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ABSTRACT 

 The use of fossil fuels on farming systems is now widely recognized as unsustainable 

because of diminishing supplies and the contribution of these fuels to the increasing carbon 

dioxide concentration in the environment. Moreover, farming systems with higher nutrient usage 

efficiency are important to meet increasing human food demand. Integrated Farming Systems 

(IFS) that utilize wastes from one subsystem as sources for another subsystem represent a 

promising way for producing renewable energy and for recycling nutrients. The benefits of IFS 

are recognized; however, the dynamic properties of the system are not well understood. Previous 

models have taken static approaches which do not address the dynamic energy/nutrient 

relationships between subsystems. The current study, instead, focuses on a new approach that 

proposes the development of a dynamic model for IFS and applies that model to several 

computer simulations based on different scenarios. 

 This dynamic system model for IFS integrates swine production, swine barn energy 

requirements, anaerobic digestion (AD) processes, anaerobic digester heat requirements, 

combined heat and power (CHP) production, and nitrogen requirements for crop production. In 

this system, swine manure is collected during swine production and is taken as feedstock to the 

AD system to produce bio-methane. Bio-methane is then fed into the CHP unit for heat and 

power production. Nutrients from the AD system effluent can subsequently be fed to the 

cropping system to recycle nutrients for crop growth. Heat/power production by the CHP unit 

provides energy to maintain operations for swine facilities and digesters. A series of virtual 

simulations for different scenarios were applied to the proposed model to show different energy 

usage portfolios. 
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Pig growth performance is affected by operation strategies that include the use and non-

use of cooling systems during the summer as well as weather conditions specific to various 

locations. Therefore, the current study employed simulations to compare gilt production in two 

locations - Springfield, IL and Oklahoma City, OK - under 2010 weather conditions. The results 

demonstrated that in summer in Springfield higher temperatures without cooling pads increased 

the feed-to-gain ratio significantly to 3.19 from 2.93 compared to the ratio with cooling pads. 

The current study also found that in summer in Oklahoma City due to higher heat stress 

conditions even with cooling pads, gilts had a higher feed-to-gain ratio (3.34) compared to 

conditions of lower heat stress in Springfield, IL (2.93). On the other hand, in winter in both 

Oklahoma City and Springfield due to the maintenance of comfortable indoor temperatures for 

pig growth, swine had similar feed-to-gain ratios. 

The anaerobic digestion simulation under 2010 weather conditions showed that in winter 

in Springfield the digester had higher heat requirements compared to the digester in winter in 

Oklahoma City; however, in summer in both locations the heat requirements for the digester 

were similar. With all digesters being maintained in mesophilic condition at 35°C, the biogas 

production portfolios for the digesters in both cities were similar. 

Simulations were also conducted of the total energy/nutrient production and consumption 

portfolios between operation strategies in summer and winter in both locations. As the swine 

facility in Springfield was found to need more heat in winter, this study proposes the use of only 

one CHP unit to provide sufficient power and to utilize extra biogas as fuel for heaters to support 

the swine facility heat requirements. On the other hand, because the heat requirements for the 

swine facility in Oklahoma City in winter were found to be lower, this study proposes two CHP 

units to produce more power and to generate sufficient heat to support swine production in that 

location. 
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The simulations, based on different scenarios as applied to the proposed dynamic IFS 

model, demonstrate how engineering design and operation strategies affect dynamic system 

properties. The simulations further show the feasibility for future research in the use of the 

proposed dynamic IFS model to examine new technologies and operation strategies. 
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CHAPTER 1 INTRODUCTION 

1.1 Justification for Research 

Integrated Farming System (IFS) is a method of farming that utilizes nutrients more 

efficiently with the potential to produce more food than conventional farming systems 

(Franzluebbers, 2007; Morris & Winter, 1999). One feature of IFS is that waste from one IFS 

subsystem may become the input of another IFS subsystem (P. Edwards, Pullin, & Gartner, 

1988). This integration leads to minimum external nutrient and energy input, thereby increasing 

nutrient usage efficiency. As human population growth and human food demand increase, a 

farming system that enhances the efficiency of nutrient, energy, and water usage becomes more 

important in meeting future human food demand (Tilman, Cassman, Matson, Naylor, & Polasky, 

2002). 

By comparison, conventional farming systems may negatively impact the environment and 

lead to degradation of natural resources. Non-treated manure in conventional livestock farming 

systems generate greenhouse gases, produce odor, and may have negative effects on the nearby 

ecological environment (Jackson, Keeney, & Gilbert, 2000). Excessive usage of industrial 

fertilizers and pesticides in conventional cropping systems also lead to environmental and food 

quality issues. By contrast, higher integration between livestock production and crop production 

through implementation of IFS is known to decrease industrial fertilizer usage, improve soil 

structure/productivity, and reduce pesticide usage through use of natural pest control processes. 

Studies that have compared food quality between conventional agriculture systems and 

integrated farming systems have found that IFS may provide food products that are of higher 

quality. (Franzluebbers, 2007; Morris & Winter, 1999). 
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 Prior research of IFS has estimated mainly the annual nutrient/energy flows or analyzed  

the life cycle of energy or greenhouse gas emission (Cavalett, Queiroz, & Ortega, 2006; 

Dalsgaard, Lightfoot, & Christensen, 1995; Dalsgaard & Oficial, 1997; Kaparaju & Rintala, 

2011; Nguyen, Hermansen, & Mogensen, 2010; Phong, De Boer, & Udo, 2011) while the 

dynamic behaviors of IFS have received scant attention. In order to investigate how operational 

strategies influence integrated farming systems, the current study examines the dynamic 

energy/nutrient relationships between individual subsystems.  

To propose a dynamic IFS model, the current study combines models developed by 

previous research for swine production, anaerobic digestion, CHP production, and crop 

production. To test this model, computational simulations were applied to estimate dynamic 

energy/nutrient flows based on various scenarios of swine production in two locations. 

1.2 Objectives 

The overall goal of this research is to develop a dynamic computational model for an 

Integrated Farming System (IFS) and to analyze the dynamic properties of energy and nutrient 

flows that result from the combination of 1) swine production systems, 2) anaerobic digestion, 3) 

CHP production, and 4) crop production to meet feed requirements for swine production. In 

order to achieve this goal, the specific objectives are as follows: 

1) To apply, modify, and verify a proposed pig growth model 

2) To develop a swine barn energy consumption model based on a pig growth model 

3) To apply and compare two different anaerobic digestion models 

4) To develop an anaerobic digestion heat requirement model 

5) To estimate annual crop production and develop a proposed IFS model by combining 

Items 1) through 4) 
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6) To demonstrate the application of the IFS model through simulations based on a 

comparison of various scenarios in two locations 

1.3 IFS Model Overview and Thesis Organization 

 The computational dynamic IFS model proposed by this study combines several previously 

developed subsystem models into an overall systems approach. The subsystem models cover 

swine production, anaerobic digestion, CHP production, and crop production. The scope of the 

model proposed by this study is presented in a schematic diagram of energy and nutrient flow as 

shown in figure 1.1. 

 

Figure 1.1 Overview of the proposed integrated farming system 

 

 Specifically, the proposed IFS model examines the usage of swine manure as AD feedstock 

for the production of biogas/bio-methane and uses of the resulting methane to generate power 

and heat. After the AD process is completed, power and heat are further utilized to satisfy swine 

barn and AD reactor energy requirements through the removal and transformation of a portion of 
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carbon in animal waste to biogas. Nutrients, like nitrogen, that remain in the effluent after 

anaerobic treatment can be used as fertilizer. Based on the amount of nitrogen needed for swine 

feed and the amount of nitrogen in AD effluent, the proposed IFS model estimates the nitrogen 

recovery. Excess power and market-size swine are then exported to other subsystems. Additional 

heat and feed may be required under certain conditions to maintain the system. 

This thesis is organized to address, first, a review of relevant literature in Chapter 2 

followed by a description of the proposed integrated farming system under two major 

subsystems: the swine production system (Chapter 3) and anaerobic digestion and the CHP 

system (Chapter 4). To describe the two major subsystems, each chapter introduces and 

discusses several proposed sub-models. Empirical annual crop production estimations and the 

two major subsystem models are then combined for presentation of the proposed dynamic IFS 

model (Chapter 5). Several scenarios based on various conditions demonstrate the ability of the 

proposed model to simulate dynamic energy and nutrient flows. Finally, in Chapter 6, research 

conclusions are summarized and future research is recommended. 
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CHAPTER 2 LITERATURE REVIEW 

This chapter covers an overview of research on Integrated Farming Systems (IFS) followed 

by review of research on swine production systems as well as anaerobic digestion and CHP 

systems. The research described here serves as the basis for the dynamic Integrated Farming 

System (IFS) model proposed by the current study.  

2.1 Integrated Farming System (IFS) 

In 1995, Dalsgaard et al. presented research that analyzed IFS by using indicators of 

ecological sustainability in agriculture. That study ranked farming systems based on four 

indicators of ecological sustainability: diversity, cycling, stability, and capacity and 

quantitatively showed the benefits of integrated farming systems in terms of ecological 

sustainability. The study demonstrated that low external input integrated resources management 

systems have the highest ecological sustainability and that high external input mono-cropping 

systems have the lowest ecological sustainability.  

Two years later, Dalsgaard and Oficial (1997) proposed a programmatic framework to 

measure and model nutrient flow for small holder farming systems. The results of the annual 

mass-balanced nutrient flow model, which was based on weekly measurements, showed results 

of nutrient cycles in small holder farming systems. However, the dynamic properties of nutrient 

and energy cycles were not addressed. 

Phong et al. (2011), who did research in the Mekong Delta, measured daily inputs and 

outputs for different agriculture–aquaculture IFS and implemented life cycle assessments of food 

production in integrated systems. Their findings showed that the greatest negative impacts to the 
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environment occur as the result of two situations: external feed used in swine production and 

excessive fertilizers used in rice production, also CH4 emission from the paddy fields. 

Cavalett et al. (2006) utilized energy assessments to indicate better energy efficiency but 

less negative environmental impact on IFS compared to conventional farming systems. Research 

carried out by Cavalett et al. (2006) also indicated that integrated production systems are able to 

reduce external input by recycling materials within the system. Their research further 

demonstrated that energy assessments are helpful in making decisions about sustainable and 

environmentally sound development of agriculture. However, that approach did not address the 

dynamic properties of IFS. 

A decade earlier, other researchers, who proposed schemes for integrated farming systems 

(1993) introduced crop models and livestock models that has proved useful for more recent 

studies. Several components of their livestock model include the interaction between organic 

resources and livestock, livestock and land, and livestock product utilization. 

 Over the past several years, other researchers have also recognized the benefit of IFS based 

on life cycle assessments. Their results show that IFS has lower negative impact on greenhouse 

gas (GHG) emissions and saves fossil energy for farming systems. Nguyen et al. (2010) 

examined an integrated swine farming system in Europe and showed that the system has the 

potential to reduce fossil energy by 61% and GHG emission by 49%. Kaparaju and Rintala 

(2011) demonstrated that greenhouse gas emission is mitigated by replacing fossil fuels with bio-

methane that is achieved by connecting anaerobic digester and livestock production systems. 

Although previous studies do not focus on specifically the development of a dynamic IFS 

model and often do not address exact elements that are included in the current study, those 

studies have proved helpful in presenting different approaches and concepts for IFS assessments 

that have been incorporated in the dynamic model proposed by the current study. 



 

7 

2.2 Swine Production System 

2.2.1 Pig Growth Model 

Swine production is highly correlated with nutrient intake and the surrounding environment. 

The growth of healthy pigs is also highly correlated with the efficiency of operation of barn 

facilities. Therefore, understanding the relationships between swine production, facilities 

operations, and pig growth inside the barn are very important. In order to develop a swine 

production system model, it is necessary to understand existing models on both swine barn 

operations and pig growth models. 

In 1976, C. Whittemore and Fawcett developed a preliminary pig nutrient partitioning 

model by demonstrating substantial empirical relationships between different parameters. 

Whittemore (1986) suggested that pig growth models should remain flexible, allowing for 

effective forward prediction. His later article addressed the importance of testing ideas by the use 

of models and understanding, rather than merely measuring, the growth response. 

Black et al. (1988) developed a model (AUSPIG) that simulates the entire productive cycle 

and includes predictions of the ad libitum effect. Black’s model regards nutrition, genetics, and 

environment as input variables for development of a deterministic model of swine intake and 

growth. 

Mougham et al. (1987) developed a simple pig growth model for the growing-finishing 

period of swine production to describe pig live weight changes on a daily basis. Unlike Black et 

al. (1987) who applied empirical relationships between parameters to determine nitrogen 

retention, Moughan constrained body protein retention by requiring a minimum level of body 

lipid. Their model showed accurate predictions with few parameters. However, Moughan’s 
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model did not take into account environmental factors, for example, indoor temperature, but 

rather assumed pig growth under thermoneutral condition. 

Researchers in the U.S. developed a model (NCPIG) based on the interaction among 

environmental factors, diet intake, and genotypes. The model also predicted how ad libitum 

intake influences pig growth (Bridges, Turner, Stahly, Usry, & Loewer, 1992; Bridges, Turner, 

Usry, & Nienaber, 1992; Usry, Turner, Bridges, & Nienaber, 1992). However, that full model is 

difficult to use due to its complicated parameters. Three years later, in order to avoid those 

difficulties, Bridges et al. (1995) built a neural network model based on the NCPIG model that 

simplified parameters and computation processes. 

2.2.2 Swine Barn Energy Consumption Model 

Understanding heat and moisture production of livestock is important for maintaining a 

comfortable environment for pigs and workers. Researchers measured and developed livestock 

heat production models that include levels of animal activity (Albright, 1990; Brown-Brandt, 

Nienaber, Xin, & Gates, 2004; Pedersen & Sallvik, 2002). Recently, ASHARAE also published 

new empirical equations for swine heat and moisture production. The newest model shows that 

American pigs generate more heat and moisture compared to prior estimations (Brown-Brandl, 

2014). 

Strategies for heating and ventilation systems have been simulated by many researchers. 

Chao et al. (2000) built a computational model to compare the differences between a 

conventional ventilation system and a fuzzy logic control system. Their results show the 

improvement of energy consumption by implementing a fuzzy logic control system. Lambert et 

al. (2001) compared different kinds of control systems by simulation and concluded the benefit 

of temperature-humidity control systems over temperature control systems under cold weather 
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conditions. Morsing et al. (2005) also simulated indoor psychrometric properties, air quality, and 

energy consumption based on levels animal heat and moisture production on swine barns in 

Portugal, Finland and Denmark.  

Both swine barn HVAC system simulations and pig growth models are very mature, but 

few studies connect the two together. Bridges et al. (1998) connected NC-204 swine growth 

model (NCPIG) and natural-ventilated swine barn simulations to evaluate economic returns of 

misting-cooling systems. The same research group compared the NCPIG model with results 

from an on-farm experiment and found the predictions were accurate (Turner et al., 1998). 

However, with modern mechanical ventilation control systems, connecting a pig growth model 

with a mechanical-ventilated swine barn simulation is needed to show how mechanical-

ventilated operation strategies affect swine production. 

2.3 Anaerobic Digestion and CHP System 

2.3.1 Anaerobic Digestion Process 

The anaerobic digestion process is one of the oldest techniques used to produce bio-fuel and 

has been widely applied to different fields. The high volatile solid concentration of agriculture 

waste provides a good source as feedstock for the anaerobic digestion process. Because effluent 

has higher stability after anaerobic treatment, the effluent can also be used as fertilizer for crop 

fields. 

Researchers have studied energy and nutrient recovery by aerobic digestion. Boersma et al. 

(1978) designed an experimental system to recover energy and nutrients. The experiment 

estimated total energy recovery from methane produced by anaerobic digestion and protein 

recovery (algae or bacteria) in various kinds of recovery systems. The report showed efficient 
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rates of recycling energy and nutrient from swine production but did not address the dynamic 

properties in their recovery system. 

Several researchers became interested in the methane production rate based on different AD 

feedstock which is correlated with this study. Møller et al. (2004) showed different methane 

production by applying different types of animal waste to anaerobic digestion. Balsam and Ryan 

(2006) introduced several anaerobic digestion considerations and listed biogas net returns by 

using as feedstock manure from different kinds of animals. Although these studies do not focus 

on anaerobic digestion modeling, the results show a baseline for drawing comparisons in the 

current study.  

Empirical relationships among methane production, volatile solid content of feedstock, and 

retention time of process have been established (Chen & Hashimoto, 1978; Hashimoto, 1984). 

The model estimates methane production algebraically but lacks the ability to simulate carbon-

dioxide/methane concentration and is not able to present real bio-physical-chemical processes. 

Andrews and Graef (1970) quantified a dynamic model to describe anaerobic digestion that 

was built based on an understanding of the inhibition function to connect specific growth of 

methane bacteria and volatile acids concentration. The limitation on methane bacteria growth 

due to concentration of the non-ionized acid and other inhibition agent was considered. 

Biological and physical interactions between gas and liquid in anaerobic digestion were also 

considered. Their study proposed a pioneer dynamic modeling approach toward anaerobic 

digestion simulation. 

A few years later, Hill and Barth (1977) also built a dynamic model for AD simulation on 

animal waste. To simulate the AD process on animal waste with a more realistic approach, Hill 

& Barth (1977) considered ammonia production in the anaerobic digestion process. 
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Bastone et al. (2002) developed a more generalized anaerobic digestion model (Anaerobic 

digestion model number 1, ADM1). The model structure includes multiple steps describing 

biochemical as well as physicochemical processes and contains 32 dynamic concentration state 

variables in the model. However, the complexity and stiffness of the model causes difficulties in 

computation. Rosen et al. (2006) discussed these computation difficulties and reformulated an 

ordinary differential equation system to a differential algebraic equation system to overcome 

these drawbacks. 

Zaher and Chen (2006) reported practical analyses of solid wastes and manure to accurately 

estimate substrate composition for anaerobic digestion. Interfaces between ADM1 input and 

practical measurements were built by maintaining the nutrient balance. The study also lists 

animal manure waste characteristics, reporting carbohydrate and protein portions of different 

kinds of animal manure. 

Because ADM1 was designed for municipal waste water treatment, some parameters in 

ADM1 needed to be modified to meet agriculture objectives. Gali et al. (2009) developed an 

anaerobic digestion model based on ADM1 and examined the bio-degradability of different types 

of agro-waste. Using different agro-wastes, the modified ADM1 model based on pig manure was 

validated in their research on a continuous lab scale reactor. 

2.3.2 Anaerobic Digester Heat Requirement Model  

In addition to fuel production from anaerobic digestion, researchers have also studied 

energy consumption from anaerobic digestion. Since temperature around 35°C (mesophilic) in 

the anaerobic digestion process has higher efficiencies, it is necessary to maintain sludge 

temperature at a certain level. Ram et al. (1985) built a computational model for a digester 

combined with a shallow solar pond water heater to examine the feasibility of the engineering 
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design. Axaopoulos et al. (2001) later developed a computational model to analyze and predict 

thermal behavior of a solar heated digester based on thermal properties of digesters and they 

predicted methane production based on Hashimoto’s empirical model. 

2.3.3 Combined Heat and Power (CHP) System 

Within the anaerobic digestion process, combined heat and the power (CHP) unit is often 

connected to anaerobic digestion in order to utilize bio-methane. With greater attention 

worldwide directed toward issues of global warming, interest in CHP technologies has grown 

among energy consumers, regulators, legislators, and developers due to efforts by customers and 

researchers seeking to reduce energy costs while improving service and reliability (Dong, Liu, & 

Riffat, 2009). CHP systems, compared to conventional power production technologies, have the 

advantage of utilizing both heat and electric energy from feedstock; therefore, there exists 

potential for energy and environmental benefits over electric-only and thermal-only systems in 

power generation applications. 

The development of small-scale and micro-scale biomass-fuelled CHP systems has been 

supported and funded by the governments of many industrialized nations. Bain (2000) reported 

that the U.S. National Renewable Energy Laboratory (NREL) funded a small modular bio-power 

project, aimed at development of biomass systems that have minimum negative impacts on the 

environment and that provide power between 5 kW and 5 MW. Pavlas et al. (2006) studied the 

retrofit of a fossil fuel-based micro-CHP system in a hospital and among the alternatives 

considered, they found that a biomass-fuelled micro-scale CHP could achieve the highest CO2 

reduction. 

Commercialization of CHP units is now well developed and widely utilized for waste 

water treatment plants and livestock production systems. This current study utilizes information 
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of existing commercialized CHP units for the system design of the proposed IFS dynamic 

system, based on bio-methane production from anaerobic digestion model results. 
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CHAPTER 3: SWINE PRODUCTION SYSTEM 

The goal of Chapter 3 is to describe the dynamic swine production system model, 

developed by this current study, which is proposed for use by farmers and engineers in 

commercial swine production systems. The model is developed for application in two different 

scenarios and includes two subsystem models. The first subsystem model addresses simple pig 

growth (Section 3.2) while the second subsystem model, built on the first subsystem model, 

addresses swine barn energy consumption (Section 3.3). Section 3.4 is an application of the 

swine production system model and demonstrates simulations of several different scenarios.  

3.1 System Description 

For the purpose of simulating both swine performance and commercial swine facility 

energy consumption, the swine production system model proposed by the current study is limited 

to the growing-finishing swine period (20 – 107 kg gilts and barrows) with animals being housed 

in a swine barn. Once the swine reach market size (107 kg), they will be removed from the barn 

and after the facility is cleaned, a new groups of piglets (20 kg) will be brought in. 

The commercial swine barn proposed by the current study is 12.19 m (40 ft) wide by 

146.30 m (480 ft) long and is designed to house a total of 2400 head of growing-finishing swine. 

The design of the insulated swine barn features a trussed roof with a flat fiberglass ceiling and 

eves that are 2.23 m (7.4 ft) in height. Wall construction materials are wood and concrete as 

shown in figure 3.1. 



 

15 

 
Figure 3.1 Elements of insulated swine barn 

 

The current study proposes that pigs be split-sex fed in mechanical-ventilated buildings 

with a thermostatically controlled cooling system that includes a cooling pad or a sprinkler with 

eleven fans and three heaters. The fans and heaters are divided into six ventilation and three heat 

stages as shown in table 3.1. Three pit fans are included to provide minimum ventilation rate. If 

indoor temperature is lower than the set point temperature, then the heaters will be turned on. On 

the other hand, if indoor temperature is higher than the set point temperature, higher stages of 

ventilation will be turned on.  

Feed used in the simulation is a corn-soy based ration with two phases fed to the barrows 

and only one phase fed for the growing-finishing period to the gilts. The lighting period for the 

swine barn is 8 hours from 6 a.m. to 2 p.m. with two rows of lighting fixtures over the pens. 

More details are described in sections 3.2.2 and 3.3.2. 
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Table 3.1 Stage control for ventilation fans and heaters 

Heating/ Cooling 

Difference between set 

point and indoor 

temperature 

Details of stages 

Ventilation system  Ventilation rate (cfm) Size and Number of Fans  

 Average Ventilating 

Efficiency Ratio 

(VER) (cfm/Watt) 

 0 18540 24" x 3 15.1 

 2 30300 24" x 3 +36" x 1  16.8 

 4 42140 24" x 3 +36" x 2 17.5 

 6 89140 24" x 3 +36"x 2 +48" x 2 19.7 

 8 136140 24" x 3 +36"x 2 +48" x 4 20.4 

 10 183140 24" x 3 +36"x 2 +48" x 6 20.7 

Heater  Maximum capacity   

 -2 59kW   

 -4 118 kW   

 -6 177 kW   
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A systematic diagram of the swine production system model is shown in figure 3.2. The 

Simple Pig Growth Model (SPGM) generates swine live weight which is used as an input 

variable for the swine barn energy consumption model. The swine barn energy consumption 

model provides output of, for example, indoor temperature and dynamic heat/power 

requirements based on swine live weight. The simulated indoor temperature generated from the 

swine barn energy consumption model is an input variable in SPGM. The scenarios of the swine 

production system model proposed by this study were developed by comparing heat/power 

requirements, feed-to-gain ratio, and days on feed. 

 

 

Figure 3.2 Systematic diagram of swine production system model 
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3.2 Simple Pig Growth Model 

This section applies and modifies the pig growth model to simulate pig growth 

performance. The current study follows the simple pig growth model scheme developed by 

previous research (De Lange, 1995; Moughan et al., 1987) that was selected for its simplicity. 

Modifications based on several new empirical relationships and parameters for the purpose of the 

current study are made. While De Lange’s model assumes that pig growth occurs under 

thermoneutral zones, this study considers indoor temperature as an environmental factor that 

affects pig growth. 

3.2.1 Model Development 

Basic principles of energy and amino acid partitioning for the period of swine growth are 

included in the modified SPGM. The concept of nutrient partitioning is shown in figure 3.3. The 

following simplifying assumptions are made: 

1) Genetic differences between pigs are presented by parameters: e.g., maximum daily 

protein gain and minimum lipid to protein ratio. 

2) Dietary nutrients other than amino acids and energy (such as vitamins, minerals, and 

essential fatty acids) are not limiting to growth. 

3) SPGM presents only average performance with no individual variation included in the 

model. Disease effect is also not considered in the modified SPGM model. 

Since consideration of all different genotypes are beyond the scope of this study, the model 

proposed here uses parameters set forth by previous studies for all genotype results as indicated 

in the first assumption. Nutrients other than amino acids and energy are important; however, 

amino acid and digestible energy in diet are two main contributors for pig growth as indicated in 
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the second assumption. Because the pig growth model is deterministic, no other stochastic 

information (ex: individual variety, disease effect) is considered as indicated in the third 

assumption. 

De Lange (1995) programmed the SPGM on a Quattro Pro spreadsheet. The current study 

then modified and reprogramed the SPGM in Simulink S-function to connect to the swine barn 

energy consumption model. 

 

Figure 3.3 General representation of energy and protein partitioning in a simple pig growth model. Meaning 

of symbols: F- feed intake; EPFi – protein free digestible energy intake; H - heat loss; Em – energy 

requirement for maintenance; Eg – energy available for gain; Ld – body lipid deposition rate; AAAi – 

available amino acid intake; AAm – amino acid requirements for maintenance; AAg – amino acid available 

for gain; BPg – balanced protein deposition; Pddot – potential body protein deposition rate; Pd – actual body 

protein deposition rate; W0 – initial body weight; WG – body weight gain; Wf – final body weight, see text for 

further details. Adopted from De Lange (1995) 
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Inputs to simulate swine growth processes are as follows: initial body weight, daily intake 

of available amino acids, maximum protein deposition rate, minimum lipid to protein ratio, 

gender, and protein-free digestible energy (DE). Additional details are listed in section 3.2.2. 

Based on the general scheme of nutrient partitioning as shown in figure 3.3, the model 

proposed by the current study aims to estimate final body weight on a daily basis. With initial 

body weight (W0, kg), initial protein weight (P0) and minimum body lipid to body protein ratio 

(minLP), the minimum lipid weight (Lmin) is: 

𝐿𝑚𝑖𝑛 = 𝑚𝑖𝑛𝐿𝑃 × 𝑃0            (3. 1) 

Initial empty body weight (WE0, kg) is calculated as the sum of initial protein weight (P0, 

kg), initial lipid weight (L0, kg), initial body water weight (Wt0, kg), and initial body ash weight 

(A0, kg): 

WE0 = 𝑃0 + 𝐿0 + 𝑊𝑡0 + 𝐴0          (3. 2) 

Where  

Wt0 = (4.332 + 0.0044 × 𝑃𝑑𝑚𝑎𝑥) × 𝑃0
0.855      (3. 3) 

A0 = 0.189 × 𝑃0            (3. 4) 

Gut fill is predicted by equation 

Gut fill = 0.3043 × WE0
0.5977         (3. 5) 

W0 = WE0 + Gut fill           (3. 6) 

The reference voluntary daily digestible energy intake (DEvi, kJ/d) is given as a function 

of body weight (W, kg) as modified by National Research Council (2012) equations (modified to 

1.05 times larger): 

DEvi = 1.05 × 44225.1684(1 − 𝑒−𝑒−0.0176×W)      (3. 7) 

For gilts and barrows, the digestible energy intake are different: 

For gilts:  
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DEvi = 1.05 × 45916.6356(1 − e−𝑒−3.803×𝑊0.9072

)     (3. 8) 

For barrows:  

DEvi = 1.05 × 43739.4996(1 − e−𝑒−4.283×𝑊1.0843

)     (3. 9) 

To represent the impact of environmental temperature on digestible energy intake, the lower 

critical temperature (LCT) is estimated and DEVi is adjusted. 

LCT = 17.9 − 0.0375 × W          (3. 10) 

Fraction of DEvi intake = 1 − 0.012914 × [Ti − (LCT + 3)] 

−0.001179 × [Ti − (LCT + 3)]2        (3. 11) 

Feed intake (F, g/d) is then calculated by digestible energy of diet content (DEd, kJ/g) 

F = DEvi/DEd            (3. 12) 

Swine feed usage is correlated to feed by assuming voluntary daily feed intake rate (F%vi, %) 

Fusage = DEvi/DEd ÷ (F%vi/100)        (3. 13) 

This model proposed by the current study assumes voluntary daily feed intake rate is 90%. 

With the dietary amino acid (AAd, g/kg) and apparent amino acid availabilities (AAa, g/kg) 

for different kinds of amino acids (lysine, methionine, methionine plus cysteine, threonine, 

tryptophan, and isoleucine), the available amino acid intake (AAAi, g/d) is calculated: 

AAAi = F ×
AAd

1000
× AAa           (3. 14) 

The intake of available total protein (APi, g/d) is calculated in a similar way from the total 

dietary protein content. Protein-free digestible energy intake (EPFi, kJ/d) is calculated by gross 

energy content of protein (EP), which is assumed to be 23.6kJ/g 

EPFi = F × DEd − APi × Ep          (3. 15) 
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The maintenance requirement for total protein (Pm) or an amino acid (AAm, g/d) is given 

priority over the total protein or amino acid requirements for growth. The relationship between 

Pm, AAm, and body weight is given from metabolic rate: 

Pm = 0.9375W0.75           (3. 16) 

AAm = Pm × (AA%bp/100)         (3. 17) 

Where AA%bp is the amino acid content of balanced (‘ideal’) protein (%) for different kinds of 

amino acids, the amount of total protein that can be used for gain (Pg, g/d), and amino acid that 

are available for gain (AAg, g/d) with absorptive efficiency of utilizing protein and amino acid at 

85% are:  

Pg = (APi − Pm) × 0.85          (3. 18) 

AAg = (AAAi − AAm) × 0.85         (3. 19) 

The amount of balanced protein that can be derived from each amino acid and that can 

potentially be utilized for growth (BP(AA)g (g/d)) are calculated: 

BP(AA)g = AAg/(AA%bp/100)         (3. 20) 

The actual amount of balanced protein that can be utilized for body protein deposition (BPg, 

g/d) is equal to the smallest quantity of balanced protein that can potentially be utilized for 

growth and that is supplied by each individual amino acid or total protein.  

The potential body protein deposition rate (Pdpot, g/d) is determined by BPg or the animal’s 

upper limit to body protein retention (Pdmax, g/d), which is affected by pig gender, strain, and 

breed. 

Pdpot = min[BPg, Pdmax]          (3. 21) 

With the supply of energy and minimum body lipid to body protein ratio, the model proposed by 

the current study can determine whether the potential body protein deposition rate equals the 

actual body protein deposit rate. 
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Energy derived from amino acids and unbalanced amino acids that are inevitably 

catabolized (E1) is calculated as: 

E1 = (APi − Pm − BPg) × 11.5         (3. 22) 

Energy derived from balanced protein that can be utilized for growth but that is supplied 

in excess of that required to support the potential body protein deposition rate 

E2 = (BPg − Pd𝑝𝑜𝑡) × 11.5          (3. 23) 

The amount of energy that is available for growth (Eg, kJ/d) is then calculated 

Eg = EPFi + E1 + E2 + (Pdpot × Ep) − Em      (3. 24) 

Em represents the maintenance energy requirements. In cold weather conditions, Em will 

be higher due to the needs of thermogenesis. If the temperature is higher than LCT, there is no 

thermogenesis. If the temperature is lower than LCT, the relationship in equation 3.25 takes 

place: 

Em = standard Em + Em for thermogenesis 

Standard Em = 824.248 × W0.60 

Em for thermogenesis = 0.07425 × (LCT − T) × Standard Em   (3. 25) 

The potential body lipid deposition rate (Ldpot, g/d) is then calculated: 

Ldpot = (Eg − Epd × Pdpot)/Eld         (3. 26) 

Where Epd is the energy cost of body protein deposition (kJ/g) and body lipid deposition (kJ/g). 

The final protein and lipid weight are then calculated: 

Pf = Po + Pdpot/1000 

Lf = Lo + Ldpot/1000      (3. 27) 

With the relationship between water, ash weight, and protein weight, the final body weight is 

calculated: 
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Wf =
Pf+Lf+Wtf+Af

0.95
            (3. 28) 

Weight gain (WG) equals Wf – W0  

 

The current study programs the above process in S function (S_piggrowth) in Simulink. The 

model in Simulink is shown in figure 3.4. Since the modified SPGM is a discrete model but 

indoor temperature is simulated continuously, this study assumes the critical temperature for 

swine growth is the daily maximum temperature. The Relational operator and Max resettable 

block are utilized to find the daily indoor maximum temperature. Although pig weight, feed, and 

heat production are generated discretely, Simulink takes these discrete signals as continuous by 

interpolation for the calculation of other continuous subsystems. 

 

 
Figure 3.4 Static model of the SPGM 

 

The model shown in figure 3.4 requires amino acid content for estimating balanced amino 

acid intake (equation 3.20 and 3.21). In order to simplify estimation of amino acid content in 

swine feed, the results of the research to calculate amino acid based on feed proportion of corn 

and soybean meal (SBM) as shown in table 3.2. 
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Table 3.2 Amino acid content in Corn and SBM 

Critical Amino Acid Corn Reference Critical Amino Acid SM Reference 

Protein %  

(per dry weight) 
7.70% Huang et al. (2012) 

Protein %  

(per SBM weight) 
47.50% 

Thakur and Hurburgh 

(2007) 

Moisture %  

(per dry weight) 
21.20% Huang et al.(2012) 

Moisture %  

(per SBM weight) 
12% 

Thakur and Hurburgh 

(2007) 

LYS (g per kg N) 167 
Sosulski and 

Imafidon (1990) 
LYS (g per kg N) 406 

Sosulski and Sarwar 

(1973) 

MET (g per kg N) 126 
Sosulski and 

Imafidon(1990) 

MET  

(% per SBM weight ) 
0.65 

Thakur and Hurburgh 

(2007) 

MandC (g per kg N) 255 
Sosulski and 

Imafidon(1990) 
MandC (g per kg N) 188 

Sosulski and 

Sarwar(1973) 

THR (g per kg N) 256 
Sosulski and 

Imafidon(1990) 
THR (g per kg N) 231 

Sosulski and 

Sarwar(1973) 

TRP (g per kg N) 59 
Sosulski and 

Imafidon(1990) 
TRP (g per kg N) 81 

Sosulski and 

Sarwar(1973) 

ILEU (g per kg N) 200 
Sosulski and 

Imafidon(1990) 
ILEU (g per kg N) 306 

Sosulski and 

Sarwar(1973) 

3.2.2 Model Inputs and Verification 

The modified SPGM, which is modified from previous research (De Lange, 1995; Moughan 

et al., 1987), requires all the typical parameters associated with nutrient partitioning. Table 3.3 

provides a summary of the model parameters. This section illustrates the model input and 

provides model verification by comparing the modified SPGM proposed by the current study, 

experiments, and the NCPIG model. 
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Table 3.3 Parameters for SPGM 

Parameter Description Value Unit 

Pdmax Maximum protein retention rate 160 g/day 

Min LP Minimum lipid to protein ratio 1 NA 

Epd Energetic cost of body protein deposition 37 kJ/g 

Eld Energetic cost of body lipid deposition 48 kJ/g 

Ep Gross energy content of protein 23 kJ/g 

 

The modified SPGM can consider various diet content. However, in order to be consistent 

with the on-farm experiments, the current study used traditional corn-soybean meal (SBM) to 

verify results of the experiments (Turner et al., 1998). Turner et al. (1998) worked with an 

independent commercial swine producer to test the NCPIG model against measured on-farm 

data. Several assumptions are inherent from Turner et al. (1998) and Bridges et al. (1992) to 

maintain the same environmental conditions for pigs. The diet table used for the experiments is 

listed in table 3.4. 
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Table 3.4 Diet content for swine 

Feedstuff Ingredients 

Diet NO. 1  

20-60 kg  Barrows 

20 kg- mkt. Gilts 

% Each Feedstuff by weight 

Diet NO. 2 

60 kg –mkt. Barrows 

%Each Feedstuff by weight 

Corn 76.45 80.525 

Soy Bean Meal (SBM) 20 16.25 

Suppl. or pre-mix   

Vitamin 0.2 0.175 

Lysine 0.1 0.1 

CuSO4 0.1  

Di-Cal 2 1.75 

Calcium Carbonate 0.75 0.75 

Salt, iodized 0.35 0.35 

Antibiotic 0.05 0.1 

Total 100 100 

ME 13.877 kJ/kg 13.981 kJ/kg 

 

 

Figure 3.5 Daily maximum and minimum temperature in Bardstown, Kentucky 
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In order to validate the modified SPGM model, the current study compared between the 

modified SPGM results to previous research in 1998, which includes experimental results and 

simulations of the NCPIG model, by Turner et al. 

Temperature information from the year 1995 in Bardstown, KY is collected from National 

Oceanic and Atmospheric Administration (NOAA) as previous research (Turner et al., 1998) and 

shown in figure 3.5. Unlike the NCPIG model, SPGM proposed by the current research 

simulated pig growth performances by a daily basis instead of 0.1hour time steps. Therefore, 

estimation of diurnal temperature and humidity profile is not necessary as in NCPIG model 

implemented in Turner et al. (1998). 

As shown in table 3.5, the verification results of the modified SPGM compare experimental 

and modeling results from Turner et al. (1998). Because the modified SPGM was not designed 

for modeling ad libitum effect, like the NCPIG model and the experiments, the amount of swine 

feed use to grow barrows as estimated by the modified SPGM is lower than the on-farm 

measurement.  

In order to modify the effect to a more accurate estimation on swine feed usage, the current 

study introduced a modification factor of 1.1 to estimate real swine feed usage based on the 

modified SPGM results. The modified feed-to-gain ratio (F/G) and average daily feed are 

presented in table 3.5 in brackets.  

The results simulated by the modified SPGM model shows that the time needed to raise 

barrows from 20kg to 107 kg is closer to experiments compared to the NCPIG model. The 

NCPIG model and the modified SPGM have very similar estimations for the average daily gain 

for gilts. The results show the benefits of the modified SPGM due to simple input parameters 

compared to NCPIG with sufficient accuracy. 
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Table 3.5 Production performance, white group, 6/15/95 start date, grow-finish period 

 
Producer 

Barrow 

NCPIG 

Barrow 

Modified  

SPGM Barrow 
Producer Gilt NCPIG Gilt 

Modified  

SPGM Gilt 

Days on feed 102.1 108 102 109.9 110 109 

Slaughter wt., kg 107 107.6 107.3 107.2 107.5 107.3 

ADF, kg/day 2.51 2.39 2.11 (2.32) 2.19 2.08 1.99 (2.18) 

ADG, kg/day 0.82 0.78 0.86  0.77 0.77 0.80 

F/G, kg/kg 3.06 3.06 2.47 (2.70) 2.9 2.71 2.49 (2.73) 
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3.3 Swine Barn Energy Consumption Model 

This section aims to develop a swine barn energy consumption model for a commercial 

swine barn as described in section 3.1. Principles of thermal environmental modeling are used 

for the IFS model proposed by the current study to develop a building thermal model. The 

algorithm proposed by the current study considers the content of swine diet, the ventilation rate, 

space heater capacities, and heat generated by occupants (pigs). The information gathered (i.e., 

building characteristics, swine type and equipment inventory) are used to develop the model. The 

objective of this section is to simulate swine barn energy consumption (both heat and power) as 

part of the swine production process by applying the modified SPGM to simulate swine heat 

production.  

3.3.1 Model Development 

Heat transfer in a building can be analyzed by understanding internal features and 

examining the heat transfer process. The control volume approach is used in this proposed model 

and only the building envelope is examined (Albright, 1990). The control volume for energy and 

mass balance is bounded by the walls, floor, and ceiling as shown in figure 3.6. Simplifying 

assumptions are made as follows: 

1) Attic temperature is the same as the ambient temperature. 

2) There are no radiation heat fluxes between the interior surfaces and occupants. 

3) Indoor air is complete mixing, which implies temperature transfer in all surfaces is 

spontaneous. 

Thermal dynamic properties of swine barn and other meteorology information are 

considered during the virtual simulation processes. The first assumption is made because during 
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summer the amount of the heat gain through the ceiling is relatively small compared to the heat 

gain from animals, and during winter the percentage of heat loss through the ceiling is relatively 

small compared to the heat loss through ventilation (Li, 2000). Because the current research aims 

to estimate a maximum energy consumption scenario, Li’s results support the assumption that 

considers attic temperature to be the same as the outside ambient temperature. 

It is further assumed that there are no radiation heat fluxes between the surfaces and 

between the animals and the surfaces. This implies that all heat generated and lost in the room 

are instantaneous. Although the assumption introduced errors to the model, the model proposed 

by the current study is proposed to include only few model parameters to simplify the 

computational processes. 

 

Figure 3.6 Heat gains and heat losses in a swine production room 
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Ogilvie et al. (1988) assumed that the air in the control volume is completely mixed so that 

the temperature of the exhaust air is equal to the average room temperature. Previous studies 

found use of that assumption simplified the computational process yet offered sufficient accuracy 

(Bantle & Barber, 1989; Li, 2000; Ogilvie, Zhang, & Barber, 1988). Therefore, the third 

assumption was supported. 

Based on information of building characteristics, occupants (growing-finishing swine), heat 

production, and swine barn operation strategies, the model proposed by the current study 

designed an environmental simulation to estimate heat and electricity consumption for a swine 

barn. Typical sources of heat/mass gains and losses in a swine production barn are shown in 

figure 3.5. 

The general mathematical model for building energy conservation used in this study is: 

𝜌𝑎𝐶𝑝𝑉
𝑑𝑇𝑖

𝑑𝑡
= (qp + 𝑞𝐿 + 𝑞𝑀 + 𝑞𝐻 − 𝑞𝐵 − 𝑞𝐹) × 86400    (3. 29) 

Where: 

qP is the total heat generated by pigs, W 

qL is the heat generated by lights, W 

qM is the heat generated by feeding machine, W 

qH is the supplemental heat generated by heaters, W 

qB is the heat loss through building envelope, W 

qF is the heat loss through ventilation fans, W 

C𝑃
𝑎 is the heat capacity for air 

𝑇𝑖  is the indoor air temperature 

V  is the total swine barn volume 
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𝜌𝑎 is the air density 

t  is the time, day 

As qL and qM is negligible compared to qp and qH, this thesis does not take them in to heat 

balance account. 

Based on Brown-Brandt et al. (2004) and Pedersen & Sallvik (2002), the following 

equations are used in the current study to determine heat (total, sensible and latent) production 

and moisture generated by pigs. Previous studies noted that pig weight, ambient temperature, 

feed intake, and animal activity had significant impact on the heat production.  

Φtot = 5.09𝑚0.75 + (1 − (0.47 + 0.003 W))(𝐷𝐸𝑣𝑖 × 0.011574 − 5.09m0.75)  

                 (3. 30) 

Where: 

Φtot is total heat production at 20°C 

W is the pig live mass (kg), the same as in simplified pig growth model 

DEvi is the feed energy intake (kJ/d), the same as in simplified pig growth model 

For temperatures different from 20°C, the total heat production can be calculated by  

Φtot
∗ = Φtot + 0.012Φtot(20 − 𝑇𝑖)        (3. 31) 

Where Ti is room air temperature (°C) 

The sensible and latent heat production is determined by the ratio (r) between sensible 

heat production and total heat production based on Sällvik and Pedersen (1999). 

r =
0.62Φ𝑡𝑜𝑡1−1.15×10−7𝑇6

Φ𝑡𝑜𝑡1

           (3. 32) 

Where: 

Φ𝑡𝑜𝑡1
= 1000 + 12Φtot(20 − 𝑇𝑖)         (3. 33) 

Φsen
∗ = rΦ𝑡𝑜𝑡

∗              (3. 34) 

Φlat
∗ = Φ𝑡𝑜𝑡

∗ − Φ𝑠𝑒𝑛
∗            (3. 35) 
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With different levels of animal activity, the heat and mass production by individual pigs 

differ. Both experimental measurements and approximations in modeling can be used to estimate 

animal activity and modify heat production equations. Because there is no measured animal 

activity data available, a single sinusoidal model, simulating diurnal variation of animal activity, 

was used in this study. 

A = 1 − a × sin (
2𝜋

24
(ℎ + 6 − ℎ𝑚𝑖𝑛))         

qP = 𝐴 × Φsen
∗                (3. 36) 

Measurements conducted by previous research showed that the minimum activity occurs at 

2 am (hmin) and the diurnal variation for pigs was approximately 20% (a=0.2) (Pedersen & 

Sallvik, 2002). By applying Pederson’s results, the hourly correction factor for animal heat 

production can be calculated and modified by diurnal variations of the heat production generated 

by pigs.  

The total heat transmission through the building envelope include heat loss through the 

ceiling, floor, and external walls as described by: 

qB = 𝑞𝑤 + 𝑞𝑓 + 𝑞𝑐            (3. 37) 

Where: 

qB is the total heat loss through building envelope, W 

qw is the heat loss through external walls, W 

qc is the heat loss through the ceiling, W 

qf is the heat loss through the floor, W 

As normal commercialized swine barns do not have windows, direct solar gain is 

negligible. However, the effect of increased outer building surface temperature due to solar 

radiation is considered. 
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Sol-air temperature (Te), an equivalent outdoor temperature that presents radiation effects 

and gives the same rate of heat entry into external wall surface, is determined to further estimate 

heat loss through external walls. 

Te = 𝑇𝑜 +
𝛼𝐸𝑡

ℎ𝑜
−

𝜀Δ𝑅

ℎ𝑜
           (3. 38) 

Where: 

Te is sol-air temperature (°C) 

To is the outdoor temperature (°C) 

α is the absorptance of surface for solar radiation 

Et is the total radiation incident on surface, W/m2 

ho is the coefficient of heat transfer by long-wave radiation and convection at outer surface, 

W/(m2 K) 

ε is the hemispherical emittance of surface , dimensionless 

ΔR is the difference between long-wave radiation incident on the surface of the barn structure 

from the sky and surrounding buildings and radiation emitted by blackbody at outdoor air 

temperature, W/m2 

For horizontal surfaces that receive long wave radiation from the sky only, an appropriate 

value of ΔR is about 63 W/m2, so that ε = 1 and ho = 17 W/(m2 K), the long-wave correction 

term is about 4 K (Bliss, 1961). 

Because vertical surfaces receive long-wave radiation from the ground and surrounding 

buildings as well as from the sky, an accurate ΔR is difficult to determine. It is common to 

assume ε ΔR = 0 for vertical surfaces. 

ASHRAE (2005) recommended α/ho=0.026 for light-colored surfaces and 0.052 for the 

maximum value for this parameter (dark-colored surfaces) 
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With sol-air computation, heat loss through external walls is determined by 

qw = 𝑈𝐴𝑤(𝑇𝑒 − 𝑇𝑖)           (3. 39) 

Where: 

qw is the heat loss through external walls, W 

Te is the sol-air temperature, C 

𝑇i is the indoor temperature, C 

U is the overall external wall’s thermal transmittance, W/m2 C 

Aw is the surface area of external walls, m2 

Heat loss through the ceiling: 

Heat transmission through the ceiling can be computed using the following equation. 

qc = 𝑈𝐴𝑐(𝑇𝑜 − 𝑇)            (3. 40) 

Where: 

q𝑐 is the heat loss through ceiling, W 

To is the outdoor temperature, C 

Ti is the indoor temperature, C 

U is the overall external ceiling’s thermal transmittance, W/m2 C 

Ac is the surface area of ceiling walls, m2 

 

Heat loss through the floor: 

Heat transmission through the floor is relatively small and can be computed using the following 

equation: 

qf = 𝐹ℎ × 𝑃(𝑇𝑜 − 𝑇𝑖)           (3. 41) 

Where: 

q𝑓 is the heat loss through floor, W 

To is the outdoor temperature, C 
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Ti is the indoor temperature, C 

Fh is the perimeter heat loss coefficient based on insulation (ASHRAE, 2005), W/m 

P is the perimeter length of exposed edge, m 

 

Heat loss through ventilation fans: 

The heat loss through ventilation fans is calculated as follows 

qF = 𝜌�̇�C𝑃
𝑎(𝑇𝑜 − 𝑇𝑖)           (3. 42) 

Where: 

qF is heat loss through ventilation fans, W 

ρ is the density of air, kg/m3 

�̇� is the ventilation rate, m3/s 

C𝑃
𝑎 is the specific heat of air, J/kg-K 

To is the outdoor temperature, C 

Ti is the indoor temperature, C 

However, the cooling system can be opened above 25°C. With an evaporative cooling pad, the 

cooled air temperature (TC) is calculated as: 

𝑇𝑐 = 𝑇𝑤 + 𝜂(𝑇𝑜 − 𝑇𝑤)             (3. 43) 

Where η = 80% and tw is wet bulb temperature and can be calculated by (Stull, 2011) 

𝑇𝑤 = 𝑇𝑜 atan[0.151977(𝑅𝐻% + 8.313659)1/2] + atan(𝑇𝑜 + 𝑅𝐻%) − 𝑎𝑡𝑎𝑛(𝑅𝐻% −

1.676331) + 0.00391838(𝑅𝐻%)3/2 atan(0.023101 𝑅𝐻%) − 4.686035   (3. 44) 

If cooling pads are operated, the outdoor temperature To in equation 3.42 will be changed to Tc. 

By combining equation 3.29 through 3.44, indoor temperature Ti can be calculated as: 

𝑑𝑇𝑖

𝑑𝑡
= (

1

𝜌C𝑃
𝑎𝑉

(𝑞𝐻 + 𝑞𝑝) −
�̇�

𝑉
(𝑇𝑖 − 𝑇𝑜) −

𝑈𝐴𝐶

𝜌C𝑃
𝑎𝑉

(𝑇𝑖 − 𝑇𝑜) −
𝑈𝐴𝑊

𝜌C𝑃
𝑎𝑉

(𝑇𝑖 − 𝑇𝑒) −
𝐹ℎ𝑃

𝜌C𝑃
𝑎𝑉

(𝑇𝑖 − 𝑇𝑜)) ×

86400                (3. 45) 
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The equation 3.45 can be designed in Simulink as shown in figure 3.7. The Matlab 

function in Simulink is created to calculate sol-air temperature of four walls and inlet ventilation 

air temperature. 

 

Figure 3.7 Dynamic model of swine house as shown in equation 3.45 

 

MWPS-28 Wiring Handbook suggests 55 lux for grow-finish lighting (daytime) and 

estimates 0.57 watts/square foot for 100-watt incandescent bulbs. The lighting schedule from 6 

am to 2 pm is shown in section 3.1. Because closure of the swine barn due to the virus prevented 

on-site investigation of lighting during the period, the current study relies on the Handbook 

information to estimate electricity usage for light. Almost 90% of the total electric consumption 
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is used for ventilation fans and lights; therefore, the current study used only lighting and 

ventilation power requirement and assumed other power consumption is negligible. 

By understanding carbon dioxide, moisture, and heat production by swine, the 

theoretically minimum ventilation curve is calculated by indoor air quality requirements. For a 

commercial swine barn facility setup, it is difficult to control the ventilation fans by all three 

parameters. Most fans and heaters in swine barns are controlled by the differences between 

indoor temperature and indoor set point temperature as shown in table 3.1. Set point temperature 

is determined by the recommended temperature under different swine weight as shown in table 

3.6 

Table 3.6 Set point temperature at different body weight 

Set point temperature 22°C 22°C 21°C 19°C 18°C 17°C 16°C 16°C 16°C 16°C 

Body Mass <25kg 25kg 30kg 35kg 40kg 45kg 50kg 55kg 60kg >70kg 

 

Based on the ventilation rate, stage operation on exhausted fan control was applied to 

calculate energy consumption. This was computed by fan efficiency and fan capacity.  

EF = (
�̇�/𝑉𝐸𝑅

1000
)             (3.46) 

Where: 

Ef is the Energy consumption of ventilation fan (kW) 

�̇� is the ventilation rate, cfm 

VER is the Ventilating Efficiency ratio, cfm/W 

The current study implemented switch block and lookup table block to create control 

strategies in the Simulink Dynamic model as shown in figure 3.8. By utilizing switch block, the 

heater will turn on only when the indoor temperature is lower than the set point temperature, and 

the higher stage (table 3.1) of ventilation fans will turn on only when the indoor temperature is 
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higher than the set point temperature. The thermal model block is a subsystem that estimates 

indoor temperature as shown in figure 3.8. 

 

 

 

Figure 3.8 Control simulation blocks and dynamic building thermal model 

 

Because swine growth models are highly correlated to the surrounding environment and 

because swine facility operation is determined also by swine growth conditions, it is necessary to 

connect the modified SPGM and the swine barn thermal environment model. As described in 

section 3.1, the modified SPGM generates information (pig weight) needed for swine barn 

simulations. Conversely, Swine Barn simulations generate indoor temperature back to the 

modified SPGM. The relationships between the modified SPGM and the swine barn energy 

consumption model are described in section 3.1. A combined computational model is shown in 

figure 3.9. The pig growth block is the same as shown in figure 3.4 of section 3.2.1. The swine 

barn block is the dynamic building thermal model shown in figure 3.8. 
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Figure 3.9 Swine production model that connects the simple pig growth model and swine facility energy 

consumption model 

3.3.2 Model Inputs 

General commercialized designs are chosen by the current study to present the application 

of the model shown in section 3.1. All model parameters are determined based on a review of 

previous studies. Details for thermal properties and heat conductance are listed in table 3.7. 

Based on construction material as shown in table 3.7, the overall heat conductance for the 

building envelope is shown in table 3.8. 

Three sets of weather information were collected from stations as input variables for the 

system model proposed by the current study. Hourly weather dataset from the National Solar 

Radiation Data Base (NSRDB) during 2010 in Springfield, IL and Oklahoma City, OK were 

collected and organized. Temperature dataset from 1995 in Bardstown, KY was also collected 

from the National Oceanic and Atmospheric Administration (NOAA). Each set of weather 

information was used as input variables for different scenarios. 
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 The location of Bardstown, KY was selected for verification of growing-finishing pigs’ 

performance. The locations of Springfield, IL and Oklahoma City, OK were chosen to represent 

different weather conditions. Because Illinois is one of the states that has ranked highest for pork 

production for many years and Springfield has available the most complete weather information, 

Springfield was chosen to represent cold weather conditions. The majority of swine production 

facilities in the U.S. are located in the upper Midwest or Corn Belt states, however, since the 

1990s significant pork production has also developed in the Oklahoma-Texas Panhandle region. 

Weather information for Oklahoma City is complete, therefore, that location was chosen to 

represent the warm weather conditions in the Oklahoma-Texas Panhandle region.  

Table 3.7 Construction material of building components 

 Materials 
Thermal transmittance through 

conduction (W/ m2-K) 

Thermal resistance 

(m2-K/W) 

Total Thermal 

transmission: U-Value 

(W/ m2-K) 

Wall ho 22.7 0.04 

0.51 
 Wood Walls  3.28 

 Concrete Walls  1.53 

 hi 0.57 1.75 

 ho 0.57 1.75 

0.1139 Ceiling 
Fiberglass 

insulation 
 5.28 

 hi 0.57 1.75 
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Table 3.8 Calculated UA-Value for growing to finishing swine building  

Building construction  
U-Value   

(W/ m2-K) 
Length (m) Width (m) Height (m) 

Surface Area 

(m2) 

UA Value 

(W/ K) 

Floor   146.30 12.19   538.9 

North/south Wall 0.51 146.30  2.24 327.7 167.13 

East/West Wall 0.51  12.19 2.24 27.3 13.87 

Ceiling  0.114 146.30 12.19  1783.4 203.3 

 

3.4 System Model Application and Discussion 

This section discusses different simulation scenarios that present the application of the 

swine production process proposed by the current study. Three scenarios are discussed: 1) 

Effects of the cooling system for a swine barn in Kentucky under 1995 summer conditions. 2) 

Pig growth under Illinois summer/winter conditions in 2010; and 3) Swine barns located in 2010 

weather conditions in Illinois and Oklahoma.  

3.4.1 Cooling System for Swine Barn in Kentucky 

This study considered the same model scenarios as described in section 3.2.2 but without a 

misting system. A comparison is drawn between swine performance with/without a cooling 

system. The time needed to grow pigs without a misting system is longer than with a misting 

system for growing-finishing pigs as shown in table 3.9. The feed-to-gain ratio (F/G) is also 

higher than with a cooling misting system. 

The results show the importance of implementing a cooling system to reduce the cost of 

maintaining a swine barn due to the shorter growing period and lower F/G ratio. 
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Table 3.9 Production performance, white group, 6/15/95 start date, grow-finish period in 

Kentucky 

 
Producer Barrow  

With misting 

NCPIG Barrow 

With misting 

Modified SPGM 

Barrow 

With misting 

Modified SPGM 

Barrow 

Without misting 

Days on feed 102.1 108 102 137 

Slaughter wt., kg 107 107.6 107.3 107.9 

ADF, kg/day 2.51 2.39 2.32 1.84 

ADG, kg/day 0.82 0.78 0.86 0.64 

F/G 3.13 3.06 2.70 2.88 

3.4.2 Pig Growth under Illinois Summer/Winter Conditions 

Changes in pig raising seasons have different effects on pig growth rate and the feed-to-gain 

ratio. Thus, evaluations of different growing seasons and comparisons of outcomes for different 

seasons is necessary. Table 3.10 shows simulation results on two different season scenarios 

(winter/summer) in 2010 under Springfield climate conditions. Energy consumption and pig 

growing performance are estimated to analyze the differences. 

This study applied a previously proposed swine production system model and analyzed 

growing information as shown in table 3.10. Higher feed-to-gain ratio under summer conditions 

compared to winter conditions is similar to on-farm experience. The F/G ratio and total 

electricity usage with a cooling system is lower than without a cooling system. The main reason 

for lower electricity requirements occurs is attributable to lower ventilation rate with cooled 
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inflow air. The results also show that the time needed for growing pigs is shorter in winter. 

However, a swine barn has higher heat requirements to maintain small pigs under winter 

conditions. The results demonstrate the importance of pig growth scheduling for higher pig 

growth performance. 

Table 3.10 Production performance, 2400 heads of white gilts, 20 kg to 107 kg 

during grow-finishing period in Illinois 

 With cooling under summer  
Without cooling under 

summer  
Winter 

Start date April 12 (day 105)  April 14 (day 107) January 01 (day 1) 

Days on feed 151 169 106 

Slaughter wt., kg 107.67 107.44 107.42 

ADF, kg/day 1.70 1.63 2.25 

ADG, kg/day 0.58 0.51 0.82 

F/G 2.93 3.19 2.74 

Total electricity consumption 

(kWh) 

35709 39722 15199 

Total Heat consumption (kWh) 3455 3014 59295 

 

In order to examine a full-year energy consumption portfolio, the current study makes 

several assumptions. First, this study assumes there is no time lag between two all-in all-out 

groups. Second, this study takes Jan-01 2010 as the first day of simulation for importing 20kg 

piglets. Figure 3.10 shows that higher electricity usage is needed during summer because 
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ventilation fans are the main contributors of electricity usage and higher temperatures in summer 

require higher ventilation rates. Simulation results are consistent with on-farm experience. 

Heat requirements for the whole year is shown in figure 3.11. For small (around 20 kg) 

growing-finishing pigs under winter conditions, the higher heat loss and higher set point 

temperature for piglets create large heat requirements. Modeling results (fig. 3.11) show that 

most heat consumption occurs during first month of the year. 

Although most commercial operations do not heat swine barns during summer, this 

model requires heat when market size swine are removed and 20kg piglets are imported. In the 

IFS model proposed by the current study, the indoor set point temperature changes dramatically 

from 16C to 22C as the occupants (pigs) change in size. Because of the high heat capacity of the 

swine barn, much energy is needed to increase the indoor temperature. Simulation results 

indicate the importance of set point temperature. Based on different set point temperature 

designs, energy consumption portfolios differ. 
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Figure 3.10 Daily electricity usage with cooling pad, including fan and lighting 

Figure 3.11 Heating requirement for maintaining indoor temperature with cooling pad 
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The pig growth curve is affected by heat stress in summer as shown in figure 3.12. When 

pigs reach market size (107 kg), large pigs will be removed and small pigs will be imported. 

Comparisons between pig growth performance under winter conditions and under summer 

conditions are considered in table 3.10. 

Figure 3.12 Single pig growth curve with cooling pad in Springfield, IL 

 

3.4.3 Swine Barns in Different Climate Locations: Illinois and Oklahoma 

Table 3.11 shows maximum and minimum temperatures in 2010 in Springfield, IL and in 

Oklahoma City, OK. The location of Oklahoma City at a lower latitude experiences higher 

temperatures so that it is logical to expect that barns in Oklahoma City have different features 

than barns in Springfield. However, in order to estimate energy usage and pig performance under 

the same swine barn design, this section assumes that input variables, with the exception of 

weather conditions, remain the same. 
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Table 3.11Maximum/ Minimum temperature of two scenarios 

 Maximum temperature (°C) Minimum temperature(°C)  

Springfield, Illinois 2010 36.1 -22.8 

Oklahoma City, Oklahoma 2010 39.4 -13.9 

 

Swine barns located in Oklahoma City under winter conditions have smaller heat 

requirements but with power requirements that are higher compared to barns in Springfield as 

shown in table 3.12. The main reason is that in Springfield the temperature is lower compared to 

that of Oklahoma City. Higher heat requirements for barns located in Springfield is, therefore, 

required to maintain the same set point in winter. As Oklahoma City has higher temperatures in 

the summer, barns there require more ventilation to maintain set point temperatures. 

Because in winter barns in both Oklahoma City and Springfield share the same set point 

temperature, pig growth performance is similar in the two locations due to controllable indoor 

temperature. On the other hand, under summer conditions the indoor temperature is higher than 

the set point temperature even with full load ventilation rate in Oklahoma City. Therefore, under 

summer conditions due to heat stress, barns in Oklahoma City have lower pig performance than 

barns in Springfield. Simulation results carried out by the current study demonstrate that the 

same control strategies and set point temperatures under different weather conditions may cause 

severe non-efficiencies in energy and nutrient usage. Therefore, different indoor temperature 

design systems may be needed under different weather condition for efficient swine farming.  
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Table 3.12 Production performance, 2400 heads of white gilts, 20 kg to 107 kg, grow-finish period in Illinois/Oklahoma under 

summer/winter conditions with cooling pads 

 Summer in Illinois Summer in Oklahoma Winter in Illinois Winter in Oklahoma 

Start date April 12 (day 105)  April 15 (day 108) January 01 (day 1) January 01 (day 1) 

Days on feed 151 185 106 107 

Slaughter wt., kg 107.67 107.61 107.42 107.59 

ADF, kg/day 1.70 1.57 2.25 2.21 

ADG, kg/day 0.58 0.47 0.82 0.82 

F/G 2.93 3.34 2.74 2.70 

Total electricity consumption (kWh) 35709 45741 15199 15876 

Total Heat consumption (kWh) 3455 1334 59295 34106 
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CHPATER 4 ANAEROBIC DIGESTION AND CHP SYSTEM 

The goal of Chapter 4 is to describe the dynamic anaerobic digestion and CHP system 

model, developed by this current study, which is proposed for use by farmers and engineers in a 

commercial swine manure treatment facility. The model is developed for application in two 

different scenarios and includes three subsystem models. The first subsystem model addresses 

anaerobic digestion process (Section 4.2) while the second subsystem model builds on the first 

subsystem model and addresses anaerobic digestion heat requirements (Section 4.3). The third 

subsystem model surveys industrial CHP systems (Section 4.4) and estimates heat/power 

production. Section 4.5 is an application of the anaerobic digestion and CHP system model. It 

also demonstrates simulations based on several different scenarios.  

4.1 System Description 

The system model proposed by the current study is developed to simulate the methane 

production rate of a cylindrical above-ground Continuous Stirred Tank Reactor (CSTR) with a 

constant inflow rate (25m3/day). Swine manure from growing-finishing swine is considered as 

the feedstock for the anaerobic digestion process. Specific manure characteristics for the current 

study can be referred to in section 4.2.2. 

The cylindrical above-ground CSTR is constructed as a 12-inch thick concrete tank with 

6-inch thick insulation as shown as figure 4.1. The size of the anaerobic digester, with 575 m3 for 

sludge space and 57.5 m3 for head space, is correlated with feedstock characteristics. The inner 

diameter of the CSTR is 14.8m and the inner height is 3.7m. More detailed calculations are 

described in section 4.2.2 and 4.3.1. 



 

52 

A hot water coil heat exchanger is proposed by the current study to maintain the reactor 

temperature. When the temperature is lower than 35°C, the heater will be turned on to maintain 

the temperature of the sludge. 

 

Figure 4.1 Elements of above-ground concrete CSTR 

 

A Combined Heat and Power (CHP) system is proposed to utilize bio-methane is 

generated by the anaerobic digestion process to generate heat and power to support digester 

operations. More detailed information about the industrial CHP unit is included in section 4.4. 

This chapter describes an anaerobic digestion model that is combined with an anaerobic 

digester heat requirement model and commercialized CHP system to estimate power/heat 

production as well as consumption portfolios. Anaerobic Digestion Model Number 1 (ADM1) is 

applied to examine the rate of methane production under different hydraulic retention time 
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periods. After determining the hydraulic retention time, the digester size is determined followed 

by construction of a digester heat requirement model. The energy production/consumption 

portfolio is then estimated. The modeling process is shown in figure 4.2. 

 

 
Figure 4.2 Systematic diagram of anaerobic digestion and CHP unit system model 
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4.2 Anaerobic Digestion Model 

This section introduces an anaerobic digestion model with modified parameters. In 

section 4.2.1, ADM1 is introduced and combined with a transformer model to reduce the number 

of input variables. As ADM1 was originally designed for simulating municipal waste, the 

parameters and input variables of previous studies have been modified for swine manure. For 

purposes of comparison, an empirical bio-methane estimation is introduced as a baseline for 

ADM1. All input variables and verifications are described in section 4.2.2. 

4.2.1 Model Development 

The proposed system model applies the Anaerobic Digestion Model Number 1 (ADM1) 

and connects the Transformer model to reduce the number of model inputs. All model 

parameters and input variables are listed in section 4.2.2. This section on model development 

describes the model structure and methodology. 

The anaerobic digestion process can be divided into two major categories: biochemical 

processes and physicochemical processes. Biochemical processes include disintegration of 

homogeneous particulates, extracellular hydrolysis, acidogenesis, acetogenesis, and 

methanogenesis. Physicochemical processes describe both the liquid-liquid exchanges and gas-

liquid exchanges of elements. All processes are shown in figure 4.3. 

An understanding of these processes is important for simulating anaerobic digestion. The 

current study introduces and applies ADM1 with more details about coefficients in the Peterson 

matrix described in previous research (Batstone et al., 2002). The following simplifying 

assumptions are made: 

1) The digester is well-mixed, namely the substrate is evenly distributed in the digester tank. 
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2) The model does not include nutrients of solid-liquid phase exchanges. 

3) All model parameters are assumed to be under 35°C conditions. 

 

 

Figure 4.3 The ADM1 including biochemical processes: (1) acidogenesis from sugars, (2) acidogenesis from 

amino acids, (3) acetogenesis from long chain fatty acid (LCFA), (4) acetogenesis from propionate, (5) 

acetogenesis from butyrate and valerate, (6) aceticlastic methanogenesis, and (7) hydrogenotrophic 

methanogenesis. Adopted from Batstone et al. (2002) 

 

The first assumption is set forth because the model contains several ODE equations and is a 

stiff system. A non-homogeneous system would be too complex to simulate. Further, because 

modeling precipitation in solid-liquid reaction is complicated and may introduce instability of the 

system, the second assumption is made.  
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Simulation of the temperature inside the digester and the changing dynamic parameters based 

on different temperatures is difficult and may over-complicate the chemical and biological 

processes; therefore, a representative temperature of 35°C is assumed (Rosen, Vrecko, Gernaey, 

& Jeppsson, 2005). 

 

The equation on anaerobic digestion process is described by equation 4.1: 

𝑑 𝑆𝑙𝑖𝑞,𝑖

𝑑𝑡
=

�̇�𝑖𝑛𝑆𝑖𝑛,𝑖

𝑉𝑙𝑖𝑞
−

�̇�𝑜𝑢𝑡𝑆𝑙𝑖𝑞,𝑖

𝑉𝑙𝑖𝑞
+ ∑ 𝜌𝑗𝑣𝑖,𝑗𝑗=1−19        (4. 1) 

Where ∑ 𝜌𝑗𝑣𝑖,𝑗𝑗=1−19  is the sum of the kinetic rates for process j multiple by vi,j More 

detailed parameter equations in Peterson matrix form can be found in previous research 

(Batstone et al., 2002). 

Except for the liquid-liquid reaction, a rate term for transfer of gas components to the gas 

headspace is also considered in ADM1. Take carbon-dioxide for example, the transfer rate is 

described as: 

ρ10,T = 𝑘𝐿𝑎𝐶𝑂2
(𝑆𝐶𝑂2,𝑙𝑖𝑞

− 𝐾𝐻,𝐶𝑂2 𝑃𝐶𝑂2,𝑔𝑎𝑠
)       (4. 2) 

Where ρ10,T is the additional rate term for gas-liquid reaction, 𝑘𝐿𝑎𝐶𝑂2
 is the dynamic gas-

liquid transfer coefficient, 𝐾𝐻,𝐶𝑂2  is the Henry’s law equilibrium constant, 𝑃𝐶𝑂2,𝑔𝑎𝑠
 is the partial 

pressure in headspace and 𝑆𝐶𝑂2,𝑙𝑖𝑞
 is the liquid carbon-dioxide concentration.  

Several inhibition processes are also considered in ADM1, including non-competitive 

inhibition, substrate limitation, and empirical equations that describe the inhibition process under 

different pH values. A detailed model setup and description can be found in previous research 

(Batstone et al., 2002). 

Since ADM1 requires 27 input variables and some of these variables, e.g., fatty acid 

concentration in influent, are difficult to measure. Zaher and Chen (2006) have used the 

Continuity-Based Interference Method (CBIM) to reduce the number of input variables. The 
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interface maintains the continuity of major elements for the model and achieves COD and charge 

balance throughout the anaerobic digestion processes.  

Based on results of the Transformer model, Zaher and Chen (2006) successfully reduced the 27 

ADM1 input variables to 13 variables that are easier to measure. The input variables for the 

Transformer model are particulate chemical oxygen demand (COD), volatile fatty acid (VFA) of 

soluble substrate, VFA, total organic carbon, organic nitrogen, total ammonia-nitrogen, organic 

phosphorus, orthophosphate, total inorganic carbon, total alkalinity, fixed solids, and flow rate. 

Figure 4.4 shows the combination of the Transformer model and ADM1 in Simulink. The 

model scheme is similar to previous co-digest research but without separating the hydrolysis tank and 

the digestion tank (Zaher, Li, Jeppsson, Steyer, & Chen, 2009). The source code applied by the 

current study is developed by a Lund University research group and Dr. Zaher’s group. 

 

Figure 4.4 Dynamic model of ADM1 and transformer process 

4.2.2 Model Inputs and Model Results Comparison with Empirical Equations 

 This chapter takes growing-finishing swine manure as feedstock and a set constant flow rate 

at 25 m3 per day to demonstrate the application of the model proposed by the current study. 

Research by Zaher and Chen (2006) presents several features of swine manure, but it lacks 

several input variables and needs user-defined parameters to simulate ADM1. The parameters 
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include VFA (COD equilibrium), CODs, TIC (mol HCO-
3), and total Alkalinity (cations 

equilibrium). 

In order to assume reasonable numbers for user-defined parameters, results of the following 

studies were reviewed. Van Velsen (1981) found that VFA concentrations for pig manure lie 

between 8.7 and 15.9 g COD/l at VS concentrations between 38 and 65 g/l. More recently, based 

on experiments, Massé et al. (2000) presented several swine manure properties, e.g., CODt, 

CODs, Alkalinity, total solid, and volatile solid. The current study assumes manure properties as 

simulation of input parameters that combine data from previous experimental research. All input 

parameters are listed in table 4.1. 

After determining input variables, parameters in ADM1 are further modified in the current 

study for agriculture purposes. Several pig manure related parameters in this model are taken 

from Gali et al. (2009). Other kinetic and stoichiometric parameters are taken from the AMD1 

model. All parameters for modified ADM1 in the current study are listed in table 4.2.  

Prior research has established empirical relationships among rates of methane production, 

influent volatile solids concentration, ultimate CH4 yield per volatile solid, and maximum 

specific growth rate. The modified ADM1 can be compared with empirical results (Chen & 

Hashimoto, 1978; Hashimoto, 1984). All empirical relationships are listed as equation 4.3. 

𝛾𝜈 =
𝐵0𝑆𝑜

𝐻𝑅𝑇
(1 −

𝐾

𝐻𝑅𝑇×𝜇𝑚−1+𝐾
)          (4. 3) 

Where  𝛾𝜈  is the methane production rate from anaerobic fermentation, and K is a kinetic 

parameter that can be calculated as: 

K = 0.6 + 0.0206𝑒0.051×𝑆0          (4. 4) 

𝐵0 is ultimate CH4 production rate (l CH4/ g VS), S0 is influent volatile solid 

concentration, μm is the maximum specific growth rate (day-1) and can be calculated as equation 

4.5: 
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𝜇𝑚 = 0.013𝑇 − 0.129           (4. 5) 

Where T is in Celsius 

As described in this section on model comparisons, the current study assumes B0 equals to 

0.48 based on previous experiments (Hashimoto, 1984). The current study also assumes T=35°C 

to be consistent with ADM1 simulation results. All input variables for Hashimoto’s model are 

listed in table 4.3. With input variables for both the ADM1 and the empirical models, the 

modified ADM1 is compared with the empirical model. 
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a: Data collect from Zaher and Chen (2006); b: Data collect form Masse et al. (2000); c: Data collect from V. 

Velsen (1981); d: Data calculate by a and c 

Table 4.2 Stoichiometric parameters and kinetic parameters at mesophilic conditions 

Constant Value Constant Value Constant Value Constant Value 

f_sI_xc  0.143 C_ac 0.0313 k_m_aa  50 k_dec_Xac  0.02 

f_xI_xc  0.033 C_bac 0.0313 K_S_aa  0.3 k_dec_Xh2  0.02 

f_ch_xc  0.461 Y_su 0.1 k_m_fa  6 R  0.083145 

f_pr_xc  0.202 f_h2_aa 0.06 K_S_fa  0.4 T_base  298.15 

f_li_xc  0.161 f_va_aa 0.23 K_Ih2_fa  5.00E-06 T_op  308.15 

N_xc  0.002 f_bu_aa 0.26 k_m_c4  20 pK_w_base  14 

N_I  0.002 f_pro_aa 0.05 K_S_c4  0.2 pK_a_va_base  4.86 

N_aa  0.007 f_ac_aa 0.4 K_Ih2_c4  1.00E-05 pK_a_bu_base  4.82 

C_xc  0.03 C_va 0.024 k_m_pro  13 pK_a_pro_base  4.88 

C_sI  0.03 Y_aa 0.08 K_S_pro  0.1 pK_a_ac_base  4.76 

C_ch  0.0313 Y_fa 0.06 K_Ih2_pro  3.50E06 pK_a_co2_base  6.35 

C_pr  0.03 Y_c4 0.06 k_m_ac  8 pK_a_IN_base  9.25 

C_li  0.022 Y_pro 0.04 K_S_ac  0.15 k_A_Bva  1.00E+10 

C_xI  0.03 C_ch4 0.0156 K_I_nh3  0.0018 k_A_Bbu  1.00E+10 

C_su  0.0313 Y_ac 0.05 pH_UL_ac  7 k_A_Bpro  1.00E+10 

C_aa  0.03 Y_h2 0.06 pH_LL_ac  6 k_A_Bac  1.00E+10 

f_fa_li  0.95 k_dis 0.17 k_m_h2  35 k_A_Bco2  1.00E+10 

C_fa  0.0217 k_hyd_ch 10 K_S_h2  7.00E-06 k_A_BIN  1.00E+10 

f_h2_su  0.19 k_hyd_pr 10 pH_UL_h2  6 P_atm  1.013 

f_bu_su  0.13 k_hyd_li 10 pH_LL_h2  5 kLa  200 

f_pro_su  0.27 K_S_IN 0.0001 k_dec_Xsu  0.02 K_H_h2o_base  0.0557 

f_ac_su  0.41 k_m_su 30 k_dec_Xaa  0.02 K_H_co2_base  0.0271 

N_bac  0.00625 K_S_su 0.5 k_dec_Xfa  0.02 K_H_ch4_base  0.00116 

C_bu  0.025 pH_UL_aa 5.5 k_dec_Xc4  0.02 K_H_h2_base  7.80E-04 

C_pro  0.0268 pH_LL_aa 4 k_dec_Xpro  0.02 k_P  5.00E+04 

Table 4.1 Input parameters for the Transformer model and ADM1 (per m3) 

CODpa CODs-VFAd VFAc TOCa Norga AN TP-orthoPa orthoPa TICb Scatb FSb 

(gCOD) (gCOD) (g COD) (gC) (gN) (gN) (gP) (gP) 
(mol 

HCO3
-) 

(equ) (g) 

97072 22340 15900 47094 2976 3752 854 1709 336.8 336.8 19640 
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Figure 4.5 Methane production comparison between ADM1 and Chen and Hashimoto (1978) 

Figure 4.5 shows estimations of different methane production rates based on ADM1 and 

empirical equations under different periods of Hydraulic Retention Time (HRT). When HRT is 

smaller than 8, ADM1 shows a rate of zero methane production due to washed-out effects. 

Equation 4.1 shows that the first two terms on the right hand side are dominant with small HRT 

when the chemical dynamic process ∑ 𝜌𝑗𝑣𝑖,𝑗𝑗=1−19  is a small number. The first two terms imply 

an exponential decrease when neglecting the third term. The numerical effect shows a physical 

washed-out effect in a continuous tank experiment. Note that when all ADM1 results are 

Table 4.3 Parameters for Hashimoto’s model 

Parameter Value 

B0 0.48 l CH4/g VS 

T 35°C 

S0 74.12 kg/m3 
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calculated under steady state (1000 virtual days), there is a jump start around 8 HRT days since 

the wash-out effect does not occur. Figure 4.6 shows methane/ hydrogen/carbon dioxide 

concentration of biogas under different HRT. The production of methane starts when HRT is 

greater than 9 days, and hydrogen concentration is high when HRT is small. The reasons for this 

occurrence are similar to those shown in figure 4.5. Since methane bacteria is a slow growing 

microbe, H2 is not yet converted to CH4 and shows higher concentration. 

The results of ADM1 and Hashimotos’ model show similar results while ADM1 provides 

more information on the biogas composition. Also, Hashimoto’s model shows only empirical 

relationships among several parameters rather than real mechanisms.  

Figure 4.6 Gas percentage of biogas under different HRT by ADM1 
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4.3 Anaerobic Digester Heat Requirement Model 

4.3.1 Model Development 

This section proposes an anaerobic digester heat requirement model. With usage of a larger 

volume reactor, the methane production rate will be higher; however, the energy required to 

maintain reactor temperature will also be higher.  

Heat transfer in an anaerobic digestion reactor can be analyzed by understanding internal 

features and examining the heat transfer process. Similar to the swine barn energy consumption 

model, the current study uses a control volume approach to estimate energy consumption for the 

anaerobic digestion process. Several assumptions are set forth to simplify the energy 

consumption model: 

1) Influent feedstock never freezes. The fluent manure temperature is 5°C when the ambient 

temperature is lower than 5°C. The manure temperature is equal to the ambient temperature 

when the temperature is higher than 5°C. 

2) No heat is produced during anaerobic digestion process. 

3) The digester is well mixed: that is, the temperature is homogenous throughout the digester. 

In industry, the major portion of heat consumption used to operate the digester is consumed 

by the preheating process for the influent feedstock. Swine manure has higher temperature after 

excretion compared to the ambient temperature and the manure loses heat during other processes, 

for example, during storage and transportation. Since the current study assumes that swine 

manure is transferred to the digester within a short period of time, only a small amount of heat 

will be lost during the process. Therefore, the first assumption is made. 
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Anaerobic digester (AD) is a heat generation process that provides parts of heat to maintain 

digestion temperature. However, heat production is difficult to estimate because it differs due to 

environmental conditions and feedstock properties. Overall, the heat produced during the 

anaerobic process is relatively small compared to the supplemental heat needed to maintain 

constant temperature at a certain level. The current study estimates the maximum potential 

energy consumption during the process; therefore, the second assumption is made as an approach 

to estimate maximum potential energy production. 

In order to simplify the heat transfer process, a control volume approach is used in the 

current study and homogeneous temperature distribution is assumed. For purposes of simplifying 

the model, the third assumption is made to be consistent with assumptions in section 4.2.1., even 

though the third assumption is known to introduce errors. 

Assume temperature is maintained at constant temperature for both slurry and biogas,  

𝑞𝑖𝑛 + 𝑞𝑆 + 𝑞e − 𝑞𝑤 − 𝑞𝑚 − 𝑞𝑔 = 0        (4. 6) 

Where: 

qin = heat loss through inlet manure  

qS = solar heat gain 

qe = heat gain from heat exchanger, also is taken as calculated heat requirement  

qw = heat loss through digester envelope of sludge portion. 

qg = heat loss through digester envelope of gas portion 

The heat balanced is shown in figure 4.7 

 



 

65 

 

Figure 4.7 Heat gains and heat losses in anaerobic digestion process 

 

Based on the assumptions that homogeneous temperature is distributed and that solar heat 

gain is conducted in sol-air temperature as te in the same way as described in Chapter 3, heat loss 

through the digester from sludge is calculated by the equation: 

𝑞𝑊 = 𝑈𝑆𝐴𝑠 × (𝑇𝑒 − 𝑇𝑆)           (4. 7) 

Where: 

Us = total heat conductivity on sludge to outside digester 

AS = surface areas that contact sludge  

Te = sol-air temperature 

TS = slurry temperature, assumed to be 35°C 
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Because gas has different properties compared to sludge, the heat loss through the digester walls 

and floor from biogas is noted separately: 

𝑞𝑔 = 𝑈𝑔𝐴𝑔 × (𝑇𝑒 − 𝑇𝑎)           (4. 8) 

Where: 

qg = heat loss through the digester envelope from the biogas portion  

Ug = total heat conductance from biogas to ambient 

Ag = the surface area of the digester that contacts the biogas 

Ta = biogas temperature, assumed to be 35°C 

 

Heat loss through inlet manure due to temperature difference of inlet manure and digesting 

sludge is estimated by the equation 

qin = 𝑚𝑖𝑛𝐶𝑝
𝑠 (𝑇𝑖 − 𝑇𝑚)           (4. 9) 

Where: 

min = influent mass flow rate of swine manure 

𝐶𝑝
𝑠 = specific heat of swine manure, J/kg-K 

Tm = influent swine manure temperature, °C 

Since the current study assumes that inlet manure is not always equal to ambient 

temperature, Tm should be modified as: 

Tm = To 𝑤ℎ𝑒𝑛 To > 5°C 

Tm = 5 when To ≤ 5°C       (4. 10)    
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All algorithms above were written in a Matlab function in Simulink (dataprocess_AD_tank) 

and connect to the Transformer model and ADM1 as shown figure 4.8. The AD process 

Subsystem is described in figure 4.4. 

 

Figure 4.8 Systematic model of heating requirement for anaerobic digestion and ADM1 

4.3.2 Model Inputs 

This model aims to simulate a commercialized scale digester and several specifications 

are defined and listed in table 4.4. Based on modeling results in section 4.2.2, the current study 

chooses a tank size of 575 m3 liquid space and 57.5 m3 head space. The size was chosen based 

on a methane production rate at HRT that equals 90% for 50 days HRT. The diameter and height 

of the cylindrical shaped digester are listed in table 4.4. 

 Hourly weather data for 2010 in Springfield, IL and Oklahoma City, OK were collected 

from the National Solar Radiation Data Base (NSRDB) and taken as input variables for the 

simulations of different scenarios as proposed in the current study.  
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Table 4.4 Simulation parameters for reactor thermal model 

Materials 
Thermal transmittance through 

conduction (W/ m2-K) 

Thermal resistance 

(m2-K/W) 

Ho 17 0.0589 

6" Fiberglass insulation  4.24 

12" Concrete  0.3386 

hi (slurry to tank) 58 0.0172 

hi (biogas to tank) 8.2 0.1220 

Sizes Value Unit 

Digester height 3.7 m 

Digester diameter 14.8 m 

 

Table 4.5 Maximum/ Minimum temperature for two scenarios 

 Maximum temperature  Minimum temperature  

Springfield, Illinois 36.1 -22.8 

Oklahoma City, Oklahoma 39.4 -13.9 
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4.4 CHP Unit 

Based on estimated methane production, commercialized CHP units were selected 

according to CHP unit capacity of heat and electricity generation. A list of engine generator 

capacities is shown in table 4.6. The current study assumes the CHP unit utilizes bio-methane as 

fuel, which is given 35 × 106 𝐽/𝑚3 heating value for CHP estimation. 

Table 4.6 CHP gas engine modules in biogas operation 

CHP unit  No. of cylinders Output electrical (kW) Output thermal (kW) Gas usage (kW) 

Vitobloc: BM-36/66 R4 36 66 122 

Vitobloc: BM-55/88 R6 55 88 165 

Vitobloc: BM-190/238 V12 190 238 493 

Vitobloc: BM-366/437 V12 366 437 950 

GE Jenbacher  type 2: J208 (50Hz)  299 400 785 

GE Jenbacher  type 2: J208 (60Hz)  335 407 900 

GE Jenbacher  type 3: J312  527 626 1322 

GE Jenbacher  type 3: J316  637 725 1564 

GE Jenbacher  type 3: J320  1,063 1,193 2605 

Based on estimated methane production and assumed heating value, a commercialized CHP 

unit was chosen. Assumptions for further heat/power production are made as follows: 

1) If gas heating value is smaller than module requirement, the CHP unit will still maintain 

its heat/power generation efficiency if the difference is small. 

2) Extra biogas that exceeds the module requirements will be fed directly to a heater that 

has 70% efficiency. 

The first assumption introduces errors to the estimation. However, the efficiency may show 

only a small difference. The second assumption recognizes that because methane is a crucial 
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greenhouse gas that has a negative impact of more than 20 times that of carbon-dioxide, the 

transformation of methane to carbon-dioxide is necessary. The transformation of methane to 

carbon-dioxide generates extra heat from the process and that heat is also utilized. Most 

commercialized methane heaters have more than 90% efficiency. However, due to the lower 

heating value of biogas, this research assumes 70% efficiency to make a conservative estimation. 

4.5 System Model Application and Discussion 

Based on section 4.2.2, methane production is around 667 m3/day with 575 m3 size CSTR. 

The energy production is about 270 kW by assuming 35 × 106 J/m3 fuel heating value.  

Both the two Vitobloc BM-36/66 modules and the one Vitobloc BM – 55/88 can be 

implemented to utilize biogas. The current study proposes that extra biogas be burned to reduce 

greenhouse effects. Based on implementation of two Vitobloc BM-36/66 modules, heat 

production from CHP would be 132 kW (3168 kWh/day). Based on implementation of one 

Vitobloc BM – 55/88, heat production from CHP would be 88 kW (2112 kWh/day). Both 

choices can provide enough heat to support the anaerobic digestion process. However, by 

utilizing the extra biogas, implementation of one Vitobloc BM – 55/88 module will produce 

higher heat production yet lower power production compared to implementation of the two 

Vitobloc BM-36/66 modules. 

Simulations of anaerobic digesters were located in Springfield, IL and Oklahoma City, OK 

under 2010 conditions of local weather and solar radiation collected from the National 

Renewable Energy Lab (NREL). 

As shown in figure 4.8, maximum heat requirements for swine production in winter are 

around 1800kWh/day. Two CHP modules generate 3168 kWh/day, which is sufficient to meet 
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the digester heat requirement in winter. Figure 4.9 shows that reactor heating requirements are 

different in the two locations. Since the ambient temperature in Oklahoma City is higher than 

that in Springfield, the heat requirement for Springfield is higher than for Oklahoma City.  

Figure 4.9 Heating requirement for maintaining temperature at 35°C 
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CHAPTER 5 IFS MODEL AND APPLICATION 

Chapter 5 combines the dynamic swine production system model described in Chapter 3 

combined with the dynamic anaerobic digestion and CHP system model presented in Chapter 4. 

These two chapters together estimate the power and heat production requirement portfolios. 

Together, the two models also present the overall dynamic Integrated Farming System (IFS) 

model proposed by the current study for use by farmers and engineers in a commercial scale 

swine barn (2400 pigs per barn) with a commercial scale digester (575 m3). Section 5.2 addresses 

how the dynamic IFS model proposed by current study was developed. Section 5.3 addresses the 

input variables for the dynamic IFS model. Section 5.4 is an application of the dynamic IFS 

model and demonstrates simulations based on several different scenarios. 

5.1 IFS System Description 

Three separate commercial swine barns are proposed as presented in Chapter 3. In order 

to maintain stable production of the market-size swine and manure for biofuel, the current study 

proposes a staggered production over three swine raising periods. Growing- finishing pigs (20 - 

107 kg barrows and gilts) in different barns are simulated separately with different initial pig 

weight to create the staggered production scenarios. The flexibility of the model allows engineers 

and researchers to calculate different types of staggered production schedules. The specific pig 

growth phase selected for the current study is described in section 5.3. 

An above-ground concrete Continuous Stirred Tank Reactor (CSTR) of size 575 m3 is 

proposed to treat swine manure, as described in Chapter 4. Figure 5.1 demonstrates the virtual 

design of the overall IFS model proposed by the current study. Three commercial swine barns 

are operated separately and each operation is described in Chapter 3. This model proposes that 
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swine manure be pumped daily to CSTR for biogas generation. The industry Combined Heat and 

Power (CHP) system is implemented to utilize the biogas for the purpose of providing heat and 

power to support the three swine barns and the CSTR.  

 

 

Figure 5. 1 Virtual design of an Integrated Farming System (IFS) 

 

Figure 5.2 shows how the overall IFS model was developed. The swine production 

system model (Chapter 3) was first applied to estimate swine production and the swine barn 

energy consumption portfolios. The manure excretion rate was then estimated empirically based 

on applying the relationship between swine live weight and manure production rate. Next, the 

anaerobic digestion and CHP system model (Chapter 4) were applied to generate both the energy 

consumption and production portfolios. Simulation of the overall heat/power consumption and 

production portfolios is discussed in section 5.4.  
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Figure 5.2 Modeling systematic diagram of Integrated Farming System 

 

5.2 Model Development 

5.2.1 IFS System Design and Modeling 

Most models of anaerobic digester systems are based on the stable manure production rate 

of dairy cows. By contrast, the rate of swine manure production fluctuates dramatically over the 

production cycle due to the fluctuation of the live weight of growing-finishing pigs. In order to 

maintain stable swine manure as feedstock for processing by the anaerobic digester, the current 

study proposes a staggered production system that operates in three commercial swine barns 

(2400 pigs per barn) with different phases of the growing-finishing period. Some staggered 
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production systems introduce problems with diseases, therefore, the proposed system isolates the 

barns to reduce the potential for diseases. Chapter 5 simulates the dynamic IFS model based on 

several intrinsic assumptions inherited from the subsystem models. Additional assumptions are 

follows: 

1) No interaction between barns   

2) The swine manure production in the simulation is rate correlated based only on body weight 

and a steady state of manure properties.  

Because each barn is assumed to be operated separately to avoid disease problems, the first 

assumption is set forth to simulate the swine production system.  

Without on-farm manure excretion experiments, the simulation of manure excretion is 

needed. However, current manure excretion models are not able to provide chemical attributes of 

feedstock that are necessary for the ADM1 model and the Transformer model. In order to 

connect the swine production system model as well as the anaerobic digestion and CHP system 

model, the current study reviewed chemical properties from previous research and set those 

properties as static variables for the proposed dynamic IFS model. The second assumption 

simplifies the integrated model and provides reasonable estimations. Therefore, the second 

assumption is made. 

Spline fit is used to interpolate the swine manure production rate based on different pig 

body weight. The relationships can be referred to in UI extension work. Figure 5.3 shows the 

manure production rate based on different pig body weight.  



 

76 

Figure 5.3 Interpolation of swine body weight and manure production rate from UIUC extension 

5.2.2 Annual Crop Production Estimation 

Jackson et al. (2000) calculated the nutrient balance by applying animal manure to crop 

land. Based on a simple calculation and crop production estimation, that approach provides 

farmers with a useful tool to estimate how much land is needed to recover nutrients generated by 

Concentrated Animal Feeding Operation (CAFO). Based on UIUC extension work, nitrogen 

percent losses during storage and land application are shown in table 5.1. 

The current study follows the approach of Jackson et al. (2000) to estimate nitrogen 

consumption of land. All estimation parameters for crop land are listed in table 5.2. 

Feeds for swine and effluent nitrogen from the anaerobic digestion are estimated in 

Chapters 3 and 4. Based on utilizing information gathered from the two subsystem models, the 

nitrogen recovery rate for the IFS can be estimated. 
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Table 5.1 Nitrogen percent losses during manure processing 

Manure Storage  System 

 
Lower limit: short term storage, cool 

conditions 

Higher limit: long term storage, warm 

conditions 

Anaerobic pit  15 % 30 % 

Above ground storage 10 % 30 % 

Earth storage 20 % 40 % 

Lagoon 70 % 85 % 

Manure Land Application 

Broadcast 10 % 15 % 

Incorporation 1 %  5 % 

Knife or sweep injection 

liquid 
0 % 2 % 

Sprinkler irrigation liquid 15 % 40 % 

 

Table 5.2 Assume parameters of crop production estimation 

Variables value unit 

Nitrogen requirement for soybean 0 bu/ac 

Nitrogen requirement for corn 1.2 lb/bu 

Corn yield 160 bu/ac 

Nitrogen losses during storage 30 % 

Nitrogen losses during land application  15 % 

 

5.3 Model Inputs 

This section combines simulations of all scenarios based on a white gilts group with cooling 

pads in commercial swine barns as described in Chapter 3.  
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Because of the non-steady inflow rate, the initial state for anaerobic digestion is crucial. The 

current study utilizes the steady effluent state with an inflow rate of 25m3/day, described in 

Chapter 4, as the initial condition of the IFS ADM1 (table 5.3). By considering tank size 575 m3 

for sludge and 57.5 m3 for gas storage, the integrated model assumes a fluctuating feedstock 

inflow rate in a static tank size. Other parameters are described in Chapter 4. With the exception 

of parameters described in Chapters 3 and 4 for the proposed Integrated Farming System (IFS), 

all other parameters are listed in table 5.4. The 2010 weather information for Springfield, IL and 

Oklahoma City, OK were collected as described in Chapters 3 and 4. 

 

Table 5.3 Initial state of ADM1 

State no. Variable Value Unit State no. Variable Value Unit 

1 S_su  0.0108122 kg COD/m3 20 X_c4  0.6220355 kg COD/m3 

2 S_aa  0.0048393 kg COD/m3 21 X_pro  0.5711683 kg COD/m3 

3 S_fa  0.09025 kg COD/m3 22 X_ac  1.6398916 kg COD/m3 

4 S_va  0.0065621 kg COD/m3 23 X_h2  1.0961955 kg COD/m3 

5 S_bu  0.0138263 kg COD/m3 24 X_I  19.59845 kg COD/m3 

6 S_pro  0.014907 kg COD/m3 25 S_cat  0.3368 kmole/m3 

7 S_ac  26.244861 kg COD/m3 26 S_an  0.048474 kmole/m3 

8 S_h2  2.18E-07 kg COD/m3 27 S_hva  0.0065465 kg COD/m3 

9 S_ch4  0.0429285 kg COD/m3 28 S_hbu  0.0137962 kg COD/m3 

10 S_IC  0.1709963 kg COD/m3 29 S_hpro  0.0148698 kg COD/m3 

11 S_IN  0.2909569 kg COD/m3 30 S_hac 26.195068 kg COD/m3 

12 S_I  7.3205007 kg COD/m3 31 S_co3  0.1602726 kmole/m3 

13 X_xc  0.9527665 kg COD/m3 32 S_nh3 0.0094613 kmole/m3 

14 X_ch  0.237896 kg COD/m3 33 S_gas_h2  6.69E-06 kmole/m3 

15 X_pr  0.0589636 kg COD/m3 34 S_gas_ch4 1.1188619 kmole/m3 

16 X_li  0.0229602 kg COD/m3 35 S_gas_co2  0.0194186 kmole/m3 

17 X_su  5.2951576 kg COD/m3 36 Q_D  25 m3/d 

18 X_aa  0.7428373 kg COD/m3 37 T_D  35 C 

19 X_fa  0.2024616 kg COD/m3     
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Table 5.4 Extended parameters for integrated farming system 

Parameter  value unit 

Initial pig weight for Barn A 20.1 kg 

Initial pig weight for Barn B 50.9 kg 

Initial pig weight for Barn C 80.4 kg 

Digester size (sludge portion) 575 m3 

Digester size (gas portion) 57.5 m3 

 

5.4 System Model Application and Discussion 

This section discusses different scenarios that present the simulation results of the dynamic 

IFS model. Two different scenarios are discussed: an IFS system under 2010 weather conditions 

for Springfield, IL (section 5.4.1) and an IFS system under 2010 weather conditions for 

Oklahoma City, OK (section 5.4.2). Overall system nitrogen production and consumption for the 

two scenarios are compared in section 5.4.3.  
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5.4.1 IFS System under Springfield, IL Weather Conditions 

Figure 5.4 shows the simulation results for overall pig weight production under weather 

conditions for Springfield, IL. Based on the proposed model with three commercialize scale 

swine barns (2400 pigs per barn) and staggered operations, market-size swine are produced 

continuously and provide stable swine manure as feedstock to the anaerobic digestion process. 

Figure 5.4 Total swine body weight production over virtual experiment year 
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Figure 5.5 Manure production rate over simulation year 

 

As shown in figure 5.5, manure production fluctuates from around 18 m3/day to 30 

m3/day, which means that HRT fluctuates from 32 days to 20 days with the fix-sized digester. 

The methane production rate is affected by HRT as shown in figure 5.6. The main reason for the 

fluctuation is that higher HRT (lower influent rate) has a higher methane production rate per 

inflow rate and lower HRT (higher influent rate) has a lower methane production rate per inflow 

rate. 
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Figure 5.6 Methane and carbon dioxide concentration in biogas under Springfield weather conditions 

 

The current study chose the CHP unit for this proposal based on the methane production 

rate and estimated total heat/power production. Heat production is more efficient when direct 

heaters are used to process biogas as fuel compared to the CHP unit; therefore, the current study 

proposes to implement only one CHP and to utilize excess biogas directly to the heater. The 

current study utilizes one Vitoblock BM-55/88 CHP unit (table 4.6) and the excess methane to 

generate heat and power as described in section 4.4. 

To examine electricity and heating requirements/production for the proposed IFS model, 

overall heat/power consumption and heat/power production by the CHP unit under Springfield 

weather conditions are compared as shown in figures 5.7 and 5.8. Figure 5.7 demonstrates that 

with the proposed operation, the total heat production is not sufficient to maintain indoor air 

temperature under extreme winter conditions. However, it is possible to reduce the heat 

requirements by managing the growing schedule of the three different barns and raising building 
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thermal resistance to reduce the heat requirements. A CHP unit generates more electricity than 

required by an IFS system as shown in figure 5.8. The excess power generated by the CHP unit 

can be directed other subsystems that may be added in the future. 

 

Figure 5.7 Heat requirement and production of the IFS under Springfield weather condition with one CHP 

unit. 
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Figure 5.8 Electricity power requirement and power production of the IFS under Springfield weather 

conditions with one CHP unit 

5.4.2 IFS system under Oklahoma City Weather Conditions 

Figures 5.9 and 5.10 show overall energy consumption and production portfolios under 

Oklahoma weather conditions. Since the overall heat requirements under weather conditions in 

Oklahoma City are relatively smaller than in Springfield, the current study chose two Vitoblock 

BM-55/88 CHP units to generate more electricity. Figure 5.9 shows that heat production is 

sufficient for the integrated system under both summer and winter conditions. Moreover, the two 

CHP units in the integrated system produce more power that can be connected to the grid for 

other usages as shown in figure 5.10. 
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Figure 5.9 Heat requirement and production of the system under Oklahoma City weather conditions with two 

CHP unit 

 

Figure 5.10 Electricity power requirement and power production of the system under Oklahoma City 

weather conditions with two CHP units 
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5.4.3 Overall System Nitrogen Production and Consumption in Oklahoma City and Springfield 

Table 5.5 shows the estimated overall nitrogen production by the anaerobic digester and 

estimates crop (Soybean and Corn) production under two scenarios. Swine feed consumption is 

also listed in table 5.5 and compared with crop production estimations. The swine manure in the 

proposed IFS system recovers 20.1% of nitrogen for swine feed requirement under 2010 

Springfield weather conditions compared to 21.3% recovery under 2010 Oklahoma City weather 

conditions. Due to greater intake of nitrogen (swine feed) than production (market-size swine) in 

the swine production system, nitrogen deficiency is expected. Although the current calculations 

do not consider carryover nitrogen from the previous year’s legume crop or fertilizer, the results 

provide a direction for system design. 

While the nutrient recovery rate is higher under Oklahoma weather conditions, the swine 

production rate is lower. The higher nitrogen recovery rate under 2010 Springfield weather 

conditions shows that less swine feed is needed to produce market-size swine. 

 

Table 5.5 Nitrogen balance for AD effluent and swine feed under Springfield weather 

conditions over a 12-month period 

Parameter Springfield Oklahoma City Unit   

Nitrogen produced by AD 34550 34206 kg   

Nitrogen can be utilized by plant 20557 20353 kg   

Corn requirement as swine feed 4783783 4453947 kg   

Nitrogen requirement for the corn requirement 102509 95442 kg   

Nitrogen recovery rate 20.1 21.3 %   

 

The current study implicitly includes energy and nutrient (nitrogen) inputs that support the 

proposed integrated farming system. This model assumes no nitrogen needs for soybean 
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production as reported by Jackson et al. (2000); therefore, legume nitrogen fixation is considered 

a significant source for nitrogen in the proposed IFS system. 
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CHAPTER 6 CONCLUSION AND FUTURE RESEARCH 

6.1 Conclusion 

The current study develops and proposes an Integrated Farming System (IFS) model that 

simulates the swine production process, the anaerobic digestion (AD) process, and Combined 

Heat and Power (CHP) production. The IFS model shows two scenarios based on 2010 weather 

conditions in Springfield, IL and Oklahoma City, OK. The scenarios present different system 

heat/power requirement portfolios, swine growth performance, and system nutrient recovery 

rates for the two locations. 

 A trade-off between heat and electricity power production was found by the current study. 

While utilizing biogas directly as fuel for heaters provides higher heat production efficiency, the 

CHP unit is capable of producing electricity with lower heat production efficiency. If the system 

demands more heat than CHP production provides, then the direct utilization of biogas as fuel for 

heaters may also be considered to support the overall system heat requirement. 

With lower average ambient temperatures in Springfield, IL compared to those in 

Oklahoma City, OK, the total IFS heat requirement is higher. Therefore, implementation of 

single CHP unit with an additional heater to utilize excess biogas as fuel is proposed by this IFS 

model to produce sufficient power and more heat when the heat requirement is higher under 

colder climate conditions. Engineers and farmers can add more CHP units to generate more 

electricity but new technologies may be needed to meet greater heat requirements in winter. 

The IFS model proposed by the current study in the Oklahoma City scenario has a lower 

overall heat requirement and a higher power requirement compared to the proposed IFS model in 

the Springfield scenario. There is no need to utilize biogas directly as fuel for a heater to support 
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the system heat requirements. Instead, it is feasible to feed all biogas to the CHP units to produce 

more electricity.  

A higher feed-to-gain ratio resulting from heat stress under summer conditions is presented 

by the proposed IFS model. The model and farm experiments show that in summer conditions 

variations in swine growth performance depend on different operation strategies and efficiency 

of cooling systems.  

Overall system nitrogen recovery efficiency is affected by swine growth performance. The 

nutrient recovery rate is higher in Oklahoma City compared to that in Springfield. Less nitrogen 

in swine feed is transformed to market-size swine with higher feed-to-gain ratio; therefore, a 

cropping system requires less nitrogen input to support swine production. 

The dynamic IFS model proposed by the current study provides engineers and researchers 

with a tool that is useful for designing operation strategies and estimating the impact of 

technologies on an IFS system. Without the expense of conducting in-farm experiments, the 

proposed model provides estimations of energy production and consumption portfolios through 

simulations of a virtual farming system design that presents parameters to be considered before 

an actual system is constructed. 

6.2 Future Research 

Further studies are needed to investigate the development of a manure excretion model that 

connects intake diet, pig body weight, and environmental factors to provide a more accurate 

estimation for an extended integrated system. Based on a stronger connection between swine 

manure and diet, engineers and researchers can then study the IFS consumption/production 

portfolio as affected by diet design. 
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Future studies are also needed to investigate the development of models for different types 

of animal and plant production systems. For example, an algae production system needs to be 

considered due to its high production and nutrient usage rate. 

Also, future research needs to be directed toward optimization based on utilization of results 

presented by this proposed integrated model. For example, economic analysis and total 

energy/nutrient analysis are two interesting topics for investigation of optimization. 
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