 

 

τk is the mid time between frame k and k+1. Dk is the particle displacement between 

frames k and k+1. G and H are 3 by 1 matrices determined from the regression process 

of equation 3-28. 

 

5) Remove short trajectories: check that each trajectory is active by identifying how 

many frames exist where no candidate particles were found. If a trajectory has not found 

a candidate particle for Ngap consecutive frames and has fewer than NTrue frames then the 

trajectory is not tracked any further. 

 

6) Proceed: track the particles with existing trajectories through each frame completing 

steps (1) through (5) until all frames have been processed. 

 

One of the major drawbacks of the regression based method is that its computational cost is 

significant. Also since it allows multiple trajectories to match with the same particle in the new 

frame, tracking ambiguities can exist. Dealing with these ambiguities adds additional 

computational overhead and makes the regression based method not ideal for real-time 

application.  Therefore, a new temporal tracking algorithm was developed and will be discussed 

next. 

 Particle priority strict matching algorithm  3.5.2

To achieve real-time processing a new temporal tracking algorithm was developed to minimize 

the computational cost and reduce tracking ambiguities. This algorithm prevents tracking 

ambiguities by ensuring that candidate particles in the next frame (n+1) can match with only one 

trajectory at the current frame (n) based on minimizing a cost function.  This is a strict matching 

algorithm because the matching cost is efficiently judged in two steps. First, candidate particles 

are assigned the trajectory that minimizes the cost function among all existing trajectories. In this 
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step, a single trajectory may be an optimal match with several candidate particles. Therefore a 

second judgment step is used to break ambiguities. In the second step, trajectories sort their list 

of optimal candidate particles and select the one with the lowest cost.  

The cost function is only evaluated once. The cost function can be changed based on the type of 

experiment being run, and can include any of the cost functions described by Maas (H. G. Maas 

et al., 1993) and Ouellette (Ouellette et al., 2006). In this research, the Euclidian distance 

between a candidate at frame n+1 with the predicted trajectory position at frame n+1 was used as 

the cost function.  This approach is fast and provides good tracking for cases where particle 

displacement is small relative to particle spacing in each frame.  

This new algorithm is implemented as follows: 

1) Initialize trajectories: For all unmatched particles in frame n-1, initiate two point 

trajectories (x
n-1

, x
n
) by adding the nearest neighboring particle in frame n to each particle 

in frame n-1, with each particle in frame n being matched with at most one particle in 

frame n-1. Proceed to the next frame.  

 

2) Extrapolate trajectory and search region: Extrapolate the trajectories to estimate the 

particle’s position in the new frame n+1 with an approximation of velocity through the 

first order backward difference scheme. Then calculate the search radius r based on the 

magnitude of velocity multiplied by the time step. This search radius will define a sphere 

in object space centered at
1

i
ˆ n
x . 

  
1ˆ n n n

i i i t   x x u
      

(3-29)
 

-1

( )
n n

n i i
i O t

t
  



x - x
u

      
(3-30)

 

2
r t u

       
(3-31)

 
 

3) Evaluate cost function: For each candidate particle 
1n

c


x  in frame n+1, loop through all 

trajectories calculating the distance d from the candidate particle
1n

c


x  to the extrapolated 

point of the trajectory
1ˆ n

i


x (equation 3-32).  If d is less than r then a cost function is 
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evaluated. If the cost of adding the current candidate particle 
1n

c


x to the trajectory is less 

than any prior trajectory then this optimal candidate particle/trajectory match is 

temporarily stored. Once the candidate particle has evaluated the cost associated with all 

trajectories, it stored as a match in the optimal trajectory’s list of optimal matches. 

 
1 1

2
ˆn n

c id   x - x
      

(3-32)
 

 
4) Sort optimal candidates and select best match: Loop through each trajectory to sort its 

optimal candidate list and select the lowest cost candidate particle to extend the trajectory 

by one frame. 

  

5) Proceed: track the particles with existing trajectories through each frame completing 

steps (1) through (4) until all frames have been processed.  If a trajectory fails to find an 

optimal candidate particle in the following frame, then remove the trajectory from the 

active trajectory list. All unmatched candidate particles in a frame will be used to 

initialize new trajectories in the following frame. 

 Data analysis and visualization 3.6

One goal of this research is to achieve real-time processing and visualization of results as the 

experiment is in progress. Therefore this section will describe the data analysis that can be 

completed on the Lagrangian particle trajectories and how these results can be visualized and 

interacted with in real-time. The Visualization Toolkit (VTK) was used to develop an 

interactive visualization module for the real-time LPT system. This module provides the 

capability to view Lagrangian trajectories and/or a Eularian grid containing statistical values of 

the particle flow properties during an experiment. The derived properties that are calculated for 

each reference frame are given in Table 2. 
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Table 2: Derived properties calculated for each reference frame  

Lagrangian Eularian 

Velocity Velocity  

Acceleration Mass residual 
Pressure 
gradient Vorticity 

  Reynolds Stress 

  Turbulence Intensity 

  Static Pressure 

 

In order to calculate the Eularian properties of the particle flow field, the concept of a statistical 

accumulator grid (SAG) is introduced. The Eularian flow properties will be derived and 

calculated assuming the particles are ideal tracers, which may not hold true for inertial particles 

in turbulent flows. Therefore, pseudo Eularian flow properties will be calculated in the case 

inertial particles are being tracked.  The dynamics of inertial particles in turbulence are still an 

open area of research. Many researchers have found that current theories of particle response to 

turbulent forcing based on Stokes number may not hold true for inertial particles (Bourgoin et 

al., 2011; Ouellette et al., 2008; Qureshi et al., 2007; Toschi & Bodenschatz, 2009). It may be 

possible that by observing divergence between the pseudo flow properties and true flow 

properties, key steps can be made toward better understanding the dynamics of inertial particles.   

 Lagrangian reference frame 3.6.1

 Particle velocity and acceleration 3.6.1.1

The Lagrangian velocity and acceleration of a particle along a trajectory can be calculated based 

on second order accurate central difference schemes using the reconstructed particle positions x
n
 

for each time step n as given in equations 3-33 and 3-34. In order for these central difference 

schemes to accurately estimate the velocity and acceleration of the particles, the frame rate must 

be high enough for the trajectory to appear linear in the domain of the positions used in the 

finite difference stencil as depicted in Figure 6. The velocity and acceleration calculations will 

be sensitive to uncertainties in the particle position, which will scale with 1/Δt for velocity and 

1/ Δt
2
 for acceleration.  These uncertainties will be discussed further in Chapter 5. 
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     (3-34) 

 

 

Figure 6: Trajectory sampling with central difference stencils. Left and center trajectories are under sampled and will 

not be able to accurately estimate velocity or acceleration 

 Static pressure gradient 3.6.1.2

In the real-time LPT system, the static pressure gradient along a trajectory is calculated in real-

time as the trajectories are being constructed. If the velocity vector (v) and acceleration vector 

(a) are known for an ideal particle being transported in a fluid, then the instantaneous static 

pressure gradient of the fluid can be calculated based on the Navier-Stokes equations given 

below in vector notation (equation 3-35). For inertial particles this would be a pseudo pressure 

gradient which may deviate from the actual flow when the particles behave as non-ideal flow 

tracers.  The resulting pressure gradients will be used below in the Eularian framework to 

calculate static pressures in cells of a finite volume grid through as discussed in section 3.6.2.4. 

This method can be referred to as the Instantaneous Lagrangian Acceleration (ILA) method: 

 21
p

t





      


u
a u u u

     (3-35)

 

2p      a u        (3-36) 

In equations 3-35 and 3-36   is the dynamic viscosity and   is the density of the fluid. The 

acceleration and diffusion terms are discretized using second order central finite differences. 

n 
n-1 

n+1 

n+1 

n 

n-1 

n+1 

n 

n-1 
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The discretized acceleration term is given in 3-24 and the discretized Laplacian of velocity 

(
2 v ) is given in equation 3-38.  
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1 1
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1 1
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( 2 )

( 2 )
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n n n
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 




 




a i

j

k

      (3-37)
 

(3-38)
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 Trajectory visualization 3.6.1.3

The Visualization Toolkit (VTK), an open source C++ visualization library, was used to 

develop an interactive rendering environment where the particles, their trajectories, and Eularian 

properties of the flow (as discussed in section 3.6.2) can be observed in real-time.  The particles 

can be rendered individually as colored spheres based on the velocity or acceleration, or 

combined with a rendering of their trajectory history. This provides a powerful verification 

method, where trajectories can be visually inspected to provide instant feedback on the impact 

of changes to system parameters (frame-rate, image segmentation threshold, etc.).  Visualization 

of the particle paths can help to visually identify regions of high and low velocity and 

acceleration without interpolating to a Eularian grid. The user can interact with the rendering 

environment by zooming and/or rotating the virtual 3D environment to observe the flow field 

from alternative perspectives. 
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Figure 7: Trajectory visualization in the interactive rendering environment 

 Eularian reference frame 3.6.2

It is often useful to interpolate or otherwise attribute the Lagrangian properties to a fixed 

Eularian reference frame so that comparisons can be made with traditional point wise flow 

measurement equipment, such as hot-wire anemometers, and CFD simulations. In addition, by 

structuring the data on a grid, other properties of the flow field can be calculated including: 

continuity, vorticity, Reynolds stress, turbulent kinetic energy, and static pressure.  The method 

for collecting, storing and representing Lagrangian properties on a Cartesian grid is discussed 

next. 

 Statistical accumulator grid 3.6.2.1

A mechanism of statistically storing the Lagrangian properties over time and attributing them to 

fixed Cartesian grid was created and will be referred to as the statistical accumulator grid (SAG). 

The SAG consists of a structured Cartesian virtual finite volume grid, where each cubic cell (or 

voxel) contains an array of statistical accumulators (Figure 8). These accumulators are objects, 

in the object-orientated programming sense, which accept instantaneous values of the 

Lagrangian properties and actively calculate statistical values for the each property including 

mean, variance and/or covariance.  Each cubic cell in the SAG contains 12 statistical 

accumulators: three for velocity [u,v,w], three for acceleration, three for pressure gradient and 
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three for the covariance of velocity [Cov(u,v), Cov(u,w),Cov(v,w)]. This statistical accumulator 

grid is represented in the interactive rendering environment as a rectangular cube which can be 

sized and placed to cover a volume of interest within the observed volume of the LPT cameras.  

 

Figure 8: Visualization of six cameras observing the statistical accumulator grid (SAG) in blue 

The method for adding Lagrangian particle properties to the SAG is based on weighted means 

and variances. Particle properties are added to all cubic cells in a defined cell neighborhood 

with an associated weight based on the distance from the particle to the center of each cell. A 

straight-forward implementation of the cell neighborhood includes only the 26 cells 

immediately surrounding the cubic cell which contains the particle. The weight factors (a) are 

calculated based on the inverse of the distance as in equation 3-39. 

1

2p cella


 x x
       (3-39)

 

The weighted mean ̂  of values accumulated in a given cell are then calculated based on the 

instantaneous values X and weight factors a according to equation 3-40. 

1
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n

i ii

n
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a X
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

         (3-40)
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The weighted variance and covariance are calculated based on iterative Monte Carlo estimators 

in equations 3-41 and 3-42 respectively.   

 
22 2

1
ˆ ˆ ˆn n n

n n n n

n n n

a a a
X

a a a
  


  


    (3-41)

 

  1 1, 1, 2, 2,
ˆ ˆ ˆ ˆn n n
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n n n

a a a
c c X X

a a a
 


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
   (3-42) 

The mean values and variance (covariance) of velocity, acceleration and pressure gradient will 

serve as the foundation to calculate the distributions of mass residual, vorticity, Reynolds stress, 

turbulent kinetic energy, and static pressure within each cell of the statistical accumulator grid.  

 Mass residual and vorticity  3.6.2.2

Conservation of mass within the statistical accumulator grid can be a good indicator of how 

well the LPT system is tracking particles within the flow field and how well the particles follow 

the flow field. If particles experience preferential concentration due to inertial effects, then the 

flow field observed through filter of particle motion can be compressible. This might be 

detectable if the mass residual resulting from solving the continuity equation under the 

assumption of incompressibility is significant.   

The continuity equation simplifies equation 3-43 for incompressible flow fields. 

0
u v w

x y z

  
  

  
       (3-43) 

The mass residual (MR) in each cell (i,j,k) of size (Δx , Δy, Δz) can be calculated based on 

second order central finite difference approximations of the velocity gradients as shown in 

equation 3-44.  

1 11 1 1 1
i,j,k

2 2 2

j ji i k k
v vu u w w

MR
x y z

    
     

      
         

 

(3-44) 

Once the mean velocities u , v and w  are determined through hundreds or thousands of particle 

observations per cell, the mass residuals can be calculated in a domain marching scheme 
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starting from one corner of the grid and traversing each row until all rows and columns have 

been evaluated. 

Vorticity is a useful property derived from the velocity field that can provide an alternative way 

of inspecting a flow field. It is a vector field corresponding to rotation in the flow and can be 

calculated from the spatial gradient of velocity crossed with the velocity vector (equation 3-45). 

w v u w v u
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 
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i j k

    (3-45) 

The discretized form of the vorticity equation is based on second order central differencing of 

the velocity field as given in equation 3-46.    
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 Reynolds Stress and turbulent kinetic energy 3.6.2.3

Reynolds stress is a very important set of properties used to understand the anisotropic nature of 

turbulence in fluids.  Reynolds stress is a tensor that describes variance and covariance of the 

fluctuating velocity components in turbulent flow and serves as a key component in Reynolds 

Averaged Navier-Stokes (RANS) turbulence models, such as the k-ε model. To see how 

Reynolds stress plays a role in fluid flow, start with the Navier-Stokes equations for flow of 

Newtonian fluids which can be summarized in vector notation given in equation 3-47 and in 

Einstein summation convention as given in equation 3-48. 

2p
t

 
 

      
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u
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(3-47) 
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(3-48) 

When the statistical nature of the flow is of interest for studies of turbulence, the Reynolds 

Averaged Navier-Stokes form of the equations can be used. In this formulation the velocities 

are represented as two components, the mean component of velocity
iu  and fluctuating 

component of velocity u i
 .  

u u ui i i
 
        

(3-49)
 

Based on this definition and through rules of ensemble averaging, the well-known Reynolds 

Averaged Navier-Stokes equations are given in 3-50:  

u u u
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j j j

p
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(3-50) 

Where ij   is the Reynolds stress tensor defined by the following notation. 
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(3-51)

 

The Reynolds stress tensor is symmetric and contains six independent values, three shear stress 

terms (u v  ,u w  , and v w  ) corresponding to the covariance between each of the velocity 

components and three normal stress terms (
2u ,

2v ,and 
2w ) corresponding to the variance of 

the three velocity components. Reynolds stress components are derived from the mean and 

instantaneous velocity components according to the definition of samples variance and 

covariance as shown below (equations 3-52 and 3-53).  
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By accumulating the instantaneous velocity components of particles as they move through the 

statistical accumulator grid, the Reynolds stress tensor at each cell is simply calculated as the 

variance and covariance of the accumulated velocities within the cell.  

The Reynolds stress values are an important indicator of the nature of turbulence. For example 

in anisotropic turbulence often found in natural flows, the normal and shear terms can provide a 

better characterization of how the turbulences varies in each direction. This information can be 

helpful in the design of fluid systems.  With the ability to derive distributions of Reynolds stress, 

the LPT system will provide a way to quantitatively compare measured values with results from 

common RANS turbulence models.    

The turbulent kinetic energy (TKE) is the kinetic energy per unit mass contained in small eddies 

of a flow field. TKE at a given point in space is measured as the root-mean-square of velocity 

fluctuations at that point (equation 3-54).   
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(3-54) 

 Static pressure 3.6.2.4

Over the last decade there has have been progress towards obtaining the static pressure field of a 

flow based on the particle motion of fluid tracers (Charonko, King, Smith, & Vlachos, 2010; De 

Kat & Van Oudheusden, 2012; Jaw, Chen, & Hwang, 2009; Murai, Nakada, Suzuki, & 

Yamamoto, 2007). Most of this research has focused on deriving the pressure field from 

velocity data obtained through Particle Image Velocimetry (PIV). One of the limitations of PIV 
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is that it is typically used to measure instantaneous flow velocities in a plane.  Therefore, 

assumptions have to be made regarding the out of plane terms in the Navier-Stokes equation in 

order to solve for the pressure field (Violato, Moore, & Scarano, 2011). Very few studies have 

been published for 3D measurements (3D-PTV or LPT) and their use in pressure field 

calculation. For 3D LPT, velocities in all three dimensions are known therefore the solution for 

pressure becomes much more accessible. Two static pressure calculation methods were 

implemented in the real-time LPT system and will be discussed here; 1) RANS method and 2) 

Instantaneous Lagrangian Acceleration (ILA) method.   

For incompressible flows the Navier-Stokes equations can be solved for the pressure gradient as 

shown in equation 3-55. In this case, if the velocity vector field u is known through 

measurement, then the resulting pressure field can be calculated based on solving the Pressure 

Poisson given in equation 3-56. The Poisson equation is typically solved with an iterative 

sparse-matrix relaxation method such as Successive Over Relaxation (SOR) (Heath, 2002; Moin, 

2001) or a line integration method (Charonko et al., 2010).  The boundary conditions are 

typically Neumann, where the pressure gradient is specified through 3-55 using first or second 

order forward differences (Charonko et al., 2010).
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     (3-56) 

Implementing this process in a single step is problematic due to the source term found on the 

right-hand-side of equation 3-56.  The large number of terms deriving from taking the gradient 

of the right-hand-side of equation 3-55 can prove challenging to implement in code. Therefore, 

in this implementation the Pressure Poisson equation in 3-56 is evaluated in a two-step process.  

In the first step, the 3D pressure gradients are evaluated in each cell of the domain.  The second 

step is then to use these pressure gradients as source terms to solve the Poisson equation 3-56, 

where the symbol represents the three pressure gradient components in a given cell. 
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The right and left hand sides of the pressure Poisson equation are discretized using second order 

central differences for the first and second derivatives as given in 3-57 and 3-58 respectively.  

1 12 1 1 1 1

2 2 2

22 2j j ji i i k k k
p p pp p p p p p

p
x y z
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(3-57) 
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(3-58) 

After the pressure gradients at each location in the grid have been calculated, as will be 

discussed below, the pressure Poisson equation (3-56) can be solved iteratively using SOR 

(Moin, 2001).  The pressure gradient is specified at the boundaries to create a Neumann 

boundary condition, where equation 3-55 is evaluated with first order forward differences. The 

two methods used to calculate the pressure gradients will be discussed next.  

Reynolds Averaged Navier-Stokes (RANS) method: 

For stationary flow fields the steady state Reynolds Averaged Navier-Stokes formulation can be 

used to estimate the gradient of mean pressure as given in 3-59. For the real-time LPT system, 

the mean velocity components and Reynolds stress tensor in each cell of the statistical 

accumulator grid are known through measurement, and therefore equation 3-59 can be readily 

evaluated using the discretized second order accurate finite difference approximations given in 

3-60, 3-61, and 3-62.  
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Instantaneous Lagrangian Acceleration (ILA) Method: 

An alternative approach to calculating the static pressure field was derived based on the 

instantaneous Lagrangian acceleration of seed particles and resulting local trajectory pressure 

gradient, as discussed in the Lagrangian section 3.6.1.2. In this method, the local pressure 

gradient along each trajectory is accumulated into the statistical accumulator grid in the same 

weighted fashion as described above for velocity and acceleration. Then the method to solve for 

the individual cell pressures is the same as for the RANS method, where equation 3-56 is solved 

using SOR and iterated until convergence.   

 3D visualization  3.6.2.5

The Eularian properties of the particle flow field can be visualized using the interactive 

rendering environment, implemented with VTK. The vector fields of velocity and vorticity are 

displayed as vectors colored by magnitude (Figure 9). The vectors can be set to uniform scaling 

or sized based on the magnitude to emphasize the relative spatial differences. As with the 

Lagrangian trajectory visualization, the user can interactively change the perspective view of the 

vector field.    

An interactive view plane tool has been implemented to probe the volume and view planar 

distributions of mass residual, turbulence intensity, velocity magnitude, velocity variance, 

vorticity magnitude, static pressure and sample count per cell.   Figure 10 shows the interactive 

view plane tool displaying turbulence intensity profile along the center plane of an 

axisymmetric jet. The user can click, grab, move and orient the plane in order to view different 

slices of the 3D domain. 
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Figure 9: Visualization of the statistical accumulator grid with velocity vectors displayed 

 

Figure 10: Visualization of time averaged values of Turbulent Kinetic Energy in the center plane of the statistical 

accumulator grid 

 Summary of LPT algorithm development 3.7

The major algorithms of the real-time LPT system were described in detail following the 

general flow of data processing through the system: imaging and particle detection, solving the 

multi-camera correspondence problem, 3D reconstruction, temporal tracking, data analysis and 

visualization. The key points are summarized as follows: 

 The image processing and particle detection algorithm is based on image segmentation 

and centroid calculation based on the spatial moments of the contours around particle 

image “blobs”.  Particle image locations are corrected for lens distortion through the use 

of an eight parameter nonlinear lens distortion model. 
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 The multi-camera correspondence algorithm was based on strict match criteria in which 

four cameras must simultaneously satisfy the epipolar constraint in order for a set of 

particle images to be considered a match. The algorithm was divided into two stages to 

expose parallelism in evaluation of the epipolar constraint, which will be discussed in 

the next chapter.  The combinatorial algorithm is designed to work with an arbitrary 

number of cameras to allow easy scaling beyond a traditional four camera system. 

 

 The 3D reconstruction algorithm was based on the classical pinhole camera projection 

model and a particle’s 3D world coordinates are solved for based on the linear least 

squares formulation involving all cameras in a the four-camera correspondence group.   

 

 A new temporal tracking algorithm was developed based on a new approach which is 

less computationally complex than regression based multi-frame tracking algorithms. 

This new method sorts matches based on a computationally inexpensive cost function 

and minimizes tracking ambiguity by strictly matching each candidate particle with only 

one existing trajectory.   

 

 A data analysis and visualization module was created to display particle tracking results 

in Lagrangian and Eularian reference frames. The Lagrangian properties calculated 

include instantaneous velocity, acceleration and static pressure gradient. These 

Lagrangian properties are attributed to a structured statistical accumulator grid 

comprised of cubic elements in a Eularian reference frame. The weighted means and 

variance (covariance) of velocity and acceleration are used to calculate time-averaged 

Eularian properties including mass residual, vorticity, Reynolds stress, turbulence 

intensity and static pressure. 
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4 Development of the real-time data processing framework 

 Overview and objectives 4.1

This chapter will describe the development and performance evaluation of a real-time streaming 

implementation of the LPT algorithms discussed in Chapter 3. To meet the real-time particle 

tracking objective of this research, a multi-layer parallel processing framework was developed.  

The general approach to achieving real-time processing was to utilize fine and coarse grain 

parallelism on heterogeneous computing architectures. In general, this type of machine would 

consist of a cluster of computing nodes where each node is comprised of a multi-core CPU and 

a set of graphics processor units (GPU). A general representation of the target computing 

system is shown in Figure 11. The LPT real-time processing framework is divided into two key 

components: 1) Node based streaming framework, and 2) Cluster based message passing 

framework.  

The node based streaming framework is designed around a pipelining scheme where each of the 

five major LPT tasks (particle detection, multi-camera correspondence, 3D reconstruction, 

temporal tracking, and visualization) are connected in a pipeline.  Data passing through this 

pipeline is processed in parallel with multiple CPU threads assigned to each of the tasks. The 

most computationally intensive tasks of particle detection and multi-camera correspondence are 

broken down further to expose parallelization across multiple CPU threads and GPU 

accelerators.  This framework is designed to work on any multi-core computer including 

commodity workstations and laptops in addition to nodes of a high performance cluster. 
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Figure 11: Heterogeneous computing architecture model - A cluster composed of nodes, each with a multi-core processor 

and set of GPU accelerators  

The cluster based message passing framework is designed to pipeline the LPT data by groups of 

frames to be processed simultaneously on a cluster of nodes each running the node based 

streaming framework (Barker, Lifflander, Arya, & Zhang, 2012). This multi-layer parallel 

processing approach will allow the real-time LPT system to scale with an increasing number of 

cameras, frame rates and particle concentrations.   

 Node based streaming framework 4.2

 Multi-threaded pipelining scheme 4.2.1

The objective of the node based streaming framework is to fully utilize multi-core processors by 

pipelining the LPT data across CPU cores as it streams in from the cameras. Each LPT task is 

assigned a group of CPU threads to process the data in parallel.  A thread of execution is a unit 

of work that is processed by a CPU, and each CPU can be scheduled to work on multiple 

threads at a time.  The multi-threaded data processing pipeline is implemented as a classical 

multiple producer/consumer model, where each task is a consumer of the data output by the 

preceding task and producer of data for the subsequent task.  The difficulty is in synchronizing 

the CPU threads and ensuring that data flows through the pipeline efficiently without 

accumulating and overcoming the computer’s memory.  

GPU #1 

GPU #2 

GPU #3 

CPU 

CPU CPU 

CPU 

Node 1 Node 2 Node n Node N 
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To implement the multi-threaded pipeline, a concurrent queue data structure was utilized.  The 

concurrent queue is a First-In-First-Out FIFO data structure, where data packets placed in the 

back of the queue by a producer thread(s) are removed from the front of the queue by a 

consumer thread(s).  In the LPT system the packets of data will be referred to as frames, which 

could be arrays of image frames from the cameras, arrays of 2D particle image centroids, or 

arrays of 3D particle locations at a given time step.  The node based streaming pipeline structure 

is shown in Figure 12. As frames stream in from the cameras they are pushed into the back of 

the first queue and popped from the front of the queue by the image processing thread. The 

image processing thread detects the particles, removes image distortion, pushes an array of 

particle centroids into the second queue, and grabs another set of images from the first queue. 

The multi-camera correspondence thread removes the arrays of particle centroids from queue 

two, finds all the matching particle images, places the matches in queue three, and grabs the 

next set of particle centroids. The 3D reconstruction thread removes the matches from queue 3, 

solves for the 3D coordinates of each particle and places the frames of 3D particles in queue 4 

for the tracking thread.   

 

Figure 12: Streaming pipeline utilizing concurrent queue data structures 

Each queue is assigned a fixed amount of memory. Therefore each thread in the pipeline must 

consume frames fast enough to prevent a queue from overflowing its memory allocation. If a 
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thread cannot keep up and the queue’s memory limit is reached, then the pipeline breaks down 

and data are lost.  To prevent this, each of the four major tasks has to be optimized to reach a 

balanced frame processing rate across all tasks. The first two tasks, particle detection and multi-

camera correspondence, are the most computationally expensive. These two tasks were selected 

for optimization and are discussed next. 

 Image processing and particle detection parallelization 4.2.2

As discussed in Chapter 2, the image processing task can be more efficiently handled by “smart” 

cameras.  In this way, the camera completes the image segmentation to identify the particle 

image “blobs” and transfers up to 1000x less data to the computer. Therefore the image 

processing and threshold segmentation steps were given to the cameras and the computer was 

left with the centroid detection and distortion removal steps. The remaining particle detection 

and distortion removal steps were parallelized on the computer by assigning a thread to each 

camera. This method was shown to be very successful for the six camera prototype with will be 

discussed in Chapter 5. The remaining bottleneck in the LPT pipeline was the multi-camera 

correspondence problem. 

 Camera correspondence algorithm parallelization  4.2.3

Multi-camera correspondence is very computationally intensive and was selected for 

parallelization on the GPU. The core approach to optimizing this routine is to break it into two 

threads; one thread to evaluate the epipolar constraint equation for all particles of unique camera 

pairs and one thread to test for satisfaction of the four camera correspondence criteria. As noted 

in Chapter 3, the first stage of this problem is the most computationally expensive, but it also 

exposes a significant level of parallelism. In each camera pair AB, the particles from camera A 

can be compared with those in camera B without any dependencies. Therefore this is a perfect 

problem to be solved on the GPU as it is highly data parallel, where the same operation 

(epipolar constraint evaluation) is computed for different data.    

The GPU implementation of the camera correspondence problem was done with NVIDIA’s 

Compute Unified Device Architecture (CUDA) programming paradigm. CUDA is an extension 

of the C/C++ language to allow efficient programming of graphics processors for general 

compute purposes.  The parallel GPU algorithm for the correspondence problem is as follows:  
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1. Initialize the GPU with the Fundamental matrices for all camera pairs and allocate 

memory for particle data. 

2. Grab a frame of particle centroid data from queue and asynchronously copy all particles 

from all cameras to the GPU 

3. On the GPU, a thread is generated for each particle in camera A of each camera pair. 

Each thread loops through all particles in camera B and evaluates the epipolar constraint 

equation. 

4. The CPU copies the resulting epipolar constraint residuals for each particle and sends 

the data to the second stage to evaluate four camera correspondence criteria. 

 Time performance 4.2.4

The compute node pipelining scheme was tested using the PIV Standard images data set #352 

as described in section 4.3.2.2. This data set consists of 145 frames of particle data with 

approximately 300 particles per frame.  Each of the LPT algorithms was verified for accuracy 

and ultimately tested within the nodal pipelining scheme to determine the real-time capability of 

the system.  For the streaming algorithm to be considered real-time, no data accumulation can 

occur in the pipeline.  Therefore the slowest task in the pipeline determines the ability of the 

whole pipeline to reach real time processing with respect to the input camera frame rate.  

Testing the four cameras and data set #352, the slowest task was the image processing task 

which was able to operate at 467 frames per second assuming a seeding density of 300 particles 

per frame.  With six cameras, the slowest task was the multi-camera correspondence algorithm 

which processed frames at 273 frames per second.   
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 Cluster based message passing framework 4.3

The goal of developing a cluster based message passing framework is to achieve scaling with 

increasing number of cameras, frame rates, and seed particle concentrations. This is achieved by 

designing the cluster based parallel algorithm to meet the following three requirements.  

 Consistent: must provide results that are consistent with the serial version and not 

introduce tracking errors in the form of erroneous trajectories 

 

 Scalable: must scale up from one to hundreds of processors without significant 

reductions in speedup per processor added 

 

 Adaptable: must be modular and able to run any form of the compute node streaming 

framework discussed in the previous section. 

 Parallel implementation strategy 4.3.1

The LPT cluster based parallel algorithm was implemented in C++ and Charm++, allowing the 

algorithm to be programmed using object-oriented techniques.  Charm++ is an object-oriented 

parallel programming paradigm that acts as an extension to the C++ language (Kale & Krishnan, 

1993). It allows programming objects (ie: data structures, classes, etc.) to be distributed across 

multiple processors and asynchronously communicate by sending and receiving messages.  

The general strategy used in this algorithm is to first decompose the LPT data into multiple sets 

of consecutive frames.  These frame-sets are distributed between a group of processors where 

trajectory segments are built in parallel by executing the node based pipelining scheme to 

simultaneously execute all LPT algorithms.  The trajectory segments from each frame-set are 

then compared with all segments in adjacent frame-sets to be merged into longer global 

trajectories.  This approach is shown in Figure 13. 
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Figure 13: Parallel Implementation Strategy: (a) particle data are divided into N frame sets F of size S frames each, (b) 

trajectory segments are built in parallel and given local ID Tn,i, (c) trajectory segments are merged to create 

global trajectories and printed to file 

Where Tn,i is the  local trajectory segment ID for trajectory segment i in frame-set n, S  is the 

frame-set size, a tunable parameter for parallel decomposition, Fn Frame-set ID for the n
th

 

frame-set, N is the total number of frame-sets 

 Data decomposition 4.3.1.1

The first step in parallelizing the LPT algorithms across clusters of nodes was to decompose the 

problem into multiple work units to be distributed across many processors. There are three 

possible data decomposition strategies for LPT: distributed particles, distributed frames, and 

distributed object space. The distribution of particles or object space would require extensive 

communication between processors that do not share memory.  Therefore, frame decomposition 

was chosen because the communication costs are low and it exposed sufficient parallelism for 

both shared and distributed memory systems. In this decomposition, the data are divided into 

frame sets of size S consecutive frames which are distributed across processors as shown in 

Figure 13. The number of frames in a set S, is the parallel decomposition factor or frame-set 

size, and is left as a tunable parameter with a minimum value of eight frames as required for the 

trajectory merge operation.  These frame sets can be processed in parallel using any sequential 

tracking algorithm.  The key challenge to this approach lies in merging the disjoint trajectory 

segments without significant processor communication overhead. 
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 Trajectory Merging 4.3.1.2

A merge operation is required to concatenate local trajectory segments spanning across a single 

frame-set into global trajectories that span multiple frame-sets. This operation falls between 

steps b and c in Figure 13 and begins once all local trajectory segments from two adjacent frame 

sets have been constructed. Therefore trajectory merging can happen asynchronously without 

waiting for all trajectory segments from all frame sets to be constructed. The linear regression 

based cost function developed by Li (2008) was used to determine if two local trajectory 

segments from adjacent frame-sets constitute a single trajectory. Only the tails of each trajectory, 

composed of first four and last four linked particles, are sent to the merge function in order to 

minimize data transfer between processors. The merge function compares all trajectories 

constructed within frame-set n to those in frame-set n+1, where n is the frame-set index from 1 

to N-1. If the first particle of the trajectory segment from frame-set n+1 is within certain 

proximity to the last particle from frame-set n then the cost function is evaluated. As shown in 

Figure 14, the cost evaluation requires four iterations per candidate trajectory to fully examine 

the quality of fit for each particle in the tails. If the cost associated with each of the four 

iterations is below a set threshold beta then the two local trajectory segments are paired for 

merger. 

 

Figure 14: Trajectory merge operation: four cost function iterations are required to evaluate the merge of the last four 

linked particles of trajectories in frame-set Fn are with the first four linked particles of the trajectories in 

frame-set Fn+1 
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Table 3: Global merge map: final instructions for global trajectory assembly from local trajectory segments 

 
 

Where M is the total number of global trajectories, n is the frame-set index, and m is the global 

trajectory index. 

 Parallel communication and data flow 4.3.1.3

Parallel particle tracking occurs in five steps 1) data input and distribution, 2) tracking, 3) merge 

identification, 4) global trajectory construction, and 5) trajectory data output to file.  Figure 15 

shows a simplified example of the parallel communication and flow using only two processors 

and particle data divided into four frame-sets, two per processor.  In the first step the 3D particle 

location data are read from memory and distributed in frame-sets of S frames to the pool of 

processors. Next each processor runs the sequential tracking algorithm on its frame-sets to build 

local trajectory segments. Once the trajectory segments spanning two adjacent frame-sets have 

been constructed, the merge operation is conducted as discussed in the previous section.  The 

result of the merge operation is a local mapping of trajectory pairings between adjacent frame-

sets.  The actual trajectory data remains fragmented across processors at this point and only the 

locally paired trajectory segment IDs are known by each processor.  Once all local trajectory 

merges have been identified between each adjacent frame-set, the global trajectory construction 

process can begin.  The purpose of this phase is to consolidate the trajectory segments 

belonging to a single global trajectory on the same processor.  First, a set of instructions is 

generated that defines the segments to be merged along with their respective frame-set IDs and 

host processor. A sample of these instructions is shown in Table 3. Next, each processor selects 

an equal subset of global trajectories and begins communicating with the other processors to 

obtain the segments needed for their construction. Once a processor has received all of the 

contiguous trajectory segments and built the global trajectories it outputs them to a single file 

and exits. The final results are a series of files (one per processor) containing full length 

trajectories.  
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Figure 15: Parallel tracking algorithm flow diagram for a simplified case of three global trajectories spanning four 

frame sets on two processors 

 Parallel performance evaluation and results 4.3.2

The cluster based parallel LPT algorithm was evaluated for accuracy, consistency and scaling 

using three data sets. In this evaluation the only the tracking algorithm was used from the node 

based streaming framework.  Thus the data input consisted on 3D particle locations grouped by 

frame and the output was reconstructed trajectories.  The sequential regression based tracking 

algorithm by Li (2008), as described in Chapter 3, was used to evaluate the cluster based 

message passing framework. 

The first data set was used to evaluate consistency with the sequential version and was obtained 

from the PIV 3D standard images data set #352 (Okamoto, Nishio, Kobayashi, Saga, & 

Takehara, 2000). The second set consisted of a large data set with uniform characteristics and 
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was used to evaluate the optimal parallel performance of the algorithm on several large clusters. 

The third data set was generated using computational fluid dynamics (CFD) and used to test the 

parallel performance with non-uniform data and inherent work load imbalance across processors.  

A wide range of machines were used in the evaluation including a desktop workstation, a 

moderate-size cluster (Turing) and one very large cluster (BlueGene/P). The specifications of 

these machines can be found in Table 4.  

Table 4: Computer systems used in parallel algorithm evaluation 

 

 Performance metrics 4.3.2.1

The trajectory reconstruction accuracy of the algorithm is measured by two key metrics: the 

coverage ratio and correct ratio as shown in the equations below. Coverage ratio (γcoverage) is the 

ratio of correct two-frame particle links made during the tracking process (Lcorrect) to the total 

number of known input links (Ltotal) (Li et al., 2008). A coverage value of 1.0 indicates that all 

of the input particles were tracked correctly. Correct ratio (γcorrect) refers to the number of 

correct links made with respect to the total number of links established in the tracking process 

( Ltracked) (Li et al., 2008). A correct ratio of 1.0 indicates all established particle links were 

accurately reconstructed. 

      (4-1) 

 

Parallel performance can be measured in terms of speedup and scalability. The speedup of the 

parallel algorithm is the ratio of serial execution time to parallel execution time given the same 

work (equation 4-2). The algorithm is timed from data input to data output excluding reading 

and writing of data from/to the hard drive.  The measure of how well a parallel application 

scales is the ratio of speedup achieved to the number of processors. The optimal case is when 

the speedup divided by the number of processors is equal to one, in which case perfect scaling is 
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observed.  However, in real applications adding processors creates overhead and eventually a 

loss in parallel efficiency is observed. 

sequential time

parallel time
speedup 

      (4-2)

 

 PIV standard 3D images data set #352 4.3.2.2

The standard 3D images data set #352 from Okamoto (2000) was selected to test the parallel 

algorithm for trajectory reconstruction accuracy and consistency in comparison with the serial 

version. This simulated data set consists of an average of 300 particles per frame in three 

cameras over 145 frames (Okamoto et al., 2000) and was obtained at 

www.piv.jp/image3d/image352. The flow field is 2 cm x 2 cm x 2 cm and contains a jet 

impinging on a wall with inlet speed of 15 cm/s and Reynolds number of 3000.  A subset of 3D 

trajectories from this set is shown in Figure 16.  Accuracy was measured by comparing the 

output trajectories with the true trajectories from the known input data.  This data set is too 

small for a full evaluation of the parallel scaling and speedup, which are evaluated in the 

following sections.  

 

Figure 16: Trajectories from standard PIV data set #352 spanning 75 frames or greater (Okamoto et al., 2000) 
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Five tracking runs were completed on this data set as shown in Table 5. The first run was 

conducted with the serial algorithm to build the performance benchmark followed by four runs 

of the parallel algorithm with different frame set decomposition sizes (8, 16, 32, and 64 frames) 

on a desktop workstation with two quad-core processors.  

Table 5: Trajectory reconstruction results using standard PIV data set with no noise #352 (Okamoto et al., 2000) 

 
 

To evaluate the algorithm in the presence of noise, the data set was heavily modified and used 

for reevaluation. Ten percent of the known particles were randomly selected for removal to 

simulate occlusion, ten percent more ghost particles were randomly added throughout the 

domain to simulate false detections and all particle positions were perturbed by an average of 

0.003 cm in each dimension (equivalent to a 0.5 pixel error in particle centroid localization) to 

simulate common detection uncertainty.  

Table 6: Trajectory reconstruction results using standard PIV data set with heavy noise #352 (Okamoto et al., 2000) 

  

 

The results show that tracking was consistent between the serial and parallel versions, achieving 

average tracking correct ratios of 0.98 and average coverage ratios of 0.94. The average length 

of the trajectories remains at 32 frames and is consistent with the serial results and input data. 

This indicates that the merge operation is performing successfully. When the frame set size, S, 

is reduced from 64 frames to 8 the correct tracking ratio increases slightly while the coverage 

ratio decreases slightly. This is acceptable deviation since the accuracy (correctness) of the 

tracked particles remains constant and no tracking errors are introduced. Overall, the parallel 

algorithm was successful in preserving long and accurate trajectories when noise is low. In the 

presence of heavy noise and uncertainty, the performance diminishes significantly.  The results 

of the parallel algorithm’s performance in the presence of noise are shown in Table 6.  While 
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the coverage ratio decreases with added noise it is important to note that the correct ratio is still 

near 99 percent.  

 Simulated vortex for parallel performance evaluation 4.3.2.3

A large uniform data set was created to test the optimal parallel performance of the algorithm 

under near perfect load balancing for up to 512 processors.  This data set consists of a 1024 

particles moving with uniform acceleration in a downward spiral through a 2m x 2m x 6m 

domain as shown in Figure 17. The spacing-displacement ratio was greater than 10 in order to 

ensure 100 percent tracking coverage and accuracy.  All trajectories are equal length and span 

8192 frames, therefore each frame contains the same number of particles and parallel workload 

is balanced.  This type of data set eliminates the possibility of tracking errors and permits 

isolated evaluation of the parallel performance in terms of scaling efficiency and speedup. To 

assist in the evaluation, the data set was parsed to create six total sets representing three 

variations in total particles (1024, 512 and 256 particles) and three trajectory lengths (8192, 

4096 and 2048 frames).  The particle trajectories are described by equations 4-3, where θ and d 

are the angle and diameter of rotation, and [xo, yo, zo] is the particle's random location in the 

initial frame. 

       (4-3) 
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Figure 17: Simulated trajectories for scaling analysis 

The Turing cluster was used to evaluate the impact varying the frame decomposition (frame-set 

size) from 8 to 256 frames on the parallel performance for a fixed number of processors. The 

BlueGene/P cluster was used to test the scalability and speedup when the number of frames and 

particles are varied. 

Table 7: Impact of parallel decomposition factor, frame set size (S), on parallel speedup (Turing cluster) 1024 particles 

8192 frames 

 
 

Table 7 shows how the parallel decomposition factor, the frame-set size S, impacts speedup. 

With 32 processors working on the 1024 particle 8192 frame data set, the speedup remains 

nearly constant for all frame-set sizes until the number of frame-sets per processor approaches 

one.  Once this happens, the processors are unable to hide communication latency by 

overlapping communication with computation. Thus, two or more frame-sets should be 

assigned to each processor to minimize idle time. A frame-set size of S = 8 frames was selected 
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for the following analysis to ensure at least 512 processors could be used with the largest data 

set. The speed up of 54 achieved in this evaluation was greater than the number of processors 

used indicating that the parallel algorithm has better memory characteristics than the sequential 

version due to slight differences in implementation.  

 

Figure 18: Scaling results from parallel execution on BlueGene/P (data sets are labeled by ApBf where A is the number 

of particles and B is the number of frames) 

Figure 18 shows strong scaling of the six data sets up to 512 processors on the BlueGene/P 

cluster. This graph demonstrates the impact of diminishing returns and loss of parallel 

efficiency as the number of processors increase. The run time for the data set with 1024 

particles remains at a near constant slope with added processors while the data set with only 256 

particles begins to reduce in slope as inefficiencies arise. Clearly the data set with more particles 

has more work and can be processed more efficiently with a larger number of processors.  Thus 

the program scales very well with an increasing number of particles tracked. The slopes of the 

performance curves for data sets of common particle numbers are nearly equal when the number 

of frames is 4096 or 8192, indicating that the number of frames processed has little impact on 

the scaling performance. 
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Figure 19: Speedup graph from parallel execution on BlueGene/P (data sets are labeled by ApBf where A is the number 

of particles and B is the total number of frames) 

Figure 19 shows the speedup over the sequential algorithm. The straight line represents a linear 

speedup and perfect scaling. For the first two points on the 512 particles 4096 frames data set 

and the three points on the 1024 particles 2048 frames data set, a super-linear speedup is 

observed. This phenomenon is normally due to differences between the sequential and parallel 

algorithms or cache effects (the parallel version has better memory characteristics).  

As the number of processors increases (the problem size remaining constant), the curve 

becomes sub-linear due to a decline in parallel efficiency. As the amount of work per processor 

decreases, the communication is more prevalent (because of less overlap with computation) and 

this decreases performance (less communication is being overlapped with computation).  Again, 

this graph clearly demonstrates that the algorithm scales very well with an increasing number of 

particles, and the number of frames has little effect. A maximum speed up of roughly 200 is 

achieved with 256 processors for 1024 particles and 2048 frames. The speedup would continue 

to increase for this number of processors if larger data sets (particles) were used. 
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 Simulated displacement ventilation flow 4.3.2.4

A CFD simulated indoor air flow field was used to test the trajectory reconstruction accuracy 

and parallel performance of the new tracking algorithm in the presence of large velocity 

gradients and non-uniform particle seeding over time. This is done to determine how the 

algorithm performs when the computational load is unbalanced across processors. The data set 

includes 1540 particles tracked over 4096 frames to accurately evaluate parallel speedup. The 

flow domain was a large room (3m x 3m x 6m) with a slot inlet spanning the width of the room 

and located on the front wall near the ceiling and a slot outlet located on the opposite wall near 

the floor (Figure 20). The inlet boundary condition was a constant uniform velocity of 4 m/s and 

the outlet boundary was a standard pressure outlet set to atmospheric conditions. Turbulence 

was modeled using a Reynolds Averaged Navier-Stokes approach. The resulting steady state 

flow field solution is shown in Figure 20. 

 

Figure 20: CFD simulated displacement indoor air ventilation velocity vector field and velocity magnitude contours (m/s) 

Particle trajectories were simulated using a Lagrangian tracking model, assuming massless 

particles shown in Figure 21. Particles were injected throughout the domain at two instances in 

time (frames 0 and 2000) to obtain a non-uniform number of particles per frame as shown in 

Figure 22. The data was further unbalanced due to the presence of large velocity gradients 

which caused a portion of the particles to leave the domain more quickly than others, leading to 

variation in trajectory lengths. 
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Figure 21: Subset of the CFD simulated particle trajectories in displacement indoor air ventilation 

 

Figure 22: Fluctuation of the number of particles per frame for the CFD simulated data set 

The results from the trajectory reconstruction analysis are presented in Table 8. The algorithm 

worked well and reconstructed the trajectories with nearly 100 percent coverage and correctness.  

However, the parallel algorithm constructed more trajectories and had a lower average 

trajectory length than the serial version which indicates that some shorter trajectories did not 
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completely merge. This is likely due to a locally small particle spacing-displacement ratio near 

the boundaries of several frame-sets, which resulted in match ambiguity. This however, does 

not introduce tracking errors as seen in no reduction of the correct tracking ratio values and 

therefore may be acceptable tradeoff for increased processing speed and scalability of data 

storage. The frame-set size of eight resulted in the highest percent correct trajectories and was 

used for the parallel performance analysis. 

Table 8: Trajectory reconstruction accuracy results for CFD data set (Workstation) 

 
 

Table 9: Parallel performance results for CFD data set, Frame-set size (S) = 8 frames 

 
 

The Turing cluster and multi-core workstation were used to evaluate the parallel performance 

with the non-uniform data set and the results are given in Table 9.  As expected, the speedups 

achieved were lower than those for the uniform data sets in the previous section due to the 

inherent load imbalance, which caused an increase in processor idle time. On the Turing cluster, 

the maximum speed up of 42 was achieved with 128 processors for a processed frame rate of 

586 fps.  The multi-core workstation achieved a maximum speed up of 7 with 8 processors and 

processed 402 fps. The workstation with 2.4 GHz processor cores and shared memory was four 

times faster than the Turing cluster with 2.0 GHz cores and distributed memory when 

processing the sequential code. These results show that real-time processing of the tracking 

algorithm for a camera frame rate of 100 fps could be possible with either machine. 
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 Summary of message passing framework development and evaluation 4.3.3

Parallel processing of the particle tracking algorithm is a key step in achieving a scalable real-

time LPT measurement system where large data sets are seamlessly distributed and processed 

across many computers. Such a scalable system directly addresses the data management issues 

experienced in LPT experiments and could eventually lead to real-time measurement 

capabilities for very high speed cameras. A parallel processing framework was developed and 

evaluation on three simulated data sets proved that it was consistent with the serial version and 

could efficiently scale to over 500 processors. The algorithm was based on frame decomposition 

and programmed using object-oriented C++ with the Charm++ extensions for asynchronous 

message passing between distributed objects.  One key aspect of the parallel algorithm was the 

asynchronous trajectory merge operation that minimizes processor idle time and data transfer 

between nodes. 

Evaluation of the new algorithm with the PIV standard 3D images dataset #352 demonstrated 

that it was consistent with the optimized serial version in terms of trajectory reconstruction 

accuracy as quantified by the correct tracking ratio. This data set also validated the new 

algorithm's ability to handle merging of trajectories of non-uniform length distributed across 

many processors.  In a few instances several local trajectory segments did not merge due to 

short trajectories formed near the frame-set intersections. However, this may be an acceptable 

tradeoff for runtime speedup and scalability since major tracking errors were not introduced into 

the results. Future work can be conducted to optimize the merge function.  

The parallel performance evaluation showed that the new algorithm scaled well with an 

increasing number of particles tracked, while the number of frames processed had very little 

impact on the scaling performance. This implies that the parallel performance of the algorithm 

will remain nearly constant if only a few frames are processed at a time, as in real-time data 

streaming from "smart cameras", or if thousands of frames are processed in batch. If camera 

resolution is increased to grow the number of resolved tracer particles then a proportional 

number of processors could be added to maintain parallel performance.  The parallel 

decomposition factor (frame-set size S) did not influence the speedup significantly as long as 

each processor was assigned more than one frame-set. A significant speedup of up to 200 was 

obtained with 256 processors for the optimal case of inherently load balanced data (1024 
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particles and 2048 frames).  While for a more realistic data set containing non-uniform 

trajectories, it was observed that the speedups were still significant: 42 on 128 processors at 586 

frames processed per second.  While scaling is consistent from multi-core workstations to large 

clusters, the magnitude of speedup achieved is very dependent on the specific architecture of the 

system including cache size and processor clock rate. 

 Summary of real-time processing framework development 4.4

The chapter described the development of two parallel frameworks for real-time processing of 

LPT data on node based multi-core processors with GPU accelerators and a message passing 

framework for use on high performance clusters. These two frameworks would eventually be 

used together in order to allow massive scaling of the LPT system to include many more 

cameras and higher frame rates.  

The results from tests showed that the of the LPT algorithms, the image processing and 

detection algorithm is the bottleneck of the system when only four cameras are used. However, 

as the number of cameras is increased to six or more the multi-camera correspondence 

algorithm becomes the bottleneck.  With four cameras and a data set of 300 particles per frame, 

the compute node streaming framework was able to achieve a processed frame rate of nearly 

500 frames per second. With six cameras the added processing load slowed the rate to 270 

frames per second. Thus in a real 6 camera system, real-time processing can be achieved on just 

one node for frame rates less than 270 fps.  

If frame rates are increased then the compute cluster message passing framework can be used to 

distribute the frames by group across a large compute cluster. Results from tests of the compute 

cluster message passing framework showed that scaling could be achieved for 500 processors. 

With this information it can be concluded that the objective of demonstrating the ability to reach 

real-time processing of LPT data scalable to hundreds of processors for high frame rate cameras 

can be achieved.  
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5 Prototype design and sensitivity analysis  

 Objective and approach 5.1

The goal of this chapter is to overview the important hardware components of the real-time 

Lagrangian particle tracking (LPT) system and complete a sensitivity analysis based on derived 

measurement uncertainties to help guide experimental design.   

Section 5.2 will cover the LPT system hardware and key selection decisions for real-time 

tracking.  Procedures for calculating the uncertainty in reconstructed 3D particle positions, 

velocity and acceleration will be derived in section 5.3. Finally in section 5.4 a sensitivity 

analysis will be conducted to characterize the impact of camera parameter uncertainty and 

camera placement on the particle position measurement uncertainty of the system. 

 System hardware 5.2

The real-time LPT system is composed of four major hardware components 1) Imaging system 

including cameras and lenses, 2) illumination system and seed particle generator, and 3) 

computational resources. The following section will cover the selection of each of these 

components for the real-time LPT prototype used in this research. At the end of this section the 

calibration procedures will be described. 

 Imaging system 5.2.1

The imaging system is composed of cameras and lenses, each of which introduces important 

selection decisions when designing the real-time LPT system. The important factors when 

selecting cameras can be broken down in the following 1) frame rate, 2) sensor resolution, 3) 

synchronization and controllability, and 4) image processing capabilities and data transfer 

bandwidth.  

The sensor resolution and frame rate directly impact the type of particle flow that can be 

characterized with the LPT system.  For example, the frame rate directly relates to the 

maximum particle velocity which can be tracked based on maintaining a minimum particle 

spacing-displacement ratio.   
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As noted by Malik, a key criterion to predict tracking difficulty for a given particle tracking 

system and flow field is the particle spacing-displacement ratio p (Malik et al., 1993). 

s
p

u t




        (5-1) 

 

This ratio is defined by the mean spacing between particles ( s ), and the mean particle 

displacement from frame to frame ( u t ). If p >> 1 then tracking can be completed with high 

accuracy and relative ease (Malik et al., 1993).  

If 500 particles are to be tracked in a 1.0 m
3
 volume then the maximum measureable particle 

speed, from a tracking efficiency standpoint, would vary with the LPT system’s camera frame 

rate as shown in Figure 23.  As the particle spacing displacement ratio increases, tracking 

efficiency increases along with the length of the tracked trajectories.  If the ratio is equal to 1 

then tracking is virtually impossible.  Therefore, the frame rate of the cameras should be 

selected based on the ability to over-sample a particle’s trajectory at the maximum expected 

velocity of the flow field, desired seed particle density, and length of desired trajectories.   

 

Figure 23: Frame rate limitation on maximum particle speed due to tracking efficiency 
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The sensor resolution is a major factor which impacts the density of particles that can be 

resolved along with the uncertainty of the particle centroid location. However, the importance of 

spatial resolution may be less than that of frame rate when the goal is to track fewer particles 

over longer trajectories. Lower resolution sensors also cost less, which allows more cameras to 

be purchased for the same budget.  Maas (1992) reported using four low-resolution (720 x 574 

pixel) CCD cameras to detect up to 1500 particles in a small aquarium resulting in 800 particles 

being tracked (H.G. Maas, 1992).  This level of particle density is acceptable for this research; 

therefore, priority was given to camera frame rate, multi-camera synchronization, data 

compression and controllability.    

Real-time operation is one of the objectives of this research, therefore the cameras needed to 

utilize embedded Field Programmable Gate Arrays (FPGA) to complete on camera image 

processing and reduce overall data transfer rates.  In addition these cameras must be able to 

synchronize among groups up to hundreds of cameras. Such cameras have been made 

commercially available for the movie and video game industry in the area of motion capture. 

Motion capture cameras have been designed with FPGAs to detect objects through image 

segmentation and centroid localization, and then are able to send the object coordinates directly 

to the host computer.  

For the prototype real-time LPT system, six low cost motion capture cameras (NaturalPoint Inc. 

Optitrack Model V120:SLIM) were purchased based on the availability of a C++ control 

interface, hard wire synchronization, flexible lens mounts, and built in FPGA for particle 

detection and image compression (Figure 24). The cameras chosen contained VGA resolution 

(640 x 480 pixels) monochrome sensors which were housed in aluminum housings with 

standard CS lens mounts with C mount adaptors (NaturalPoint, 2012). The six cameras form 15 

unique two-camera combinations, and 15 unique four-camera combinations which were enough 

to test the viability of the real-time multi-camera correspondence approach described in Chapter 

3. The variable zoom lenses had a focal length range from 2.8 - 8.0 mm and aperture of F/1.2 

with a CS mount (Tamron Model No. M13VM288IR).  The lenses were IR-corrected and 

designed for 3 megapixel sensor, which meant that the image sensors of this system would not 

be limited by the resolving power of the lenses (Tamron, 2012). 
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Table 10: Camera system specifications 

Parameter Specification 

Frame rate 30, 60, 120 fps 

Resolution 640 x 480 

Sensor type CMOS monochrome 

Bit depth 8 

Pixel size 6 x 6 μm 

Imager size 4.5 x 2.88 mm 

Shutter type  Global 

Shutter speed 1 ms - 20 μs 

Image processing abilities MJPEG compression 

  Image segmentation 

  Object centroid detection 

Control C++ camera SDK 

Synchronization Synch breakout cable 

Communication  USB 2.0 

 

 

Figure 24: Motion capture camera system used for real-time LPT prototype development 

 Illumination and seed particle generator 5.2.2

The decisions on types of illumination systems and seed particle generators are closely linked. 

In many particle tracking velocimetry and particle image velocimetry studies the illumination 

source is a high power pulse laser and the particles are small flow tracers on the order of 10 

microns in diameter.  For the LPT system in this research the goal was to observe flows on 

larger scales and to create a system that is not cost prohibitive. Therefore low cost LED light 

panels and a commercial generator for neutrally buoyant helium filled soap bubbles were 

selected. Each LED light panel (FancierStudio, 2012), contained 500 individual light emitting 
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diodes and had a total power consumption of 50 watts. The 1-4mm helium filled soap bubbles 

were generated with a Sage Action Inc. Model 5 bubble generator (SAI, 2012). These bubbles 

are easily visible using the LED system at a distance of 1.5 m from the camera. This 

combination provided a safe, affordable, and scalable solution to move to larger room scale 

flows in the future. 

 Computational resources 5.2.3

A multi-core workstation was purchased from Colfax International (http://www.colfax-intl.com ) 

to provide the computational power needed to achieve real-time Lagrangian particle tracking 

and visualization with the six camera system. This workstation contained two quad-core Intel 

Xeon 2.4GHz CPUs, 32 GB of random access memory (RAM), and four graphics processing 

units (GPU). Three of the graphics cards were NVIDIA Tesla C1060 GPU compute accelerators 

strictly for data processing and one card was an NVIDIA Quadro FX3700 for 3D visualization. 

The two quad core CPUs were hyper threaded, to provided 16 virtual processors for multi-

threading. The six cameras were connected to the computer using a 7 port USB 2.0 hub.    

 System calibration 5.2.4

The cameras were calibrated before each experiment using an open source camera calibration 

routine based on the work by Zhang (2000) and MATLAB® toolbox developed by Bouguet 

(Bouguet, 2010; Z. Zhang, 2000).  The calibration algorithm is based finding the optimal 

camera parameters (focal length, principle point, and distortion coefficients) that minimize the 

reprojection error between known image points and their specified 3D world coordinates. This 

method has been derived in great detail in the publication by Zhang (2000) and will not be 

covered here for brevity.  The calibration procedure used in this research consisted of the 

following. First, images of a planar calibration board containing 44 black circles (Figure 25) are 

recorded in at least 50 orientations for each camera. Then the circles are detected their centroids 

are computed. Finally the list of centroid coordinates and 3D object coordinates (relative to the 

board plane) were processed with the method by Zhang to determine the optimal camera 

parameters based on all 50 images. The reprojection residuals from the optimal camera 

parameters were on the order of 0.1 pixels for each camera.  

http://www.colfax-intl.com/
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Figure 25: Planar calibration board containing 44 detectable points 

The extrinsic parameters are determined based on the known correspondence between 2D image 

coordinates and 3D world coordinates of the calibration board.  These extrinsic parameters 

define the pose of the camera relative to the object as defined by a rotation matrix and 

translation vector.  These parameters are determined through the use of an OpenCV function 

called solvePnP, which estimates an object’s pose from a set of detected image points and 

known object points for the same planar calibration object.  The extrinsic parameters of all six 

cameras can be determined at once when they share a common view of the static calibration 

board. Once imaged and detected in each camera, the rotation and translation vectors for each 

camera are determined by minimizing the reprojection error, which is the Euclidian norm of the 

difference between the actual imaged point locations and the reprojected image points from 

known object coordinates and intrinsic parameters of the camera.  The resulting intrinsic and 

extrinsic parameters are used to calculate the Fundamental matrices for each unique two-camera 

combination through equations 3-12 and 3-15.    

 Derivation of measurement uncertainties 5.3

The objective of this section is to derive methods to identify the combined standard uncertainty 

of 3D particle position, velocity and acceleration measurements.  These uncertainty calculation 

methods will be used to conduct a sensitivity analysis in the following section and ultimately 

determine the combined standard uncertainties of the measurements made by the prototype real-

time LPT system.   
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 3D position combined standard uncertainty 5.3.1

3D positions of the particles are the fundamental output of the particle tracking system.  This 

sub section will derive methods for calculating the combined standard uncertainty of the 3D 

position in terms of a single value with units of length. This value defines the radius of a sphere 

of uncertainty around the measured particle position.  The combined standard uncertainty of the 

3D world position measurement is based on uncertainty propagation from three factors 1) 

detected particle centroid coordinates, 2) camera intrinsic parameters including distortion 

coefficients, principle point and focal length, and 3) the extrinsic parameters defining the 

cameras translation and rotation from the world coordinate system.   

In this analysis, the particle’s world coordinate xw is the measurand of interest and can be 

defined as a function of the particle’s camera coordinates along with the rotation and translation 

vectors of camera involved in the 3D reconstruction, as given in equation 5-2.  

 

 
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   (5-2) 

Here f is the 3D reconstruction function described in Chapter 3. The uncertainty associated with 

the world coordinates follows the combined standard uncertainty equation (ISO, 2009; Kirkup 

& Frenkel, 2006), where all parameters p in the measurement equation are assumed to be 

independent from one another.  
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      (5-3) 

The particle’s coordinates in each camera, cx are related to the world coordinates through the 

following equation.  
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       (5-4) 
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Its homogenous coordinates (x’ and y’) are defined by normalizing the x and y components by 

the z component.   

/

/

c c

c c

x x z

y y z

 

 
        (5-5) 

The first factor introducing uncertainty into the 3D reconstruction process is the uncertainty in 

the lens distortion coefficients k1, k2, p1 and p2 as determined through calibration.  The distorted 

image coordinate of a particle xpd and the undistorted coordinate xp are related through a 

nonlinear function g and the distortion coefficients.  

 1 2 1 2, , , ,p pdg k k p px x
      (5-6)

 

The combined standard uncertainty in the undistorted particle image coordinate is then a 

combination of the standard uncertainty in the original distorted coordinate xpd and the standard 

uncertainty in each distortion coefficient as follows. 
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  (5-7)

 

In practice, the standard uncertainty of the distortion coefficients can be ascertained by 

repeating the calibration process with different sets of calibration images and finding the 

standard deviation in the resulting optimal camera parameters.  The standard uncertainty in the 

distorted image coordinate xpd is directly a result of the particle centroid finding algorithm and 

random image noise; this term is dependent on experimental conditions and will vary during the 

experiment.  The partial derivatives of the undistortion function g are not easily determined, 

since it represents an iterative non-linear optimization algorithm. Therefore, these sensitivities 

are determined by perturbing the distortion coefficients by their standard uncertainty and 

solving for the undistorted coordinates. The change in the undistorted coordinates is then 

recorded as the uncertainty contribution from that coefficient in equation 5-7.    
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The homogenous coordinates are a function of the image coordinates through the following 

relation.
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        (5-8)  

The combined standard uncertainties for the homogenous coordinates are then easily 

determined by taking the partial derivatives of 5-8 to obtain: 
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  (5-9) 

The combined standard uncertainty of the 3D position can then be written as a sum of squares 

of all the parameter uncertainties multiplied by the squared sensitive of the reconstruction 

function f for N cameras used in the reconstruction.  
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   (5-10)

 

The sensitivity of the reconstruction function f, which is a linear least squares problem, depends 

on both the conditioning of the matrix A and the magnitude of the residual r. Where the least 

squares problem is defined as: 

w

w



 

Ax b

r Ax b
        (5-11) 

For 3D reconstruction this linear system of equations can be formed with a minimum of two 

cameras and takes the form shown in below.        
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Where for the matched imaged point in camera i the sub matrices Ai and bi with respect to the 

normalized image point ( ix , iy ) are   
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The sensitivity of the solution vector xw as a function of a perturbation in the vector b, called Δb, 

has been derived by Heath (2002) to be a function of the condition number of matrix A and the 

angle θ between b and Axw (Heath, 2002). 
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The angle θ can be derived from the L2 norms of Axw and b as follows.  
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Sensitivity of the solution xw as a function of the perturbation in the matrix A, called E was 

derived by Heath (2002) to be: 
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   (5-16)

 

Singular Value Decomposition (SVD) of the matrix A can be used to determine the L2 norm 

and condition number of A which are required to compute the sensitivities of xw.  The SVD of 

A is: 

TA UΣV         (5-17)

 
Where Ʃ is a diagonal matrix containing the positive singular values labeled σ1 through σN.  
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The L2 norm of A is equal to the largest singular value, while the condition number of A is 

equal to the ratio of the largest singular value divided by the smallest.  The condition number 

defines the bounds of the ratio of relative change in the solution x to a change in the matrix A 

(Heath, 2002). Thus the 3D reconstruction problem will be highly sensitive to uncertainties in 

any of the input parameters if the resulting matrix A is ill-conditioned, which corresponds to a 

condition number much greater than one (  cond 1A ).   
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        (5-19)
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       (5-20) 

Now the sensitivities of the 3D reconstruction function f can be calculated for each parameter in 

equation 5-10, as below where the terms for each input parameter are generalized by ip .  
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        (5-21)

 

The 3D position combined standard uncertainty can then be calculated for each set of match 

particle images as follows: 

1. Calibrate cameras and obtain uncertainties for internal and external parameters 

2. Specify or measure the particle image centroid uncertainty u(xpd) 

3. For a specified group of N cameras, select a matched group of corresponding particle 

image coordinates  

4. Solve equation 5-7 for the uncertainties in the N sets of undistorted pixel coordinates   

5. Solve equation 5-9 for the uncertainties in the N sets of homogenous image coordinates 

6. Build the matrix A based on equation 5-13 and compute its Singular Value 

Decomposition  

 



83 

 

7. Calculate  

a. xw based on the SVD of A 

b. L2 norm of A, Axw, and b, equation 5-19    

c. condition number  of A, equation 5-20 

8. Calculate least squares solution sensitivities for x’, y’, R and t of each camera using 

equations 5-14, 5-16, and 5-21 

9. Substitute the sensitivities into equation 5-10 and compute the 3D position combined 

standard uncertainty  wu x  

10. Repeat for all 3D points and store the uncertainty values in an array 

11. Calculate the mean and variance for the array of uncertainty values 

 Velocity and acceleration combined standard uncertainties 5.3.2

The combined standard uncertainties for particle velocity and acceleration can be derived from 

the 3D position combined standard uncertainties and finite difference approximations shown in 

equations 5-22 and 5-24 respectively.  For velocity the second order central difference uses a 

two point stencil and therefore uncertainty is propagated from the n+1 and n-1 particle positions 

as follows:  
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The acceleration approximation utilizes a three point central difference stencil and results in an 

uncertainty equation as follows: 
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These uncertainty equations take into account both the uncertainties in particle positions, but 

also the uncertainty in the time step. In practice the time step uncertainty is on the order of 10
-6

 s 

and this term can be neglected.  

 Sensitivity analysis 5.4

The objective of this section is to evaluate the impact of camera calibration, camera placement, 

and the selection of camera correspondence groups for 3D reconstruction on the 3D position 

combined standard uncertainty and 3D reconstruction error.  Ultimately the results of this 

analysis will help guide the camera placement for the experimental analysis in Chapter 6. For 

the following analyses the 3D reconstruction error is defined as:  
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     (5-26)  

Where x is the known “true” position of a particle and x̂ is the estimated 3D position resulting 

from the 3D reconstruction process.   This error can only be calculated when utilizing synthetic 

datasets in the reconstruction process, where the 3D positions of the particles are known in 

advance. 

 Impact of camera calibration parameter uncertainty on 3D reconstruction 5.4.1

In this section the goal is to answer the following questions:  

1) What are the potential values for 3D position uncertainty?  

2) Which parameter is the most influential on the 3D position uncertainty? 

To answer these questions, the camera calibration parameter uncertainties were estimated based 

on the estimated maximum range of each parameter.  Uncertainties are estimated to be 1/1000 

of the estimated maximum range of each parameter. This provides a reasonable set of values 
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which can be used to understand the relative importance of each parameter during an 

experiment. The table below shows the estimated uncertainty values for each parameter based 

on 1/1000 of the parameters scale. For example the estimated 0.1% uncertainty for the distorted 

particle image position xpd based on an image sensor with 640 x 480 pixels is 0.64 pixels.   

 Table 11: Estimated 0.1% uncertainties for calibration parameters based on maximum range of each parameter 

    0.1% uncertainties 
  Max range x y z 

u(c)  320 x 240 pixels 0.32 pix 0.24 pix - 
u(f) 8 mm, 6μm/pixel 1.33 pix 1.33 pix - 
u(X) 640 pixels 0.64 pix 0.64 pix - 
u(T) 1120 mm 0 mm 0 mm 1.12 mm 
u(R)  1.57 1.57E-03 1.57E-03 1.57E-03 

 

To determine the impact of camera calibration parameter uncertainty on the 3D position 

standard combined uncertainty, a 16 x 16 x 16 virtual 3D point grid was generated with 10 mm 

spacing between points.  Two virtual cameras were placed at 45 degrees relative to the front 

face of the 300 mm x 300 mm x 300 mm cubic domain (Figure 26). The resulting average 

condition number of A for the two camera combination was 2.64 ± 0.196, as determined from 

taking the mean value of condition number for all points in the grid.  

    

Figure 26: virtual 3D point grid viewed at 0 and 45 degrees from the XY plane 

The 3D position combined standard uncertainty was calculated for all points in the synthetic 

grid and an average was calculated by summing over all points and dividing by the total number 
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of points. Average combined standard uncertainties were calculated for six cases, based on 

isolating the influence of each of the five parameters in Table 11 with an additional calculation 

taking the combination of all parameter uncertainties into account. The resulting average 3D 

position combined standard uncertainties normalized by the absolute domain length of 300 mm 

and are shown in Figure 27. The centroid position is the most influential uncertainty factor. 

When this value is 0.64 pixels (0.1%) of the imager’s horizontal resolution, the resulting 3D 

position combined standard uncertainty reaches nearly 2.7 mm (0.9%) in world coordinates. 

The next most important parameter was the principle point of the imager which produced nearly 

0.4% position uncertainty alone. When combined, the 0.1% parameter uncertainties created 1.0% 

uncertainty in the particle’s position corresponding to a 3 mm sphere of uncertainty. Therefore, 

focus should be placed on minimizing the uncertainty for the centroid localization through 

reducing image noise and improving the robustness of the particle detection and centroid 

localization algorithm. 

 

Figure 27: Relative 3D position standard uncertainties corresponding to 0.1% uncertainty in camera parameters and 

particle centroid location 
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 Impact of camera placement on 3D position combined standard uncertainty 5.4.2

The objective of this section is to answer the following two questions in order to facilitate 

camera placement to minimize uncertainty in the experimental setup: 

1. How does the angle between two cameras placed at equal distances from the center of an 

observation volume impact the 3D position combined standard uncertainty and 3D 

reconstruction error in the presence of image noise? 

2. How does the selection of lens focal length and working distance impact the 3D position 

combined standard uncertainty and 3D reconstruction error in presence of image noise? 

The approach to answering the first question was to calculate the 3D position combined 

standard uncertainties for two cameras with an increasing angle of separation around a fixed 

virtual 3D point grid. The 3D position combined standard uncertainty and 3D reconstruction 

error were compared with the condition number of the A matrix.   

The approach to answering the second question was to vary the lens focal length and location of 

the cameras to maintain the same observation volume and observe the impact to uncertainty and 

error.  For example a camera with a wide angle lens, f = 3 mm, can be placed at a distance of 

0.33 m to observe the same volume as a camera with a narrower field of view, f = 8 mm, at a 

distance of 1.3 m. Which is better to reduce measurement uncertainty? 

In each analysis errors in particle image centroid localization were simulated by adding in a 

specified amount of random noise to the centroid x and y pixel positions. This type of error 

would occur due to particle image overlap and is expected during an experiment with high 

particle seed densities. Therefore, it is important to understand how this type of error propagates 

through to the reconstructed 3D position.  

 Angle between cameras 5.4.2.1

The angle between cameras is a major factor that impacts the sensitivity and conditioning of the 

3D reconstruction problem. Two cameras placed very close together would cause the 

reconstruction problem to be ill-conditioned and sensitive to image noise and calibration 

parameter uncertainties. This analysis will characterize the sensitivity over the likely range of 

angles between cameras placed equal distances from an observation volume. Cameras were 



88 

 

placed at five degree intervals in the range from 0 and 180 degrees around the center of the 3D 

virtual point grid as shown in Figure 28. The distances from the cameras to the center of the 

grid were fixed at 1.3 m and a lens focal length of 8 mm was used. The estimated camera 

parameter uncertainties were based on three percentages 1.0%, 0.1% and 0.01% of the 

maximum range for each parameter.   

 

Figure 28: Visualization of camera placement for analysis of angle of separation on 3D reconstruction  

The resulting averaged condition numbers of each two-camera arrangement for all points in the 

grid are shown in Figure 29. The zone of ill-conditioning can be seen when cameras are placed 

less than 20 degrees apart around the perimeter of the volume of interest and when nearly 

opposite each other at 160-180 degrees. The corresponding 3D position relative combined 

standard uncertainty, based on the length scale of 300 mm, varied with separation angle as 

shown in Figure 30 for the three levels of camera parameter uncertainty. The figure displays the 

impact of the camera parameter uncertainty level, which narrows the range of acceptable 

camera placement if increased.   

Finally the impacts of centroid detection errors were analyzed at random noise levels of 0.5, 1.0, 

and 2.0 pixels and were plotted with respect to camera separation angle. Figure 31 highlights 

the sensitivity issue arising from using only two cameras placed in a similar location for the 3D 

reconstruction process. When cameras are placed at a right angle to each other the relative 3D 

position error resulting from a 2.0 pixel centroid error in both cameras is less than 1.0%.  
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However if the two cameras are placed 5 degrees apart, the resulting error would be magnified 

by a factor of four. Overall the condition number is a direct indicator of the sensitivity of the 

reconstruction process to position uncertainty and error. Using more the two cameras in the 

reconstruction process can greatly reduce the sensitivity of the system as will be shown in 

section 5.3.3. 

 

Figure 29: Condition number of 3D reconstruction matrix A as a function of angle between two cameras 

 

Figure 30: Relative 3D standard uncertainty variation with of angle between two cameras 
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Figure 31: Relative 3D position error resulting from centroid location errors and variation with angle between two 

cameras  

 Focal length and focus distance 5.4.2.2

To determine the impact of lens selection and camera working distance on 3D position 

uncertainty and error, six equivalent camera setups were evaluated. Six focal lengths ranging 

from 8mm to 3mm and corresponding working distances required to maintain a common 

observed volume were selected and are given in Table 12.  These values correspond to the zoom 

range and senor size of the lenses and cameras selected for this research. Two virtual cameras 

were used for the 3D reconstruction, with both cameras were placed equal distances from the 

center of the grid and separated by an angle of 45 degrees.  A two-pixel centroid position error 

was introduced to test the sensitivity of resulting 3D position error.  

Table 12: Equivalent camera setups based on lens focal and focus distance settings 

 

The results from this analysis are shown in Figure 32. The six setups show no statistically 

significant difference in relative 3D position uncertainty. The same is observed for position 

error resulting from random centroid detection errors up to 2.0 pixels.  Therefore, it can be 
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f (mm) max distance (mm) max width (mm) max height (mm) focus distance (mm) Depth of Field (mm)

3.00 500.00 640.00 480.00 333.83 249.44

4.00 666.67 640.00 480.00 485.44 284.99

5.00 833.33 640.00 480.00 641.68 311.63

6.00 1000.00 640.00 480.00 800.71 332.34

7.00 1166.67 640.00 480.00 961.54 348.91

8.00 1333.33 640.00 480.00 1123.60 362.46
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concluded that focal length and working distance do not theoretically impact the 3D 

reconstruction process. However, this assumes lens distortion model fits the real lens distortion 

equally well for large and small focal length lenses. 

 

Figure 32: Impact of camera lens focal length and working distance on the relative 3D position uncertainty and error 

 Multiple cameras 5.4.3

Increasing the number of cameras involved in solving the image correspondence problem from 

two to four reduces the particle image matching ambiguities to near zero in a real experiment 

(H.G. Maas, 1992).The goal of this section is to characterize the impact of increasing the 

number of cameras involved in the 3D reconstruction process from two to four on the average 

3D position combined standard uncertainty and 3D reconstruction error.   

Two cases were studied (Figure 33): Case 1) Four cameras well positioned at 45 degrees apart 

arranged with their projective centers in a square, Case 2) same as Case 1 but with cameras 2 

and 3 ill-positioned with only 10 degrees of separation. For each case the average relative 3D 
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position combined standard uncertainty over all points in the 16 x 16 x 16, (300 mm x 300 mm 

x 300 mm), grid were calculated based on all possible unique two, three and four-camera 

combinations. Then the relative 3D reconstruction error was calculated for each camera 

combination when all cameras in the group contain uniformly distributed random ± 0.5, 1.0 and 

2.0 pixel detection errors.  

       

Figure 33: Camera placement for multi-camera sensitivity analysis: Case 1 (left) shows cameras well positioned at 45 

degrees separation, Case 2 (right) shows two cameras ill conditioned at 10 degrees separation 

Figure 34 and Figure 35 show the average condition number and relative 3D particle position 

uncertainty respectively for each camera group. The ill-conditioned camera pair (2-3) from Case 

2 is easily identified by the high condition number compared to other pairs. The interesting 

result is that by adding a third or fourth camera (placed at a good angle from the others) to the 

ill-conditioned pair converts the group into a well-conditioned system.  In Case 2, camera group 

2-3 has an average condition number of 11 resulting in an average relative 3D position 

uncertainty of 4.7 ± 2.7%, but with the addition of camera 0 the group 0-2-3 has a condition 

number of 2.5 and relative position uncertainty of 1.0 ± 0.24%. Adding a fourth camera (group 

0-1-2-3) further reduces the average condition number to 2.1 and relative 3D position 

uncertainty to 0.81 ± 0.17%.   Therefore 3D particle position uncertainty of the system can be 

made less sensitive to camera placement by utilizing more than two cameras in the 3D 

reconstruction process.  
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Figure 34: Comparison of condition number for Case 1 and 2 highlighting the ill-conditioned camera pair (2-3) in case 2 

and robustness of the three and four camera combinations to ill-conditioning of a single pair 

 

Figure 35: Comparison of relative position uncertainty for Case 1 and 2 highlighting the ill-conditioned camera pair (2-3) 

in case 2 

The impact of camera grouping and particle image detection errors on the 3D position error are 

shown in Figure 36 and Figure 37 for Case 1 and 2 respectively.  Again the ill-conditioned pair 

2-3 of Case 2 is easily spotted in Figure 37, where random particle image detection errors of 

±2.0 pixels result in a relative position error of 2.13 ± 1.47% verses 0.66 ± 0.32% for the same 

pair in Case 1. The same stabilizing effect is seen when the ill-conditioned pair is grouped with 

a third and fourth camera. In both cases the four camera group had the lowest condition number, 
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lowest 3D position uncertainty and was the most robust against random errors in the detected 

particle centroid location. 

 

Figure 36: Average relative position error for Case 1, random ±0.5, 1.0, and 2.0 pixel detection errors applied to particle 

images in all cameras 

 

Figure 37: Average relative position error for Case 2, random ±0.5, 1.0, and 2.0 pixel detection errors applied to particle 

images in all cameras 
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 Conclusions from uncertainty and sensitivity analysis 5.5

This chapter covered the design decisions made in selecting the LPT system hardware and 

derived the procedure to calculate measurement standard uncertainty for 3D particle position, 

velocity and acceleration. The uncertainty evaluation procedure was used to conduct sensitivity 

analyses to determine the impact of camera calibration parameter uncertainty, camera placement 

and usage of multiple cameras in the 3D reconstruction process. The conclusions from these 

studies were: 

 The most influential factor in uncertainty propagation into the 3D reconstructed particle 

position was found to be the pixel location of the particle image centroid.  When all 

camera parameters were given a relative uncertainty of 0.1%, the particle centroid 

location uncertainty lead to a 3D position uncertainty of nearly 1.0% relative to the 

length scale of the observed volume (300 mm). Therefore it is important to ensure that 

the particle centroid detection algorithm minimizes the uncertainty due to random image 

noise as much as possible.  

 When two cameras are used for 3D reconstruction, the goal in positioning the two 

cameras should be to minimize the condition number of the A matrix in the least squares 

3D reconstruction problem. This occurs when two cameras are placed with their image 

planes perpendicular to each other. 

 The selections of lens focal length and camera working distance do not significantly 

impact the 3D position uncertainty or error, for equivalent camera setups (large focal 

length and large working distance or short focal length and short working distance). 

Therefore other factors such as light intensity and lens distortion should guide the 

decision on lens selection and camera working distance for a given volume.    

 It is best to use four cameras in the 3D reconstruction process. Grouping the cameras by 

fours makes the system very robust to image centroid detection errors and inherent 

uncertainty in the camera parameters.  It was shown that by adding one or two cameras 

to a pair of ill-placed (nearly linearly dependent) cameras, the sensitivity of the 3D 

reconstruction to input errors and uncertainties can be greatly reduced. 
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6 Experimental validation and applications 

 Overview 6.1

The goal of the experimental analysis is to validate the 3D position, velocity and acceleration 

measurements of the real-time Lagrangian particle tracking (LPT) system and evaluate the 

derivative parameters including velocity, turbulence intensity, Reynolds stress, and static 

pressure in known flow fields. In the first subsection, the accuracy and uncertainty of the 3D 

reconstruction process will be quantified using a known static calibration object. In the second 

subsection the accuracy and uncertainty of velocity and acceleration measurements will be 

evaluated using a known object motion. In the third subsection the particle tracking system will 

be applied to characterize an unconfined round turbulent air jet, which has been well 

documented in literature. The round jet flow will be used to validate the measured distributions 

of velocity, turbulence intensity, and Reynolds stress. Finally the LPT system will be applied to 

characterize an unconfined forced vortex and the resulting velocity, Reynolds stress, turbulent 

kinetic energy, and static pressure distributions will be analyzed to evaluate the system’s 

capability of measuring particle transport in complex flow fields.   

 Camera setup and calibration 6.2

For the experimental analysis, the camera system was arranged in hexagon pattern with all 

cameras angled towards a central point roughly 1.0 m from the lenses as shown in Figure 38. 

The volume of interest for the following experiments was set to 160 x 160 x 335.5 mm, which 

was much less than the overall observable volume. The volume of interest was discretized by a 

virtual finite volume grid containing 31 x 31 x 65 cubic cells of side length 5.16 mm.  The finite 

volume grid contains statistical accumulators, implemented as C++ objects, for all major flow 

parameters at the center of each cubic cell as described in Chapter 3. This grid is called the 

Statistical Accumulator Grid (SAG) in the following sections. The virtual representation of the 

camera setup and SAG are shown in Figure 39. 

The cameras were calibrated to determine the intrinsic and extrinsic parameters along with 

associated uncertainties which are given in Table 13 through Table 15.  The intrinsic parameter 
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uncertainty was obtained by running the calibration algorithm for 25 sets of images, where each 

set is formed by randomly selecting 35 calibration images from a total population of 50 images. 

Each image is of the calibration board at different orientations with respect to the sensor plane. 

The calibration algorithm determines a group of optimal camera parameters for each set of 

images, and then the uncertainty in each parameter is determined by finding the standard 

deviation of the optimal parameters among the sets. The uncertainty of the principle point is 

negligible as it was held constant during the optimization process in order to facilitate 

convergence. The extrinsic parameter uncertainty was obtained by taking the standard deviation 

of the translation and rotation vectors over 25 images of a static calibration board. The particle 

image centroid location uncertainty (pixels) is dependent on the experimental conditions 

(particle characteristics, illumination, distance from cameras, etc.) and therefore cannot be 

determined in advance. The image centroid uncertainty is determined in section 6.3 and used to 

calculate the average 3D position combined standard uncertainty of the setup. The standard 

uncertainties for the calibration parameters are determined to be Type A as described by the 

Guide to the Expression of Uncertainty in Measurements (GUM) approach (ISO, 2009; Kirkup 

& Frenkel, 2006) and are calculated as the standard deviation of the mean (equation 6-1). 

 
 s q

u q
n

           (6-1) 

Table 13: Intrinsic camera parameters and associated Type A standard uncertainties (sample size = 25) 

 

 

 

 

 

0 1284.06 ± 0.09 1284.06 ± 0.09 314.44 ± 2.04E-14 250.50 ± 1.09E-14

1 1207.81 ± 0.08 1207.81 ± 0.08 346.17 ± 1.84E-14 262.93 ± 1.06E-14

2 1212.57 ± 0.06 1212.57 ± 0.06 332.82 ± 1.17E-14 264.29 ± 1.06E-14

3 1289.06 ± 0.11 1289.06 ± 0.11 310.93 ± 1.27E-14 238.02 ± 8.28E-15

4 1251.30 ± 0.07 1251.30 ± 0.07 337.11 ± 1.17E-14 271.29 ± 0.00E+00

5 1295.28 ± 0.05 1295.28 ± 0.05 301.52 ± 1.27E-14 237.78 ± 1.09E-14

cy ±  u (cy)

Principal point (pixels)
Camera

Focal length (pixels)

fx ±  u (fx) fy ±  u (fy) cx ±  u (cx)
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Table 14: Lens distortion coefficients and associated Type A standard uncertainties (sample size = 25) 

 

Table 15: Extrinsic camera parameters and associated Type A standard uncertainties (sample size = 25) 

 

 

Figure 38: Camera arrangement for experimental analysis 

0 -3.61E-01 ± 4.91E-04 3.39E-01 ± 9.34E-03 -1.62E-04 ± 1.53E-05 -2.56E-03 ± 2.13E-05

1 -3.49E-01 ± 6.35E-04 2.46E-01 ± 1.40E-02 3.88E-04 ± 2.16E-05 -3.93E-04 ± 2.18E-05

2 -3.53E-01 ± 6.05E-04 2.19E-01 ± 9.20E-03 -4.13E-04 ± 1.77E-05 1.21E-03 ± 1.55E-05

3 -3.43E-01 ± 3.51E-04 2.20E-01 ± 7.01E-03 -7.40E-04 ± 2.07E-05 -1.31E-03 ± 2.12E-05

4 -3.44E-01 ± 3.24E-04 1.50E-01 ± 4.34E-03 9.20E-04 ± 1.24E-05 4.98E-04 ± 1.58E-05

5 -3.45E-01 ± 2.63E-04 1.99E-01 ± 4.39E-03 2.46E-04 ± 1.09E-05 -2.50E-03 ± 8.25E-06

Radial distortion coefficients Tangential distortion coefficients

k1 ±  u (k1) k2 ±  u (k2) p1 ±  u (p1) p2 ±  u (p2)
Camera

0 -208.98 ± 1.57E-02 -56.37 ± 9.41E-03 1090.67 ± 1.05E-01 6.03E-01 ± 1.58E-04 -6.88E-02 ± 1.51E-04 5.75E-02 ± 5.72E-05

1 211.79 ± 7.98E-03 67.20 ± 5.15E-03 1085.08 ± 5.33E-02 -3.60E-01 ± 3.64E-04 3.88E-01 ± 2.75E-04 3.09E+00 ± 5.06E-05

2 201.81 ± 1.36E-02 65.43 ± 8.58E-03 1036.67 ± 6.92E-02 -6.34E-01 ± 3.03E-04 -3.74E-01 ± 3.36E-04 -3.01E+00 ± 6.60E-05

3 -200.71 ± 1.15E-02 -67.40 ± 5.45E-03 1087.47 ± 5.63E-02 -2.24E-01 ± 2.81E-04 -4.14E-01 ± 2.61E-04 5.78E-03 ± 5.01E-05

4 223.20 ± 7.30E-03 61.43 ± 7.41E-03 1189.36 ± 4.56E-02 1.25E-01 ± 2.22E-04 -8.88E-01 ± 1.69E-04 2.96E+00 ± 7.75E-05

5 -197.31 ± 9.42E-03 -58.74 ± 4.71E-03 1135.30 ± 4.55E-02 -2.35E-01 ± 1.57E-04 2.33E-01 ± 1.48E-04 -8.44E-03 ± 3.81E-05

Camera
Translation Vector Rotation Vector

T1 ± u (T1)  mm T2 ± u (T2)  mm T3 ± u (T3)  mm r1 ± u (r1) r2 ± u (r2) r3 ± u (r3)

0 

1 

2 
3 

4 

5 
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Figure 39: Virtual view of camera setup and the statistical accumulator grid (SAG) 

 Validation of 3D position measurement and uncertainty 6.3

 Objective and approach 6.3.1

The first step towards validating the system’s 3D position measurement performance is 

verifying the accuracy and uncertainty from the image processing, particle detection, and 3D 

reconstruction process. The goal of this section is to answer the following three questions.  

1) What is the actual particle image centroid position uncertainty for each camera in real 

experiment conditions? 

2) What is the actual 3D position combined standard uncertainty for the setup? 

3) Is the position measurement accurate within the calculated 3D position uncertainty?  

To accomplish this, a static object with fixed particles 3.0 mm in diameter, roughly the size of 

the helium filled soap bubbles used in later flow experiments, was imaged and the 3D particle 

positions were reconstructed. The distances between adjacent particles were measured with the 

LPT system and compared with measurements made using a caliper on the static object. The 3D 

position measurement was deemed valid if the averaged distance measurements from both 

methods are equal within standard uncertainty.  
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 Methodology 6.3.2

The static object held 12 white beads, roughly 3.0 mm in diameter, in a structured grid spaced 

20 mm apart as shown in Figure 40. The 12 particles form the vertices of five squares, and the 

lengths of the 16 line segments representing the sides of these squares serve as the basis for 

comparison. The line segments were first measured using a caliper with a smallest marked 

increment of 1/32 inch to create the accepted benchmark for comparison. These segment lengths 

are labeled 1 to 16 starting with the vertical segments from the top left point going downward, 

then the top right point downward followed by the horizontal segments top to bottom. The 

caliper measurements and associated uncertainties are given in Table 16. The standard 

uncertainty in the caliper measurement was calculated according the Type B classification as 

described by the Guide to the Expression of Uncertainty in Measurements (GUM) approach 

(ISO, 2009; Kirkup & Frenkel, 2006).  

Tests were run at three frame rates, 30, 60 and 120 fps to collect 100 images at three positions. 

The static object was placed at three positions by varying the depth away from the cameras: 

Position 1 = [0,0,80] (mm), Position 2 = [0,0,0] (mm) and Position 3 = [0,0,-80].  These 

positions define the extents of the volume of interest shown in Figure 39. The static object is 

shown at position 1 in Figure 38. Each of the 15 unique four-camera combinations was used to 

image the particles and reconstruct their 3D positions.  Random variations in the particle image 

centriod location are the major sources of uncertainty in the reconstructed 3D particle positions 

during an experiment as determined in Chapter 5. The average particle image centroid location 

standard uncertainty (in pixels) for each camera was determined by averaging the pixel 

variances of all points on the static object.  
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Table 16: Distances between known particles on the static object measured with a caliper 

       
   

Figure 40: Static object for 3D particle position validation 

 Results 6.3.3

 Particle image centroid fluctuation:  6.3.3.1

Figure 41 shows the averaged particle image centroid position uncertainties over all three static 

object positions when all major experimental conditions (illumination, exposure, position) are 

held constant. Therefore the remaining source of variability being measured is due to random 

image noise affecting the centroid localization algorithm. It is clear that the average uncertainty 

increases with frame rate in all cameras, where the highest average of 0.09 ± 0.06 pixels was 

observed at 120 fps in camera 4. The direct impact of this variation can be seen as fluctuations 

in the 3D reconstructed particle positions, which are shown in Figure 42.  The average 3D 

fluctuation due to image noise increases from 0.04 mm to 0.07 mm with an increase in frame 

rate from 30 fps to 120 fps respectively.  Based on this data, a conservative value of 0.1 pixels 

was selected as the centroid location standard uncertainty for all cameras in the 3D position 

combined uncertainty analysis. 

length measured

 Line segment inches mm

1 0.781 19.8

2 0.781 19.8

3 0.813 20.6

4 0.781 19.8

5 0.781 19.8

6 0.781 19.8

7 0.781 19.8

8 0.781 19.8

9 0.781 19.8

10 0.797 20.2

11 0.781 19.8

12 0.781 19.8

13 0.797 20.2

14 0.797 20.2

15 0.781 19.8

16 0.781 19.8

Mean length 0.786 20.0

Standard Deviation 0.009 0.24

Type B Uncertainty 0.009 0.23
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Figure 41: Observed particle image centroid location variation averaged over all three static object positions (error bars 

denote standard deviation) 

 

Figure 42: Observed particle 3D position fluctuation averaged over all three static object positions (error bars denote 

standard deviation) 

 3D position combined standard uncertainty:  6.3.3.2

Following the 3D position combined standard uncertainty calculation procedure derived in 

Chapter 5, the uncertainties of all 12 static object point reconstructions were determined at each 

of the three positions. These uncertainties were determined for each of the possible 15 unique 

groups of four cameras. Figure 43 shows the resulting averaged a) condition number for each 

camera group over all static particles and object positions and b) 3D position combined standard 

uncertainty. The condition number for each group is very similar with an overall mean of 2.52 ± 

0.02. This indicates that the cameras are well placed in the domain and camera groups can be 

randomly selected for the 3D reconstruction of particle positions with little to no difference in 
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the resulting position uncertainty. The average 3D position combined standard uncertainty does 

vary between camera groups, however for the following analysis the average 3D position 

combined standard uncertainty of all groups, uc(xw) = 0.16 mm, was used.  

 

Figure 43: a) Mean and standard deviation of the condition number for 3D reconstruction and b) Mean and standard 

deviation of 3D position combined standard uncertainty (averages are over all static object points and 

positions for each camera combination) 

 Comparison of two methods for point to point distance measurements:  6.3.3.3

The average distance measurement of the 16 particle to particle segments at each static object 

position are shown in Figure 44 for each camera group. Overall the measurement was very 

precise for each camera group with an average standard deviation within each group of 0.33 mm. 
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All segment measurements were then averaged for all static object positions to obtain the mean 

segment length, which is then compared to the same value from the caliper measurement as 

shown in Table 17. The mean segment length measured by the particle tracking system was 

20.1 ± 0.23 mm combined standard uncertainty over all segments. The measurements standard 

uncertainty of 0.23 mm was calculated by the root mean square of the standard uncertainty, 

uc(xw) = 0.16 mm, for the two points in each the segment. This agrees well with the caliper 

method which measured an average segment length of 20.0 ± 0.23 mm standard uncertainty. 

Therefore, it can be concluded that the particle tracking system accurately reconstructs 3D 

particle positions.   

 

Figure 44: Distance measurement averages for the 16 particle to particle length segments 

Table 17: Comparison of two measurement methods 

Measurement method 
Number of 
measurements 

Average 
segment length 
(mm) 

Average 
Standard 
Uncertainty 
(mm) 

Caliper  16 20.0 0.23 

Particle Tracking System 4800 20.1 0.23 

 

  

19.50

19.60

19.70

19.80

19.90

20.00

20.10

20.20

20.30

20.40

20.50

A
ve

ra
ge

  l
en

gt
h

 s
eg

m
en

t 
 m

ea
su

re
m

en
t 

(m
m

) 

Unique four-camera combination 

Position 1 Position 2 Position 3



105 

 

 Discussion and summary 6.3.4

Based on the 3D particle position validation test the following conclusions can be made 

regarding the camera setup and 3D reconstruction algorithms. 

 The random image noise of the system increases with frame rate and causes average 

fluctuations of 0.07 mm in particle 3D position at 120 fps. This random fluctuation is 

less than the calculated combined standard uncertainty of 0.16 mm, which results 

from the combination of all calibration parameter standard uncertainties. 

  

 The particle centroid location variation for small spherical objects 3 mm in diameter 

placed roughly 1.0 m away from camera lenses will be conservatively 0.1 pixels due 

to random image noise 

 

 The average particle 3D position combined standard uncertainty for all unique four-

camera groups is 0.23 mm based on the standard uncertainty of camera calibration 

parameters and uncertainty in particle centroid location. 

 

 The particle tracking system was able to accurately measure the known distance 

between static particles and agrees with measurements made using a caliper  
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 Validation of velocity and acceleration measurement  6.4

 Objective and approach 6.4.1

The objective of the work described in this section is to experimentally validate the velocity and 

acceleration measurements made by the particle tracking system. Three key questions will be 

answered: 

1. What is the actual velocity and acceleration measurement uncertainty for the setup? 

2. Is the velocity and acceleration calculation accurate within a known uncertainty? 

3. How does the frame rate impact the accuracy and uncertainty of the measurement? 

The approach to answering these questions will be to use the system to observe a particle 

moving with a known velocity and acceleration, and then compare the measured magnitudes of 

these vectors with another measurement method. Validity of the measurements will be based on 

the two methods agreeing to within measurement uncertainty.  

 Methodology 6.4.2

To determine accuracy of the velocity and acceleration measurements, a known particle motion 

was created by fixing a 3 mm diameter bead to a rod and rotating the rod at a constant angular 

velocity of 60 rpm using an AC Geared Hysteresis Synchronous motor (Hansen Corporation) 

shown in Figure 45.  The constant angular velocity and radius of rotation determine the 

magnitudes of velocity and acceleration as given by the following equations. 

2

t

r

v r

a r





 

 

v

a
        (6-2)

 

 

Figure 45: Test object to provide constant tangential velocity to a 3mm white bead 
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A caliper was used to measure the radius of rotation (length of the rod) and a stop watch was 

used to verify the angular velocity.  The uncertainties of each of these measurements, u(r) and 

u(ω), combine through the following equation to yield the standard uncertainty associated with 

each magnitude u(vt) and u(ar). 

   

 

2 22

2 22 2

( ) ( ) ( )

( ) ( ) 2 ( )

t

r

u v u r r u

u a u r r u

 

  

   

           (6-3)  

     

The type B uncertainty of the length measurement was 1/64” which was one half of the smallest 

division on the caliper. The uncertainty in omega was determined by recording the time the 

motor took to complete 120 revolutions and finding the standard deviation of six measurements 

which was 0.44 rpm. The resulting “known” values for velocity and acceleration magnitudes are 

given in Table 18. 

Table 18: Measured values and standard uncertainties of the "known" velocity and acceleration magnitudes 

Parameter Measured value Type B standard uncertainty 

Angular velocity, rpm [rad/s] 60 [6.28 ]                          0.44[ 0.046] 

Radius, inch[m] 3.89[0.0988] 0.0156[0.0004] 

Measurand 
 

Combined standard uncertainty 

Velocity, m/s 0.621 0.005 

Acceleration, m/s2 3.90 0.059 

 

For the particle tracking system the velocity and acceleration uncertainty are due to 3D position 

uncertainties propagated through the finite difference schemes as derived in the previous 

chapter. The uncertainty of the frame rate is estimated to be on the order of 10
-6

 s and therefore 

its impact on overall velocity and acceleration uncertainty is neglected. The standard 

uncertainties of the velocity and acceleration magnitudes then follow as: 

     
2 2

2 2 1 2 11 1

2 2

n nu u u
t t

    
    

    
v x x

   (6-4)
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Where the 3D position uncertainties of a particle at any point in time is assumed similar 

     1 1n n nu u u  x x x
     (6-6)

 

The uncertainty of 3D position is assumed to be similar for all particles observed in the volume 

of interest, which is supported by the findings the previous section. Therefore the value of 

 u x  = 0.16 mm found in the previous section was used.    

The experimental analysis to measure velocity and acceleration using the particle tracking 

system were as follows: 

1. Position the rotating object in three orientations near the center of volume of interest 

by setting the axis of rotation to approximately: 

a. parallel to the Z-axis, referred to as Z-0 

b. rotated 45 degrees to the Z-axis, referred to as Z-45 

c. rotated 45 degrees to the Y-axis, referred to as Y-45 

2. Record velocity and acceleration magnitudes for the rotating particle for 10 

revolutions and report the mean and standard deviation of each value 

3. Repeat the test for frame rate values of 30, 60 and 120 fps 

The positioning of the rotating object was not measured exactly as the goal of testing different 

orientations was to see if any measurement variation manifested when the axis of rotation 

changed. 

 Results  6.4.3

 Velocity measurement and uncertainty:  6.4.3.1

The velocity magnitude measurement results from the six experiments are shown in Figure 46. 

The mean velocity magnitude measurement did not vary with any statistical significance 
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between the three frame rates or axis of rotation orientation. The difference of the known 

velocity and measure value are shown in Table 19 with the associated uncertainties. The 

maximum velocity uncertainty associated with the 3D position combined standard uncertainty 

of 0.16 mm is 0.014 m/s at the high frame rate of 120 fps.   The maximum absolute difference 

of the average measured velocity magnitude with the known value was 0.004 m/s, a relative 

difference of 0.72%. This shows good agreement with the known value and is well within the 

level of uncertainty for the particle tracking system measurement. 

 

Figure 46: Average measured velocity magnitude of the rotating partcle at three orientations and three frame rates 

Table 19: Measured velocity magnitudes at three rotation orientations and calculated uncertainty with frame rate 

 

 Acceleration measurement and uncertainty:  6.4.3.2

The average measured acceleration magnitude values are shown in Figure 47. It is clear from 

the figure that as the frame rate increased the deviation in measured acceleration also increased 

significantly. This agrees with the uncertainty calculation which shows scaling with 1/Δt
2
.    The 

measured acceleration for 30 and 60 fps are similar near 4 m/s
2
 and do not vary significantly 
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with respect to the axis of rotation.  The relative difference between the known magnitude of 

acceleration and the measured value is on the order of 1% for 30 fps, 10% for 60 fps and 100% 

for 120 fps. Therefore for lower frame rates the measured acceleration is in good agreement 

with the “known” value, but the “error” scales exponentially with respect to doubling the frame 

rate. This is a much greater sensitivity to frame rate than was expected, where the uncertainty 

should scale linearly with the time step squared. Possible explanations for this increased growth 

rate in error as a function of time step will be discussed below.  

Nevertheless, the acceleration measurement is extremely sensitive to uncertainty in the particle 

positions.  At 120 fps, the particle position combined standard uncertainty of 0.16 mm for the 

current system yields a large uncertainty in acceleration of 5.64 m/s
2
. This is of great concern 

and brings into question the validity of utilizing the acceleration measurement.  

 

Figure 47: Average measured acceleration magnitude of the rotating partcle at three orientations and three frame rates 

Table 20: Measured acceleration magnitudes at three rotation orientations and calculated uncertainty with frame rate 

 

0

2

4

6

8

10

12

120 fps 60 fps 30 fps

A
cc

el
er

at
io

n
 m

ag
n

it
u

d
e 

(m
/s

2
) 

Z-0 Y-45 Z-45

mean u c(a) absolute (m/s2) relative 

120 7.44 5.64 3.542 90.78%

60 4.25 1.41 0.352 9.03%

30 3.94 0.35 0.039 1.00%

120 7.56 5.64 3.663 93.90%

60 4.27 1.41 0.364 9.33%

30 3.94 0.35 0.037 0.96%

120 6.70 5.64 2.799 71.75%

60 4.23 1.41 0.325 8.32%

30 3.94 0.35 0.035 0.91%

Z-0

Y-45

Z-45

Acceleration magnitude 

(m/s2)

Difference                                                            

Known acceleration = 3.90 ± 0.059 m/s2Axis of 

rotation 

frame rate 

(fps)



111 

 

 

Figure 48: Visualization of rotation particle trajectory colored by velocity magnitude measured at 120 fps 

 

Figure 49: Visualization of rotation particle trajectory colored by acceleration magnitude measured at 120 fps 
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 Discussion and summary 6.4.4

The velocity measurement was both accurate and precise for the three frame rates and rotational 

axis orientations. From the uncertainty analysis it is apparent that the velocity uncertainty scales 

linearly with the frame rate, however the lowest frame rate of 30 fps made the least accurate 

predictions of the tangential speed of the rotation particle with an average relative difference of 

0.63%.  One explanation for this is that the assumption that the synchronous motor maintained a 

constant angular velocity is not valid. Therefore the tangential speed fluctuates due to “slip” in 

the motor’s gear box. Figure 48 shows the velocity magnitude visualization along the particle’s 

trajectory and it is clear to see that the velocity was not constant along the path.  The particle 

actually slows down momentarily on the upswing and speeds up on the down swing due to 

gravity and a slight slippage in the gearing. While the rpm of the motor maintains 60 rpm as 

measured, it actual accelerates and decelerates slightly during a single revolution. At lower 

frame rates this may be missed due to under sampling of the trajectory and therefore the overall 

tangential speed measurement over ten revolutions will diverge from the actual value. 

Figure 49 shows the rotating object’s trajectory visualization imaged at 120fps colored by 

acceleration magnitude. There appears to be bands of high then low acceleration ranging from 

2.8 to 15 m/s
2
.  While a portion of this fluctuation is due to the slippage in the motor causing 

systematic localized acceleration events along the path, most is due to increased random image 

noise and 3D position uncertainty.   

The extraordinarily high uncertainty in the acceleration measurement resulting from a 3D 

position combined standard uncertainty of 0.16 mm is cause for concern. The 3D position 

combined standard uncertainty takes into account all uncertainties associated with the 

calibration parameters which are fixed at the time of the experiment.  
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The follow conclusions can be made from the rotating particle experiment: 

 The velocity measurement was precise and accurate within the measurement 

uncertainties for each frame rate 120, 60 and 30 fps. The highest average relative 

difference with the known tangential speed was 0.74% at 30 fps. The difference could 

not be fully accounted for by the calculated measurement uncertainty and therefore can 

be attributed to an observed local velocity fluctuation in the synchronous motor due to 

gear slip. 

 

 The velocity and acceleration measurements did not vary with any significance in the 

volume of interest as the axis of rotation of the known object was changed. Therefore 

this confirms that the uncertainty associated with each measurement is nearly uniform 

throughout the measurement volume and does not depend on the particle’s path within 

the volume of interest.  

 

 The average acceleration magnitude measurement was accurate within 1% of the 

predicted value for lower frame rates, but differed significantly, up to 90%, for the 

higher frame rate of 120 fps. This was attributed to the increased uncertainty due to the 

inherent scaling with frame rate squared.   
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 Application to free round air jet flow 6.5

 Objective and approach 6.5.1

The objective of the experiment described in this section is to validate the capability of the real-

time Lagrangian particle tracking (LPT) system to 1) track particles in three dimensional 

turbulent flow, 2) correctly store the instantaneous velocities to the statistical accumulator grid, 

and 3) to characterize velocity profiles, turbulence intensities and Reynolds shear stresses 

through the filter of inertial particle motion.   

While the main objective is to validate the real-time LPT system as described, by using 

neutrally buoyant helium soap bubbles (dp = 1 to 5 mm), this analysis may also serve as a test 

for the conclusions by (Bourgoin et al., 2011) and (Ouellette et al., 2008), who found that 

velocity statistics of a turbulent flow are not changed significantly if observed through the 

motion inertial particles.  If the turbulent flow field (intensities and spatial distributions) can be 

characterized within accepted ranges by velocities of inertial particles then this experiment may 

also lead to a conclusion that Lagrangian analysis of such particles is a valid approach to 

characterize flows of the selected type and Reynolds number.  

The general approach of this case study was to create a free air round turbulent jet and use the 

real-time LPT system to characterize the velocity and turbulence distributions. The centerline 

axial velocity decay, transverse velocity profiles, axial turbulence intensities, and Reynolds 

shear stresses will be compared with those of hot-wire anemometry measurements found in 

literature.   

Round turbulent jets have been widely studied over the years and serve as a fundamental 

building block of turbulent flow research in fluid dynamics (Boguslawski & Popiel, 1979; 

Ferdman, Otugen, & Kim, 2000; Quinn, Pollard, & Marsters, 1985). Past research on round 

turbulent jets has included experimental investigations through hot wire anemometry (Fellouah, 

Ball, & Pollard, 2009), Particle Image velocimetry, and Laser Doppler anemometry, in addition 

numerical analysis.  In particular researchers have characterized the velocity profiles and found 

that jet flow can be broken down into three regimes the near field, intermediate field and far 

field (Fellouah et al., 2009). The near and intermediate fields 0 ≤ x/d ≤ 30 contain the region 

where the flow is developing. In the far field, x/d > 30, the flow is fully developed and is 



115 

 

characterized by self-similarity.  This is defined by the observation that fully developed 

symmetrical jet flows have mean velocity and turbulence intensity profiles that follow the same 

shape function, only varying by a scale factor along the axis of the jet.   Research has shown 

that the self-similar transverse profiles of axial velocity (U) normalized by the centerline axial 

velocity Uc can be characterized by the following Gaussian function (Xu & Antonia, 2002). 

  2( , )
exp /

( ,0)c

U x y
A y x

U x
 

      (6-7)  

 

Where A is a constant equal to about 75.2 for an axisymmetric round jet (Xu & Antonia, 2002). 

The coordinate system commonly used is positive X in the axial distance from the jet source 

while Y and Z define planes in the transverse direction.  

Another key observation is that the centerline axial velocity decay rate in the X direction is 

constant for a self-similar fully developed turbulent jet and can be described by equation 6-8 

(Fellouah et al., 2009; Ferdman et al., 2000). 

 0j

c

U x x

U Bd




        (6-8)

 

Where B is the decay constant ranging between 5.7 and 6.7, d is the diameter of the jet, and x0 is 

the distance to the virtual source of the jet which has been found to lie between 0 and 7d for 

different types of round turbulent jets (Fellouah et al., 2009).  

The turbulence intensities and Reynolds stress profiles of round turbulent jets have also been 

well characterized in published research and a range of accepted magnitudes are known. For 

maximum turbulence intensities of axial velocity, the nominal range for a round axisymmetric 

jet has been reported to be between 0.24 and 0.35  (Ferdman et al., 2000).  The Reynolds shear 

stress term representing the covariance of the axial and transverse velocities has been reported 

by many researchers to be anti-symmetrical about the axial centerline and on the order of -0.02 

≤ 
2

cu v U   ≤ 0.02 (Ferdman et al., 2000; Xu & Antonia, 2002). 
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 Methodology 6.5.2

The turbulent jet was created using a ¾” diameter nozzle. The air flow was supplied by a 150 W 

2700 rpm variable speed vane axial fan which supplied through a 10.5 cm flow straightener 

made from drinking straws and then into a 12” long 4.5” ID acrylic tube with the nozzle fixed to 

the top. The experimental apparatus is shown in Figure 50.  

 

Figure 50: Experimental apparatus for creating turbulent circular jet flow 

The nozzle was of the type used for air flow measurement as defined in ANSI/ASHRAE 51, 

1999. The air flow through the nozzle was controlled by monitoring the static pressure drop 

created across the nozzle using a high resolution water manometer with a range of 0.0 to 2.0 ± 

0.0005” H2O (model: Dwyer 1430).  Air flow rate was calculated based on the measured static 

pressure drop (P), diameter of the nozzle (d), ambient wet bulb temperature (Tw), dry bulb 

temperature (Td) and barometric pressure (P) using the equations and methods given in 

(ANSI/ASHRAE/AMCA, 1999). 

The exit velocity was set to 9.73 m/s which resulted in a Reynolds number base on nozzle 

diameter of 11900. The observed volume of interested during the experiment was 15 ≤ x/d ≤ 33 

to allow the intermediate to far region of the jet to be observed. The overall standard uncertainty 

of the jet outlet bulk velocity was 0.34 m/s.    

The cameras were set to record at 120 frames per second. The tracer particles were neutrally 

buoyant Helium filled soap bubbles ranging in diameter from 1 to 4 mm and generated through 

Y 
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Z 
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(x4) 
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an SAGE Action Model 5 bubble generator (SAI, 2012). The bubbles were injected into the 

flow field through a small tube in the center of the flow straightener. The stationary turbulent air 

jet flow was observed for 20 min with roughly 300 bubbles tracked at each time step (Δt = 

1/120 s). The statistical accumulator grid collected up to 2300 observations per cell, which were 

used to characterize the turbulence and mean velocity profiles of the flow field. 

 Results 6.5.3

The visualized helium soap bubbles for the experiment are shown in Figure 51. The LED 

illuminate provided enough light to easily differentiate and segment the bubbles from the 

background. The maximum velocity magnitude of the jet (Re = 11900) in the volume of interest 

was approximately 4.0 m/s. Particles were sparsely seeded into the flow field (~300 particles 

per frame) to allow long trajectories to be successfully tracked through the length of the jet. A 

sample of the reconstructed particle trajectories colored by velocity and acceleration are shown 

in Figure 51 and Figure 52 respectively.  The particles took approximately one second to 

traverse the volume of interest and the longest trajectories were on the order of 120 frames.  

   

Figure 51: Trajectory visualization in the volume of interest around a round jet colored by velocity magnitude, Re = 

11900, x/d = 15 - 33 

The statistical accumulator grid was collecting all instantaneous particle velocity and 

accelerations over the twenty minute experiment resulting in an average of greater than a 

thousand observations for each cell in the shear and center line layers of the jet Figure 53. The 
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resulting mean velocity magnitude in the XY plane is shown in Figure 53. Symmetry about the 

jet core is clearly visible along the axial direction.  

 

Figure 52: Trajectory visualization in the volume of interest around a round jet colored by acceleration magnitude,  Re 

= 11900,  x/d = 15 to 33 

  

Figure 53: (left) Number of observations per cell in the XY plane, (right) mean velocity magnitudes in the XY plane; z = 

0; x/d = 15 to 33 

The axial centerline mean velocity profile (Figure 54) was normalized by the jet exit velocity 

(Uj) in order to compare with published hot-wire anemometry based studies as shown in Figure 

55. The observation starts in the intermediate range at x/d = 15 and it is clear that the jet is still 

developing until approximately x/d = 25 as the center line velocity decay rate becomes constant. 

The decay constant B from equation 6-8 for the range of 25 ≤ x/d ≤ 33 was 6.39 which is in 

good agreement with the range of 5.7 to 6.7 from previous studies reported by Fellouah 

(Fellouah et al., 2009).  
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Figure 54: Axial centerline mean velocity distribution 

 

Figure 55: Normalized axial centerline mean velocity compared to predicted values from equation 6-8 

The mean transverse profiles of axial velocities in the XY and XZ planes are shown in Figure 

56 and Figure 57. The predicted Gaussian distributions, based on equation 6-6 where A = 75.2 

for a round turbulent jet, are also plotted for y/d = z/d = 16, 25, and 32.  The transverse axial 

velocity profiles of the current measurement are in very good agreement with the predicted 
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Gaussian distribution for a round jet (Xu & Antonia, 2002). The profiles at x/d = 16 deviate the 

most as expected since the flow is assumed to be still developing and has not reach a state of 

self-similarity.  The profiles at x/d = 32 follow the Gaussian distribution closely for both the XY 

and XZ planes, where there is little difference between the two planes.     

 

Figure 56: Transverse profiles of axial velocity on the XY center plane  

 

Figure 57: Transverse profiles of axial velocity on the XZ center plane (legend in Figure 56) 
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The transferse profiles of axial velocity were normalized by the axial position and plotted in 

Figure 58 and Figure 59 for the XY and XZ center planes respectively. The three profiles for 

x/d = 16, 25, and 32 all appear on top of each other, which supports the observation of self-

similarity.  Again, there is slight deviation for x/d = 16 where the flow is still developing. 

 

Figure 58:  Axial velocity profiles with transverse coordinate normalized by the axial distance on the XY center plane 

 

Figure 59:  Axial velocity profiles with transverse coordinate normalized by the axial distance on the XZ center plane 
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The turbulent kinetic energy distribution for the XY plane at z = 0 is shown in Figure 60. The 

maximum turbulent kinetic energy in the observed domain was located at the center and nearest 

to the jet. The turbulent kinetic energy quickly dissipates and spreads as the distance from the 

jet increases and progresses towards fully developed turbulent flow.  

 

Figure 60: Measured turbulent kinetic energy distribution in the XY plane, z = 0; x/d = 15 – 33 

The stream wise turbulence intensity transverse profiles for the XY and XZ planes are shown in 

Figure 61. The maximum stream wise turbulence intensity observed between 15 ≤ x/d ≤ 33 is 

approximately 0.3 which corresponds well to the values observed in hot-wire anemometry 

experiments as described by Ferdman (Ferdman et al., 2000) . The profiles are symmetric about 

the centerline in both the XY and XZ planes, and spread out as x/d increase.  At x/d = 32 the 

mean turbulence intensity is approximately 0.23 for -4 ≤ y/d ≤ 4. The peak axial turbulence 

intensity occurs at the center line for x/d = 15 and spreads into a dual peak on either side of the 

centerline for x/d = 32.  The observation of a slight local minimum of axial turbulence intensity 

at the center line in the intermediate region is consistent with other researchers’ findings  

(Fellouah et al., 2009; Ferdman et al., 2000). A local maximum axial turbulence intensity of 

0.29 can be seen at z/d = 2.6 in the XZ plane at x/d = 32. This does not fit the expected profile 

and is possibly due to tracking errors as will be discussed below.  
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Figure 61:  Axial stream wise turbulence intensity profiles for (left) XY plane and (right) XZ plane 

The transverse turbulence intensity (as scaled by the axial mean centerline velocity Uc) is shown 

in Figure 62 for the XY and XZ center planes. The transverse turbulence intensities are slightly 

less than the axial turbulence intensities but follow the same general profiles in the transverse 

and axial directions. Symmetry about the centerline and linear spreading of the profiles with 

axial distance is observed as in the case of axial turbulence intensity. This is similar to the 

observations by Ferdman (2000) and Fellouah (2009). The plots of out-of-plane turbulence 

intensities are given in Appendix A. 

  

Figure 62: Transverse turbulence intensity profiles for (left) XY plane and (right) XZ plane 
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The Reynolds shear stresses u v   in the XY plane and u w  in the XZ plane are normalized by 

the axial centerline velocity squared and plotted in Figure 63.  The transverse profiles show 

anti-symmetry about the centerline and have peaks near y/d = z/d = -2 and 2.  The maximum 

normalized shear stress is on average between 0.015 and -0.015 and nearly identical for the XY 

and XZ planes. The shear stress grows in magnitude as x/d increases indicating a transfer of 

turbulent energy into the shear layer. In magnitude, the observed Reynolds shear stresses are 

consistent with those found by other researchers (Fellouah et al., 2009; Ferdman et al., 2000; Xu 

& Antonia, 2002).  

 

Figure 63: Reynolds shear stress profiles for (top) XY plane and (bottom) XZ plane 
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 Discussion and summary 6.5.4

The goal of this experimental analysis was to measure a well characterized flow field using the 

new particle tracking system and compare the results with those from other researchers.  For 

round turbulent jet flow, four main characteristics could be validated 1) Linear decay rate of 

mean centerline axial velocity, 2) Gaussian axial velocity profiles in the transverse direction, 3) 

Axial turbulence intensities on the order of 0.25 to 0.33, 4) Anti-symmetric Reynolds shear 

stress profiles about the center line with amplitudes the order of 0.015 as normalized by the 

center line axial velocity squared.  

The results agreed well with all four of these flow characteristics. The mean centerline axial 

velocity decay in the observed volume was linear between 15 ≤ x/d ≤ 33, and produced a decay 

constant B = 6.39 which is within the expected range of 5.7 - 6.7 corresponding well to 

observations by other researchers.    The axial velocity distribution over the transverse 

directions also matches well with the predicted Gaussian profiles (equation 6-6).  The best fit to 

the Gaussian distribution given was observed at observed transverse plane x/d = 33 from the 

nozzle indicating that the flow was reaching a fully developed self-similar state. The axial 

velocity profiles at x/d = 16 deviate the most as expected since the flow is assumed to be still 

developing and has not reach a state of self-similarity.   

The turbulence intensities also correlated well with the observations by other researchers in 

terms of distribution and amplitude. The maximum axial velocity turbulence intensity observed 

at x/d = 15 was 0.30 which matched those reported by Ferdman (2000) who suggested an 

accepted range between 0.24 and 0.35 for round turbulent jets. The Reynolds shear stress terms 

normalized by axial mean centerline velocity squared were also within the range observed by 

other researchers of -0.02 ≤
2

cu v U   ≤ 0.02. The transverse profiles of these shear stresses were 

anti-symmetric about the centerline and zero at the axis which fits the classical understanding of 

axisymmetric round turbulent jet flow. 

Looking at the plot in Figure 61 of axial stream-wise turbulence intensities, it appears that 

several tracking errors (false trajectory matches) have occurred leading to larger velocity 

variances than are predicted by jet flow theory.  This is manifest as a secondary peak in the 

turbulence intensity profile in the shear region of the flow.  The location of this peak, in the 
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positive Z side of the central jet core, is on the opposite side of the core from the cameras.  

Therefore the tracking errors may be explained by the fact that this point would suffer the most 

from particle image overlaps and thus more likely contain tracking errors than other locations. 

A solution would be to spread the cameras more around the flow or install more cameras to 

better observe the back side of the jet.  

The following conclusions can be made from the experimental analysis of round turbulent jet 

flow:  

 The Lagrangian particle tracking system was demonstrated to successfully detect and track 

hundreds of particles over hundreds of frames in real-time at 120 fps through a three 

dimensional turbulent air jet flow. 

 

 The evidence of comparing particle tracking system measurements of a turbulent round jet  

with those of hot-wire anemometry measurements found in literature support the conclusion 

that the system is able to accurately track particles in turbulent flow and utilize the 

Lagrangian velocity statistics of the particles to characterize a flow field of the type studied. 

 

 The use of neutrally buoyant helium filled soap bubbles, which behaved as inertial particles, 

did provide reasonable velocity averages and variances for the jet flow studied.  Therefore 

our data agrees with the conclusions by (Bourgoin et al., 2011) and (Ouellette et al., 2008) 

that velocity statistics of turbulent flow are not impacted significantly when viewed through 

filter of inertial particle motion.  

 

 The spatial distribution of the velocity statistics appears to match reasonably well with 

published measurements of turbulent jet flow. Therefore the use of neutrally buoyant helium 

filled soap bubbles was suitable as flow tracers for the type of analysis conducted here 

(round turbulent jet flow in the intermediate to far field flow regime, Reynolds number = 

11900 based on jet diameter).   
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 Application to unconfined forced vortex flow 6.6

 Objectives and approach 6.6.1

The main objective of this experimental analysis is to apply the particle tracking system to a 

stationary forced vortex (swirling) flow field and test the capability to track particles with more 

complex 3D trajectories. The secondary objective is to evaluate the turbulence intensities, 

Reynolds shear stresses and static pressure field calculations. Two static pressure calculation 

methods will be compared including a) Reynolds Average Navier-Stokes (RANS) method and b) 

Instantaneous Lagrangian acceleration (ILA) method.     

The general approach is to develop an unconfined forced vortex flow and evaluate the particle 

tracking systems ability to track particles as the trajectories traverse the volume with mean 

velocity components in all three dimensions. This type of flow is likely axisymmetric and 

therefore observations of symmetry in two perpendicular center planes (XY and XZ) will 

indicate that the particle tracking system is consistent in tracking particle through complex 3D 

motions. Asymmetries will likely indicate tracking errors or poor ability to track particles due to 

overlapping and obstruction. 

Unconfined forced vortex flow is of particular interest in the area of fluid dynamics as it has 

many applications in industrial processes including aerosol separation in pollution control 

equipment (uniflow and reverse flow cyclones) and trapped vortex combustion in Integrated 

Gasification Combined Cycle (IGCC) plants.  Whereas the round turbulent jet flow field 

consisted of a mean axial velocity and near zero mean velocities in the other two dimensions, 

the unconfined forced vortex has mean velocity components in all three dimensions. Therefore 

it will be a more challenging test for the real-time Lagrangian particle tracking system and 

provide insights into its ability to characterize complex turbulent flow fields. 

 Methodology 6.6.2

An unconfined forced vortex was created with the vane section from a uniflow cyclone (Y. 

Zhang, 2005) as a swirl generator, which was placed inside the 0.1143 m (4.5 in) ID acrylic 

tube. The discharge angle of the vanes was 60 degrees from the vertical (X) and the diameter of 

the inner pipe to which the vanes were affixed was 0.0508 m (2.0 in).The air flow was supplied 
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by a 150 W 2700 rpm variable speed vane axial fan. The flow was passed through a 10.5 cm 

long flow straightener made from drinking straws and then into a 12.0 inch long 4.5 inch ID 

acrylic tube with the swirl generator located immediately after the flow straightener. The 

experimental apparatus and swirl generator are shown in Figure 64.  

The flow rate was set to 0.026 m
3
/s which lead to a velocity magnitude of 7.4 m/s exiting which 

was measured by traversing a hot-wire anemometer over the outlet of the vanes, with the 

anemometer oriented parallel to the vane (TSI Model 8330). Since the flow exit condition was 

essentially swirling annular flow, the hydraulic diameter (dh = 0.0635 m [2.5 inch]) was used for 

all length normalizations.  The Reynolds number was 31000 based on the velocity magnitude 

and the hydraulic diameter at the outlet. The frame rate of the cameras was set to 120 fps and 

the experiment was run for 25 minutes to observe the stationary turbulent vortex. The tracer 

particles were 1 to 4 mm diameter neutrally buoyant Helium filled soap bubbles generated 

through an SAGE Action Model 5 bubble generator. The bubbles were injected into the flow 

field downstream of the flow separator.  The resulting flow field seeded with bubbles can be 

seen in Figure 65.   

The six camera system was arranged in hexagon pattern of approximate side length of 0.5 m 

with all cameras angled towards a central point roughly 1.0 m from the lenses. The volume of 

interest was a 300 x 300 x 206 mm, which was much less than the overall observable volume. 

The volume of interest was discretized by a virtual finite volume grid containing 45 x 45 x 31 

cubic elements of side length 6.67 mm placed 0.258 m in the positive X direction from the tube 

exit.  The finite volume grid contains statistical accumulators at each cell center for particle 

velocity, acceleration, shear stresses, and static pressure gradients.  
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Figure 64: Apparatus for the forced vortex flow experiment 

 Results 6.6.3

The particle tracking system was able to track up to approximately 500 particles per time step 

(Δt = 1/120 s) and visualize their trajectories in real-time. A screen shot from the experiment 

showing particle velocity and acceleration are shown in Figure 66. The highest velocity 

magnitude of a particle in the volume of interest during the experiment was approximately 3.5 

m/s. The average trajectory was approximately 100 frames long.  Long trajectories could be 

tracked in the vortex flow and trajectories could be seen wrapping around the core as shown in 

Figure 66. The distributions of mean velocity magnitudes at the end of the experiment are 

shown in Figure 67 for the YZ plane looking at the vortex from above and Figure 68 for the XY 

plane which views the vortex from the side.  

 

Figure 65: Trajectories of neutrally buoyant helium bubbles in the forced vortex flow field 
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Swirl generator  
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Figure 66: Particle trajectory visualization, from above (ZY-plane), during forced vortex flow experiment color by 

velocity (top) and acceleration (bottom) 
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Figure 67: Distribution of mean velocity magnitude in the YZ plane spanning 4.6 dh in each direction, x = 4.2 dh 

 

Figure 68: Distribution of mean velocity magnitude in the XY plane, z = 0 

The central core of the vortex is clearly seen as a region of lower mean velocities surrounded by 

a ring of high mean velocities.  This profile is shown in greater detail in the graphs of mean 

velocity in the X-direction, u, for two perpendicular planes (XY and XZ) at the center of the 

domain in Figure 69. The profile is nearly symmetrical and peaks at about 2.1 m/s at x/dh = 4.12 
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on each side of the vortex core.  The axial velocity decreases with distance from the vortex 

outlet and the profile begins to flatten out as energy is dissipated. The flow appears to be 

axisymmetric as expected, and the XY and XZ profiles are in good agreement. 

 

Figure 69: Mean X-velocity, u, in the XY center plane (top) and XZ center plane (bottom), x/dh = 4.12, 5.59 and 7.27, dh= 

63.5 mm 

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3

u
  (

m
/s

)  

y/dh 

4.12

5.59

7.27

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3

u
 (

m
/s

)  

z/dh 

4.12

5.59

7.27



133 

 

The tangential velocity profiles, Z-component, w, as viewed from the XY center plane and Y-

component, v, as viewed from the XZ center plane,  are shown in Figure 70. The tangential 

velocity profiles are anti-symmetric about the centerline and good indicators of the location of 

the vortex core as they exhibit very sharp gradients near the centerline. Again, the XY and XZ 

center plane profiles are in agreement and the peak tangential velocity at x/dh = 4.12 is shown to 

be about 1.5 m/s on all four sides of the vortex in the two perpendicular planes.  

 

Figure 70: Mean tangential velocity w in the XY center plane (top) and v in the XZ center plane (bottom), x/dh = 4.12, 

5.59 and 7.27, dh= 63.5 mm 
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The turbulent kinetic energy was calculated from the variances of u, v, and w and is shown for 

the XY center plane in Figure 71. The turbulence is highest in the vortex core closest to the 

outlet and appears to dissipate quickly as the flow progresses to the top of the domain.  The 

turbulent kinetic energy distribution is shown in more detail for the XZ plane in Figure 72. 

Again, symmetry about the center line can be seen as the turbulent kinetic energy peaks at z/dh 

= 0 and maintains symmetry throughout the observation volume.  

 

Figure 71: Turbulent kinetic energy distribution in the XZ center plane 

 

Figure 72: Turbulent kinetic energy (left) profile in XZ plane at x/dh = 4.12, 5.59 and 7.27, (right) axial profile for z/dh = 

0.00, 1.26 and 2.31 
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Figure 73: Reynolds shear stress profiles in the XY center plane at x/dh = 4.12, 5.59 and 7.27 
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The Reynolds shear stress terms (Figure 73) also appeared to display symmetry about the vortex 

core and were roughly on the same order of magnitude for all three components, only varying in 

distribution.  The u v and u w profiles exhibited anti-symmetry about the core which is more 

apparent for larger x/dh.  The v w   profile peaks at the core center for x/dh = 4.12 but is nearly 

zero at the center line farther downstream.   The Reynolds shear stress plots for the XZ plane are 

given in Appendix B for comparison.  

The static pressure distribution in the flow field was calculated based on the collected Lagrangian 

velocity and acceleration statistics as described in section 3.6 using two methods.  The first 

method applied was the Reynolds Averaged Navier-Stokes (RANS) method. In this method the 

RANS equations are simplified by applying the steady state assumption to force the Eularian 

acceleration term to zero and then solving for the pressure gradient term.  All six components of 

the Reynolds stress tensor are known from measurement, along with the mean velocities in each 

direction. The pressure gradients at each element in the virtual finite volume grid are then 

calculated using a spatial marching finite difference scheme.  The second method is the 

Instantaneous Lagrangian Acceleration method (ILA). In this method the instantaneous 

Lagrangian acceleration of a particle is used to solve the Navier-Stokes Equations for the 

instantaneous pressure gradients around the particle. The instantaneous pressure gradients are 

collected and averaged for each element in the virtual finite volume grid.  

Both methods resulted in a pressure gradient field (x, y, z pressure gradients stored in each 

element) at the end of the experiment.  The pressure gradients were applied as source terms to the 

pressure Poisson equation and the iterative Successive Over Relaxation (SOR) method was used 

to solve for pressures at each element. The static pressures were found relative to a corner element 

in the domain. The results from the static pressure calculations are shown in Figure 74.  Both 

methods calculate low pressures in the center of the vortex compared with the rest of the domain 

as theory predicts. The peak negative pressure is near -4 Pa for both methods at x/dh = 4.12. The 

major difference between the two is the pressure profiles farther downstream and overall 

smoothness of the distribution. While the overall shape still indicates a low pressure core, the 

RANS method’s profile for x/dh = 7.27 become slightly asymmetrical and remains negative while 

the ILA method yields pressures in the 1 Pa range at the farthest observed point downstream. 
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Figure 74: Calculated static pressure on the XY center plane at x/dh = 4.12, 5.59 and 7.27 based on two methods (left) 

Reynolds Averaged Navier-Stokes (RANS), method; (right) Instantaneous Lagrangian Acceleration (ILA) 

method  

 Discussion and summary 6.6.4

The particle tracking system was able to reliably track particles in the unconfined forced vortex 

flow field as supported by the nearly symmetric mean velocity profiles observed. The axial and 

tangential velocity profiles appear to be a qualitative match to what would be theoretically 

predicted for a vortex flow field. The axial velocity profile has two peaks on either side of a 

vortex core, while the tangential velocity is anti-symmetric about the center line of the core.  

The velocities of the particles where consistent in all three dimensions when compared in the 

XY and XZ planes indicating that the system can faithfully track particles as they traverse all 

three dimensions in complex paths.  

The Reynolds stress terms
2u ,

2v , 
2w  and u v  , u w and v w   of the particle field were plotted 

and showed signs of symmetry about the vortex core.  The u v  shear stress profile in the XY 

plane is particularly interesting as it exhibits anti-symmetry about the center line with two local 

peaks (positive and negative) on each side of the vortex. This pattern is closely approximated by 

a fifth order polynomial as shown for x/dh = 5.59 in Figure 75. The u v   shear stress reaches 

zero three times in the profile, at -1.1dh, 0dh and 1.2dh. These locations of zero u v  shear stress 

nearly line up with the mean axial velocity (u) peaks as shown in the figure.  This observation is 
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congruent with the theory of forced vortex flow where shear equals zero in regions of fixed 

body rotation.   

 

Figure 75: Reynolds shear stress <u’v’> and mean axial velocity <u> profiles in the XY center plane at x/dh = 5.59  
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pressure region peaking at -4 Pa at the very center of the vortex core. The ILA method created 

smoother and more symmetric pressure profiles, while the RANS method formed more 

asymmetric profiles as the distances from the swirl generator increased. This difference may be 

explained by the source terms used in each method. The RANS method is based on the 

Reynolds Stress tensor, which in effect stores information about the flow accelerations through 

variances and covariance of the velocity field in space.   The pressure gradients from this 

method are calculated based on statistical means and variances of velocity only. The ILA 

method collects the instantaneous pressure gradients, calculated from instantaneous velocities 

and acceleration of individual particles, and then averages the gradients. In this way the solution 

to the Navier-Stokes equations should be more accurate when calculated on a per particle basis 

as the material acceleration term is solved using a second order finite difference scheme.  The 

RANS method on the other hand will suffer from greater truncation and numerical error as it 

utilizes first order accurate finite difference schemes at the boundaries when solving the Navier-

Stokes equations.  

The following conclusions were made for the unconfined forced vortex flow case: 

 The particle tracking system was able to faithfully track particles moving in complex 3D 

paths through a turbulent flow field. This was first verified by consistently observing the 

reconstruction of long (<100 frame) trajectories that wrapped around the vortex core.  

 Analysis of the mean velocity field indicated rotation about a defined vortex core.  The 

vortex flow field appeared as a ring of high velocity magnitude surrounding the low 

velocity core. The shear stress was zero where velocity reaches a maximum around the 

ring which is consistent with forced vortex theory.  

 The two static pressure calculation methods based on RANS and ILA formulations were 

in agreement on the magnitude and structure of the pressure field which was 

qualitatively congruent with theory. However, the RANS approach appeared to suffer 

from numerical errors due to the use of first order finite difference schemes at the 

boundaries of the domain and through velocity averaging within the domain.  More 

studies are required to validate the accuracy of these methods and better compare their 

advantages and disadvantages with different flow regimes.  
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 Conclusions from experimental analysis 6.7

This chapter covered four experiments which were designed to validate the particle tracking 

system for the following: 1) 3D position reconstruction accuracy of static points, 2) accuracy 

and uncertainty of the velocity and acceleration measurements, 3) ability to track particles in 

turbulent jet flow, operation of the statistical accumulator framework, and characterize a flow 

field based on statistical properties of particle motion, 4)  ability to track particles in a complex 

forced vortex flow field through inspection of statistical properties of the particle motion and 

evaluation of two static pressure calculation methods.  The following conclusions were made.  

 3D Position measurement 6.7.1

 The average particle 3D position combined standard uncertainty for all unique four 

camera groups is 0.16mm based on the uncertainty of camera calibration parameters 

and particle centroid location uncertainty.   This was independent of the location within 

the volume of interest and with the camera group used to complete the reconstruction. 

 

 The particle tracking system was able to accurately measure the known distance 

between static particles and agrees with measurements made using a caliper within the 

standard uncertainty 

 Velocity and acceleration measurement 6.7.2

 The highest average relative difference with the test object’s known tangential speed 

was 0.74% at 30 fps.  The average acceleration magnitude measurement was accurate 

within 1% of the predicted value for lower frame rates, but differed significantly, up to 

90%, for the higher frame rate of 120 fps. This was attributed to both the increased 

uncertainty as due to the inherent scaling with frame rate squared, and the fact that the 

particle experienced local velocity fluctuations which were better sampled at 120 fps. 

 

 The standard uncertainty of velocity magnitude at 120 frames per second was 0.014 m/s, 

and that for acceleration is between 5.64 m/s
2
. At 30 frames per second the combined 

standard uncertainties were 0.003 m/s and 0.35 m/s
2
.   
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 Tracking particles in turbulent jet flow 6.7.3

 The particle tracking systems measurements of a turbulent round jet compared well with 

those of hot-wire anemometry measurements found in literature. The axial velocity 

decay rate measured matched the range offered by several researchers. The transverse 

velocity profiles matched the Gaussian distribution of a fully developed self-similar jet 

flow.  

 

 The Reynolds stresses matched the magnitudes and distributions reported in literature. 

The maximum axial turbulence intensity was on the order of 0.3 with slight peaks on 

both sides of the jet core. The maximum normalized Reynolds shear stress was on the 

order of 0.02 and had an anti-symmetric profile about the centerline of the jet.  These 

profiles were observed in perpendicular planes indicating successful tracking in all three 

dimensions. 

 Tracking particles in forced vortex flow and static pressure calculations 6.7.4

 The particle tracking system was able to faithfully track particles moving in complex 3D 

paths through a turbulent flow field. This was first verified by consistently observing the 

reconstruction of long (>100 frame) trajectories that wrapped around the vortex core and 

analysis of the collect particle velocity statistics indicated symmetrical flow properties 

including Reynolds stresses and mean velocities.  The profiles of these properties were 

consistent in perpendicular planes indicating successful particle tracking through 

complex 3D paths.  

 

 The two static pressure calculation methods based on RANS and ILA formulations were 

in agreement on the magnitude and structure of the pressure field and qualitatively 

correct in the prediction of a local pressure minimum in the vortex core.  The RANS 

approach appeared to suffer from numerical errors due to the use of first order finite 

difference schemes at the boundaries of the domain.  More studies are required to 

validate the accuracy of these methods and better compare their advantages and 

disadvantages with different flow regimes. 



142 

 

7 Conclusions and recommendations 

 Conclusions 7.1

A real-time Lagrangian particle tracking (LPT) system was conceptualized, developed and 

validated for tracking inertial particles in fully turbulent 3D flow fields.  The major algorithms 

of the real-time LPT system included image segmentation and particle detection, multi-camera 

correspondence, 3D reconstruction, tracking and interactive data visualization. These algorithms 

were implemented with the help of several key open source C++ libraries. A data analysis and 

visualization module was created to display results in both the Lagrangian and Eularian 

reference frame. The Lagrangian properties calculated include velocity, acceleration and static 

pressure gradient. These Lagrangian properties were attributed to a structured Cartesian grid 

comprised of statistical accumulators, through weighted means, variance and covariance. 

Eularian properties including mass residual, vorticity, Reynolds stress, turbulence intensity and 

static pressure were derived from the mean and variance of the velocity field. 

Two parallel frameworks were developed to achieve real-time processing of LPT data.  The first 

was a compute node based framework for multi-core processors with GPU accelerators. The 

second was a message passing framework for high performance clusters. These two frameworks 

can be used together to allow massive scaling of the LPT system through the addition of many 

more cameras recording at higher frame rates to spatially and temporally scale up the 

measurement domain.  Real-time processing was achieved with synthetic data sets up to frame 

rates of 500 fps with 300 particles per frame on a single node. The cluster message passing 

framework showed that scaling could be achieved for 500 processors and speedups on the order 

of 200 fold were achieved with respect to an optimized sequential code. With this information it 

can be concluded that the objective of demonstrating the ability to reach real-time processing of 

LPT data scalable to hundreds of processors for high frame rate cameras was achieved.  

A prototype real-time LPT system was created, utilizing six motion capture “smart” cameras, 

LED illumination and a generator of neutrally buoyant helium filled soap bubbles. An 

uncertainty analysis procedure was derived and used to conduct sensitivity studies on camera 

placement and calibration.  The most influential factor in uncertainty propagation into the 3D 

reconstructed particle position was found to be the particle centroid location, resulting from the 
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image processing and particle detection algorithm.  Regarding camera positioning, the selection 

of focal length and camera working distance were shown to not significantly impact the 3D 

position combined standard uncertainty for equivalent camera setups (large focal length and 

large working distance or short focal length and short working distance).  It was shown that 

using four cameras in the 3D reconstruction process is very advantageous in reducing the 

sensitivity of the system to uncertainties and errors.  

An experimental analysis was conducted to assess the standard uncertainty associated with 3D 

position, velocity and acceleration measurements. The average particle 3D position standard 

uncertainty for all unique four-camera groups was 0.16 mm. The position uncertainty was 

independent of the location within the volume of interest and the camera group used to 

complete the reconstruction. The particle tracking system was able to accurately measure the 

known distance between static particles and validated using a caliper as an alternative 

measurement method. The velocity and acceleration measurements were evaluated using a 

known object motion. The highest average velocity relative difference with a rotating test 

object’s known tangential speed was 0.74% at 30 fps.  The average acceleration magnitude 

measurement was accurate within 1% of the predicted value for lower frame rates, but differed 

significantly, up to 90%, for the higher frame rate of 120 fps. This was due in part to local 

velocity fluctuations in the object which were better resolved at higher frame rates, but mostly 

linked to the inherent amplification of uncertainty at smaller time scales. The combined 

standard uncertainty of velocity magnitude at 120 frames per second was 0.014 m/s, and that for 

acceleration was 5.64 m/s
2
.  

The LPT system’s measurements of a turbulent round jet compared well with those of hot-wire 

anemometry measurements found in literature. The measured axial velocity decay rate matched 

the range reported by several researchers with a decay constant of 6.39 while the literature 

values range between 5.7 and 6.7. The transverse velocity profiles matched the predicted 

Gaussian distribution of a fully developed self-similar jet flow. The Reynolds stresses matched 

the magnitudes and distributions reported in literature. The maximum axial turbulence intensity 

was on the order of 0.3 with slight peaks on both sides of the jet core. The maximum 

normalized Reynolds shear stress was on the order of 0.02 and had an anti-symmetric profile 
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about the centerline of the jet.  Very similar profiles were observed in perpendicular planes 

indicating successful tracking in all three dimensions. 

With validation complete, the LPT system was applied to an unconfined forced vortex flow. 

The particle tracking system was able to faithfully track particles moving in complex 3D paths 

through the rotating turbulent flow field. This was first verified by consistently visually 

observing the reconstruction of long (>100 frame) trajectories that wrapped around the vortex 

core and analysis of the collect particle velocity statistics indicated symmetrical flow properties 

including Reynolds stresses and mean velocities.  The profiles of these properties were 

consistent in perpendicular planes indicating successful particle tracking through complex 3D 

paths. The two static pressure calculation methods based on RANS and ILA formulations 

derived in Chapter 3 were in agreement on the magnitude and structure of the pressure field and 

qualitatively correct in the prediction of a local pressure minimum in the vortex core. 

The LPT system proved to be robust and able to track particles in a variety of flow fields. The 

fact that the Eularian properties, which were calculated from inertial Lagrangian particle 

trajectories, were nearly identical to Eularian hot-wire based measurements (in the jet flow case) 

supports recent studies which found that inertial particles have nearly identical velocity statistics 

to ideal flow tracers. 
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 Recommendations 7.2

 The velocities and accelerations calculated based on the raw trajectories can suffer from 

significant errors and uncertainties at higher frame rates. It is suggested that a smoothing 

kernel, polynomial approximation, or piecewise cubic spline be used to approximate a 

smooth trajectory through the points prior to calculating derivative properties. This 

approach is commonly used and has be discussed by  (Willneff & Gruen, 2002). 

  

 A very interesting observation during the jet flow experiment was the high correlation 

between the measured turbulence intensities and Reynolds shear stresses with values 

from literature even though large inertial particles were used.  Further testing could be 

done in an attempt to measure grid generated turbulence in wind tunnels in order to 

identify the range of Reynolds numbers at which the system can accurately characterize 

the velocity statistics and Reynolds stresses. The experiment by (Bourgoin et al., 2011) 

could be recreated and compared with real-time LPT measurements.  

 

 The calculation of static pressure from a measured velocity field is a very interesting 

area of this work and should be pursued further. An experiment can be designed to 

directly validate these models with a comparison of the calculated pressure field with 

measurements from high precision pressure transducers. Comparisons with CFD 

simulations would also be of interest. 

 

 The sensitivity analysis showed that particle image centroid uncertainty played the 

largest role in creating uncertainty in the 3D particle position. For the case of neutrally 

buoyant helium bubbles, the illumination technique may play a role in creating particle 

images with multiple intensity peaks. The angle of illumination relative to the image 

plane should be evaluated for the impact on image type and quality. 

 

 The system has been tested and validated with six cameras. The scalability of the system 

should be tested in real-life by adding up to twenty-five cameras and imaging a much 

larger volume.  The system could be directly applied to larger scale flow fields. 
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 The real-time LPT system does not currently correct for light refraction caused by 

varying refractive indexes of transparent mediums.  In order to conduct experiments 

where water, glass or other medium bends the light rays prior to reaching the cameras’ 

lenses, a light refraction model should be implemented to correct such distortions.  This 

will greatly expand the applicability of the real-time LPT system.  

 

 The experimental study in this work focused on stationary flow fields, a round turbulent 

jet and an unconfined forced vortex. The real-time LPT system should be expanded to 

study non-stationary flow fields. The Eularian properties (velocity, static pressure, 

turbulent kinetic energy, etc.) of stationary flows were determined by temporal and 

spatial averaging of the instantaneous Lagrangian velocity, acceleration and static 

pressure gradient. This may be achieved by limiting the temporal averaging time scales, 

perhaps through a rolling average over a set number of frames, and/or increasing the 

spatial concentration of seed particles.   
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Appendix A: Additional data plots from round jet flow experiment  

 

Figure 76: Round jet flow - Axial turbulence intensity profile on XZ center plane 

 

Figure 77: Round jet flow - Transverse turbulence intensity profile on XZ center plane 
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Figure 78: Round jet flow - Axial turbulence intensity profile on XZ center plane 

 

Figure 79: Round jet flow - Axial turbulence intensity profile on XY center plane 
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Figure 80: Round jet flow - Reynolds shear stress <u’v’> profile on XZ center plane 

 

Figure 81: Round jet flow - Reynolds shear stress <u’w’> profile XZ center plane 
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Figure 82: Round jet flow - Reynolds stress <v’w’> profile on XZ center plane 
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Appendix B: Additional data plots from forced vortex flow experiment  

 

Figure 83: Forced vortex flow – Mean axial velocity <u> on XY center plane at x/dh = 4.12, 5.59 and 7.27  

 

Figure 84: Forced vortex flow – Mean transverse velocity <v> on XY center plane at x/dh = 4.12, 5.59 and 7.27  
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Figure 85: Forced vortex flow – Mean transverse velocity <w> on XY center plane at x/dh = 4.12, 5.59 and 7.27  

 

Figure 86: Forced vortex flow –Axial velocity variance <u’2> on XY center plane at x/dh = 4.12, 5.59 and 7.27  
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Figure 87: Forced vortex flow – Transverse velocity variance <v’2> on XY center plane at x/dh = 4.12, 5.59 and 7.27  

 

Figure 88: Forced vortex flow – Transverse velocity variance <w’2> on XY center plane at x/dh = 4.12, 5.59 and 7.27  
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Figure 89: Forced vortex flow – Reynolds shear stress <u’v’> on XY center plane at x/dh = 4.12, 5.59 and 7.27  

 

Figure 90: Forced vortex flow – Reynolds shear stress <u’w’> on XY center plane at x/dh = 4.12, 5.59 and 7.27  
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Figure 91: Forced vortex flow – Reynolds shear stress <v’w’> on XY center plane at x/dh = 4.12, 5.59 and 7.27  

 

Figure 92: Forced vortex flow – Turbulent kinetic energy on XY center plane at x/dh = 4.12, 5.59 and 7.27  
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Figure 93: Forced vortex Flow- calculated static pressure on the XY center plane at x/dh = 4.12, 5.59 and 7.27 based on 

Instantaneous Lagrangian Acceleration (ILA) method 

 

Figure 94: Forced vortex flow - calculated static pressure on the XY center plane at x/dh = 4.12, 5.59 and 7.27 based on 

Reynolds Averaged Navier-Stokes (RANS) method  
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Figure 95: Forced vortex flow – Mean axial velocity <u> on XZ center plane at x/dh = 4.12, 5.59 and 7.27  

 

Figure 96: Forced vortex flow – Mean transverse velocity <v> on XZ center plane at x/dh = 4.12, 5.59 and 7.27  
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Figure 97: Forced vortex flow – Mean transverse velocity <w> on XZ center plane at x/dh = 4.12, 5.59 and 7.27  

 

Figure 98: Forced vortex flow – Axial velocity variance <u’2> on XZ center plane at x/dh = 4.12, 5.59 and 7.27  
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Figure 99: Forced vortex flow – Transverse velocity variance <v’2> on XZ center plane at x/dh = 4.12, 5.59 and 7.27  

 

Figure 100: Forced vortex flow – Transverse velocity variance <w’2> on XZ center plane at x/dh = 4.12, 5.59 and 7.27  
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Figure 101: Forced vortex flow – Reynolds shear stress <u’v’> on XZ center plane at x/dh = 4.12, 5.59 and 7.27  

 

Figure 102: Forced vortex flow – Reynolds shear stress <u’w’> on XZ center plane at x/dh = 4.12, 5.59 and 7.27  
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Figure 103: Forced vortex flow – Reynolds shear stress <v’w’> on XZ center plane at x/dh = 4.12, 5.59 and 7.27  

 

Figure 104: Forced vortex flow – Turbulent kinetic energy on XZ center plane at x/dh = 4.12, 5.59 and 7.27  
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Figure 105: Forced vortex Flow- calculated static pressure on XZ center plane at x/dh = 4.12, 5.59 and 7.27 based on 

Instantaneous Lagrangian Acceleration (ILA) method 

 

Figure 106: Forced vortex flow - calculated static pressure on the XZ center plane at x/dh = 4.12, 5.59 and 7.27 based on 

Reynolds Averaged Navier-Stokes (RANS) method  
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