

DEVELOPMENT OF A TABLE-TOP ROBOT MODEL FOR THINNING OF FRUIT

BY

FU OU YANG

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Agricultural and Biological Engineering

 in the Graduate College of the

University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Master’s Committee:

Associate Professor Tony E. Grift, Chair

Professor K.C. Ting

Assistant Professor Timothy Bretl

ii

ABSTRACT

 Specialty crop production contributes significant revenue to agriculture in the United

States. To reduce the cost of human labor, a concept of automatic selective thinning was pursued

to improve the production of peach, apple and other fruits. In this research, a table-top robot

model was developed to prove the concept, with an emphasis on a task planning algorithm. The

algorithm moved a custom six-DOF (degree of freedom) manipulator and placed an end-effector

at target blossom locations with a feasible posture.

 A “floating z-axis” method was developed to place the end-effector at targets, and was

successfully verified by a three-dimensional artificial branch. This method automatically

searched the solution domain and selected a feasible posture using the concept of “minimum

effort,” which was judged by the movements from a current posture to potential subsequent

postures. To ensure a straight cut-in path from a standby posture to the thinning posture, 20

intermediate postures were assigned automatically along the proceeding direction of the end-

effector. The calculation time for single target was approximately 7.7 seconds.

 Peach was taken as an example in this study and a model tree was built for the

verification experiments. Important issues of future development and deployment were identified,

including the requirements of all subsystems, adaption of orchard systems, and other technology

improvements.

iii

To Father, Mother, and Chi-Ju

iv

ACKNOWLEDGEMENTS

 First, I am grateful to have Dr. Tony Grift as my adviser, who was fun to work with and

inspired me greatly. His encouragement of trying various ideas and tolerance of making mistakes

allowed me learn to a lot on the road. This research would not have been possible without his

support and guidance. I have also benefited from the project participants at Pennsylvania State

University. Dr. Paul Heinemann, David Lyons, Robin Pritz, and other professionals helped this

research significantly. The collaboration among us was important and precious. I would also like

to thank my committee members, Dr. K.C. Ting and Dr. Timothy Bretl, for providing valuable

suggestions to improve this thesis. I wish I could have more discussions and interactions with

them so I could accomplish more in this study.

Looking back at the journey, I am thankful to have opportunity for pursuing a master’s

degree in the U.S. It is not only about the opportunity to study with exceptional researchers from

different places of the world, but also about the experience of living in a diverse and open-

minded society. The cultural impact was tremendous and hard to measure. I truly appreciate all

the people I met here, and treasure every wonderful moment we shared. The two-year stay in this

country is an unforgettable chapter in my life.

v

TABLE OF CONTENTS

LIST OF ACRONYMS .. viii

1 INTRODUCTION .. 1

1.1 Research Motivations ... 1

1.2 Objectives ... 5

2 LITERATURE REVIEW .. 6

2.1 Technologies of Fruit Thinning .. 6

2.2 Definition of a Robot .. 10

2.3 Robotics in Agriculture ..11

2.3.1 Proliferation of Robotics in Agriculture .. 12

2.3.2 Manipulators in Harvesting ... 13

2.4 Task Planning Algorithm for Manipulators .. 17

3 MATERIALS AND METHODS .. 21

3.1 Tree & Blossom .. 21

3.1.1 Selected Peach Cultivar ... 21

3.1.2 Blossom Thinning Pattern ... 23

3.1.3 Model Tree .. 24

3.2 Manipulator .. 27

3.2.1 Hardware ... 28

3.2.2 Software ... 32

3.3 End-effector .. 33

vi

3.3.1 Full-scale End-effector .. 34

3.3.2 Representative End-effector .. 36

3.4 Task Definition ... 39

3.4.1 Fixed Z-Axis Method .. 39

3.4.2 Floating Z-Axis Method .. 41

3.5 Inverse Kinematics Calculation .. 45

3.5.1 Inverse Position Kinematics .. 46

3.5.2 Inverse Orientation Kinematics ... 49

3.5.3 Uniqueness and Solution Set ... 51

4 EXPERIMENTAL DESIGN AND RESULTS ... 54

4.1 World Frame and Tool Frame Definition ... 54

4.2 2D Simplistic Model ... 54

4.2.1 Experimental Arrangement .. 55

4.2.2 Results and Discussion .. 56

4.3 3D Model .. 59

4.3.1 Experimental Arrangement .. 59

4.3.2 Results and Discussion .. 61

5 CONCLUSIONS... 64

5.1 Summary ... 64

5.2 Future Development ... 65

5.2.1 Further Experimental Analysis .. 65

5.2.2 Extension of the Floating Z-Axis Method ... 66

vii

5.2.3 Path Planner and Trajectory Planner ... 67

5.2.4 Computer Vision Unit .. 67

5.2.5 Selection of Carrying Vehicle and the Manipulator .. 68

5.2.6 Adaptation of the Orchard System .. 69

5.2.7 Software Implementation .. 69

REFERENCES ... 71

APPENDIX A: Design of Peach Tree Model ... 74

APPENDIX B: Control Software ... 75

APPENDIX C: Personnel ... 94

viii

LIST OF ACRONYMS

CASC Comprehensive Automation for Specialty Crops

DOF Degree of Freedom

IKS Inverse Kinematics Solution

ITTF Innovative Technologies for Thinning of Fruit

KAC-V Kearney Agricultural Center-V shape trees

PSU Pennsylvania State University

SCRI Specialty Crop Research Initiative

UCD University of California, Davis

UIUC University of Illinois at Urbana-Champaign

UMD University of Maryland

USDA United States Department of Agriculture

1

1 INTRODUCTION

 Fruit production is an import component of agriculture in the United States, with a total

production value reaching $ 15 billion in 2010, where apple contributed $ 2.2 billion and peach $

0.6 billion (USDA-NASS, 2012). These “specialty” crops require pruning and thinning during

cultivation, rendering human labor as one of the major costs of production. Hence, reducing the

personnel expense is a major concern for developing new horticultural technologies. To

accomplish this, the concept of robotic selective thinning was pursued. The selective thinning

system would consist of 1) a machine vision system that automatically generates three

dimensional blossom locations, 2) a robotic arm equipped with a dedicated end-effector, and 3) a

carrying platform that transports the robotic system and places it at a desired location with

respect to a peach tree. This thesis describes the development of a scaled-down model robotic

arm, including the hardware and software needed to place the end-effector at preset blossom

locations for removal.

1.1 Research Motivations

 Peach (Prunus persica (L.) Batsch), is an important crop in the US with a production of

about 1 million Mg with a value of $ 596 million, requiring a production area of 45,300 hectares

(112,000 acres). The peach industry is the fourth most valuable non-citrus fruit business after

grape, apple, and strawberry in the US (USDA-NASS, 2012).

 During its cultivation period, blossom thinning is a crucial step for crop load management,

2

since an excessive number of blossoms eventually yield too many non-salable undersized fruits

and consequently, decrease revenue for peach growers. The blossoms or fruitlets must be

removed to adjust the crop load and to ensure that the harvested fruits (Figure 1.1) are of

commercial size (Schupp et al., 2008). Traditionally, the thinning work is performed by skilled

labor using a tedious manual picking-off method. Some alternatives have been adopted with

unsatisfying results; thus, a more advanced solution is desirable to address this issue.

Figure 1.1 Harvested Saturn peaches.

 The USDA has sponsored a project titled “Innovative Technologies for Thinning of Fruit

(ITTF) through the Specialty Crop Research Initiative (SCRI) program. One component of this

program is “selective thinning” in which a quasi-anthropomorphic method based on a robotic

manipulator integrated with a computer vision system was proposed for removal of blossoms.

3

The methodology of the robotic thinning system is illustrated by a flowchart, as shown in Figure

1.2. Four academic institutions are involved in this project: the Pennsylvania State University

(PSU), the University of Illinois at Urbana-Champaign (UIUC), the University of California at

Davis (UCD), and the University of Maryland (UMD). PSU focused on the development of

hardware such as a custom manipulator and an end-effector. UIUC endeavored to develop a task

planning algorithm to equip the robotic system with intelligence for decision making. They were

also responsible for the corresponding control software to activate the robotic system. UCD and

UMD developed machine vision systems to enable robotic perception.

Figure 1.2 Methodology of robotic thinning system.

Commercialized agricultural robots are scarce and their impact on agriculture has been

limited. Some robots from various fields are listed in Figure 1.3 where the capability of the

robots is plotted versus their costs. Robots range in cost from low-cost educational kits to the

most expensive robots ever conceived such as the Mars rovers. There are efforts to produce near

humanoid robots such as Honda’s Asimo and the PR2 robots, which are high in cost. A stark

contrast exists with agriculture, in which many prototype robots have been produced ranging

from sheep shearing and automatically guided vehicles to harvesting of various fruits and

vegetables. However, the only robot in agriculture that has shown significant commercial success

is the milking robot. There is a clear need for robotics in agriculture where the technology could

replace tedious (and often undocumented) labor, and simultaneously enhance the life of farmers

Computer Vision

 1. Locate blossoms

 2. Locate Trees

Target Identification

Discern target blossoms
by heuristic algorithm

Task Planning

Optimized trajectory of
manipulator movement

Robot Actuation

 1. Move manipulator
 2. Actuate end-effector

4

and animals such as in the milking robot case. Although the interest in agricultural robotics has

increased, more work is needed to bring concepts to commercialization. The desired capabilities

of robots in agriculture, such as in this thinning project, are high since target objects are highly

variable (trees, crops, blossoms, fruits and vegetables), in addition to having to deal with external

influences such as sunlight changes, soil conditions, and wind effects. However, the cost of the

robots must remain low to make them affordable for farmers and growers. This puts agricultural

robotics in uncharted terrain, and the hope is that this thesis research may contribute to

increasing investment in this important and challenging application domain.

Figure 1.3 Schematic of cost-capability relationship of robots in various application domains.

C
ap

ab
ili

ty
 (

lin
)

Cost (log)

LEGO® NXT 2.0

education kit

$279.99

PR2 service robot

$0.4 million

Lely Astronaut Milking System

$ 0.25 M; > 12,500 installments

da Vinci® Surgical System

$1.75 million; > 2,200 installments

Mars Exploration Rover

$ 820 M initial cost

$ 124 M for 5 extensions

Specialty Crop Cultivation
Market value > $ 60 Billion
No commercial product available
Research investment ???

Not of interest

5

1.2 Objectives

 The goal of this project, which is applying a robotic thinning system in an orchard, is

ambitious and needs in-depth research into the four sections as shown in Figure 1.2, followed by

component integration. Instead of starting with inherently varying trees, an abstract scaled-down

tree model was constructed to prove the concept of robotic thinning and to identify the most

important issues to be addressed. Within this framework, the overall goal of this study was to

investigate the potential of the use of robotics in thinning of fruit trees. The work was comprised

of the following three objectives.

(1) Construction of a model tree representing peach tree.

(2) Development of a dedicated table-top manipulator.

(3) Development and implementation of algorithms allowing positioning of an end-effector

for the removal of blossoms.

6

2 LITERATURE REVIEW

To illustrate both classical and modern methods used for thinning, section 2.1 discusses

the merits and limitations of the methods as developed to date. Section 2.2 discusses the

definition of the term robot, since over time various definitions have evolved. In section 2.3, the

proliferation and achievement of robotics in agriculture is outlined, with an emphasis on

manipulators in plant production. Finally, section 2.4 is devoted to the introduction of a task

planning algorithm for manipulators.

2.1 Technologies of Fruit Thinning

 Blossom thinning of peach trees, known as the “June drop,” occurs naturally for some

genotypes, such as nectarines (Bassi and Monet, 2008). This is however not the case in general,

and the thinning result is not always satisfying. Typically, thinning is accomplished by human

labor, chemicals, or mechanical devices (Marini and Reighard, 2008). Hand thinning by human

labor is the traditional and primary approach; nevertheless, it is expensive for peach growers

owing to the dwindling experienced labor force in agriculture. Glozer and Hasey (2006) showed

that hand thinning labor represented 31% of all cultural costs of extra-early cling peach varieties

in California.

Chemicals that kill flowers are also in use: for example, Fallahi et al. (2006) applied various

chemicals on apples, peaches, nectarines and plums in varying rates to optimize the fruit set, fruit

quality, and yield. Although chemical methods are effective, efficient and relatively inexpensive,

the consistency of the results is poor and depends on environmental factors. Therefore, the

7

operation is followed by hand-thinning to optimize the result (Bassi and Monet, 2008).

Ample effort has been devoted to mechanical (or physical) thinning. In recent years, the

most promising solutions are found in devices such as the Darwin string thinner (Figure 2.1)

manufactured by Fruit-Tec, Deggenhausertal, Germany. The Darwin machine is a general-

purpose thinner with an adjustable number of cords attached to a rotating spindle, rendering its

action akin to a rather crude “whipping off” of the blossoms on the trees. To optimize the

performance, the peach trees should be trained to a vase shape (Figure 2.1) or a KAC-V shape.

KAC-V is also known as perpendicular-V and proposed by University of California’s Kearney

Agricultural Center (KAC). Some scientists and engineers have researched optimal parameters

for the Darwin machines under varying experimental arrangements (Schupp et al., 2008).

Although the results of mechanical devices were improved, some issues remained unsolved. The

current mechanical devices are non-selective, which means that the device can only remove a

certain percentage of blossoms without differentiating among them. In practice, during hand

thinning, farmers adjust the spacings among blossoms and retain the ones in a favorable location

with respect to the branch. In addition, the cord-based machines can damage other blossoms

without removing them and potentially harm the tree bark, which adds uncertainty to the yield.

Another limitation compared the proposed selective thinning using robots, is that the Darwin

machine has only a single purpose, whereas a robot may be used for a variety of tasks such as

branch pruning, fruitlet thinning, and fruit harvesting.

Apart from the ITTF, another USDA-sponsored project, Comprehensive Automation for

Specialty Crops (CASC), focused on the development of sensing and automation technologies

for orchard environments. The tasks were mainly conducted by researchers from Carnegie

8

Mellon University and categorized into three main themes summarized in Figure 2.2. Their GPS-

free autonomous guiding vehicle (Figure 2.3) replaces the driver and removes the requirement of

ascending and descending a ladder. It may serve as a carrier vehicle for the selective thinning

system developed by the ITTF project. The combined system will have the potential to perform

or augment sensing, spraying, pruning, thinning, and harvesting in orchards, although full scale

automation of all above tasks in a commercially viable fashion may be far in the future.

Figure 2.1 Darwin string thinner attached to a tractor during operation on vase-shape peach trees

(Courtesy of Tara Baugher from PSU).

9

Figure 2.2 Three main themes and underlying topics of CASC project (Hamner et al., 2011).

Figure 2.3 Farmers can perform thinning, pruning, or other operations on the platform of an

autonomous vehicle developed by CASC project (Bergerman et al., 2012).

10

2.2 Definition of a Robot

The word “robot” originates from the Czech word “robota,” which means work. Since Karel

Čapek introduced the term robot in his play “Rossum’s Universal Robots” in 1920, the term has

been widely applied to a variety of mechanical devices (Spong et al., 2006). Almost any device

that operates with some degree of autonomy can be regarded as a robot, from autonomous cars,

Unmanned Aerial Vehicles (UAVs), the self-guided vacuum cleaner Roomba
®
, Sony

®
’s robotic

dog AIBO, Honda
®

’s humanoid ASIMO, to the Mars Exploration Rover developed by NASA.

Among the range of devices that can be termed “robots,” the first one realized in modern

society was a mechanical arm with a gripper, named Unimate. It was invented by American

inventor George Devol and installed in a General Motor’s plant for die casting in 1961 (Corke,

2011). This arm-type robot and its descendants formed a subclass termed “manipulators” in

robotics.

A manipulating industrial robot is defined in the ISO 8373:1994 standard as “an

automatically controlled, reprogrammable, multipurpose manipulator, programmable in three or

more axes, which may be either fixed in place or mobile for use in industrial automation

applications” (ISO, 1994). In this thesis, the term robot refers to an automated device comprised

of a computer-controlled manipulator of the type shown in Figure 2.4 unless otherwise specified.

11

Figure 2.4 FANUC M-16iL industrial-grade manipulator with a model tree.

2.3 Robotics in Agriculture

 Since the debut of manipulators in 1961, assembly lines in which large numbers of highly

repetitive and labor-intensive tasks are required have been the major operating realm for

industrial robots. However, the less structured and uncertain nature of agriculture was a hurdle

for robot deployment. The other resistance was the lack of interest and investment. By searching

keywords “agricultural robot”, “medical robot”, “aerial robot”, “space robot”, and “service robot”

on the searching engine Google Scholar for research publications during the period from 2000 to

2011, the number of hits (Figure 2.5) shows that robotics in agriculture represents a minority

compared to its counterparts in other fields. In section 2.3.1, the proliferation of robotics in

agriculture is briefly discussed.

12

A manipulator is merely one type of existing agricultural robot or, in most cases, just one

component working with other units such as moving platforms in a robotic system. Since this

arm-type device in plant production is of special interest in this study, some applications of

manipulators are reviewed in section 2.3.2.

Figure 2.5 Keyword hits of robots in different applications since year 2000.

2.3.1 Proliferation of Robotics in Agriculture

Mechanization and automation is a trend in agriculture that started in the 1940s. When

intelligence was added to agricultural machinery, the era of agricultural robotics started. There

has been ample effort in proliferating robotics into various aspects of agriculture in the past three

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
2011 0

100

200

300

400

500

600

700

800

900

1000

Agricultural Robot

Medical Robot

Aerial Robot

Space Robot

Service Robot

13

decades. An overview of robotics in agriculture was provided by Grift et al. (2008). Most of the

applications were in plant production, such as grafting, transplanting, tilling, seeding, cultivation,

fertilizing, spraying, harvesting, and related information management for enhancing the

performance of above tasks. Kondo et al. (2011) summarized the research to date, and introduced

technology developments from the viewpoints of mechanism, vision, end-effectors and arm, as

well as vehicle automation. A grafting robot for cucumber was a successful example for

commercialization. Starting from specific varieties of cucumbers in Japan, it spread to other

countries in East Asia, Europe, and now North America (Kubota et al., 2008) for different plants.

The most successful, and in fact the only majorly commercialized robot in agriculture to

date, is the milking robot. This technology allowed dairy cows to be milked ad libitum without

human intervention. Since the first installation of automatic milking system in the Netherlands in

1992, about 2200 farms worldwide adopted this technology by the end of 2003 (De Koning and

Rodenburg, 2004). In December 2011, one of the milking robot manufacturers, Lely, celebrated

the 12,500
th

 installment of their product (Lely, 2011). As Kondo et al. (2011) indicated, ample

research was devoted to vehicle automation. The idea was to replace drivers from common

agricultural vehicles such as tractors, transplanters and “gators” through autonomous steering

units. Among the efforts, some were focused on smaller moving platforms to serve as scouts for

environmental factors, or as carriers for manipulators.

2.3.2 Manipulators in Harvesting

 The most common application of manipulators in agriculture is harvesting among plants,

such as grapes (Monta et al., 1995), tomatoes (Kondo et al., 1996), melons (Edan et al., 2000),

14

cucumbers (Van Henten et al., 2002), and apples (Baeten et al., 2007). Robotic thinning has

never been a main objective in plant production, although it is similar to fruit harvesting: Firstly,

both tasks require a computer vision unit to identify the location of target objects, which were

fruits and blossoms. Occlusion caused by leaves, stems, or branches, as well as occlusion by the

targets themselves is also a common theme in the associated computer vision task. Secondly,

both tasks require manipulators to move end-effectors toward target objects in an

anthropomorphic manner. In addition, the computer vision unit and the manipulator need a

carrier to transport them in the facilities or fields. The carriers could have various forms, such as

wheel type (Kondo et al., 1996), crawler type (Monta et al., 1995), rail type (Van Henten et al.,

2002), or a trailer attached to a tractor (Baeten et al., 2007).

 Monta et al. (1995) applied a five-DOF (degree-of-freedom) manipulator comprised of a

spherical arm with two rotational joints as a wrist for operations in a vineyard. Four dedicated

end-effectors were developed for harvesting, berry thinning, spraying, and bagging, and they

demonstrated the versatility of a single manipulator in an agricultural production system. The

motivation of this study was not only to alleviate the requirement of skilled personnel but also to

improve exhausting work conditions. In Japan, most of the grapes were cultivated in trellis

systems, where canopies are supported by metal structures at a height of 170-190 cm. In this

environment, farmers have to keep their hands overhead for hours when working, which is

unacceptable from an ergonomic point of view. This case could be taken as a supporting example

for the idea of developing a fully automated orchard system.

 Van Henten et al. (2002) applied a Mitsubishi RV-E2 robot, a six-DOF manipulator with

15

all revolute joints for cucumber picking. By mounting the manipulator on a linear mobile

platform (Figure 2.6), the robot reached seven DOF which increased its operational space. To

accommodate the robot in the work environment, an innovative “high-wire” cultivation system

was introduced. The overall accuracy of cucumber-picking was 80% at a picking rate of one

vegetable harvested in 45 seconds. The insight form this application was that the horticultural

and engineering techniques should evolve together when pursuing a breakthrough in production.

Figure 2.6 Field test of a cucumber harvesting robot (Van Henten et al., 2003b).

Baeten et al. (2007) harvested apples in an orchard using a Panasonic VR006L industrial

manipulator, mounted on a tractor (Figure 2.7). To avoid the negative influence of changing

ambient light, a tent structure was used to cover the robotic system and a row of fruit trees.

Although the overall speed or the time allotment of each cycle was not reported, the system

reached an 80% picking rate in specific experiment setups. However, the size of the robotic

system, the limited height of apple trees, and the use of tent structure were not satisfactory and

16

should be improved significantly for real deployment.

Figure 2.7 An industrial manipulator driven by a tractor (Baeten et al., 2007).

The cases discussed above represent indoor operations, which excludes thinning. In outdoor

operations, the intensity and frequency spectrum of incident sunlight varies significantly over the

course of a day. Insufficient ambient light may be alleviated by adding artificial light sources

mounted on a carrier or a manipulator. However, excessive lighting causes overexposure, and

requires extra calibration procedures for correction, a procedure that slows down the robotic

thinning system and deteriorates its overall performance. In addition, the incident angle of

sunlight varies as well, causing inconsistent shadows, which complicates performing

compensation by using a priori knowledge.

 Wind can pose further negative effects in outdoor scenarios, in that it oscillates the

blossoms and branches, changing the positions of target objects. In this scenario, the planned

17

path to a target blossom might be invalid or not collision-free. These changing environmental

factors require a robot to reach a balance between performance and robustness.

The actions of the end-effectors in thinning are less complicated than during harvesting,

because in thinning merely a removal action is required while during harvesting sometimes a

complicated mechanism of wrist movements is required. For instance, in tomato harvesting, the

fruit (although deemed a vegetable by Supreme Court ruling) is twisted off the vine, mimicking a

human harvester. However, in most cases of fruit harvesting, the orientation is well defined,

since most fruits are hanging vertically. This is not the case in thinning, since the blossom is

arbitrarily oriented along the circumference of a branch. One method to approach this problem is

by requiring the machine vision system to accurately measure the orientation of the branch,

along with the three dimensional coordinates of the blossom, which is a daunting task. An

implicit assumption in this research was that the end-effector is robust with respect to the

orientation of the blossom along the circumference of the branch. Section 3.4 elaborates on this

principle.

2.4 Task Planning Algorithm for Manipulators

At the start of the robotics era, these machines were merely used for highly repetitive tasks

such as placing car doors on an assembly line, welding seams and painting. These types of

operations consist of a fixed sequence of commands such as Move, Grasp, Pickup, and Putdown,

and the robots usually did not perceive the environment. The next level of advancement

originated when the robots were given some cognitive intelligence enabling them to respond to

varying situations. This ability requires a sensor-based control system equipped with a task

18

planning algorithm. Tung and Kak (1996) used two cameras to simultaneously acquire coarse

and detailed information of randomly oriented parts, and assembled them using a PUMA 762

six-axis manipulator.

 Edan et al. (1991) developed a near-minimum-path algorithm for visiting N given

locations on a citrus tree. The sequence of visiting points was determined by solving the

traveling salesman problem with kinematics and inertial parameters of a cylindrical manipulator.

By dividing a tree into several subvolumes and estimating distances among points, the algorithm

could decide a visiting sequence for 250 fruits in 1.013 seconds. However, the path was not

guaranteed to be collision-free and the orientation of the end-effector was not considered. In

addition, some fruit trees such as peach can be trained into a relatively simplified structure

(section 3.1.1), and hence the visiting sequence can be as simple as a top-down branch-wise

routine. This is an example of how a horticultural operation can reduce the complexity of

engineering problems.

 Scant literature was discovered regarding manipulators in plant production addressing the

issue of task planning. Van Henten et al. (2003a) provided a methodology for generating a

collision-free motion of a cucumber picking robot as shown in Figure 2.8. The methodology was

used as a framework for the proposed task planning algorithm in this study.

19

Figure 2.8 Methodology of generating a collision-free path. A computer vision unit provides the

information of environment and target objects. Combined with a priori knowledge,

the task planning system provides the final trajectory as output. Adapted from Van

Henten et al. (2003a).

 To eliminate potential ambiguity of terminology, it is helpful to clarify some terms used

in this thesis. “Path planning” refers to an algorithm that provides a collision-free path from any

obstacles for a manipulator using a set of initial conditions and goal configuration as inputs. A

path is a locus described either in the configuration space (joint space) or the operational space

(Cartesian coordinate system), and it only explains a manipulator’s geometrical motion.

“Trajectory planning” takes velocity, acceleration, and smoothness constraints into account, and

refines the path provided by the path planner. Sciavicco and Siciliano (2000) disambiguate these

20

two terms in a similar way. “Task definition” in this thesis refers to a process which converts

input arguments into standard format for subsequent calculations. This conversion is not a one-

to-one transformation and involves decision making procedures. Task planning, which is

highlighted in Figure 1.2, is a higher level concept. It includes the task definition, inverse

kinematics calculation, path planner, and trajectory planner as shown in Figure 2.9. In this thesis,

task definition is of special interest, while the path planner and trajectory planner are left to

future research.

Figure 2.9 Concept of tasking planning and its components.

Task Definition
Decide start and goal
position & orientation

Inverse Kinematics
Convert position & orientation

into configuration

Path planner
Search collision-free path

Trajectory planner
Refine path with

further consideration

Task Planning

21

3 MATERIALS AND METHODS

 This chapter elaborates on how a fruit tree was represented by an artificial model tree that

was used for verification experiments as discussed in section 3.1. Section 3.2 is devoted to the

introduction of hardware and software for a custom robot developed for this study. Section 3.3

describes how the end-effector functions, and how its representative version works. Section 3.4

and 3.5 cover the four components of task planning illustrated in Figure 2.9.

3.1 Tree & Blossom

 To build a model tree, there are two assumptions that must be clarified. (1.) What cultivar

of tree does the model tree represent? (2.) What is the distribution or clustering pattern of the

blossoms on the tree? These matters are discussed in subsection 3.1.1 and 3.1.2. The final design

of the model tree can be found in subsection 3.1.3.

3.1.1 Selected Peach Cultivar

 There are three important terms that are commonly confused being species, variety, and

cultivar. All cultivars of peach are the same “species”: Prunus persica (L.) Batsch. “Varieties”

occur through natural selection, while “cultivars” refer to varieties selected by human

intervention. In commercial peach production, a variety of cultivar is found such as Saturn,

White Lady, PF-17, Fantasia, and NJF16, each with unique blossom cluster patterns. The Saturn

variety cultivar (Figure 3.1) was selected for this study since ample experience has been gained

through research at PSU.

22

Figure 3.1 Left: A branch with blossoms from Saturn. Right: A branch with blossoms from

NJF16. Different cultivars have varying colors and cluster patterns of blossoms

(Courtesy of Dr. James Schupp from PSU).

 Peaches are generally grown for about 2 years before cropping and they reach a full size

in five seasons. Before a tree contributes to the production, many steps of training should be

performed. It is common to train the trees into a preferred shape by pruning and other treatment.

The KAC-V system (DeJong et al., 1994) is widely adopted and was the most common form

applied in research activities related to this study. Trees of this type are trained into a V-shape by

leaving two scaffolds as shown in Figure 3.2. Ideally, each scaffold should have 25° to 40°

deviation from a vertical axis. Another alias of this type was “perpendicular-V,” which implies

that the V-shape is perpendicular to the moving direction of a machine in a row, rather than

having a right angle between scaffolds. In this study, only mature trees were considered because

they constituted the largest portion of production.

 A mature peach tree has a height of approximately four meters. After training, only two

23

scaffolds are left, where each scaffold has approximately 30 fruiting branches. The branch

orientation started from horizontal (90°) to nearly vertical (10°). If a certain branch has a less

accessible orientation, pruning is applied to correct it. An idea inspired by this fact was that

specific pruning treatment can be developed to facilitate the automated selective thinning system.

This agreed with the research conducted by Van Henten et al. (2002), who introduced a new

cultivating convention to deploy a robotic harvesting system.

Figure 3.2 Left: Peach tree without training. Right: Peach tree trained into a KAC-V shape

(DeJong et al., 1994).

3.1.2 Blossom Thinning Pattern

 Instead of providing a general description regarding how blossoms are distributed on

Saturn, an alternative way was to provide a blossom thinning pattern. A rule-of-thumb for

thinning Saturn is called the “5-8 pattern” as illustrated in Figure 3.3. Here all blossoms along

the first 5 cm from the origin of the branch are removed. Then, from the 5-cm point, it divides

24

the branch into alternating sections of 5 cm and 8 cm respectively until the branch end is reached.

After removing the blossoms in the 0~5 cm window, in every subsequent 5 cm window, only two

blossoms are kept: the remaining ones are removed with the ones located inside any 8 cm

window. The blossoms left in the 5 cm windows should be separated as far as possible, so

usually the ones located in close proximity to the extremes of the interval are kept.

Figure 3.3 Schematic of the “5-8 pattern.” Starting from the 5-cm point, the branch is separated

into alternating windows of length 5 cm and 8 cm respectively, until the branch end is

reached (Courtesy of David Lyons from PSU).

3.1.3 Model Tree

 In general, a mature tree has a height of about four meters. To build a counterpart for the

scaled-down manipulator, a model tree was designed with a height of 100 cm as shown in Figure

3.4. The trunk was made from standard lumber while the two scaffolds were made from thinner

slats. The right scaffold deviated from the vertical axis by 30°, and the left by 40°. The design

25

reflected the fact that real trees are usually asymmetrical, and also provided a more

representative model for future experimental needs. A detailed drawing and dimensions can be

found in Appendix A. Since the manipulator would not thin two scaffolds simultaneously, only

the right scaffold was attached to save space.

Figure 3.4 Left: model tree designed using CAD software SolidWorks
®
. Right: prototype of the

design.

 The above model is just a frame of a peach tree since the branches are not included. Since

the branches have diverse orientations, curves, and lengths, they are difficult to represent by

standard lumber using dowels and strips. As an alternative, Loc-Line
®
 ¼’’ modular hose was

used (Figure 3.5); it is manufactured by Lockwood Products, Inc. from Lake Oswego, Oregon.

This hose is composed of separable units and can be extended to arbitrary lengths. In addition,

the joint design of each unit supports the hose in a variety of poses, which can be used to

26

represent branches. After assembling, each unit had a length of about 1.5 cm. The smallest

diameter outside the cone-shape unit is about 1 cm while the largest is about 1.6 cm. The

blossoms were represented by round stickers attached to the hose, yielding adjustable locations

according to experimental needs. More information about the stickers can be found in section

4.2.1.

Figure 3.5 Loc-Line
®
 ¼’’modular hose with a quarter for size comparison.

 Although the variety of orientations can be represented by this design, the flexibility of

real branches cannot. Flexibility of branches causes target blossoms to vibrate when perturbed by

external influences such as wind and inadvertent contact by the end-effector. This mismatch is

partially addressed by the design of a clamp-type end-effector, which has a high tolerance for

inaccurate positioning. Therefore, vibrations were not taken into account in this study.

27

3.2 Manipulator

At the start of the project, an industrial-grade manipulator FANUC M-16iL as shown in

Figure 2.4 was procured from a dealer of refurbished robots. However, this manipulator was

originally built for repetitive tasks, and the real-time communication with a computer and

potentially external sensors was limited. The decision was made to reduce the problem to a more

manageable size by developing a scaled-down version of the robot and to set the target of

proving the concept as the research goal. In the new scenario, a tabletop robot was required.

Most tabletop models have a limited payload and for this reason, a custom manipulator (Figure

3.6) capable of lifting and moving a rather heavy end-effector was built in a joint effort among

researchers from PSU and UIUC. The design was completed using SolidWorks
®
 (Dassault

Systèmes SolidWorks Corp., Vélizy, France).

Figure 3.6 Left: CAD drawing of the custom manipulator in SolidWorks
®
. Right: custom

manipulator lifting a 650 g stepper motor as a significant weight.

28

3.2.1 Hardware

The manipulator joints were revolute and actuated by servomotors (ROBOTIS, Seoul,

Korea). As shown in Figure 3.7, these motors were connected using a RS-485 network bus

allowing a single controller to drive all motors. Three models being RX-28, RX-64, and EX-

106+, were chosen to meet the various torque requirements of each joint. All the parts of the

manipulator’s body were made from aluminum alloy 6011 (AA6011), and machined by the

Physics Machine Shop at PSU and the Mechanical Engineering Machine Shop at UIUC.

Figure 3.7 ROBOTIS
®
 motor controller USB2Dynamixel and two networked servomotors RX-

64 (ROBOTIS, 2006).

As shown in Figure 3.8, this robot is a six DOF all-revolute-joint manipulator, categorized

as an articulated manipulator with a spherical wrist. The latter was an important concept

especially for computing inverse kinematics, which is discussed in section 3.5. The Denavit-

Hartenberg (DH) convention was introduced to describe the reference frames and configurations.

29

Note the existence of two DH conventions, an original and a modification, as discussed by Corke

(2011). The original notation was adopted here, and the reader could verify it by checking the

subscripts of the DH parameters provided in Table 3.1. A fixed offset of 90° was assigned to joint

angle θ3 for setting the full extended configuration as the “zero position.” This configuration has

only zeros as revolving angles to all joints. The 90° offset was coded in the control software, so

users did not need to concern themselves with this value when moving the manipulator.

Figure 3.8 Schematic of the custom manipulator with frame assignment. This is the zero position

according to the DH parameters displayed in Table 3.1. Note that the axis of z0 and y1

are not coincident due to the existence of a small link length a1.

d1

a2 d4 d6

y1

z1

x1

θ2 θ3 θ5

θ1

θ6
θ4

z0 y0

x0

z2

x2

x3

z3

y2

x4

z4

x5
z5

x6

z6

z6

a1

z0 y1

30

Table 3.1 DH parameters for the manipulator.

 The parameters with symbols a and d in the DH table are constants and inherent to the

manipulator’s design, while the θ ‘s are joint variables varying with configurations. Each row in

Table 3.1 represents a homogeneous transformation Ai, which is composed of four successive

basic transformations (eq. 1) being rotating about the current z-axis for θ (Rotz,θ), translating

along the current z-axis for d (Transz,d), translating along the current x-axis for a (Transx,a), and

finally rotating about the current x-axis for α (Rotx,α). The matrix Ai transforms any point p from

its current coordinate frame to a new one by calculating '
i

p A p . By multiplying Ai one after

another, the final transformation matrix T6
0
. which transforms the coordinates from the world

frame (frame 1
st
) to the tool frame (frame 6

th
) can be solved. Again, note the definition of the

equation. The original and modified DH conventions have a different order and elements for

matrix multiplication. Spong et al. (2006) elaborated on the structure and use of the

transformation matrix. In this thesis, sin θ and cos θ are expressed as cθ and sθ to save space.

Link Link length Link twist Link Offset Joint angle

a (cm) α (deg) d (cm) θ (deg)

1 a 1 +90° d 1 θ 1
*

2 a 2 0 0 θ 2
*

3 0 +90° 0 θ 3
*
 + 90°

†

4 0 -90° d 4 θ 4
*

5 0 +90° 0 θ 5
*

6 0 0 d 6 θ 6
*

* Joint variable

† Fixed offset for the zero position

31

, , , ,()
i i i ii i z z d x a xA Rot Trans Trans Rot

(1)

0 0 1 0 0 01 0 0 0 1 0 0

0 00 0 0 1 0 0 0 1 0 0
()

0 0 1 0 0 1 0 0 00 0 1 0

0 0 0 1 0 0 0 10 0 0 1 0 0 0 1

i i

i ii i

i i

i

i i

i

c s a

c ss c
A

d s c

3 3 3 1()
0 0 0 0 1

0 0 0 1

i i i i i i

i i i i i i

i i

i

i ii

i i

i

c s c s s a c

R ts c c c s a s
A

s c d

 In Table 3.2, the values of non-zero DH parameters are listed, except the joint variable θ’s.

Although the theoretical values can be acquired from the design drawings of the manipulator, the

real values can be slightly different owing to the machining errors. In this design a3 and d4 are

interchangeable; in other words, either a3 or d4 has a non-zero value.

Table 3.2 Calibrated values of non-zero DH parameters.

Variable a 1 a 2 d 1 d 4 d 6

Length (cm) 1.35 17.75 11.4 10.25 6.4

32

3.2.2 Software

The control software of the manipulator was written in MATLAB
®
 (MathWorks, Natick,

Massachusetts) version 7.11 (R2010b) using the Symbolic Math Toolbox™ version 5.5 (R2010b).

The actuation of the servomotors required manufacturer’s driver files, which were written in C

and executed as a MATLAB subroutine. Further explanation and implementation code can be

found in Appendix B.

For ease of calibration and testing, a control program (Figure 3.9) was written in

LabVIEW
®
 (National Instruments Co., Austin, Texas) version 2011 (version 10.0) at the

development stage. Although it was later replaced by the more powerful MATLAB
®
 version as

mentioned above, it is occasionally used for joint-by-joint calibration due to its friendly GUI and

straightforward dataflow display. When running this tool, shutting down MATLAB is

recommended because they compete for I/O port access. Dyamixel Manager version 0.98 from

ROBOTIS
®

 is helpful when inspecting individual servomotors, such as instantaneous position,

speed, torque, temperature, voltage, and current, or when performing motor-by-motor calibration.

Note that calibration on a joint-by-joint level is different from the motor-by-motor level since

joint 2 and 3 are powered by dual motors.

33

Figure 3.9 Calibration tool for joint-by-joint inspection written in LabVIEW
®
.

3.3 End-effector

 The task of the end-effector is to remove target blossoms from branches. To accomplish

this goal, an investigation of various designs was conducted by PSU and a full-scale prototype

was developed. The control program was developed by UIUC. However, this end-effector was

not a scaled-down version, and hence a representative model, which had a scaled-down size, was

built by UIUC. This representative model was connected to the custom manipulator for

34

verification of the task planning algorithm. The full-scale prototype is briefly introduced in

section 3.3.1, and the representative model is discussed thereafter.

3.3.1 Full-scale End-effector

 Among a variety of potential blossom removing end-effectors based on air blasts, laser

beams, water jets, and mechanical methods, the device chosen for optimal robustness and

simplicity consists of a clamp-type device containing dual rollers that brush off the blossoms.

Figure 3.10 shows the device, which is powered by two RX-28 servomotors and can be directly

linked to the control network of the manipulator. The performance of the end-effector will be

evaluated and reported by PSU in the future.

Figure 3.10 Design of the end-effector (Courtesy of David Lyons, PSU).

Open

35

 The actions of the end-effector are shown in Figure 3.11. Given the coordinates of the

blossom and its orientation of the branch, the end-effector enters a standby posture, and adjusts

the orientation itself at the first step. In step 1, the two forks of the end-effector move along the

branch and stop at the thinning position. Although not shown in the representative model, the

brushes attached to the two forks remove the blossoms and they spin in step 2. Before the

spinning begins, a sliding mechanism closes the forks; therefore, the end-effector resembles a

clamp holding the target. In the third step, the forks open to the original position, and the end-

effector retreats from the thinning posture to the standby posture.

Figure 3.11 Illustration of the end-effector approaching the target blossom and retreating.

 The robust design of the end-effector as shown here does not require high precision in the

blossom location, as its brushes remove blossoms irrespective of their orientation along the

branch circumference (Figure 3.12a). In addition, the length of the two forks provides a larger

“strike zone” as shown in Figure 3.12b, so accurate placement is not critical.

Branch

End-effector

Standby PostureThinning Posture

Step 1: cutting-in

Step 2:
Thinning

Step 3: finishing

Blossom

36

Figure 3.12 Top view of the relative location between the end-effector and the branches. Only the

top fork (solid-rod) of the end-effector is visible from this view angle, the bottom

one (dotted-rod) is provided for clarity. (a) The orientation of the blossom is not

critical to the end-effector. (b) The length of the forks yields a larger strike zone to

the end-effector for thinning.

3.3.2 Representative End-effector

 Because the size of the full scale end-effector was too large for the scaled-down model

tree, the two forks of the end-effector were represented by a scaffold made from electric wire

(Figure 3.13). Since no end-effector was present, the arrival of the forks at the blossom location

was verified by projecting visible laser light (Figure 3.14a) onto the target coordinates.

Front

(a)

(b)

Back Top Bottom

37

Figure 3.13 Representative end-effector comprising a laser module and a scaffold representing

the two forks in the full-scale end-effector.

 The laser module had a dimension of 8x13mm and comprised a 5 mW laser diode of 405

nm wavelength (blue), a built-in driver circuit, and a housing with collimating lens (AixiZ

Service & International LLC, Houston, Texas). To command the module through the main

program written in MATLAB
®
, an electronic switch was built and actuated by a DAQ device (NI

USB-6008, National Instruments
®
, Austin, Texas, Figure 3.14b). One of its output ports was

responsible for sending a signal from 0 to 5 V to control a circuit of transistor. Although the

voltage requirement of the laser module was 5 V which was equal to the maximum output

voltage of the USB-6008 ports, the voltage at the output port dropped when actuating the laser

module directly. This issue was addressed by applying a PNP transistor that drives the laser

6 cm

2.5 cm

38

module as shown in Figure 3.15, which was drawn using CAD software PSpice (Cadence Design

Systems, Inc, San Jose, California). When 5 V was applied, the laser module was off; while 0 V

was applied, the laser module was on.

Figure 3.14 Left: Blue laser module by AixiZ. Right: DAQ device NI USB-6008 (Courtesy of

National Instruments
®

).

Figure 3.15 Circuit of an electronic switch for the laser module. The values of Rm and Dm are

not listed by the manufacturer.

39

3.4 Task Definition

 As shown in Figure 1.2, a heuristic algorithm, which considered the horticultural practice

of thinning, was developed by PSU and would determine which blossoms should be removed

and which should be retained. The function of the task planning component is shown in Figure

3.16. Having the coordinates of the target blossoms and the orientations of the branches, the task

definition component decides what posture the manipulator should use for thinning. A posture is

composed of a coordinate vector (3-by-1) and an orientation matrix (3-by-3) for the end-effector.

Two task definition methods, the fixed z-axis method (section 3.4.1) and the floating z-axis

method (section 3.4.2), were developed in this study, and the latter requires the current posture of

the end-effector as an additional input argument.

Figure 3.16 Input and output of the task definition unit.

3.4.1 Fixed Z-Axis Method

 A good thinning posture required the two forks of the end-effector to go across the branch,

in other words, the two forks should be aligned to the normal of the orientation of the branch as

shown in Figure 3.17. In a three-dimensional space, the normal of a vector is not unique; instead,

an infinite number of candidates form a normal plane perpendicular to the orientation of the

branch (Figure 3.18). As shown in Figure 3.12b, the end-effector was not sensitive to the depth

changes of the branch, and hence it assumed that the branch lies on a two-dimensional plane as

40

shown in Figure 3.17. A practical solution would imply having the z-axis of the end-effector (tool

frame), which is the direction of the forks, always pointing along the x-axis of the world frame.

To finish the placement, one more axis of the tool frame should be assigned. By aligning the x-

axis of the tool frame with the normal vector of the branch at the blossom location, the

orientation of the end-effector can be determined.

Figure 3.17 A simplistic 2D model illustrates how placing the end-effector at the thinning

position was accomplished by aligning the tool frame.

 Before placing the end-effector at the target to reach its goal configuration, the

manipulator entered a standby position, which was at a 4-cm distance from the target position

along the z-axis of the tool frame as shown in Figure 3.11. In effect, the possibility of a collision

between the end-effector and the branch would decrease because the robot was moving at a safe

distance when traveling from one target to the next.

Bottom Fork

Top Fork

Branch
Scaffold

z
x

y

World Frame

Orientation
z6

x6 y6

Tool Frame

Orientation

Normal

41

3.4.2 Floating Z-Axis Method

 The fixed z-axis method applies in a simplified world, which was not always the case.

Thus, a floating z-axis method was developed for situations with more variation. Figure 3.18

shows under which conditions the floating z-axis method becomes imperative. The fixed z-axis

method cannot move the manipulator to the marked target blossom because the location of the

target was close to the boundary of the manipulator’s operational space. With the fixed z-axis

method, the operational space was actually decreased due to a stricter limitation on the postures.

As mentioned earlier, any potential posture must have the z-axis of the tool frame aligned with

the normal plane as displayed. Thus, the floating z-axis method was designed to search this plane

and find the optimal solution.

Figure 3.18 The fixed z-axis method does not work for targets close to the boundary of the

operational space of the manipulator.

zx

y

World Frame

Orientation

Normal Plane

Orientation of Branch

Branch

42

 In Figure 3.19, all orange vectors lie on the same normal plane. Since they all point to the

target blossom, they were all potential solutions. However, not all of them were feasible for the

manipulator due to a finite operational space. After the examination of feasibility, there might be

more than one candidate left and a final arbitration is needed. The first step in the arbitration

process was scouting the normal plane and sampling all qualified vectors. The second was to test

the feasibility of the candidate vectors by solving for their inverse kinematics solutions. Finally,

the most appropriate candidate would be selected by measuring the distance between the current

configuration and for feasible vectors.

Figure 3.19 Possible solutions (orange vectors) of the tool frame lie on the normal plane of the

branch.

 Including all the orange vectors, there are infinite potential vectors in the normal plane

(Figure 3.19), and hence enumeration is not a possible strategy. A practical method is sampling

the normal plane by evenly dividing the dotted circle. The initial step is randomly picking a point

Orientation of Branch

n Potential Z-Axes

Normal Plane

Random Point p

v1

vn

vi

vi+1

43

p on the normal plane, where p and the target blossom form a vector v1. If v1 was chosen as the

final solution, the final orientation for the tool frame would be R1, which is a 3-by-3 matrix. This

matrix could also be expressed as [rx, ry, rz]. The ry was simply the 3-by-1 orientation vector of

the branch, the rz was identical to v1, and rx could be decided by the cross product from ry to rz.

However, R1 was not always the solution. Instead, the final candidate can be in the range R1,

R2, ..., Rn, which represent n corresponding rotation matrices to n vectors on the dotted circle in

Figure 3.19. All these vectors have a uniform angle difference θ, which is (360/n) ° about the

branch orientation vector ry. Note that all the potential rotation matrices have the same ry, and

hence there exists a relationship as follows:

 1

c 0 s

0 1 0

s 0 c

i i iR R R R

(2)

 In equation 2, Ri+1 can be acquired by simply rotating Ri through θ around the branch

vector, and this operation can be completed by multiplying Ri by a transformation matrix Rθ for

rotation. Since R1 is solved in the beginning, the R2, R3, ..., Rn can be solved successively.

 After sampling, there would be n rotation matrices R1, R2, ..., Rn. By sending the pairs of a

rotation matrix and coordinates of target blossoms to the inverse kinematics calculator, which is

described in the next section, the feasibility of these candidates can be examined. The calculator

outputs travel angles for each joint. If any of the angles is out of the predefined range, the

corresponding candidate was labeled as unfeasible and ignored in the next step.

44

 Generally, there are multiple feasible solutions left after the inverse kinematics

calculation. Therefore, a criterion must be applied to ensure the uniqueness of the final answer.

The idea of “minimum effort” as a criterion was considered here. The movement from the

current posture to the next posture should be minimized because in the real world, intuition

favors shortcuts which typically save energy and time. And hence, the criterion was stated as

follows:

0

6

0, ,[1,]
1

distance(,) minf i k ik n
i

q q q q

 Where the distances from the current configuration q0, which is composed of six joint

variables θ1, θ2, ..., and θ6, to all the feasible configurations qk are calculated first; subsequently,

the posture yielding the minimum value was taken as the final answer, qf. The proposed floating

z-axis method is summarized in a flowchart as shown in Figure 3.20. Like the fixed z-axis

method, the standby positions are obtained by retreating 4 cm away from the thinning position

along the z-axis of the tool frame. The standby postures rather than the thinning postures are

regarded as the “current configurations” when evaluating the distances between q0 and qk.

45

Figure 3.20 Flowchart of the floating z-axis method for task definition.

3.5 Inverse Kinematics Calculation

In the working space, the location of the end-effector was described by a set of x-y-z

coordinates and an orientation vector; they could be expressed as a 3-by-1 position vector oef (the

same as o6
0
) with a 3-by-3 orientation matrix Ref (identical to R6

0
). The numbering in the

superscripts and subscripts refers to the frame system as shown in Figure 3.8. To move the

manipulator, the input geometrical information oef and Ref were described in a Cartesian

coordinate system. However, to actuate each joint, the information described in configuration

space was required which means the revolving degree of each motor should be specified. The

calculation of an inverse kinematics solution (IKS) was responsible for bridging the

transformation process.

46

Generally, finding solutions to this problem was difficult. Fortunately, solutions to six-DOF

manipulators with the last three joints configured as a spherical wrist can be found by a strategy

called kinematics decoupling. The strategy decouples the problem into two smaller problems, the

inverse position kinematics and the inverse orientation kinematics. The solutions are listed as

follows in advance, and the definition of symbols and detailed step-by-step calculation are

explained in later subsections.

1 atan2(,)c cy x

2 2
2 3 3 2 4 3 1 1atan2(,) atan2(,) with , c c cs r a s a d c r x y a s z d

2 2 2 2

2 4 2 4

2
3 2atan2(1 ,) with () / ()r s a d a dD D D

4 23 13 23 13atan2(,) atan2(,)r r or r r

2
5 33 33atan2(1 ,)r r

6 32 31 32 31atan2(,) atan2(,)r r or r r

 In the above solution, the matrix element rij comes from R6
3
or T6

3
 rather than the T6

0

mentioned earlier. Note that the definitions of atan2 adopted in this thesis is atan2(y, x), which

agrees with MATLAB
®
, instead of the atan2(x, y) accepted by Spong et al. (2006).

3.5.1 Inverse Position Kinematics

 The first step in kinematics decoupling was recovering the position of the wrist center

oc

47

from the input argument oef as follows.

3

0

0

1

c

c c ef

c

o o

x

y d R

z

 Secondly, a geometric approach was applied for solving the first three joint variables, which

comprised an elbow manipulator. By projecting this elbow manipulator onto 2D planes, which

are x0-y0 plane and x0-z0 plane, the problem becomes a straightforward trigonometry exercise.

Figure 3.21 Elbow manipulator with frame 0 (Spong et al., 2006).

 In Figure 3.21, the x0 axis and the projection of the manipulator on the x0-y0 plane has an

angle θ1 or:

1 atan2(,)c cy x

 In fact, there can be another solution that represents a leaning-backward posture with the

wrist center very close to the z0-axis.

1 atan2(,)c cy x

48

 Considering that the second answer was not helpful for blossom thinning, the control

software ignored this solution automatically; thus, the uniqueness of θ1 was ensured.

Figure 3.22 Projection plane of links 1, 2 and 3.

Projecting links 1, 2 and 3 and z0-axis on to a plane simplified the problem. As shown in Figure

3.22, θ3 could be solved by applying the law of cosines. Note that the horizontal axis was not

necessary to be x0 or y0. Assigning 2 2

1c c
r x y a and

1cs z d , here yielded:

2 2 2 2

2 4
3

2 4

()
cos()

2

a d r s

a d

2 2 2 2

2 4
3

2 4

()
cos

2

r s a d
D

a d

Z0

Ө2

Ө3

a2

d4

a1

r

s

49

2

3 atan2(1 ,)D D

 The positive and negative solutions for θ3 represent the elbow-down posture and the

elbow-up posture respectively. It is obvious that there are two solutions for θ2 corresponding to

each θ3 respectively.

2 3 3 2 4 3atan2(,) atan2(,)s r a s a d c

3.5.2 Inverse Orientation Kinematics

 The first three joint variables θ1, θ2, and θ3 determined the rotation matrix R3
0
 and

transferred the reference frame from 0 0 0 0
o x y z to 3 3 3 3

o x y z , which was the frame of the wrist center.

Since R (input) and R3
0
 were both known, the R6

0
 was solved as follows.

6 0 3

0 3 6R R R R

3 0 1 0

6 3 3() () known valuesTR R R R R

In addition, R6
3
 can be represented by θ4, θ5, and θ6 as

4 5 6 4 6 4 5 6 4 6 4 5

3

6 4 5 6 4 6 4 5 6 4 6 4 5 4 5 6

5 6 5 6 5

 expression in , , and

c c c s s c c s s c c s

R s c c c s s c s c c s s

s c s s c

Where c4 represents cosθ4, etc. The above form agrees with a specific form of rotation called

Euler angle transformation (Spong et al., 2006). To find a solution to it, the following two cases

must be considered.

Case 1: Not both r13 and r23 of R6
3
 are zero.

50

If the condition, r33 ≠ 1 or -1. Thus, c5 = r33, and 33

2

5 1s r .

2

5 33 33atan2(1 ,)r r

With s5 > 0, θ4 and θ6 can be determined by

4 23 13atan2(,)r r

6 32 31atan2(,)r r

Similarly, with s5 < 0

4 23 13atan2(,)r r

6 32 31atan2(,)r r

Case 2: Both r13 and r23 are zero.

Since R6
3
 is a rotation matrix, orthogonality implies r33 = 1 or -1 with r31 = r32 = 0.

11 12

3

6 21 22

0

0

0 0 1

r r

R r r

If r33 = 1, then θ5 is 0 and the equation becomes

4 6 4 6 4 6 4 6 4 6 4 6

3

6 4 6 4 6 4 6 4 6 4 6 4 6

0 0

0 0

0 0 1 0 0 1

c c s s c s s c c s

R s c c s s s c c s c

Where the sum of θ4 + θ6 can be solved by

4 6 21 11 12 11atan2(,) atan2(,)r r r r

51

 Although the sum can be determined, there can be infinite combinations of θ4 and θ6. To

address this issue, θ4 was set to 0 in the control software. This is reasonable, since this choice

minimizes the movement of the manipulator. Similarly, if r33 = -1, then θ5 is 180°. Thus,

4 6 4 6 4 6 4 6 4 6 4 6

3

6 4 6 4 6 4 6 4 6 4 6 4 6

0 0

0 0

0 0 1 0 0 1

c c s s c s s c c s

R s c c s s s c c s c

And the solution becomes

 4 6 12 11atan2(,)r r

Where the default value of θ4 was set to 180°.

3.5.3 Uniqueness and Solution Set

 The previous two subsections indicate that there is no unique solution to any input. In fact,

all valid inputs fall into one of three scenarios being four solutions, two solutions, and infinitely

many solutions. In the most common scenario, which is the four-solution case, there are two

possible θ3 with two θ2, two θ4, two θ6, and four θ5 accordingly; their potential combinations are

shown in Table 3.3, where I, II, III, and IV are the number of possible values. The control

software utilized the same layout to store its working variables. The reason why the number of

combinations is not 1×2×2×2×4×2=64 is that some joint variables are dependent upon others; for

example θ2 is derived from θ3 as mentioned earlier.

52

Table 3.3 Potential combinations of all possible values of joint variables.

 The non-uniqueness issue can be partially solved by setting the operating range of the

motors, which are the actuators of each joint, as listed on Table 3.4. For example, if for a given

input the calculation provides two possible values of θ4, which are 0° or 180°, obviously the

latter is not applicable because the range of joint 4 is set to [-150°, 150°]. Hence, one or two

solutions can be removed from the list of potential candidates. A second helpful tactic is giving

default values or setting preferences for the remaining candidates allowing convergence to a

single solution. This is especially important in the infinitely-many-solution scenario. As

discussed in the previous subsection, when θ4 + θ6 = 180°, θ4 is set to 0° for a feasible solution.

Table 3.4 Operating range of motors for each joint.

 Note that the operating ranges for individual motors are higher than the manually-set

limits except for joint 4 and 6. The current limits are determined by the design of the robot and

assumptions regarding the operation conditions. For example, the operating range for the motors

θ 1 θ 2 θ 3 θ 4 θ 5 θ 6

(1) (2) (2) (2) (4) (2)

1 I I I I I I

2 I I I I II I

3 I II II II III II

4 I II II II IV II

Solution

Joint Variable

(Num. of candidates)

Joint 1 2 3 4 5 6

Upper limit 135° 99° 90° 150° 91° 150°

Lower limit -135° -45° -99° -150° -91° -150°

53

on joint 3 is 300° in total, but the given boundaries only reach 189° (|90°|+|-99°|) as maxima,

because some postures of the manipulator are not feasible for blossom thinning, for example, a

posture where the end-effector is pointing away from the tree.

54

4 EXPERIMENTAL DESIGN AND RESULTS

 In this chapter, assumptions and experiments of various stages are introduced, starting

from a simplistic 2D model (section 4.2) to a more advanced representative case (section 4.3).

4.1 World Frame and Tool Frame Definition

 A world frame, also known as a base frame, was the reference coordinate system in

which the manipulators and all other objects were positioned. The coordinate system 0 0 0 0o x y z in

Figure 3.8 was adopted as the world frame for the experiments. The origin of 0 0 0 0o x y z was

assigned to the floor, where the bottom of the manipulator is located. The tool frame is the

coordinate frame attached to the end-effector, which was the 6 6 6 6o x y z in Figure 3.8. Without the

end-effector, the DH parameter d6 was 6.4 cm; with the representative end-effector, d6 extended

6 cm along the z-axis and became 12.4 cm.

4.2 2D Simplistic Model

 At this stage, the orientations of the branches were assumed to have no projection onto

the x-axis of the world frame. Although in the real world, the branches have depth changes, this

is a sound assumption: As shown in Figure 3.12b, the end-effector was not sensitive to depth

variations, and hence the experiments at this stage still reflected the features of real situations. In

this section, both of the two data sets were constrained to a 2D plane, which was the best case for

the fixed z-axis method to place the end-effector at appropriate orientations.

55

4.2.1 Experimental Arrangement

 The first data set was from a branch as shown in Figure 4.1. This branch was horizontal

and perpendicular to the scaffold; it pointed to the direction of (0, 1, 0) in the world frame. The

target blossoms were generated by the 5-8 pattern with red stickers as targets, while the yellow

stickers indicated blossoms that should be retained. There were 7 targets out of 10 blossoms in

data set 1. The second dataset (Figure 4.2) comprised a horizontal segment and a leaning

segment with a 45° angle between them. Among the 8 blossoms, there were 6 targets in this set;

three on the first segment, and the remaining three on the second segment.

Figure 4.1 Data set 1 comprised a horizontal branch in the Y-Z plane without a projection on the

x-axis. The red/yellow stickers represent target/non-target blossoms.

Orientation (0, 1, 0)

(23.0, 6.5, 31.5)

8.0
6.511.0

12.5
14.0

15.5
17.0

8 cm 5 cm

56

Figure 4.2 Data set 2 included target blossoms on a horizontal segment and a leaning segment.

4.2.2 Results and Discussion

 In data set 1, the end-effector reached the first six targets successfully. While trying to

reach the 7
th

 target, which has coordinates of (23, 17, 31.5), the end-effector collided with the

branch. After the collision, the end-effector still arrived at the target and projected the laser beam

onto the sticker. This event demonstrated two things: First, preparing the end-effector at a

standby position did not always guarantee a collision-free movement. Second, collision might

not necessarily be a grave error. As mentioned earlier, the branches had some flexibility, so a

slight collision might not influence the arrival of the end-effector and subsequent removal of

blossoms.

 To have a closer look at the path to the 7
th

 target, the movement is broken down and

displayed in Figure 4.3. The manipulator started from (1), went underneath the branch (2), raised

Orientation
(0, -1, 1)

Orientation
(0, -1, 0)

45°

(23.0, -3.0, 31.5)

-3.0 -4.5
-8.5

-7.5

-9.5

-12

57

up (3), and finally bumped into the branch while moving forward (4). This was far from the

expected straight-line movement. The main reason was that all the motors were actuated at the

same speed at the same time; however, their travel distances were different. Thus, unexpected

intermediate postures were encountered during the movement. One potential solution was to set

several intermediate postures between the standby posture and the thinning posture along the

expected path. This results in an irregular movement, since the manipulator starts and stops

several times along the path. With delicate velocity control for individual motors, this

phenomenon could be improved. Yet, the computing power for the additional inverse kinematics

computation to each intermediate posture will slow down the process significantly. Currently

each posture required about 0.11 seconds for finding an inverse kinematics solution. Without

intermediate postures, every target required 0.22 seconds for computing the thinning posture and

standby posture. More intermediate postures would increase the time requirement significantly,

for example, ten of them would add 1.1 extra seconds.

58

Figure 4.3 Break-down movement for the collision of the 7
th

 target in the data set 1. The path

from the standby posture to the thinning posture was not a straight line. The

manipulator started from posture (1) and proceeded to posture (4), where the collision

occurred.

 All the targets in data set 2 were visited smoothly. Figure 4.4 shows that the laser projects

light onto the rims of target 1, 3, and 4 rather than at the centers. However, this was not a

significant issue since the real blossoms are larger than the stickers. The orientation of the

scaffold changed according to the orientation of the branch segment. It indicated that the

algorithm calculated the normal correctly and ensured that the forks of the end-effector traversed

across the branch completely.

59

Figure 4.4 Results of data set 2. The orientation of the end-effector changes along the branch.

4.3 3D Model

 After the discussion of the two-dimensional simplistic examples, this section discusses a

more representative case being a three-dimensional model of the branch. The floating z-axis

method was applied here for placing the end-effector at an appropriate orientation. In addition, to

ensure the path from the standby posture to the thinning posture remained a straight line, varying

amounts of the intermediate points were tested to study their influence.

4.3.1 Experimental Arrangement

 Unlike data set 1 and 2, data set 3 was defined in a three-dimensional space (Figure 4.5).

This branch contained three segments, which had orientation (0, -1, 1), (-1, 1, 1), and (-1, -1, 0);

only the second and third segment were used in this section. All three digits of the coordinates

for each target were unique. The increments of the coordinates between targets did not perfectly

Target 1 Target 2 Target 3

Target 4 Target 5 Target 6

60

agree with the orientation vectors. The purpose of this design was to reflect the inaccuracy in a

real orchard operation and to test the robustness of the proposed task planning algorithm. The

other feature of this example was the “heads up” position of the branch. As displayed in Figure

4.5, the location of the branch was higher than the manipulator, and hence it was not possible to

implement the fixed z-axis method. Since its z-axis of the tool frame was always pointing along

the x-axis of the world frame, the fixed z-axis method only applied when the manipulator could

“overlook” the target. This was the motivation for designing a more universal method termed the

floating z-axis method (see subsection 3.4.2).

Figure 4.5 Data set 3 is a branch in a three-dimensional space. Compared with data set 1 and 2,

this is a more representative example where the fixed z-axis method failed.

NOT USED

Orientation
(0, -1, 1)

Orientation
(-1, -1, 1)

(18.5, -5.7, 42.0)

(18.0, -7.0, 42.5)

(16.0, -8.3, 43.5)
(15.0, -8.9, 44.5)

(14.0, -9.5, 45.0)

Orientation
(-1, -1, 0)

61

4.3.2 Results and Discussion

 The floating z-axis successfully determined the thinning posture for the end-effector as

shown in Figure 4.6. This method enabled the end-effector to point upward for approaching the

“overhead” targets. Since the laser was approaching from the bottom, its illuminating spots were

not visible from the side views in Figure 4.6. There was a large movement to transit from target 2

to target 3; nevertheless, from target 1 to target 2 and from target 3 to target 5, the movements

were modest. This was expected since the “minimum effort” principle was the central premise of

this method. To adequately scout the normal plane (Figure 3.19), n was assigned the number 50

and the distance between the solution candidates was 7.2° (360° divided by 50). Under this

setting, a posture would require 5.5 seconds (0.11 seconds times 50) to find.

 By using n of 10 and 20, this method failed frequently, and no feasible posture was found

for placing the end-effector. Using a value of 30 or 40, the paths generated by different rounds

were visually distinct, and the repeatability of resulting paths was low. Some of the paths were

counter intuitive and seemed to take a longer route compared to the intuitive ones. The reason

was that this method required the current posture for computing the next posture, and errors

accumulated and passed through all the visits that the manipulator made. The maximum error for

the initial vector was (360/n)° from the optimal one. Consequently, the higher the n value is, the

lower the error can be, which increases the repeatability of the resulting paths. Although

increasing the n value improved resulting paths, the tradeoff between time and performance was

expensive. A 5.5-second cost was already significant under the setting of 50; a higher value of n

might be expensive in terms of time consumption.

62

Figure 4.6 Results of data set 3. The floating z-axis method enables the end-effector for pointing

upward to the targets.

 The floating z-axis method ensured an appropriate final posture for the end-effector, but

it did not consider the path that the manipulator was following. Although 4-cm branch distance

standby postures were calculated for all targets, the end-effector collided with the branch

frequently, in fact, none of the routes were collision-free. The break-down movement in Figure

4.7 showed how the end-effector approached the 1
st
 target in data set 3 without visiting any

intermediate points. The end-effector started from the standby posture (1), collided with the

branch while moving toward of the branch (2), ascending up to the thinning position (3), and

finally collided with the target position from the back of the branch (4). Similar to the collision

of the 7
th

 target in data set 1 (Figure 4.3), the demonstrated path resembled an arc rather than a

straight line. However, not all collisions in data set 3 can be ignored. Since they deformed the

representative end-effector, they must be avoided.

Target 1 Target 2 Target 3

Target 4 Target 5

63

 To have a “straighter” cut-in path rather than a curved one, 20 intermediate points

(including the standby point) were assigned and evenly distributed from the standby posture to

the thinning posture. All twenty points required computing resources for inverse kinematics

solutions, and they added 2.2 seconds (0.11 times 20) to the 5.5 seconds for orientation

calculation. The total computing time for a single target blossom would be 7.7 seconds (2.2 plus

5.5). Fewer intermediate points being two, five, and ten were also tested. Two and five points

improved somewhat but could not avoid most of the collisions; ten points resulted in minor

occasional brushes with the branch. When the number of points increased to 20, the path became

collision-free.

Figure 4.7 Break-down movement of the collision in the data set 3. Collisions take place in frame

(2) and frame (4) separately.

(1) (2) (3) (4)

64

5 CONCLUSIONS

 The first part of this chapter summarizes the achievements of this study, and addresses

the three research objectives listed in section 1.2. The second part collects valuable insights and

identifies insufficiencies of this study.

5.1 Summary

 A representative model of peach tree was built for experimental use. Abstracting the

features of the scaffolds, branches, and blossoms from real trees helped the design of the end-

effector and the task planning algorithm. The model tree enabled the proof-of-concept

experiment in the laboratory. A custom tabletop manipulator with sufficient payload was built

from servo motors for this research. Software written in MATLAB
®
 and a calibration tool written

in LabVIEW
®
 were also developed to control the manipulator.

 A task planning algorithm for a manipulator was developed for automated selective

thinning of peach. For task definition, a rudimentary fixed z-axis method was first tested in two-

dimensional simplistic cases without any problems. However, the fixed orientation of the tool

frame imposed a strict limitation on the manipulator and greatly reduced its operational space.

With the proposed floating z-axis method, the algorithm could automatically decide the best

approaching orientation for the end-effector. This method was tested in a more representative

three-dimensional case and the end-effector successfully visited all the targets.

 To reduce collisions, the end-effector approached a target blossom from a 4-cm-away

65

standby position and proceeded along intermediate points evenly allocated along the z-axis of the

tool frame. This arrangement ensured that the path was close to a straight line rather than a curve.

In addition, instead of moving among target blossoms, the end-effector traveled from one

standby point to another, which reduced the probability of collisions. On average, a target

required 7.7 seconds for finding a path toward the next target. In conclusion, this study

successfully validated a task planning algorithm for automated selective thinning, and proved the

concept using a table-top robot model.

5.2 Future Development

 Although this thesis has demonstrated the concept of automated selective thinning in a

scaled-down prototype, various issues remain unsolved and need to be addressed. Section 5.2.1

through 5.2.3 list the tasks that should be continued in the laboratory. Sections 5.2.4 provides

some suggestions for the integration between the manipulator unit and the computer vision unit.

Section 5.2.5 lists some ideas about choosing an industrial-grade manipulator, a carrying vehicle,

and other devices for the full-scale test. Section 5.2.6 discusses the changes needed to introduce

the robotic system into current orchard systems. Section 5.2.7 discusses methods to expedite the

control software, and the improving procedures that could be implemented in the future.

5.2.1 Further Experimental Analysis

 The experiments conducted in this research have shown the feasibility of an end-effector

to approach target blossoms. However, there was only one branch in each data set. More

experiments should be conducted to analyze the scenarios of multiple branches as shown in

66

Figure 5.1. In these cases, other branches become obstacles for the target branch and set

constraints for the manipulator’s movement. Consequently, locating all obstacles and planning a

collision-free path will be crucial. It is clear that applying robotic technologies in orchards

cannot take place without adapting the orchard itself to the robotic intervention. For instance,

proper pruning with object avoidance in mind may be helpful. Further experimental analyses

should draw conclusions regarding what can be done at the engineering side, and what should be

done at the horticultural side.

Figure 5.1 Scenario of multiple branches that might become obstacles.

5.2.2 Extension of the Floating Z-Axis Method

 The floating z-axis method achieved satisfying results in this study. However, there is

ample room for improvement. In subsection 3.4.2, the criterion for “minimum effort” was merely

the difference of joint variables in travel angles. A potential flaw behind this method is that all

joints are equally weighed during the calculation, which is not fully convincing. Considering the

zx

y

World Frame

Orientation

Target Branch

(into the plane)

Obstacle Branch

(out of the plane)

Scaffold

67

torque involved, moving the joint 1 (waist) of a manipulator requires more energy compared to

moving joint 6 (wrist) at the same angular speed for identical travel angles. A dedicated weighing

function will make this method more robust and efficient.

5.2.3 Path Planner and Trajectory Planner

 The task planning algorithm proposed in this method does not have a well-defined “path

planner” or “trajectory planner.” By assigning the 4-cm-away standby point, the manipulator was

intentionally kept away from the branch being the potential obstacle. However, in cases such as

shown in Figure 5.1, this method might become invalid in a more complicated environment.

Thus, a path planner that finds a feasible path would be essential. To do so, a camera mounted on

the end-effector might be necessary for enhanced perception of the surrounding environment.

Currently, the manipulator moves at the same speed for all joints at all times. However, the

manipulator does not need to move slowly while traveling at a distance from the potential

obstacles. A trajectory planner can provide a more targeted velocity and acceleration control and

reduce the time of operation. One important factor that should be considered is the computing

time of these planners. A balance between performance and time consumption should be a

central concern in the design process.

5.2.4 Computer Vision Unit

 In this thesis, all the test data of target blossoms were artificial rather than measured by a

computer vision unit. The vision team of ITTF project has achieved reasonable accuracy in

determining blossom locations (Nielsen et al., 2012), but their method still suffers from

68

occlusion (low depth visibility) and limitation to only night time operation to allow controlled

lighting. A possible solution is adding an additional camera and light source for tuning. A

combination of a fixed camera and a wrist-mounted camera can benefit the collision-free path

planning and the placement of end-effector. If higher accuracy is required, it is also possible to

equip the robotic thinning system with a vision-system-driven servo control unit, the so-called

visual servo control, as discussed by Spong et al. (2006) and Hutchinson et al. (1996).

5.2.5 Selection of Carrying Vehicle and the Manipulator

 To travel in the orchard and visit all trees, there is a need for a moving platform to carry

the robotic thinning system. The platform can either be a trailer attached to a tractor (Figure 2.7),

or an unmanned vehicle such as shown in Figure 2.3. The platform must have an elevating

device to change the height of the manipulator since the tree can have a height of 4 m.

Considering the weight of industrial-grade manipulators, the elevator might be actuated

hydraulically. The moving platform will at least carry the manipulator, robot controller with

computer, vision unit, and elevating unit. Extra electric DC power source or transformers might

increase the total weight as well. It might be helpful to identify potential carriers in advance, and

take their specifications into account while choosing the other components mentioned above.

 Finding or developing the ideal robotic arm for thinning operations is essential. Although

there are some huge manipulators in the market, it is impractical to deploy them due to the

overinvestment in payload and their high weight. For example the FANUC M-2000iA/900L

robot has a vertical stroke of 6.2 m and a horizontal stroke of 8.2 m, but its 900 kg payload is

excessive with an extreme weight of 9600 kg in total. An in-depth analysis must be conducted to

69

specify the manipulator range, speed requirements, and payload. Since the total weight of all the

instruments must not exceed the payload of the moving platform, a compromise between various

requirements is expected. An option that might be considered is the possibility to conduct various

tasks such as thinning, harvesting, spraying and others.

5.2.6 Adaptation of the Orchard System

 Adaptation of the production system is common in the history of agricultural automation

and mechanization, and the same is needed in orchards where changes such as tree spacing and

pruning methods need to be made to the current production system to allow robotic operations.

To accomplish this robot-friendly orchard, close collaboration between agricultural engineers and

horticulturalists is essential.

5.2.7 Software Implementation

 The speed of the current control software was far from satisfying. By using the floating z-

axis method and a standby posture with 20 intermediate points, the software required about 7.7

seconds for the path calculation. Although upgraded hardware could be helpful, radical

improvements would be more influential. Some possible solutions are provided here:

 Multi-threaded computing. Modern computers are usually equipped with multiple

processors or cores in the CPU, but MATLAB
®
 only uses one by default. The end-effector was

set to stay in the thinning posture for 5 seconds, because the brushes were assumed to use this

time for blossom removal, during which MATLAB
®
 idles. By using a specialized software

structure, one processor could keep calculating the inverse kinematics solutions and store them in

70

a first-in-first-out queue. At the same time, other processor could request the queue and

command the manipulator.

 Dedicated calculation strategy. Solving intermediate postures contributes significantly to

the total calculation time. However, since intermediate postures are close together, the distances

among them are short, which would imply that the IKS can be computed in an inexpensive

manner. Besides, more advanced control theory might be helpful to smoothen the current

irregular motion on the cut-in or finishing path for thinning.

 Third-party software. Completely customized software made structure modification and

concept verification relatively easy. It did benefit this study significantly, but it did not utilize

much of the knowledge from the open world. In future deployment, it would be proper to

exhaustively survey the available software resources and take advantage of them. The Robotics

Toolbox, which is implemented on MATLAB
®
 and maintained by Corke (2011), might be a good

starting point.

71

REFERENCES

Baeten, J., K. Donné, S. Boedrij, W. Beckers, and E. Claesen. 2007. Autonomous fruit picking

machine: A robotic apple harvester. In 6th Intl. Conf. on Field and Service Robotics, 531-

539. Chamonix, France: Springer.

Bassi, D., and R. Monet. 2008. Botany and Taxonomy. In The Peach: Botany, Production and

Uses, 1-36. D. R. Layne, and D. Bassi, eds. Cambridge, MA: CABI Publishing.

Bergerman, M., S. Singh, and B. Hamner. 2012. Results with Autonomous Vehicles Operating in

Specialty Crops. In 2012 IEEE Intl. Conf. on Robotics and Automation, 1829-1835. Saint

Paul, MN: IEEE.

Corke, P. 2011. Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Berlin,

Germany: Springer.

De Koning, C., and J. Rodenburg. 2004. Automatic milking: state of the art in Europe and North

America. In Automatic milking: a better understanding, 27-37. A. Meijering, and H.

Hogeveen, eds. The Netherlands: Wageningen Academic Pub.

DeJong, T. M., K. R. Day, J. F. Doyle, and R. S. Johnson. 1994. The Kearney Agricultural Center

perpendicular "V" (KAC-V) orchard system for peaches and nectarines. Horttechnology

4(4): 362-367.

Edan, Y., T. Flash, U. M. Peiper, I. Shmulevich, and Y. Sarig. 1991. Near-minimum-time task

planning for fruit-picking robots. IEEE Trans. on Robotics and Automation 7(1): 48-56.

Edan, Y., D. Rogozin, T. Flash, and G. E. Miles. 2000. Robotic melon harvesting. IEEE Trans. on

Robotics and Automation 16(6): 831-835.

Fallahi, E., B. Fallahi, and I.-J. Chun. 2006. Use of New Blossom Thinners to Reduce Fruit Set

and Improve Fruit Quality in Apples, Peaches, Nectarines, and Plums. In Intl. Symp. on

Endogenous and Exogenous Plant Bioregulators, 159-164. Seoul, Korea: ISHS.

72

Glozer, K., and J. Hasey. 2006. Mechanical thinning in cling peach. HortScience 41(4): 995-995.

Grift, T., Q. Zhang, N. Kondo, and K. Ting. 2008. A review of automation and robotics for the

bioindustry. J. of Biomechatronics Engineering 1(1): 37-54.

Hamner, B., M. Bergerman, S. Singh, and G. House. 2011. Autonomous Orchard Vehicles for

Specialty Crops Production. In 2011 ASABE Annual Intl. Meeting. Louisville, KY: ASABE.

Hutchinson, S., G. D. Hager, and P. I. Corke. 1996. A tutorial on visual servo control. IEEE

Trans.on Robotics and Automation 12(5): 651-670.

ISO. 1994. ISO 8373:1994 Manipulating industrial robots - Vocabulary. Geneva, Switzerland:

ISO.

Kondo, N., M. Monta, and N. Noguchi. 2011. Agricultural Robots: Mechanisms and Practices.

Melbourne, Australia: Trans Pacific Press.

Kondo, N., Y. Nishitsuji, P. Ling, and K. C. Ting. 1996. Visual feedback guided robotic cherry

tomato harvesting. Trans. ASAE 39(6): 2331-2338.

Kubota, C., M. A. McClure, N. Kokalis-Burelle, M. G. Bausher, and E. N. Rosskopf. 2008.

Vegetable grafting: History, use, and current technology status in North America.

HortScience 43(6): 1664-1669.

Lely. 2011. Lely's 12,500th Astronaut Robot installed. Cambridgeshire, United Kindom: Lely.

Available at: http://www.lely.com/en/home/media-centre/news-en-events. Accessed 24 June

2012.

Marini, R. P., and G. L. Reighard. 2008. Crop Load Management. In The Peach: Botany,

Production and Uses, 289-302. D. R. Layne, and D. Bassi, eds. Cambridge, MA: CABI

Publishing.

Monta, M., N. Kondo, and Y. Shibano. 1995. Agricultural robot in grape production system. In

1995 IEEE Intl. Conf. on Robotics and Automation, 2504-2509 vol2503. Aichi, Japan: IEEE.

73

Nielsen, M., D. Slaughter, and C. Gliever. 2012. Vision-based 3D Peach Tree Reconstruction for

Automated Blossom Thinning. IEEE Trans.on Industrial Informatics 8(1): 188-196.

ROBOTIS. 2006. USB2Dynamixel User's Manual. Ver. 1.2. Seoul, Korea.: ROBOTIS, Co., Ltd.

Schupp, J. R., T. A. Baugher, S. S. Miller, R. M. Harsh, and K. M. Lesser. 2008. Mechanical

thinning of peach and apple trees reduces labor input and increases fruit size.

Horttechnology 18(4): 660-670.

Sciavicco, L., and B. Siciliano. 2000. Modelling and Control of Robot Manipulators. Advanced

textbooks in control and signal processing. Second ed. London, United Kindom: Springer.

Spong, M. W., S. Hutchinson, and M. Vidyasagar. 2006. Robot modeling and control. Hoboken,

NJ: John Wiley & Sons.

Tung, C. P., and A. C. Kak. 1996. Integrating sensing, task planning, and execution for robotic

assembly. IEEE Trans. on Robotics and Automation 12(2): 187-201.

USDA-NASS. 2012. Noncitrus Fruits and Nuts 2011 Preliminary Summary. ISSN: 1948-2698.

Washington, D.C.: USDA National Agricultural Statistics Service.

Van Henten, E. J., J. Hemming, B. A. J. van Tuijl, J. G. Kornet, J. Meuleman, J. Bontsema, and E.

A. van Os. 2002. An autonomous robot for harvesting cucumbers in greenhouses.

Autonomous Robots 13(3): 241-258.

Van Henten, E. J., J. Hemming, B. A. J. Van Tuijl, J. G. Kornet, and J. Bontsema. 2003a.

Collision-free motion planning for a cucumber picking robot. Biosystems Eng.86(2): 135-

144.

Van Henten, E. J., B. A. J. Van Tuijl, J. Hemming, J. G. Kornet, J. Bontsema, and E. A. Van Os.

2003b. Field test of an autonomous cucumber picking robot. Biosystems Eng.86(3): 305-313.

74

APPENDIX A: Design of Peach Tree Model

Figure A.1 Drawings of peach tree model. Dimensions are in mm.

75

APPENDIX B: Control Software

 The execution procedures of the control software are summarized as a flowchart in

Figure B.1. The program requires the manipulator’s information, which includes the DH

parameters and the transformation matrices being T3
0
 and T6

0
. The positions and orientations of

target blossoms and branches are also required. The complete implementation is attached in the

following pages.

Figure B.1 Flowchart of the control software.

76

function MainControl_v09

% Filename: MainControl_v09

% Programmer: Fu Ouyang

% Date: June 24, 2012

% Description: This version is a standalone function comprise all the

% other subroutines (also functions)in the same script.

% Beyond this, it is identical to MainControl_v08

%% Loading & Setting

% --- Adding Directory ---

% addpath('Subroutine_Customized'); % Not necessaty for this version

% --- Loading DH parameters (Generated by FK_v04.m) ---

addpath('Load');

load('DH_Parameters'); % It includes: a, af, d

d(6) = d(6) + 4; % length of end-effector

% --- Loading Transformation Matrix ((Generated by FK_v04.m)) ---

addpath('Load');

load('TransMat');

syms th1 th2 th3 th4 th5 th6; % variables in T03, T06

% --- Limit of Joint Variables (q's) in degree ---

LimU = [135; 100; 90; 150; 91; 150]';

LimL = [-135; -45; -99; -150; -91; -150]';

% === User Input ===

% An complete input includes a 3 by 3 orientation matrix R06 and a 3 by 1

% position vector of the endeffector ptEF as follows.

% |- rx1 ry1 rz1 -|

% R06 = [Rx Ry Rz] = | rx2 ry2 rz2 |

% |- rx3 ry3 rz3 -|

% ptEF = [px; py; pz]

77

% --- Data set 3 ---

inPtEF(:, 1) = [18.5; -5.7; 42.0];

inOrt(:,1) = [-1; -1; 1];

inPtEF(:, 2) = [18.0; -7.0; 42.5];

inOrt(:,2) = [-1; -1; 1];

inPtEF(:, 3) = [16.0; -8.3; 43.5];

inOrt(:,3) = [-1; -1; 0];

inPtEF(:, 4) = [15.0; -8.9; 44.5];

inOrt(:,4) = [-1; -1; 0];

inPtEF(:, 5) = [14.0; -9.5; 45.0];

inOrt(:,5) = [-1; -1; 0];

%% Initialization of Device

% === Initializing Robot ===

robotStatus('on'); % subroutine

% --- Parameter Setting (for Motor)

% Address value (30)saves the goal position of Dynamixel's Control Table.

P_GOAL_POSITION = 30;

P_Moving = 46;

% --- Define Speed level ---

DefaultSpd = zeros(6,5);

DefaultSpd(:,1) = [5,5,5,5,5,5]';

DefaultSpd(:,2) = [10,10,10,10,10,10]';

DefaultSpd(:,3) = [25,25,25,25,25,25]';

DefaultSpd(:,4) = [50,50,50,50,50,50]';

DefaultSpd(:,5) = [70,70,70,70,70,70]';

% --- Calibration Offset ---

78

% The values here were determined by measuring the errors from rulers.

CalOff = zeros(6,1);

CalOff(1) = 1; CalOff(2) = 0; CalOff(3) = 0;

CalOff(4) = 0; CalOff(5) = 0; CalOff(6) = 0;

% === Initializing End-effector ===

% NI USB-6008 pin of "ao1" & "GND"

ao = analogoutput('nidaq', 'Dev4');

addchannel(ao,1);

set(ao, 'TriggerType', 'Immediate');

putsample(ao,5);

%% Path Planning and Moving

% === Initial Posture ===

R06 = [-1 0 0; 0 -1 0; 0 0 1]';

ptEF = [11.60; 0; 39.50];

JV = nan(1, 6);

% --- Move the manipulator ---

[JVcandidates, ~] = iksdecision(R06, ptEF, a, af,d, T03, LimU, LimL);

[~, ind] = min(sum(abs(JVcandidates),2));

JV(1,:) = JVcandidates(ind,:);

InputPos = angleConv(JV(1,:)) + CalOff;

SeqInstr = [InputPos DefaultSpd(:,2)];

commander(SeqInstr,P_GOAL_POSITION, P_Moving, ao) % instruct the robot

for location = 1 : size(inPtEF,2)

 % === Intermediate Points ===

 numRdn = 50;

 [ortMat, ~] = ortgen_v2(inPtEF(:,location), inOrt(:,location), numRdn);

 inPtEFmat = repmat(inPtEF(:,location), 1, numRdn);

 tic

79

 [JVcandidates, JVsrc] = iksdecision(ortMat, inPtEFmat, a, af,d, ...

 T03, LimU, LimL);

 toc

 % --- Find the closest configuration to the current one ---

 dist = cdist(JVcandidates, JV(1,:)); % custom subroutine

 [~, ind] = min(dist);

 JV(2,:) = JVcandidates(ind,:);

 % --- Find the Standy Posture and all intermediate points ---

 standbyDist = 4;

 numStop = 20;

 deltaStep = standbyDist/numStop;

 for stop = 1:numStop

 clearance = standbyDist - deltaStep*(stop-1);

 zVec = ortMat(:, 3, JVsrc(ind));

 t = [clearance/norm(zVec), -clearance/norm(zVec)];

 pt = [zVec*t(1) + inPtEF(:,location), ...

 zVec*t(2) + inPtEF(:,location)];

 [~, idx] = min([norm(pt(:,1)), norm(pt(:,2))]);

 [JVtemp,~]= iksdecision(ortMat(:,:,JVsrc(ind)), pt(:,idx), ...

 a, af,d, T03, LimU, LimL);

 dist = cdist(JVtemp, JV(1+stop,:));

 [~, id] = min(dist);

 JV(2+stop,:)= JVtemp(id,:);

 end

 InputPos = nan(6,numStop*2+1);

 SeqInstr = nan(6,2,numStop*2+1);

 for pos = 1:numStop

 InputPos(:,pos) = angleConv(JV(2+pos,:));

 SeqInstr(:,:,pos) = [InputPos(:,pos) DefaultSpd(:,1)];

80

 InputPos(:,end+1-pos) = angleConv(JV(2+pos,:));

 SeqInstr(:,:,end+1-pos) = [InputPos(:,pos) DefaultSpd(:,1)];

 end

 InputPos(:,numStop+1) = angleConv(JV(2,:));

 SeqInstr(:,:,numStop+1) = [InputPos(:,numStop+1) DefaultSpd(:,1)];

 commander(SeqInstr,P_GOAL_POSITION, P_Moving, ao)

 JVcurrent = JV(3,:);

 JV = nan(1, 6);

 JV(1,:) = JVcurrent;

end

%% Terminating Device

robotStatus('off');

% =========== End of Main ==========

%% Switch on/off the manipulator

function robotStatus(str)

switch str

 case (Lely, 2011Lely, 2011) % Turn on the robot

 % --- Import the SDK (locate the "dynamixel.dll") ---

 addpath('import')

 addpath('Subroutine_Customized')

 % --- Load Library ---

 loadlibrary('dynamixel', 'dynamixel.h');

 % --- Parameter Setting

 DEFAULT_PORTNUM = 3; % COM3

 DEFAULT_BAUDNUM = 1; % BUS speed: 1 Mbps

81

 % --- Open Device ---

 calllib('dynamixel','dxl_initialize', ...

 DEFAULT_PORTNUM,DEFAULT_BAUDNUM);

 case {'off', 'Off'} % Turn off the robot

 % Close Device

 calllib('dynamixel','dxl_terminate');

 % Unload Library when the program is ended.

 unloadlibrary('dynamixel');

 otherwise

 error('Input argument can only be string "on" or "off."');

end

%% Inverse Kinematics Solution Selector

function [Q_degDepot, Q_srcDepot] = iksdecision(R06, ptEF, a, af,d,...

 T03, LimU, LimL)

numLocation = size(R06, 3);

Q_degDepot = [];

Q_srcDepot = [];

for location = 1 : numLocation

 [Q_deg, ~]= invKinematics(R06(:,:,location), ptEF(:,location),...

 a, af,d, T03);

 for solution = 1:4

 % Within limit check

 CheckU = Q_deg(solution,:) <= LimU;

 CheckL = Q_deg(solution,:) >= LimL;

 if sum(CheckU + CheckL) == 12

 Q_degDepot = [Q_degDepot; Q_deg(solution,:)];

 Q_srcDepot = [Q_srcDepot; location];

82

 end

 end

end

%% Inverse Kinematics Solution Calculator

function [Q_deg, Q_flag] = invKinematics(R06, ptEF, a, af, d, T03)

% === Documentation ===

% --- Reference ---

% Spong, M., S. Hutchinson, M. Vidyasagar.

% Robot Modeling and Control. 2006. Wiley.

% === Declaration ===

a1 = a(1); % 1.35

d1 = d(1); % 11.40

a2 = a(2); % 17.75

d4 = d(4); % 10.25; a3 and d4 are exchangeble

d6 = d(6); % 6.40

syms th1 th2 th3 th4 th5 th6; % variables in T03

% === IKS Calculation ===

ptWC = ptEF - d6 * R06(:,3); % location of Wrist Center

xc = ptWC(1);

yc = ptWC(2);

zc = ptWC(3);

% --- Prelocating Solution Matrix ---

% There are only three conditions for solving IK; they are 4 solution sets,

% 2 sets, or infinite sets.

% <Note 1>: q3 are dependent to q2, which usually has two solutions.

% <Note 2>: q4 & q6 are dependent to q5, which usually has two solutions.

Q = zeros(4, 6);

 % q1 q2 q3 q4 q5 q6

 % solution 1 q1 q2_1 q3_1 q4_1 q5_1 q6_1

83

 % solution 2 q1 q2_1 q3_1 q4_1 q5_2 q6_1

 % solution 3 q1 q2_2 q3_2 q4_2 q5_3 q6_2

 % solution 4 q1 q2_2 q3_2 q4_2 q5_4 q6_2

Q_flag = ones(4,1); % Indicates whether solution is useful or redundant.

% --- q1 ---

q1 = atan2(yc, xc);

Q(:,1) = q1;

% --- q3 ---

r = sqrt(xc^2 + yc^2) - a1;

s = zc - d1;

D = (r^2 + s^2 -a2^2 -d4^2)/(2*a2*d4);

q3(1) = atan2(+sqrt(1-D.^2), D);

q3(2) = atan2(-sqrt(1-D.^2), D);

Q([9 10]) = q3(1);

Q([11 12]) = q3(2);

% --- q2 ---

q2(1) = atan2(s,r) - atan2(d4*sin(q3(1)), a2+d4*cos(q3(1)));

q2(2) = atan2(s,r) - atan2(d4*sin(q3(2)), a2+d4*cos(q3(2)));

Q([5 6]) = q2(1);

Q([7 8]) = q2(2);

% --- q5(1), q5(2) ---

% Reference: p54-p56, p107-p108

T03val_s1 = subs(T03, {th1, th2, th3}, {q1, q2(1), q3(1)+ deg2rad(90)});

R03_s1 = T03val_s1(1:3,1:3);

R36_s1 = R03_s1'* R06;

R = R36_s1;

r11 = R(1,1); r12 = R(1,2); r13 = R(1,3);

r21 = R(2,1); r22 = R(2,2); r23 = R(2,3);

84

r31 = R(3,1); r32 = R(3,2); r33 = R(3,3);

if abs(r13 + r23) < 10^-10 % Both R(1,3) and R(2,3) is 0

 q5(1) = 0;

 q5(2) = 0;

 Q_flag(2) = 0; % Set solution 2 as redundant.

 if abs(r33 - 1) < 10^-10 % R(3,3) is 1

 % --- q4 + q6 = Atan2(-r12,r11) ---

 q46 = atan2(-r12, r11);

 q4(1) = 0;

 q6(1) = q46 - q4(1);

 q4(2) = q4(1);

 q6(2) = q4(1);

 else % R(3,3) is -1

 % --- q4 - q6 = Atan2(-r12,-r11) ---

 q46 = atan2(-r12, -r11);

 q4(1) = pi;

 q6(1) = q4(2) - a46;

 q4(2) = q4(1);

 q6(2) = q6(1);

 end

else

 % --- Solution Set 1 ---

 q5(1) = atan2(+ sqrt(1 - (r33)^2), r33);

 q4(1) = atan2(r23, r13);

 q6(1) = atan2(r32, -r31);

 % --- Solution Set 2 ---

 q5(2) = atan2(- sqrt(1 - (r33)^2), r33);

 q4(2) = atan2(-r23, -r13);

 q6(2) = atan2(-r32, r31);

end

Q(13) = q4(1); Q(17) = q5(1); Q(21) = q6(1);

Q(14) = q4(2); Q(18) = q5(2); Q(22) = q6(2);

85

% --- q5(3), q5(4) ---

T03val_s2 = subs(T03, {th1, th2, th3}, {q1, q2(2), q3(2) + deg2rad(90)});

R03_s2 = T03val_s2(1:3,1:3);

R36_s2 = R03_s2'* R06;

R = R36_s2;

r11 = R(1,1); r12 = R(1,2); r13 = R(1,3);

r21 = R(2,1); r22 = R(2,2); r23 = R(2,3);

r31 = R(3,1); r32 = R(3,2); r33 = R(3,3);

if abs(r13 + r23) < 10^-10 % Both R(1,3) and R(2,3) is 0

 q5(3) = 0;

 q5(4) = 0;

 Q_flag(4) = 0; % Set solution 4 as redundant.

 if abs(r33 - 1) < 10^-10 % R(3,3) is 1

 % --- q4 + q6 = Atan2(-r12,r11) ---

 q46 = atan2(-r12, r11);

 q4(3) = 0;

 q6(3) = q46 - q4(3);

 q4(4) = q4(3);

 q6(4) = q6(3);

 else % R(3,3) is -1

 % --- q4 - q6 = Atan2(-r12,-r11) ---

 q46 = atan2(-r12, -r11);

 q4(4) = pi;

 q6(4) = q4(4) - q46;

 q4(4) = q4(3);

 q6(4) = q6(3);

 end

else

 % --- Solution Set 3 ---

 q5(3) = atan2(+ sqrt(1 - (r33)^2), r33);

 q4(3) = atan2(r23, r13);

86

 q6(3) = atan2(r32, -r31);

 % --- Solution Set 4 ---

 q5(4) = atan2(- sqrt(1 - (r33)^2), r33);

 q4(4) = atan2(-r23, -r13);

 q6(4) = atan2(-r32, r31);

end

Q(15) = q4(3); Q(19) = q5(3); Q(23) = q6(3);

Q(16) = q4(4); Q(20) = q5(4); Q(24) = q6(4);

Q_deg = rad2deg(Q);

%% Joint/Motor angle convertor

function thetaOut = angleConv(thetaIn)

% A motor has its middle angle at 12-o-clock position while a joint has

% zero degree there.

thetaOut = zeros(6,1);

thetaOut(1) = thetaIn(1)+150;

thetaOut(2) = thetaIn(2)+125.46;

thetaOut(3) = -thetaIn(3)+60;

thetaOut(4) = thetaIn(4)+150;

thetaOut(5) = thetaIn(5)+150;

thetaOut(6) = thetaIn(6)+150;

%% Actuation of Manipulator

function commander(SeqInstr,P_GOAL_POSITION, P_Moving,ao)

% === Feeding Command ===

numStep = size(SeqInstr,3);

for instr = 1 : numStep

87

 tic

 % --- Instruct individual motor ---

 [id, GoalPos, MovingSpd] = joint2motor(SeqInstr(:,:,instr));

 % --- Make syncwrite packet ---

 Qty = size(id,2);

 BROADCAST_ID = 254; % Not sure about the meaning of this value.

 calllib('dynamixel', 'dxl_set_txpacket_id', BROADCAST_ID);

 instrLength = 4;

 calllib('dynamixel','dxl_set_txpacket_length',(instrLength + 1)*Qty+4);

 INST_SYNC_WRITE = 131;

 % Write command into motor register

 calllib('dynamixel', 'dxl_set_txpacket_instruction', INST_SYNC_WRITE);

 % Starting address to write Data

 calllib('dynamixel', 'dxl_set_txpacket_parameter', 0, P_GOAL_POSITION);

 % Length of data for each motor

 calllib('dynamixel', 'dxl_set_txpacket_parameter', 1, instrLength);

 for i = 0 : Qty-1 % This loop build the data for each motor.

 % Write ID

 calllib('dynamixel', 'dxl_set_txpacket_parameter',...

 2+(instrLength+1)*i, id(i+1));

 % Write Goal Posittion

 low = calllib('dynamixel', 'dxl_get_lowbyte', GoalPos(i+1));

 calllib('dynamixel', 'dxl_set_txpacket_parameter', ...

 2+(instrLength+1)*i+1, low);

 high = calllib('dynamixel', 'dxl_get_highbyte', GoalPos(i+1));

 calllib('dynamixel', 'dxl_set_txpacket_parameter', ...

 2+(instrLength+1)*i+2, high);

 % Write Moving Speed

 low = calllib('dynamixel','dxl_get_lowbyte', MovingSpd(i+1));

88

 calllib('dynamixel', 'dxl_set_txpacket_parameter', ...

 2+(instrLength+1)*i+3, low);

 high = calllib('dynamixel','dxl_get_highbyte', MovingSpd(i+1));

 calllib('dynamixel', 'dxl_set_txpacket_parameter', ...

 2+(instrLength+1)*i+4, high);

 end

 calllib('dynamixel', 'dxl_txrx_packet');

 t1(instr) = toc; % Recording the time of encoding.

 % Check moving done

 movFlag = 8; % A flag indicates how many motors are moving.

 while (movFlag ~=0)

 movFlag = 0;

 for i = 1:8

 movFlag = movFlag + ...

 int32(calllib('dynamixel','dxl_read_byte',...

 id(i),P_Moving));

 end

 end

 t2(instr) = toc; % Recording the time of excution.

 % Thinning Laser on

 if instr == ceil(numStep/2)

 putsample(ao,0);

 pause(5)

 putsample(ao,5);

 end

end

%% Joint/Motor Degree conversion

function [id, GoalPos, MovingSpd] = joint2motor(CommandTable)

89

% Task:

% (1) Building instruction matrix for feeding into communication packet.

% (2) Conversion of: Moving Speed from RPM to Dynamixel motor scale.

% (3) Conversion of: Goal Position from degree to Dynamixel motor scale.

% Be careful:

% The input data is the information about "Joint" rather than motor. Since

% there are some joints have two motors, the dimension of output data will

% be larger than the input.

% --- Initialize Outputs ---

GoalPos = [];

MovingSpd = [];

id = [];

for i = 1:6

% Inside this loop, two subroutines are called: PosConvert & SpdConvert

 switch i

 case (1) % Joint 1: RX-64

 Pos11 = PosConvert('RX-64', CommandTable(i,1));

 Spd11 = SpdConvert('RX-64', CommandTable(i,2));

 GoalPos = [GoalPos, Pos11];

 MovingSpd = [MovingSpd, Spd11];

 id = [id, 11];

 case (2) % Joint 2: CAUTION! two back to back EX-106+

 Pos21 = PosConvert('EX-106+', CommandTable(i,1));

 Pos22 = abs(4095-Pos21); % Be careful about "4095"!

 Spd21 = SpdConvert('EX-106+', CommandTable(i,2));

 Spd22 = SpdConvert('EX-106+', CommandTable(i,2));

 GoalPos = [GoalPos, Pos21, Pos22];

 MovingSpd = [MovingSpd, Spd21, Spd22];

 id = [id, 21, 22];

 case (3) % Joint 3: CAUTION! two back to back RX-64

 Pos31 = PosConvert('RX-64', CommandTable(i,1));

 Pos32 = abs(1023-Pos31); % Be careful about "1023"!

90

 Spd31 = SpdConvert('RX-64', CommandTable(i,2));

 Spd32 = SpdConvert('RX-64', CommandTable(i,2));

 GoalPos = [GoalPos, Pos31, Pos32];

 MovingSpd = [MovingSpd, Spd31, Spd32];

 id = [id, 31, 32];

 case (4) % Joint 4: RX-64

 Pos41 = PosConvert('RX-64', CommandTable(i,1));

 Spd41 = SpdConvert('RX-64', CommandTable(i,2));

 GoalPos = [GoalPos, Pos41];

 MovingSpd = [MovingSpd, Spd41];

 id = [id, 41];

 case (5) % Joint 5: RX-64

 Pos51 = PosConvert('RX-64', CommandTable(i,1));

 Spd51 = SpdConvert('RX-64', CommandTable(i,2));

 GoalPos = [GoalPos, Pos51];

 MovingSpd = [MovingSpd, Spd51];

 id = [id, 51];

 case (6) % Joint 6: RX-28

 Pos61 = PosConvert('RX-28', CommandTable(i,1));

 Spd61 = SpdConvert('RX-28', CommandTable(i,2));

 GoalPos = [GoalPos, Pos61];

 MovingSpd = [MovingSpd, Spd61];

 id = [id, 61];

 end

end

function Pos_dynamixel = PosConvert(motorType, Pos_deg)

switch motorType

 case {'RX-28', 'RX-64'}

 Pos_dynamixel = 1023/300*Pos_deg;

 case {'EX-106+'}

 Pos_dynamixel = 4095/250.92*Pos_deg;

end

91

function Spd_dynamixel = SpdConvert(motorType, Spd_rpm)

 Spd_dynamixel = Spd_rpm/0.111;

%% Scouting the Normal Plane

function [ortMat, vecMat] = ortgen_v2(inPt, inOrt, numOrt)

%% Variables Initialization

% ux + vy + wz = k; representation of normal plane

% k = inOrt(1)*inPt(1) + inOrt(2)*inPt(2) + inOrt(3)*inPt(3)

k = inOrt' * inPt;

% == Find the Normal Plane ==

checkZero = find(inOrt == 0);

vecMat = zeros(3, numOrt);

rPtMat = zeros(3, numOrt);

ortMat = zeros(3,3, numOrt);

% === Decide the first vector ===

% --- Generate a random starting point ---

if length(checkZero) == 2

 if inOrt(1) ~= 0; % plane: ux = k

 px = inPt(1);

 py = randx(1);

 pz = randz(1);

 elseif inOrt(2) ~= 0; % plane: vy = k

 py = inPt(2);

 px = randx(1);

 pz = randz(1);

 else % plane: wz = k

 pz = inPt(3);

 py = randy(1);

 px = randx(1);

 end

92

elseif length(checkZero) == 1

 if inOrt(1) == 0; % plane: vy + wz = k

 px = randx(1);

 py = randy(1);

 pz = (1/inOrt(3)) * (k - inOrt(2)*py);

 elseif inOrt(2) == 0; % plane: ux + wz = k

 py = randy(1);

 px = randx(1);

 pz = (1/inOrt(3)) * (k - inOrt(1)*px);

 else % plane: ux + vy = k

 pz = randz(1);

 py = randy(1);

 px = (1/inOrt(1)) * (k - inOrt(2)*py);

 end

else % plane: ux + vy + wz = k

 px = randx(1);

 py = randy(1);

 pz = (1/inOrt(3)) * (k - inOrt(1)*px - inOrt(2)*py);

end

% --- Generate the first vector ---

randPt = [px; py; pz];

vec = randPt - inPt;

vec = vec/norm(vec); % Potential orientation for the end-effector

% === Decide the first orientation of the tool frame===

x_comp = cross(inOrt, vec);

ortTemp = [x_comp/norm(x_comp), inOrt/norm(inOrt), vec];

ortMat(:,:,1) = ortTemp;

% --- Generate the rest numOrt-1 vectors ---

deg = 360/numOrt;

% Rotatiion along y-axis (plane normal vector)

rot = [cosd(deg) 0 sind(deg); ...

93

 0 1 0; ...

 -sind(deg) 0 cosd(deg)];

for iter = 2 : numOrt

 ortTemp = ortTemp * rot;

 ortMat(:,:,iter) = ortTemp;

end

vecMat = squeeze(ortMat(:,3,:));

disp(vecMat);

function px = randx(numPx)

 maxX = 50;

 px = maxX * rand(numPx);

function py = randy(numPy)

 maxY = 50;

 py = (2*maxY)*rand(numPy) - maxY;

function pz = randz(numPz)

 maxZ = 50;

 pz = (2*maxZ)*rand(numPz) - maxZ;

%% C-space Distance Calculator

function dist = cdist(JVcandidates, JVref)

% JVcandidates is an m-by-6 matrix (m can be 1 well)

% JVref is a 1-by-6 matrix

% dist is a m-by-1 vector

JVrefMat = repmat(JVref, size(JVcandidates, 1),1);

dist = sum(abs(JVcandidates - JVrefMat), 2);

% ========== End ==========

94

APPENDIX C: Personnel

 This appendix provides contact information of project participants outside UIUC. Dr.

Paul Heinemann is the principal investigator of the ITTF project; Dr. James Schupp provided

support with horticultural knowledge and experience; David Lyons is a doctoral student at PSU

who is working on the development of the end-effector.

Paul Heinemann, Ph.D.

 Professor and Department Head

 Department of Agricultural and Biological Engineering

 Pennsylvania State University

 http://abe.psu.edu/directory/hzh

 hzh@psu.edu

James Schupp, Ph.D.

 Associate Professor of Pomology

 Fruit Research and Extension Center

 Pennsylvania State University

 http://horticulture.psu.edu/directory/jrs42

 jrs42@psu.edu

David J. Lyons

 Ph.D candidate

 Department of Agricultural and Biological Engineering

 Pennsylvania State University

 djl272@psu.edu

http://abe.psu.edu/directory/hzh
mailto:hzh@psu.edu
http://horticulture.psu.edu/directory/jrs42
mailto:djl272@psu.edu

