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ABSTRACT 

 

Excess nutrient loads carried by streams and rivers are a great concern for environmental 

resource managers. In agricultural regions, excess loads are transported downstream to receiving 

water bodies, potentially causing algal blooms, which could lead to numerous ecological 

problems. To better understand nutrient load transport, and to develop appropriate water 

management plans, it is important to have accurate estimates of annual nutrient loads.   

This study used a Monte Carlo sub-sampling method and error-corrected statistical 

models to estimate annual nitrate-N loads from two watersheds in central Illinois. The 

performance of three load estimation methods (the seven-parameter log-linear model, the ratio 

estimator, and the flow-weighted averaging estimator) applied at one-, two-, four-, six-, and 

eight-week sampling frequencies were compared. Five error correction techniques; the existing 

composite method, and four new error correction techniques developed in this study; were 

applied to each combination of sampling frequency and load estimation method. On average, the 

most accurate error reduction technique, (proportional rectangular) resulted in 15% and 30% 

more accurate load estimates when compared to the most accurate uncorrected load estimation 

method (ratio estimator) for the two watersheds. Using error correction methods, it is possible to 

design more cost-effective monitoring plans by achieving the same load estimation accuracy 

with fewer observations.  

Finally, the optimum combinations of monitoring threshold and sampling frequency that 

minimizes the number of samples required to achieve specified levels of accuracy in load 

estimation were determined. For one- to three-weeks sampling frequencies, combined 

threshold/fixed-interval monitoring approaches produced the best outcomes, while fixed-

interval-only approaches produced the most accurate results for four- to eight-weeks sampling 

frequencies. 
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CHAPTER 1 

INTRODUCTION 

 

Increased nutrient application rates, coupled with intensive cropping patterns in the 

Midwestern United States, have been identified as important causes of hypoxia in the Gulf of 

Mexico. Substantial increases in riverine concentrations of nutrients such as nitrates and 

phosphorus have notably contributed to the hypoxia problem (Rabalais et al., 1996). Much of the 

agricultural lands in the Mississippi River watershed are drained with sub-surface (tile) drain 

systems designed to remove excess water quickly from agricultural fields. Nitrogen in the nitrate 

form is readily soluble in water, draining easily through tile drain systems (David et al., 1997). 

This nutrient-rich water, draining from throughout the Midwest, is discharged into agricultural 

ditches, then to small rivers, and is eventually carried by the Mississippi River into the Gulf of 

Mexico. Increased levels of nutrients in the Gulf of Mexico have led to eutrophication followed 

by hypoxia, eventually creating severe environmental, ecological, and economic imbalances 

(Turner and Rabalais, 1994). 

A necessary step in the development of management practices to reduce nutrient transport 

from agricultural fields is an accurate characterization of nutrient loads in streams and rivers.  

However, there is a large degree of uncertainty involved with accurately estimating loads for any 

given waterway.  

Nutrient load is primarily obtained by calculating the product of flow rate and solute 

concentration. Ideally, to attain the most accurate load estimates for a specific time interval for 

any stream or river, continuous datasets of flow rates and solute concentrations are needed. With 

advances in technology, robust sensors have been developed to record continuous flow rates in 

rivers and streams. On the other hand, economic considerations typically limit the frequency 

with which nutrient concentrations can be obtained. Researchers have developed various 

techniques to use sparse datasets of measured concentrations to obtain datasets that match the 

frequency of flow measurements. These techniques can be broadly classified into three major 

categories: (1) the use of deterministic models (e.g., Soil  and Water Assessment Tool (SWAT), 

Hydrological Simulation Program-Fortran(HSPF)) (Arnold et al., 1998; Santhi et al., 2001; 
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Schilling and Wolter, 2009; Im et al., 2003); (2) the use of statistical models (e.g., seven-

parameter regression model, ratio)  (Preston et al., 1989;  Mukhopadhyay and Smith, 2000;  Guo 

et al., 2002; Quilbé et al., 2006) and (3) the use of Artificial Neural Networks (ANN) (Yu et al., 

2004; Anctil et al., 2009). This research focuses on the use of statistical models for estimating 

nutrient loads. 

In this study, several error-corrected statistical methods were developed and applied to 

the estimation of annual nitrate-N loads from two watersheds in Central Illinois, the Upper 

Sangamon River at Monticello (1,406 square kilometers [km
2
]) and the Vermilion River at 

Pontiac (1,570 km
2
). The Monte Carlo sub-sampling technique was used to simulate weekly to 

bimonthly sampling frequencies for monitoring durations ranging from one to six years. For each 

unique combination of the monitoring duration and sampling frequency, three statistical models 

were compared; the seven-parameter log-linear model, the ratio estimator, and the flow-weighted 

averaging estimator. In addition, for each combination of monitoring duration, sampling 

frequency and statistical models, five error correction techniques were applied to find the most 

accurate load estimation procedure. In addition to the existing composite method, four new error 

correction techniques were developed; namely, the triangular-proportional, rectangular-

proportional, triangular-residual, and rectangular-residual methods. Finally, this study examined 

the use of monitoring thresholds, above which discharges are continuously (daily) monitored. 

The purpose was to find optimum combinations of monitoring thresholds and sampling 

frequencies for which the load estimation errors were smallest. 

 

 

 

 

 

 

 

http://www.scopus.com/search/submit/author.url?author=Quilb%c3%a9%2c+R.&authorId=16444866300&origin=recordpage


3 
 

CHAPTER 2 

REVIEW OF LITERATURE 

 

2.1 Crops   

The extensive development of railroads in the early 20
th

 century transformed Illinois 

agriculture from being a local scale supplier to a much wider national and international mass 

supplier. This transformation also brought a more industrialized outlook to farming and led to 

less diversification in agricultural production (Byard, 2009) with an increased focus on corn and 

soybean that emerged as the main agricultural products from the state of Illinois (Bramstedt and 

Endres, 1999). 

Borah et al. (2003) reported agriculture to be the principal land use Illinois, with most of 

the land being used for agriculture in Illinois is used to grow corn and soybean. Typically, within 

the state, farmers follow a rotation pattern between corn and soybean over consecutive years. 

This corn-soybean rotation offers more flexibility in tillage and reduces yield losses due to large 

corn residues, as compared to continuous corn (Randall et al., 2002).  Additionally, planting 

soybean also enriches the soil with nitrogen which can be attributed to the crop’s symbiotic 

relationship with nitrogen fixing bacteria.  

Corn is the most important agricultural product from Illinois, the second largest producer 

of corn in the United States. Typically, throughout the central part of the state corn is planted 

from the third week of April through May. Usually corn planting is accompanied by 

simultaneous herbicide application, but sometimes corn herbicides are also applied as pre plant 

applications 1 to 30 days prior to planting. Post-emergence applications are typically done after 4 

to 6 weeks of planting (Byard, 2009). 

Soybean production started in Illinois at the beginning of the 20
th

 century. Over the past 

century, there has been a remarkable transformation in soybean production in the state and 

currently Illinois is the second largest producer of soybean in the United States. This notable 

increase in soybean production in the state can be credited to a suitable climate for its 
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production, coupled with a widespread infrastructure of ancillary industries for soy crushing and 

processing. As a large number of farmers in Illinois practice corn-soybean rotation, a 

considerable percentage of cropland in the state is used to grow soybean. Soybean planting is 

done at a later time as compared to corn planting, usually mid to late May, and nitrogen 

fertilizers are not normally applied (David et al., 2008).  

Apart from corn and soybeans, farmers in the state of Illinois also grow and raise other 

agricultural commodities such as cattle, swine, wheat, vegetables, oats, and sorghum (Illinois 

Department of Agriculture, 2001). 

2.2 Fertilizers 

The increased usage of fertilizers over the past few decades has been instrumental in 

significantly improving crop yields throughout the world. Nitrogen, phosphorus and potassium 

are the main macronutrients which are added to the soils as fertilizers. The majority of 

anthropogenic nitrogen and phosphorus in the environment is a result of extensive fertilizer 

application (Byard, 2009). 

A majority of nitrogen application in Midwestern agricultural watersheds (temperate 

zones) takes place in the fall season. Cookson et al. (2000) reported that nitrate application in 

temperate areas around the world mainly boosts crop growth, decreases establishment times and 

also increases seed yields of crops. Nitrogen application as fertilizers can be done in various 

forms such as ammonia, nitrates and animal manure (Byard, 2009). Commercial nitrogen 

fertilizers are applied mainly in the form of ammonium and nitrates; with ammonium being 

readily convert into nitrates. Animal manure is also used as a source of nitrogen, but mainly in 

Southeast United States, whereas throughout the Midwest and Western United States commercial 

fertilizers dominate as sources of nitrogen.  

In the United States, the sale of nitrogen fertilizers has been increasing steadily with  a 

twenty fold increase between 1945 and 1985. Annually, approximately 11 million tons of 

commercial nitrogen fertilizer and 6.5 million tons of manure-based nitrogen fertilizer are 

applied in United States (USGS, 1996).  Nitrate fertilizer application rates for Midwestern corn 

production varied from 150 to 225 kg per hectare per year (David et al., 2008). 
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Phosphorus is mainly applied as compounds of phosphate, and although it is not being 

very mobile, it is transported in significant quantities to streams by soil erosion. The use of 

phosphate fertilizers has increase fourfold between 1945 and 1985; with approximately 2 million 

tons being applied each year as commercial and manure-based phosphate fertilizer in United 

States (USGS, 1996).   

2.3 Nutrient Contaminants 

The major sources of nutrients entering the environment can be classified as either point 

or non-point sources. Natural precipitation, dissolution of natural minerals from soil and 

geological formations, and fertilizer application are the main non-point sources credited with 

nutrient delivery to the environment. Of these sources of nutrient delivery to the environment, 

human influence is mainly seen in fertilizer application for agricultural production.  Background 

nitrate concentrations are less than 2 mg/L for ground water, and less than 0.6 mg/L for streams, 

whereas the background total phosphorus concentrations are usually less than 0.1mg/L. (USGS, 

1996). Fertilizer application mainly occurs in the form of nitrates and phosphates and any 

increase in the natural background concentrations of nitrates and total phosphorus is often 

classified as nutrient contamination  

Over the many past decades, extensive development of subsurface (tile) drainage systems 

has taken place throughout the Midwestern United States. In Illinois alone, approximately 4 

million hectares of land are artificially drained by tile drainage systems. These systems were 

designed to convert swamplands into highly productive farmlands, and although these systems 

promote increased yields, and reduced sediment losses, they increase the delivery of nitrates to 

receiving water bodies. Typically, subsurface drainage systems in Midwestern United States 

drain into a small agricultural ditches, which eventually drain into a river which in turn enters the 

Mississippi river (Kalita et al., 2007). 

 Nitrates are the most prevalent contaminant in groundwater in the United States, and, as 

they are readily soluble in water, they are transported in both surface and groundwater (USGS, 

1996). Thus, discharge from the extensive subsurface drainage systems throughout the Midwest 

contains a large amount of nutrients which are eventually discharged into the Mississippi river 

system.  
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Both of the watersheds used in this study lie in the large Mississippi- Atchafalaya river 

system. The Mississippi-Atchafalaya river system drains 41% of conterminous United States. In 

the central part of this large river basin, i.e. the Midwest, most of the corn and soybean 

production of the country takes place and consequently a majority of fertilizers and pesticides 

used in the United States are applied within this river basin (Goolsby et al., 2001). Consequently, 

the Mississippi- Atchafalaya river system is the biggest source of riverine nutrient concentrations 

to the Gulf of Mexico.  

  The total nitrogen flux to the Gulf of Mexico for a period from 1980-1996 was reported 

to be 1,568,000 tons/yr.  Out of the total nitrogen flux approximately 61% was in the nitrate 

form, 37% in the form of dissolved and particulate organic nitrogen and only 2% in the form of 

ammonium. Such elevated riverine concentrations of nitrates have been attributed as the one of 

the major causes of hypoxia in the Gulf of Mexico (Goolsby et al., 2001). 

 Although the role of nitrates in hypoxia is well documented, recently studies have 

indicated that phosphorus also plays a more important role that previously believed in causing 

hypoxia in the Gulf of Mexico (Sylvan et al., 2006; Alexander et al., 2008).  Alexander et al. 

(2008) reported that analysis of different sources of nutrients to the Gulf of Mexico shows that 

corn and soybean cultivation is the largest contributor of nitrates (52%), followed by atmospheric 

deposition sources (16%); whereas the total phosphorus entering the Gulf of Mexico can be 

attributed primarily to animal manure on pastures (37%), corn and soybeans (25%), other crops 

(18%), and lastly urban sources (12%). 

2.4 Statistical Load Estimation Models 

Over the past few decades, different statistical estimators have been used to predict 

nutrient and sediment loads in streams and rivers with sparse concentration datasets. Major load 

estimation approaches can be largely classified into four types: (1) ratio-based estimation; (2) 

average-based estimation; (3) period-weighted estimation; and (4) regression-based estimation.  

2.4.1 Ratio-based Estimation 

Beale (1962) first introduced this class of statistical load estimation models namely the 

ratio based load estimation models. This approach was mandated for use in Great Lakes loading 
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calculations by the International Joint Commission (Richards and Holloway, 1987). The Beale 

ratio estimator is expressed as: 

𝐿𝑑 = 𝑄′
𝑙′

𝑞 ′
 

1+
1

n

Slq

l ′q ′

1+
1

n

Sq 2

q ′
2

    (1) 

Where, 

𝐿𝑑  denotes estimated daily loading rate 

Q’ denotes the mean daily flow for the year 

li and qi denote the daily load for the day on which concentrations was determined and 

individual measured flows respectively 

l’ and q’ denote the mean daily loads and flows for the days on which concentrations 

were determined respectively 

n denotes the number of days on which concentrations are determined 

Slq denotes the covariance of flux and flow 

Sqq denotes the variance of flow based on days which concentration was measured 

In this technique, daily loads are calculated on days when samples are collected for 

evaluating nutrient concentrations (sampled days), by multiplying nutrient concentrations with 

the corresponding daily flow rates, and the mean daily load is then calculated for the complete 

monitoring period. The loads for days when no samples are collected for evaluating nutrient 

concentrations (unsampled days) are obtained by multiplying this mean daily load by the ratio of 

the mean daily flow rate for the complete monitoring period and  the mean daily flow rate for 

sampled days. If much variation in flow rates occurs over the monitoring period, accuracies can 

be improved by stratifying the complete dataset based on discharge. Stratum loads can be 

computed by the same methodology and summed up to determine the total load for the whole 

monitoring duration. Ratio estimators actually use the mean of daily flows to estimate loads, and 

thus, they are more suited for monitoring programs with abundance of flow information for a 

stream but relatively scarce concentration information (Dolan et al., 1981). 
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Dolan et al. (1981) applied the Beale ratio estimator (BRE) to estimate total phosphorus 

loading in the Grand River, Michigan for a watershed draining an area of approximately 13,550 

km
2
. They calculated total phosphorus loading for a period of one year from March, 1976-

February, 1977.  They estimated annual total phosphorus loads using randomly generated subsets 

of 25 samples. The BRE was the most accurate amongst various unbiased estimators they tested, 

using the root mean square error (RMSE) as a measure of goodness of fit. 

Richards and Holloway (1987) carried out a similar study to estimate tributary loads with 

three sampling patterns, four sampling frequencies and two calculation procedures. They 

estimated tributary loads for three Ohio tributaries namely Maumee River, Sandusky River and 

Honey Creek having drainage areas ranging from 386-16,699 km
2
. Their results indicated that 

the BRE load estimates for both flow-stratified and unstratified scenarios were the most precise 

ones. 

Burn (1990) reported that a simplified version of the ratio estimator introduced by 

Cochran (1977) performed indistinguishably as compared to the BRE. Ratio estimators assume 

the existence of a positive relationship, passing through the origin, between daily load and daily 

flow values. These estimators are usually considered to be the most precise unbiased estimators, 

and a linear relationship is typically assumed, if the variance of the daily loads is proportional to 

the magnitude of the daily flow rates. Ratio-based nutrient estimators have been used by a 

number of researchers over the past several decades (Beale, 1962; Richards and Holloway, 1987; 

Coats et al., 2002; Preston, 1989; Guo et al., 2002). 

2.4.2 Average-based Estimation 

  In this simple technique, parameters on unsampled days are assigned the average value 

of the corresponding parameter on sampled days. If sampling frequency is variable over time, 

weighting has to be performed to get more accurate annual estimates. Averaging estimates can 

be computed for flow, nutrient concentrations, or loads.  

 Generally for load estimation purposes, averaging is used to compute representative 

concentrations, and consequently, loads are computed by multiplying these averaged 

concentrations with the corresponding flow rates (Walker, 1996; Short, 1999). 
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 Dolan et al. (1981), Ferguson (1987) and Verhoff et al. (1980) developed and tested a 

wide array of averaging estimators. Preston et al. (1989) summarized various different average 

based load estimators that were developed earlier and tested them to estimate a range of tributary 

loads. In general, the averaging techniques can be classified under three broad categories, based 

on the parameter averaged:  

(1) Daily flow data with average monthly/quarterly concentrations 

(2) Average flow data  

(3) Average load data 

Preston et al. (1989) studied the performance of various different averaging estimators for 

total phosphorus in the Grand River (1976/1977), and total lead (1977), total zinc (1978), and the 

PCB Aroclor-1242 (1979) in the Saginaw River. Preston et al. (1989) reported that amongst the 

averaging estimators that use daily flow with monthly or quarterly average concentrations had 

the least mean square errors (MSE). They also reported that averaging estimators that used 

average flow data yielded higher MSE comprising of high bias, high variance or both. The 

average load estimators also performed poorly and yielded higher MSE, although their precision 

could be improved by stratification. 

2.4.3 Period-weighted Estimation 

 This simple technique has been mainly used to estimate missing data points in a time 

series. For the load problem, measured nutrient concentrations of collected samples are used to 

estimate loads for the complete monitoring duration. There are two basic approaches to estimate 

missing data using period-weighting estimation:  

 

(1) Piecewise linear interpolation of the measured data points (Shih et al., 1998)  

(2)  Use of a step function assuming that the measured concentration is the midpoint of a 

time-interval and the concentration is constant for the whole interval 

 

  Loads can be calculated for the entire monitoring period by multiplying the estimated 

concentrations with their corresponding flow rates and summing these values. Accuracy of load 
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estimation using period-weighted techniques is directly proportional to the number of measured 

concentration points. 

2.4.4 Regression-based Estimation 

 Over the years, regression approaches have been consistently used to estimate missing 

nutrient and sediment concentrations in streams and rivers. Walling (1977) stated that regression 

approaches have traditionally been applied for estimating loads of suspended solids and other 

constituents. A simple- or multiple-regression relationship is developed between the dependent 

variable, i.e., concentration, and one or more independent variables such as flow and time. 

Usually as flow and concentration time series are assumed to follow a bivariate log-Gaussian 

(lognormal) distribution, the relationship is developed in log-log space. The back transformation 

of the concentrations to regular space induces a bias (Ferguson, 1986), necessitating the use of 

various bias correction techniques (Duan, 1983; Cohn et al., 1989). 

 Cohn et al. (1989) analyzed the issue of retransformation bias induced by converting the 

regression estimates from the “log space” to the “real space” (Ferguson, 1986). The biased 

regression estimator was used by Ferguson (1986), Koch and Smillie (1986), Richards and 

Holloway (1987) and Young et al. (1988) for estimating loads for a single stream. According to 

Cohn et al. (1989), in such scenarios the use of a biased regression estimator can be justified due 

to its simplistic approach, but in scenarios having multiple tributaries, although the random 

errors in the estimates for each tributary will tend to offset one another, the bias errors tends to 

accumulate. They developed an unbiased estimator called Minimum Variance Unbiased 

Estimator (MVUE), which consistently yielded comparable or better load estimates than the 

traditional unbiased regression estimator for a wide spectrum of conditions, especially when the 

sample sizes were small or loads were estimated during high flow scenarios. 

 Cohn et al. (1992) validated the bias correction obtained using MVUE, in load estimates 

from some of the major tributaries to Chesapeake Bay. According to their results the biased 

regression estimator gave reasonably accurate estimation of nutrient loads but a statistical 

significant albeit not substantial lack of fit was observed. The MVUE load estimator was found 

to yield satisfactory estimates of nutrient loads with statistically insignificant lack of fit. 
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Duan (1983) proposed a nonparametric bias correction factor and the resulting estimator 

is generally referred to as the smearing estimator. The smearing estimator can be expressed as: 

 

LSM = LRC
1

M
 exp e i  M
i=1                  (2) 

Where, 

LSM denotes load estimates from the smearing estimator 

LRC denotes load estimates from the rating curve (regression) estimator 

e (i) denotes the regression residual 

exp denotes the exponential function 

Guo et al. (2002) comprehensively analyzed the performance of three major classes of 

load estimators, the biased rating curve (regression) estimator, ratio estimator and the flow-

weighted average estimator. Additionally they also assessed the performance of the MVUE and 

smearing estimator bias correction techniques. For different combinations of sampling 

frequencies and monitoring durations, Guo et al. (2002) compared “true” nitrate-N load estimates 

from the Upper Sangamon River watershed in Illinois with estimates from the above mentioned 

estimators and bias correction techniques. Their results indicated that bias correction wasn’t 

required in this scenario and both the bias correction techniques actually increased the bias. More 

stream nutrient concentration datasets from a wide spectrum of locations are needed to quantify 

the performance of various statistical load estimation approaches. There are only a handful of 

studies which have been conducted over the past few decades that compare the performances of 

various nutrient load estimation models. Barring a few, most of these studies are hampered by a 

very limited duration of continuous concentration datasets   which is used to compare the 

performances of the different load estimation models. Also, many of the estimators and bias 

correction techniques vary in performance for datasets with different characteristics and from 

different locations. 

2.5 Composite Method 

 Aulenbach and Hooper (2006) proposed an alternative method, called the composite 

method to estimate solute loads. They used an extensive dataset collected at the outlet of the 

Panola Mountain Research Watershed (PMRW) near Atlanta, Georgia, USA, to illustrate this 
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method, which combines the strengths of regression and period-weighted approaches. Residual 

concentrations are computed for all sampled days by subtracting concentrations estimated using 

the regression model from the corresponding measured values, and a piecewise continuous linear 

function of the residual concentrations over time is developed. This residual concentration from 

this composite function is then subtracted from the regression concentrations on unsampled days. 

  Aulenbach and Hooper (2006) demonstrated that the composite method improved load 

estimation accuracies over short time intervals and allowed for better trend analysis of load 

estimates. The composite method was based on the principle of autocorrelation amongst the 

residual concentrations, and it used a piecewise linear interpolation to distribute residuals in 

between sampled concentrations. This concept is an advanced form of curve fitting which has 

created a new class of error correction techniques for load estimation models. Based on this 

concept, by optimizing the distributions used to assign residuals in between sampled 

concentrations potentially more accurate new error correction techniques may be developed. 
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CHAPTER 3 

OBJECTIVES 

 

The overall goal of this study was to improve nitrate-N load estimation accuracies for 

scenarios with a wide spectrum of monitoring durations and sampling frequencies using various 

load estimation models and error correction techniques. Specifically, the objectives of this study 

were to: 

1) Confirm and validate the findings of previous research related to changes in load 

estimation accuracies by increasing monitoring duration and sampling more frequently. 

2)  Evaluate the performance of various load estimation models for different monitoring 

scenarios. 

3) Develop and analyze the performance of various error correction techniques for load 

estimation models, and asses if they can be used to design cost –effective monitoring 

plans, requiring fewer observations for the same load estimation accuracies. 

4) Test if incorporation of monitoring thresholds in conjunction with fixed monitoring can 

be used to design cost-effective monitoring plans, having the lowest load estimation 

errors for any fixed number of samples collected. 
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CHAPTER 4 

SITE AND DATASET DESCRIPTIONS 

 

4.1 Watershed Descriptions 

Two watersheds in north-central Illinois, the Upper Sangamon River at Monticello 

(United States Geological Survey [USGS] 8-digit HUC number 05572000), and Vermilion River 

at Pontiac (USGS 8-digit HUC number 05554500), were monitored over a period of six years 

from May 1993 to April 1999. The watersheds have similar drainage areas, and the topography 

of both watersheds is characterized as being almost flat to gently sloping, tilled farmland. Soil 

types of both watersheds are dominated by soils with poor natural drainage, which has led to the 

extensive adoption of tile drain systems in the watersheds. Agriculture is the primary land use for 

both watersheds, with corn-soybean rotation being the most common cropping pattern. Annual 

precipitation trends for both watersheds indicate that precipitation ranges from 890 to 1,015 mm 

annually, most of which occurs in spring and summer. As seen in most of the watersheds in 

Illinois, both watersheds in this study display well-defined seasonal flow variability. Flows 

during the spring (March–June) are expected to be the highest with lowest flows generally 

occurring through late summer and fall. Most major water quality issues for both watersheds 

used in this study relate to large-scale sedimentation and nonpoint nutrient pollution, mainly 

nitrate-N and phosphorus (IEPA, 2007; IEPA, 2009). 

4.2 Dataset Description 

4.2.1 Upper Sangamon River at Monticello 

The Upper Sangamon River watershed is located in east-central Illinois and drains an 

area of approximately 3161 km² (Figure 1). This study specifically focuses on a sub-watershed of 

the Upper Sangamon River located upstream of the city of Monticello, draining an area of 1406 

km².  
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Figure 1. Upper Sangamon River watershed. 

 

This watershed eventually discharges into Lake Decatur, which is located approximately 

39 kilometers (km) downstream of Monticello. Over the years, the U.S. Geological Survey has 

operated seven continuous stream gaging stations in the Upper Sangamon River watershed. At 

one of these gaging stations on the Sangamon River at Monticello, they monitored discharge 

from the sub-watershed studied in this project. Mean daily stream flow data from this gaging 

station, from May 1993 through April 1999, were retrieved from the USGS and used in this 
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study. Since May 1993, the Illinois State Water Survey (ISWS) independently collected regular 

samples from this site for nitrate-N analysis (Keefer and Demissie, 2000). The city of Decatur 

collected instantaneous samples for nitrate-N analysis, from the north and south water treatment 

plant intake, daily. It was assumed that concentration values of these instantaneous samples 

represented mean daily concentrations. The daily nitrate-N concentration data from the north 

water treatment plant intake were retrieved from the city of Decatur for May 1993 through April 

1999. Guo et al. (2002) used fitted stepwise regression to generate daily nitrate-N concentration 

data at Monticello using the daily nitrate-N concentrations at the north water treatment plant at 

Lake Decatur and the data collected by the ISWS. The product of the daily measured or 

generated nitrate-N concentrations at Monticello and the recorded mean daily flow rates yielded 

daily load values of nitrate-N at the Monticello gaging station. Annual load estimates for nitrate-

N were obtained by summing these daily load values over a year (May 1 –April 30). The total 

load for the period of study was obtained by summing the annual values. 

 

Figure 2. Minimum, maximum, and mean nitrate-N concentrations at Monticello (Sangamon 

River) for 1993-1999 observation years averaged over a water year. 
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Figure 3. Minimum, maximum, and mean discharges at Monticello (Sangamon River) for 1993-

1999 observation years averaged over a water year. 

 

A nitrate-N yield of approximately 26.4 kilograms per hectare per year (kg/ha/year) for 

the six-year study period was obtained by dividing the total load by the contributing watershed 

area. Data from May 1993 to April 1999 were used to calculate the mean, minimum, and 

maximum nitrate-N concentrations and flow rates for each complete water year. Nitrate-N 

concentrations and flow rates for the Upper Sangamon River watershed at the Monticello 

gauging station are summarized in Figures 2 and 3, respectively. 

4.2.2 Vermilion River at Pontiac 

The Vermilion River watershed, located in north-central Illinois, drains an area of 

approximately 3424 km² (Figure 4). This study focuses specifically on the sub-watershed of the 

watershed located upstream of the gaging station at Pontiac, that drains an area of 1492 km².  
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Figure 4. Vermilion River (Illinois basin) watershed. 
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Water Corporation (NIWC) from May 1988 to April 1999, were retrieved and used in this study. 
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determine concentrations. To measure nitrate-N concentrations, the ion selective electrode 

method uses a stable and robust probe, which generally provides a slightly more accurate 

estimate of nitrate-N concentrations as compared to the cadmium reduction method (Capelo et 

al., 2007). A major concern regarding the quality of the concentration data measured was that the 

samples were collected from the edge of the river upstream from the treatment plant, with no 

attempt being made to collect multiple samples across the depth and width to obtain more 

representative estimates of nitrate-N concentration. However, the Illinois Environmental 

Protection Agency (IEPA) operated a sampling site (McDowell) 14.5 km upstream from the 

Pontiac gaging station, collecting nine comprehensive depth- and width-integrated samples 

annually, to estimate representative nitrate-N concentrations across the Vermilion River. For the 

complete monitoring period from May 1988 through April 1999, a high degree of correlation 

was observed between the nitrate-N concentration measurements for samples collected by NIWC 

and IEPA, with the coefficient of determination (R
2
 value) being  0.79 (Figures 5 and 6). 

 

 

Figure 5. Nitrate-N concentration data at McDowell (area-integrated) collected by IEPA and 

Pontiac (grab from shore) collected by NIWC. 
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Figure 6. Correlation of nitrate-N concentration data at McDowell (area-integrated) collected by 

IEPA and Pontiac (grab from shore) collected by NIWC. 

 

Thus, the nitrate-N concentration measurements taken by NIWC at Pontiac were assumed 

to be accurate for load estimation throughout the complete monitoring duration. Daily nitrate-N 

load estimates at the Pontiac gaging station were calculated by multiplying daily measured 

nitrate-N concentrations and recorded mean daily discharges. Annual nitrate-N load estimates 

were obtained by summing daily load values over a year. To maintain consistency with the 

Upper Sangamon River at Monticello, only the nitrate-N load estimates from May 1993 through 

April 1999 were used in this study.  

The average nitrate-N yield for the watershed for the six-year period of study was 
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Figure 7. Minimum, maximum, and mean nitrate-N concentration at Pontiac (Vermilion River) for 

1993-1999 observation years averaged over a water year. 

 

Figure 8. Minimum, maximum, and mean discharges at Pontiac (Vermilion River) for 1993-1999 

observation years averaged over a water year. 
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4.3 Flashiness Index 

Baker et al. (2004) developed a criterion called the flashiness index to characterize flow 

regimes of various Midwestern streams. Flashiness reflects frequency and rapidity of short-term 

changes occurring in stream flow regimes. A stream hydrograph with higher storm peaks and 

lower base flow values is flashier than a stream with higher and more stable base flows and 

smaller storm peaks. The R-B Index was computed individually all six years of study for both 

watersheds. The R-B flashiness index values for flows from the Vermilion River sub-watershed 

at Pontiac were consistently significantly higher than that for flows from the Upper Sangamon 

sub-watershed at Monticello. A graph of different flashiness index values for both watersheds 

used in this study over the complete monitoring duration (1993-1999) is shown in Figure 9. 

 

Figure 9. Richards-Baker flashiness index for Vermilion and Sangamon Rivers for 1993-1999 

observation years. 
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CHAPTER 5 

METHODOLOGY 

 

The approach used in this study to analyze the performance of different load estimation 

models and error correction techniques is shown schematic in Figure 10. Unique combinations 

with different monitoring durations (1year-6years), sampling frequencies (1week-8weeks), and 

three different load estimation models were tested. The composite method along with four new 

error correction techniques were applied to each of the unique scenarios.700 Monte Carlo 

iterations were performed to compare load estimates to the “true” loads from both the watersheds 

used in the study. 

 

Figure 10. Schematic of project approach. 
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5.1 Load Estimation Methods 

Load estimation is commonly a vital objective in most of the water quality monitoring 

programs. Mass fluxes or loads of a nutrient over a certain monitoring period across any channel 

can be calculated using continuous flow rate and concentration measurements. The total solute 

load is can be estimated by integrating solute concentrations and discharges over time. Typically 

in monitoring programs discharge is measured often and the concentration is measured less 

frequently. To have accurate load estimates there is a need to estimate concentrations between 

relatively infrequent concentration samples. Various different approaches have been studied and 

used to estimate missing concentrations. Most monitoring programs are designed to measure 

concentrations at weekly to eight weekly intervals, and to use statistical models to expand these 

values into a continuous (daily) concentration dataset.  In this study, the following three 

statistical load estimation models were compared to estimate missing nitrate-N concentrations:  

5.1.1 USGS Seven-Parameter Estimator  

The USGS seven-parameter estimator developed by Cohn et al. (1992), also known as the 

rating curve method, is the most widely used regression-based load estimator.  It is a multiple 

non-linear regression model which develops and utilizes a relationship between a sparsely 

collected dependent variable (i.e., concentration) and continuous independent variables such as 

flow rate and time of year. To achieve a better linear relationship between the dependent and 

independent variables, and to reduce the influence of extreme flows on load calculations, 

concentrations are log transformed in the model. The model can be written in the following form: 

ln C = β0 +  β1 ln  
Q

Q′
 +  β2  ln  

Q

Q′
  
2

+ β3 T− T′ +  β4 T− T′ 2 +  β5 sin 2πT +

 β5 cos 2πT +  ε                                                (3) 

Where,  

ln ( ) denotes natural logarithmic function 

C and Q denote the nitrate concentration and flow rate 

T denotes time measured in years 
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𝜀 denotes the errors, which are assumed to be normally distributed with a mean of 0 and a 

variance of 𝜎𝜀
2 

𝛽0, 𝛽1 … . 𝛽6 denote the various regression parameters estimated from the available dataset 

Q’ and T’ denote centering variables used in the model. 

Concentrations from sampled days, along with the corresponding mean daily flow rate 

and Julian days are used to compute the seven parameters. The model is then used to estimate 

log-concentrations, and ultimately concentrations, on unsampled days, and the expanded 

concentration data set is then used to obtain load estimates for any subset of the monitoring 

period: 

LRC =  Cj  Qj
N
j=1 ΔT                                               (4)                                                                                   

Under the assumption that regression residuals are independent and normally distributed, 

Koch and Smillie (1986) and Ferguson (1987) found that the regression model under predicts 

concentrations (i.e., a bias is observed in the concentrations). This bias can be attributed to 

application of a regression model to log-transformed data. To account for the bias in 

concentration predictions, Cohn et al. (1992) proposed the application of a minimum variance 

estimator (MVUE). Accurate load estimations of nutrient loads discharging into the Chesapeake 

Bay were reported by (Cohn et al., 1992). 

LMVUE = LRC g
m

 
m+1

2m
  1− v s2     (5) 

Where, 

m denotes the number of observations used to calibrate the model minus the number of 

parameters in the model 

𝑣 denotes a leverage term, which is a function of independent variables for which the 

load concentration is calculated 

s
2
 denotes the estimated variance of the regression residuals 

gm is function  defined as: 
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g
m

=  
mp m+2p 

m m+2 … m+2p 
 

m

m+1
  

zp

p!
 

 

∞
p=0   (6) 

 Wang and Linker (2008) demonstrated that adding additional parameters to the original 

seven-parameter model can better account for hysteresis in sediment transport in a regression 

model and thereby improve load estimation accuracies for scenarios with frequent sampling 

and/or seasonal variations. 

5.1.2 Ratio Estimator 

Cochran (1977) developed the ratio estimator, a simple statistical model that is used to 

predict missing concentrations. Daily loads on sampled days are computed by multiplying mean 

daily flow rates and measured nutrient concentrations. To compute load estimates on unsampled 

days, the mean daily load for the sampled days is then multiplied by the ratio of the cumulative 

daily mean flow rates for the entire monitoring period and the daily mean flow rate for sampled 

days. Ratio estimators are, therefore, primarily based on the assumption that the ratio of load to 

flow rate remains constant for sampled days and unsampled days through the complete 

monitoring duration. It can be represented by the following equation: 

Lratio =
l′

q′
 Qj
N
j=1       (7) 

Where,  

l’ and q’ denote the  means of daily loads and flow rates, respectively, for sampled days 

 To increase precision, the dataset can be stratified on the basis of daily flow rates, and 

separate loads estimated for each stratum used the methodology outlined above. Total load 

estimates for the entire monitoring period can then be calculated by summing the stratified loads. 

This ratio estimator was used in this study and various correction methods were applied to it to 

gauge the improvement in load estimation accuracies, if any. 
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5.1.3 Flow-Weighted Average Estimator 

Walker (1996) suggested a flow-weighted average estimator, to estimate nutrient and 

sediment loads from various watersheds in Illinois, that was subsequently used by Short (1999). 

This technique required that the complete dataset be stratified based on flow. In this study, the 

1993-1999 dataset was subdivided into three strata, similar to studies done by Short (1999) and 

Guo et al. (2002) where datasets were divided into: 

 (1) All flow rates less than half of the mean flow of the complete monitoring period (Qmean);  

(2) Flow rates between half and twice the mean flow; and  

(3) Flow rates greater than twice the mean flow.  

The type of flow-weighted average load estimation model used in this study is essentially 

a stratified version of the standard ratio-estimation model. Stratified loads were computed using 

the following relation: 

LAVE =
 CiQi
M1
i=1

 Qi
M1
i=1

  Qj
N1
j=1     (8) 

Where,  

C denotes the nitrate concentration 

Q denotes the flow rate 

M1 denotes the number of calibration observations for the first strata  

N1 denotes total number of observations respectively for the first strata  

Total loads for the complete monitoring duration were computed by summing up the 

individual stratified loads.  

5.2 Autocorrelation of Modeling Residuals 

Regression-based approaches to estimate missing nutrient concentrations generally fail to 

account for any autocorrelation structure that may exist in residual concentrations. 
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Autocorrelation analysis of residual concentrations can be performed to determine the presence 

of serial autocorrelation, which, if present, can then be used to improve estimates of nutrient 

concentrations. A recent USGS report states that increasing sampling frequency usually increases 

serial autocorrelation in residual concentrations (Aulenbach et al., 2007). It also states that serial 

autocorrelation over 0.2 in residual concentrations can be used improve estimations of nutrient 

load fluxes if it is taken into account in the estimation model.  

 

Figure 11. Correlogram of residual concentrations (difference between observed concentrations 

and modeled concentrations using seven-parameter regression model) for Sangamon and Vermilion 

Rivers for 1993-1999 observation years. 

 

This potential improvement led to the development of a new approach, called the 

composite method, to improve solute load estimations from regression methods (Aulenbach and 

Hooper, 2006). Inspired by this composite method, four error correction techniques were 

developed and tested in this study. The residual concentrations from the models fitted to both the 

watersheds used in this study exhibit the presence of significant and persistent serial 

autocorrelation, with coefficients greater than 0.2 for lags of up to five weeks (Figure 11).  
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5.3 Composite Method 

As stated above, the composite method was proposed by Aulenbach and Hooper (2006). 

It combines the strengths of the traditional regression-based approach with the simple period-

weighted approach that has frequently been used to predict missing stream water solute 

concentrations. Traditional regression-based load estimation approaches do not use residual 

concentrations (difference in regression model predicted and observed/measured concentrations), 

in the prediction missing concentrations. The composite method incorporates a new residual-load 

component into the conventional model load estimation model. Like period-weighted 

approaches, step-wise linear interpolation is used to estimate residual concentrations on 

unsampled days. The resulting residual concentration function is multiplied by flow, integrated 

over time, and then subtracted from the conventional regression model load estimation function. 

The composite method is expressed as: 

Lcomposite =  Cm t Q t Δt−   Cϵ t Q t Δt    (9) 

Where, 

Cm denotes solute concentration computed using the regression approach 

CԐ denotes solute concentration computed using the period-weighted approach 

Q(t) denotes flow-rate at time t  

Δ𝑡 denotes the total monitoring duration for which loads are calculated. 

In essence, the composite method adjusts the regression-model-predicted concentrations 

on sampled days to the observed values by subtracting the value from a function developed by 

step-wise linear interpolation of residual concentrations. In the composite method for the 

regression function, Aulenbach and Hooper (2006) used a hyperbolic function, in the place of the 

log-linear function, to develop a relationship between concentration and discharge. 

CM t = a0 +  
a1

1+ βQ∗ t 
+  a2m+ a3 sin  

2πD

365
 +  a4 cos  

2πD

365
 +  a5 sin  

2πD

182.5
 + a6 cos  

2πD

182.5
   

  (10) 
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Where, 

m denotes a dummy variable depending on the slope of the hydrograph 

D denotes the day of year (0 to 365) 

t denotes time 

β denotes a fitted hyperbolic regression model parameter to linearize data 

an (0 to 6) denote regression model parameters 

5.4 Development of Error Correction Methods 

Similar to the composite method, in this study the temporal correlation in modeling errors 

(residual concentrations) were taken into consideration by assigning errors on unsampled days, 

based on known errors on proximate sampled days. Firstly, residual concentrations were 

calculated on sampled days, by finding the difference in regression-model-predicted 

concentration and observed concentrations. The mid-points of the time interval between all the 

pairs of consecutive sampled days were then determined. These midpoints were then set as 

vertices in the estimation of the residuals on adjacent unsampled days. In this study instead of 

using step-wise linear interpolation, as in the composite method, rectangular- and triangular-

shaped distributions were used to assign errors in the vicinity of a known error. For the 

rectangular distribution, the residual at an unsampled day was assigned the value of the residual 

on the closest sampled day; while for the triangular distribution, the magnitude of the residuals 

were assumed to be maximum on the sampled days, and vary linearly to zero at mid-points of the 

time-intervals  between consecutive sample days.  

5.4.1 Concepts of Residual and Proportion 

In this study another set of correction techniques, based on proportional concentrations 

rather than residual concentrations, was also developed. A proportional concentration is defined 

as the ratio between the observed/measured concentration and the model estimated concentration 

on a sampled day: 
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Proportion
N

=
Observed concentration

Modeled concentration
      (11) 

 

Once the set of proportional concentrations was obtained for all sample observations, the 

rectangular and triangular distributions again were used to assign concentrations in the vicinity 

of known proportional concentrations. Schematic diagrams of the different distributions that 

were used to develop continuous functions, based on residual concentrations, are shown in 

Figure 12. 

 

 

Figure 12. Schematic of the various distributions for residual concentrations, a) composite method 

(piecewise linear interpolation); b) triangular distribution; c) rectangular distribution. 
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Figure 13 shows a schematic of the extent of the residual distribution window. Residuals 

for days in between the sampled days were calculated using the triangular and rectangular (step) 

distributions and also by step-wise linear interpolation of the known residual values. Known 

residuals were used to calculate the missing residuals for a window which extended equally on 

either side of the known residual up to the midpoint between two known adjacent residual 

values. In Figure 13, ti-1 , ti, and ti+1 are three consecutive sampled days, 𝑂𝑖−1, 𝑂𝑖 , 𝑂𝑖+1   are the 

measured nitrate-N concentrations on these days respectively, and  𝑀𝑖−1, 𝑀𝑖 , 𝑀𝑖+1 are the 

modeled nitrate-N concentrations for these days respectively and  𝑅𝑖 =  𝑂𝑖 − 𝑀𝑖  is the residual 

concentration on day ti.  

 

 

 

Figure 13. Schematic of the residual distribution window. 

The residual for any time in the window, T, is calculated as follows: 

 Using the Triangular distribution  

 

Using similar triangles, Figure (14), we get the following relation: 
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Figure 14. Schematic of the triangular distribution used to calculate the unknown residuals. 
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Since, 

Ri =  Oi − Mi     (12b) 

The unknown residual, for T =t i-1/2 to t i can be calculated as: 

 

Unknown residual =
 T−t

 i−
1
2
 
 

 ti− t
 i−

1
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  Oi − Mi      (12c) 
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 Using Rectangular distribution  

For the rectangular distribution the residual remained constant throughout the window, 

Figure (15): 

i.e. missing residuals can be calculated using equation (12b) 

Ri =  Oi − Mi     

 

 

 

Figure 15. Schematic of the rectangular distribution used to calculate the unknown residuals. 

 

For the proportion based error correction techniques, similar procedure was used to 

calculate the missing proportion values. 

5.5 Monte Carlo Simulation 

Accuracy and precision of solute load estimations are largely dependent on various 

parameters such as load estimation method, sampling routine, sampling frequency, storm events, 

and watershed size (Richards and Holloway, 1987). Uncertainties in solute load can also be 

attributed to human population densities in the watershed, baseflow index, and river regimes 

(Johnes, 2007) and can be characterized by using Monte Carlo analysis (Guo et al., 2002). In this 

study, sub-sampling of continuous daily concentration datasets was performed to generate 

sparse, replicated datasets. These sub-sampled scenarios were used to generate replicate datasets 
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with one-week, two-week, four-week, six-week, and eight-week sampling intervals. Monte Carlo 

simulation, which is essentially random number sampling, was designed based on the realization 

of a uniformly distributed random variate. Consequently, for any given work week, all days had 

an equal probability of being the sampling day. For example, if the sampling frequency was four 

weeks, using Monte-Carlo simulation any day within a time interval of four weeks was randomly 

selected as the sampling day. Also, the minimum gap between the next sampled day was set at a 

minimum of at least three weeks. Using this sub-sampled data, the total annual nitrate-N load 

was estimated by different estimators, and their precision and accuracy were evaluated against 

“true” or actual loads, calculated from the original datasets. 

5.6 Evaluation Criteria 

For an accurate assessment of performance of various statistical load estimation methods 

and error correction techniques, determination of “true” loads from contributing watersheds are 

of utmost importance. In this study, true loads were calculated for both watersheds using existing 

continuous nitrate-N and flow data from May 1, 1993 to April 30, 1999. Using daily true loads, 

annual loads were computed by summing the daily loads over a year. Similarly, true average 

yield values for both watersheds were also computed for shorter periods of records, namely, one 

year, two years, and three years. To evaluate the performance of load estimators and error 

correction techniques, bias and standard errors for load estimates were calculated using these 

methods. Bias, defined as the difference in estimates using an estimator and true values, was 

used to assess the accuracy of estimators. To gauge the precision of estimators, standard errors 

were computed by comparing estimates using estimators and true values. Both bias and standard 

errors were calculated as percentages of true loads, which permit easier comparison of estimated 

and true loads.  As suggested by Dolan et al. (1981), Preston et al. (1989) and Guo et al. (2002), 

bias and standard errors were combined into a  an overall root mean squared estimator (RMSE) 

that was used to evaluate the performance of various load estimators and error correction 

techniques over a wide range or monitoring durations and sampling frequencies. 

RMSE =  B2 + Se
2     (13) 
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To determine whether loads estimated with the different estimators converged towards 

the true loads on increasing or decreasing sampling frequencies, different sampling frequencies 

ranging from weekly to once every eight weeks were used. Monitoring durations were also 

varied to gauge the affect of time during which a site is monitored. Finally, RMSE values were 

also computed for the various error correction techniques when applied to all load estimation 

methods across all combinations of monitoring durations and sampling frequencies. A total of 

700 iterations (Monte Carlo analysis) were performed for each simulation, and the bias and 

RMSE values were computed by averaging these 700 results. This was done to ensure that a 

wide range of observed data was used as model inputs for the three statistical load estimation 

methods (seven-parameter regression, ratio, and flow-weighted average).  This was instrumental 

in better understanding of the performance of the error correction techniques, when applied to a 

comprehensive set of combinations of load estimator, sampling frequency, and monitoring 

duration. 

5.6.1 Number of Iterations 

 To eliminate any uncertainty associated with the actual date of sampling, for all 

monitoring scenarios 700 Monte Carlo simulations were performed and the RMSE were 

computed by averaging these results. This number of simulations was selected to be consistent 

with similar work reported by Guo et al. (2002) to facilitate a better comparison and validation of 

their results. Since they did not provide a rationale for using 700 simulations, the relationship 

between the number of simulations and the RMSE value was investigated using  six years of 

monitoring at an eight-week sampling frequency. The result of this investigation is shown in 

Figure. This graph clearly indicates that after oscillating at lower values, the RMSE levels off 

after approximately 600 iterations, justifying the use of 700 iterations to compute the RMSE 

throughout the study. 
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Figure 16. Number of iterations versus the RMSE for Ratio, USGS 7-parameter regression and 

Flow Weighted average load estimators for a scenario having six years of monitoring duration and 

eight week sampling frequency. 

 

5.6.2 Uncertainty Assessment 

The RMSE is an appropriate indicator of the model superiority only if it can be replicated 

but with little variation for different realizations of the same scenario.  Typically, the width of the 

confidence interval is proportional to the RMSE. So, when comparing two models using the 

RMSE it is very important to assess the changes (increase or decrease) in the width of confidence 

intervals or simply the absolute percentage difference in between two RMSE values. A RMSE 

value of 4.50% is necessarily not significantly better than a RMSE value of 5.00%, per se; it 

largely depends on the underlying marginal distributions for the RMSE values. 

In the context of this study, the RMSE was used as an object function to discriminate 

between the performances of various models. To be certain that the RMSE statistic is sufficiently 

sensitive to perform this task, the variability of this statistic was determined. Two monitoring 

scenarios (6year-1week and 6year-8weeks) were selected and annual nitrate-N loads were 

calculated using the ratio estimator and the rectangular proportional error correction technique 
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for both the watersheds. In this study as 700 iterations were performed for each scenario to 

compute average bias and consequently the RMSE, 21,000 iterations were performed only for 

these selected scenarios to generate a larger sample size (30) of RMSE values for statistical 

analysis. 

Table 1 summarizes the average and variance amongst these sets of RMSE for different 

scenarios. For these scenarios the variance was insignificant in comparison to the respective 

average values. Consequently, the coefficient of variance (CV) for these scenarios was also 

substantially low. Thus, it can said with some certainty that the range of particular RMSE value 

for a 95% confidence interval is very small and thus a RMSE value of 4.00% is better than a 

RMSE value of 5.00%, i.e. the lower the RMSE for any load estimation method/ error correction 

technique/ monitoring scenario the better the technique performs. Statistical results from a few 

selected scenarios can be applied to all the other scenarios as all RMSE values were used to 

compare models whose error had the same units. 

 

Table 1. Uncertainty assessment of RMSE (%) values. 

Vermilion River at Pontiac 

 6year-1week 6year-8weeks 

average 3.00 4.94 

St.Dev 0.07 0.15 

C.V. 2.33% 3.04% 

Upper Sangamon River at Monticello 

 6year-1week 6year-8weeks 

average 1.68 5.99 

St.Dev 0.04 0.11 

C.V. 2.38% 1.83% 
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CHAPTER 6 

RESULTS AND DISCUSSION 

 

6.1 Load Calculations 

Daily flow rate and nitrate-N data from May 1, 1993 through April 30, 1999 for both 

watersheds were used to calculate true loads in this study.  To be consistent, the analyses were 

limited to data from this period, as it was the only period when continuous data from both 

watersheds were available. The complete monitoring duration was divided into six constituent 

observation years (i.e., six sub-datasets of a period one year each). Using the observed datasets, 

annual true loads were calculated for these individual years. Total load per year for the complete 

monitoring duration was computed by averaging the six annual loads. Similarly, the monitoring 

duration was divided into three two-year periods (1993-1995, 1995-1997, 1997-1999) and two 

three-year periods (1993-1996, 1996-1999), and total load was calculated by averaging these sets 

of individual loads. Further, average yields of nitrate-N from the watersheds for the six-year 

monitoring durations were computed to be 26.4 kilograms per acre per year (kg/acre/year) and 

23.4 kg/acre/year for Upper Sangamon at Monticello and Vermilion River at Pontiac, 

respectively.  

6.2 Performance of Load Estimation Methods 

RMSE values were computed for all the different load estimation methods for all possible 

combinations of sampling frequencies and monitoring durations. Table 2 summarizes the results 

obtained for Upper Sangamon at Monticello, with each RMSE value calculated by averaging 

results from 700 iterations. Similarly, results from Vermilion River at Pontiac are summarized in 

Table 3. In both tables, each box represents a unique combination of sampling frequency and 

monitoring duration. In each box, the first row (original) represents RMSE errors expressed as a 

percentage of true loads calculated using different load estimation methods, without the 

application of any error correction technique.  
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Table 2.Summary of RMSEs given by different load estimation models and error correction techniques for different combinations of 

monitoring durations and sampling frequencies for the Sangamon River at Monticello. The highlighted value indicates the lowest RMSE 

for that particular monitoring scenario amongst all possible combinations of load estimation models and error correction techniques. 

      Sampling Frequencies 

M
o

n
it

o
ri

n
g 

D
u

ra
ti

o
n

 

  
1 Week 2 Weeks 4 Weeks 6 Weeks 8 Weeks 

1 Year 

 
USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW 

Original 4.17 3.12 3.08 7.13 4.65 4.56 27.90 7.39 7.54 NR
* 

8.93 9.61 NR
* 

NR
* 

NR
* 

Trian. Proportional 3.52 3.26 3.24 6.56 4.43 4.42 28.96 6.08 6.19 NR
* 

8.95 9.06 NR
* 

NR
* 

NR
* 

Rect. Proportional 3.75 3.37 3.29 7.01 4.62 4.69 35.58 6.68 6.80 NR
*
 9.76 9.83 NR

*
 NR

*
 NR

*
 

Trian. Residual 3.97 3.19 3.15 7.39 4.55 4.47 27.91 6.57 6.73 NR
*
 9.43 9.62 NR

*
 NR

*
 NR

*
 

Rect.  Residual 3.79 3.64 3.60 7.36 5.22 5.26 30.46 7.39 7.60 NR
*
 10.35 10.47 NR

*
 NR

*
 NR

*
 

Composite 4.22 3.05 4.15 7.39 4.62 5.99 28.50 6.80 8.71 NR
*
 9.00 12.74 NR

*
 NR

*
 NR

*
 

2 Years 

 
USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW 

Original 3.48 2.61 2.67 4.97 4.11 4.16 10.33 7.03 7.04 14.82 7.51 7.63 20.55 10.38 10.51 

Trian. Proportional 2.59 2.37 2.40 4.15 3.54 3.64 10.47 5.36 5.30 14.51 5.51 5.60 20.22 10.80 10.81 

Rect. Proportional 2.80 2.44 2.47 4.91 3.60 3.63 13.36 4.93 4.89 18.86 6.13 6.13 23.21 10.80 10.69 

Trian. Residual 3.12 2.57 2.63 4.86 4.01 4.07 10.08 6.69 6.64 14.16 7.12 7.23 20.92 10.89 11.00 

Rect.  Residual 2.56 2.57 2.61 4.53 3.94 4.00 11.02 6.90 6.86 15.94 7.45 7.54 23.58 12.04 12.11 

Composite 2.29 2.57 2.43 4.01 4.06 3.93 10.21 6.86 6.50 14.93 6.94 6.81 22.64 10.72 12.38 

3 Years 

 
USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW 

Original 3.31 2.35 2.27 4.35 3.08 3.02 6.86 5.69 5.83 24.12 6.53 6.41 20.13 7.33 7.34 

Trian. Proportional 2.41 2.04 1.96 3.41 2.66 2.58 6.39 4.33 4.45 25.10 5.68 5.65 20.66 7.14 7.13 

Rect. Proportional 2.71 1.89 1.84 4.11 2.05 1.99 7.73 3.50 3.57 34.54 5.34 5.37 24.55 6.03 5.92 

Trian. Residual 3.07 2.29 2.20 4.19 3.02 2.95 6.61 5.45 5.58 24.93 6.49 6.35 20.27 8.02 8.03 

Rect.  Residual 2.64 2.17 2.11 3.96 3.00 2.88 6.61 5.67 5.79 26.64 6.63 6.58 21.72 8.74 8.73 

Composite 2.19 2.22 2.04 3.23 2.98 2.85 5.75 5.61 5.61 25.66 6.35 7.09 19.50 7.90 9.05 

6 Years 

 
USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW 

Original 2.58 1.96
# 

1.98 4.72 3.71 3.77 5.14 4.67 4.70 11.07 5.00 5.15 7.90 7.22 6.92 

Trian. Proportional 1.64 1.79 1.75 3.68 3.11 3.16 4.18 5.27 5.25 10.39 5.98 6.06 7.64 8.73 8.58 

Rect. Proportional 2.40 1.69 1.72 3.78 2.01 2.02 5.67 4.44 4.37 16.27 3.42 3.51 4.76 5.97 5.94 

Trian. Residual 2.29 1.93 1.96 4.40 3.72 3.78 4.67 4.71 4.73 10.63 5.43 5.56 7.37 7.00 6.62 

Rect. Residual 1.95 1.82 1.79 3.81 2.97 3.04 4.50 5.31 5.31 10.67 6.16 6.26 6.83 8.89 8.62 

Composite 1.75 1.85 1.73 3.70 3.52 3.43 4.11 5.02 5.21 9.66 5.47 6.40 7.96 7.88 8.79 

*NR: No Result 

 

4
0
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Table 3. Summary of RMSEs given by different load estimation models and error correction techniques for different combinations of 

monitoring durations and sampling frequencies for the Vermilion River at Pontiac. The highlighted value indicates the lowest RMSE for 

that particular monitoring scenario amongst all possible combinations of load estimation models and error correction techniques. 

      Sampling Frequencies 

M
o

n
it

o
ri

n
g 

D
u

ra
ti

o
n

 

  
1 Week 2 Weeks 4 Weeks 6 Weeks 8 Weeks 

1 
Year 

 
USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW 

Original 6.61 5.96 5.79 9.29 8.45 8.47 28.81 10.82 10.89 NR
* 

13.77 13.70 NR
* 

NR
* 

NR
* 

Trian. Proportional 5.92 5.72 5.55 8.87 7.53 7.52 29.19 10.46 10.50 NR
* 

13.39 13.28 NR
* 

NR
* 

NR
* 

Rect. Proportional 5.00 4.97 4.87 8.95 6.99 6.94 31.29 10.22 10.23 NR
*
 13.43 13.34 NR

*
 NR

*
 NR

*
 

Trian. Residual 6.26 6.12 5.99 9.35 8.38 8.38 29.62 11.42 11.47 NR
*
 14.56 14.42 NR

*
 NR

*
 NR

*
 

Rect.  Residual 5.82 6.37 6.20 9.93 8.96 8.95 29.70 11.84 11.79 NR
*
 15.22 15.01 NR

*
 NR

*
 NR

*
 

Composite 7.20 8.11 7.92 11.49 11.16 11.06 18.21 18.12 17.90 NR
*
 21.82 21.91 NR

*
 NR

*
 NR

*
 

2 
Years 

 
USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW 

Original 5.56 4.32 4.13 6.35 6.11 6.07 12.41 8.98 8.93 30.13 11.09 11.45 14.06 12.93 13.47 

Trian. Proportional 4.51 4.01 3.95 5.46 5.28 5.26 12.33 7.84 7.73 28.69 7.75 8.11 13.46 11.71 12.18 

Rect. Proportional 3.23 3.40 3.23 5.06 4.35 4.47 14.04 5.89 5.73 30.29 6.21 6.53 15.78 11.30 11.59 

Trian. Residual 4.66 4.21 4.04 5.68 5.80 5.84 11.59 9.26 9.19 29.46 11.25 11.65 14.50 13.82 14.38 

Rect.  Residual 3.84 4.42 4.28 5.75 6.47 6.40 11.81 9.39 9.29 29.97 10.45 10.65 17.24 14.12 14.63 

Composite 3.84 4.25 4.16 5.75 6.27 6.14 11.52 9.75 9.64 28.52 9.86 10.12 15.83 14.04 14.57 

3 
Years 

 
USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW 

Original 6.09 4.30 4.31 6.82 5.76 5.55 8.19 8.12 8.31 10.92 11.91 12.00 33.38 13.70 14.29 

Trian. Proportional 5.45 4.45 4.43 6.14 5.26 5.04 7.95 7.34 7.52 11.01 9.96 10.10 35.88 12.32 12.80 

Rect. Proportional 3.22 3.16 3.14 4.91 3.86 3.80 7.62 5.22 5.24 10.29 6.19 6.31 31.46 9.22 9.36 

Trian. Residual 4.85 4.33 4.34 5.93 5.85 5.65 7.83 8.32 8.61 11.43 13.22 13.36 33.50 14.69 15.26 

Rect.  Residual 4.17 4.58 4.57 5.68 6.23 6.04 7.08 8.57 8.86 10.77 13.56 13.59 32.98 14.69 15.30 

Composite 4.07 6.48 4.49 5.93 6.05 5.86 6.97 8.72 8.98 12.54 13.08 13.21 32.75 15.01 15.58 

6 
Years 

 
USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW USGS RATIO FLOW 

Original 4.63 3.20 3.19 5.04 4.99 4.90 6.20 6.37 6.08 8.01 9.01 9.25 8.00 9.75 9.70 

Trian. Proportional 4.00 2.72 2.65 4.24 3.90 3.82 5.64 5.79 5.47 7.60 6.98 6.93 7.91 7.96 7.81 

Rect. Proportional 2.36 3.05 3.02 3.17 2.84 2.67 4.47 3.26 3.04 6.62 3.47 3.53 9.12 5.14 4.96 

Trian. Residual 3.51 3.21 3.19 3.92 4.99 4.90 5.48 6.49 6.17 8.32 9.65 9.91 7.51 9.82 9.92 

Rect.  Residual 3.00 3.09 3.06 3.88 4.84 4.68 5.41 7.70 7.34 8.56 11.23 11.27 7.73 12.06 12.16 

Composite 2.75 3.11 3.05 4.05 4.85 4.70 5.41 7.08 6.78 8.69 10.11 10.22 7.87 11.04 11.04 

*NR: No Result 

4
1
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The subsequent rows indicate RMSE errors obtained by applying various error correction 

techniques to the load estimation methods. In addition, the background color of each cell is 

correlated to the RMSE value in that particular cell. White background indicates the least RMSE 

values on the whole table, and an error greater than 15% is represented by a black background. 

All RMSE values between the least value and 15% have a scaled background color, which 

becomes darker with increasing magnitude and vice-versa. Any RMSE value of greater than 40% 

was not considered and is denoted by No Result (NR).   

For both watersheds, the seven-parameter USGS method yielded appreciably high RMSE 

(>40%, i.e., NR) for two scenarios, namely one year of monitoring with six and eight weeks 

sampling frequencies. Similarly, the ratio and flow-weighted average estimator also yielded 

RMSE values greater than 40% for one year of monitoring and an eight weeks sampling 

frequency. The results indicated that accuracies of load estimation using all the three load 

estimators can be improved by either increasing the monitoring duration or by increasing the 

sampling frequency. For example, the Vermilion River at Pontiac RMSE for estimations from 

the seven-parameter USGS method for a sampling frequency of one week decreased from 6.61% 

to 4.63% on increasing the monitoring durations from one year to six years. Also, for a fixed 

monitoring duration of six years, increasing the sampling frequency from eight weeks to one 

week, the RMSE value decreased from 8.00% to 4.63%. The most accurate estimations for both 

watersheds were obtained with the longest monitoring duration (six years) and the highest 

sampling frequency (one week).  

  Table 4 summarizes the performance of the three load estimation methods for both 

watersheds used in this study. For the Vermilion River at Pontiac, the mean RMSE values for all 

scenarios excluding the NR scenarios were the least for the ratio estimator (8.40%). The mean 

RMSE for the flow-weighted average estimator was 8.45%, which is extremely close to the value 

for the ratio estimator. The seven-parameter USGS method yielded a mean RMSE of 11.69%. 

Similarly, for the Sangamon River at Monticello, the ratio estimator yielded the lowest mean 

RMSE for all scenarios excluding the NR scenarios at 5.44%. The flow-weighted average 

estimator yielded a RMSE of 5.48%, which is again very close to the mean RMSE yielded by the 

ratio estimator. For this watershed the seven-parameter USGS method yielded a mean RMSE of 

10.20%.  The minimum RMSE for both watersheds was given by the ratio estimator at 3.20% 
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and 1.96% for Vermilion River at Pontiac and Upper Sangamon watershed at Monticello, 

respectively. Both these results were obtained for the same scenario (a six-year monitoring 

duration and a one-week sampling frequency). The maximum RMSE for the Vermilion River at 

Pontiac was given by the seven-parameter USGS methods at 33.38% for a monitoring duration 

of three years and a sampling frequency of eight weeks. Similarly for Upper Sangamon 

watershed at Monticello, the maximum RMSE was 27.90% given by the seven-parameter USGS 

method with a monitoring duration of one year and a sampling frequency of four weeks. It 

should be noted that these maximum RMSE values are only for scenarios in which the RMSE 

was less than 40%.  Standard deviations of RMSE for all possible scenarios were least for the 

ratio estimator at 3.75% and 2.62% for Vermilion River at Pontiac and Upper Sangamon 

watershed at Monticello, respectively. Similarly, standard deviations of RMSE for the flow-

weighted average estimator were 3.89% and 2.69% for Vermilion River at Pontiac and Upper 

Sangamon watershed at Monticello, respectively. The seven-parameter USGS method had 

relatively high-standard deviation values, 9.30% and 8.04% for Vermilion River at Pontiac and 

Upper Sangamon watershed at Monticello, respectively. 

 

Table 4. Summary of RMSE (%) values for different load estimation models. 

Vermilion River at Pontiac 

 

7-parameter USGS Ratio Flow-weighted average 

min 4.63 3.20 3.19 

max 33.38 13.77 14.29 

average 11.69 8.40 8.45 

St.Dev 9.30 3.75 3.89 

    
Upper Sangamon River at Monticello 

 

7-parameter USGS Ratio Flow-weighted average 

min 2.58 1.96 1.98 

max 27.90 10.38 10.51 

average 10.20 5.44 5.48 

St.Dev 8.04 2.62 2.69 
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6.3 Performance of Error Correction Techniques 

Two sets each of two new error correction techniques, namely rectangular and triangular 

residual and rectangular and triangular proportional, were applied to each of the three load 

estimation methods for all possible combinations of sampling frequency and monitoring 

durations. In addition, one already existing error correction method (composite method) was also 

applied to the load estimation methods. 

The performances of all error correction techniques applied to load estimation models are 

comprehensively presently in Tables 2 and 3. In general, at least one of the error correction 

techniques improved load estimation accuracies, except for scenarios where the seven-parameter 

USGS load estimation model yielded high RMSE values. For the Vermilion River at Pontiac, the 

least RMSE error was reduced from 3.20% to 2.36%, obtained by applying the rectangular 

proportional error correction technique to the seven-parameter USGS model for six-year 

monitoring duration with one week sampling frequency. Similarly, the lowest RMSE for the 

Upper Sangamon at Monticello was reduced from 1.96% to 1.64%, obtained by applying the 

rectangular proportional error correction technique to the seven-parameter USGS model for the 

same scenario. Amongst all the error correction techniques, the rectangular proportional 

technique, when applied to the ratio estimator, gave the least mean RMSE across all scenarios 

for both watersheds. The mean RMSE values for this combination were 5.90% and 4.66% for 

Vermilion River at Pontiac and Upper Sangamon at Monticello, respectively. These corrected 

results were 29.68% and 14.14% better, respectively, than the corresponding RMSE given by the 

uncorrected ratio estimator. 

None of the new error correction techniques improve the RMSE accuracy when applied 

to the seven-parameter USGS method for sampling frequencies greater than two weeks in 

combination with  monitoring durations less than six years; indeed, in some of these instances 

the error correction techniques increased the RMSE values. Out of 20 different possible 

scenarios of different monitoring durations (4) and sampling frequencies (5), only one scenario 

yielded RMSE values above 40% (NR) for all combinations of load estimation methods and 

error correction techniques applied to both watersheds. For the Vermilion River at Pontiac, the 

rectangular proportional error correction technique gave the most accurate estimations of annual 
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nitrate-N loads for 18 of the remaining 19 combinations,  9 times, 8 times and once  when 

applied to the flow-weighted average estimator, the ratio estimator, to the seven-parameter 

USGS estimator, respectively. The triangular proportional error correction technique gave the 

least RMSE for the remaining combination. For the Upper Sangamon River at Monticello, the 

rectangular proportional error correction technique gave the least RMSE for nine combinations, 

the triangular proportional technique for five combinations, original load estimation methods 

without correction techniques for two combinations, and lastly, the composite method for three 

combinations. In general, proportional error correction techniques performed better than residual 

error correction techniques for both watersheds. 

Box and whisker plots were created for all results from simulations for both watersheds 

used in this study, to visually examine the performance of various load estimation methods and 

error correction techniques (Figures 17 and 18). These box and whisker plots are non-parametric, 

with no assumptions being made about the underlying statistical distributions. Using five 

traditional measures; minimum, lower and upper quartile, median and maximum values, these 

plots provide a convenient, visual representation of the results. These box-plots (Figures 17 and 

18) are indicative that the least RMSEs were obtained for the rectangular proportional error 

correction technique when applied to the ratio and flow-weighted average estimators. The 

median for this combination was the lowest for both watersheds. The box-plots also clearly 

indicate for the ratio and flow-weighted average load estimation techniques, the proportion based 

(TP, RP) error correction techniques perform better than the residual based (TR, RR, composite) 

error correction techniques. Interestingly, the ratio and the flow-weighted average load 

estimation methods gave results which were very close in magnitude with each other. This fact 

showed that for these watersheds, there was no appreciable improvement in load estimations by 

stratifying the observed data based on the flow rates as the flow-weighted average load estimator 

here is essentially a stratified version of the ratio load estimator.  

The box-plots do not give an accurate representation for the seven-parameter regression 

estimator.  The box-plots for the seven-parameter regression estimator had a few outliers for all 

different conditions. For high sampling frequencies and longer monitoring durations, the seven-

parameter regression estimator gives low RMSEs, and consequently the error correction 

techniques further improve its estimations (Tables 2 and 3).                                                          
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Figure 17. Box-plots of RMSE for different combinational scenarios of sampling frequencies (one 

week, two weeks, four weeks, six weeks, and eight weeks) and monitoring durations (one year, two 

years, three years, and six years) for different load estimation models and error correction 

techniques applied to them for Vermilion River at Pontiac, (a) seven-parameter regression 

estimator; (b) ratio estimator; (c) flow-weighted average estimator. 

 

For scenarios with low sampling frequencies and shorter monitoring durations, the seven-

parameter regression method gives higher RMSE values; therefore the error correction 

techniques are not successful in improving the estimations (Tables 2 and 3). In fact, there are a 

few scenarios in which the error correction techniques actually increase the RMSE values in such 

cases. For example, for the Vermilion River at Pontiac for a monitoring duration of two years 

and a sampling frequency of eight weeks the seven-parameter regression method gives an RMSE 

Load Estimation Methods:

7PR: USGS 7 parameter regression 
estimator
Ratio: Ratio estimator

FWA: Flow-weighted average estimator

Error Correction Techniques:
C: Composite
TR: Triangular Residual

RR: Rectangular Residual
TP: Triangular Proportional

RP: Rectangular Proportional

(a) (b)

(c)



 

47 
 

value of 14.06%, which is increased to 15.78%,  on applying the rectangular proportional error 

correction technique (Table 3). 

 

 

Figure 18. Box-plots of RMSE for different combinational scenarios of sampling frequencies (one 

week, two weeks, four weeks, six weeks, and eight weeks) and monitoring durations (one year, two 

years, three years, and six years) for different load estimation models and error correction 

techniques applied to them for Sangamon River at Monticello, (a) seven-parameter regression 

estimator; (b) ratio estimator; (c) flow-weighted average estimator. 

 

 

 

Load Estimation Methods:

7PR: USGS 7 parameter regression 
estimator
Ratio: Ratio estimator

FWA: Flow-weighted average estimator

Error Correction Techniques:
C: Composite
TR: Triangular Residual

RR: Rectangular Residual
TP: Triangular Proportional

RP: Rectangular Proportional

(a) (b)

(c)
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6.4 Threshold Analysis 

Evaluation of the various load estimation methods and error correction techniques in this 

study were conducted for four fixed sampling frequencies that did not change with flow rate, 

storms, or season of the year. In practice, however, sampling frequency may not be constant 

throughout the year, with more frequent samples taken during periods of high flow, for example. 

Thus, a threshold-based analysis was undertaken for both watersheds, to determine combinations 

of fixed and flow-threshold-based sampling that minimizes the number of samples required to 

achieve specified accuracy levels. Generally, sampling programs around the world are designed 

so that extra samples are collected during major storm events. Therefore, in such programs the 

total number of samples collected is a sum of samples from fixed sampling and samples from 

more frequent sampling when flow exceeds specified thresholds. In this study a wide range of 

fixed sampling frequencies were combined with flow-threshold indices ranging from 0 to 1. An 

index value of 0 indicates daily samples should be collected throughout the duration of a major 

storm, while 1 indicates that no flow-threshold sampling is done. A flow-threshold of 0.5 

indicates that daily samples were also collected whenever the flow-rate was greater than or equal 

to 0.5 times the maximum average flow-rate for that site. Using various combinations of fixed 

sampling and flow-threshold sampling, sparse replicate datasets of nitrate-N concentrations were 

generated from continuous nitrate-N datasets by Monte Carlo sub-sampling for both watersheds. 

These sub-sampled datasets were generated similarly to those generated for the evaluation of 

load estimation methods and error correction techniques earlier, albeit in this case the sub-

sampled datasets also had samples from flow-threshold sampling.  

For the threshold analysis, the best performing load estimation method and error 

correction technique from earlier results were used to estimate nitrate-N loads for a period of six 

years from May 1, 1993 through April 30, 1999. The ratio estimator, along with the rectangular 

proportional error correction technique, was therefore used to estimate loads after the 

incorporation of flow-threshold sampling. As described earlier, these estimated loads were 

compared to the true loads and RMSE values were computed for different combinations of fixed 

and flow-threshold sampling. The total number of samples was also determined for each 

sampling combination. Figure 19(a) shows a contour plot of RMSEs for different combinations 

of fixed and flow-threshold sampling for Upper Sangamon River at Monticello. On the same 
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axes a similar contour plot was made for the number of samples, shown in Figure 19(b). 

Overlaying these contour plots was possible as they were plotted on the same axes. Figure 19(c) 

shows overlaid contour plots for Upper Sangamon River at Monticello. A similar set of contour 

plots for the Vermilion River at Pontiac are shown in Figure 20.  

For a fixed monitoring duration, a desired accuracy could be achieved by either 

decreasing the sampling threshold (i.e., to capture more of the small storms), or by reducing the 

sampling interval in the fixed interval sampling method. For very large sampling intervals, the 

flow-threshold ought to be very low to achieve the desired accuracy, and similarly, for frequent 

sampling the flow-threshold can be relatively high. However, both of these extremes require a 

larger number of observations, as compared to the less extreme combinations of flow-threshold 

magnitude and sampling frequency.  

It is fairly evident from the figures that the RMSE varies along lines for a fixed number 

of observations. For example, for 150 observations at the Upper Sangamon River at Monticello, 

the RMSE values varied from 2.25% to 5.50%. The shapes of the lines are indicative that, for a 

fixed number of observations, there is an "optimum" combination of threshold magnitude and 

sampling frequency that produces the highest accuracy for that number of observations. For 

example, for the Upper Sangamon River at Monticello with the overlaid contour plots, Figure 

19(c) indicates that, for 150 observations, the least RMSE value of 2.50% was produced by the 

combination of a fixed sampling frequency of approximately 16 days and a flow-threshold of 

approximately 0.85. This minima, therefore, was the optimum combination of 150 observations, 

that produced the most accurate average nitrate-N loads over the six-year period. Such optimum 

combinations of sampling routines were estimated for a wide range of fixed number of total 

samples collected for both watersheds. These optimum combinations were indicated by the 

intersection of contours representing the number of samples with the contours representing the 

least RMSEs. These optimum points indicated the presence of a definite trend that was similar 

for both watersheds, as shown in Figures 19(c) and 20(c).  
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           (a)                            (b) 

 

(c) 

Figure 19. Contour plots for thresholds (expressed as a fraction of maximum flow over a 

monitoring duration from 1993-1999) and sampling frequency (weeks) of, (a) RMSE (using ratio 

estimator with rectangular proportional error correction technique); (b) total number of samples 

collected (fixed and threshold sampling); (c) super imposed contour plots of RMSE and total 

number of samples collected for Upper Sangamon River at Monticello. 
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           (a)       (b) 

 

(c) 

Figure 20. Contour plots for thresholds (expressed as a fraction of maximum flow over a 

monitoring duration from 1993-1999) and sampling frequency (weeks) of, (a) RMSE (using ratio 

estimator with rectangular proportional error correction technique); (b) total number of samples 

collected (fixed and threshold sampling); (c) super imposed contour plots of RMSE and total 

number of samples collected for Vermilion River at Pontiac. 



 

52 
 

CHAPTER 7 

SUMMARY 

 

A comprehensive analysis of the performance of three load estimation methods and five 

error correction techniques was conducted for two watersheds in Illinois. Sub-sampling was done 

from continuously recorded nitrate-N concentrations and estimated loads using various load 

estimation techniques, and error correction techniques were compared to true loads for different 

scenarios of sampling frequencies and monitoring durations. 

Amongst the three load estimators, the ratio and the flow-weighted average estimators 

consistently gave the least RMSE values across all combinations of sampling frequencies and 

monitoring durations. The seven-parameter regression load estimation method gave low RMSEs 

for longer monitoring durations and higher sampling frequencies, but did not perform as well for 

scenarios with shorter monitoring durations and lower sampling frequencies. This load 

estimation method comprises seven different parameters, which are estimated using the sub-

sampled data and then further used to estimate loads for the remaining data. In scenarios with 

few sub-sampled observations, it becomes very difficult to accurately calculate the seven 

parameters, and consequently, load estimations tend to be largely inaccurate. For example, for a 

two-year monitoring duration and a sampling frequency of eight weeks, only 12 sub-sampled 

observations were used to estimate the seven parameters. On the other hand, the ratio and flow-

weighted average load estimators are not constrained by the number of parameters; they simply 

calculate a ratio of sub-sampled loads and use it to determine loads for the complete monitoring 

duration (i.e., they have a single parameter). 

The application of the new error-correction techniques generally improved load estimates 

from the original models. Autocorrelation studies indicated that concentration residuals are auto-

correlated up to a period of approximately five weeks. This fact is largely unaccounted for in the 

traditional statistical load estimation models. The error correction techniques presented here 

corrected the concentration estimates given by the models by subtracting the concentration 

residuals or dividing the proportion residuals depending on the technique being used. Further, 

because the residuals were auto-correlated, they were used to estimate residuals for unsampled 
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days in their vicinity, using triangular and rectangular (step) distributions. The proportional-

based error correction techniques were more accurate in predicting loads, as they were better 

able to account for abrupt and large variations in flow rates. For the residual-based error 

correction techniques, the performance of the composite method was in between the triangular 

and rectangular residual correction methods.  

The new error adjustment methods produced higher load estimation accuracies than the 

original unadjusted methods. To maintain the load estimation accuracy of the original methods, 

the new error adjustment methods will require fewer observation points than the original 

methods. As a consequence, the improved methodology will result in significant monitoring cost 

reductions. For example, for one-week sampling frequency and six-year monitoring duration, the 

original ratio method produced an error of 1.96%
#
 (Table 2. Upper Sangamon River at 

Monticello). The error adjustment model, however, produced a similar accuracy (2.01%) for a 

two-week sampling frequency, reducing the number of samples by 50%.  
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CHAPTER 8 

CONCLUSIONS 

 

This study confirmed the findings of the previous research that desired load estimation 

accuracy could be achieved by either increasing the monitoring duration, or by sampling more 

frequently; the ratio and flow-weighted average methods were more accurate than the rating 

curve method for almost all monitoring scenarios, and that bias adjustment actually increased the 

biases. 

This study presented new triangular and rectangular error correction techniques and 

applied them as proportions and residuals. The tests of the new techniques demonstrated that the 

best performing technique, the rectangular-proportional technique, was on average 15.13% and 

30.13% relatively more accurate than the best performing original unadjusted method, the ratio 

estimator, for the Upper Sangamon River at Monticello and Vermilion River at Pontiac, 

respectively. This improved methodology can be used by the water managers to design more 

cost-effective monitoring plans, requiring fewer observations for the same load estimation 

accuracy. 

Various combinations of monitoring thresholds and sampling frequencies were also 

tested in this study. Fixed monitoring supplemented by monitoring thresholds is the most cost-

effective monitoring plan for sampling frequencies of one to three weeks. However, for lower 

frequencies of four or more weeks, the optimum plan is achieved without thresholds. 

Relatively consistent results between the two watersheds indicated that the results could 

be applicable to nitrate-N load estimation at similar-sized, Midwestern streams. Nonetheless, the 

results of the methodology presented in this study are expected to vary with constituents, 

watershed size, and hydro-climatic regions. Future studies should be directed towards studying a 

wide range of climates, regions, constituents, and watershed sizes using the framework designed 

in this research. 
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APPENDIX A. 

 

A.1. Matlab code to calculate bias and RMSE for various load estimation 

models and error correction techniques using 700 iterations. 

Part 1 

% Before running the program YOU MUST load the files, for example: 
% load N9394.txt 
% load Q9394.txt 
% part1(N9394,Q9394) 
function 

[m,Triangular_Ratio,Triangular_Residual,Square_Ratio,Square_Residual,Composite,USGS_Regression,Ratio,Flow

_Weighted]=Vmc2w(n9999,q9999) 
% Monte Carlo simulation to determine the accuracy (bias) and precision 
% (standard deviation) of various load estimation methods with different 
% sampling frequencies. 
true9394 = 43.792; true9495 =20.022; true9596 = 21.225; true9395 = 31.907; 
true9697 = 38.362; true9798 =24.469; true9899 = 37.138; true9597 = 29.793; 
true9399 = 30.835; true9799 = 30.804; true9396 = 28.346; true9699 = 33.323; 
if inputname(1)=='n9699' 
   true = true9699 
end 
if inputname(1)=='n9396' 
   true = true9396 
end 
if inputname(1)=='n9395' 
   true = true9395 
end 
if inputname(1)=='n9597' 
   true = true9597 
end 
if inputname(1)=='n9799' 
   true = true9799 
end 
if inputname(1)=='n9394' 
   true = true9394 
end 
if inputname(1)=='n9495' 
   true = true9495 
end 
if inputname(1)=='n9596' 
   true = true9596 
end 
if inputname(1)=='n9697' 
   true = true9697 
end 
if inputname(1)=='n9798' 
   true = true9798 
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end 
if inputname(1)=='n9899' 
   true = true9899 
end 
if inputname(1)=='n9399' 
   true = true9399 
end 
for n = 1:700 
    n 
    

[TRAT_1(n),SRAT_1(n),TRES_1(n),SRES_1(n),comp_1(n),regr_l(n),ratio_l(n),flow_w_l(n)]=part2(n9999,q9999); 
end 
% meanD = mean(Demissie_l); 
meanTrat = mean(TRAT_1); 
meanSrat = mean(SRAT_1); 
meanTres = mean(TRES_1); 
meanSres = mean(SRES_1); 
  
meanP = mean(comp_1); 
meanC = mean(regr_l); 
  
meanR = mean(ratio_l); 
meanF = mean(flow_w_l); 
% stdD = std(Demissie_l); 
% biasD = meanD - true; 
% rmseD = sqrt(biasD^2 + stdD^2); 
stdTrat = std(TRAT_1); 
biasTrat = meanTrat - true; 
rmseTrat = sqrt(biasTrat^2 + stdTrat^2); 
  
stdSrat = std(SRAT_1); 
biasSrat = meanSrat - true; 
rmseSrat = sqrt(biasSrat^2 + stdSrat^2); 
  
stdTres = std(TRES_1); 
biasTres = meanTres - true; 
rmseTres = sqrt(biasTres^2 + stdTres^2); 
  
stdSres = std(SRES_1); 
biasSres = meanSres - true; 
rmseSres = sqrt(biasSres^2 + stdSres^2); 
  
stdP = std(comp_1); 
biasP = meanP - true; 
rmseP = sqrt(biasP^2 + stdP^2); 
  
stdC = std(regr_l); 
biasC = meanC - true; 
rmseC = sqrt(biasC^2 + stdC^2); 
   
stdR=std(ratio_l); 
biasR = meanR - true; 
rmseR = sqrt(biasR^2 + stdR^2); 
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stdF = std(flow_w_l); 
biasF = meanF - true; 
rmseF = sqrt(biasF^2 + stdF^2); 
% Demissie_STD_bias_rmse =[stdD,biasD,rmseD]*100/true 
Triangular_Ratio = [stdTrat,biasTrat,rmseTrat]*100/true 
Square_Ratio = [stdSrat,biasSrat,rmseSrat]*100/true 
Triangular_Residual = [stdTres,biasTres,rmseTres]*100/true 
Square_Residual = [stdSres,biasSres,rmseSres]*100/true 
  

  
Composite = [stdP,biasP,rmseP]*100/true 
USGS_Regression = [stdC,biasC,rmseC]*100/true 
Ratio =[stdR,biasR,rmseR]*100/true 
Flow_Weighted =[stdF,biasF,rmseF]*100/true 
  
SD=[stdTrat,abs(biasTrat),rmseTrat; stdSrat,abs(biasSrat),rmseSrat; stdTres,abs(biasTres),rmseTres; 
    stdSres,abs(biasSres),rmseSres; stdP,abs(biasP),rmseP; stdC,abs(biasC),rmseC; stdR,abs(biasR),rmseR; 

stdF,abs(biasF),rmseF]*100/true; 
bar(SD,'group') 
set(gca,'XTickLabel',{'Trian_Ratio','Sq_Ratio','Trian_Residual','Sq_Residual','Composite','USGS','Ratio','Flow'}) 
legend('St.Deviation','Bias','RMSE',2) 
colormap summer; 
  
save testdata1 SRAT_1 TRAT_1 
%MM AFTER EACH RUN THE SCREEN WILL DISPLAY THE FIRST VARIABLE, IN THIS CASE 

C_STD_b_r 
cputime 
tic 
toc 
clear 
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A.2. Matlab code to compute load estimates from various load estimation 

models and error correction techniques. 

Part 2 

function [TRAT_1,SRAT_1,TRES_1,SRES_1,comp_1,regr_l,ratio_l,flow_w_l] = part2(n9999,q9999) 
% Monte Carlo simulation program for weekly sampling frequency. Annual  
% average load is calculated using two averaging methods, one ratio method  
% and two regression methods. The two regression methods are both based on  
% Cohn's seven parameter regression equation with one of them corrected for 
% bias based on the MVUE suggested by Cohn and the other corrected for bias 
% based on the smearing estimator. 
% The units used in the input files are cfs and mg/L, One cubic foot = 28.32 liters. 
global ymvue ysmear  
constant = 28.32*3600*24/1.e+9; 
% The Watershed area is 370,560 acres. One Mg = 2205 pounds 
area = 370560; Mg2Pounds = 2205; 
% week is an external function. 
w = week(2,n9999); 
R = ceil(5*rand(318,1)); 
% swn - selected week number 
% nd - number of day in the record 
% nw - number of weeks in the record 
% ny - number of years in the record 
swn = 0; 
sn = 1; 
nd = size(w,1); 
nw = w(nd,2); 
ny = nd/365; 
bw = ceil(2*rand(1,1)); 
% Randomly select a day (Monday through Friday) and store NO3 concentration 
% and discharge data for that day in array s. 
for wn = 1:nw 
    tn = 0; 
    for n = sn:nd 
      if w(n,2)== wn 
         tn = tn + 1; 
         temp(tn,1) = w(n,1); 
         temp(tn,2) = w(n,2); 
         temp(tn,3) = w(n,3); 
      end 
    end 
  
    if wn == bw 
       for n = 1:tn 
          if temp(n,3) == R(wn) 
             swn = 1; 
             s(swn,1) = temp(n,1); 
             s(swn,2) = wn; 
             s(swn,3) = n9999(temp(n,1),2); 
             s(swn,4) = q9999(temp(n,1),2); 
             s(swn,5)= (s(swn,4)*s(swn,3))*(constant)/(ny*area)*Mg2Pounds; 
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          end 
       end 
    end 
    g=1; 
    if rem(wn-bw,g) == 0 && wn > bw 
    for n = 1:tn 
      if temp(n,3) == R(wn) 
         swn = swn + 1; 
         s(swn,1) = temp(n,1); 
         s(swn,2) = wn; 
         s(swn,3) = n9999(temp(n,1),2); 
         s(swn,4) = q9999(temp(n,1),2); 
         s(swn,5)= (s(swn,4)*s(swn,3))*(constant)/(ny*area)*Mg2Pounds; 
          
      end 
    end 
    end 
  
    sn = sn + tn; 
end 
 

   
% Prepare to calculate load using Cohn's regression method 
q_sample_tot = 0; 
l_sample_tot = 0; 
for n = 1:swn 
   q_sample_tot = q_sample_tot + s(n,4); 
   l_sample_tot = l_sample_tot + s(n,3)*s(n,4); 
   q(n,1) = log(s(n,4)); 
   t(n,1) = (s(n,1)+120)/365; 
end 
tmean = mean(t); 
qmean = mean(q); 
cubsumt = 0; 
sqsumt = 0; 
cubsumq = 0; 
sqsumq = 0; 
for n = 1:swn 
   cubsumt = cubsumt + (t(n,1)-tmean)^3; 
   sqsumt = sqsumt + (t(n,1)-tmean)^2; 
   cubsumq = cubsumq + (q(n,1)-qmean)^3; 
   sqsumq = sqsumq + (q(n,1)-qmean)^2; 
end 
   tcenter = tmean + cubsumt/(2*sqsumt); 
   qcenter = qmean + cubsumq/(2*sqsumq); 
  
   for n = 1:swn 
      x(n,1) = 1; 
      x(n,2) = q(n,1)- qcenter; 
      x(n,3) = (x(n,2))^2; 
      x(n,4) = sin(2*pi*t(n,1)); 
      x(n,5) = cos(2*pi*t(n,1)); 
      y(n,1) = log(s(n,3)); 
   end 
   [b,bint,r,rint,stats] = regress(y,x); 
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   std_of_r=std(r); 

 
% after obtaining coefficients of regression, determine NO3  
% concentration using the obtained regression equation  
  
for n = 1:nd 
   q(n,1) = log(q9999(n,2)); 
   t(n,1) = (q9999(n,1)+120)/365; 
end 
tmean = mean(t); 
qmean = mean(q); 
cubsumt = 0; 
sqsumt = 0; 
cubsumq = 0; 
sqsumq = 0; 
for n = 1:nd 
   cubsumt = cubsumt + (t(n,1)-tmean)^3; 
   sqsumt = sqsumt + (t(n,1)-tmean)^2; 
   cubsumq = cubsumq + (q(n,1)-qmean)^3; 
   sqsumq = sqsumq + (q(n,1)-qmean)^2; 
end 
   tcenter = tmean + cubsumt/(2*sqsumt); 
   qcenter = qmean + cubsumq/(2*sqsumq); 
    
for n = 1:nd 
      x(n,1) = 1; 
      x(n,2) = q(n,1)- qcenter; 
      x(n,3) = (x(n,2))^2; 
      x(n,4) = sin(2*pi*t(n,1)); 
      x(n,5) = cos(2*pi*t(n,1)); 
end 
y = exp(x*b); 

 
% stats 
% Determine bias correction factors of MVUE and Smearing estimator 
v = x*(inv(x'*x))*(x'); 
s2 = (swn-1)*var(r)/(swn-7); 
c = exp(r); 
SM = sum(c)/swn; 
m=swn-5; 
for n = 1:nd 
   arg = (m+1)*(1-v(n,n))*s2/(2*m); 
   Gm(n) = gm(m,arg); 
   ymvue(n) = y(n)*Gm(n); 
   ysmear(n) = y(n)*SM; 
end 

 
% Calculate loads using regression and ratio methods. 
q_tot = 0; 
% trueload = 0; 
regrload = 0; 
mvueload = 0; 
smearload = 0; 
composite= 0; 
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residuals=0; 
B=0;C=0; 
B=zeros(length(n9999),2); 
MB1=zeros(length(n9999),2); 
MB2=zeros(length(n9999),2); 
MB3=zeros(length(n9999),2); 
MB4=zeros(length(n9999),2); 
for n=1:nd 
     B(n,1)=n; 
     B(n,2)=(constant/(ny*area)*Mg2Pounds*q9999(n,2)*y(n)); 
     MB1(n,1)=n; 
     MB1(n,2)=(constant/(ny*area)*Mg2Pounds*q9999(n,2)*y(n)); 
     MB2(n,1)=n; 
     MB2(n,2)=(constant/(ny*area)*Mg2Pounds*q9999(n,2)*y(n)); 
     MB3(n,1)=n; 
     MB3(n,2)=(constant/(ny*area)*Mg2Pounds*q9999(n,2)*y(n)); 
     MB4(n,1)=n; 
     MB4(n,2)=(constant/(ny*area)*Mg2Pounds*q9999(n,2)*y(n)); 
end 
  
sb=size(MB1); 
 
sz=size(s); 
  
R1=zeros(length(n9999),2); 
R2=zeros(length(n9999),2); 
R3=zeros(length(n9999),2); 
R4=zeros(length(n9999),2); 
for n = 1:nd 
R1(n,1) = q9999(n,1); 
R1(n,2) = (l_sample_tot/q_sample_tot)*q9999(n,2)*constant/(ny*area)*Mg2Pounds; 
R2(n,1) = q9999(n,1); 
R2(n,2) = (l_sample_tot/q_sample_tot)*q9999(n,2)*constant/(ny*area)*Mg2Pounds; 
R3(n,1) = q9999(n,1); 
R3(n,2) = (l_sample_tot/q_sample_tot)*q9999(n,2)*constant/(ny*area)*Mg2Pounds; 
R4(n,1) = q9999(n,1); 
R4(n,2) = (l_sample_tot/q_sample_tot)*q9999(n,2)*constant/(ny*area)*Mg2Pounds; 
end 
C=zeros(sz(1,1),2); 
CC=zeros(sz(1,1),2); 
for i=1:sz(1,1) 
    for j=1:length(R1) 
    if s(i,1)==R1(j,1) 
        C(i,1)=s(i,1); 
        C(i,2)=R1(j,2)/s(i,5); 
        CC(i,1)=s(i,1); 
        CC(i,2)=R1(j,2)-s(i,5); 
     end 
    end 
end 
  

  
sc=size(C); 
  
P=[]; 
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SRAT=[]; 

 

 

 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% SQUARE RATIO METHOD 
t1=3*g; 
for i=2:sc(1,1)-1 
     for j=1:sb(1,1) 
         if C(i,1)==R1(j,1) 
             for  k=-t1:t1 
                R1(j+k,2)=R1(j+k,2)/C(i,2); 
             end 
         end 
     end 
end 
SRAT_1=sum(R1(:,2)); 
        
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%% 

 
K=[];  
TRAT=[]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% TRIANGULAR RATIO METHOD 
K=zeros(5000,2); 
t2=3*g; 
  for i=2:sc(1,1) 
    X=[ C(i,1)-t2; C(i,1); C(i,1)+t2]; 
    Y=[ 1; C(i,2); 1]; 
    Xi=(C(i,1)-t2):(C(i,1)+t2); 
        Xi=Xi'; 
        Yi=interp1(X,Y,Xi); 
            for j=1:length(Xi) 
                K(Xi(j),1)=Xi(j); 
                K(Xi(j),2)=Yi(j);      
            end                   

 
  end 
  
K1=K(:,1); 
P(:,1) = K1(K1~=0); 
K2=K(:,2); 
P(:,2) = K2(K2~=0); 
   
for i=2:length(P)-2 
     for j=1:sb(1,1)-10 
         if P(i,1)==R2(j,1) 
            R2(j,2)=R2(j,2)/P(i,2); 
         end 
     end 
end 
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TRAT_1=sum(R2(:,2)); 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 
  

  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% TRIANGULAR RESIDUAL METHOD 
t3=3*g; 
KT=zeros(370*6,2); 
for i=1:370*6 
    KT(i,1)=-100000; 
    KT(i,2)=-100000; 
end 
sk=length(KT); 
for i=3:sc(1,1) 
    X=[ CC(i,1)-t3; CC(i,1); CC(i,1)+t3]; 
    Y=[ 0; CC(i,2); 0]; 
    Xi=(CC(i,1)-t3):(CC(i,1)+t3); 
        Xi=Xi'; 
        Yi=interp1(X,Y,Xi); 
            for j=1:length(Xi) 
                if KT(Xi(j),1)==-100000 
                        KT(Xi(j),1)=Xi(j); 
                        KT(Xi(j),2)=Yi(j); 
                else 
                        KT(Xi(j),1)=Xi(j); 
                        KT(Xi(j),2)=(KT(Xi(j),2)+Yi(j))/2; 
                end 
            end                   
end 
% KT; 
sK=size(KT); 
  
for i=1:sb(1,1) 
    for j=1:sK(1,1) 
      if R3(i,1)==KT(j,1) 
          R3(i,2)= R3(i,2)-KT(j,2); 
      end 
    end 
end 
R3; 
TRES_1=sum(R3(:,2)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 
  

 
SRES=[]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% SQUARE RESIDUAL METHOD 
t4=3*g; 
for i=2:sc(1,1)-1 
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     for j=1:sb(1,1) 
         if CC(i,1)==R4(j,1) 
             for  k=-t4:t4 
                R4(j+k,2)=R4(j+k,2)-CC(i,2); 
             end 
         end 
     end 
end 
SRES_1=sum(R4(:,2)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 
  

 
F(1,1)=B(1,1); 
F(1,2)=B(1,2); 
F(sc+2,1)=B(nd,1); 
F(sc+2,2)=B(nd,2); 
for i=1:sc 
    F(i+1,1)=CC(i,1); 
    F(i+1,2)=CC(i,2); 
end 
for d=1:nd 
    L(d,1)=interp1q(F(:,1),F(:,2),d); 
end 
  
sL=size(L); 
  
for n = 1:nd 
   q_tot = q_tot + q9999(n,2); 
%   trueload = trueload + Q9999(n,2)*N9999(n,2); 
    %residuals(n,1)= ((constant/(ny*area)*Mg2Pounds*q9999(n,2)*y(n))-L(n,2)); 
    composite(n,1)= B(n,2)-L(n,1); 
    regrload = regrload + q9999(n,2)*y(n); 
    mvueload = mvueload + q9999(n,2)*ymvue(n); 
   smearload = smearload + q9999(n,2)*ysmear(n); 
end 
% true_load = trueload*constant/(ny*area)*Mg2Pounds; 
composite=composite(~isnan(composite)); 
%ncomp_1=sum(B); 
comp_1=sum(composite); 
regr_l = regrload*constant/(ny*area)*Mg2Pounds; 
mvue_l = mvueload*constant/(ny*area)*Mg2Pounds; 
smear_l = smearload*constant/(ny*area)*Mg2Pounds; 
ratio_l = (l_sample_tot/q_sample_tot)*q_tot*constant/(ny*area)*Mg2Pounds; 
% Calculate load using stratified flow-weighted average concentration 
% method, which is the method used by Matthew Short of IEPA based on 
% the program developed by US Army Corps of Engineers (Walker, 1996). 
meanq = q_tot/nd; 
half_meanq = 0.5*meanq; 
doub_meanq = 2*meanq; 
tot_l1 = 0; 
tot_l2 = 0; 
tot_l3 = 0; 
tot_q1 = 0; 
tot_q2 = 0; 
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tot_q3 = 0; 
for n = 1:swn 
   if s(n,4) <= half_meanq 
      tot_l1 = tot_l1 + s(n,4)*s(n,3); 
      tot_q1 = tot_q1 + s(n,4); 
   end 
   if s(n,4) > half_meanq & s(n,4) <= doub_meanq 
      tot_l2 = tot_l2 + s(n,4)*s(n,3); 
      tot_q2 = tot_q2 + s(n,4); 
   end* 
   if s(n,4) > doub_meanq 
      tot_l3 = tot_l3 + s(n,4)*s(n,3); 
      tot_q3 = tot_q3 + s(n,4); 
   end 
end 
mean_n2 = tot_l2/tot_q2; 
if tot_q1 == 0 
   mean_n1 = mean_n2; 
   else 
    mean_n1 = tot_l1/tot_q1; 
end 
if tot_q3 == 0 
   mean_n3 = mean_n2; 
   else 
   mean_n3 = tot_l3/tot_q3; 
end  
ave_l1 = 0; 
ave_l2 = 0; 
ave_l3 = 0; 
for n = 1:nd 
   if q9999(n,2) <= half_meanq 
      ave_l1 = ave_l1 + mean_n1*q9999(n,2); 
   end 
   if q9999(n,2) > half_meanq & q9999(n,2) <= doub_meanq 
      ave_l2 = ave_l2 + mean_n2*q9999(n,2); 
   end 
    if q9999(n,2) > doub_meanq 
      ave_l3 = ave_l3 + mean_n3*q9999(n,2); 
   end 
end 
  
for n = 1:nd 
    F(n,1)=n; 
   if q9999(n,2) <= half_meanq 
      F(n,2)= mean_n1*q9999(n,2); 
   end 
   if q9999(n,2) > half_meanq & q9999(n,2) <= doub_meanq 
     F(n,2)=  mean_n2*q9999(n,2); 
   end 
    if q9999(n,2) > doub_meanq 
      F(n,2)= mean_n3*q9999(n,2); 
   end 
end 
flow2 = (sum(F(:,2)))*constant/(ny*area)*Mg2Pounds; 
flow_w_l = (ave_l1+ave_l2+ave_l3)*constant/(ny*area)*Mg2Pounds; 
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for i=1:length(n9999) 
    
    actualload(i) = (n9999(i,2)*q9999(i,2)*constant*2205)/area/ny; 
    ysave(i) = (y(i)*constant*2205*q9999(i,2))/area; 
     
end 
A=actualload'; 
R=B(:,2); 
 
save testdata R A L composite C MB1 MB2 MB3 MB4 s B y x b CC K P  


