

DECISION SUPPORT FOR BIOMASS FEEDSTOCK PRODUCTION ENABLED BY
CONCURRENT SCIENCE, ENGINEERING AND TECHNOLOGY (ConSEnT)

BY

YUNG-CHEN LIAO

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Agricultural and Biological Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Advisers:

Professor Kuan-Chong Ting
Assistant Professor Luis F. Rodríguez

ii

Abstract

In the U.S., more than half of all energy comes from fossil fuels (59.99 of 108.41

quintillion joules) and close to 50% of annual fossil fuel (26.55 of 59.99 quintillion joules)

is imported (U.S. Department of Energy, 2010). Fossil fuels accounted for almost all

carbon dioxide emissions (5814.4 of 5839.3 million metric tons) in 2008 (U.S.

Department of Energy, 2009), which caused significant contributions to the accumulation

of greenhouse gasses in the atmosphere. There is, thus, an urgent need to develop viable

alternative energy options to address these concerns. It is because of this need that

alternative energies have drawn such significant attention in the recent years. There are

several potential alternative energy resources under consideration, but biomass-based

energy is of particular importance given that it is currently available in large quantities.

Specifically, lignocellulosic ethanol is considered among one of the leading alternative

energy options in terms of sustainability and availability (Zhang, 2008), and it is expected

to replace a significant amount of fossil fuels in transportation sector (Perlack et al.,

2005).

The supply chain of biomass-based biofuels is generally comprised of three major

steps: (1) biomass feedstock production, (2) biofuel production, and (3) biofuel

distribution. The goal of the biomass feedstock production system is the preparation of

stable, affordable, and continuous biomass dry matter supply to satisfy the targeted

displacement of 30% of petroleum used in transportation sector (Perlack et al., 2005).

In order to achieve this goal, an array of scientific discoveries and engineering

developments must occur. The research described in this thesis seeks to ensure that an

efficient pathway is utilized for the research and technology development of biomass

iii

feedstock production systems, such that science and engineering research can occur in

concert with one another, supporting progress in both endeavors. This has been termed a

Concurrent Science, Engineering, and Technology approach. A web-based environment

for decision support has been designed and implemented for the planning, design, and

management of biomass feedstock production. Concurrent Science, Engineering, and

Technology is suitable for studying the complexity of biomass feedstock production

because it integrates a systems model directly with an informatics platform, which

assembles the latest information generated by research teams, and a web-based interface

for integrating and utilizing these two resources in a real-time fashion.

This web-based decision support system (DSS) has been named BPSys. It is

programmed in the JavaTM (Oracle Corporation, Redwood Shores, CA) and integrates the

functions of various software packages including: Apache HTTP Server (Apache

Software Foundation, Forest Hill, MD), Apache Tomcat (Apache Software Foundation,

Forest Hill, MD), Drupal (Drupal Association, Kortrijk, Belgium), MySQL (Oracle

Corporation, Redwood Shores, CA) and JFreeChart (Object Refinery Limited, Harpenden,

United Kingdom). The DSS is divided into in two parts: (1) the graphical user interface

(GUI) of BPSys, a JavaTM applet, that will run on the user’s local machine and enables

the user to work with the analytical model; and (2) an array of server side supporting

programs, JavaTM servlets, that respond to requests from the graphical user interface and

deliver information to the users. Through this platform, users can access the system via

web browsers and design biomass feedstock production scenarios for analysis, retrieve

the latest attributes describing the scenario, modify attributes, execute models, and save

results. With the aid of the system, users can leverage the power of the simulation and

analysis tools but are not bothered by how to build and run the models. By utilizing this

iv

platform, the latest knowledge and information regarding the biomass feedstock

production system can be leveraged more effectively at the system level, allowing for

seamless development of new innovative systems.

v

Acknowledgements

It is impossible to fulfill this research thesis without the supports from many

people. Many thanks to my two advisors, Prof. K.C. Ting and Prof. Luis F. Rodríguez, for

their guidance throughout my graduate research and patient while I struggled to search

possible solutions. I also want to thank my two other committee members, Prof. Alan C.

Hansen and Dr. Yogendra Shastri, for their assistances and reviews on my thesis. I would

like to thank the other people Dr. Konstantinos Domdouzis for providing his knowledge

in using JFreeChart, and Tao Lin for helping me write and check my thesis. Finall, I

would like to share this thesis with my family for their supports. Special thanks to my

girlfriend, Shih-Fang Chen, for her encouragements and for the past three years.

vi

Table of Contents

Chapter 1. Introduction .. 1

1.1 Potential Alternative Energy Systems .. 1

1.2 Biomass Feedstock Production .. 2

1.3 Engineering Solutions for Biomass Feedstock Production 3

1.4 Concurrent Science and Engineering ... 5

1.5 Objectives .. 6

1.6 Layout of Thesis .. 6

Chapter 2. Literature Review .. 8

2.1 Biomass Feedstock Production System ... 8

2.1.1 Pre-Harvest Crop Monitoring .. 8

2.1.2 Harvesting .. 9

2.1.3 Storage ... 10

2.1.4 Transport .. 10

2.2 Systems Analysis .. 11

2.2.1 Systems Analysis Steps .. 12

2.2.2 Applications for Agricultural Production ... 13

2.3 Decision Support Systems ... 16

2.3.1 Classification.. 17

2.3.2 Application in Agricultural Production Systems 18

2.4 Java-based Web Applications ... 20

Chapter 3. Design of Decision Support System .. 23

3.1 Objectives of BPSys .. 23

3.2 Components of BPSys ... 24

3.2.1 Communication .. 24

3.2.2 Decision Support .. 25

3.3 Relationships between Components of BPSys .. 27

3.3.1 Layered Architecture of BPSys .. 27

3.3.2 Web Content Management ... 29

3.3.3 Database Management ... 30

3.3.4 File Input and Output ... 31

3.3.5 Model Execution .. 32

vii

3.4 Performance Indicators of BPSys .. 33

3.5 The User Story Method .. 34

3.5.1 User Stories for System Analysis ... 35

3.5.2 User Stories for Database Management ... 38

Chapter 4. Software Implementation .. 41

4.1 Run BPSys ... 41

4.2 Login to BPSys .. 42

4.3 Components of the BPSys GUI ... 43

4.3.1 Functional GUI Components ... 44

4.3.2 Informational GUI Components .. 44

4.4 User Interface for Systems Analysis .. 45

4.4.1 Select Model and Retrieve Data .. 46

4.4.2 Visualize Scenario .. 47

4.4.3 Modify Input Data of the Models .. 51

4.4.4 One Time Execution .. 51

4.4.5 Batch Execution ... 53

4.4.6 Retrieve and Review the Results ... 60

4.4.7 Save Result... 64

4.4.8 Read Result .. 67

4.4.9 Parametric analysis .. 68

Chapter 5. BPSys Procedures .. 75

5.1 Java Classes ... 77

5.1.1 Generating a Project ... 78

5.1.2 Visualizing a Modeled Scenario and Attribute Table 80

5.1.3 Executing the Model .. 81

5.1.4 Presenting Results .. 81

5.1.5 Comparing Results ... 84

5.1.6 Supporting Infrastructure: Sending Requests .. 84

5.2 Sequence Diagrams & Algorithms... 86

5.2.1 Generating a Project ... 86

5.2.1.1 Creating Tasks .. 88

5.2.1.2 Downloading Input Data .. 91

5.2.2 Visualizing a Modeled Scenario and Attribute Table 93

5.2.2.1 Creating a ScenarioPanel Object .. 94

5.2.2.2 Creating Attribute Tables ... 97

viii

5.2.3 Conducting Single Model Execution ... 99

5.2.3.1 Collecting Input Data ... 100

5.2.3.2 Uploading Data to Server ... 103

5.2.3.3 Executing Model .. 104

5.2.4 Conducting Batch Execution ... 105

5.2.5 Presenting Results .. 106

5.2.5.1 Creating ResultOutput object ... 107

5.2.5.2 Creating ResultInput object .. 110

5.2.5.3 Visualizing ResultOutput ... 111

5.2.5.4 Visualizing ResultInput .. 119

5.2.6 Comparing Results ... 120

5.2.6.1 Creating a DataGroup Object ... 120

5.2.6.2 Comparing Model Results .. 121

Chapter 6. DSS Application Case Study ... 124

6.1 Optimized Equipment Selection .. 124

6.2 Impacts of the Packing Density ... 127

6.3 Impacts of Material Throughput .. 129

Chapter 7. Conclusions & Future Work ... 132

7.1 Conclusions .. 132

7.2 Future Work ... 133

7.2.1 Effectiveness Test... 133

7.2.2 Decision Making .. 133

7.2.3 Off-line Model Execution .. 134

7.2.4 Scenario Building... 134

References .. 135

Appendix A. The Format of Properties File .. 142

Appendix B. Input File Contents of BioFeed .. 147

Appendix C. Output File Contents of BioFeed ... 150

1

Chapter 1. Introduction

1.1 Potential Alternative Energy Systems

Energy consumption within U.S. can be divided into four major sectors: (1)

residential, (2) commercial, (3) industrial, and (4) transportation, and more than 50% of

the energy utilized for these sectors are from fossil fuels (U.S. Department of Energy,

2010). These statistics show that human activities heavily rely on fossil energy. However,

two key factors, a depleted reservoir (Dresselhaus and Thomas, 2001) and a significant

contribution to greenhouse gases emissions (Smeets et al., 2009; U.S. Department of

Energy, 2009) make fossil fuel unreliable and have triggered a search for alternative

energy sources.

Alternative energy has drawn significant attention and interest in the recent years

due to three major driving forces: climate change, energy security, and rural economic

development (Sagar and Kartha, 2007; Koh and Ghazoul, 2008). During the past few

years, it is thought that increasing green house gases (GHG) concentrations, mainly

generated from the usage of petroleum-based energy, is a major factor causing and severe

climate changes (Smeets et al., 2009). Bioenergy is seen as a cleaner and more

sustainable energy source, with the potential to ease the climate change (Sagar and

Kartha. 2007). Energy security refers to “the availability of sufficient supplies at

affordable prices” (Yergin, 2006) and depleting crude oil reserves, continuously

increasing demands, and rising oil prices has urged oil-importing countries to seek energy

independence via developing domestic alternative energy sources. The stimulation of

rural economic development via the establishment of bioenergy industries is anticipated

to be an additional benefit from the implementation of biofuel production. These three

2

motivating factors attract researchers around the world to seek alternative energy

solutions for the replacement of petroleum-based energy.

Different regions, however, require solutions and resources suitable for their

regional environment. Solutions should be geographically appropriate and use a

combination of renewable energy resources. Among the potential alternative energy

resources, biomass resources are widely available from both cultivated and waste

materials involved in many processes.

1.2 Biomass Feedstock Production

If biomass-based energy is to replace petroleum-based energy within the coming

decade, then the reliable provision of biomass feedstocks must occur (Perlack et al.,

2005). Biomass-based biofuels may be one of the only available options for replacing a

significant portion of petroleum-based transportation fuels. (Perlack et al., 2005). The

production chain of biomass-based biofuel production is comprised of multiple

subsystems beginning with producing biomass feedstocks and culminating with

distributing biofuel from biorefineries to end users (Figure 1.1) (Giampietro and Ulgiati,

1997). Biomass Feedstock Production is the production of raw material for conversion to

liquid fuels and the delivery of those feedstocks for biofuel production. Biofuel

Production is the conversion of biomass into liquid fuels. Biofuel Distribution is the

delivery of biofuels to retail outlets accessible to the public. This research work mainly

focuses on the operations within in the first subsystem, Biomass Feedsotck Production

(BFP).

Figure 1.1. Biofuels production chain.

3

According to Perlack et al (2005), biomass can be acquired via two major

resources: forest resources and agricultural resources. There are three usage platforms: (1)

electricity, (2) transportation fuels, and (3) biobased products. In particular,

lignocellulosic ethanol converted from biomass is considered to be among the most

substantial and sustainable alternative energy sources (Zhang, 2008); however, the

primary remaining challenge for development of a BFP system is the preparation of

stable, affordable, and continuous biomass dry matter supplies to satisfy the expected

displacement of 30% of petroleum used in transportation sector. Beside adequate

provision of materials, production of biomass must be affordable and sustainable.

1.3 Engineering Solutions for Biomass Feedstock Production

In order to deliver sufficient biomass at competitive prices, the integration of

scientific discoveries and engineering designs from various disciplines into the BFP

system is needed. Thus, a research scheme for the investigation of biomass feedstock

production processes by integrating sciences, engineering, and technologies related to

biomass production was proposed and funded within the Energy Biosciences Institute, a

research collaboration between the University of Illinois, the University of California at

Berkeley, and the Lawrence Berkeley National Laboratory (Ting, 2009). Thus, a research

program in biomass feedstock production engineering has emerged including five

different tasks: Pre-harvesting Crop Monitoring, Harvesting, Transport, and Storage, and

System Informatics and Analysis task (Figure 1.2). The pre-harvest crop monitoring task

will develop the technology to observe crop physiological state and field conditions to

assist better management during growing energy crops. The harvesting task will develop

harvest equipment including cutting and collecting energy crops from agricultural fields.

The transport task will develop techniques and a strategy to move harvested biomass

4

between various locations. The storage task will develop methods for the preservation of

the quantity and quality of biomass after harvest. The system informatics and analysis

task will develop computer models at the system level for the integration of various BFP

components and conduct analysis to assess the system performance.

System

Informatics and

Analysis

P
r e

- H
a r

v
e s

t
C

r o
p

M
o
n
i t
o
ri
n
g

Harvesting

Storage

C
ro

p
 P

ro
d
u
ct

io
n

T
ran

sp
o
rt

Biofuel Production

(e.g. Biorefinery)

Figure 1.2. The scope of the BFP system (base image from Ting, 2009).

The gap between Crop Production and Biofuel Production is bridged by

maintaining contact with investigators in both of these areas. The connection between the

defined BFP system and crop production indicates that factors like species of energy

crops, farm size, and farm location influence what future biomass feedstock production

systems might be comprised of and how they will operate. The same is expected to be

true of Biofuel Production including factors such as biorefinery capacity and conversion

technology. The double-headed arrows between the five tasks have two meanings. The

arrows between the tasks suggest that they are inter-related; and the arrows with the

5

system informatics and analysis task suggest that the four other tasks are considered

concurrently via system-level databases and models.

1.4 Concurrent Science and Engineering

Ting (2002) proposed the concept of Concurrent Science and Engineering

(CS&E), a system informatics and analysis platform for integration of information to

conduct system-level analysis in “real-time”. It has been implemented for system level

decision support for phytomation systems and extended to advanced life support systems

for long term space exploration (Ting et al., 2003). This thesis has implemented the

concept of CS&E for BFP systems and the outcome is a Concurrent Science,

Engineering, and Technology (ConSEnT)-based computational platform deployed via

the Internet. To enable the ConSEnT platform, a data warehouse has been developed to

manage data needed for systems analysis; a computer model, capable of integrating each

of the subsystems and assess the performance of the whole system for decision support

has been built. A user interface capable of using the model and database in a concurrent

fashion to deliver decision support information has been implemented. As Ting (2002)

suggested, CS&E should provide users with a web-based interface to access analysis

tools.

Figure 1.3 shows the connections between components within the ConSEnT

platform. It houses a database, a simulation and optimization tool, and the web-based user

interface that can be accessed through a web browser. The double-arrowed lines between

the user interface and other components represent an interface that can respond to user

input. The simulation/optimization model and database are provided members of the

research team described in Ting (2009). The overall objective of the work described in

this thesis is to implement the user interface where decision support can occur, with

6

support from the database and simulation and modeling tools.

Figure 1.3. Schematic diagram of the ConSEnT platform.

1.5 Objectives

The ultimate goal is to demonstrate the utility of Concurrent Science, Engineering,

and Technology (ConSEnT) for biomass feedstock production systems engineering. To

achieve this goal, the objectives of this study are:

(1) develop a web-based computational environment for the provision of

on-line access to databases and modeling tools,

(2) providing a user-friendly interface for supporting decisions, and

(3) establishing a framework for future expansion into a broader systems

informatics and analysis tool in BPSys.

1.6 Layout of Thesis

This thesis is arranged into seven chapters. The operational challenges faced by

biomass feedstock production systems are discussed in Section 2.1 of the literature

review. Section 2.2 reviews the published research efforts in systems analysis of

agricultural production systems. Section 2.3 describes the types of decision support

systems and their applications. Section 2.4 shows the general server architecture for

7

Java-based web applications.

Chapter 3 presents the research methodologies applied in this thesis work.

Sections 3.1 – 3.3 define the system functionality, components and architecture of BPSys.

Section 3.4 reveals the performance indicators to measure the performance of BPSys.

After developing a fundamental design for the system, section 3.5 describes the approach

taken in this thesis to design and implement the graphical user interface of BPSys.

Chapter 4 provides the procedures for delivering decision support functionality

including screen pictures of the graphical user interface. Chapter 5 describes the JavaTM

classes implemented for the decision support system, following the information flow. A

case study is presented in Chapter 6 and Chapter 7 describes the conclusions and

potential future work.

8

Chapter 2. Literature Review

Design of an optimized BFP system requires systematic research approaches. A

decision support platform would facilitate the delivery of the outcome of the systematic

research scheme as introduced in Chapter 1. Under the scheme, there are four operation

tasks and a system task. The first two sections in this chapter will cover the existing work

related to these four operation tasks, as well as the review of systems analysis method and

its applications in agricultural production. The third sections will brief the backgrounds of

decision support systems. The last section deals with the web technology that enables the

development of web-based decision support system.

2.1 Biomass Feedstock Production System

The biomass feedstock production system is comprised of several distinct tasks

and each major task may be divided into several sub-tasks. The four major tasks include:

pre-harvesting crop monitoring, harvesting, transportation, and storage. The following

subsections cover the research these four tasks one by one.

2.1.1 Pre-Harvest Crop Monitoring

Through remote sensing technology, pre-harvesting crop monitoring technologies

have gathered crop information by collecting multi- and hyper-spectral imagery and

correlating to biophysical and agronomic conditions (Pinter et al., 2003). This facilitates

the non-invasive monitoring of crops and provides opportunity for precision crop

management. Potential enhancements of management practices include irrigation,

nutrient application, and pest control as well as the predictions of crop yields.

When growing crops, remote sensing can also improve an irrigation schedule by

assessing crop water stress through thermal infrared (Alderfasi and Nielsen, 2001;

9

Wanjura and Upchurch, 2002) and is cost effective and affordable (Moran et al., 1994). In

addition, remote sensing technology is capable of detecting nutrient distributions

throughout the farm, identifying areas where nutrient stress may be likely to be found

(Blackmer and Schepers, 1996; Blackmer et al., 1996). Protecting the crop from the

invasion of weed competition, pests, or disease is also a potential benefit from remote

sensing technology (Hanks and Beck, 1998; Pinter et al., 2003). Overall, pre-harvest crop

monitoring is aiming at deriving an optimized crop yield by providing timely site-specific

management tools. Aircraft-based imagery could help estimate the crop productivities

and yield variations and make better and quicker decisions (Yang et al., 2000).

2.1.2 Harvesting

The harvesting operation is a necessary step by removing standing crops from the

field and preparing them to be transported to storage or refinery facilities. This task

consists of multiple operations including: cutting, collection, size reduction, packing, and

in-field transportation (Sokhansanj et al., 2002; Hess et al., 2007; Domdouzis et al., 2009).

Cutting breaks the physical connection of the crop with the ground. Size reduction is the

action of chopping cut crops into smaller pieces for more efficient packing. In general,

packing formats of biomass comprise bale (round or square), briquette, and pellets from

the size-reduced crops (Prochnow et al., 2009). Infield-transportation is the process of

moving the biomass from within the field to the roadside, where the trucks upload the

packed biomass.

Harvesting schedule is an important consideration in the harvest operations. The

harvesting schedule is strongly influenced by the time window when field operations may

occur. In some regions, this is limited by the local climate conditions (Hess et al., 2007).

The harvesting timing affects the biomass quality, and final energy yield (Lewandowski

10

and Heinz, 2003). The energy yield within Miscanthus fields harvested between

December and March could decrease 14 – 28 % (Lewandowski and Heinz, 2003). In

addition, the required storage area and the necessary transportation fleet is influenced by

the packing density of the biomass (Rentizelas et al., 2009).

2.1.3 Storage

Harvest of biomass generally occurs within a fixed time during the year; however,

provision of biomass materials to conversion facilities must occur continuously

throughout the year. Thus, appropriate storage facilities are important to keep sufficient

quantities of biomass available. The options for storing biomass include uncovered and

covered on-farm storage and centralized storage facilities (Shastri et al., 2009;

Sokhansanj et al., 2006; Browne and Hunter, 1998; Huisman et al., 1997). Centralized

storage refers to a storage that serves multiple farms and may include a controllable

storage environment. Uncovered on-farm storage has the lowest operating cost; however,

significant biomass losses may occur particularly given higher moisture content and lead

to decreasing energy conversion efficiency (Rentizelas et al., 2009). Decisions regarding

storage operations may involve the fraction of biomass stored on fields relative to

centralized storage facilities in order to strike a balance between the biomass quality and

resource inputs. Proper locations of storage facilities are likely to decrease transportation

costs for moving biomass from fields to the storage facilities and delivering from the

storage facilities to downstream conversion facilities.

2.1.4 Transport

Many analyses of BFP systems have shown that transport operations are costly

within the biomass supply chain. In previous studies on harvesting corn stover (Kumar et

al., 2006; Rentizelas et al., 2009), transportation cost could range from 20% to 40% of the

11

total biomass supply cost. For energy crops, based on the reports by Shastri et al. (2009),

transportation cost was accounted for 22 % of total cost of switchgrass production

including harvesting, transport, and storage, and 13 % of miscanthus production (Shastri

et al., 2010). Biomass transportation involves movement of harvested biomass from the

fields to centralized storage, the fields to conversion facilities, and from centralized

storage facilities to conversion facilities. The transport task can be separated into three

operations: loading, transporting, and unloading (Kumar et al., 2006). The currently

available carriers could be barge, rail, and road truck. The cost for each carrier varies with

the load and the distance (Hess et al., 2007).

2.2 Systems Analysis

Kropff et al. (2001) pointed out that a factor, such as water content in crops, in an

agronomic system is significantly influenced by multiple factors. For the optimization of

using resource, multiple objectives of the system might be contradictory. Modeling and

analysis tools, such as optimization and simulation, make it possible to consider the

inter-relationships within various systems and subsystems simultaneously.

From the aspect of systems concept and analysis (Blanchard and Fabrycky, 1990),

systems can be considered as a collection of several interrelated components with varying

key parameters. The ability to predict the outputs (system performance) in reality and

study the trends of changes in output associated with the varied input can provide

essential insight into the system under study. The knowledge derived from such analysis

can be very comprehensive and useful when designing a novel system or improving an

existing one.

Systems approach has been applied to various agricultural and other systems.

Considering biofuel production systems, for example, decreasing particle size has a

12

positive effect on the conversion rate of the biomass to ethanol (Torget et al., 1988; 1996).

However, producing smaller biomass particles requires more energy consumption. It is

possible that the energy required to produce the smallest particle sizes is higher than the

energy content retained within the produced fuel; thus, such a system would be

unsustainable, despite the fact that the conversion process is optimized. Utilizing systems

analysis is seen as a promising method for the consideration of problems encountered in

bioenergy system.

2.2.1 Systems Analysis Steps

Systems analysis has been applied to a variety of plant production systems, such

as controlled environment plant production systems (Ting, 1997a; 1997b) and

bioregenerative life support system for long duration space exploration (Rodriguez et al.,

2003). The steps for conducting systems analysis consist of eight steps (Ting, 1997a;

1997b) (Figure 2.1).

Figure 2.1. The eight steps of systems analysis.

The initial step is to frame the system scope and clarify its objectives. Given a

defined system scope, the second step involves the discretization of the system into a

representative set of individual components responsible for the functionality of the

system. During this step, a necessary and sufficient set of attributes, and constraints for

13

describing each component should be established. Third, the inter-relationships defining

the interactions between system components should be identified. Next, one should select

system performance indicators capable of evaluating the workable system designs. There

are several to choose from, depending on the perceived constraints and system objectives,

such as the system workability, environmental sustainability, or resources allocations and

managements. Fifth, a model is developed for analysis. Depending on cost, either a

computerized mathematical model or a scaled physical system is chosen. A computerized

mathematical model is chosen because it is frequently more cost-effective. In this case, a

computer model is implemented as a software program, which depicts the behaviors of

system components and their interactions as defined in the third step. It is a powerful tool

to answer what-if-type questions. The remaining steps for systems analysis in this section

are focused on conducting systems analysis with the computer models. The sixth step is

verification and validation of the computer model. These two processes are to examine

whether the model performs as expected and the outcomes are correct compared with the

real data or the past experience on the similar system. Seventh, the developed model is

then utilized to study the system responses under representative situations in an effort to

seek advantageous configurations. And finally, the analysts will draw conclusions about

the system and disseminate their results. Often dissemination may result in more research,

in which case the process may repeat from any of the previous steps, or a new system

design may emerge for implementation.

2.2.2 Applications for Agricultural Production

There have been many applications of system analysis for agricultural production

systems in terms of economic performance, environmental impact, and routinely

operation management. Some important examples are APSIM (McCown et al., 1996;

14

Keating et al., 2003), I-FARM (van Ouweker et al., 2003), POLYSYS (De La Torre

Ugarte and Ray, 2000), DSSAT (Jones et al., 2003), and IBSAL (Kumar et al., 2006;

Kumar and Sokhansanj, 2007). The systems studied include the development of models

ranging from the consideration of crop growth environments—i.e. the farms—to the

whole production system, including harvest, collection, transportation, storage, and crops

delivery.

APSIM (McCown et al., 1996; Keating et al., 2003), the Agricultural Production

Systems Simulator, is a modularized modeling framework consisting of multiple

inter-connected models that predict how the biophysical process within a farm system

and crops responds to practical management. The outcomes are represented by not only

economic and ecological indicators of the farming system, but also crop productivity.

APSIM is facilitated with a simulation engine that coordinates the modules responsible

for simulating different components in the farming system. One unique feature in APSIM

is that users are allowed to configure the combinations of the modules to model different

farming system and it can be not only used to simulate the outcomes of farming system

not only in 10-years term but also on a daily basis. .

The purpose of I-Farm (van Ouweker et al., 2003) is to promote the integrated

farming system which grows crops and livestock. The calculation power of I-FARM is

assembled from the existing models done by different researchers and programmed in

multiple languages. The mixed model cluster calculates the system performances of a

farming system, which grows crops and raises livestock simultaneously. I-FARM

inter-relates ecosystem, economic, and community impacts from farming activities, land

use change, and crop rotation at the farm scale.

POLYSYS (De La Torre Ugarte and Ray, 2000), the Policy Analysis System, is a

15

modeling framework that estimates the impact of the changes to the policy, environment,

and economic conditions within the agriculture sector at the national level over long

periods of time and records the results for each year. With the comparison of the

recursively estimated results for each year with the changed conditions to the baseline

scenario, POLYSYS is able to identify where the direct and indirect impacts are from and

provide the traceable outputs. With these records of system state and performance along a

simulation horizon, POLYSYS is useful to recognize the direct and indirect path in which

the differences from the default initial system conditions may lead to final outcomes.

The decision support system for agrotechnology transfer (DSSAT) was developed

to model the cropping systems (Jones et al., 2003). It integrates several modularized

models, including soils, multiple crops, weather, pests, management practices and

resource competition for water and light among soil, plant, and atmosphere. DSSAT

provides an interface, which allows users to add a new crop. DSSAT has been applied to

study the impacts of agronomic operations (i.e. fertilizer usage, pest control, and

irrigation management) on the cropping system, combined with the economic and

socioeconomic analysis for dealing with economic and production issues. It has also been

used to study the cropping system behaviors under uncertain situation, such as the

influence of climate change.

IBSAL (Kumar et al., 2006), the integrated biomass supply analysis and logistics

model, is used to simulate the supply network of biomass feedstocks from the fields to a

biorefinery. This network consists of four major activities: (1) collection, (2) storage, (3)

preparation, and (4) transportation of biomass feedstock and is simulated with the

consideration of the work rate of equipments and the capacity of storage facilities. It has

been used to simulate the supply chains of switchgrass (Kumar and Sokhansanj, 2007),

16

assess biomass collection and transportation systems (Kumar et al., 2006), and conduct

analyses for providing a corn ethanol plant with corn stover for power and heat

production (Sokhansanj et al., 2010).

BioFeed (Shastri et al., 2009; 2010) develops a simulation/optimization modeling

framework to minimize the cost for producing biomass over the biomass feedstock

production system including growing crops to delivering to a conversion facility. The

three performance indicators selected are supply chain cost, greenhouse gas emission and

energy consumption. In contrast to the system level results, it also provides elaborate

information on the operational level—i.e. the transportation fleet schedule and biomass

harvesting schedule—which is provided on a daily basis. BioFeed has been applied to

analyze the biomass feedstock production systems of switchgrass (Shastri et al., 2009)

and miscanthus (Shastri et al., 2010).

2.3 Decision Support Systems

Instead of replacing decision makers, the objective of DSS is to provide them with

valuable information helpful in solving complex problems. The theoretical studies of

decision-making process were carried out in Carnegie Institute of Technology (Cyert et

al., 1956; 1958; Simon, 1959).The recent applications of decision support systems (DSS)

have taken many different forms for diverse purposes.

Presently, DSS is seen as a platform to provide decision makers organized and

valuable information to solve complex problems more efficiently and effectively (Power,

2002). With the significant improvement in computing technology, decision support

systems are capable of handling a massive amount of information and executing complex

computations in a vastly shorter period than ever before. The basic components for

building a computerized decision support system encompass three basic elements: user

17

interface, database, and models (Power, 2002). The user interface allows interaction with

the DSS; the database provides the ability to handle massive data transaction including

storage and retrieval of the information; and models aim to provide the capacity of

processing information according to the user inputs.

2.3.1 Classification

Depending on the purpose and the information technologies utilized within the

decision support system, they can be grouped into several types: 1)

communication-driven, 2) data and document-driven, 3) knowledge-driven, 4)

model-driven, and 5) web-based decision support systems (Nilsson and Ziemke, 2007;

Power, 2002). Communication-driven decision support system is a system with

interactive software tools to facility communication and consensus between distributed

groups when finding solution (Power, 2002). It is also called a group decision support

system (GDDS). Data-driven DSS is defined as a system that makes a large database

available to users via an interface to retrieve and display data; document-driven DSS is a

system which provides user with document retrieval capability to search and retrieve

existing documents such as product manuals, government policies, and news (Power,

2002). Knowledge-driven DSS is in particular a system applying data mining technique

or artificial intelligent tools to codify rules, relationships, and facts (Power, 2002). The

codified knowledge can be stored and retrieved later to assist decision-making.

Model-driven DSS provides users with computer models to integrate information and

analysis tools to compare modeled results in order to aid better decision-making on

complex problem (Power, 2002). Web-based DSS is a DSS that is accessible to users via

Internet (Power, 2002). Shim et al. (2002) concluded that the usability of DSS would be

dramatically improved accompanying with the advancements in web technology and the

18

dissemination of Internet connection.

Among these five, the web-based DSS is the most often developed in recent years,

as the new opportunities emerge from the recent advances of the Internet (Power, 2002).

Through the functionality of the Internet, decision support systems are able to share

information with a much larger audience in a real-time fashion, overcoming the limitation

of geography. Users can access decision support systems remotely, often through a web

browser.

Any kind of decision support system described above can be implemented as a

web-based DSS and becomes a very powerful tool for a broader use (Power, 2002; Shim

et al., 2002). However, as pointed out by Bhargava et al. (2007), several considerations

need to be kept in mind, both research opportunities and potential issues when utilizing

web-based DSS. First, few research papers focused on the architecture design of

web-based DSS, although there was a great amount of applications in web-based DSS.

Second, the stability of the server connection is a significant challenge when building

web-based DSS. Since data retrievals from multiple databases and model executions

might require longer duration to complete, this problem should be addressed. Third, the

technology suggestions made by empirical results for different types of DSS were

deficient.

2.3.2 Application in Agricultural Production Systems

Agricultural production systems are very complex and require multidisciplinary

expertise for their planning and implementation. There have been various DSSs

developed for different purposes and built on different technologies. In the following

paragraphs, some examples of DSSs designed for the agricultural production system are

introduced.

19

The Aberdeen University Harvesting Decision Support System (AUHDSS) is a

model-driven DSS developed for providing optimum solutions for the management of

forest biomass supply chains (Mitchell, 2000). It deals with the operation of managing

standing trees as biomass feedstock for the energy conversion, including harvesting of

conventional forest, biomass storage, and the refinery (Mitchell, 2000). One key output

from AUHDSS is an estimated delivery cost. Mitchell (1995) also developed a suite of

DSSs that considered the cost of growing short rotation coppices including willows or

poplars.

Some DSSs within agricultural areas are embedded within a geographical

information system (GIS) to visualize the present and potential location of resources.

Ayoub et al. (2007) developed a web-based DSS integrated with GIS technology, the

general Bioenergy Decision System (gBEDS), which optimized forestry residue

production for power plants and visualized the power plants on a map with the potential

quantities of biomass. Frombo et al. (2009) also established a GIS-based DSS to assist the

planning of logistic system of woody biomass for energy production. Instead of using

GIS map to visualize geographical results, the GIS map here acts as an interface to sketch

the harvested area and point plant location. The system will then calculate the optimized

capacity of the plant as a function of energy production techniques—for example,

gasification and combustion.

In addition to the DSSs for woody biomass production, DSS4Ag (Hoskinson,

2007) was developed for producing agricultural-derived biomass. The Decision Support

System for Agriculture (DSS4Ag) considers an agricultural production system where

grains and residuals as a biomass feedstock are produced simultaneously. DDS4Ag

maximizes the grower’s profits by optimizing fertilizer cost with the consideration of

20

historical yields, the current fertilizer cost, and the forecast crop price.

While the DSSs described so far focus on providing information for decision

making by the calculating capability from computer models, there is a web-based DSS,

Farm Decision Outreach Central (farmdoc), focusing on supplying integrated and timely

information which covers multiple topics such as the finance, law, marketing, and policy

(Irwin et al., 2004) for commercial producers through a web site. Apart from the

information provision, a comprehensive suite of decision tools entitled Farm Analysis

Solution Tool (FAST) dealing with financial issues is available for download (Irwin et al.,

2004).

2.4 Java-based Web Applications

The functionality of a modern web site has changed greatly from the conventional

web site hosting and serving static web pages. The original definition of a web site is no

longer sufficient such that the term “web application” is created. The web applications

refer to a client/server architecture in which web pages are created with dynamic content

based on the user’s requests from client side (Shklar and Rosen, 2009). During the

creation of dynamic web page, the contents are queried from the sources according to the

user’s request. The dynamic web contents commonly are retrieved from the other sources

such as a database. There are many computer languages, such as PHP, Java, and

ColdFusion, capable of accessing the sources.

JavaTM, one of the alternatives, has been a superior language because of its

effective integrations with the Internet environment. Java-based Internet protocols and

technologies have been published continuously to strengthen the web-enabled abilities for

different applications since JavaTM was released by Sun Microsystems in 1995 (Kleijnen

and Raju, 2003). For web application, a Java-based web technology, servlet, was

21

officially released in 1998 and maintained regularly. According to the released document

(Mordani, 2010), servlet is a special JavaTM class which is designed to handle HTTP

requests and assemble HTTP responses. A Java servlet is executed and managed by a

servlet runner, also known as servlet container, to generate the requested web contents

(Shklar and Rosen, 2009; Mordani, 2010). Through servlet container, a JavaTM servelt is

able to receive HTTP requests from the browser running on the user’s computer.

The general architecture of a Java-based web application and procedure of

handling an HTTP request are shown in Figure 2.2 (Basham et al., 2004; Kleijnen and

Raju. 2003). It contains five components: a web browser, web server, servlet container,

and third-party software such as a database application (Basham et al., 2004; Kleijnen

and Raju. 2003). Once the web server receives an HTTP request from a browser, it

redirects the HTTP request to the servlet container. Upon the arrived of the HTTP request

at the servlet container, the container, first, analyzes the request; second, identifies what

program should handle the HTTP request; and third, calls the appropriate servlet to

handle the request. Steps 4 and 5 are executed to retrieve necessary data from other

third-party software packages, e.g. database, to create web contents. When the servlet has

completed its run, it transmits an HTTP response, containing the requested items, back to

the web browser.

22

Figure 2.2. Architecture of web application for dynamic content web page.

23

Chapter 3. Design of Decision Support System

The eight steps of systems analysis are applied here to guide the development of a

DSS for biomass feedstock production (see Section 2.3 for a brief introduction). They are

discussed over the course of the next five chapters. The following narrative describes

how these steps have been implemented. The first four steps of systems analysis are

applied to the development of Biomass Production Systems, referred to as BPSys here,

the central component within ConSEnT providing decision support functionality. The

first step is to define the system objectives and scope and is presented in Section 3.1. In

Section 3.2, the components comprising BPSys for achieving system objectives are

discussed. The methodology for establishing relationships between system components is

established and translated into the system architecture in Section 3.3. The performance

indicators used to evaluate BPSys are defined in Section 0. The development of a model

for these purposes involves a software engineering design approach for the clarification

of the functionalities of graphical user interfaces within BPSys; this is described in

Section 3.5. Verification and validation of the model is discussed first in Chapter 4 where

the functionality and the usage of the user interface is described with the corresponding

screen shots and subsequently in Chapter 5. A case study is presented in Chapter 6 and

conclusions are presented in Chapter 7.

3.1 Objectives of BPSys

BPSys is a component of the concurrent science, engineering and technology

computational platform, ConSEnT. There are two primary objectives: decision support,

and communication. Decision support refers to allowing users to access the resources of

BPSys including the provided model, BioFeed (Shastri et al., 2009; 2010), and database

24

through web browsers. Communication refers to providing the research team with a web

site to introduce research work, publish results, and discuss related topics with other

researchers. The components which are capable of serving the objectives are introduced

in Section 3.2.

3.2 Components of BPSys

This section describes not only the necessary components for achieving the

objectives, but also the suitable software packages. Tables 3.1 and 3.2 itemize the major

tasks necessary to achieve the objectives of the web site and the DSS respectively. First,

the web technology that supports the tasks in Table 3.1 is examined in Section 3.2.1.

Then,the components for the tasks listed in Table 3.2 are discussed in Section 3.2.2.

Table 3.1. The four major tasks for the objective of communication.

Task Description

1 Provide administrative tools for authorization and management of users

2 Allow users to post new articles

3 Allow users to leave comments

4 Allow users to upload files to be shared with other users

Table 3.2. The eight major tasks for the objective of providing decision support.

Task Description

1 Allow users to select suitable models from the server

2 Retrieve input data from the database associated with the selected model

3 Allow users to modify the input data of the models

4 Allow users to launch the execution of the models on the remote server

5 Provide users with tools for analyzing and saving generated results

6 Provide users with the graphic tools for displaying information efficiently

7 Provide users with an easy-to-use graphical interface for tasks 1 to 6

8 Provide a client side application executable in a web browser

3.2.1 Communication

The listed tasks in Table 3.1 are commonly seen in current active social

networking websites and several well-developed web content management systems

25

(WCMS) can deliver such functionality, given the support of a web server and a database

application. WCMS are software tools for assisting website development and

maintenance (Mooney and Baenziger, 2008) and have been used to establish websites for

academic organizations and research groups (Mooney and Baenziger, 2008; Cao and Yu,

2010; Coombs, 2009; Das et al., 2009). The key components necessary for constructing a

WCMS include a web server and a database. Several WCMS are available on the market;

DrupalTM (The Drupal Association, Belgium) has been chosen for the communication

platform because of its well-known extensibility and its large amount of available plug-in

modules, providing additional functionality. This tool supports the convenience of

allowing users to develop their website via a web browser. The web server and database

selected to support the WCMS were Apache Http Server (The Apache Software

Foundation, Forest Hill, MD) and MySQL database (Oracle Co., Redwood Shores, CA),

respectively. These were chosen because they were compatible with DrupalTM and the

Linux-based Operating System, Ubuntu 8.04. The following version numbers for the

selected software components were Drupal 6.20, Apache HTTP Server

2.2.8_1ubuntu0.19, and MySQL 5.0.51a-3ubuntu5.8. These tools were organized together

to establish the decision support system.

3.2.2 Decision Support

When considering the components for decision support, they can be effectively

classified into two categories: the client-side components, which run on the user’s

computer, and the server-side components, which run on the server. The client-side

components that provide the web-based user interface of the ConSEnT platform are

described in Section 3.3. Via the web-based user interface, the user can access various

resources on the server by communicating with server-side components. The environment

26

where the client-components are executed must be platform-independent and executable

in an HTML page. Platform independence is necessary because the client environments

can be quite diverse. JavaTM has been selected to program the user interface because it

possesses superior cross-platform compatibility, acceptable graphical user interface

design, and powerful web-enabled applications, such as the JavaTM applet which is used

to develop the client. A JavaTM applet is a small application that can be embedded and

distributed directly with an HTML web page. When the web page is opened in a web

browser, the JavaTM applet will be executed on the client system and is displayed as a part

of the web page. JavaTM is also a suitable computer language for the server-side

programs.

The architecture of a Java-based web application was introduced in Section 2.4

and can be taken advantage of to design the decision support application. The remaining

choices are to select the web server, servlet container and the necessary third-party

software. Because the web server application, Apache HTTP Server, chosen previously is

unable to work directly with JavaTM servlets, a servlet container will need to be added and

chosen carefully to make sure that the container can be called by Apache Http Server to

run a servlet when it is needed by the HTTP request. Apache Tomcat (The Apache

Software Foundation, Forest Hill, MD) was selected because it can work with Apache

HTTP Server by enabling the connecting module, mod_proxy, which is included with

Apache Http Server (Apache Software Foundation, 2010). Within the module, the

developer customizes a list specifying precisely what servlets will handle which HTTP

requests. When this module is enabled, mod_proxy will be called to redirect the HTTP

request to the proper application.

In order to build a web application for decision support purposes, a database for

27

data storage and software execution model is necessary. MySQL is again selected for data

storage. The software package called by a JavaTM servlet to execute models is highly

dependent on what software package the model is programmed by. In this case, GAMS,

the General Algebraic Modeling System (GAMS Development Corporation, Washington,

DC), is used to run the model as BioFeed (Shastri et al., 2009; 2010) is coded in this

language and the model will be utilized to provide decision support. A location is

necessary to host the model, keep user records, and store results for BPSys. In the next

section, the architecture of BPSys and the collaboration between the selected software

packages are introduced.

3.3 Relationships between Components of BPSys

After defining the system components, the next step of systems analysis is to

establish the relationships between system components. The relationships between the

components are translated into a layered system architecture for BPSys and a data flow

between these components under different situations. The first subsection will discuss the

layer structure, the components within each layer, and general procedure for handling

user requests. The following subsections will display the data flow between the system

components under different use cases.

3.3.1 Layered Architecture of BPSys

The layered architecture of BPSys is displayed in Figure 3.1. The components in

Figure 3.1 are classified into the same layer because of their functionalities. From bottom

to top of the presented architecture, Layer 1, containing DSS Website (A) and the BPSys

Client (B) is users interact with the system and where all requests are initiated; Layer 2,

containing Apache HTTP Server (C), mod_proxy Module (D), Apache Tomcat (E), and

Servlets (F), is where of the requests are received and processed; and Layer 3, containing

28

Drupal (G), MySQL (H), BPSys Folder (I), and GAMS (J), is where data are sourced for

users requests. DSS Website refers to the exhibit of research context and related

discussions. Generally, each request is processed through a pathway moving from Layer

1 to 2, 2 to 3, 3 to 2, and 2 to 1, although this may vary depending on the specific

scenario. These relationships will be elaborated in the next four subsections 3.3.2 – 3.3.5

with a description of information flow between these components. The primary use cases

that the system has been designed for include: web content management, data

management, file input and output, and model execution. The first use case involves the

DSS Website, while the other three are for the BPSys client.

29

MySQL

Drupal

Server Side

Client Side

Apache Http Server

Apache Tomcat

Servlets for

MySQL

BPSys

Folder

mod_proxy Module

Servlets for

File I/O

Servlets for

running Model

G

C

D

E

F

H I J

DSS

Website
BPSys Client

A B

GAMS

Web Browser

Figure 3.1. Layered system architecture of BPSys.

3.3.2 Web Content Management

Figure 3.2 shows the data flow related to browsing the website and posting new

web content. The numbers beside the arrows represent the order of the data flow. When

the Apache HTTP Server receives an HTTP Request regarding the website, the request is

transferred over to Drupal. Drupal will gather the data from the MySQL database needed

for the requested web page and create the web page in steps 2 – 4. After the creation of

the web page, it is returned through the Apache HTTP Server.

30

Figure 3.2. The information flow of web content management.

3.3.3 Database Management

The user will interact with the BPSysClient to browse and edit data stored within

the database. The BPSysClient requests the data from the MySQL database for these

actions. The mod_proxy module redirects the HTTP Request to Apache Tomcat, which

calls servlets prepared for MySQL for data management (Figure 3.3). In general, there are

two types of data management: data retrieval and data storage. The response from the

MySQL database also has two parts: the retrieved data, and the message of whether the

data are stored successfully. The response is put within an HTTP response, which is

returned to the client side.

31

Figure 3.3. The data flow of MySQL access.

3.3.4 File Input and Output

Servlets for file input and output have been designed to deal with the input and

output of the files. In this case, servlets designed for file input and output are called from

Apache Tomcat and directly interact with the server side filesystem.

32

Drupal

Server Side

Client Side

Apache Http Server

Apache Tomcat

GAMS

Servlets for

MySQL

BPSys

Folder

mod_proxy Module

Servlets for

File I/O

Servlets for

run Model

G

C

D

E

F

I J

BPSys Client

Http Request

Request

Response

Http Response

B

MySQL
H

1

Http Request

2

3

4

5

Figure 3.4. The data flow of file input and output.

3.3.5 Model Execution

Data flow for execution of models is depicted in Figure 3.5. Servlets for running

the model have been designed for supporting this task. These servlets execute the model

back end in response to calls from Apache Tomcat. The servlet waits for the response

from the models and responds when the problem is solved. Once the model has

completed successfully, the servlet returns the response to the BPSys client.

33

Figure 3.5. The data flow of model execution.

3.4 Performance Indicators of BPSys

The previous three sections have applied the first three steps of systems analysis

to describe the system objectives, system components, and relationships. The next step of

system analysis is defining the system performance indicators before the implementation.

The purpose of this research work is to aid decision support on equipment selections and

technology development via a graphical user interface. Therefore, the performance

indicators should measure the effectiveness and usefulness of the information provided

34

for decision-making, the effectiveness of the presentation of information, and the

friendliness of graphical user interface. A user experience evaluation of BPSys should be

conducted to cover the three measurements because it is very likely that the effectiveness

of the total experience will be affected negatively by a cumbersome interface design

and/or inappropriate presentation of information. An evaluation of the interface and the

user experience has been designed, and will be implemented in the future, but is not

presented as part of this thesis.

3.5 The User Story Method

Given that user friendliness is a key performance indicator, the design of the user

interface becomes crucial for a DSS. To address this challenge, a standardized approach

for interface design has been implemented here. This section describes one popular and

practical programming method, the user story, as it is applied to guide the design and

implementation of computer programs (Steinberg and Palmer, 2004). The user story

method is applied to develop the BPSys user interface and its functionalities. The intent

of the user story method is to encourage the software developer to program an application

from a user’s perspective, not the programmer’s, so that the product actually meets

customer’s demands and is useful (Cohn, 2004).

The method starts from a description, which might be a sentence or a short

paragraph, to express how the desired task should be accomplished in the user’s language

before the programmer starts to program. The written description is called a user story. At

the beginning, the first version of the description is often too general and vague to

implement for the software programmer. The role of the software developer is to help the

user clarify their demands and break down their first draft into multiple descriptions of

more basic tasks. This requires an iterative process to make the description classified,

35

clarified, and fundamental enough for the programmer to implement. The programmer

begins to develop the application after a detailed user story appears and makes sure that

every user story is met in the application delivered to the user later.

In this thesis, the users’ opinions to guide the user interface design are from Prof.

K.C. Ting, Prof. Luis Rodriguez, Prof. Alan Hansen, Prof. Yogendra Shastri and other

team members and the user stories were defined within the team. The sponsor of this

research program, the members of the Energy Biosciences Institute, is the envisioned user.

The requirements in Table 3.2 are used as the draft user stories, placed into two categories

and extended into a detailed description. These requirements are divided into two main

categories, in which one is about system analysis and the other is about database

management. Section 3.5.1 and 3.5.2 describe the user stories for these two purposes.

There are ten main stories for the system analysis from the user’s angle. Among the

defined ten stories, five (3, 4, 5, 7, and 8) are divided into multiple subtasks. Generally,

these user stories are listed in order of complexity of implementation and in some cases

they leverage functionality from one another. For example, before selecting the model

(the story 1), the story 2 cannot be completed because the default input data are unknown.

Also, the user is not able to modify input data (the story 4) without the display of input

data. In the next chapter, the demonstration of how the graphical user interface supports

these stories will be introduced.

3.5.1 User Stories for System Analysis

1. Select models

The user can select the model from the list showing the available models on the

server.

2. Retrieve the default input data from the server

36

The application retrieves the default input data from the server after the user

selects the model.

3. Visualize scenario

The user can see the flow chart of the modeled system and scenario and modify

the input data via the visualization.

3.1 Flow chart of the modeled system

The flow chart is composed of box shaped icons and lines representing the

tasks and the sequences of the modeled system.

3.2 Display the input data

The application displays the default input data retrieved from Task 2 in

assorted tables organized by the task in the modeled system.

4. Modify input data of the models

The user will have two options for modifying input data: modifying the value of

an attribute describing pieces of equipment included in the analysis or the

modifying the combination of the equipment.

4.1 Modify the value

The user can directly click on the cell with a table that needs to be modified

and type in the desired value with the keyboard.

4.2 Modify the combination

The user can directly click a check box to select and deselect the equipment

used in the model.

5.Execute model

The user can execute the model on the server from their browser. The model can

be executed once or in batches.

37

5.1 One time execution

The user can execute the model based on the set of input data once.

5.2 Batch execution

The user can execute the model multiple times while varying input data to

observe the impact on the results.

6. Retrieve the result

The result is sent back from the server to the client automatically after the

completion of the execution.

7. Review the result

The user can observe the results in the useful pre-defined formats.

7.1 Display the result in tables

The user can view the result via multiple tables to displaying the values of

various performance indicators.

7.2 Visualize the result

The application can create figures to illustrate the content visually.

8. Result management

The user can save a copy of the result on his or her computer and open the saved

files on BPSys.

8.1 Save result

The files are saved to the user’s local file system.

8.2 Read result

The user can read the result via a text file editor or spreadsheet editor and

run further analyses.

9. Parametric analysis

38

The user can select independent variables to vary and the corresponding

dependent variables and create output chart to view the relationships graphically.

10. Auto save

BPSys will automatically keep track on the user’s activity and save the every

input information and result.

3.5.2 User Stories for Database Management

BPSys will require information provided by research collaborators to enable

ConSEnT, thus a MySQL database was included for this purpose. It is expected that

BPSys will provide the user with a graphical interface to work with MySQL. The user

stories for database management include five simple functions: view database, upload

data, download data, delete data, and define variables. The descriptions are as follows.

1.View database

1.1 View the databases existing in the MySQL server

The user can see the database list existing in the MySQL database by

clicking on the server icon.

1.2 View the tables existing in a database

The user can see the table list in the database by clicking on the

database icon.

1.3 View the contents of a table

The user can view the content stored in the table displayed in a table

by clicking on the database icon.

2. Upload data

2.1 Create a new table in a database

The user can create a new table in the selected database in MySQL

39

database.

2.2 Add column(s) into an existing table

The user can add a new column in the selected table. The user can edit

the column by the field name and the variable format.

2.3 Add record(s) into an existing table

The user can add a new record in the selected table. The user can type

in the data or use the common copy and paste commands to speed the

process.

2.4 Update the value of a cell

The user can modify an existing record in the selected table. The user

first selects the cell by directly clicking on the cell and then typing the

updated value. If the user is certain about this change, the user can click on

the “Submit” button to commit.

2.5 Import data from a comma-separated variable (CSV) file

The user can import a great amount of records into a database table by

reading a CSV file.

3. Save data

The user can save the whole table onto his or her computer in CSV format.

4. Delete data

4.1 Delete database

The user can delete an existing database in the MySQL database.

4.2 Delete table

The user can delete a table existing in the database.

4.3 Delete column(s)

40

The user can delete columns, which are redundant.

4.4 Delete records(s)

The user can delete records from an existing table.

5. Define Variables

The user can define the primitive variable formats for each column in the table.

The variable formats should include text, float, date, and integer.

41

Chapter 4. Software Implementation

This chapter will introduce how to use the user interface. Section 4.1 – 4.3 covers

the basic operations of the initialization, authentication, and graphical components. The

remainder of the chapter provides instruction regarding how to use the implementation of

the user stories. All of the previously defined user stories, except for the user story 10,

Auto save, have been implemented.

4.1 Run BPSys

BPSys is programmed in JavaTM as an applet. Being an applet, it can be executed

within a web page by adding an applet tag with the appropriate link in the HTML source

code of the web page (Zakhour et al., 2006). When a user accesses the web page tagged

with BPSys in step 1 the web browser tries to run BPSys. Figure 4.1 outlines the process

of running BPSys. First, before BPSys executes, the system checks whether the

appropriate JavaTM Runtime Environment (JRE) libraries needed to run the applet are

available. If the current JRE on the client is up-to-date, the applet is downloaded and

BPSys is initialized. Once BPSys is executed, a window asking for the user to authorize

the execution of an application downloaded from the Internet is displayed (Figure 4.2).

BPSys is executed immediately after user approval. If the current JRE is not up to date or

it is not installed on the client side, the user is redirected to the JavaTM JRE library

download page. Once the latest JRE is installed, the user is redirected to try again. It is

required to acquire user authorization because BPSys uses several file I/O classes which

save and open files on the user’s local machine and such functionality is prohibited in all

default applets to prevent any intentional damage to the client machine. The only way to

solve this problem is to request the permission of the user, making the user aware of this

42

potential security risk.

Figure 4.1. The steps of executing BPSys through a web browser.

Figure 4.2. The authorization window to run BPSys.

4.2 Login to BPSys

Figure 4.3 displays a screen shot of BPSys after successful initialization. The first

step after initializing BPSys is to login. Users have to authenticate by entering their user

name and password in a window which entitled “Enter User Name”, highlighted by the

red rectangle in Figure 4.3. The username is used to access the data in MySQL server and

create a root folder for the user, which will be used for running model and storing any

43

generated data. Once the user enters the correct username and password, the window

“Enter User Name” disappears and BPSys is ready to be used.

Figure 4.3. Login screen shot of BPSys.

4.3 Components of the BPSys GUI

Figure 4.4 is a screen shot of the BPSys after a successful login. Before the

introduction to the functionality and purpose for each component of the graphical user

interface (GUI), it might be helpful to introduce the components of the GUI and their

purpose. The components are categorized into two types: functional components and

informational components. Functional components are programmed to have responses

when they detect mouse clicks or keystrokes, while informational components display

information or reflect system status, such as a progress bar. The following sections will

describe the use of these two types of components in BPSys in turn.

44

Figure 4.4. The initialized screen shot of BPSys after successful login.

4.3.1 Functional GUI Components

The functional components are underlined in red and blue and labeled “1” and “2”

in Figure 4.5. They provide key interfaces for users to initiate tasks on BPSys. In

component 1, underlined by the red line, there is a menu bar where the main functions in

BPSys can be found and are gathered into key categories; in component 2, underlined by

the blue line, these is a tool bar which contains frequently used buttons of key functions.

Figure 4.5. The functional components of BPsys.

4.3.2 Informational GUI Components

The informational components are emphasized in Figure 4.6 by differently

45

colored rectangles, labeled “1”, “2”, “3”, and “4”. In component 1, enclosed by the a red

rectangle, is a tab pane component where all standard tree view components for viewing

the file system are displayed; component 2, enclosed by the blue rectangle, is a tab pane

component where all the principle graphical displays of data are displayed; component 3,

surrounded by a light brown rectangle, is a tab pane component where the system output

and other textual meta-data are displayed; and component 4, within a green rectangle, is a

progress bar, which displays an indicator, regarding whether the system is processing or

idling. The next subsection will explain each of these components in detail.

Figure 4.6. The display components of BPsys.

4.4 User Interface for Systems Analysis

Section 4.4 provides an overview of the functions within BPSys, which implement the

user stories of systems analysis defined in Section 3.5.1. In total, there are ten user stories

for systems analysis that have been identified; however, the tenth story has not yet been

implemented since it was decided to be beyond the scope of this thesis. Until now screen

shots have been displayed as they appear when BPSys first initializes in order to focus on

46

the relative locations of the components; some are adjusted to a suitable size to suit the

illustrations presented here. The screen shots in the following subsections are captured

from a computer operated under the Windows 7 Professional (64-bit) operating system.

The installed JRE library version is 1.6.22. The browser used to run BPSys is Firefox

version 3.6.12.

4.4.1 Select Model and Retrieve Data

The procedures for selecting a model and retrieving data are illustrated in Figure

4.7. The location of the menu item where a new project is created is shown in Figure 4.8.

Once the menu item is clicked, a window listing the available modeled scenario

appears—the “Create Project” window (Figure 4.9). Steps 2 to 4 are occur within the

“Create Project” window. Clicking “OK” causes the system to gather the necessary

information in step 5. During step 5, BPSys downloads the necessary data from the server.

The retrieved data are used to visualize the modeled scenario and the default input data,

as described in Section 4.4.2. After the data are downloaded, BPSys will complete the

creation of the new project by displaying it as a node and expanding it to a tree structure

in the “Project” window (Figure 4.10).

Figure 4.7. The procedure of selecting model and download default data.

47

Figure 4.8. The “New Project” menu item.

Figure 4.9. The “Create Project” window.

Figure 4.10. The screen shot of the new project in the “Project” window.

4.4.2 Visualize Scenario

The created project will be displayed in the “Project” window as a tree node and

has four default child nodes (Figure 4.11). The “Switchgrass Production” node,

underlined in Figure 4.11, represents the modeled scenario and the other three nodes, the

48

“Results” node, the “DataGroups” node, and the “Parametric Analysis” node, are folders

for information produced via BPSys depending on the selections of the user. To visualize

the scenario in the project, the user will double click the “Switchgrass Production” node

creating two tabs, one in the upper tabbed pane (component 1 in Figure 4.12) and one in

the lower tabbed pane (component 2 in Figure 4.12). Component 1 depicts a materials

flow diagram of the biomass feedstock production system under study. Component 2 is a

display of the related input data of the scenario. To view the content in each tab the user

needs to click the desired locations within each tab. Each of the ten buttons in the

flowchart stands for a step in the biomass feedstock production supply chain, and the

buttons connected with red lines represent that they are sequential in nature. If a red line

has more than one branch, there exist multiple possible pathways for materials to flow

through the system. Some of the buttons are surrounded with a green rectangle and some

are not; highlighted buttons have a corresponding attributes table in the “InputData” tab

pane, where the user may select equipment for analysis and manipulate attribute values.

Figure 4.13 (a) shows the flowchart and Figure 4.13 (b) shows the contents in the

“InputData” tab pane where eight tab panes contain corresponding attribute tables.

Figure 4.11. The scenario node.

49

Figure 4.12. The screen shot of visualized scenario.

1

2

50

(a)

(b)

Figure 4.13. The visualization components of the modeled scenario: (a) The tab pane of the scenario’s flowchart (b) The tab pane of

the attributes tables.

51

4.4.3 Modify Input Data of the Models

Input data can be modified via two approaches. Equipment can be selected and

unselected by checking and unchecking the checkboxes by a red rectangle in Figure 4.14.

Alternatively, specific values may be modified by performing three steps: double clicking

the cell, making the background of the cell become white (Figure 4.15. The screen shot of

editing a cell in an attributes table; and pressing “Enter” or any of the arrow keys on the

keyboard.

Figure 4.14. The checkbox column of selecting equipment.

Figure 4.15. The screen shot of editing a cell in an attributes table.

4.4.4 One Time Execution

There are two approaches to executing the models once the scenarios have been

constructed: one time execution and batch execution. This section discusses one time

execution. The menu item for one time execution of the model once is underlined in

Figure 4.16, on the run menu, in the menu bar. When the menu item is clicked, BPSys

starts to prepare the input data and then runs the model. This includes the collection of the

52

selected equipment data, as specified by the user. Then, these data are uploaded to the

server and utilized for model execution. While the model is running, the progress bar is

filling and the “Output” window” (component 3 in Figure 4.6) is printing out the

messages received from the modeling software regarding the current progress. Once the

analysis is complete, a message window will appear to notify the user (Figure 4.17). The

results are then automatically retrieved from the server and put under the “Results” node

in the “Project” window (Figure 4.18).

Figure 4.16. The “Execute Model” menu item.

Figure 4.17. The window to signal the completion of the model.

Figure 4.18. The generated result under the “Results” node in the “Project” window.

53

4.4.5 Batch Execution

The menu item for selecting batch execution is highlighted by the blue line shown

in Figure 4.16. Clicking on the “Batch Execute” menu item causes the appearance of the

“Batch Execute Configuration Dialog” window (Figure 4.19). The window contains two

major parts: the configuration toolkit, on the left, and the list of batch executions to be

run, on the right. Batch execution is similar to the basic execution of the model, requiring

two additional inputs from the user: equipment selection and attribute value modification.

Figure 4.19. The configuration dialog for batch execution.

The steps for configuration of a batch execution are depicted in Figure 4.20. The

first step is to select the biomass feedstock production task to be studied, and the second

step is to select the equipment table within the task of interest. These are selected by

choosing items from the lists underlined in red (Figure 4.21). The items available under

“Select task” list are displayed in Figure 4.22, which reflects the editable tasks outlined in

1 2

54

green in Figure 4.13 (a). Each of these tasks may be described by several database tables

(Figure 4.23). Next the user would select how the input data are varied by selecting one

of the four checkboxes underlined in blue in Figure 4.21. The first two checkboxes

control equipment selection; the last two control attribute modification.

Figure 4.20. The flowchart of configuring the batch executions.

Figure 4.21. The task list and the table list to locate the attributes table.

55

Figure 4.22. The selectable tasks in the task list.

Figure 4.23. The selectable attributes table in the table list.

Combinations of equipment are based on the quantity of equipment available for

consideration in the database. For example, the “Transportation” task has seven types of

trucks available for analysis and the user can select any number of these for batch

execution. Thus, if “Generate combinations” is selected, all possible combinations among

the available equipments are executed. For example, if the user chooses “1” from the

drop down list, there are seven combinations which use a single machine. If “2” is

selected, all the combinations of any two trucks will be calculated and used to run the

model.

Figure 4.24. The numbers of selecting equipment.

By checking the checkbox “Edit Combinations by users” in Figure 4.24,

56

equipment combination can be arbitrarily edited by the user Figure 4.25 to initiate the

configuration window (Figure 4.26). The user can select the desired equipment from the

list on the left-side, as in Figure 4.26, and click the “Add” button. This adds the

combination to the list on the right-side, as in Figure 4.27. Items may be similarly

removed by selecting and clicking “delete” on the right. Once the user is satisfied with

the list of equipment and clicks “OK”, the user-defined equipment selections will be

displayed in the text field underlined in Figure 4.28.

Figure 4.25. The GUI components for editing equipment combination.

Figure 4.26. Choosing equipment.

57

Figure 4.27. Add the equipment combination.

Figure 4.28. The user-defined equipment selections.

A user may also select to run a batch execution while modifying attribute values.

The attribute to be changed should be specified by choosing the equipment and the

attribute name from the lists as shown in Figure 4.29 (a) and (b), and entering the desired

range of values to be considered.

Figure 4.29. The selection lists to choose the attribute for batch executions (a) Equipment

list (b) Attribute list.

Just as modifying equipment combinations, there are two methods for varying the

(b) (a)

58

range of attribute values to be considered. This is illustrated in Figure 4.30. Figure 4.30 (a)

demonstrates how to configure a set of values to be varied by a fixed interval, defined by

a percentage of the specified range. The user can also specify a set of values directly by

entering the values into the text field, separated by semicolons, as in Figure 4.30 (b).

Figure 4.30. The two approaches to define the values of the selected attribute: (a) Fixed

interval attribute (b) User-defined attributes.

After the user finishes configuration of a batch through steps 1 to 3 (Figure 4.20),

it can be added into the list by clicking the “Add” button underlined by the blue line in

Figure 4.31. For example, Figure 4.31 shows a batch execution that increases the attribute

“MaxVolume” of the Forage_Truck, in the Transportation task, from 141.58 to 200 by

intervals of 5 percent of this range. This has been added onto the list at right (marked by

the red line). After the configuration is finished, the user presses “OK” to send the list to

the server for execution.

(b) (a)

59

Figure 4.31. The screen shot of adding a batch execute into the execution list.

While the server is processing these requests, the “Execute Progress” window

(Figure 4.32) appears, indicating the progress with six components: the fraction of

processed batches, highlighted by the red line; the description of the current batch being

processed, highlighted by the red rectangle; the progress bar displaying the percentage of

completed batch executions, highlighted by the red dashed rectangle; the fraction of

processed executions within a batch, highlighted by the blue line; the description of the

current iteration, highlighted by the blue rectangle; and the progress bar displaying the

progress of current model being executed, highlighted by the blue dashed rectangle. The

results generated are put under the “Results” folder to be reviewed later. Before the

requested batches are complete, the webpage should not be closed and the Internet

connection should be maintained, or the batch will fail to complete.

60

Figure 4.32. The progress window of the batch execute.

4.4.6 Retrieve and Review the Results

To display the output of the result, the user clicks on the result node (blue

background in Figure 4.33 (a)) under the “Results” folder. This creates a tab pane labeled

with the name of the results file (underlined by the red line in Figure 4.33 (b)). Multiple

tab panes are created to display various types of output generated. This function is the

manifestation of user story 7.

(a)

(b)

Figure 4.33. The visual components of a result: (a) The result node “Shed_NoWalls_4”

(b) The result tab “Shed_NoWalls4 Output” to display the output of the result

“Shed_NoWaslls_4.

The tab panes included in Figure 4.33 (b) are the “Output”, the “Transportation

Fleet Schedule”, the “Cost ($/Mg)”, the “Energy consumption (MJ/Mg), the “Greenhouse

61

gas emission (kg of CO2 eq/Mg)”, and the “Transportation Fleet Schedule Figure”. When

each of these tabs is clicked, the content within the tab pane is displayed (Figure 4.34 -

41). The “Output” tab (Figure 4.34) displays the system level performance indicators.

The “Transportation Fleet Schedule” tab (Figure 4.35) shows the trucking schedule the

entire year. The “Cost ($/Mg)” tab pane (Figure 4.36) is a pie chart for the distribution of

costs within each task. The “Energy consumption (MJ/Mg)” tab pane (Figure 4.37) is the

pie chart for the distribution of energy usage. The “Greenhouse gas emission (kg of CO2

eq/Mg)” tab pane (Figure 4.38) has the pie chart of the distribution CO2 emission of the

system. The “Transportation Fleet Schedule” tab pane (Figure 4.39) is a line chart for

visualization of the fleet schedule.

Figure 4.34. The “Output” tab pane.

62

Figure 4.35. The table of the transportation fleet schedule.

Figure 4.36. The “Cost ($/Mg)” tab pane.

63

Figure 4.37. The “Energy consumption (MJ/Mg)” tab pane.

Figure 4.38. The “Greenhouse gas emission (kg of CO2 eq/Mg)” tab pane.

64

Figure 4.39. The “Transportation Fleet Schedule” tab pane.

4.4.7 Save Result

The results can be saved in CSV file for analysis outside of BPSys (Figure 4.40).

First the user should select the result(s) to be saved from the Project window by clicking

on the node to make its background become blue (Figure 4.41 (a)). Then the user should

click the “Save Result(Input&Output)” menu item (Figure 4.41 (b)). This makes the

“Save” dialog box appear automatically (Figure 4.42).

Figure 4.40. The flowchart to save result(s).

65

(a) (b)

Figure 4.41. The adjustment of the dimensional size for saving a image: (a) The mouse

cursor on the edge between the “Project” window and the main tab pane (b) The mouse

cursor on the edge between the “Object” window and the main tab.

In the dialog, the default file name for the input file and output file of the selected

result are displayed in the “File name” text field underlined by the red line (Figure 4.42).

The user can modify the file names, as desired, and press “Save”. The file extension,

“*.in” stands for the file of input data; the sub file title, ”*.out” stands for the file out

output data.

66

Figure 4.42. The “Save” dialog.

The user can also save the figures in BMP image format. The steps of saving the

figure as a BMP image are shown in Figure 4.43. First the user should display the figure

shown on the screen by clicking the appropriate tab on the tab pane. Then the user should

click “Save as Image” menu item (Figure 4.44). The “Save” dialog (Figure 4.42) will

appear automatically.

Figure 4.43. The flowchart of saving the figure as an image.

67

Figure 4.44. The “Save as Image” menu item.

The size of the saved image will depend on the current size of display of figure.

The width and height of the figure can be adjusted by moving the mouse cursor to the

edges of the Project window (Figure 4.45 (a)) and the Output window (Figure 4.45 (b)),

until the double arrow appears, and dragging the mouse cursor. The functions to save text

and figure outputs are the manifestation of user story 8.1 “Save result”.

(a) (b)

Figure 4.45. (a) The mouse cursor on the edge between the “Project” window and the

main tab pane (b) The mouse cursor on the edge between the “Object” window and the

main tab.

4.4.8 Read Result

To open a saved result, the user should click “Open Result” on the file menu

(Figure 4.46). The “Open” dialog (Figure 4.47) will appear. The user selects the output

files of interest from the dialog and clicks the “Open” button. A node under the “Results”

node will be created and the user can click as described in Section 4.4.6.

68

Figure 4.46. The “Open Result” menu item.

Figure 4.47. The “Open” dialog.

4.4.9 Parametric analysis

This function provides a convenient tool to study the impact of specific attributes

on the system performance. To do so, the user must select the dependent and independent

variables from a batch of results and create plots to present the impacts. The procedure

for parametric analysis is shown in Figure 4.48. It consists of nine steps. Steps 1 to 3

create a group of results, called a DataGroup; steps 4 to 9 prepare the data set and draw

69

the plot.

Select results to be

grouped

2

Entitle the group of

results

3

Press the Parametric

Analysis Menu Item

4

Press the Edit Grouped

Data Menu Item

1

Select groups to be

compared

5

Select one type of

independent variables

6

Select dependent

variables and types

7

Name the title, x label, y

label, and legends

8

Press the OK button

9

Figure 4.48. The procedures of parametric analysis.

First, the user should create DataGroups by pressing “Edit Grouped Data” (Figure

4.49). A dialog will appear (Figure 4.50). Then the user can select the results from the list

on the left side of the dialog (Figure 4.50) and add them to “Selected Results” by clicking

the double arrows. After making the selections, the user should add a description to the

group and click “Ok”. A node describing the group will display in the DataGroups node,

in the Project window (Figure 4.51).

Figure 4.49. The Edit Grouped Data Menu Item.

70

Figure 4.50. The dialog for selecting results.

Figure 4.51. The node symbolizing the group of selected results under the folder node

DataGroups.

Next, the user should begin creating the chart by clicking “Parametric Analysis”

in the Analysis menu (Figure 4.54). The “Parametric Analysis” dialog box will display

(Figure 4.53). Steps 5 to 9 will be completed by the user in this window.

71

Figure 4.52. The Parametric Analysis Menu Item.

Figure 4.53. The window to configure parametric analysis.

The user can select the groups of results to be compared from the left (part 1 in

Figure 4.53) and press the double arrow button to move it to the right (part 2 in Figure

4.53). When an item is moved into the right list, the contents in parts 3 and 4 will be

enabled (Figure 4.54).

1 2

3

4 5

72

Figure 4.54. The window contents when an item is moved to the right list.

The user should choose how to display the x-axis values by clicking the item list

in part 2 (Figure 4.55). “Raw Data” displays x-axis values with no additional processing;

“Difference Between Raw Data” displays x-axis values as difference from the first value

of the raw data series; and similarly, “Change Ratio of Raw Data” displays x-axis values

as ratios from the first value of the original series.

Figure 4.55. Types to prepare x-axis values.

The user will now need to select the system performance indicator they would

like to be plotted. Tasks to be plotted will be selected by clicking checkboxes (Figure

73

4.56). Again the user will decide the format to plot data on the y-axis, under the “Variable

Type” list. Axis labels can be edited by the user as well (part 5 in Figure 4.53). The user

presses the OK button to finish.

Figure 4.56. The example of the configurations of independent variable, dependent

variable and chart labels.

After clicking the OK, a node will be put under the folder node Parametric

Analysis to symbolize the comparison (Figure 4.57) and the chart (Figure 4.58) will be

displayed with other charts. This function is the manifestation of the user story number

nine. The next chapter will discuss more about the Java classes necessary which enable

the graphical user interfaces.

Figure 4.57. The parametric analysis node.

74

Figure 4.58. The chart for the parametric analysis of a group of results.

75

Chapter 5. BPSys Procedures

Chapter 5 will discuss the developed Java classes, and the information flow

associated with the user stories. The developed classes include two parts: the client side

and server side. Table 5.1 lists the client-side and server-side Java classes divided into

their specific purposes. These classes are designed to satisfy the defined use cases

(Section 3.5). The classes are explained by applying the unified modeling language

(UML), including class diagrams, use case diagrams, and sequence diagrams. See Fowler

(2003) for an explanation for how to read and interpret UML diagrams.

Table 5.1. List of client-side and server-side packages.

Client-side Package Description

System Responsible for handling routine operations, e.g. string handling

client.com
Responsible for handling sending requests to the server and

retrieving information

client.modeling Responsible for handling information used for decision support

client.gui
Responsible for providing container components for the user

interface

client.gui.basic
Responsible for providing basic user interface components

extended from Java Swing components to display

client.gui.database
Responsible for providing components used to build user

interface for database

client.gui.project
Responsible for providing components used to build user

interface for decision support

Server-side Package Description

bpsys.server.com
Responsible for handling server requests from the client side and

returning the requested resources

The use case diagram is charted according to the defined user stories (Section 3.5)

and used to describe the interactions between the user and the system via the available

76

system functions (Figure 5.1). Each oval stands for a use case, named for a different user

story. The use cases linked with a solid line are directly called by the user. Dash lines are

called by the other use cases. The use cases will be explained in Sections 5.2 with the

sequence diagrams.

Figure 5.1. BPSysClient use case diagram.

The remaining sections describe how BPSys utilizes the developed Java classes

and how BPSys accesses computational resources to provide the user stories. The major

Java classes are introduced in the class diagrams in Section 5.1. Section 5.2.1 explains the

procedure for creating a project to manage the selected model and results. Section 5.2.2 is

about the creation of visualized scenario and attributes tables. The procedure of model

77

execution is included in Section 5.2.3 and 5.2.4. Section 5.2.5 reveals the procedure of

presenting results. Section 5.2.6 discusses the procedures for conducting parametric

analysis.

5.1 Java Classes

This section describes the Java classes that make information management and

presentation possible with the user interface. The emphasis of this section is on (1) the

purposes of the classes, (2) how they are related to the user interface and (3) the

relationships between the classes. This is presented via the Unified Modeling Language

(UML) (Fowler, 2003). The classes are divided into three groups here, generally

according to what they are designed to achieve. Each group of classes is responsible for

multiple functions in the user interface. This classification is necessary to follow the logic

because the implementation of single function in user interface involves normally more

than one class.

The first group of classes introduced in Section 5.1.1 is responsible for the

functions of creating a project, a combination of user story 1 and 2. Visualizing the

modeled scenario, user story 3, is considered in Section 5.1.2. Modifying input data, and

executing the model, user stories 5 and 6, are described in Section 5.1.3. These functions

make the users feel comfortable while working with models. The next group of classes

introduced in Section 5.1.4 is responsible for handling results, user stories 7 and 8,

including presentation, saving, and opening result sets. The Section 5.1.5 describes our

approach to parametric analysis for the comparison of results, user story 9. Finally,

Section 5.1.6 describes the classes used to communicate between the client and server.

The information flows and operations between them are discussed in the following

sections Section 5.2 with associated sequence diagrams.

78

5.1.1 Generating a Project

Ten classes in BPSys are involved in the process of creating a project to retrieve

the model results. Project is the core class referring to the other classes directly or

indirectly. The UML diagram of the Project class (Figure 5.2) shows that it is supported

by five classes: Scenario, Result, DataGroup, ParametricAnalysis, and

DependentVariableExtractor. The Projectclass helps the user manage the model, the

output of the model, and the meta-information obtained from analysis. These are all

symbolized as nodes in the Project window in Section 4.4. The Scenario class processes

the information necessary for describing the selected model, such as the order of

production chain, and location of the table in the database. The Result class is the

container of output from a single execution of the model and related input data. The

DataGroup class organizes the grouped Result objects for further processing. The

ParametricAnalysis class manages the DataGroup objects for visualization and

comparison. The DependentVariableExtractor class is responsible for recognizing and

gathering useful information with model output and then creating a Result object.

This design (Figure 5.2) helps the classes specialize themselves and facilitates

future development. Each class can be easily replaced or improved in the future. This can

also simplify information management because pertinent information is encapsulated.

79

Figure 5.2. A class diagram of the Project class. Boxes represent Java classes developed

for the purpose of this research. Arrows with diamonds at the tail represent whole-part

relationships, where the diamond end signifies the whole and the arrow signifies the part.

The label “0..*” represents the cardinality of objects in the relationship; in this case, there

may be zero to many, represented by the “*”, objects that may be part of the whole.

The Scenario class (Figure 5.3) is supported by three classes: ScenarioPanel,

ResultOutputReportCreator, and Task. The Task class is the basic element in a modeled

scenario; it stores the reference to the previous and the next Task object and connects the

object to the database. The ScenarioPanel class creates the object that displays the

flowchart of the modeled scenario (Figure 4.13). ResultOutputReportCreator is designed

to organize the simulation results into the tables and also create the charts.

The input needed to construct a Scenario object is acquired from a Java-based

properties file associated with the selected model from the server (Appendix A). The

properties file passes parameters to the BPSys Client along the pathway shown in Figure

3.4 and is designed to be opened readily using native Java commands provided by the

Properties Class (java.util package). The contents of the properties file gathers

information for multiple purposes, including creation of a project (Section 5.2.1),

visualization of the modeled scenario (Section 5.2.2), execution of the model (Section

80

5.2.3), and presentation of the results (Section 5.2.5).

Figure 5.3. Class diagram of Scenario class. Arrows with diamonds at the tail represent

whole-part relationships, where the diamond end signifies the whole and the arrow

signifies the part. The label “0..*” represents the cardinality of objects in the relationship;

in this case, there may be zero to many, represented by the “*”, objects that may be part

of the whole.

5.1.2 Visualizing a Modeled Scenario and Attribute Table

The ScenarioPanel class (Figure 5.4) is supported by two classes: TaskButton and

JPanel. The ScenarioPanel class uses the array of the Task objects in the object of the

Scenario class to draw the scenario flowchart. For each Task object, there will be a

TaskButton object declared in the ScenarioPanel to represent it. While the ScenarioPanel

is being created, the equipment data for each task is downloaded from the database and

used to construct a table as in Figure 4.15. The procedure for instantiating a graphical

scenario is presented in Section 5.2.2.

81

Figure 5.4. Class diagram of ScenarioPanel class. Arrows with diamonds at the tail

represent whole-part relationships, where the diamond end signifies the whole and the

arrow signifies the part. The label “0..*” represents the cardinality of objects in the

relationship; in this case, there may be zero to many, represented by the “*”, objects that

may be part of the whole.

5.1.3 Executing the Model

The user story Execute Model is among one of the most complicated cases. It

includes three sub tasks and majorly relies on the classes Project, Scenario, and Servlet

which are used to send request to server (Section 5.1.6). The sequence of function calls

for the single execution of the model is introduced in Section 5.2.3. For batch execution

see Section 5.2.4.

5.1.4 Presenting Results

When a project receives raw output from the server, it depends on several classes

to extract useful information, create tables, and make charts. A class, named Result, is

designed for containing the input to and output from the model. Within the Result class,

two types of data are handled by two different classes: ResultOutput and ResultInput

(Figure 5.5). The Scenario class, described above, has access to the resource properties

file, which is needed for creating the ResultOutput object. The Result class is able to

create visual components to display input and output data as well. The visual components

of output are created via the ResultOutputReportCreator object accessed through the

82

associated Scenario object.

Figure 5.5. Class diagram of Result class. Arrows with diamonds at the tail represent

whole-part relationships, where the diamond end signifies the whole and the arrow

signifies the part.

The ResultOutput class depends on the ProfileVariable class and the

DependentVariable class (Figure 5.6). These two Java classes handle different kinds of

variables in the result set. The ProfileVariable class is for storing a continuous series of

data; for example, the number of trucks number required per day throughout a whole year

for moving biomass (Figure 4.35). This is as opposed to the DependentVariable class for

storing variables which describe discrete values; for example, the cost for each task in the

production system is handled by a DependentVariable object. Arrays of ProfileVariable

objects and DependentVariable objects are created from the raw output data by the

DependentVariableExtractor object in the Project object and they are used to visualize the

charts and tables later. The procedures for extracting theses variables are described in

Section 5.2.5.1.

83

Figure 5.6. Class diagram of ResultOutput class. Arrows with diamonds at the tail

represent whole-part relationships, where the diamond end signifies the whole and the

arrow signifies the part. The label “0..*” represents the cardinality of objects in the

relationship; in this case, there may be zero to many, represented by the “*”, objects that

may be part of the whole.

The ResultInput class contains the data fed into the model to generate the output.

The class diagram (Figure 5.7) shows that the ResultInput class refers to an array of

IndependentVariable objects. The IndependentVariable objects hold the data describing

each task in the modeled system. The IndependentVariable class has three attributes for

describing the input data of a task. The attribute “Name” stores the name of the attributes

table (Figure 4.15); the array “fieldname” stores the first row in the table, including the

attribute name and the unit, except the first cell “Selected” (Figure 4.15); the array

“values” stores the values on the selected equipment.

Figure 5.7. Class diagram of ResultInput class. Arrows with diamonds at the tail represent

whole-part relationships, where the diamond end signifies the whole and the arrow

signifies the part. The label “0..*” represents the cardinality of objects in the relationship;

in this case, there may be zero to many, represented by the “*”, objects that may be part

of the whole.

84

5.1.5 Comparing Results

The classes in this section implement the parametric analysis. The

ParametricAnalysis class (Figure 5.8) is supported by three classes: XYSeriesDataset,

DataGroup, and JFreeChartCreator. The DataGroup contains a set of grouped Results

objects and make it reusable. The DataGroup object is symbolized as a node under the

GroupData node (Figure 4.51) in the Project window (Figure 4.10). The XYSeriesDataset

class gathers data from a DataGroup object. It will also output a standardized dataset,

which is sent to a JFreeChartCreator object to generate plots (Figure 4.58). The

JFreeChartCreator class takes advantage of an open source Java library, JFreeChart

(Gilbert, 2009), to create the charts. The purposes and use of the developed classes is

explained in Section 5.2.6.

Figure 5.8. Class diagram of ParametricAnalysis class. Arrows with diamonds at the tail

represent whole-part relationships, where the diamond end signifies the whole and the

arrow signifies the part. The label “0..*” represents the cardinality of objects in the

relationship; in this case, there may be zero to many, represented by the “*”, objects that

may be part of the whole.

5.1.6 Supporting Infrastructure: Sending Requests

The classes introduced in this section are used to transmit data between the client

side and the server side. Figure 5.9 displays the classes used on the client side to send

requests to the server for various services including downloading data, executing the

85

model, and uploading information. The requested services and necessary information are

stored in the RequestInfo class in Figure 5.9. The necessary information is dependent on

the requested services. For example, it will include the file name if trying to download a

file from the server, which is not required for downloading data from the database. The

Request class is used to create an HTTP request to transmit a RequestInfo object to a

servlet specified by the internet address stored in the attribute “url” (Figure 5.9). Calling

the operation “processRequest()” will proceed to execute the request. Once the request is

completed successfully, the operation “getReceivedData()” will retrieve the information

associated with the requested service.

Figure 5.9. Class diagram of Request class. Arrows with diamonds at the tail represent

whole-part relationships, where the diamond end signifies the whole and the arrow

signifies the part.

The server side classes that receive requests are displayed in Figure 5.10. The

three servlets referred to in Figure 5.10 are designed for unique purposes. The download

servlet handles requests for downloading information stored in either the properties file or

the database. The runmodel servlet is responsible for executing the model. The upload

servlet uploads the input data and store in on server side files and the database. Each of

the three servlets are extended from the JavaTM class HttpServlet. When the three servlets

86

receive a request from the client, the RequestInfo object sending with the request is read

and analyzed by the responsible servlet to conduct the service. When the request is

completed, the responsible servlet sends the message and the requested information to the

client.

Figure 5.10. Class diagram of servlet classes. Arrows with diamonds at the tail represent

whole-part relationships, where the diamond end signifies the whole and the arrow

signifies the part.

5.2 Sequence Diagrams & Algorithms

5.2.1 Generating a Project

Figure 5.11 displays the procedure for creating a project with six steps executed

after the user selects the model through user interface. Step 1 is to download the

descriptions of the model from a properties file on the server. Step 2 begins the

construction of a Project object by passing in the downloaded properties of the model and

the project name. Step 3, a Scenario object is constructed using the constructor method of

the Project class. The properties of the model are passed into the constructor method of

the Scenario class. Step 4 is to create the objects of the Task class within the construction

method of the Scenario class. After creating the Task objects, the default input data is

87

downloaded from the server in step 5. Step 6 finishes the construction of the project and

displays the project node (Figure 4.11).

Figure 5.11. Flowchart of creating a project.

Figure 5.12 shows the sequence diagram for creating a new project. In this

diagram, the classes involved are shown with the functions called for creating a project.

The involved classes are listed on the top row of blue boxes in the diagram. The label of

the box contains two pieces of information separated by the colon. The label on the right

side represents the name of the class. The label on the left side represents the name taken

to create the objects of the class. In Figure 5.12, the classes used to create a project

include ProjectManager, Project, and Scenario. The call of a function is initiated from a

labeled line with an arrow and the blue bar represents the length of the call. If the called

function returns some information, the blue bar is ended with the company of a line with

an arrow back to where this function is called. The labels aside or above the lines

describe the depth of the call with the numbers and the name of the called functions with

the text. The sequence diagrams are presented in this chapter to describe the behaviors of

the program that conduct the steps outline in the flowcharts (for example creating a

project Figure 5.11).

Step 1 in Figure 5.11 is finished within the segment between the arrows 1.1 and

88

1.2. Step 2 is represented by the arrow 1.3.1. Step 3 is completed between the arrows

1.3.1.1 and 1.3.1.2. Step 4 is accomplished between the arrows 1.3.1.1.1 and 1.3.1.1.2.

Step 5 is finished between the arrows 1.3.3 and 1.3.4. The returned arrow 1.4 represents

Step 6. Once the project is created, it will be assigned and displayed in Project window as

a root node (Figure 4.10). The two coming subsections describe the detailed procedures

of steps 4 and 5 respectively.

Figure 5.12. Sequence diagram of creating project.

5.2.1.1 Creating Tasks

This section discusses the process for extracting the information from the

properties file for the creation of the Task objects and the ScenarioPanel. The contents in

the properties file relates to declaring Task objects and extraction of the raw data

displayed in Figure 5.13. The first line in Figure 5.13, NumofTask=9, represents how

many Task objects the Scenario object consists of; the following lines, from 2 to 17,

89

provide the attributes for declaring the Task objects. Each declaration of the Task class

needs two attributes, the name of the Task and the boolean value describing whether it is

editable. When the value of editable property is equal to true, there is a set of input data

applied to the Task object and it can be edited to meet user’s needs. When the value is

equal to false, it represents a set of input data provided by the model for this Task, but

modification by the user is not permitted. If the editable property doesn’t exist for certain

tasks, there is no input data provided in the MySQL database. For instance, there is no

editable property for “Task1” in Figure 5.13 and there is currently no table describing

biomass growth at this time. The procedure of creating the Task objects is as shown in

Figure 5.14. First, the number of Tasks is read in from the properties file. If the number is

greater than 0, it enters the creation loop. In the loop, the program reads Task name and

the editable property and then creates the Task N. The N refers to the number following

the text “Task” in Figure 5.13. Table 5.2 lists all the Task objects created after the loop is

completed. There are nine Task objects and seven of them specify input data that could be

edited. In Table 5.2, the column “Editable” indicates whether data is made available for

editing by the user. If so, the table in the MySQL database is specified in the “Table name

in MySQL” column in Table 5.2.

90

1 NumofTask=9

2 Task1.class=BiomassGrowth

3 Task2.class=Harvesting

4 Task2.editable=true

5 Task3.class=Raking

6 Task3.editable=true

7 Task4.class=Packing

8 Task4.editable=true

9 Task5.class=FarmOpenStorage

10 Task5.editable=true

11 Task6.class=FarmCoveredStorage

12 Task6.editable=true

13 Task7.class=CentralizedStorage

14 Task7.editable=true

15 Task8.class=Transportation

16 Task8.editable=true

17 Task9.class=Biorefinery

Figure 5.13. The content format in the properties file for creating Task objects.

Figure 5.14. The flowchart of creating Task objects.

91

Table 5.2. The properties of created Tasks.

ID Task name Editable Table name in MySQL

Task1 BiomassGrowth null

Task2 Harvesting true Harvesting

Task3 Raking true Raking

Task4 Packing true Packing

Task5 FarmOpenStorage true FarmOpenStorage

Task6 FarmCoveredStorage true FarmCoveredStorage

Task7 CentralizedStorage true CentralizedStorage

Task8 Transportation true Transportation

Task9 Biorefinery null

Figure 5.15 shows the sequence diagram of creating Task objects. Steps 1 and 2 in

Figure 5.14 are completed before entering the loop in Figure 5.16. The arrows inside the

loop perform steps 3, 5, and 6 repeatedly.

Figure 5.15. Sequence diagram of creating Task objects.

5.2.1.2 Downloading Input Data

This section describes the steps for downloading input data from the MySQL

92

server used to support the BioFeed model and BPSys (Figure 5.16). The array of Task

objects is passed into the method to start the download. If the “editable” property of Task

N is equal to true or false, the name of the Task N is then used as the table name to

construct a query and download the input data of the task from the table in MySQL server.

Although the project is created and the related data is downloaded, the visualization of

the modeled scenario and the tables for modifying attributes values are not yet created.

The next section 5.2.2 introduces the procedures for creating these visual components.

Figure 5.16. The flowchart of downloading input data. NumofTask is the variable

retrieved from the content in the properties file shown in Figure 5.13. It is set to inform

that the number of Task object should be created for the selected scenario.

Figure 5.17 shows the sequence diagram for downloading input data. The array of

Task objects (Figure 5.16) are prepared by the segment between the arrows 1 and 1.2 and

passed to the loop shown in Figure 5.17. The loop repeats as it performs steps 2 – 6 in

Figure 5.16.

93

Figure 5.17. Sequence diagram of downloading input data.

5.2.2 Visualizing a Modeled Scenario and Attribute Table

The procedure shown below, in Figure 5.18, will occur if the user double clicks

the scenario node (illustrated in Section 4.4.2). When a scenario node is double clicked,

the user interface of BPSys will identify which scenario node is double clicked and call

the corresponding Scenario object to create the visual components. Steps 2 and 3 are then

performed within the Scenario object. When these two steps are finished, the Scenario

object returns the visual components to the user interface to be displayed.

Figure 5.18. Flowchart of visualizing modeled scenario and attribute tables for tasks.

Figure 5.19 shows the sequence diagram of visualizing scenario and tables. Step 1

94

in Figure 5.18 is represented by the segment between the arrows 1 and 1.1. Steps 2 and 3

are completed by calling functions via the arrow 1.1 and 1.2 separately. The next two

subsections will show steps 2 and 3 in more detail.

Figure 5.19. Sequence diagram of visualizing scenario and tables.

5.2.2.1 Creating a ScenarioPanel Object

The instructions for creating the ScenarioPanel are acquired from the properties

file (Figure 5.20). There are three key pieces of information in the properties file involved

in assembling the scenario flowchart. The first the number of the buttons is established

from value of NumofBox. The second is the description of the task the button represents,

lines 2 through 11. The last is a description of the connections the button should have in

the process flow chart. A task in the scenario can be connected to one or many buttons in

the scenario flowchart (Figure 4.13). For example, Box5 and Box9, labeled by the text

“Transportation” in Figure 4.13, both refer to Task8 (Table 5.3). Thus, buttons can

arbitrarily connect to as well as be connected by others if these connections are

reasonable in the modeled scenario.

95

1 NumofBox=10

2 Box1.Task=Task1

3 Box2.Task=Task2

4 Box3.Task=Task3

5 Box4.Task=Task4

6 Box5.Task=Task8

7 Box6.Task=Task5

8 Box7.Task=Task6

9 Box8.Task=Task7

10 Box9.Task=Task8

11 Box10.Task=Task9

12 Box1.next=Box2

13 Box2.next=Box3

14 Box3.next=Box4

15 Box4.next=Box5

16 Box5.next=Box6,Box7,Box8,Box10

17 Box6.next=Box9

18 Box7.next=Box9

19 Box8.next=Box9

20 Box9.next=Box10

Figure 5.20. The content in the properties file for creating a ScenarioPanel object.

Table 5.3. The referred task and connection(s) for each button.

 Referred task Input Connections Output Connections

Box1 BiomassGrowth (Task1) Box2

Box2 Harvesting (Task2) Box1 Box3

Box3 Raking (Task3) Box2 Box4

Box4 Packing (Task4) Box3 Box5

Box5 Transportation (Task8) Box4 Box6,Box7,Box8,Box10

Box6 FarmOpenStorage (Task5) Box5 Box9

Box7 FarmCoveredStorage (Task6) Box5 Box9

Box8 CentralizedStorage (Task7) Box5 Box9

Box9 Transportation (Task8) Box6,Box7,Box8 Box10

Box10 Biorefinery (Task10) Box5

 Figure 5.21 shows the flowchart for creating the visualized scenario. It starts

96

with the passing of the properties file into the constructor of ScenarioPanel class. The

first block indicates the initialization of JavaTM Swing component. The second block

retrieves the value of NumofBox in the properties file to set the number of iterations in

the loop. In the loop, the properties of the button N are retrieved to declare and establish

each button. After the completion of the loop, the buttons are added into the GUI

component list of the ScenarioPanel object for displaying them later on the screen. The

coordinate of each button must be adjusted because the initial coordinate for any JavaTM

Swing component is (0, 0). Each button is located based on the order of the connections.

The links are drawn as red lines after the coordinates for all buttons are certain.

Figure 5.21. The flowchart of creating a ScenarioPanel object.

Figure 5.22 shows the sequence diagram of creating a ScenarioPanel object. The

segment between the arrows 1 and 2 is for steps 1 and 2 in Figure 5.21. The buttons

shown in Figure 4.13 (a) are created by calling the method, createVisualizedScenario, of

ScenarioPanel along the arrow 3. Through the arrow 3.1, steps 3 – 7 are accomplished.

Steps 8 and 9 are finished by calling the function, arrangeButton, of ScenarioPanel via

true

Properties file

Read in the number of

task buuttons & set N=0
If NumofBox > 0

Initialize the creation of

a ScenarioPanel object

If N >= NumofBox

Relocate the Box on the

ScenarioPanel

Add the Box objects to

the ScenarioPanel object

Link the buttons

by red lines

The end of

creation

Read in the Box N

properties

Create the Box N

& N = N + 1

true

false

false
1 2 3

4 5 6

7 8 9

10

97

the arrow 3.2.

Figure 5.22. Sequence diagram of creating a ScenarioPanel object.

The buttons put on the panel not only play a role for interpretation of the scenario

but provide users the ability to interact with the data. Users can view the attributes table

of a task via clicking the corresponding button. The following section 5.2.2.2 describes

the procedures for creating tables and how to connect the attributes tables with task

buttons and allowing the user to browse the tables with a button click.

5.2.2.2 Creating Attribute Tables

The flowchart Figure 5.23 shows the steps necessary for creating tables, displaying

them, and creating links with buttons in the ScenarioPanel. The tables are created and put

into an array of tables in a loop if the value for the editable property of the task is true

(Figure 5.13). After the loop is completed, the next step is to display the attributes tables

in the JTabbedPane where every table occupies a tab (Figure 5.24). The label of the tab is

the task name. The tables are passed into the corresponding Task objects. Lastly, the

connection of the table and the button is via the Task object. If there is an attributes table

declared for the Task object, the Task object declares a mouse action listener to monitor

98

the mouse click on the button of the Task object. If the button is clicked, the tab

containing the table is presented.

Figure 5.23. The flowchart of creating tables of input data.

Figure 5.24. The tabs of attributes tables in a JTabbedPane.

Figure 5.25 shows the sequence diagram of creating attribute tables for a selected

scenario. Steps 1 – 4 in Figure 5.23 are finished by the part of program between the

arrows 1 and 1.1. Step 5 is carried out by the function setTable of Task class. Step 6 is

finished between the arrows 1.3 and 1.4.

99

Figure 5.25. Sequence diagram of creating attribute tables.

Through the steps demonstrated in the section, the Task object, the containers of

the input data for each task in the scenario, the visual components for the scenario and

input data are established. The links between the graphical visualizations are also made.

The next section introduces the procedure to run the model remotely on the server.

5.2.3 Conducting Single Model Execution

The flowchart of model execution is illustrated in Figure 5.26 and consists of

three major steps. The first one is to collect data describing the selected equipment

attributes and organize into a format defined by the model. The second step is to upload

the data to the server. The third step involves asking server to run the model and returning

the output. The following subsections describe these three steps in detail.

Figure 5.26. The abstract flowchart of model execution.

Figure 5.27 shows the sequence diagram of model execution. The arrow 1

represents the initiation of model execution. The segment between 1.1 and 1.4 involves

the collection of input data for the selected Scenario object (step 1 in Figure 5.26). The

segment between the arrow 1.5 and 1.6 uploads the data. The segment between the arrow

100

1.7 and 1.8 handles execution of the model and returning results in Figure 5.26.

Figure 5.27. Sequence diagram of model execution.

5.2.3.1 Collecting Input Data

This section depicts what data should be extracted and what formatting occurs for

the selected model. The model, BioFeed, utilized by BPSys requires three different input

files for each task for exectution. They are called ColumnIdentifiers, Types, and Table.

Taking the tables in Figure 5.28 as an example, the three files are shown in Figure 5.29,

with the first two pieces of equipment selected. The “Types” file (Figure 5.29 (a)) stores

the values under the “Name” for the selected rows or the name of the selected equipment.

The “ColumnIdentifiers” file (Figure 5.29 (b)) stores only the headings for each column

(part 1 in Figure 5.28). The “Table” file (Figure 5.29 (c)) stores the data within each of

the selected rows (parts 2 and 4 in Figure 5.28). These three input files will be stored in

CSV format with different filenames on the server and read by BioFeed when the model

is executed. The actual contents and ways to arrange input data of three input files are

101

illustrated in Appendix B.

Figure 5.28. The attribute table for preparing input file.

Name Name,Flat_Bed_Trailer,Forage_Truck

PurchasePrice PurchasePrice,92000,166079

Flat_Bed_Trailer OperatingCost OperatingCost,29.57,34.43

Forage_Truck AnnualFixedCost AnnualFixedCost,21487,24417

(a) (b) (c)

Figure 5.29. The content of input files: (a) Types (b) ColumnIdentifiers (c) Table files.

Figure 5.30 shows the procedure for producing the input data files for each

attribute table. The array of attribute tables is passed into the loop. The size of the array is

dependent on the selected scenario. For example, the size for the illustrated scenario in

Chapter 4 is seven. The types of input files and saved filenames required for each

attribute table is identified within the loop consist of steps 2 – 5. Information regarding

what necessary types and filenames of input files are created is recorded according to the

properties file illustrated in Figure 5.31.

The contents in Figure 5.31 provide the types of input files and the associated

filenames for each attributes table. The text before the equality is the combination of the

Row of checkbox for column selectionRow of field values

Checkbox for row selection

1

2

3
Input data

4

102

table name and the input file type, separated by a period. The text after the equality

specifies the filename. During step 3, the program will read every line to search the

properties file regarding the required input files for a given table. Step 4 then extracts the

proper data for each input file from the attribute table. Once all the data has been

collected for BioFeed, there are twenty-one files of data. Next these files will be uploaded

to the server.

Figure 5.30. The flowchart of collecting input data.

103

1 harvesting.ColummIdentifiers=HarvesterAttributes.csv

2 harvesting.Types=HarvesterTypes.csv

3 harvesting.Table=Harvesting.csv

4 raking.ColummIdentifiers=RakeAttributes.csv

5 raking.Types=RakerTypes.csv

6 raking.Table=Raking.csv

7 transportation.ColummIdentifiers=TransportationAttributes.csv

8 transportation.Types=TransportationTypes.csv

9 transportation.Table=Transportation.csv

10 farmopenstorage.ColummIdentifiers=FarmOpenStorageAttributes.csv

11 farmopenstorage.Types=FarmOpenStorageTypes.csv

12 farmopenstorage.Table=FarmOpenStorage.csv

13 farmcoveredstorage.ColummIdentifiers=FarmCoveredStorageAttributes.csv

14 farmcoveredstorage.Types=FarmCoveredStorageTypes.csv

15 farmcoveredstorage.Table=FarmCoveredStorage.csv

16 centralizedstorage.ColummIdentifiers=CentralizedStorageAttributes.csv

17 centralizedstorage.Types=CentralizedStorageTypes.csv

18 centralizedstorage.Table=CentralizedStorage.csv

19 packing.ColummIdentifiers=PackingAttributes.csv

20 packing.Types=PackingTypes.csv

21 packing.Table=Packing.csv

Figure 5.31. Content format of properties file for preparing input files.

5.2.3.2 Uploading Data to Server

The procedure of uploading input data to the server is shown in Figure 5.32. The

key steps in the procedure of uploading input data to server are steps 3 and 4 in Figure

5.32. In step 3, the client-side application identifies the correct file name for each set of

collected data according to the context in the properties file (Figure 5.31). The text after

the equality is the filename where the data should be saved. Step 4 sends an http request

with the files to the server. Each request carries one set of collected data to the server at

each time. After the server receives the set of data from each request, it will be saved into

a CSV file waiting for BioFeed model to read. Given the contents of Figure 5.31, there

104

are twenty-one HTTP requests created for the upload of files to the server. The model is

ready to execute when the all files are uploaded.

Figure 5.32. The flowchart of collecting input data.

5.2.3.3 Executing Model

When data upload is successful, the client-side application creates another Http

request to ask the server-side application to run the model. As steps 2 and 3 shown in

Figure 5.33, the client-side application passively waits for the response from server

during the execution until the output is ready to be retrieved. When the client receives the

output, the client application uses it to create a Result object for further analyses.

Figure 5.33. The flowchart of execute mode.

Figure 5.34 shows the sequence diagram for executing the model. The segment

between the arrows 1 and 2 conducts step 1 in Figure 5.33. The segment between the

arrows 3 and 4 is for step 2. While the model is executed on the server, BPSysClient

105

waits for the message from the server via the calling the method of Request, readObject,

along the arrow 3.1. The segment between the arrows 5 and 6 is used to retrieve the

output from the server after BPSysClient receives the completion message of the

execution. The last segment is to get the data from the Request object and create the

Result object.

Figure 5.34. Sequence diagram of executing model.

5.2.4 Conducting Batch Execution

While the function of executing model is provided, it is not able to generate

enough output for parametric analysis, thus the function of batch execution has been

developed. A batch execution requires one more step, to define the parameters of a batch

execution. Figure 5.35 shows the flowchart for conducting batch execution of the model.

Step 1 defines the batch execution following the steps introduced in Section 5.2.3. Steps

2 – 5 are the loop to execute the model included within the predefined batch execution.

Steps 3 – 5 are identical with the steps in Section 5.2.3 for conducting a single model

execution. The batch execution is ended when all executions are finished.

106

Figure 5.35. The flowchart to conduct batch execution.

5.2.5 Presenting Results

After a raw result is received, BPSys will go through the process shown in Figure

5.36. Steps 1 and 2 create the ResultOutput and ResultInput objects. These two objects

are then used to create a Result object in step 3. At this stage, the demonstrated charts and

tables in Figure 4.34 – Figure 4.39 are not created. Steps 4 and 5 generate these figures

and they are assigned to the Result object. The following two subsections discuss steps

1 – 4 in more detail.

Figure 5.36. The flowchart of visualizing results.

Figure 5.37 shows the sequence diagram of visualizing results. The arrow 1

initiates step 1 in Figure 5.36 and the arrow 2 returns the created ResultOutput object to

end step 1. Step 2 is initiated by the arrow 3 and ended by the arrow 4. Once the

ResultOutput and ResultInput objects are created, they are used to create a Result object

107

along the directions of the arrows 5 and 6. Steps 4 – 6 are completed by calling the

functions depicted in arrows 7, 7.1, and 7.2.

Figure 5.37. Sequence diagram of visualizing results.

The visualization components in a ResultOutput object include tables which

display DependentVariable objects, tables which display ProfileVariable objects, pie

charts which visualize DependentVariable objects, and the profile charts which visualize

ProfileVariable objects.

5.2.5.1 Creating ResultOutput object

This section will show how the raw output of the model is processed in order to

create a ResultOutput object. The most important step here is to identify the dependent

variables and extract the values. Two types of dependent variable classes designed for the

ResultOutput class where introduced in Section 5.1.4: the ProfileVariable and

DependentVariable class. The program will identify which class the extracted variable

belongs to. The extraction operation follows the steps outlined in Figure 5.38. This is

completed by a DependentVariablesExtractor object. First, create the

DependentVariableExtracor object based on variable keys obtained from the properties

108

file displayed in Figure 5.39. The text after the equal sign in the first line in Figure 5.39

lists keys utilized for locating and extracting data necessary for creating

DependentVariable objects; similarly the second line lists keys for extracting data

necessary for creating ProfileVariable objects. The categories of the DependentVariable

are separated by the semicolons. These keys are stored in an array format within the

DependentVariableExtractor object. Next, each line in the output data matching these

keys is assigned a specific number as an identifier for the type of variable. According to

these added identifiers, the variables can be segregated from each other via steps 3 and 4.

Figure 5.38. The flowchart to extract variables.

1 ResultOutput.PieChartVariableKeys=greenhouse gas emission;energy

consumption;Fleet requirement;operating cost;fixed

cost;capacity;cost;area

2 ResultOutput.ProfileVariableKeys=schedule

Figure 5.39. The content of the properties file for creating the ResultOutput.

Figure 5.40 shows the sequence diagram for creating a ResultOutput object. The

arrows 1 and 2 complete step 1 in Figure 5.38. The arrow 3 calls the

DependentVariableExtractor function of setResultOutput to set the raw output for

locating the variables in step 2 in Figure 5.38. Steps 3 and 4 are accomplished via the

arrows of 5-7. The extracted variables are used to create a ResultOutput object.

109

Figure 5.40. Sequence diagram of creating ResultOutput object.

The original contents and formats in the output file from BioFeed are provided in

Appendix C. The arrays of the DependentVariable objects for the output in Appendix C

are listed in Table 5.4. There are nine sets of dependent variables created from the

BioFeed output file. For the output materials generated by different models, the keys for

extracting the dependent variables can be customized. There is also a ProfileVariable

object for storing the information about daily truck usage throughout the year. The two

arrays of DependentVariables and ProfileVariable objects are used to create a

ResultOutput object.

110

Table 5.4. The extracted DependentVariables objects in an output file.

Cost ($/Mg)

Total delivered 43.25

Harvesting 9.16

Raking 3.05 Greenhouse gas emission

Total packing 4.65 (kg of CO2 eq/Mg)

Storage 8.8 Harvesting 7.96

Total transportation 7.57 Raking 1.64

Infield transportation 6.79 Total packing 7.16

Biomass handling 3.24 Total transportation 3

(a) (b)

Energy consumption Capacity (Mg/Day)

 (MJ/Mg) Biorefinery 1249.5

Harvesting 109.74 (d)

Raking 22.56 Central storage facility area

Total packing 98.67 (square meters)

Total transportation 41.41 Location-3 0

(c) (e)

Transportation fleet requirement Operating cost ($/Mg)

(number of trucks) Packing 4.44

Flat_Bed_Trailer 34 Transportation 5.94

(f) (g)

Fixed cost ($/Mg) Area (square meters)

Packing 0.2 Total on-farm storage 416889.08

Transportation 1.62 Total silage pit 114396.92

(h) (i)

5.2.5.2 Creating ResultInput object

The procedure of creating a ResultInput object is very similar to creating

ResultOutput object. The program checks and extracts the selected rows in each attribute

table. An IndependentVariable object is created to store the name of attribute table in

lower case, the column names of the table, and the values within the selected rows. These

three attributes in the IndependentVariable object are for storing the selected input data.

111

Taking the attribute table for Transportation task displayed in Figure 5.41 as an example,

the contents of these three attributes, if the first two pieces of equipment are selected, are

displayed in Table 5.5.

Figure 5.41. The fraction of attribute table for transportation task.

Table 5.5. The attributes values of an IndependentVariable object for transportation task.

Name transportation

fieldname Name;PurchasePrice;OperatingCost;AnnualFixedCost

values
[Flat_Bed_Trailer;92000;29.57;21487],

[Forage_Truck;166079;34.43;24417]

5.2.5.3 Visualizing ResultOutput

Figure 5.42 shows the process for visualizing the ResultOutput object. The

contents of properties file (Figure 5.43) will guide the visualization of the ResultOutput

object by managing the flow through steps 1, 3, 5, and 7, which checks what type of

visual component and the quantity of each type are to be included in this report. There are

four types of visual components currently: Table, ScheduleTable, PieChart, and Profile.

The text “ResultOutput.TableNum=1” in Figure 5.43 ensures that there is a table showing

the DependentVariable objects to be created; similarly, the text

“ResultOutput.ScheduleTableNum=1” ensures that there is a table to display

Row of checkbox for column selectionRow of field values

Checkbox for row selection

1

2

3
Input data

4

112

ProfileVariable objects; the text “ResultOutput.PieChartNum=3” ensures that there are

three pie charts to visualize the fractions of a performance indicator described by a

DependentVariable object (please refer to Section 5.1.4); and the text

“ResultOutput.ProfileNum=1” ensures that a profile chart for visualizing the trend of a

ProfileVariable object is included. Steps 1, 3, 5, and 7 are to check the number

visualization types and steps 2, 4, 6, and 8 are to create them. At this moment, the

quantity of visual components are known but the data sources for creating them have not

been identified. To create the table for displaying the dependent variables, the

information on the title of the table, and the data to be shown is needed and this is read

from the properties file. The following paragraphs describe how the charts and table are

created in steps 2, 4, 6, and 8.

113

Properties file
Create tables

Create schedule

tables

Create pie charts

1

6

4

2

If TableNum > 0

If

ScheduleTableNum

> 0

The end of result

visualization

If

PieChartNum

> 0

If

ProfileNum

> 0

Create profile charts

8

3

5

7

9

true

false

true

false

true

false

true

false

Figure 5.42. The flowchart of visualizing ResultOutput.

1 ResultOutput.TableNum=1

2 ResultOutput.ScheduleTableNum=1

3 ResultOutput.PieChartNum=3

4 ResultOutput.ProfileNum=1

Figure 5.43. The content of the properties file for visualizing ResultOutput.

Step 2 creates the table for displaying DependentVariable objects (refer to the

figure). The content of the properties file required for step 2 is shown in Figure 5.44. The

text “Table1” in the contents provides the descriptions used to create the table. If the first

line in Figure 5.43 is “ResultOutput.TableNum=2”, there should be another pieces of

description mentioning in Figure 5.44 about “Table2”.

114

The first line in Figure 5.44 represents that the title for the table, “Output” in this

case. The text after the equal sign in the second line shows the dependent variables with

the unit: cost ($/Mg), greenhouse gas emission (kg of CO2 eq/Mg), energy consumption

(MJ/Mg), central storage facility area (square meters), transportation fleet requirement

(number of trucks), operating cost ($/Mg), fixed cost ($/Mg), and area (square meters).

They can be separated by comas or semicolons. A semicolon suggests that there is an area

in the table to display the independent variables enclosed by semicolons. If there are

multiple dependent variables enclosed within a semicolon and separated by comas, they

are organized in parallel. Blocks are partitioned by empty lines. The first block is generated

to display the dependent variables, cost ($/Mg), greenhouse gas emission (kg of CO2

eq/Mg), and energy consumption (MJ/Mg), is shown in Table 5.6. Table 5.7 shows the

remaining parts to display the dependent variables 4 to 9 mentioned above.

1 ResultOutput.Table1=Output

2 ResultOutput.Table1.Data=cost ($/Mg),greenhouse gas emission (kg of

CO2 eq/Mg),energy consumption (MJ/Mg);Central storage facility area

(square meters);Transportation Fleet requirement (number of

trucks);operating cost ($/Mg);fixed cost ($/Mg);area (square meters)

Figure 5.44. The content of the properties file for displaying DependentVariable objects.

115

Table 5.6. The part of the “Output” table to display cost, greenhouse gas emission, and

energy consumption.

Cost

($/Mg)

Greenhouse gas emission

(kg of CO2 eq/Mg)

Energy consumption

(MJ/Mg)

Total delivered 43.25

Harvesting 9.16 7.96 109.74

Raking 3.05 1.64 22.56

Total packing 4.65 7.16 98.67

Storage 8.8

Total transportation 7.57 3 41.41

Infield transportation 6.79

Biomass handling 3.24

Table 5.7. The parts of the “Output” table to display other dependent variables.

 Central storage facility area (square meters)

Location-3 0

 Transportation Fleet requirement (number of trucks)

Flat_Bed_Trailer 34

 operating cost ($/Mg)

Packing 4.44

Transportation 5.94

 fixed cost ($/Mg)

Packing 0.2

Transportation 1.62

 capacity

Biorefinery 1249.5

 area (square meters)

Total on-farm storage 416889.08

Total silage pit 114396.92

Step 4 in Figure 5.42 is the method that creates tables to display ProfileVariable

116

objects. The information needed to create this kind of table also includes the title and the

name of the ProfileVariable object to be displayed. The difference between the table

describing ProfileVarialbes, as opposed to DepedentVariables, is that the ProfileVariable

table only displays one ProfileVariable object. Figure 5.44 illustrates the necessary

information in the properties file. The next two paragraphs explain the methods for

drawing figures.

1 ResultOutput.ScheduleTable1=Transportation Fleet Schedule

2 ResultOutput.ScheduleTable1.Data=Transportation fleet schedule

Figure 5.45. The content of the properties file for creating tables displaying.

Step 6 in Figure 5.42 draws pie charts, which illustrate the fractions occupied by

different categories within a DependentVariable. In Figure 5.43, the third line indicates

that three pie charts should be created and displayed. The information for creating these

three different pie charts is from the properties file (Appendix A), including the title and

the data source for each pie chart. The DependentVariable object drawn in the first pie

chart is assigned by the information in line 2 (Figure 5.46) after the equal sign. The order

of the text assigns the drawn fields in the DependentVariable object is: first, specifying

the name of the DependentVariable object and second, specifying the name of the drawn

fields which follow the colon (:). The colon is used when not all fields in this

DependentVariable object are counted and only the field names of the data after the colon

are counted. As a result, the values of the field names within the DependentVariable

object, “cost ($/Mg)”, which are counted in the PieChart1 are (1) Harvesting, (2) Raking,

(3) Total packing, (4) Storage, (5) Total transportation, (6) Infield transportation, and (7)

Biomass handling. The other two charts count all field values where the context structure

after the equal sign has the name of the DependentVariable object. This is because there is

117

a need to explicitly write values included in the pie chart of the dependent variable. For

example, for the pie chart (Figure 4.36), for cost the label is $/Mg where for “Total

delivered” the label is the value 43.25 (Table 5.6). If all the fields need to be included, the

syntax is like line 4 and 6 in Figure 5.46, which quotes the full name of the

DependentVariable object.

1 ResultOutput.PieChart1=Cost ($/Mg)

2 ResultOutput.PieChart1.Data=cost ($/Mg):Harvesting,Raking,Total

packing,Storage,Total transportation,Infield transportation,Biomass

handling;

3 ResultOutput.PieChart2=Energy consumption (MJ/Mg)

4 ResultOutput.PieChart2.Data=energy consumption (MJ/Mg);

5 ResultOutput.PieChart3=Greenhouse gas emission (kg of CO2 eq/Mg)

6 ResultOutput.PieChart3.Data=greenhouse gas emission (kg of CO2

eq/Mg);

Figure 5.46. The content of the properties file for creating pie charts.

Step 8 creates a chart for visualization of the trends of a ProfileVariable object.

The information needed for creating profile charts is in Figure 5.47. This type of figure

requires two additional attributes, XLabel and YLabel, for labeling the horizontal and

vertical axes.

1 ResultOutput.Profile1=Transportation Fleet Schedule

2 ResultOutput.Profile1.XLabel=Day

3 ResultOutput.Profile1.YLabel=Number of Trucks

4 ResultOutput.Profile1.Data=Transportation fleet

schedule

Figure 5.47. The content of the properties file for creating profile charts.

Figure 5.48 shows the sequence diagram of visualizing ResultOutput objects. This

sequence diagram provides a more detailed explanation of the behaviors after the

ResultOutput method showComponent is called. The visualization of a ResultOutput

object is created by a ResultOutputReportCreator object by calling one of its functions,

118

CreateReport. The segment between arrow 1.1.1 and 1.1.2 conducts Steps 1 and 2 in

Figure 5.42; the segment between the arrows 1.1.3 and 1.1.4 conducts Steps 3 and 4. The

segment between the arrows 1.1.5 and 1.1.6 conducts steps 5 and 6 to generate the pie

charts; the segment between the arrows 1.1.7 and 1.1.8 to generate the profile charts.

Figure 5.48. Sequence diagram of visualizing ResultOutput object.

In BPSys, the JFreeChart open-source library is utilized to create these charts.

This library has a comprehensive set of drawing tools for generating various types of

charts. BPSys is responsible for providing the data sets required by JFreeChart. The

structure of the data set and the way to initialize the figure is follows the guidelines from

the JFreeChart manual (Gilbert, 2009). After the steps from 1 to 9, the visualized

components are created based on the default contents in the properties file (Figure 4.34 –

Figure 4.39) so that every output generated by the same model has the same components.

If there are other models utilized later, the properties file can be specially edited for the

construction of tables, pie charts, and profile charts. The next section will discuss the

procedure of visualizing the input data.

119

5.2.5.4 Visualizing ResultInput

The procedure for visualizing input data is shown in Figure 5.48. The first step is

to check the array size of IndependentVariable objects. If it there is any input data, an

empty table is created. Steps 5 to 7 add new rows for the three attributes of N

IndependentVariable object in the array. The number of the added rows in step 7 is equal

to the array size of the attribute “value” in the Nth IndependentVariable object.

Figure 5.49. The flowchart to visualize a ResultInput object.

Through the previous four subsections (5.2.5.1 - 5.2.5.4), steps 2 – 5 in Figure

5.36 related to visualizing a result are introduced. The remaining step is to display the

created visualized components in the user interface as Figure 4.34 – Figure 4.39. Figure

5.50 shows the sequence diagram of visualizing ResultInput object. The segment between

the arrows 1 and 1.1 perform step 1 in Figure 5.49. The segment between the arrows 1.1

and 1.1.1 perform steps 2 to collect input data. The segment between 1.1.1 and 1.1.2 is

responsible for steps 3 – 9.

120

Figure 5.50. Sequence diagram of visualizing ResultInput object.

5.2.6 Comparing Results

The function of parametric analysis has been introduced in Section 4.4.9. The

execution of this function via the graphical user interface has nine steps. The first three

are to create a DataGroup object; the remaining steps create ParametricAnalysis object.

The following two subsections focus on the procedures executed behind the user interface

to respond to this user request.

5.2.6.1 Creating a DataGroup Object

The procedure for creating a DataGroup object is in Figure 5.51 and is initiated

when the user presses the “Edit Grouped Data” menu item (Figure 4.49) and finishes the

configuration (Figure 4.50). Step 1 is to find out which independent variable is changing

throughout these results. Then the DataGroup object is created by step 2. After declaring

the new object of the DataGroup, it is assigned to the Project object for further parametric

analyses and displayed as a node (Figure 4.51) in step 3. When there is at least one

DataGroup object in the project, users are able to do the parametric analysis.

121

Figure 5.51. The flowchart to create a DataGroup object.

Figure 5.52 shows the sequence diagram of creating a DataGroup object. The

array of Result objects is passed with the calling of the method, EditGroupedData. The

segment between the arrows 1.1.1 and 1.1.2 conducts step 1 in Figure 5.51. Once this

step is finished, the DataGroup object is created after the dashed arrow 1.1.2. The

segment between the arrows 1.3 and 1.4 is to assign the created DataGroup object to the

Project object as mentioned in step 3.

Figure 5.52. Sequence diagram of creating DataGroup object.

5.2.6.2 Comparing Model Results

The procedure of comparing results is shown in Figure 5.53. It is started when the

user finishes the configurations mentioned in Section 4.4.9. The procedure will identify

the configuration edited by the user and create the dataset for the plot.

122

Figure 5.53. The flowchart to create a ParametricAnalysis object.

Step 1 identifies the method of creating the horizontal axis values. The possible

formats include: the exact values of the independent variable, the difference in value from

the first number, and the change ratios from the first number. Step 2 is to identify the

selected dependent variables. If n dependent variables are chosen, there will be n legends

in the created line chart. The values in each legend represent the values of each chosen

dependent variable in the results created in the selected DataGroup object. Step 3 is to

identify the method for creating the y-axis values, a procedure analogous to the creation

of the vertical axis values. Step 4 will create the dataset that will generate the line chart in

step 5. Step 6 creates the object of the ParametricAnalysis class by passing the chart and

dataset to the constructor method and step 7 assigns the ParametricAnalysis object to the

Project object.

Figure 5.54 shows the sequence diagram of comparing model results. The

segment between the arrows 1.1 and 1.2 accomplishes steps 1 – 4 in Figure 5.53. Then

the created ParametricAnalysis object is returned back to the Project object.

123

Figure 5.54. Sequence diagram of comparing model result.

124

Chapter 6. DSS Application Case Study

This chapter presents three applications of decision-support for switchgrass

production on: optimizing equipment selection, comparing the impact of increased

attribute values of a selected machine, and comparing the impacts of increased attribute

values of various machines. The data used to conduct the analysis are generated by

BioFeed (Shastri et al., 2009; 2010) with the scenario depicted in Figure 6.1. To prepare

the results for analyzing a user-specific system, the user should be able to manipulate the

equipment selections, attribute values, the user should be able to make use of the batch

execution function, and the user should be able to select result sets and draw charts in

BPSys. These procedures were discussed in Chapter 4.

Farm Covered

Storage

Farm Open

Storage

Transportation

PackingHarvesting Raking

Centralized

Storage

Transportation Biorefinery

Biomass

Growth

Figure 6.1. The scenario modeled by BioFeed (excluding Biorefinery).

6.1 Optimized Equipment Selection

This section demonstrates choosing equipment for the three storage options (Farm

Open Storage, Farm Covered Storage, and Centralized Storage) and the minimization of

total cost. In each case, one storage method is selected and the optimization is applied to

each farm modeled in BioFeed. Table 6.1 lists the equipment available for each storage

125

task. The equipment used for the other tasks are listed in Table 6.2. There are two, four,

and two choices for the three storage tasks. Consequently, there are sixteen different

combinations for the storage equipment selections (Table 6.3). For the other four tasks,

all available equipment are utilized as options to select from and no modification is made

on the default equipment attributes. By comparing the sixteen results, the most optimized

combination of storage tasks can be identified.

Table 6.1. The candidate equipment of the storage tasks.

Storage task

Farm open storage Farm covered storage Centralized storage

Gravel_Pad Shed_NoWalls Enclosed_NoVentilation

Paved_Pad Shed_3Walls Enclosed_Ventilation

 Enclosed_NoVentilation

 Enclosed_Ventilation

Table 6.2. The selected equipment for the tasks other than the storage.

Task Equipment

Harvesting
Forage_Harvester_SP

Mower_Conditioner

Raking Type1

Packing

Round_Baler

Square_Baler

Square_Baler_PullType_Contractor

Square_Baler_SP_Contractor

Transportation

Flat_Bed_Trailer

Forage_Truck

Truck_Box_Bulk

Trailer_Bulk

Trailer_Gooseneck

Trailer_Flat_Bed_F20

126

Table 6.3. The sixteen combinations of the equipment for the storage tasks.

Comb’n Farm open storage Farm covered storage Centralized storage

1 Gravel_Pad Enclosed_NoVentilation Enclosed_NoVentilation

2 Gravel_Pad Enclosed_NoVentilation Enclosed_Ventilation

3 Paved_Pad Enclosed_NoVentilation Enclosed_NoVentilation

4 Paved_Pad Enclosed_NoVentilation Enclosed_Ventilation

5 Gravel_Pad Enclosed_Ventilation Enclosed_NoVentilation

6 Gravel_Pad Enclosed_Ventilation Enclosed_Ventilation

7 Paved_Pad Enclosed_Ventilation Enclosed_NoVentilation

8 Paved_Pad Enclosed_Ventilation Enclosed_Ventilation

9 Gravel_Pad Shed_3Walls Enclosed_NoVentilation

10 Gravel_Pad Shed_3Walls Enclosed_Ventilation

11 Paved_Pad Shed_3Walls Enclosed_NoVentilation

12 Paved_Pad Shed_3Walls Enclosed_Ventilation

13 Gravel_Pad Shed_NoWalls Enclosed_NoVentilation

14 Gravel_Pad Shed_NoWalls Enclosed_Ventilation

15 Paved_Pad Shed_NoWalls Enclosed_NoVentilation

16 Paved_Pad Shed_NoWalls Enclosed_Ventilation

The costs of these sixteen cases range from $37.33 to 41 Mg-1 in Figure 6.2. In

Figure 6.2, there are four bars of different colors in each category representing the cost of

storage, infield transportation, total transportation, and biomass handling, and a blue line

in the figure displaying the total cost. It shows that the combinations 13 to 16 have the

lowest costs for storage and infield transportation than the combinations 1 to 12.

Although the combinations 13 to 16 have the higher costs of total transportation and

biomass handling, they still have lower total cost than the combinations 1 to 12 by $3

Mg-1. In contrast to the total cost, the truck fleet size for the combinations is significantly

different. The difference of the truck numbers between the combinations can be as many

as 200 trucks (Figure 6.3). Although this difference does not cause a huge impact in the

total cost, the management of the truck fleet might be an issue. Based on these results, a

production system employing “Shed_NoWalls” in the “Farm covered storage”

(combination 13 – 16 of Table 6.2) has lower production cost and a smaller truck fleet.

127

The combination 16 has the optimal cost, $37.33 Mg-1.

Figure 6.2. Cost for the sixteen storage equipment combinations.

Figure 6.3. Trucks required for the different storage equipment combinations (Storage

equipment combinations refer to Table 6.2).

6.2 Impacts of the Packing Density

The purpose of the analysis in this section is to measure the possible benefit from

the technology improvement. The influence of the improved packing density provided by

the “Square_Baler” is illustrated as an application. A series of the packing densities is

generated from the default value, 0.144 (Mg/m3), to 1 with increments of 0.05 (Mg/m3)

0

5

10

15

20

25

30

35

40

45

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
o
ta

l
co

st
 (

$
/M

g
)

T
as

k
 c

o
st

 (
$
/M

g
)

Storage equipment combination

Storage Total transportation Infield transportation
Biomass handling Total delivered

0
50

100
150
200
250
300
350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
ru

ck
 N

u
m

b
er

Storage equipment combination

Truck required

128

providing nineteen values. The equipments used in the production system are listed in

Table 6.4.

Table 6.4. The equipment used for the packing density.

Task Equipment Task Equipment

Harvesting
Forage_Harvester_SP

Transportation

Flat_Bed_Trailer

Mower_Conditioner Forage_Truck

Raking Type1 Truck_Box_Bulk

Packing Square_Baler Trailer_Bulk

Farm open storage Paved_Pad Trailer_Gooseneck

Farm covered
storage

Shed_NoWalls
Trailer_Flat_Bed_F20

Centralized storage Enclosed_Ventilation Trailer_Flat_Bed_F40

The changing of packing density will affect the costs of three subsystems: storage

cost, transportation cost, and biomass handling cost. These three indicators decrease

differently while the packing density increases (Figure 6.4). The storage cost is decreased

most from $5 to $1 Mg-1 and the trend shows that it can be decreased further. The

decreased costs of the biomass handling and total transportation become stable when the

packing density is larger than 0.394 (Mg/m3). Overall, the total cost is decreased from

$37.58 to 30.11 Mg-1-1. Figure 6.5 shows the ratio of the decreased cost to the initial cost.

It can be concluded from the analysis that the increased packing density has a beneficial

impact on the costs of storage, biomass handling, and transportation.

129

Figure 6.4. Total cost decrement with the increased packing density (Mg/m3).

Figure 6.5. The ratio of the decreased percentage of total cost to the percentage of the

packing density (Mg/m3).

6.3 Impacts of Material Throughput

This section illustrates the application of identifying the equipment attribute with

heaviest impact on the total cost. The result of this approach can guide the technology

development to improve the identified factors with high impact. The equipment

configuration for this study is listed in Table 6.5. Three units of equipment, the harvesting

machine “Mower_Conditioner”, the raking machine “Type1”, and the packing machine

“Square_Baler”, were selected to measure the influence from one of their attributes on

the total cost. The attribute “Throughput”, with units of Mg/hr, common to all three

0

5

10

15

20

25

30

35

40

0

1

2

3

4

5

6

7

0.1 0.3 0.5 0.7 0.9 1.1

T
o
ta

l
co

st
 (

$
/M

g
)

T
as

k
 c

o
st

 (
$
/M

g
)

Packing Density (Mg/m3)
Storage Transportation

-10
0

10
20
30
40
50
60
70
80
90

0 100 200 300 400 500 600

%
 o

f
co

st
 d

ec
re

m
en

t

% of packing dencity increment

Total cost Storage Transportation Biomass handling

130

machines are selected to conduct this analysis. The throughput of these three machines

was modified to generate the results while the other input data remained at the default

setting. The values of the three Throughput attributes were changed from their default

values to 100 by the increment of 5 Mg/hour. In total, sixty-one results were generated.

Table 6.5. Equipment used for studying the impacts of the attribute “Throughput”.

Task Equipment

Harvesting Mower_Conditioner

Raking Type1

Packing Square_Baler

Farm open storage Paved_Pad

Farm covered storage Shed_NoWalls

Centralized storage Enclosed_Ventilation

Transportation Trailer_Flat_Bed_F40

With the separately increasing throughput values of these three machines, Figure

6.6 shows that the improvement in the throughput of the Mower_Conditioner decreases

the total cost most. Figure 6.7 shows the comparison between the ratio of increased value

in the attribute Throughput to the default value and the ratio of the decreased value in the

total cost to the initial value. Although the improvements of the harvesting machine

Square_Baler and the raking machine Type1 caused the similar decrease in the total cost,

the improvement for Square_Baler was slightly more than Type1. This can be observed

more clearly in Figure 6.7 than Figure 6.6.

131

Figure 6.6. The corresponding total cost to the increased throughput (Mg/hour).

Figure 6.7. The percentage of the decreased total cost corresponding to the percentage of

increased throughput (Mg/hour).

30
31
32
33
34
35
36
37
38
39

10 30 50 70 90 110

T
o
ta

l
co

st
 (

$
/M

g
)

Throughput (Mg/hour)
Type1 Mower_Conditioner Square_Baler

0
2
4
6
8

10
12
14
16
18
20

0 100 200 300 400 500

T
o
ta

l
co

st
 d

ec
re

m
en

t
(%

)

Throughput increment (%)

Type1 Mower_Conditioner Square_Baler

132

Chapter 7. Conclusions & Future Work

7.1 Conclusions

The proposed ConSEnT platform has been implemented as a Java-based web

application. The utility of the application for biomass feedstock production analysis has

been shown here. The design of the platform has been presented and can be extended for

additional functionality in the future.

The web functionality of BPSys has been established with the connection between

a client-side application run within a web browser and the server-side application. This

enables the user to access the computational resources of ConSEnT, including retrieving

model data, executing the model on the server, and receiving model results from the

server. With the Internet connection, the research team is able to upload the latest

research results into the database and allow user to incorporate this into analysis. These

operations are performed in a user-friendly manner within the graphical user interface.

The functions of the user interface, BPSysClient, were formulated by the user

story method, a software engineering technique for designing software applications. As a

result, the user can not only generate a model, but also conduct parametric analysis to

study the impacts of the equipment attributes and equipment combinations on the system

performance. Parametric analysis can be useful for decision making at the system level.

Conducting parametric analysis in BPSys answers two types of system level questions:

selecting which equipment can optimize production cost and identification of technology

attributes that bring the most significant improvement in the production cost. BPSys is

able to assist the user in understanding the differences between system scenarios and

133

system designs impact system performance factors. User may also save their results and

export them for use in other software tools if the capabilities are not sufficient within

BPSys.

For future expansion, UML diagrams of the system design have been prepared.

The JavaTM classes prepared here can be readily improved and expanded. This includes

the support of executing various kinds of modeling applications and programming

languages. BPSys maximizes the usability and capability of the computer models and

distributes the benefits of model worldwide. The users just have to make sure that Java

Virtual Machine is installed on his/her machine. BPSys has been tested on the Macintosh,

Window, and Ubuntu operating systems and found that it functioned properly in all cases.

7.2 Future Work

7.2.1 Effectiveness Test

An effectiveness test for the graphical user interface needs to be implemented.

This will measure how effective the information and the charts to present the information

in BPSys are for assisting the user to make decision. The outcome of the test is aimed at

guiding the future improvements of the interface and models.

7.2.2 Decision Making

The outputs of BioFeed are greatly simplified in their presentation here. For

example, the model provides farm operational data on a daily basis. This decision support

system would be much more valuable if operational management information for could

be provided in an effective manner. In order to provide more comprehensive information,

the analytical tools for extracting daily basis information require improvements on

computational speed and on decision rules targeted key variables, and an improved

134

mechanism for creating appropriate charts.

7.2.3 Off-line Model Execution

The time for solving the complex problems in BioFeed might be in excess of one

hour, parametric analysis can easily exceed half a day. This function would allow users to

launch a session on the server to execute the model and wait for the server to inform them

when it was completed. The major benefit is that the user would not need to keep the web

page opening and Internet connection active while the analysis was running.

7.2.4 Scenario Building

The current version of BioFeed is able to model various crop productions, which

include miscanthus and energy cane, and different task combinations; however, crops are

fixed (switchgrass) in BPSys and only the equipment selections and the attributes are

currently changeable. Scenario building would allow users to design the scenario through

BPSys by themselves. This capability can make BPSys more adaptable to different

production systems and extend the usability.

135

References

Alderfasi, A. A. and D. C. Nielsen. 2001. Use of crop water stress index for monitoring

water status and scheduling irrigation in wheat. Agricultural Water Management

47(1): 69-75.

Apache Software Foundation. 2010. Apache HTTP Server Version 2.0 Documentation.

Available at: httpd.apache.org/docs/2.0/. Accessed 1 April 2011.

Ayoub, N., R. Martins, K. Wang, H. Seki and Y. Naka. 2007. Two levels decision system

for efficient planning and implementation of bioenergy production. Energy

Conversion and Management 48(3): 709-723.

Basham, B., B. Bates and K. Sierra. 2004. Head First Servlets and JSP. Sebastopol, CA :

O’Reilly Media, Inc.

Bhargava, H. K., D. J. Power and D. Sun. 2007. Progress in Web-based decision support

technologies. Decision Support Systems 43(4): 1083-1095.

Blackmer, T. M. and J. S. Schepers. 1996. Aerial photography to detect nitrogen stress in

corn. Journal of Plant Physiology 148(3-4): 440-444.

Blackmer, T. M., J. S. Schepers, G. E. Varvel and G. E. Meyer. 1996. Analysis of aerial

photography for nitrogen stress within corn fields. Agronomy Journal 88(5):

729-733.

Blanchard, B.S. and W.J. Fabrycky. 1990. Systems Engineering and Analysis.

Prentice-Hall, Englewood Cliffs, NJ.

Browne, J. A. and A. Hunter. 1998. Logistics management and costs of biomass fuel

supply. International Journal of Physical Distribution & Logistics Management

28(5): 463.

Cao, X. and W. Yu. 2010. Using content management system Joomla! to build a website

for research institute needs. In 2010 International Conference on Management and

Service Science, MASS 2010.

136

Cohn, M. 2004. User Stories Applied: For Agile Software Development. Amsterdam:

Addison-Wesley Longman Publishing Co., Inc.

Coombs, K. 2009. Drupal done right. Library Journal 134(19): 30-32.

Cyert, R. M., W. R. Dill and J. G. March. 1958. The Role of Expectations in Business

Decision Making. Administrative Science Quarterly 3: 307-340.

Cyert, R. M., H. A. Simon and D. B. Trow. 1956. Observation of a Business Decision.

The Journal of Business 29(4, Human Aspects of Management): pp. 237-248.

Das, S., L. Girard, T. Green, L. Weitzman, A. Lewis-Bowen and T. Clark. 2009. Building

biomedical web communities using a semantically aware content management

system. Briefings in Bioinformatics 10(2): 129-138.

De La Torre Ugarte, D. G. and D. E. Ray. 2000. Biomass and bioenergy applications of

the POLYSYS modeling framework. Biomass and Bioenergy 18(4): 291-308.

Domdouzis, K., L. Rodriguez, Y. Shastri, M.-C. Hu, A. C. Hansen and K. Ting. 2009.

Systems informatics for biomass feedstock production engineering. ASABE Paper

No. 096702. St. Joseph, Mich.: ASABE.

Dresselhaus, M. S. and I. L. Thomas. 2001. Alternative energy technologies. Nature

414(6861): 332.

Fowler, M. 2003. UML Distilled: A Brief Guide to the Standard Object Modeling

Language, 3rd Edition. Boston, MA.: Addison-Wesley Publishing Co., Inc.

Frombo, F., R. Minciardi, M. Robba, F. Rosso and R. Sacile. 2009. Planning woody

biomass logistics for energy production: A strategic decision model. Biomass and

Bioenergy 33(3): 372-383.

Giampietro, M. and S. Ulgiati. 1997. Feasibility of large-scale biofuel production.

Bioscience 47(9): 587-600.

Gilbert, D. 2009. The JFreeChart Class Library. Available at:

http://www.jfree.org/jfreechart/. Accessed 29 April 2011.

Hanks, J. E. and J. L. Beck. 1998. Sensor-controlled hooded sprayer for row crops. Weed

Technology 12(2): 308-314.

137

Hess, R., J., C. T. Wright and K. L. Kenney. 2007. Cellulosic biomass feedstocks and

logistics for ethanol production. Biofuels, Bioproducts and Biorefining 1(3):

181-190.

Hoskinson, R. L., R. C. Rope and R. K. Fink. 2007. Using a decision support system to

optimize production of agricultural crop residue Biofeedstock. Biomass and

Bioenergy 31(4): 186-194.

Huisman, W., P. Venturi and J. Molenaar. 1997. Costs of supply chains of Miscanthus

giganteus. Industrial Crops and Products 6(3-4): 353-366.

Irwin, S. H., G. D. Schnitkey, D. L. Good and P. N. Ellinger. 2004. The farmdoc project:

This is still your father's extension program. American Journal of Agricultural

Economics 86(3): 772-777.

Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P.

W. Wilkens, U. Singh, A. J. Gijsman and J. T. Ritchie. 2003. The DSSAT cropping

system model. European Journal of Agronomy 18(3-4): 235-265.

Keating, B., G. Carberry, P.S. Hammer, M. Probert, M. Robertson, D. Holzworth, N.

Huth, J. Hargreaves, H. Meinke, Z. Hochman, G. McLean, K. Verburg, V. Snow, J.

Dimes, M. Silburn, E.Wang, S. Brown, K. Bristow, S. Asseng, S. Chapman, R.

McCown, D. Freebairn and C. Smith. 2003. An overview of APSIM, a model

designed for farming systems simulation. European Journal of Agronomy 18:

267–288.

Kleijnen, S. and S. Raju. 2003. An open web services architecture. ACM Queue,

1(1):39–46.

Koh, L. P. and J. Ghazoul. 2008. Biofuels, biodiversity, and people: Understanding the

conflicts and finding opportunities. Biological Conservation 141(10): 2450-2460.

Kropff, M. J., J. Bouma and J. W. Jones. 2001. Systems approaches for the design of

sustainable agro-ecosystems. Agricultural Systems 70(2-3): 369-393.

Kumar, A. and S. Sokhansanj. 2007. Switchgrass (Panicum vigratum, L.) delivery to a

biorefinery using integrated biomass supply analysis and logistics (IBSAL) model.

Bioresource Technology 98(5): 1033–1044.

138

Kumar, A., S. Sokhansanj and P. C. Flynn. 2006. Development of a multicriteria

assessment model for ranking biomass feedstock collection and transportation

systems. Applied Biochemistry and Biotechnology 129(1-3): 71-87.

Lewandowski, I. and A. Heinz. 2003. Delayed harvest of miscanthus - Influences on

biomass quantity and quality and environmental impacts of energy production.

European Journal of Agronomy 19(1): 45-63.

McCown, R. L., G. L. Hammer, J. N. G. Hargreaves, D. P. Holzworth and D. M.

Freebairn. 1996. APSIM: a novel software system for model development, model

testing and simulation in agricultural systems research. Agricultural Systems 50(3):

255-271.

Mitchell, C. P. 1995. New cultural treatments and yield optimisation. Biomass and

Bioenergy 9(1-5): 11-34.

Mitchell, C. P. 2000. Development of decision support systems for bioenergy applications.

Biomass and Bioenergy 18(4): 265-278.

Mooney, S. D. and P. H. Baenziger. 2008. Extensible open source content management

systems and frameworks: A solution for many needs of a bioinformatics group.

Briefings in Bioinformatics 9(1): 69-74.

Moran, M. S., T. R. Clarke, Y. Inoue and A. Vidal. 1994. Estimating crop water deficit

using the relation between surface-air temperature and spectral vegetation index.

Remote Sensing of Environment 49(3): 246-263.

Mordani, R. 2010. JavaTM Servlet Specification 3.0. Available at:

http://jcp.org/aboutJava/communityprocess/mrel/jsr315/index.html. Accessed 13

March 2011.

Nilsson, M. and T. Ziemke. 2007. Information fusion: A decision support perspective. In

Proceedings of International Conference on Information Fusion. Quebec, Canada.

Perlack, R. D., L. L. Wright, A. F. Turhollow, R. L. Graham, B. J. Stokes and D. C.

Erbach. 2005. Biomass as feedstock for bioenergy and bioproducts industry: The

technical feasibility of a billion-ton annual supply. Technical report, Oak Ridge

National Laboratory.

139

Pinter Jr., P. J., J. L. Hatfield, J. S. Schepers, E. M. Barnes, M. S. Moran, C. S. T.

Daughtry and D. R. Upchurch. 2003. Remote sensing for crop management.

Photogrammetric Engineering and Remote Sensing 69(6): 647-664.

Power, D.J. 2002. Decision Support Systems: Concepts and Resources for Managers.

Westport, CT: Greenwood/Quorum Books.

Prochnow, A., M. Heiermann, M. Plöchl, T. Amon and P. J. Hobbs. 2009. Bioenergy from

permanent grassland - A review: 2. Combustion. Bioresource technology 100(21):

4945-4954.

Rentizelas, A. A., A. J. Tolis and I. P. Tatsiopoulos. 2009. Logistics issues of biomass:

The storage problem and the multi-biomass supply chain. Renewable and

Sustainable Energy Reviews 13(4): 887-894.

Rodriguez, L. F., S. Kang and K.C. Ting. 2003. Top-level modeling of an ALS system

utilizing object-oriented techniques. Advances in Space Research 31(7): 1811-1822.

Sagar, A. D. and S. Kartha. 2007. Bioenergy and Sustainable Development? Annual

Review of Environment and Resources 32(1): 131-167.

Shastri, Y., K. Domdouzis, M.C. Hu, A. Hansen, L. Rodriguez and K.C. Ting. 2009.

System level analysis of biomass feedstock production for bioenergy sector.

ASABE Paper No. 095998. St. Joseph, Mich.: ASABE.

Shastri, Y., A. Hansen, L. Rodriguez and K.C. Ting. 2010. BioFeed optimization model

enhancement and its application to Miscanthus production. ASABE Paper No.

1008488. St. Joseph, Mich.: ASABE.

Shim, J. P., M. Warkentin, J. F. Courtney, D. J. Power, R. Sharda and C. Carlsson. 2002.

Past, present, and future of decision support technology. Decision Support Systems

33(2): 111-126.

Shklar, L. and R. Rosen. 2009. Web Application Architecture: Principles, Protocols and

Practices, 2nd ed., John Wiley & Sons Ltd, Chichester, England.

Simon, H. A. 1959. Theories of Decision-Making in Economics and Behavioral Science.

American Economic Review 49(3): 253.

140

Smeets, E. M. W., I. M. Lewandowski and A. P. C. Faaij. 2009. The economical and

environmental performance of miscanthus and switchgrass production and supply

chains in a European setting. Renewable and Sustainable Energy Reviews 13(6-7):

1230-1245.

Sokhansanj, S., A. Kumar and A. F. Turhollow. 2006. Development and implementation

of integrated biomass supply analysis and logistics model (IBSAL). Biomass and

Bioenergy 30(10): 838-847.

Sokhansanj, S., S. Mani, S. Tagore and A. F. Turhollow. 2010. Techno-economic analysis

of using corn stover to supply heat and power to a corn ethanol plant – Part 1: Cost

of feedstock supply logistics. Biomass and Bioenergy 34(1): 75-81.

Sokhansanj, S., A. Turhollow, J. Cushman and J. Cundiff. 2002. Engineering aspects of

collecting corn stover for bioenergy. Biomass and Bioenergy 23(5): 347-355.

Steinberg, D.H. and D.W. Palmer. 2004. Extreme Software Engineering: A Hands-on

Approach. Upper Saddle River, N.J.: Prentice-Hall, Inc.

Ting, K.C. 1997a. Automation and Systems Analysis. In Plant Production in Closed

Ecosystems, 171-187. Goto, E., K. Kurata, M. Hayashi and S. Sase, ed. Norwell,

Mass.: Kluwer Academic Publishers.

Ting, K.C. 1997b. Chapter 12: Systems Analysis, Integration, and Economic Feasibility.

In Plant Production in Closed Ecosystems Robotics for Bio-Production Systems,

287-320. N. Kondo and K.C. Ting, ed. St. Joseph, Mich.: ASAE.

Ting, K.C. 2002. Concurrent science and engineering approach to decision support for

controlled environment plant production. Acta Hort. (ISHS) 578: 35-43.

Ting, K.C. 2009. Engineering solutions for biomass feedstock production. Resource:

Engineering and Technology for Sustainable World 16(3): 12-13. St. Joseph, Mich.:

ASABE.

Ting, K.C., Fleisher, D. H., Rodriguez, L. F., 2003. Concurrent science and engineering

for phytomation systems. Journal of Agricultural Meteorology 59: 93-101.

141

Torget, R., C. Hatzis, T. K. Hayward, T. N. Hsu and G. P. Philippidis. 1996. Optimization

of reverse-flow, two-temperature, dilute-acid pretreatment to enhance biomass

conversion to ethanol. Applied Biochemistry and Biotechnology 57/58: 85-101.

Torget, R., M. Himmel, J. D. Wright and K. Grohmann. 1988. Initial design of a dilute

sulfuric acid pretreatment process for aspen wood chips. Applied Biochemistry and

Biotechnology 17: 89-104.

U.S. Department of Energy. 2009. Emissions of greenhouse gases in the United States

2008. Washington, D.C.: Energy Information Administration, Office of Integrated

Analysis and Forecasting.

U.S. Department of Energy. 2010. Annual Energy Review 2009. Washington, D.C.:

Energy Information Administration, Office of Energy Markets and End Use.

van Ouweker, E. N., D. E. James, T. L. Richard and M. Liebman. 2003. A multi-model

approach for sustainable agriculture in the US corn belt. ASAE Paper No. 033009.

St. Joseph, Mich.: ASAE.

Wanjura, D. F. and D. R. Upchurch. 2002. Water status response of corn and cotton to

altered irrigation. Irrigation Science 21(2): 45-55.

Yang, C., J. H. Everitt, J. M. Bradford and D. E. Escobar. 2000. Mapping grain sorghum

growth and yield variations using airborne multispectral digital imagery. Trans.

ASAE 43(6): 1927-1938.

Yergin, D. 2006. Ensuring Energy Security. Foreign Affairs 85(2): 69.

Zakhour, S., Scott Hommel, Jacob Royal, Isaac Rabinovitch, Tom Risser and Mark

Hoeber. 2006. The Java Tutorial: A Short Course on the Basics, 4th Edition. Upper

Saddle River, N.J.: Prentice Hall.

Zhang, Y. 2008. Reviving the carbohydrate economy via multi-product lignocellulose

biorefineries. Journal of Industrial Microbiology & Biotechnology 35(5): 367-375.

142

Appendix A. The Format of Properties File

//The following contents are used to create the Scenario which named Switchgrass

Production.

ModelName=Switchgrass Production

Model_id=1

Scenario_id=1

NumofTask=9

NumofBox=10

Task1.class=BiomassGrowth

Task2.class=Harvesting

Task2.editable=true

Task3.class=Raking

Task3.editable=true

Task4.class=Packing

Task4.editable=true

Task5.class=FarmOpenStorage

Task5.editable=true

Task6.class=FarmCoveredStorage

Task6.editable=true

Task7.class=CentralizedStorage

Task7.editable=true

Task8.class=Transportation

143

Task8.editable=true

Task9.class=Biorefinery

//The following contents are used to create the ScenarioPanel for visualizing the flow

chart of the modeled scenario.

Box1.Task=Task1

Box2.Task=Task2

Box3.Task=Task3

Box4.Task=Task4

Box5.Task=Task8

Box6.Task=Task5

Box7.Task=Task6

Box8.Task=Task7

Box9.Task=Task8

Box10.Task=Task9

Box1.next=Box2

Box2.next=Box3

Box3.next=Box4

Box4.next=Box5

Box5.next=Box6,Box7,Box8,Box10

Box6.next=Box9

Box7.next=Box9

Box8.next=Box9

Box9.next=Box10

144

//The following contents are used to create the input file for executing BioFeed.

TableIO=ColummIdentifiers,Types,Table

harvesting.ColummIdentifiers=HarvesterAttributes.csv

harvesting.Types=HarvesterTypes.csv

harvesting.Table=Harvesting.csv

raking.ColummIdentifiers=RakeAttributes.csv

raking.Types=RakerTypes.csv

raking.Table=Raking.csv

transportation.ColummIdentifiers=TransportationAttributes.csv

transportation.Types=TransportationTypes.csv

transportation.Table=Transportation.csv

farmopenstorage.ColummIdentifiers=FarmOpenStorageAttributes.csv

farmopenstorage.Types=FarmOpenStorageTypes.csv

farmopenstorage.Table=FarmOpenStorage.csv

farmcoveredstorage.ColummIdentifiers=FarmCoveredStorageAttributes.csv

farmcoveredstorage.Types=FarmCoveredStorageTypes.csv

farmcoveredstorage.Table=FarmCoveredStorage.csv

centralizedstorage.ColummIdentifiers=CentralizedStorageAttributes.csv

centralizedstorage.Types=CentralizedStorageTypes.csv

centralizedstorage.Table=CentralizedStorage.csv

packing.ColummIdentifiers=PackingAttributes.csv

packing.Types=PackingTypes.csv

packing.Table=Packing.csv

145

//The following contents are used to create and visualize the Result.

ResultOutput.PieChartVariableKeys=greenhouse gas emission;energy consumption;Fleet

requirement;operating cost;fixed cost;capacity;cost;area

ResultOutput.ProfileVariableKeys=schedule

ResultOutput.TableNum=1

ResultOutput.ScheduleTableNum=1

ResultOutput.Table1=Output

ResultOutput.ScheduleTable1=Transportation Fleet Schedule

ResultOutput.Table1.Data=cost ($/Mg),greenhouse gas emission (kg of CO2

eq/Mg),energy consumption (MJ/Mg);Central storage facility area (square

meters);Transportation Fleet requirement (number of trucks);operating cost ($/Mg);fixed

cost ($/Mg);capacity;area (square meters)

ResultOutput.ScheduleTable1.Data=Transportation fleet schedule

ResultOutput.PieChartNum=3

ResultOutput.PieChart1=Cost ($/Mg)

ResultOutput.PieChart2=Energy consumption (MJ/Mg)

ResultOutput.PieChart3=Greenhouse gas emission (kg of CO2 eq/Mg)

ResultOutput.PieChart1.Data=cost ($/Mg):Harvesting,Raking,Total

packing,Storage,Total transportation,Infield transportation,Biomass handling;

ResultOutput.PieChart2.Data=energy consumption (MJ/Mg);

ResultOutput.PieChart3.Data=greenhouse gas emission (kg of CO2 eq/Mg);

ResultOutput.ProfileNum=1

ResultOutput.Profile1=Transportation Fleet Schedule

146

ResultOutput.Profile1.XLabel=Day

ResultOutput.Profile1.YLabel=Number of Trucks

ResultOutput.Profile1.Data=Transportation fleet schedule

147

Appendix B. Input File Contents of BioFeed

This section introduces the contents of three different input files (Section 5.2.3.1)

for executing BioFeed. For each task which allows to be modified in the modeled

scenario in BioFeed through the attribute table (Figure 4.14 andFigure 4.15), BPSys have

to prepare the three input files. For illustration, the following contents illustrate the Types,

ColumnIdentifiers, and Table input files for the packing task. If the user only selects the

Round_Baler for the packing task like Figure 4.14, the input files are like the contents

below.

//Types input file

Round_Baler

// ColumnIdentifiers input file

Name

PurchasePrice

OperatingCost

AnnualInterest

IHT

Throughput

Efficiency

Horsepower

FuelConsumption

PackingDensity

148

PackingVolume

RotaryPowerRequirement

TractorHorsepower

TractorOperatingCost

TractorFuelConsumption

TractorIHT

TractorAnnualInterest

BiomassLossFraction

//Table input file

Name,Round_Baler

PurchasePrice,44493.06

OperatingCost,23.10293

AnnualInterest,1769

IHT,1.06

Throughput,18.14

Efficiency,0.85

Horsepower,120

FuelConsumption,5.256

PackingDensity,0.128

PackingVolume,4

RotaryPowerRequirement,1.8

TractorHorsepower,120

149

TractorOperatingCost,29.11

TractorFuelConsumption,5.256

TractorIHT,1.07

TractorAnnualInterest,2771

BiomassLossFraction,0.05

150

Appendix C. Output File Contents of BioFeed

Biorefinery capacity = 1268.80

Total delivered cost = 37.69

Harvesting cost ($/Mg) = 8.42

Raking cost ($/Mg) = 3.05

Packing fixed cost ($/Mg) = 0.36

Packing operating cost ($/Mg) = 3.90

Total packing cost ($/Mg) = 4.25

Storage cost ($/Mg) = 4.41

Transportation fixed cost ($/Mg) = 1.60

Transportation operating cost ($/Mg) = 5.95

Total transportation cost ($/Mg) = 7.55

Infield transportation cost ($/Mg) = 6.84

Biomass handling cost ($/Mg) = 3.16

Harvesting energy consumption (MJ/Mg) = 49.99

Raking energy consumption (MJ/Mg) = 22.50

Packing energy consumption (MJ/Mg) = 78.58

Transportation energy consumption (MJ/Mg) = 41.35

Harvesting greenhouse gas emission (kg of CO2 eq/Mg) = 3.63

Raking greenhouse gas emission (kg of CO2 eq/Mg) = 1.63

Packing greenhouse gas emission (kg of CO2 eq/Mg) = 5.70

151

Transportation greenhouse gas emission (kg of CO2 eq/Mg) = 3.00

Central storage facility area (square meters)

 Location-3 13.42

Total on-farm storage area (square meters) = 409535.67

Total silage pit area (square meters) = 0.00

Transportation Fleet requirement (number of trucks)

 Type1 34.00

 Type2 0.00

 Transportation fleet schedule

 Type1 Type2

1 34.00 0.00

2 34.00 0.00

3 34.00 0.00

 . . .

 . . .

 . . .

358 34.00 0.00

359 34.00 0.00

360 34.00 0.00

