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Monitoring lakes, rivers, and oceans is critical to improving our understanding of complex

large-scale ecosystems. We introduce a method of underwater monitoring using semi-

mobile underwater sensor networks and mobile underwater robots in this thesis. The

underwater robots can move freely in all dimension while the sensor nodes are anchored

to the bottom of the water column and can move only up and down along the depth

of the water column. We develop three different algorithms to optimize the path of the

underwater robot and the positions of the sensors to improve the overall quality of sensing

of an area of water.

The algorithms fall into three categories based on knowledge of the environment:

global knowledge, local knowledge, and a decentralized approach. The first algorithm,

VoronoiPath, is a global path planning algorithm that uses the concept of Voronoi

Tessellation. The second algorithm, TanBugPath, is a local path planning algorithm,

inspired from the Tangent Bug method for obstacle avoidance. Finally, the third path

planning algorithm, AdaptivePath, optimizes the path by balancing the distance covered

by the underwater robot and maximizing the sensing efficiency of both the sensor and

the robot. It is based on an adaptive decentralized algorithm and plans the path of the

underwater robot by assigning robot waypoints along the depth of the water column, and

then adapting them alongside the sensor nodes to obtain the path of the robot. It uses a

stable gradient-descent based controller which, we show, converges to a local minimum.

We verify the algorithms through simulations and experiments. The VoronoiPath

algorithm, generally, results in more efficient sensing paths. However, it is difficult to

implement in real world as it needs global information and results in longer robot paths.



The TanBugPath algorithm, on the other hand, has good sensing and it plans paths

which are a usually shorter under varying conditions. However, all the processing takes

place on-board the mobile robot, hence, this approach needs a more advanced robot than

other algorithms. Finally, in case of the AdaptivePath algorithm, the in-network sensors

calculate the path of the mobile robot in a decentralized manner. A major advantage of this

approach is that the the positions of the sensors in the water column also get optimized

depending on the path of the mobile robot. However, this algorithm can get stuck in

a local minima, and is also dependent on the starting positions of the robot waypoints.

For each of the algorithms we perform a detailed analysis and comparison. We identify

limitations of each, and provide framework for future improvements.
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Chapter 1

Introduction

A wireless sensor network (WSN) is a set of autonomous sensors which are spatially

distributed to monitor physical or environmental conditions such as temperature, pressure,

etc. The WSN can be built of a handful to a few thousands of nodes where each node

is connected to one (or sometimes several) sensors. These sensors can vary widely in

size as well. A WSN has several important applications. Area monitoring, air pollution

monitoring, forest fire detection, landslide detection, water quality monitoring are some

of them. Terrestrial WSN have been widely studied and numerous workshops and

conferences are arranged each year for this active research area. At the same time, there is

drive to develop underwater sensor networks to sense the underwater environment.

Water is crucial for supporting life on earth, so it is important to develop tools to

monitor the water bodies. New technologies have enabled the exploration of the vast

unexplored aquatic environment. This includes underwater modeling, mapping, and

resource monitoring. One such example is the study of Chromophoric Dissolved Organic

Matter (CDOM) which is the optically active component of the total dissolved organic

matter in the oceans. An understanding of CDOM dynamics in coastal waters and its

resulting distribution is important for remote sensing and for estimating light penetration

in the ocean. However, the majority of exploration is currently done manually or by using

expensive, large, and hard-to-maneuver underwater vehicles. As such, new solutions which
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consider the unique features of underwater environments are in high demand. In this

thesis, we introduce a method of underwater monitoring using semi-mobile underwater

sensor networks [20, 25]. We introduce three different algorithms that use a mobile

underwater robot to perform the following functions:

• Collect data effectively from the underwater environment in presence of semi-mobile

sensors; and

• Plan efficient paths for the mobile robot based on global, local and decentralized

algorithms.

Underwater sensor network has some unique characteristics that differ from terrestrial

WSNs such as:

• Large communication propagation delay,

• Low communication bandwidth,

• Limited node mobility,

• High error rate,

• Harsh underwater environment

Due to these, the existing solutions of terrestrial sensor networks cannot be applied directly

to underwater sensor networks.

We introduce a method of underwater monitoring using semi-mobile underwater

sensor networks and mobile underwater robots. The sensors are called AquaNodes and

the underwater robot is called Amour. The AquaNode sensors are anchored at the

bottom of the water column and floats mid-water column. The depth adjustment system

within each sensor node allows the length of anchor line to alter in order to adjust its

depth. These nodes are able to dynamically adjust their depths by using a decentralized,

gradient-descent-based algorithm [20]. This dynamic depth adjustment algorithm runs

online which enables the nodes to adapt to changing conditions (e.g., tidal front) and does
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not require a priori decisions about node placement in the water. In this work, we consider

a two dimensional slice of the water and introduce a mobile underwater robot with two

degrees of freedom. We describe setup and algorithms that determine path of a mobile

underwater robot through a underwater sensor network. In particular, we develop three

different algorithms for planning the path of a mobile underwater robot, traveling through

the sensor field, in presence of the underwater sensor nodes.

The first algorithm, VoronoiPath, is a global path planning algorithm using the

Voronoi Tessellation method. In the second approach, TanBugPath, we propose a local path

planning algorithm inspired from the Tangent Bug method for obstacle avoidance. The

third algorithm, AdaptivePath, is based on an adaptive decentralized control algorithm

[20, 25], which plans the path of the mobile robot by determining the positions in the

water column where the mobile robot should stop and gather information. These strategic

sensing positions are referred to as robot waypoints. The sensors and robot waypoints are

together referred to as nodes. This thesis extends the control algorithm to include the

operation and path planning for a mobile robot and includes additional simulation and

experimental results.

In case of VoronoiPath method, the system has global knowledge of the position of

each sensor. Thus before the mobile robot enters the water, the algorithm notifies it of the

positions where it will need to sense information. In the case of TanBugPath method, the

robot does not know the position of any sensor except the first one when it enters the water

column. The underwater robot finds its path to this sensor while maintaining a minimum

distance so as to not cover overlapping regions. This sensor then transmits information

about the location of the next sensor to the robot and the process continues in this manner.

Finally, in the case of the adaptive decentralized algorithm, AdaptivePath, the sensors

inform the underwater robot about the position of the next robot waypoint it should go to

for sensing. A covariance function is needed for this algorithm. This covariance function

describes the relationship between the sensors’ positions and all the other points in the

region of interest.
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We have assumed a fixed covariance model for AdaptivePath algorithm. However,

it can be iterated with different covariance models to capture dynamic phenomena. For

example, if the water column has a specific region which is more interesting to study, the

user can specify a different covariance function for that region and tell the underwater

nodes to explore that region in greater detail. The decentralized controller determines the

position of the nodes so that it is able to collect data that is reflective of the performance

of the entire system and not just the particular positions where there are nodes. We have

modeled the covariance as a multivariate Gaussian, as is often used in objective analysis in

underwater environments [51]. The algorithm uses the covariance model in a decentralized

gradient descent algorithm. We prove that the controller algorithm converges to a local

minimum. While planning the path of the underwater robot, the algorithm also readjusts

the position of the sensors to adapt to the mobile robot path and to provide better sensing

of the region.

In the three algorithms mentioned above, we assume that an acoustic modem is used

for communication between sensors and with the underwater robot. All the algorithms

have low memory requirements and thus can run locally on the sensor network. We

perform simulation experiments to examine and compare the different algorithms and

then, show our results.

In [20, 25] where Detweiler et al. applied the original adaptive decentralized algorithm

to study the problem of monitoring CDOM in the Neponset River. We can use the path

planning algorithms to study the same phenomenon. This is one of the many practical

applications where we will be testing the developed system in our future work.

1.1 Thesis Contributions

This thesis makes a number of contributions to the field of underwater sensor networks

and robotics. Specifically, we:

• Present a new model of using underwater sensor network and an underwater mobile
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robot in parallel for effective network coverage and node placement.

• Introduce and compare three different path planning algorithms for the traversal of

the underwater mobile robot.

• Develop a decentralized controller that creates a path for the mobile underwater

robot and also optimizes the depths of the underwater sensors for energy efficient

and effective data collection.

• Prove that the proposed controller converges.

• Extensively analyze the performance of the algorithms in simulation.

1.2 Thesis Outline

The rest of this thesis is organized as follows. First, we discuss the related work in

Chapter 2. We next give a brief overview of the background work in Decentralized

Depth Adjustment algorithm in Chapter 3. This is followed by Chapter 4, in which we

introduce and analyze three different path planning algorithms for planning the path

of the underwater mobile robot. Chapter 5 explores results of simulations to test the

performance of the algorithm and explores the sensitivity to different parameters. Finally,

we discuss future work and conclude in Chapter 6.
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Chapter 2

Related Work

Studying the underwater phenomenon is an increasingly interesting area of research. Many

scientists have pursued this research in many different ways. Some have concentrated on

studying under the water by effective placement of sensor networks, while some study

that by planning an effective path of a mobile robot through regions of interest. Our

research focuses on both these areas and combines them together in this thesis. Along with

these two important areas, some other interesting topics are path optimization, and papers

dealing specifically with underwater sensors. We have presented the various important

research in these fields in separate section. Since two of our algorithms deal with path

planning with the help of Voronoi Tessellation and Tangent Bug Algorithm, we have presented

two different sections that discuss relevant work on these topics which might not be

directly related to underwater sensors.

2.1 Prior Work in Sensor Placement

Many research [35, 44] on sensor placement use submodular optimization to address

problems based on searching. Most of them uses Gaussian Processes to model spatial phe-

nomena. As such we have used a Gaussian Covariance function to model the phenomenon

for our research. Some of the important research in sensor placement is presented in this
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section.

In [35], Guestrin et al. propose placing of sensors for monitoring Gaussian spatial

phenomena based on maximizing the mutual information. They chose mutual information

over entropy which is typically more popular and used in our research. The authors

propose a polynomial-time approximation that is within (1− 1
e ) of the optimum since

finding the configuration that maximizes mutual information is NP-complete. The entropy

and mutual information methods are compared based on root mean square error and log

likelihood on temperature data and the authors claim that the mutual information method

performs better than entropy. Then they demonstrate the approach on two real-world data

sets.

In [44], Krause et al. review the recent work on optimizing observation in sensor

network using several submodular functions. The authors present several submodular

theorems and propose how they can be considered to solve different problems.

The recent availability of low-cost Unmanned aerial vehicles (UAVs) have made it

possible for it to be used in a wide range of applications such as mapping, surveillance,

search, and tracking. To leverage the capabilities of a team of UAVs, efficient methods

of decentralized sensing and cooperative path planning are necessary. In [62], Tisdale et

al. developed decentralized, autonomous control strategies that can account for a wide

variety of sensing missions. In this paper, the goal is to use a team of unmanned vehicles

to search for and localize a stationary target. The sensing system is vision-based. The

system allows target search and localization in the same software framework. A general

control framework was developed by posing path planning as a trajectory optimization

problem. Path planning is accomplished in a receding-horizon framework; an objective

function that captures information gain is optimized at each time step, over some planning

horizon. The UAVs cooperate by exchanging predicted sensing actions between vehicles.

The authors discuss many receding-horizon strategies that plan only a single step into the

future and claim that for systems with constrained sensor footprints, multi-step planning

is important and in some cases necessary for a good performance.
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In [20, 25], Detweiler et al. present a adaptive decentralized controller that optimizes

sensing by adjusting the depth of a network of underwater sensors. The authors prove that

the controller converges to a local minimum. Extensive simulations and experiments are

performed to verify the functionality of the system. The body of work presented in this

thesis is an extension of this work. An extensive background on this research is presented

in Chapter 3.

In [39], Julian et al. present an entropy based approach to control robots equipped

with sensors to improve the quality of sensing. The robots move following the gradient of

mutual information. The performance of the system is demonstrated in a five quad-rotor

flying robot experiment and 100 robot numerical simulation. This is similar to our thesis as

a few robotic sensors are distributed autonomously to maximize the sensing. However, in

this paper the authors assume a non-parametric system but we assume a Gaussian process

for our system.

In [38] the authors present theorems and algorithms for using many collaborating

robots equipped with sensors to acquire information from a large-scale environment. The

authors assume a non-parametric distribution of data and achieve decentralized control by

using a consensus-based algorithm which was specifically designed to approximate the

required global quantities like mutual information gradient and sequential Bayesian filter

with local estimates.

Finally they combine the work presented in [39] and [38] in [40] and then develop a

fully decentralized system. They also carry out further experiments to test their system on

a small-scale indoor experiment and a large-scale outdoor experiment using five quadrotor

flying robots and then use the developed inference and coordination software to simulate

a system of 100 robots.

2.2 Prior Work in Path Planning

Often only one or a few mobile robots need to gather information from a large body of

water. In such cases we need to plan their trajectory depending on various constraints
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such as presence of obstacles on the path or the energy capability of the robot itself,

etc. Several approaches have been developed for addressing these problems, however,

they have limitations like discretization of state, efficiency vs. accuracy trade offs, or

the difficulty of adding interleaved execution. These existing methods are successful in

planning path for the robot to move from an initial to a final position by a minimum

distance or pertaining to some other optimizing constraint. But most of them do not

focus on mobile robots whose primary objective is to gather information with an on-board

sensor from different target points. In our thesis we present a system which combines

a semi-mobile sensor network and a mobile underwater robot which together focus on

gathering maximum information from the entire region of interest. In this section we

present some prior research in path planning.

One of the earliest problems regarding path planning is discussed by Brooks et al. in

[4] where the main focus is on a good representation of free space. The authors present a

fast algorithm to find good collision-free paths for convex polygonal bodies through space

littered with polygonal obstacle. The algorithm is based on characterizing the volume

swept by a body as it translates and rotates as a generalized cone. Then it determines

under the conditions in which one generalized cone is a subset of another. An important

feature of this work is that the paths found out by the algorithm tends to be equidistant

from all objects, thus it does not lead to any failure of mechanical devices in the robot due

to mechanical imperfections. The major drawback of the algorithm presented in this paper

is that it typically does not work well in tightly constrained spaces as there are insufficient

generalized cones to provide a rich choice of paths.

A large portion of research on path planning is focused on how a robotic manipulator

can reach a certain goal point while avoiding other static obstacles in its path. In [34],

Gilbert et al. describe an approach where an obstacle is avoided in terms of the mathemati-

cal properties of the distance functions between potentially colliding parts. The authors

then apply the numerical methods on a three-degree-of-freedom Cartesian manipulator.

Some researchers have explored the problem of path planning for autonomous robots
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in the presence of mobile obstacles. In [29], Fujimura et al. use time as one of the

dimensions of the model world due to which the moving obstacles can be regarded as

being stationary in the extended world. The obstacles are represented by quadtree-type

hierarchical structure. According to the authors, speed, acceleration, and centrifugal force

are the three most essential factors in navigation. If the the robot does not collide with any

other moving obstacles and is able to navigate without exceeding the predetermined range

of velocity, acceleration, and centrifugal force, a solution is feasible. The major drawback

of this paper is that the performance suffers if the search space size increases or if the

number of obstacles in space increases.

A number of the earlier path planning problems deal with how robotic manipulators

can operate in an environment with static obstacles. For example, in [42], Kavraki et al.

propose a two stage algorithm for path planning for robots with many Degrees of Freedom

(DOF). The first or preprocessing stage takes place only once for a given environment and

in this stage the algorithm generates a network of random collision-free configurations. In

the next planning stage, the algorithm connects any given initial and final configurations

of the robot to two nodes of the network and then computes a path through the network

between these two nodes. The preprocessing stage takes a large amount of time but the

planning stage is extremely fast. This approach is specially suitable for many-DOF robots

which have to perform many successive point-to-point motions in the same environment.

The authors implement the method with many 6 to 10 DOF robots and then analyze their

performance.

Many papers on robotic path planning deal with how a single autonomous robot will

navigate through a cluttered environment. In [61], Thrun et al. integrate the grid-based

and topological paradigms. Topological maps are generated on top of the grid-based maps

which are learned using artificial neural networks and Bayesian integration which is then

used to autonomously operate a mobile robot equipped with sonar sensors in populated

multi-room environments.

For unmanned missions in the real world, longer-range path planning is required. In
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most path planning algorithms it is assumed that all known, a priori information is correct

and the environment is fully known. However, in real word, the system should be able to

automatically plan a path from the vehicle’s current position to its goal position, using

only partial information about the environment. In [58], Stentz introduced a D* path

planning algorithm for generating optimal paths for a robot operating with a sensor and a

map of the environment. The map can be complete, empty, or contain partial information

about the environment. For regions of the environment that are unknown, the map may

contain approximate information, stochastic models for occupancy, or even a heuristic

estimates. The method is the used to plan a path for Unmanned Ground Vehicles (UGVs).

A sizable amount of work has been done in path planning with the help of the Potential

Field Method. For these method, global knowledge of the system is needed and mostly

static obstacles are assumed. Often, the objective is to go from one point to other in the

shortest time or by covering the shortest distance. No emphasis is given on the physical

properties of the system, so the characteristic of the system does not govern the path.

Some of the prior research is discussed in this section.

Warren et al. discuss planning path of robotic manipulators or mobile robots around

stationary obstacles in [68]. Potential Field Method is used as it is relatively fast. A trial

path is chosen and then improved under the influence of a potential field method as it

helps to avoid a scenario in which the robot gets stuck in a local minima. The drawback to

this method is that the global workspace should be known at the time of the planning.

Some research on path planning with Potential Field Method combine both the global

and local path planning together to achieve best results. For example, in [37], Hwang et

al. define a two level path planner where a potential function similar to the electrostatic

potential is assigned to each obstacle and free space is determined in terms of minimum

potential valleys. In the first stage, a global planner selects the path of the robot from the

minimum potential valleys and its orientations along the path that minimize a heuristic

estimate of the path length and the chance of collision. In the next stage, a local planner

modifies the orientations of the robot and the local path and to derive the final collision-free
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path. If the local planner fails at any stage, a new path and orientations of the robot are

selected by the global planner and then fed to the local planner for estimation. This process

is continued until a solution is found or until there are no paths left to be examined. The

authors claim that this algorithm is capable of solving a large set of problems in much

shorter time than exact algorithms. The drawback of this paper is that it considers a point

robot.

Some papers place emphasis on local path planning because global path planning,

as discussed before, can often be impractical for the given situation and at the same

time computationally and time-wise more expensive. In [2], Barraquand et al. present a

collection of numerical potential field techniques for robot path planning which constructs

a good potential field and effectively escapes their local minima. All of them apply the

same approach of constructing a potential field over the configuration space of the mobile

robot, then builds a graph connecting the local minima of this potential, and then searches

this graph. The graph is built incrementally and searched as it is built. The authors

propose four different techniques for constructing the local minima graph and then study

the difference. Among the four techniques, the random motion technique has the best

combination of time efficiency, generality and reliability. Also it is highly parallelizable. The

authors claimed that the planner implementing these techniques was able to solve path

planning problems, whose complexity (measured by the number of DOFs or the number

of obstacles) is far beyond the capabilities of previously implemented planners and faster

than most previous planners for simpler problems.

When path planning problems are solved with Potential Field Method, many times there

are obstacles near the goal position and hence the mobile robots do not reach the goal. To

address that problem, in [31], Ge et al. introduce repulsive potential functions that take

the relative distance between the robot and the goal into consideration, ensuring the goal

position is the global minimum of the total potential so that the robot can reach the goal

while avoiding collision with obstacles. Then they use their method to solve the GNRON

problem in simulation.
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There are various off-beat papers which add to the family of artificial-potential-based

path-planning methods. For example, in [66], the potential field is motivated by steady-

state heat transfer. The authors, Wang et al., define obstacles and free-space in terms

of variable thermal conductivity. Thus the optimal path planning problem is reduce to

the problem of heat flow in the direction of minimal thermal resistance. The advantages

of this technique is that complex obstacles can be represented in a simple geometrical

domain and it can handle changes in the environment. The authors propose a method

for path planning of non-spherical robots, by reducing the problem into a sequential

translation-rotation search.

One of the major drawbacks of path planning with the help of Potential Field Method is

that the robot can get stuck in a local minima. Some researchers have studied different

methods so that the robot can escape the local minima if they are stuck. Yun et al., in [71],

describe an algorithm which switches between two control modes - the overall algorithm

follows the potential field guided control mode. However, when the robot falls into a local

minimum the new algorithm switches to a wall-following control mode. It then switches

back to the potential field guided control mode when a certain condition is met. The

distance from the robots current position to the goal position is used to determine if the

robot is caught in a local minima. The algorithm is implemented on a Nomad 200 mobile

robot. And simulation and experimental results are presented to show that the algorithm

is effective in escaping local minima in complex environments.

Many researchers have combined the Potential Field Method of solving path planning

problem with other methods. In [18], Connolly et al. propose a method for planning

smooth robot paths using of Laplaces Equation so that the functions will prevent the

spontaneous creation of local minima over regions of the configuration space of the robot.

The advantages of this method are that once the function is computed, paths can be solved

very quickly and is well suited for running on massively parallel architectures. However,

the process of finding the function is slow, hence, more suitable for parallelization.

In [73], Zhao et al. present a method for autonomous navigation of mobile robots
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using artificial potential field. It is shown that the controller can keep the robot away

from obstacles, and can escape from the local minima. Simulation are performed which

show that the method used has small memory requirements and there is no need for

preprocessing. The algorithm also prevents the robot from falling into complicated

environment where it can get trapped in a local minima.

As we can see most of these focus on finding a path from the source to the goal

point for the mobile robot and differs from our work which is focused on decentralized

control of the mobile robot to gather maximum information from different target locations

depending on local knowledge.

Bruce et al., in [5], develop a robot control system that uses Rapidly-Exploring Ran-

dom Trees (RRTs) path planner that combines path planning and execution called ERRT

(execution extended RRT). The authors introduced two extensions of previous work on

RRTs, the waypoint cache and adaptive cost penalty search, which are shown to improve

replanning efficiency and the quality of generated paths. Then the ERRT is applied to a

real-time multi-robot system and the results are shown it performs more efficiently for

replanning than a basic RRT planner.

Since most sensor-based path planning algorithms are evaluated by the length of the

path from the source to the goal, many are evaluated based on the worst path length and

finding out measures to shorten that. In [53], Noborio et al. argue that shortening average

path length is more important than shortening the worst path length in the practical use

and then present one such algorithm. The authors also compare all the sensor-based

path-planning algorithms with respect to average path length.

A number of research papers on path planning can be categorized as Simultaneous

Localization and Mapping (SLAM) where the robot does not have any information about

the global environment but traverses along the environment while at the same time it is

mapping it. In [43], Kollar et al. present a information-theoretic approach for representing

the frames in the environment as a constrained optimization problem. In this algorithm,

the authors converted the current environmental map to a graph of the map skeleton.
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Sensing constraints are placed at the boundaries and frontiers of the environment which

are denoted as the graph nodes. Then the algorithm searches for a minimum entropy

tour through the graph. The authors describe that a specific factorization of the map

covariance allows the Extended kalman Filter (EKF) updates to be reused during the

optimization which gives an efficient gradient ascent search for the maximum information

gain path through the environment. Finally, a learner is introduced which optimizes the

local trajectory of the robot to predict a global path that results in a high quality map.

Often research in robot path planning for exploration and mapping has focused on

sampling the hotspot fields of the environment. In [72], authors Zhang et al. present a

method which is an information roadmap deployment (IRD) approach that combines

information theory with probabilistic roadmap methods. The information roadmap is

sampled from a normalized information theoretic function that favors samples with a

high expected value of information in configuration space. The method is implemented

in a simulated de-mining system to plan the path of a robotic ground-penetrating radar,

based on prior remote measurements and other geo-spatial data. The simulations show

that under a wide range of workspace conditions and geometric characteristics the system

performs more efficiently when IRD is used compared to complete coverage and random

search.

Low et al., in [49], formalized the task of exploration in a sequential decision-theoretic

planning under uncertainty framework called MASP for multi-robot systems. The time

complexity of solving MASP depends on the map resolution, which limits its use in large-

scale, high-resolution exploration and mapping. In [50], the authors extend their work

and present an information-theoretic approach to MASP (iMASP) for efficient adaptive

path planning for active exploration and mapping of hotspot fields. They reformulate the

cost-minimizing iMASP as a reward-maximizing problem and show, both theoretically

and empirically, that the time complexity becomes independent of map resolution and

is less sensitive to increasing robot team size. The advantage of this method is that it is

useful in large-scale, high-resolution exploration and mapping. The authors claim that
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the proposed approximation techniques can be generalized to solve iMASPs that utilize

the full joint action space of the robot team, and thus it will allow the robots to move

simultaneously at every stage.

A number of researchers have solved the problem of path planning for mobile robots

using heuristic measurements for point robots. In [11, 12], Choi et al. plan continuous

paths for mobile sensors to improve long-term information forecast performance. The

environment of the mobile robot is represented as a linear time-varying system and the

information gain is defined by the mutual information between the continuous measure-

ment path and the future verification variables. Spatial interpolation is used for path

representation and planning. Two different expressions for computing the information

gain - the filter form and the smoother form - are compared. The smoother form is reported

to be preferable. The proposed theoretical frameworks are tested on a numerical example

for the simplified weather forecast. The key contribution of this work is to provide a

framework for quantifying the information obtained by a continuous measurement path

to reduce the uncertainty in the long-term forecast for a subset of state variables which

differs from the work presented in this thesis in that it focuses on reducing uncertainty in

current ongoing measurements.

Some mobile robots have constraints like a bounded field of view (FOV). Not many

existing path planning techniques can be applied to find a trajectory for such robots. In [8],

Cai et al. developed a methodology for planning the sensing strategy of a robotic sensor

with a bounded FOV deployed for the purpose of classifying multiple fixed targets located

in an obstacle-populated workspace. In this paper, obstacles, targets, sensors platform, and

FOV are represented as closed and bounded subsets of an Euclidean workspace giving

an unique cell decomposition. A connectivity graph is constructed with observation cells

and then it is pruned and transformed into a decision tree that is used to compute an

optimal sensing strategy, including the sensors motion, mode, and measurement sequence.

The method is demonstrated through a mine-hunting application. The authors then

perform numerical experiments which show that these strategies outperform shortest path,
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complete coverage, random, and grid search strategies, and are applicable to non-overpass

capable robots that must avoid targets as well as obstacles.

2.3 Prior Work in Path Optimization

Another important criteria for path planning for mobile robot is to optimize the path

based on some criteria like time taken, energy consumed, or information gained etc. Our

algorithm is optimized for the dual parameters of maximizing information gain and

minimizing the distance traveled. In this section we present some of the prior work in

optimizing the path based on different criteria.

In [48], Liu et al. introduced a method of information-directed routing in which routing

is formulated as a joint optimization of data transport and information aggregation. The

routing objective is to minimize communication cost while maximizing information gain.

In this paper, possible moving signal sources are located and tracked as an example

of information generation processes. Two common information extraction patterns are

considered - routing a user query from an arbitrary entry node to the vicinity of signal

sources and back, or to a pre-specified exit node. The goal is to maximize the information

accumulated along the path. The simulations performed with the proposed algorithm

demonstrated that information-directed routing is a significant improvement over a pre-

viously reported greedy algorithm, as measured by sensing quality such as localization

and tracking accuracy and communication quality such as success rate in routing around

sensor holes.

Celeste et al., in [10], presented a framework to solve the the problem of planning

the path of an intelligent mobile robot in a real world environment described by a map

composed of features representing natural landmarks in the environment. The vehicle is

equipped with a sensor which allows it to obtain range and bearing measurements from

observed landmarks during the execution. The problem was discretized and a Markov

Decision Process with constraints on the mobile maneuver was used. Functionals of

the Posterior Cramẽr-Rao Bound is used as the criterion of performance of the optimal
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trajectory planner and a Cross Entropy algorithm is used to solve the optimization.

In [59], Stranders et al. presented an on-line, decentralized coordination algorithm

for monitoring and predicting the state of spatial phenomena by a team of mobile sen-

sors. Since the sensors are applied for disaster response, there is strict time constraint

which prohibits path planning in advance. In this algorithm, the sensors coordinate their

movements with their direct neighbors to maximize the collective information gain, while

predicting measurements at unobserved locations using a Gaussian process. The authors

show how the max-sum message passing algorithm can be applied to this domain in order

to coordinate the motion paths of the sensors along which the most informative samples

are gathered. It presents two new generic pruning techniques that result in speed-up of

up to 92% for 5 sensors. The proposed algorithm is evaluated empirically against several

on-line adaptive coordination mechanisms, and up to 50% reduction in root mean squared

error is reported compared to a greedy strategy.

As we can see, optimization in most of the research presented here is based on one

major or two somewhat related parameters. But in real world, we might need to optimize a

system based on two opposing parameters. In our research we present such a system and

evaluate the different system parameters that affect the overall sensing of the environment.

2.4 Prior Work in Underwater Sensors

Since our research discusses the path optimization for underwater mobile robot in presence

of an existing semi-mobile sensor network, another important line of research is the prior

work that has been carried out in the domain of underwater sensor networks. In this

section we present some of these research relevant to our thesis.

In [47], Leonard et al. design an effective and reliable mobile sensor network for

collecting the richest data set in an uncertain environment given limited resources. Their

main focus is on designing mobile sampling network to take measurements of scalar or

vector fields and collect optimal data using Autonomous Underwater vehicles (AUV) for

sensing. In response to measurements of their own state and measurements of the sampled
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environment, AUV can control their own motion using feedback control. This reactive

approach to data gathering is adaptive sampling. Even though they use feedback control

for their robots, which is of a different type than ours, they use a similar covariance model.

Smith et al. present a combination of two algorithms in [57] for monitoring under water

with sensors and use it to study the occurrence and life-cycle of harmful algal blooms

in ocean. The first algorithm finds a closed path which passes through regions of high

sensory interest while avoiding areas that have large magnitude or highly variable ocean

currents. Along this path, the second algorithm sets the pitch angle at which the glider

moves along the path to ensure higher sample density is achieved in areas of higher

scientific interest. These two algorithms are combined into a single, iterative low cost

algorithm with the output of the path planning algorithm being used as the input for

the angle optimization algorithm. These strategies are implemented on an autonomous

underwater glider which goes through a region of interest. This is similar to our algorithm

if we use just the mobile underwater robot. Also they focus mainly on a planar region of

interest whereas our mobile robot mainly focuses on the depth of the water column.

There are a number of papers which deal with path planning for underwater sensors.

For example, in [54], Petillot et al. describe a general framework for performing 2-D

obstacle avoidance and path planning for underwater vehicles based on a multi-beam

forward looking sonar sensor. There are two phases - planning and tracking. The feature

extraction is performed on real-time data and consecutive frames are studied to obtain the

dynamic characteristics of the obstacles. A representation of the vehicles’ workspace of

the obstacle is created based on these features which is a convex set of obstacles defining

the workspace. Then a sequential quadratic programming, which is a non-linear search

algorithm, is employed, where obstacles are expressed as constraints in the search space for

obstacle avoidance and path planning in complex environments which include fast moving

obstacles. The authors then show the results obtained on real sonar data. Compared to

other methods, this system generates very smooth paths, can handle complex and changing

workspaces and presents no local minima as they are using a convex representation for
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the obstacles.

An Autonomous Underwater Vehicles (AUV) is a robot which travels underwater

without requiring input from an operator. The path planning for AUV is necessary as

unforeseen events may violate constraints of a previously planned path and it may need to

plan a new path subject to additional constraints. In [9], Carroll et al. proposes a suitable

path planning algorithm for AUV that maintains a number of databases to facilitate the

planning process for the Autonomous Underwater Vehicle Controller Project at Texas A&M

University. An A∗ algorithm is used to generate path. The path planner described in this

paper tries to find a 3D corridor that does not intersect any non-entry zones. Additional

factors affecting performance of the algorithm are evaluated and discussed in this paper.

Often researchers have to send an AUV multiple times to collect information. If there

is a way to improve the quality of the path based on the information gained while the

AUV traveled on an old path or if a path in a new region can be determined from the path

followed by the AUV in a different but similar region, that might be useful to researchers.

In [65], Vasudevan et al. propose a case-based path planning scheme in which the algorithm

relies on past experience to solve new problems or generates a new solution by retrieving

and adapting an old one which approximately matches the current situation. In this paper,

the authors describe how the environment, including past routes and objects, and case

frames of past route planning scenarios can be represented in the navigational space and

then represent the navigational environment using an annotated map system which are

useful in retrieving and adapting them to a new route. Whenever a matching route is not

available, a new route is synthesized by the planner relying on past cases that describe

similar navigational environments.

Researchers have studied the path planning for AUV under the circumstance where

there are obstacles in the water column. In [67], the author, Warren, develops an artificial

potential field technique for planning the path of an AUV. This method is less susceptible

to local minima than other potential field methods. A trial path is chosen first. Then

potential fields are applied around obstacles. The trial path is then modified under the
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influence of the potential field until an appropriate path is found. One disadvantage of

this methods is that most of the global workspace should be known at the time of the

planning to figure out the trial path. However, this method has the provision that when

new obstacles are discovered, they can be included and a new route planned based on the

updated obstacle field.

In the ocean it is not easy to predict what locations will be more useful to collect data

from. Qualitatively, the region is defined by an objective function and the goal is then

to optimize this objective under the constraints of available observing network. This is

called adaptive sampling of the ocean. Yilmaz et al., in [70], propose a new path planning

scheme for adaptive sampling based on mixed integer linear programming (MILP), which

is capable of handling multiple-vehicle and multiple-day cases. The mathematical goal is

to plan the path that will maximize the line integral of the uncertainty of field estimates as

sampling this path can improve the accuracy of the field estimates the most. The authors

take into account several constraints while addressing the issue like motion constraints,

vicinity constraint for multiple vehicles, communication constraint, obstacle avoidance etc.

Implementation platform is XPress-MP optimization package from Dash Optimization.

The problem is an NP-hard problem, therefore, as the size of the region increases, the

solution time increases exponentially.

In [55], the authors Petres et al. introduce a novel Fast Marching (FM)-based approach

that is designed to efficiently deal with wide continuous environments prone to currents

under water. There are four steps: First, the authors develop an algorithm (FM∗) to extract

a 2-D continuous path from a discrete representation of the environment; in the next step,

a practical implementation of anisotropic FM is used so that the underwater currents

adapted to the path-planning method; thirdly, the vehicle kinematics is taken into account

for both isotropic and anisotropic media; finally, a multi-resolution method is introduced

to speed up the overall path-planning process. The main drawback of this method is data

reduction can produce a loss of information which in turn can affect the optimality of the

resulting path. Also, the authors assumed only static environment and, so, can be defined
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a priori in a cost function.

In all these research the focus is on either avoiding obstacles to gain maximum infor-

mation from a region or on traversing the water to gain maximum information. However,

none of these researcher discuss how to plan the path of mobile robot when there are

semi-mobile sensors already deployed in the region of interest. Our method specifically

deals with this problem.

2.5 Prior Work in Path Planning with Voronoi Method

A number of researchers have used the Voronoi Tessellation method for planning the path

of a robot. In our thesis we use an implementation of the Voronoi Tessellation method

for global path planning of the mobile robot through an environment scattered with

semi-mobile sensors. Hence, in this section, we present a short overview of the relevant

prior research in this area.

Takahashi et al., in [60], introduce a path planning algorithm based on Generalized

Voronoi Diagram (GVD) for a rectangular object in a planar workspace populated with

polygonal obstacles. After generating the GVD of the free space, it is converted into a

equivalent graph with nodes and arcs. Then, graph theory algorithms are applied to

find an optimal path from the source to the destination. In addition, they examined

four heuristic techniques for planing the motion of the rectangular object through the

workspace. This algorithm is fast, creates shorter path lengths, and can be applied to

cluttered workspaces. This is similar to our research as it uses a similar type of algorithm.

However, the criterion used to search the graph in this paper is simply the shortest path

satisfying a minimum radius threshold whereas in our algorithm we determine the shortest

path using Djikstra’s algorithm.

Several other path planning algorithms have been proposed based on the generalized

Voronoi diagrams. Choset et al., in [14, 15, 13, 16] present the underlying idea that the

boundaries of Voronoi diagrams can be used to calculate paths that have maximum

clearance between the boundaries of the robot and the obstacles which we use in our
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research to represent the most efficient robot path.

The Hierarchical Generalized Voronoi Graph (HGVG) is a method in which the algorithm

uses distance information to incrementally construct the HGVG edges. The numerical

procedure uses raw sensor data to generate a small portion of an GVG edge. The robot

then moves along this portion and the procedure is repeated to generate the next segment.

Therefore HGVG interleaves sensing with motion [17].

In [36], Hoff et al. present several techniques that exploit the fast computation of

a generalized Voronoi Diagram using graphics hardware for motion planning in three-

dimensional workspace for rigid robots. This paper gives similar arguments for using

Voronoi Diagram for path planning just like us. However, the path planning is done in a

three dimensions compared to two dimensions in our case, and as such requires the use of

graphics HD drive.

Some authors have applied the Voronoi method of path planning for non-holonomic

robots. In [52], Nagatani et al. proposed a local path planning method for car-like mobile

robot based on Generalized Voronoi Graph (GVG).

In [30], a linear time two-step method for global path planning for a robot is described

by Garrido et al. Here, at first the safest areas of environment are extracted by means of

a Voronoi diagram and then in the second step a Fast Marching Method is applied to the

extracted areas to obtain the shortest path. The advantages are speed, easy implementation

and creates smooth trajectories that increases the quality (reliability). An interesting

features is that the proposed algorithm dilates the robots and obstacles to make the path

secure and to avoid collision. An interesting similarity between this algorithm with the

one presented by us in this thesis is that the objects and walls are dilated in a security

distance that ensures that the robot neither collides with obstacles and walls nor accepts

passages narrower than the robot size.

Bhattacharya et al., in [3], present an algorithm based on the Voronoi diagram for the

calculation of optimal path between the source and the destination. The path obtained

directly from the Voronoi diagram may not be always optimal. At regions where the
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obstacles are far apart, there may be many unnecessary turns which increases the path

length. So, in this algorithm, users can specify the clearance between the robot path and

the obstacles. Depending on this value a path is constructed that is a close approximation

of the shortest path satisfying the required clearance value set by the user.

2.6 Prior Work in Path Planning with TanBug Method

We present a local path planning algorithm which uses a variation of the Tangent Bug

algorithm. So in this section we present some prior research work which helped us

formulate our algorithm. In [41], Kamon et al. introduce the TangentBug algorithm which

is a range sensor based navigation algorithm for autonomous robots with two degrees

of freedom. This algorithm is discussed in detail in Chapter 4.5. In brief, the TangentBug

algorithm uses the range sensor data to compute a locally shortest path based on the

local tangent graph, or LTG and from there chooses the locally optimal direction to move

towards the target. This algorithm performs better than other classical bug algorithms.

The advantage of this algorithm is that it requires global position information only for the

detection of the target and for looping around an obstacle boundary.

Most of the prior work in robot path planning assumes indoor environments and

omnidirectional motion and sensing for robots. However, in [46], Laubach et al. remove

these non-realistic assumptions and implement the algorithm on the Rocky 7 Mars Rover

prototype.

In real life, the autonomous robot have less than ideal sensing due to limitations in

the range in which it can sense its surroundings. Therefore, the path planning of a robot

cannot be based on complete global knowledge of the environment. Thus the robots need

to continuously sense its environment using its on-board sensors in order to navigate

the environment. In [33, 32], Ge et al. introduced concept of an Instant Goal approach

which is a local target specially designed for action planning based on sensory input. The

algorithm, like the Bug algorithms, combines the global information and local sensor data.

The main contribution of this paper is integration of Collision Avoidance With Boundary
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Following. Also the authors present a vector representation of the local environment in

the paper. This paper helped us formulate the concept of instant goal, updated on each

iteration, which is applicable to our system. However unlike this paper, our research does

not incorporate the concept of collision avoidance.

Tangent Bug is one of the most frequently used algorithm for obstacle avoidance for

sensor based mobile robots. In presence of static obstacles, the Tangent Bug algorithm can

be used to plan a path from the start to the goal. In [69], the author Wei proposed a new

complete sensor based path planning algorithm for autonomous mobile robot that uses a

smooth version of the TangentBug algorithm. The advantages are that the algorithm has

global convergence to the target and at the same time generates a smooth path.

In [7], Buniyamin et al. present an overview of the path planning algorithms for

autonomous robots focusing mainly on the bug algorithm family. In addition, they

introduce a new algorithm called the PointBug which minimizes the use of the outer

perimeter of an object, which results in a shorter path length. Finally, this new algorithm

is compared with existing ones. The main feature of this algorithm is that it can operate

in a dynamic environment as it requires minimal amount of prior information. However,

the authors assume that the point robot is equipped with ideal sensing (an infinite range

sensor, odometer, and digital compass with ideal positioning.) which is rarely possible in

a real-life environment. This research is similar to ours as it emphasizes planning with

only local knowledge and the type of sensing. However, instead of obstacles in the region

of interest we have static sensors with given sensing radius.

2.7 Summary

Increasingly, scientists have used static sensors and robots to study various underwater

phenomenons. However, until now, most of this work mainly focused on planning path for

mobile underwater AUVs or deploying sensors underwater effectively to gain maximum

information. None of these work have combined the underwater sensor and robots

together to effectively scan the environment to increase the information gain. The current
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work aims at demonstrating the possibility that using sensors and robots together can be

used to gain more target specific information from a underwater region. The related work

addresses challenges in sensor placement, path planning, path optimization etc. while

working with underwater sensors and robots. In the following chapters we present our

system and algorithms in detail and discuss how they fill the gaps present in current

systems.
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Chapter 3

Decentralized Depth Adjustment :

Background

3.1 Introduction

In this chapter we introduce the background work on Decentralized Depth Adjustment

algorithm by Detweiler et al. in [20, 25]. This information is important in the upcoming

chapters. In Section 3.2 we briefly describe the hardware platform that will be used for the

experiments. In Section 3.3 we introduce the theory, software and algorithm that will be

used on the hardware platform described. Chapter 4.4 proposes the mobile underwater

robot to increase the efficiency of sensing over the whole region of interest.

3.2 Underwater Sensor Network and Robot Platform

Detweiler et al. developed an inexpensive underwater sensor network system that incor-

porates the ability to dynamically adjust its depth. The base sensor node hardware is

called the AquaNode platform and is described in detail in [21, 26, 64]. In [22], they have

extended this basic underwater sensor network with autonomous depth adjustment ability

and created a five node sensor network system, whose nodes move up and down in the
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water column under their own control. In addition, they have developed an underwater

robot, called Amour, that can interact and acoustically communicate with the underwater

sensor network [24, 27, 63]. Here we will briefly summarize the system.

Figure 3.1 shows a picture of the AquaNodes with the depth adjustment hardware and

the underwater robot Amour. Both the underwater sensors and the robot have built-in

pressure and temperature sensors and inputs for a variety of analog and digital sensors.

Figure 3.1: Depth adjustment system with AquaNode and underwater robot Amour [19].

The communication system used for communication between sensor nodes and the

underwater robot is a custom developed 10 W acoustic modem [26]. The modem uses

a frequency-shift keying (FSK) modulation with a 30 KHz carrier frequency and has

a physical layer baud rate of 300 b/s. The acoustic modems are also able to measure

distances between pairs of nodes. In previous work, it has been demonstrated how

this can be used to perform relative localization between the sensor nodes and provide

localization information to underwater robots [23]. We can use this capability to determine

the positions of the nodes in our experiments and guide the underwater robot.

The AquaNodes is anchored at the bottom and floats mid-water column. The depth
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adjustment system allows the length of anchor line to be altered to adjust the depth in the

water. The AquaNodes is cylindrically shaped with a diameter of 8.9 cm and a length of

25.4 cm without the winch mechanism and 30.5 cm with the winch attached. It weighs 1.8

kg and is 200 g buoyant with the depth adjustment system attached. The depth adjustment

system allows the AquaNodes to adjust their depth (up to approximately 50 m) at a speed

of up to 0.5 m/s and use approximately 1 W when in motion. With frequent motion and

near continuous depth adjustment the nodes have power (60 Wh) for up to two days. In

low power modes it can be deployed for about a year, but typical deployments are in the

order of weeks. Additional details on the AquaNodes hardware can be found in [22].

3.3 Background in Decentralized Depth Adjustment

In this section we briefly discus the general decentralized controller, describe the Gaussian

covariance function to be used, and define the controller in terms of the covariance function.

This controller converges to a local minima [20, 25]. In Chapter 4 we extend this algorithm

to encompass underwater mobile robots introduced to the system.

3.3.1 Assumptions

The decentralized depth control algorithm we develop in this chapter makes some assump-

tions about the system. These are:

• The nodes know their locations.

• The nodes can communicate with each other.

• The nodes can adjust their depths.

• The nodes know the covariance function.
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3.3.2 Problem Formulation

Given N sensors at locations {p1 · · · pN}, we want to optimize their positions for providing

the most information about the change in the values of all other positions q ∈ Q, where Q

is the set of all points in our region of interest. In this case, the underwater sensor nodes

are constrained to move in one dimension along z-axis with fixed x, y axes.

The best positions to place the sensors are positions that tell us the most about other

locations. If we have one sensor at position p1, and one point of interest q1, then we

want to place p1 at the location which is closest to q1 because any changes in the sensory

value at q1 will be highly correlated to the changes that we measure at p1. The covariance

function captures the essence of this correlation. So, a sensor should be placed at the point

of maximum covariance with the point of interest. Or more formally, sensor should be

placed at position p1 such that Cov(p1, q1) is maximized.

More generally, if we have M points of interest in the region Q, to maximize the

covariance between the point of interest qj and all sensed points pi by moving all pi to

maximize:

arg max
pi

M

∑
j=1

N

∑
i=1

Cov(pi, qj) (3.1)

However, this objective function has the problem that some areas may be covered

well while others might not be covered. To prevent that, we need to ensure the objective

function penalizes regions that are already covered by other nodes. This is achieved by

modifying the objective function to minimize:

arg min
pi

M

∑
j=1

(
N

∑
i=1

Cov(pi, qj)

)−1

(3.2)

Instead of maximizing the double sum of the covariance, this objective function mini-

mizes the sum of the inverse of the sum of covariance. This reduces the increase in the

sensing quality achieved when additional nodes move to cover an already covered region.
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For sensing every point in the region, we modify the objective function to integrate

over all points q in the region Q of interest:

∫
Q

(
N

∑
i=1

Cov(pi, q)

)−1

dq (3.3)

3.3.3 Objective Function

The objective function, g(q, p1, ..., pN), is the cost of sensing at point q given sensors placed

at positions {p1, ..., pN}. For N sensors, we define the sensing cost at a point q as:

g(q, p1, ..., pN) =

(
N

∑
i=1

f (pi, q)

)−1

(3.4)

This is the inside of Equation 3.3, when f (pi, q) = Cov(pi, q).

Integrating the objective function over the region of interest Q gives the total cost

function. We call this function H(p1, ..., pN) and formally define it as:

H(p1, ..., pN) =
∫

Q
g(q, p1, ..., pN) dq +

N

∑
i=1

φ(pi) (3.5)

The sum over the function φ(pi) is a term added to prevent sensors from trying to

move outside of the water column. This restriction on the node’s movement is needed

for the algorithm to converge. However, we can avoid this term in further discussions for

simplicity of notation as this has little impact on the results.

3.3.4 General Decentralized Controller

A decentralized control algorithm [20, 25] is derived from the given objective function in

Equation 3.5, that moves all nodes to optimal locations by making use of local information

only. This is achieved by minimizing H(p1, ..., pN), which will be henceforth referred to as

H.
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The gradient of H with respect to each of the zis is calculated:

∂H
∂zi

=
∂

∂zi

∫
Q

g(q, p1, ..., pN) dq (3.6)

=
∫

Q
−
(

N

∑
j=1

f (pj, q)

)−2
∂

∂zi
f (pi, q) dq (3.7)

=
∫

Q
−g(q, p1, ..., pN)

2 ∂

∂zi
f (pi, q) dq (3.8)

To minimize H, each sensor should move in the direction of the negative gradient. Let

ṗi be the control input to sensor i. Then the control input for each sensor is:

ṗi = −k
∂H
∂zi

(3.9)

where k is a scalar constant. This is a general controller which can be used for any sensing

function, f (pi, q). In the next section a practical function for f (pi, q) is described so that

this controller can be used.

3.3.5 Gaussian Sensing Function

We use the covariance between points pi and q as the sensing function:

f (pi, q) = Cov(pi, q) (3.10)

Ideally, the covariance between the ith sensor and each point of interest, q should be

known beforehand. As this is not possible, the authors chose to use a multivariate Gaussian

as a first-approach approximation of the sensing quality function. Using a Gaussian to

estimate the covariance between points in underwater systems is common in objective

analysis [51].

Quantities of interest, like algae blooms etc., in the oceans or rivers tend to be stratified

in layers with higher concentrations at certain depths. Thus, the sensor reading at a

position pi and depth d is likely to be similar to the reading at position q if it is also at
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depth d. And the sensor readings are less likely to be correlated between two points at

different depths. So we model the covariance function as a three-dimensional Gaussian,

which has one variance based on the surface distance (σ2
s ) and another based on the

difference in the depth (σ2
d ) between the two points.

Let f (pi, q) = Cov(pi, q) be the sensing function where the sensor is located at point

pi = [xi, yi, zi] and the point of interest is q = [xq, yq, zq]. Define σ2
d to be the variance in

the direction of depth and σ2
s to be the variance in the sensing quality based on the surface

distance. We then write our sensing function as:

f (pi, q) = Cov(pi, q) = Ae
−
(

(xi−xq)2+(yi−yq)2

2σ2
s

+
(zi−zq)2

2σ2
d

)
(3.11)

where A is a constant related to the two variances, which can be set to 1 for simplicity.

3.3.6 Gaussian-Based Decentralized Controller

We take the partial derivative of the sensing function from Equation 3.11 to complete the

gradient of our objective function shown in Equation 3.8. The gradient of the sensing

function ∂
∂zi

f (pi, q) is:

∂

∂zi
f (pi, q) =

∂

∂zi
Ae
−
(

(xi−xq)2+(yi−yq)2

2σ2
s

+
(zi−zq)2

2σ2
d

)

= − f (pi, q)
(zi − zq)

σ2
d

(3.12)

Substituting this into Equation 3.8, we get the objective function:

∂H
∂zi

= −
∫

Q

(
N

∑
j=1

f (pj, q)

)−2
∂

∂zi
f (pi, q)−1 dq (3.13)

=
∫

Q
g(q, p1, ..., pN)

2 f (pi, q)
(zi − zq)

σ2
d

dq (3.14)
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3.3.7 Controller Convergence

To prove that this gradient controller (Equation 3.9) converges to a critical point of H, the

following conditions must be satisfied [6, 45, 56]:

1. H must be differentiable;

2. ∂H
∂zi

must be locally Lipschitz;

3. H must have a lower bound;

4. H must be radially unbounded or the trajectories of the system must be bounded.

In [20, 25] Detweiler et al. show that the gradient controller satisfies all the conditions

for controller convergence and thus converges to a critical point of H.

3.3.8 Algorithm Implementation

Algorithm 1 shows the implementation of the decentralized depth controller (Equation 3.7)

in pseudo-code. The procedure receives, as input, the depths of all other nodes in commu-

nication range. The procedure requires two functions F(p_i,x,y,z) and FDz(p_i,x,y,z).

These functions take the sensor location pi and the point [x, y, z] that we want to cover.

The first function, F(p_i,x,y,z), computes the covariance between the sensor location

and the point of interest. The second function, FDz(p_i,x,y,z), computes the gradient of

the covariance function with respect to z at the same pair of points.

After the procedure computes the numeric integral, it computes the change in the

desired depth. This change is bounded by the maximum speed the node can travel. The

algorithm then checks if the desired change is less than some threshold. If it is, the

algorithm returns true to indicate that the algorithm has converged. If it has not converged,

the procedure changes the node depth and returns false.
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Algorithm 1 Decentralized Depth Controller
1: procedure updateDepth(p1 · · · pN)
2: integral ← 0
3: for x = xmin to xmax do
4: for y = ymin to ymax do
5: for z = zmin to zmax do
6: sum← 0
7: for i = 1 to N do
8: sum+ = F(p_i,x,y,z)

9: end for
10: integral+ = −1

sum2 ∗ FDz(p_i,x,y,z)

11: end for
12: end for
13: end for
14: delta = K ∗ integral
15: if delta > maxspeed then
16: delta = maxspeed
17: end if
18: if delta < −maxspeed then
19: delta = −maxspeed
20: end if
21: changeDepth(delta)

22: end procedure

3.4 Summary

In this Section, we provide information on the hardware platform and the software interface

which are important for understanding the background work of this thesis. In Chapter 4,

we device path planning algorithms that will use sensor network and underwater robot

presented in this chapter to increase overall sensing. We also present a modified version of

Algorithm 1 as one of the proposed underwater robot path planning methods.
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Chapter 4

Adaptive Sampling for Underwater

Mobile Robots: Algorithms

4.1 Introduction

In this chapter we describe three different algorithms for planning the path of a mobile

underwater robot in presence of semi-mobile sensors deployed in the system. The static

underwater sensors, as well as the mobile underwater robot all communicate acoustically,

so their range is limited.

First, in Section 4.2, we describe the path planning algorithm using the Voronoi Tessella-

tion method, which is a global path planning method as it needs to know positions of all

sensors. Depending on these positions the algorithm outputs the positions along the water

column through which the path of the underwater robot should pass. Thus, the robot

already knows the positions in the water column where it will sense information before

entering the water. This method typically chooses the path points such that the influence

of the neighboring two sensor nodes is the least on those points. This is the ideal case and

should maximize the information gained from the water column. The path obtained this

way is the Voronoi Robot Path.

In Section 4.3, we describe planning the path of the underwater robot using an approach
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inspired by the Tangent Bug algorithm which is a method used primarily for obstacle

avoidance by a mobile robot. This is a purely local path planning algorithm because when

the robot is released into the water, it has no idea of the location of the sensor nodes

except the first one. The robot then locally finds its way to this sensor at the same time

maintaining distance so that they are not covering overlapping regions. This sensor node

then transmits information about the position of the next sensor node to the robot and the

process continues in this manner. Since the underwater sensors tell the mobile robot which

point it needs to go towards next, the robot has to be within the communication range of

the sensor for this data to be transmitted. Hence, the Tangent Bug Robot path often looks

as if it goes from a point very near to a sensor to a point very near the next sensor.

Finally in Section 4.4, we develop a path planning algorithm using a modified version

of Decentralized Depth Adjustment algorithm which has been described in Chapter 3.

To implement the path planning of the mobile robot we need to modify the algorithm

presented in the previous chapter. Instead of just taking the location of the sensors as

input, this algorithm also takes the tentative positions of different points in the robot path

as input which are called robot waypoints. The algorithm then optimizes the positions of

the sensors as well as the robot waypoints. Now, when the underwater robot is released

in the water column, the sensor node nearest to the robot informs it about the next robot

waypoint that it should travel to for sensing. In this chapter, we also show that this

modified adaptive decentralized algorithm converges to a local minima.

The motivation behind using these techniques, the approach, and the implementation

of the algorithms are discussed in details in the following sections.

4.2 Voronoi Path Algorithm

Voronoi Tessellation is a method of dividing a given space into a number of regions. Such

a region is called a Voronoi cell and the set of all Voronoi cells for a given set of points is

called a Voronoi diagram. Given a set of points, Voronoi Tessellation divides the space

in such a way that all intermediate points lying closer to a particular point than other
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points in the set P lies in its Voronoi Cell. Mathematically, given a set of coplanar points

P = {p1, · · · , pn} of points in a plane and a distance function d(x, y) (the distance between

two points x and y), a Voronoi Tessellation is a subdivision of the space into n different

cells, one for each point in P such that a point q lies in the cell corresponding to a point pi

if and only if d(pi, q) < d(pj, q) for i 6= j.

4.2.1 Problem Formulation
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Figure 4.1: Voronoi Cell Diagram for Static
Sensor Layout - Bounded on all sides

Let us assume that the coplanar points are

the sensors in a plane of the water column.

If we draw Voronoi cells (Fig 4.1) around

each of the sensors, then the boundaries of

the Voronoi Cell between any two sensors

is a straight line which is equidistant from

the two sensors on either side of it. So the

influence of these two sensors is the least

on this straight line. Now if we release a

mobile robot to maximize the information

gain from the water column then it should

pass through this straight line. This is be-

cause the mobile robot is passing over points which are least influenced by the static

sensors. This is the ideal case and should maximize the information gained from the water

column. The path obtained this way is the Voronoi Robot Path and can be seen in Fig. 4.2.

To apply the Voronoi Tessellation method to our problem, we need to do the following:

Firstly, each sensor arranges itself on the basis of the Algorithm 1. These static sensor

locations are sent as input to the Voronoi Tessellation Algorithm 2 . The algorithm finds

the Voronoi path and outputs the path points at which the mobile robot should sense

information. A mobile robot starts on the first point of interest and then moves along the

path by joining all such points of interest along the path.
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Figure 4.2: Mobile Robot path obtained from
Fig. 4.1

At times there can be very sparse

Voronoi vertices for a given set of sensors.

In our algorithm that will signify that even

though the mobile robot is traversing the

entire water column, it does not sense at

all possible points of interests. Therefore,

we need to explicitly add more robot way-

points, or intermediate points, in between

the Voronoi vertices that we obtain from

this algorithm.

For our problem we mostly define the

water column to be a depth of 30m. For mathematical purposes, we can say that it lies on

the positive quadrant of the Cartesian plane and the y-axis spans from 0 to 30 units. The

sensors are always at a depth between 0m to 30m. However, often the Voronoi vertices

can lie at great distances from the region of the sensors. For example, if all the sensors

are colinear then the Voronoi vertices will lie at infinite distances and all the Voronoi

edges will be parallel to each other passing in between each sensor. In such a scenario it

is impossible to find a mobile robot path with the help of the Voronoi vertices. This is

an extreme case. But even when all the sensors are not colinear, due to the layout, some

Voronoi vertices can lie outside the region of the water column. In such a scenario, if we

do not do any further processing then that would lead to discontinuities in the path of the

mobile underwater robot. So in our algorithm, when we find a Voronoi vertex which lies

outside the water column, we find the intersection point between the lines connecting this

Voronoi vertex and the previous one and the upper or lower edge of the water column.

This point of intersection is designated as the new sensing point and the the vertex lying

outside the water column is discarded. We continue this process until we have eliminated

all the Voronoi vertices that lie outside the water column.
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4.2.2 Algorithm Implementation

Algorithm 2 VoronoiPath: Mobile Robot Path Planning using Voronoi Tessellation
Require: Sensor Locations, sensors, Robot Start position, pstart (optional); Robot Destination,pend (optional)
Ensure: Path Points for Mobile Robot, pathpoints
1: procedure VoronoiPath(sensors)
2: [Madj, Vvoro]← AdjacencyMatrix(sensors)
3: [pstart, pend]← ChoosePoints(Vvoro, sensors) . First and last Voronoi vertices chosen as pstart and pend
4: [d, pred]← Dijkstra(Madj, pstart)
5: pathpoints ← PathConstruct(Vvoro, pred, pstart, pend)
6: return pathpoints
7: end procedure
8:
9: procedure AdjacencyMatrix(sensors)

10: Vvoro ← voronoi(sensors) . Vvoro gets the N f inite vertices o f Voronoi Edges
11: for i← 1 to N do
12: for j← 1 to N do
13: Madj(i, j) = dist(Vvoro(i), Vvoro(j))
14: end for
15: end for
16: return Madj, Vvoro . Returns the Adjacency Matrix, Madj for Vvoro.
17: end procedure
18:
19: procedure PathConstruct(Vvoro, pred, pstart, pend)
20: array← Vvoro(pend)
21: i← 2
22: while pend 6= pstart do
23: pprev ← pred(pend)
24: pathpoints(i)← Vvoro(pprev)
25: pend ← pprev
26: i← i + 1
27: end while
28: pathnew

points ⊂ (pathpoints ∪ pathintersection
points ) s.t. all the points lie within the boundaries defined by user.

29: return pathnew
points . Returns all path points

30: end procedure
31:

Algorithm 2 shows the implementation of the path planning algorithm based on

Voronoi Tessellation. The procedure receives the location of all the sensors in the wa-

ter column as input. The main procedure requires three different functions such as:

AdjacencyMatrix, DijkstraShortestPath and, PathConstruct.

The first function, AdjacencyMatrix, takes the location of the sensors sensorArr as an

input and finds the vertices of the Voronoi cells around each sensor. It then connects each

of the Voronoi vertices with the remaining vertices and forms a complete graph. It then

creates an adjacency matrix Madj which contains information on each of these Voronoi
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edges. The length of the edge, i.e., the distance between any two Voronoi vertices, is stored

as the weight of the edge in the adjacency matrix.

The second function, DijkstraShortestPath, takes the the adjacency matrix Madj as

input and finds the shortest distance path d and the predecessor matrix pred that connects

the source pstart and the destination pend using the Dijkstra’s Shortest path algorithm. pstart

and pend can be chosen by the user or by using another function choosePoints.

Lastly, function PathConstruct takes the predecessor matrix pred as an input and

joins the vertices on the shortest path; adds intermediate points; and finally outputs the

sensing path for the mobile robot. This function also limits the Voronoi edges within the

region of the water column, by truncating the edges, if required, as discussed earlier.

The simulation experiments and analysis of mobile robot path obtained by this method

is discussed in Section 5.7.

4.3 Tangent Bug Path Algorithm

To plan the path of a mobile robot we need to know the environment in which the path

needs to be planned. Sometimes a global map of the environment is not available when the

robot starts moving towards its destination. A class of algorithms called the Bug Algorithms

have been proposed for path planning from a known fixed starting position to a known

fixed destination. Bug algorithms operate by switching between two simple behaviors:

1. Moving directly towards the goal location.

2. Circumnavigating an obstacle.

The Bug algorithms are guaranteed to take the mobile robot from the start to the destination,

given it is accessible. There are three popular Bug algorithms - Bug 1, Bug 2 and the

Tangent Bug algorithm [28].

Generally for the Bug algorithms, user assumes a point robot with perfect sensors.

For Bug 1 and Bug 2 algorithms, very simple sensors like contact sensors are sufficient.

However, there should be a finite range sensor for Tangent Bug algorithm. The algorithm
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also assumes that the robot’s position is accurately known and that using the sensors the

robot is capable of measuring the distance between two points. We will discuss Bug 1 and

Bug 2 briefly and then move on to discussing the Tangent Bug algorithm as it is the one

which is relevant to this thesis.

4.3.1 Bug 1 and Bug 2 Algorithms

(a) Bug 1 (b) Bug 2

Figure 4.3: Path Planning with Bug Algorithms [1]

In the Bug 1 Algorithm the robot follows the following steps:

• The robot heads towards the destination.

• If the robot encounters an obstacle, it circumnavigates it and stores/remembers at

each point how close it was to the goal.

• After circumnavigating the obstacle, the robot returns to the point that is closest to the

obstacle by wall-following and then continues on the path towards the destination.

Fig 4.3(a) shows how a point robot traverses an environment with two obstacles to

reach towards the destination using the Bug 1 algorithm. The Bug 1 algorithm can be

expensive. If the cost of the straight line path from the start to the destination is D and

the perimeter of obstacle i is Pi, then the distance d traveled by the robot is bounded by

D ≤ d ≤ D + 1
2 ∑i Pi. Hence the Bug 2 algorithm was proposed in which circumnavigating

the obstacle is avoided.

In the Bug 2 Algorithm the robot follows the following steps:
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• The robot heads towards the destination on the m-line which is defined as the line

joining the start location and the destination.

• If an obstacle is encountered, the robot follows it until the time it again encounters

the m-line again closer to the goal.

• The robot then leaves the obstacle and again continues toward the goal on the m-line.

Fig 4.3(b) shows how a point robot traverses an environment with two obstacles to

reach towards the destination using the Bug 2 algorithm. One of the major costs associated

with the Bug 2 algorithm is due to the requirement that the robot returns to the m-line

after circumnavigating an obstacle. It would be more cost effective if the robot could move

towards the destination directly as soon as a straight line path from its current position to

the destination is feasible.

Thus Bug 1 is an exhaustive search algorithm as it looks at all choices but Bug 2 is

a greedy algorithm. In many cases Bug 2 outperforms Bug 1, but Bug 1 has a more

predictable performance. In real world, however, we have sensors like range sensors which

are more powerful than a contact sensor and can look ahead to a finite range. Thus the

Tangent Bug algorithm is introduced.

4.3.2 Tangent Bug Algorithm

The Tangent Bug algorithm, finds the endpoints of finite continuous segments by drawing

a tangent from its current position to the surface of the obstacle. Let these points of intersec-

tion between the tangent and the obstacle boundary be denoted by a set O = {O1, · · · , On}.

The algorithm chooses the point Oi such that the distance d = dist(Pcurr, Oi)+ dist(Oi, Pdest)

(where dist(x, y) is the distance function, Pcurr is the current position of the robot, and Pdest

is the destination) is minimized and then moves towards that point. Once it reaches Oi

the robot again aims to go towards the destination and repeats the same process if it faces

another obstacle. The Tangent Bug algorithm is a local path planning algorithm as it does
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not need complete knowledge of the environment before the robot starts moving towards

the goal.

(a) Robot is equipped with infinite range sensor

(b) Robot is equipped with a finite range sensor

Figure 4.4: Path Planning with Tangent Bug Algorithm [1]

Ideally if the robot can sense infinite distances from its current position then the path

planned by the tangent Bug algorithm will look like Fig 4.4(a). However, in most real

problems, the robot is equipped with a finite range sensor which can look ahead only upto

a finite distance. The path planned in such a case, will look like the one in Fig 4.4(b) or a

different variation for the same set of obstacles. As we can see, the planned path depends

on the distance till which the robot can look ahead.
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4.3.3 Problem Formulation
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Figure 4.5: Plot showing a section of Sensors,
Sensing Bubble surrounding the Sensors and
Mobile Robot Path for path planning with

modified Tangent Bug Algorithm.
(rS = 5; rR = 5)

In our implementation we use Tangent Bug

algorithm in an innovative manner. We are

inspired by the local look ahead property

of the Tangent Bug algorithm. By the lo-

cal look ahead property we mean that the

robot, even though it has a distant goal

to reach, can look ahead only upto a cer-

tain distance ahead of it. For example in

Fig. 4.4(b), the robot can look ahead only

upto the range of it’s range sensor. Com-

ing back to the proposed algorithm, both

the underwater sensors and the underwa-

ter robot communicate acoustically, so their

range is limited. Since the path of the mo-

bile underwater robot depends on the location of the underwater sensors, one of the

possible ways to implement a local path planning algorithm under water is if the sensors

can tell the mobile robot the next point that the robot should be sensing at. This point

can be determined by the underwater sensor by finding the point on its sensing perimeter

which it has the least influence on. However, after a specific distance from the sensor is

crossed, there will be many points where the information gained by the sensor is not good.

To choose one point out of the possible ones to sense at is difficult for the robot. Instead, it

is easier for the sensor to tell the robot in which direction it should go next. So we have

designed this algorithm such that at any iteration, the mobile robot knows the position of

the next sensor as its immediate destination. The mobile robot enters the water column

with the knowledge of the location of the nearest sensor and travels towards it. Thereafter,

every time the robot is close to one sensor, it tells the robot the location of the next sensor.

The mobile robot has to be within the communication range of the sensor for this data to
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be transmitted.

Taking all these into account, we can apply the principles of the Tangent Bug algorithm

to plan a path for a mobile underwater robot in a region distributed with sensors. This

problem can be formulated using the following steps:

1. The finite radius of sensing and acoustic communication, rS, forms a circular bubble

around the underwater sensors (Fig 4.5). Together they are equivalent to the obstacles

on the path of the mobile robot. Any point inside this bubble is well covered by the

static sensor and any point outside needs better sensing.

2. The mobile robot does not want to enter the region inside any of these bubbles, but

it has to move towards the boundary as it will be able to communicate these with the

static sensor to know the next sensor location to determine the direction in which it

should move next.

3. As in the case of the sensors, the mobile robot also has a circular sensing and

communication bubble surrounding it, of radius rR, within whose boundaries the

sensing is maximum. The rS and rR can be same or different, depending on the real

world characteristics of the two types of sensors.

4. The mobile robot starts moving in the direction of the next sensor. When it gets

close enough to the sensor bubble, it determines the tangent intersection points

between its current position and the sensor boundary, picks the intersection point Oi

which is closer to final destination, and moves along the tangent to the boundary in

the direction of Oi where it will be able to communicate with the sensor to get the

required information.

5. Once it reaches Oi and receives the location information of the next sensor, it checks

whether there is a m-line (or straight line path) that connects its current position to

the center of the next sensor, that does not pass through the sensing bubble of the

sensor on whose boundary the robot is present right now.
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6. If such a line exists, the mobile robot moves along this line towards the center of the

next sensor.

7. In case this line does not exist, the robot incrementally moves following the boundary

of the current sensor bubble, at the same time continuously searching for a point Oj

from which it will have a m-line towards the next sensor.

8. When it is on such a point, Oj, the robot leaves the boundary and moves towards the

next sensor.

9. These steps are repeated until the robot reaches its destination.

Thus, this path planning algorithm redefines the principles of the Tangent Bug algo-

rithm so that it can be applied to planning the path of a mobile robot between semi-mobile

sensor nodes. This is an example of a purely local path planning algorithm at any point

the robot has information about the immediate goal. The path generated by this algorithm

shows how the mobile robot path will look if it is planned based only on local information.

To apply the Tangent Bug method to our problem, we need to do the following: Firstly,

each sensor arranges itself on the basis of the Algorithm 1. For simulation purpose,

these static sensor locations are sent as input to the modified version of the Tangent Bug

algorithm discussed in Algorithm 3. In the real world the mobile robot or the Tangent

Bug algorithm will not know the position of all the sensors except the one nearest to it.

This is implemented in the Algorithm 3 with the concept of an instant goal or current

target position at every iteration. At any iteration, the robot is moving towards the next

closest target position instead of the global destination point. The algorithm proceeds in

small increments which is called an interval, and then finds all the path points that form

the Tangent Bug path and outputs these points at which the mobile robot should sense

information. Mobile robot starts from a user defined location in the water column and

then moves along the trajectory by joining all such instant goal points along the path.

The simulation experiments and analysis of mobile robot path obtained by this method

is discussed in Section 5.8.
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4.3.4 Algorithm Implementation

Algorithm 3 shows the implementation of the path planning algorithm based on Tangent

Bug Method. The main procedure TanBug receives the location of all the sensors in the

water column (sensors), the sensing radius of the sensors (rS), the sensing radius of the robot

(rR), the start position of the robot (pstart), and finally the destination or end point (pend)

as input. This procedure requires help from two main functions: MoveTowardsTarget

and MoveAlongCurve for constructing the mobile robot path. There are five other

functions: FindNextPos, FindTangentPoints, IfMoveAlongCurve, Cir2Iintersection,

and CirLineIntersection which are detailed in the Appendix in Section A.

The function MoveTowardsTarget implements the steps which the mobile robot needs

to follow when it is moving towards a target. Whereas, the function MoveAlongCurve

implements the steps that the mobile robot needs to follow when it is moving along the

curve of the sensing boundary of the nearest sensor.

FindNextPos finds the position of the next robot path point when the robot is moving

in a straight line path. FindTangentPoints finds the tangents from the current position of

the robot to the boundary of the next sensor and returns the two points where the tangents

and the sensor boundary touch.

When the robot is sitting on the boundary of the current sensor, the function IfMoveA-

longCurve, checks if there exists a m-line from the current robot position to the next

sensor which does not pass through the sensing bubble of the current sensor. If such a line

exists then the function returns false, else it returns true.
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Algorithm 3 TanBugPath: Mobile Robot Path Planning using Tangent Bug Algorithm
Require: Original Sensor layout, sensors; Sensor View Radius, rS; Robot View Radius,rR; Robot Start position,

pstart; Robot Destination,pend
Ensure: Mobile Robot Waypoints, pathpoints;
1: f lagintersection ← false . Flag to indicate if robot is at sensing boundary
2: f lagtarget ← true . Flag to indicate if new target needs to be set
3: interval ← user defined interval
4:
5: procedure TanBugPath(sensors, rS, rR, pstart, pend)
6: probot ← pstart . First robot waypoint is pstart
7: i← pstartX . Assign x-coordinate of robot start position as i
8: while i < pendX do . Compare x-coordinate of robot end position to find when robot reached

destination
9: if f lagtarget == true then

10: Select ptarget from sensors . Select next target position, ptarget, based on the min. dist. from
current robot position, probot

11: end if
12: if f lagintersection == false then
13: [pnew

robot, f lagintersection, f lagtarget]← MoveTowardsTarget()
14: else if IfMoveAlongCurve(sensorcurr,ptarget, probot) then
15: [pathpoints, pnew

robot, f lagintersection, f lagtarget]← MoveAlongCurve()
16: end if
17: pathpoints ← [pathpoints; probot] . Add new robot waypoint
18: probot ← pnew

robot . Update robot’s current position
19: i← i + interval
20: end while
21: return pathpoints
22: end procedure
23:
24: procedure MoveTowardsTarget

25: if dist(probot,ptarget) > (rR + rS) then
26: pnew

robot ← FindNextPos(ptarget, probot, interval) . Go straight towards ptarget
27: f lagintersection, f lagtarget ← false

28: else
29: [ f lag, t1, t2]← FindTangentPoints(probot,ptarget,rR,rS) . Find tangent point and move towards it.
30: pnext

target ← tentative next target location from sensors
31: if dist(t1, pnext

target)+dist(t1, probot) < dist(t2, pnext
target)+dist(t2, probot) then . Select intersection point

closer to next target
32: t← t1
33: else
34: t← t2
35: end if
36: if dist(probot, t) ≤ interval OR dist(probot, ptarget) ≤ rS then . If distance is below threshold then

go to the intersection point directly
37: pnew

robot ← t
38: f lagintersection, f lagtarget ← true

39: Snear ← ptarget
40: else . Else move towards the intersection in small intervals
41: pnew

robot ← FindNextPos(t, probot, interval)
42: if dist(pnew

robot, ptarget) ≤ (rS + interval)) then
43: f lagintersection, f lagtarget ← true

44: Snear ← ptarget
45: else
46: f lagintersection, f lagtarget ← false

47: end if
48: end if
49: end if
50: end procedure
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Algorithm 3 TanBugPath: Mobile Robot Path Planning using Tangent Bug Algorithm (cont.)
51: procedure MoveAlongCurve

52: d← dist(ptarget, Snear)
53: r ←

√
|d2 − rS

2|
54: circle1 ← [ptarget, r]
55: circle2 ← [Snear, rS]
56: [ f l, p1, p2]← cir2Intersection(circle1, circle2)
57: if dist(ptarget, probot) < dist(ptarget, p1) AND dist(ptarget, probot) <dist(ptarget, p2) then . Both

intersection point is behind current rob pos. So going in st. line towards next target.
58: pnew

robot ← FindNextPos(ptarget, probot, interval)
59: f lagintersection, f lagtarget ← false

60: else . Need to follow sensor radius circumference. So find the intersection point closest to probot
61: if dist(probot, p1) < dist(probot, p2) then
62: pnew

robot ← p1
63: else
64: pnew

robot ← p2
65: end if
66: f lagintersection ← true

67: f lagtarget ← false

68: Snear ← ptarget
69: P← circleCircPts(Snear, rS, probot, pnew

robot) . Move along circumference in small intervals. Store
these points in array P.

70: for n = 1→ size(P) do
71: pathpoints ← [pathpoints; P(n)]
72: k← k + 1
73: end for
74: end if
75: end procedure

The function Cir2Iintersection is used to find out if two circles intersect each other

or not. There can be four different possibilities:

• The two circles do not intersect and lie apart from each other, hence, there are no

intersection points;

• One circle lies inside the other circle so there is are no intersection points;

• The two circles are co-incident, so there are infinite solutions; and

• The circles overlap and thus intersect each other at two specific points.

Lastly, the function CirLineIntersection is used to find out if a given line and a given

circle intersect each other or not. For this function also there can be several outcomes:

• The line does not intersect the circle and they lie apart from each other;
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• The line is a tangent to the circle, so there is one intersection point; and

• The line is a secant to the given circle so it cuts the circle at two specific points.

Depending on the outcome of the algorithms different actions should be taken.

Finally, at Line 69 of Algorithm 3, we use one more function, circleCircPts (not been

shown in the algorithm section for simplicity) which incrementally finds out the next

position of the robot when it is moving along the boundary of the current sensor node.
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Figure 4.6: Plot showing a section of Sensors,
Sensing Bubble surrounding the Sensors and
Mobile Robot Path for path planning with

modified Tangent Bug Algorithm.
(rS = 5; rR = 2)

The Algorithm3 is long but simple. It

varies between two principle states:

• When robot is NOT on any intersec-

tion point; and

• When robot is on one intersection

point.

Each of the two states can again be divided

into two sub-states each.

When the robot is NOT on any intersec-

tion point, then it can either be:

• Far from the target (next sensor) so

keeps moving towards it in a straight

line; or

• Close to the sensor boundary so finds

the intersection point of the tangents from current position to the sensor boundary

and moves along the the gradient of this tangent. The current robot position changes

after each iteration and son the intersection point changes. If the interval is small,

the robot follows a curved path and does not touch the sensing boundary. This can

be seen in Fig 4.5.
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When the robot is on one intersection point, it can either:

• It starts moving towards the next sensor as there is a straight path connecting them;

or

• It has to move along the boundary of the current sensor till it reaches a point on the

sensing boundary where from where a straight path exists. This can be observed

in Fig 4.6 where the robot moves to the sensor boundary when it knows it needs to

follow the boundary before it can moves in a straight lines towards the next sensor.

In the figure, we can notice that there is a sudden kink in the robot path when it

suddenly moves from a position along the straight line of gradient of the tangent

to a point on the boundary of the nearest sensor. This is because as soon as the

robot figures out it needs to move along the sensor boundary it moves to the nearest

intersection point and the interval between the two positions is not large enough

(since rR = 2) to guarantee a smooth path. We will notice that this phenomenon does

not happen when rR = 5 or more.

Another functionality we wanted to incorporate in the modified Tangent Bug algorithm

is that as and when the mobile robot is moving through the network of sensors, the sensors

which have already interacted with the robot should adapt to it’s presence and change it’s

depth such that the overall sensing in the region is maximized. The simulation experiments

and analysis of mobile robot path obtained by this method is discussed in Section 5.8.

4.4 Adaptive Path Algorithm

The sensor network described in Chapter 3 has a depth adjustment system that makes

it very efficient for gathering information from the full water column. However, these

sensors are anchored to the bottom of the water column so their horizontal position cannot

change. The sensors are deployed randomly so there is no control on where they land. The

Algorithm 1 is able to position the sensors to obtain a good estimate of the entire region of

interest irrespective of the position of each node. However, intuitively, a better estimate of
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the system can be obtained if this constraint could be relaxed. To overcome this limitation,

we introduce a mobile underwater robot into the system which should be able to gather

information from the region at locations where the constrained sensors cannot reach. In

the previous sections, we have discussed one global method (Section 4.2) and one local

method (Section 4.3) for planning the path of such a mobile underwater robot through the

sensors already deployed in the water column. In this section, we adapt our decentralized

control algorithm to allow the sensor network to tell the mobile robot the best path to

traverse. The algorithm also adapts the positions of the underwater sensor nodes with

respect to path of the mobile robot. We propose a decentralized approach where each

sensor along the robot’s path informs the robot of the next part of the path. It is important

to ensure that the network does not need to transmit all information to the robot a priori.

This approach is unique in that it lets the network of sensors reconfigure its position to

new depths before the mobile robot is introduced into the system. This way, data can be

collected from locations of highest utility in parallel. This is efficient and unique because

if the mobile robot communicated with local nodes and decided its trajectory online, just

like in Section 4.3, then this reconfiguration would not be possible.

In the following sections, we discus how we redefine the objective function, the

decentralized controller and modify the Algorithm 1 to work with mobile underwater

robots.

4.4.1 Problem Formulation

In order to allow the underwater sensor network to compute the best path for the robot,

we start by extending our basic controller described by Equation 3.5 to include sensing

locations along the robot’s path, {pR
1 , ..., pR

M}. We use the superscript R to indicate that

this is a sensing location along the robot’s path. We choose these as points evenly spaced

between the locations of the static sensor nodes. Ideally, the mobile robot should be

sensing continuously along its path of traversal, and there should be infinite points along

the robot’s path. Although, in simulation, we use just a few intermediate points between
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the sensors to minimize path complexity. This is because, due to the nature of the medium

of water, if the water column is sampled continuously then we might not be able to observe

the difference in the constituents of one particular position with the next in the water

column. So to get consistent reading of the water column, without contamination from

one point to the next, a possible better method is to collect samples of water from different

points which are apart from each other and strategically important. This is the reason why

we assign robot waypoints which are apart from each other in the horizontal plane and

let the algorithm align the points so that they are placed in the strategically important

positions along the depth of the water column.

4.4.2 Sensing Objective Function

The objective function over the region of interest given by Equation 3.5 now includes

sensing locations {pR
1 , ..., pR

M} along the robot’s path. Therefore, the new sensing objective

function is:

H(p1, ..., pN , pR
1 , ..., pR

M) =
∫

Q
g(q, p1, ..., pN , pR

1 , ..., pR
M) dq (4.1)

This controller works to optimize the sensing with all of the sensor node locations and

all of the robot sampling points. However, this could result in paths where the robot

alternates moving between the surface and bottom of the water column. This is costly in

terms of traversal time and does not take advantage of the sensor nodes that can cover the

extreme depths more easily than the robot. This is why we need to include another term

to the objective function (discussed in the next section).

4.4.3 Distance Cost Function

To reduce the length of the path the robot travels, we introduce an additional term that

aims to minimize the length of the path that the robot traverses. We call this P and this is

dependent on the total distance that the mobile underwater robot traverses in the water
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column. If the virtual sensor at location i is represented as pR
i = (xR

i , yR
i , zR

i ) then the

Euclidean distance between pR
i and it’s adjacent sensor pR

i+1 is

dist(pR
i , pR

i+1) =
√
(xR

i+1 − xR
i )

2 + (yR
i+1 − yR

i )
2 + (zR

i+1 − zR
i )

2 (4.2)

For controlling the path length of the mobile robot we want to control the total path it

traverses. If there are M points where the mobile robot senses in the water column, the

total path traversed by the mobile robot can be calculated by summing the straight line

distance between these M points (assuming the mobile robot always travels in a straight

line between the points of sensing and the distance between points at i and i + 1 is not very

long). This cost function P(pR
1 , ..., pR

M), henceforth referred to as only P , can be denoted

with the total distance:

P(pR
1 , ..., pR

M) =
M−1

∑
i=1

dist(pR
i , pR

i+1) (4.3)

=
M−1

∑
i=1

√
(xR

i+1 − xR
i )

2 + (yR
i+1 − yR

i )
2 + (zR

i+1 − zR
i )

2 (4.4)

4.4.4 Robot–Sensor Node Objective Function

The sensing objective function distributes the sensors in the water column. The distance

objective controls the maximum path length of the mobile robot. These two objective

functions are combined together to achieve the goals of the algorithm. To combine these

two objective functions together we need to decide on a weight function α. We combine

H(p1, ..., pN , pR
1 , ..., pR

M) and P(pR
1 , ..., pR

M) to create a new objective function that we use as

the new decentralized controller that controls the robot path and the sensor node locations.

We call this controller HR(p1, ..., pN , pR
1 , ..., pR

M), henceforth referred to as only HR, and

define it as:

HR(p1, ..., pN , pR
1 , ..., pR

M) = (1− α)H(p1, ..., pN , pR
1 , ..., pR

M) + αP(pR
1 , ..., pR

M) (4.5)
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Simplified,

HR = (1− α)H+ αP (4.6)

As discussed before, the first component of Eqn. 4.6 optimizes the positions for sensing

and the second component of that equation minimizes the path length the robot travels.

4.4.5 Robot–Sensor Node Decentralized Controller

As in Section 3.3.4, we develop a decentralized controller by taking the gradient of HR

with respect to changes in depth and move each sensor node and robot sensing location

by −k ∂H
∂zi

R
.

4.4.5.1 Decentralized Controller for Sensing Objective Function

The controller derivation for the sensing objective function closely follows that of the

controller solely for sensor nodes Equation 3.12 and 3.14. We take the partial derivative of

the sensing function from Equation 4.1 to complete the gradient of our objective function

shown in Equation 3.8. As before, the gradient of the sensing function ∂
∂zi

f (pi, q) is:

∂

∂zi
f (pi, q) =

∂

∂zi
Ae
−
(

(xi−xq)2+(yi−yq)2

2σ2
s

+
(zi−zq)2

2σ2
d

)

= − f (pi, q)
(zi − zq)

σ2
d

(4.7)

Substituting this into Equation 3.8, we get the objective function:

∂H
∂zi

= −
∫

Q

(
N

∑
j=1

f (pj, q)

)−2
∂

∂zi
f (pi, q)−1 dq +

∂

∂zi
φ(pi)

=
∫

Q
g(q, p1, ..., pN , pR

1 , ..., pR
M)2 f (pi, q)

(zi − zq)

σ2
d

dq +
∂

∂zi
φ(pi) (4.8)
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4.4.5.2 Decentralized Controller for Distance Cost Function

To minimize the cost function in eqn.(4.4), i.e., P , we take the gradient of P with respect

to zi.

dP
dzi

=
d

dzi

M−1

∑
i=1

dist(pR
i , pR

i+1) (4.9)

=
M−1

∑
i=1

d
dzi

dist(pR
i , pR

i+1) (4.10)

=
M−1

∑
i=1

(
d

dzR
i

√
(xR

i+1 − xR
i )

2 + (yR
i+1 − yR

i )
2 + (zR

i+1 − zR
i )

2

)
(4.11)

=
M−1

∑
i=1

 (zR
i+1 − zR

i )√
(xR

i+1 − xR
i )

2 + (yR
i+1 − yR

i )
2 + (zR

i+1 − zR
i )

2

 (4.12)

We can specify the number of neighboring sensing locations that can control the gradient

descent function dP
dzi

. This is specified through a parameter called hops which denotes the

number of sensor locations that mobile robot can look at in both directions. So the limits

of summation can be anywhere between 2 to (M− 1).

4.4.5.3 Combined Controller

Similar to Section 4.4.4, the combined value of the derivative of objective function is:

dH
dzi

R
= (1− α)

dH
dzi

+ α
dP
dzi

(4.13)

4.4.6 Controller Convergence

To prove that our gradient controller Equation 4.6 converges to a critical point of HR, just

like in Section 3.3.7, we must show that satisfied [6, 45, 56]:

1. HR must be differentiable;

2. ∂H
∂zi

R
must be locally Lipschitz;

3. HR must have a lower bound;
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4. HR must be radially unbounded or the trajectories of the system must be bounded.

These points assure convergence to a critical point of HR, but a critical point could be a

maximum or a minimum. Fortunately, small changes to the system will typically result in

the system converging to a local minimum, as it is more stable. It may not be the global

minimum, but we show in simulation that we obtain good results.

Theorem 1. The controller −k
dH
dzi

R
converges to a critical point of H. In other words as time,

t, progresses the output of the controller will go to zero:

lim
l←∞
−k

dH
dzi

R
= 0 (4.14)

Proof. We show that the objective function satisfies the conditions outlined above.

In Section 4.4.5, we have shown that each of the two components of HR, H and P are

differentiable with respect to zi. And since α and (1− α) are both constants, this means

HR is differentiable with respect to zi, thus condition 1 is satisfied.

The slope of ∂H
∂zi

is locally bounded and P is a continuously differentiable function. As

continuous functions are locally bounded, its gradient, ∂P
∂zi

, is locally bounded as well.

Therefore, ∂H
∂zi

R
is locally bounded, meaning it is locally Lipschitz and satisfies condition 2.

To show that HR is bounded below, to satisfy condition 3, consider the composition of the

objective function:

HR(p1, ..., pN , pR
1 , ..., pR

M) = (1− α)
∫

Q
g(q, p1, ..., pN , pR

1 , ..., pR
M) dq + α

M−1

∑
i=1

dist(pR
i , pR

i+1)

(4.15)

As in [20, 25], expanding the integral term we get:

∫
Q

g(q, p1, ..., pN , pR
1 , ..., pR

M)dq =
∫

Q

(
N

∑
i=1

f (pi, q) +
M

∑
j=1

f (pR
j , q)

)−1

dq (4.16)

The terms f (pi, q) and f (pR
j , q) are both Gaussian functions which is always positive. The

sum and the integral of the positive Gaussian function is also positive. The term (1− α) is
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always positive as α lies between [0, 1] as we will show in Section 4.4.7.2. Thus this term

is bounded below by zero. The second term, dist(pR
i , pR

i+1), is the distance between two

points which is always positive. The sum of positive terms is also positive. Thus, both the

terms in HR and thus HR itself is bounded below by zero, satisfying condition 3.

Unfortunately, both terms in HR is not radially unbounded. However, the trajectories of

the system can only vary along the z-axis within the water column. Thus, the trajectories

of the system are bounded, satisfying condition 4.

Hence, we have satisfied all the conditions for controller convergence, proving that the

controller −k
dH
dzi

R
converges.

4.4.7 Normalization

It is difficult to decide the range of α since the ratio between the sensing objective function

and the distance objective function can be very large (often more than 25000). The

maximum value of the sensing objective function occurs when the nodes are laid out in

a straight line and the minimum value occurs when the nodes are laid out in an evenly

fashion throughout the water column. On the other hand, for the distance objective

function, maximum value occurs when the nodes are evenly distributed in a zigzagged

fashion and minimum value occurs when the nodes are in the same straight line. These

values depend upon the network size. To limit the range of α from 0 to 1 the values of the

sensing objective function and the distance objective function are normalized so that both

the sensing and distance objective function vary in the range of 0 to 1 depending on their

initial value.

4.4.7.1 Objective Function

To normalize we first find the maximum and minimum values of the sensing and distance

objective function for given number of intermediate nodes for network of different sizes.
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Then we fit the values into a function using Matlab function:

ρ = poly f it(X, Y, N) (4.17)

which finds the coefficients of a polynomial P(X) of degree N that fits the data Y best in a

least-squares sense. ρ = [ρ1, ρ2, ρ3, · · · ρN+1] is a row vector of length N + 1 containing the

polynomial coefficients in descending powers. We do it for N = 2, so ρ = [ρ1, ρ2, ρ3] as

in Section 5 we simulate these and find it is a good fit. We do it for all the 4 quantities

- maximum sensing objective function, minimum sensing objective function, maximum

distance objective function, minimum distance objective function. Then to find out the

range of the objective function for a given size of network and a certain number of

intermediate sensing locations, the total number sensing locations can be found with the

equation:

s = r + i.(r− 1) (4.18)

where r = total number of sensors; i = number of robot waypoints between two real nodes;

s = total number of sensing locations.

Then, using the following equation we can estimate the minimum and maximum sensing

and distance objective function value, v for that particular network size:

v = ρ1 ∗ s2 + ρ2 ∗ s + ρ3 (4.19)

Let the maximum sensing objective function be Hmax, minimum sensing objective function

be Hmin, maximum distance objective function be Pmax, and minimum distance objective

function be Pmin. The normalized sensing and distance objective function can be found

out by the equation:

H =
H−Hmin

Hmax −Hmin
(4.20)
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P =
P −Pmin

Pmax −Pmin
(4.21)

These values are determined in the simulation section and vary depending on the chosen

network.

4.4.7.2 Robot–Sensor Node Objective Function

We take the Eqn. 4.5 and normalize each of its components to get H(p1, ..., pN , pR
1 , ..., pR

M)

and P(pR
1 , ..., pR

M) according to Eqn. 4.20 and Eqn. 4.21 respectively. We then combine

these two terms to obtain the normalized form of the combined objective function. For

simplicity, we still refer to this controller as HR(p1, ..., pN , pR
1 , ..., pR

M), or HR and the weight

factor α.

HR(p1, ..., pN , pR
1 , ..., pR

M) = (1− α)H(p1, ..., pN , pR
1 , ..., pR

M) + αP(pR
1 , ..., pR

M) (4.22)

Simplified,

HR = (1− α)H+ αP (4.23)

4.4.7.3 Robot–Sensor Node Decentralized Controller

Similar to Section 4.4.7.2, the normalized value of the derivative of sensing and distance

objective function can be found out by the equation:

dH
dzi

=
1

Hmax −Hmin

dH
dzi

(4.24)

dP
dzi

=
1

Pmax −Pmin

dP
dzi

(4.25)
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The normalized combined value of the derivative of objective function is:

dH
dzi

R
= (1− α)

dH
dzi

+ α
dP
dzi

(4.26)

For simplicity, again we refer to the normalized equation in the same terms as shown in

Eqn. 4.13.

The normalization does not affect the convergence of the controller because:

• Both Hmax and Hmin are bounded below by zero;

• Hmax > Hmin always;

This implies that, depending on the value of H, sometimes H can have a negative value

which is bounded below by −Hmin. Similarly, P is bounded below by −Pmin. Since, all

other requirements for convergence remain same, the normalization does not affect the

convergence of this controller.

4.4.8 Algorithm Implementation

Algorithm 4 shows the implementation of the decentralized depth controller as described

in Section 4.4.5. The procedure receives the depths of all nodes, sensors and robot sensing

positions. It also needs the other parameters as input like weight (α), neighborhood size

(specified by the variable hops), the threshold limit of the objective function difference

between two iterations (thresholdlim), and the minimum number of turns (turnslim) for

which the difference is objective function value is continuously below thresholdlim.

Once again, the procedure requires two functions F(p,q) and FDz(p,q). These func-

tions take the sensor location or robot waypoint p and the point q in the water column

that we want to cover. The first function, F(p,q), computes the covariance between the

sensor location and the point of interest. The second function, FDz(p,q), computes the

gradient of the covariance function with respect to z at the same pair of points.
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In Algorithm 1 discussed in Section 3.3.8, the user specifies the maximum number of

iterations for which the the updateDepth procedure is run on all the sensors. The user has

to know approximately how many iterations it takes for the system to converge. We get rid

of this user dependency in our algorithm by introducing two parameters thresholdlim and

turnslim. We know if the algorithm has converged with the help of the these parameters.

When the algorithm converges, the value of the objective function in the previous iteration

is either greater than, or equal to that of the current iteration. The thresholdlim is a user

defined limit of the difference in the values of objective function in between two iterations

and turnslim is the minimum number of iterations for which the difference in objective

function value should be below thresholdlim. So here, unlike Algorithm 1, we need a calling

function, Aquanode, that calls the function updateDepth to update the depth of all the

N sensors and M robot points that are present in the system (Line 39) till the algorithm

converges.

Another important input parameter to the algorithm is the variable hops which specifies

the communication range of the mobile robot. For example, hops = 1 implies that the

sensors can communicate with one sensor ahead of it and one sensor behind it; similarly

hops = 2 implies that the sensors can communicate with two sensors ahead of it and two

sensors behind it and so on.

By default, hops = 1 for Algorithm 4 as the adjacent sensors has to know each others

location to determine its own position in the water column. This implies that the location

of all the robot waypoints between two sensors is known to either. Thus, when optimizing

the position of a particular node, which can be a sensor or a robot waypoint, the location

of all the sensors and robot waypoints that this particular node can communicate with

will be taken into consideration by the algorithm. So all the sensors and in between robot

waypoints in the communication range of a particular node forms the neighborhood of the

node (Line 58). All the nodes in this neighborhood affects the location of this node in the

water column. Thus the variable hops determines the neighborhood size .
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Algorithm 4 AdaptivePath: Mobile Robot Path Planning using Adaptive Decentralized
Algorithm
Require: Initial location of Sensors and Robot waypoints; weight, α; neighborhood size, hops; objective

function threshold, thresholdlim; minimum number of turns, turnslim
Ensure: Final location of Sensors and Robot waypoints.
1:
2: procedure AdaptivePath({p1 · · · pN , pR

1 · · · pR
M}, α, hops, thresholdlim, turnslim)

3: iteration← 0
4: loopFlag← true

5: while loopFlag do
6: iteration← iteration + 1
7: obj← 0
8: for x = xmin to xmax do
9: for z = zmin to zmax do

10: for i = 1 to N do
11: obj+ = F(pi,[x,y,z])
12: end for
13: for i = 1 to M do
14: obj+ = F(pR

i ,[x,y,z])
15: dist+ = ∑i+1

j=i−1 dist(pR
i , pR

j )

16: end for
17: end for
18: end for
19: objR = (1− α) ∗ obj + α ∗ dist
20: if iteration 6= 1 then
21: threshold← (objR

prev − objR)
22: if threshold > 0 and iteration > thresholdlim then
23: if turns == 0 then
24: turns← 1
25: iterationprev ← iteration
26: else
27: if iteration == iterationprev + 1 then
28: turns← turns + 1
29: iterationprev ← iteration
30: else
31: turns← 1
32: iterationprev ← iteration
33: end if
34: end if
35: end if
36: end if
37: objR

prev ← objR

38: for i = 1 to (N + M) do
39: updateDepth({p1 · · · pN , pR

1 · · · pR
M}, pi, α, hops)

40: end for
41: if turns ≥ turnslim then
42: loopFlag← false

43: end if
44: end while
45: end procedure
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Algorithm 4 AdaptivePath: Mobile Robot Path Planning using Adaptive Decentralized
Algorithm (cont.)
46:
47: procedure updateDepth({p1 · · · pN , pR

1 · · · pR
M}, q, α, hops)

48: objDz← 0
49: for x = xmin to xmax do
50: for z = zmin to zmax do
51: for i = 1 to N do
52: objDz+ = Fdz(pi,q)
53: end for
54: for i = 1 to M do
55: objDz+ = Fdz(pR

i , q)
56: end for
57: if q is RobotWaypoint then
58: neighbours← getNeighbours({pR

1 · · · pR
M}, q, hops)

59: distDz+ =
∑neighbors(zq−zneighbor)

∑neighbors dist(q,pneighbor)

60: end if
61: end for
62: end for
63: objDzR = (1− α) ∗ objDz + α ∗ distDz
64: delta = K ∗ objDzR

65: if delta > maxspeed then
66: delta = maxspeed
67: end if
68: if delta < −maxspeed then
69: delta = −maxspeed
70: end if
71: changeDepth(delta)

72: end procedure

In addition to these, the user can also specify a specific area within the water column

which is of special interest. Such a region is marked by a different value of covariances.

The algorithm is capable of finding a path which takes this factor into consideration. This

feature is discussed in detail in Section 5.9.6.

Apart from the above mentioned modifications, the main changes in this algorithm

from Algorithm 1 are:

1. Line 55 which adds the sensing contribution from the robot sensing locations. This

is applied both when computing the control for the sensor nodes and for the robot

sensing locations.

2. Line 59 which calculates the path length of the mobile robot. This is applied only for

computing the control for the robot waypoints.
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3. Line 63 is added only when control is being calculated for the robot sensing locations.

This adds in the component of the controller related to the distance between robot

sensing locations.

After the procedure computes the numeric integral, it computes the change in the

desired depth. This change is bounded by the maximum speed the node can travel. Finally,

the procedure changes the node depth. changeDepth puts a hard limit on the range of the

nodes, preventing the nodes from moving out of the water column.

Each sensor node is responsible for computing and updating the robot sensing locations

pR that are closest to it. When the robot comes into the communication range of a node, it

will transmit the next sensing locations to the robot.

In practice, the sensor network may have a set schedule of times when the robot enters

the network, or the robot might inform nearby nodes when it enters the network. These

nodes will then start running the depth adjustment algorithm to compute the best path for

the robot and any corresponding changes in the depths for the sensor nodes. This will

propagate through the network, and as the robot moves, it will receive updated way points

from nearby sensor nodes.

The simulation experiments and analysis of mobile robot path obtained by this method

are discussed in Section 5.4.

4.5 Summary

In this Section, we introduce three different path planning algorithms for planning the

path of a mobile underwater robot through a network of semi-mobile sensors. The goal

of the algorithms is to find sensing locations such that the overall sensing of the water

column using the network is increased. The path planning algorithms are divided into

three different categories: 1) Global Path Planning with VoronoiPath method, 2) Local

Path Planning with the help of TanBugPath method, and 3) Adaptive path Planning with

the AdaptivePath method. In the next chapter (Chapter 5), we simulate all the algorithms
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in Matlab. Then we perform experiments by varying different parameters to study their

performance. Finally, we compare the paths planned by the three algorithms with respect

to a particular sensor network.
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Chapter 5

Adaptive Sampling for Underwater

Mobile Robots: Simulations &

Experiments

5.1 Introduction

In Chapter 4, we introduced three different algorithms that optimize the path of a mobile

underwater robots through a network of sensors with the goal of improving sensing.

Several practical considerations arise in implementing these algorithms in simulation.

Since our goal is to implement these algorithms on real hardware like in [20, 25], we model

the sensors and the robot taking these limitations in to consideration. In this chapter, we

explore the performance of the different algorithms in simulation and present the results.

We discuss parameter sensitivity, positioning sensitivity, and comparison between the

different methods.
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5.2 Practical Considerations

We must take into account a number of practical considerations that are not in the theory

developed in Chapter 4 before implementing the algorithms in simulation. These are:

1. In the simulations and experiments we consider the exact location of the sensors

and robot waypoints. However, in the real world, it is not possible for the algorithm

to know the exact location of all the sensors. We use Matlab’s rand command to

implement this uncertainty in the simulation experiments.

2. The acoustic communication has limited bandwidth and messages are transmitted

infrequently, so we must limit the amount of transmitted data.

3. In case of TanBugPath algorithm, even though at the beginning of the simulation

the location and depth of every sensor is input to the algorithm, during run time the

algorithm gets the location and depth information of only the nearest sensor.

4. Similarly, in case of Adaptive Decentralized method, the algorithm gets as input the

location and depth of every sensor and robot waypoint. However, during run time,

the location and depth of only the nearest neighbors are known to the algorithm.

This is taken care of by the hops parameter.

5. In case of the modified adaptive decentralized algorithm, the controller is continu-

ously integrated over an area Q. The region must discretized for numeric integration.

There are two factors which affect how the region is discretized:

• Desired sensing accuracy

• Computational complexity

The algorithm will not differentiate between different configurations if the discretiza-

tion is very rough. However, if it is very fine, the computation takes a very long time

to converge.
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We implemented our simulations with these parameters and show in this chapter that the

algorithms still work with these.

5.3 Global Knowledge vs. Local Knowledge

An important concept in the case of the path planning algorithm is if it needs global

knowledge or local knowledge about the location of the sensor nodes. This factor depends

upon how much information is needed by an algorithm before it starts planning the path

of the mobile robot in the water column. A global knowledge algorithm (as in the case of

VoronoiPath algorithm) implies that the information about the location of all the nodes

should be available before hand. On the other hand, local knowledge implies that the

algorithm requires the knowledge about the location of only the nearest (in case of the

TanBugPath algorithm) or the neighboring nodes (in case of the AdaptivePath algorithm).

The cost of forwarding depth information (required for the algorithm) over multiple hops

in the network is difficult over a limited acoustic bandwidth, hence a local path planing

algorithm is comparatively more efficient.

For the VoronoiPath algorithm, global knowledge is needed. This means that before

the robot is released in the water column, the algorithm should have knowledge about the

location of all the sensor nodes so that it can plan ahead which points in the water column

the mobile robot needs to visit to maximize information gain. In practice, the robot does

not need to know the entire network of the sensors to decide its position. For example, if

there are ten sensors in the network and if the robot is just entering the water column, then

the robot does not have to know the position of the tenth node immediately. Instead, the

algorithm can just know the location of the nearest subset of nodes and plan the robot’s

immediate path while the rest of the sensor nodes’ locations are gradually made available

to the algorithm.

In case of the TanBugPath algorithm, even though during the simulation the algorithm

is supplied with all the sensor locations at the beginning, it uses location of only the next

nearest sensor to calculate the immediate path of the mobile robot. Once the robot is close
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to this sensor, the location of the next sensor is required to plan the rest of the path. This

is done to imitate the real world situation when the location of the next sensor is supplied

to the robot by the nearest sensor. Therefore, this algorithm needs local knowledge.

For the AdaptivePath algorithm, each sensor knows only the positions of its neighbors

and neighboring waypoints. This assumption is okay in case of a real world deployment of

the sensors and a robot because the effect of far away sensors is minimal as the Gaussian

covariance function decays rapidly with distance. As such, the algorithm can ignore the

effect of sensors whose location it does not know.

5.4 Simulation Setup

We simulated the different algorithms in Matlab to test their performance. In these

experiments, unless otherwise stated:

• The sensors are placed in a line spaced 15 meters apart from each other.

• The water column is of depth 30 meters.

In case of the AdapativePath algorithm, we assume the following:

• An 1 meter grid is used to integrate over for all operations.

• The base Gaussian covariance function described in Section 3.3.5 with and having

σs = 5 and σd = 4, unless otherwise stated.

• The maximum speed of the sensors and robot waypoints is capped at 2 meters/second.

• The value of k is assumed to be k = 4000, unless otherwise stated.

• The values of thresholdlim = 0.00001 and turnslim = 5 are assumed, unless otherwise

stated.

In Section 5.7, we first analyze the simulation experiments with the VoronoiPath

algorithm. In Section 5.8, we discuss the path planning with the Tangent Bug method.
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In (Section 5.9) we discuss the parameter sensitivity, positioning sensitivity, and data

reconstruction with the AdaptivePath algorithm. And finally in Section 5.10, we compare

the different methods to each other.

5.5 Posterior Error

A common metric for defining how well an area is covered by sensors is to examine the

posterior error of the system [35]. Calculating the posterior error requires the system to be

modeled as a Gaussian process. This is a fairly general model and valid in many setups.

The posterior error of a point can be calculated as:

σ2
q|P = Cov(q, q)− Σq,P · Σ−1

P,P · ΣP,q (5.1)

The vector Σq,P is the vector of covariances between q and the sensor node positions

P = {p1, ..., pN}. The vector ΣP,q is Σq,P transposed. The matrix ΣP,P is the covariance

matrix for the sensor node positions. The values of ΣP,P are Σpi ,pj = Cov(pi, pj) for each

entry (i, j).

This computation requires an inversion of the full covariance matrix which is impracti-

cal on real sensor network hardware that has limited computation power and memory [20].

So, we use posterior error calculation as a metric to evaluate the performance of the

algorithms discussed in this thesis. Throughout the experiments section we will be using

posterior error for this purpose.

5.5.1 Manual Experiments with Posterior Error

In this section, we perform a simple experiment with different layout of sensors to show

that the posterior error calculations work as expected. We consider a very simple sensor

layout, shown in Figure 5.1(a), with only two sensors which are 15 meters apart from each

other. We test with four different layouts:

• Only the two sensors (represented by the black dots)
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Figure 5.1: Experiments with Posterior Error

• Adding 1 sensor between the two sensors (represented by the red diamond)

• Adding 2 sensors between the two sensors (represented by black diamonds)

• Adding 3 sensors between the two sensors (represented by red and blue diamonds)

The sensor coverage for the four layouts can be seen in Figure 5.1(b) shown in a clockwise

manner. The posterior error value for layout is shown in Figure 5.1(c). As we can see,

adding more number of sensors covers more area of the water column and hence the

posterior error value decreases. We performed similar experiments for different layouts

and found the same result. However, the value of the posterior error depends on the area

covered. So, if the same number of sensors gives a better coverage of the area of water

column than another layout, the posterior error value for the first layout will be lesser than
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that of the later one.

5.6 Manual Experiments with Sensor Layout

In this section, we performed some manual experiments using several layout of sensors

and robot way points. In Section 5.6.1. we study different sensor layout in terms of the

posterior error calculation for each layout. In Section 5.6.3, we keep the sensor layout

fixed and introduce several robot way points to study the different layouts in terms of

the posterior error values. These experiments are performed to get a better idea about

the layout of sensor and robot waypoints. These experiments helped to understand the

performance of the different algorithms described previously.

5.6.1 Experiments on Sensor layout
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(c) Straight at 20m

0 20 40 60 80 100 120 140 160
0

10

20

30

Distance between sensors (x−axis) [m]

D
ep

th
 (

z−
ax

is
) 

[m
]

Mobile Robot Path with Sensor Nodes

(d) Zigzag at 12m & 18m
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(e) Zigzag at 9m & 21m
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(f) Zigzag at 7m & 23m
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(g) Zigzag at 6m & 24m
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(h) Zigzag at 3m & 27m
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Figure 5.2: Plots showing the different layouts for Sensors (R = 10) to compare the
posterior error for each layout

In this section, we describe the experiments performed on different layouts with only

sensors. For this set of experiments, we took a set of ten sensor nodes and manually

arranged them in different layouts along the depth of the water column (Fig. 5.2). For

each of the layouts shown in Figure 5.2, we found the posterior error for different values

of σs and σd. The posterior error values for the different layouts for σs = 5 and σd = 4 is
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shown in Figure 5.3(a), for σs = 10 and σd = 4 is shown in Figure 5.3(b), and for σs = 5

and σd = 10 is shown in Figure 5.3(c), respectively.

The parameter σs determines to what extent the sensor can detect information in the

horizontal direction or along the surface (hence, the subscript ’s’) of the water column. A

larger value of σs implies it is able to sense at larger distances from its current position.

Similarly, σd determines to what extent the sensor can detect information in the vertical

direction or along the depth of the water column. As we can see, both σs and σd affect the

coverage of the water column. If we keep σd constant and double σs, the posterior error

value decreases for layouts in which the sensors are far part from each other, preferably in

a zigzagged arrangement. On the other hand, keeping σs constant and doubling σd, we

find the posterior error value decreases for layouts in which the sensors are placed close

to each other, often in a colinear arrangement. For any value of σs and σd, the layouts in

Figure 5.2(d) and Figure 5.2(f) seem to have better coverage in terms of posterior error,

whereas the layout shown in Figure 5.2(i) has the least favorable coverage.

5.6.2 Experiments on number of Robot Waypoints in between Sensors

In this section, we describe the experiments with different layouts having fixed sensor

positions, but different number of robot waypoints in between the sensors. We study a

total of three configurations. For the sensor layout we have chosen a zigzagged configu-

ration with sensors alternately at 25 meters and 5 meters respectively. For all the three

configurations we start with the robot waypoints at the center of the water column at 15

meters. The different configurations are shown in Figure 5.4. We calculated the posterior

error values for each of these configurations for different values of σs and σd. The values

are shown in Figure 5.5.

The posterior error values for the different layouts for σs = 5 and σd = 4 is shown

in Figure 5.5(a), for σs = 10 and σd = 4 is shown in Figure 5.5(b), and for σs = 5 and

σd = 10 is shown in Figure 5.5(c) respectively. From the figures, we can observe that the

layouts where there are more robot waypoints have smaller posterior error value for any
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(c) Straight at 15m with V = 3

Figure 5.4: Plots showing the different layouts for Sensors (R = 10) with different
intermediate robot waypoint V = [1, 2, 3] between each sensor to compare the posterior

error for each layout

value of σs and σd. However, the layout which has higher value of surface covariance σs

(Figure 5.5(b)), the gradient of decrease in posterior error value with increasing number of

robot waypoints is much less steep than for lesser values of σs. This is because larger σs

creates greater correlation between sensors and they sense increased areas of overlapping

space.

5.6.3 Experiments on layout of Mobile Robot Path

In this section we describe the experiments with different layouts having fixed sensor

positions but varying positions of robot waypoints. We study a total of six configurations.

For the sensor layout we have chosen a zigzagged configuration with sensors alternately

at 25 meters and 5 meters respectively. For the six configurations we start with all the

robot waypoints at the center and gradually increase the distance till they are placed on

the edges of the water column. The different configurations are shown in Figure 5.6. We

calculated the posterior error values for each of these configurations for different values of

σs and σd. The values are shown in Figure 5.7.

The posterior error value for the different layouts for σs = 5 and σd = 4 is shown in

Figure 5.7(a), for σs = 10 and σd = 4 is shown in Figure 5.7(b), and for σs = 5 and σd = 10

is shown in Figure 5.7(c) respectively. From the figures, we can see that all of them follow

the same pattern. The layouts where the sensors and the robot waypoints are far apart

from each other perform better than the ones in which they are placed close together. For

the next set of experiments we mainly chose σs = 5 and σd = 4 unless otherwise specified.

These values were chosen for three main reasons:
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Figure 5.5: Comparison of Posterior Error for layouts shown in Figure 5.4

• If we limit the area of sensing then it implies that we can use less powerful sensors

and robots;

• By decreasing the area of sensing, the interference between adjacent sensors and
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(b) Zigzag at 12m & 18m
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(c) Zigzag at 9m & 21m
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(d) Zigzag at 7m & 23m
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(e) Zigzag at 3m & 27m
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(f) Zigzag at 0m & 30m

Figure 5.6: Plots showing the different layouts for Sensors (R = 10) and one intermediate
robot waypoint between each sensor to compare the posterior error for each layout

robot waypoints is minimized;

• If all the sensors and robot waypoints sense from a smaller area, the algorithm will

distribute them such that greater area is covered to cover the total area of the water

column. Then the effect of changing other parameters can be studied better.

5.7 Experiments on Voronoi Path Algorithm

The VoronoiPath is the global path planning algorithm that places the robot path points

at the position of least influence by the neighboring sensors. Due to this, the distribution

of the sensors and the robot way point in the water column obtained after running this

algorithm should be the best possible scenario. We perform the experiments on the

VoronoiPath algorithm in three different ways.

In the first layout, we manually placed 10 sensors in a zigzagged fashion at the edges of

the water column, i.e., some are at depth 0 meters while the alternate ones are at 30 meters.

By placing the sensors at the edges, we are sacrificing half of the sensing by these sensors.

So, this is not an ideal position. Then the path of a mobile robot is planned with the help

of Algorithm 1. The posterior error of the system is calculated first without and then with

the robot path. Figure 5.8 shows us the layout of the mobile robot path obtained from this

algorithm and Figure 5.13 shows us the comparison of the posterior error obtained when

posterior error is calculated with only the sensors in the system and when it is calculated
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Figure 5.7: Comparison of Posterior Error for layouts shown in Figure 5.6
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Figure 5.8: Layout 1: Plots showing the sensor layout and mobile robot path for Layout
with sensors placed zigzaggedly at the edge of the water column
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Figure 5.9: Layout 2: Plots showing the sensor layout and mobile robot path for Layout
with nodes placed zigzaggedly at 5m and 25m in the water column

by adding the Voronoi vertices and intermediate path points to the system. We found that

the posterior error is 0.9365 when there are no mobile robot path and 0.8097 when the

mobile robot passes through the sensors. As we can see from this figure, the posterior

error of the system decreases on adding the mobile robot path. Therefore, it means that

introducing the mobile robot improves the overall sensing in the water column as a lower

value of the posterior error implies better sensing.
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Figure 5.10: Layout 3: Plots showing the sensor layout and mobile robot path for a-priori
deployed realistic Sensor Network

In the second layout, we again manually placed 10 sensors in a zigzagged fashion at

depth 5 meters and the alternate ones are at 25 meters. This placement of the sensors

should give us a better reading than the one obtained by placing the sensors at the edges.
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Similar to Layout 1, the path isplanned with the help of Algorithm 1. The posterior error

of the system is calculated first without and then with the robot path. Figure 5.9 shows us

the layout of the mobile robot path obtained from this algorithm and Figure 5.13 shows us

the comparison of the posterior error obtained when posterior error is calculated with only

the sensors in the system and when it is calculated by adding the Voronoi vertices and

intermediate path points to the system. We found that the posterior error is still 0.8780

when there are no mobile robot path but it decreases to 0.7519 when the mobile robot

passes through the sensors. Since a lower value of the posterior error implies a better

sensing. It can be inferred that sensing is improved in Layout 2 compared to Layout 1.
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Figure 5.11: Layout 4: Plots showing the sensor layout and mobile robot path for Layout
with sensor locations in a zigzagged arrangement but very close to each other

In this layout, we took 10 sensors, placed them all at depth 10 meters and then

optimized the location of these sensors by using Algorithm 4 without intermediate robot

waypoints. Then we input the optimized locations of these sensors to Algorithm 1.

Figure 5.10 shows us the layout of the mobile robot path obtained from this algorithm

and Figure 5.13 shows us the comparison of the posterior error obtained when posterior

error is calculated with only the sensors in the system and when it is calculated by adding

the Voronoi vertices and intermediate path points to the system as well. As we can see

from this figure, the posterior error of the system without the mobile robot path is 0.8741

and with the mobile robot path is 0.7638. The value of the posterior error with the mobile

robot path is not less than Layout 2 even though it was expected as this time the layout of

the sensors was optimized with Algorithm 4. This is because the location of the sensors is

optimized such that it provides the best possible sensing with only the 10 nodes in the
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system. It does not consider if a mobile robot is introduced in the system later and thus

the algorithm does not readjust the positions of the sensors in the wake of the presence of

the additional mobile robot. This is taken care of in Algorithm 4.
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(a) Voronoi Cells
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(b) Voronoi Path after Truncation

Figure 5.12: Plots enlarging Figure 5.11

Another important problem we face when we are using this method is if all the sensors

are collinear, i.e., they all lie in the same straight line. In this case, the algorithm is unable

to compute the Delaunay triangulation. However, we do not need to worry much about

this case as the sensor locations obtained after running Algorithm 4 is mostly arranged in

a zigzagged fashion and almost never in a straight line.

Table 5.1: Posterior Error Comparison for Voronoi Tesselation method of Different layouts
described in Section 5.7

Layout # Only Sensors Sensors + Robot Path
1 0.9365 0.8097

2 0.8780 0.7519

3 0.8741 0.7638

4 0.8733 0.7615

Figure 5.11 shows the path when the sensors are very close to one another (alternately

at 10 meters and 12 meters respectively). From the figure, we can see that the mobile robot

path does not connect the Voronoi vertices for this layout.

When we expand the field of view (Figure 5.12(a)), we can see that the Voronoi vertices
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Figure 5.13: Posterior Error Comparison for Different layouts for the Voronoi Tesselation
method

for this arrangement of sensors do not lie within the depth of the water column. So the

Voronoi path needs to be truncated at the boundary of the water column so that the robot

does not escape the water (Figure 5.12(b)). When only a few edges needs to be truncated,

the planned path can be very similar to the ideal Voronoi path. However, in this case,

since all the Voronoi vertices lie outside the region of interest, all the edges needed to be

truncated at the boundary. For simplicity, when the Voronoi edges are truncated, the robot

travels in a straight line across the surface, or along the bottom, of the water column, as

applicable. In Figure 5.13 we can observe that the posterior error for the layout without

any mobile robot is 0.8733 and with the mobile robot path is 0.7615. Adding more sensor

locations covers more region in the water column, and as a result, the posterior error still

decreases.

5.8 Experiments on Tangent Bug Path algorithm

The Algorithm 3 is the path planning algorithm inspired from Tangent Bug method. In

Algorithm 2, the mobile robot senses the water column at previously determined points

and the path of the mobile robot is planned by connecting these sensing points together.

It is possible as the location of the sensors is known before hand. Here, the algorithm

knows the location of the sensor right ahead of the robot only. Thus, this is is a local path
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planning algorithm. The main parameters that affect the planned path are:

• Sensing radius of the robot, rR

• Sensing radius of the sensors, rS

• Interval between each decision, interval

The other important factor is the layout of the sensors. We must note that rR and rS are the

properties of the robots. Whereas, interval is a parameter for the algorithm and the layout

is a completely external factor affecting the path of the mobile robot. If the sensors and

the mobile robot are simlar to each other in characteristics, then we might have rR = rS.

5.8.1 Changing Robot’s Sensing Radius
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(a) Robot’s Sensing Radius = 2
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(b) Robot’s Sensing Radius = 5
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(c) Robot’s Sensing Radius = 7
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(d) Robot’s Sensing Radius = 10

Figure 5.14: Path Planning with Tangent Bug algorithm for different rR of the robot with
interval = 1 and sensor’s sensing radius, rS = 5

In the following sections, the effect of above mentioned four parameters are examined

by keeping the other factors constant. In Section 5.8.1, we examine the effect of changing rR

for interval = 1 keeping everything else constant. In Section 5.8.2, we perform the same set

of experiments as Section 5.8.1 but this time we have interval = 5. We compare the results

with the previous section. In Section 5.8.3, the value of rS is changed keeping rR constant

at 10 meters and interval = 1. For these experiments, instead of choosing manual layouts,

we use the same layout of the sensors as was used in Section 5.7 for the layout in which



86

the position of the sensor network is optimized by Algorithm 4 without intermediate robot

waypoints. In Section 5.8.4, we examine the performance of the algorithm under other

layouts, speciffically we study the behavior when the sensors are placed close to each

other.
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(a) interval = 1
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(b) interval = 5

Figure 5.15: Plots showing the sensing positions for a mobile robot path having rR = 2
and rS = 5

In this section, we vary the sensing radius rR of the robots keeping the sensing radius

of the sensor constant (rS = 5) and interval = 1. The values of rR are 2 meters, 5 meters,

7 meters, and 10 meters, respectively. These values were randomly chosen to cover the

entire spectrum of ranges. As the horizontal difference between any two sensors is 15

meters, a value of rR which is greater than 10 meters is not chosen as the path planning

will not be efficient. Figure 5.14 shows the different layouts and the posterior errors for

the different layouts when the mobile robot path is absent and present. From the figures,

we can conclude that a smaller value of the rR gives a greater control on the planned path.

Since the robot cannot see a great distance ahead of it, it takes a longer time to decide

where it should go next. For example, there is more sensor boundary following; or the

mobile robot path intersects the sensor boundary even when the next sensor is clearly

visible. So a path planned with a lower value of rR is more detailed than a path planned
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with a higher value.
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Figure 5.16: Posterior Error Comparison for
Figure 5.14

One important consideration with the

Tangent Bug algorithm is that the mobile

robot path has a large number of path

points, Npath. This number depends on the

parameter interval which is specified by the

user. This is discussed in detail in the Sec-

tion 5.8.2. However, the mobile robots are

constrained and it is not possible to sense

the water column continuously. Therefore,

we assume the robot is able to sense at only a certain number of points Nsense in the water

column. Since there are ten sensors in the network, we assume that Nsense = 9. This

number is chosen to maintain consistency with Section 5.9. To keep it simple, we assume

that the mobile robot can sense only at every f loor( Npath
Nsense

)th point on its path.

Table 5.2: Posterior Error Comparison for Tangent Bug method of Different layouts
described in Section 5.8.1

Layout # Only Sensors Sensors + Robot Path
1 0.8741 0.7906

2 0.8741 0.7782

3 0.8741 0.7804

4 0.8741 0.7804

Figure 5.15(a) shows the sensing locations marked in magenta color for the Fig-

ure 5.14(a). Due to the nature of the algorithm, these points can lie anywhere. Instead of

choosing a point which is in between two sensors, a point on the sensing boundary can be

chosen. Therefore, the posterior error calculation will depend on which points are chosen

to be the sensing location. This can be improved if a new algorithm is introduced which

chooses strategically important sensing locations. However, for simplicity this was not

implemented in the scope of this thesis.
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5.8.2 Changing Size of Interval

In this section we will study what happens when we change the interval.
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(a) Robot’s Sensing Radius = 2
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(b) Robot’s Sensing Radius = 5
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(c) Robot’s Sensing Radius = 7
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(d) Robot’s Sensing Radius = 10

Figure 5.17: Path Planning with Tangent Bug algorithm for different rR of the robot with
interval = 5 and sensor’s sensing radius, rS = 5

Table 5.2 shows the posterior error values obtained for the different layouts first without

the mobile robot path and then with the mobile robot path. In all the cases, the addition of

the mobile robot path improves sensing of the region. We see that rR = 5 gives the least

value of posterior error implying that it is the best value and rR = 2 gives the maximum

value of posterior error implying it is the least favorable. However, since these values are

dependent on the number and position of the sensing locations, these conclusions are not

rigid.

There are a few important consideration in determining the interval size. They are as

follows:

• The interval has to be a positive number. It controls the number of iterations needed

to go from the pstart to pend in the robot path. The smaller the number, the larger the

number of iterations, which in turn increases the time taken for the algorithm.

• If interval > rR, then we set interval = rR. This is because if the robot cannot see

distance beyond rR, it will not be able to position itself interval ahead of its current

position and the algorithm will fail.
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Figure 5.18: Posterior Error Comparison for
Figure 5.17

In this section, we vary the sensing ra-

dius rR of the robots keeping the sensing

radius of the sensor constant (rS = 5) and

interval = 5. The different values of rR cho-

sen are 2 meters, 5 meters, 7 meters, and

10 meters to maintain consistency with the

previous section. Figure 5.17 shows the dif-

ferent layouts and the posterior errors for

the different layouts when the mobile robot

path is absent and present.

Table 5.3: Posterior Error Comparison for Tangent Bug method of Different layouts
described in Section 5.8.2

Layout # Only Sensors Sensors + Robot Path
1 0.8741 0.7922

2 0.8741 0.7843

3 0.8741 0.7800

4 0.8741 0.7772

From the figures we can see that, similar to Section 5.8.2, a smaller value of the rR

gives a greater control on the planned path, there is more sensor boundary following etc.

However, in this case we get Npath
5 path points instead of Npath. Figure 5.15(b) shows the

sensing locations for rR = 2 in magenta. As we can observe, these points are different than

the ones chosen for interval = 1.

5.8.3 Changing Sensor’s Sensing Radius

Table 5.3 shows the posterior error values obtained for the different layouts first without the

mobile robot path and then with the mobile robot path. We observe that for interval = 5,

the mobile robot path planned with rR = 2 gives the worst performance and that with

rR = 10 gives the best performance. However, since these data are based on the randomly

selected path points on the mobile robot path we may get a different result by changing
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(a) Sensor’s Sensing Radius = 2
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(b) Sensor’s Sensing Radius = 5
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(c) Sensor’s Sensing Radius = 7

Figure 5.19: Different rS of the sensors; interval = 1 and robot’s sensing radius, rR = 10

the positions of these points.

Table 5.4: Posterior Error Comparison for TanBugPath algorithm for Different layouts
described in Section 5.8.3

Layout # Only Sensors Sensors + Robot Path
1 0.8741 0.7888

2 0.8741 0.7805

3 0.8741 0.7790

In this section we vary the sensing radius rS of the sensors keeping the sensing radius

of the mobile robot constant (rR = 10) and interval = 1. The different values of rS that are

chosen are 3 meters, 5 meters, and 7 meters respectively. A value which is smaller than 3

meters will bring the mobile robot too close to the sensor. Intuitively, such a value may

be useful to plan a path when the mobile robots are very close to one another but not so

much otherwise. A value of sensing radius greater than 7 meters implies that the sensing

regions of the adjacent nodes overlap. This is because the horizontal distance between any

two sensors is 15 meters. In such case, the sensors together become one big obstacle and

the algorithm is unable to find an efficient path through the network. Thus, the above

mentioned values were chosen. Figure 5.19 shows the different layouts and the posterior

errors when the mobile robot path is absent and present.
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Figure 5.20: Posterior Error Comparison for
Figure 5.19

The comparison between the different

layouts with respect to the posterior error

calculated in each scenario can be seen in

Table 5.4 and is represented in Figure 5.20.

As discussed earlier, we assume that the

mobile robot can only sense at nine loca-

tions through the entire water column and

hence it senses at every f loor(Npath
9 )

th
loca-

tion. When the rS is smaller, the mobile

robot path is zigzagged, but when rS is increased, the path becomes more like a straight

line. Even though the sensing locations are randomly chosen, from the figures and the

posterior error values, rS = 10 seems to perform better than rS = 5 which in turn performs

better than rS = 2. When a path point is chosen on the sensing boundary with a lower

value of rS, the sensor and the robot are very close together and their sensing bubble

collides. This gives a poor coverage and, therefore, a higher value of posterior error. When

the sensing radius of the sensors is larger, the path is planned such that the mobile robot

maintains a distance from the sensor which is at most equal to the sensing radius of the

sensor. Thus the mobile robot and sensors maintain maximum distance from each other.

As a result, it covers more area of the water column than is possible when the radius is

smaller.

5.8.4 Path Planning when Sensors lie close to each other

Unlike Section 5.7, in which the Algorithm 2 is unable to plan a path of the mobile robot

if the sensors are arranged in a co-linear fashion, this algorithm is able to find a robot

path. However, in this case the mobile robot path will be formed by tracing the sensing

boundaries of the sensors, so much of their sensing zone will be overlapped and most of

the rest of the water column will remain unexamined. A similar scenario occurs when the

sensors lie very close to one another as shown in Figure 5.21. In this figure we show the
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(a) Robot’s Sensing Radius = 2
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(b) Robot’s Sensing Radius = 5
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(c) Robot’s Sensing Radius = 7
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(d) Robot’s Sensing Radius = 10

Figure 5.21: Different rR of the robot with interval = 1 and sensor’s sensing radius, rS = 5

path of the mobile robot when the sensors are arranged very close to one another in a

zigzagged fashion at 10 meters and 12 meters respectively. We test this scenario with the

sensors having a sensing radius of rS = 5 and interval = 1. The robot’s sensing radius is

varied from 2 to 10 meters.

Table 5.5: Posterior Error Comparison for TanBugPath algorithm for Different layouts
described in Section 5.8.4

Layout # Only Sensors Sensors + Robot Path
1 0.8733 0.7975

2 0.8733 0.7956

3 0.8733 0.7947

4 0.8733 0.7948
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Figure 5.22: Posterior Error Comparison for
Figure 5.21

We observe that, for all cases, the path

planned for the mobile robot passes over

sensing bubble of the sensors. If the rR

is larger, the path is straighter. The com-

parison between the different layouts with

respect to the posterior error calculated in

each scenario can be seen in Table 5.5 and

is represented in Figure 5.22. As before,

we assume that the mobile robot can only
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sense nine times through the entire water column. So the mobile robot senses at every

f loor(Npath
9 )

th
location from a set of Npath points that are there on its path. As discussed

before, these f loor(Npath
9 ) positions are randomly chosen and as such, do not have as much

influence on the posterior error as it could have had if they had been chosen strategically.

5.9 Experiments on Adaptive Path Algorithm
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Figure 5.23: Legend

In this section, we study the performance

of Algorithm 4. At first, we show the per-

formance of the algorithm on varying node

layouts and show that the controller output,

described in Section 4.14 goes to zero. Af-

ter that, we vary different parameters that

are set by the user at the beginning of the

algorithm and study the effect of each on the final node layout and overall sensing. In

all the following sections, unless otherwise stated, the marking conventions stated in

Figure 5.23 will be followed for all figures showing the initial and final node layouts.

The important parameters that govern when the algorithm believes the system has

converged are thresholdlim and turnslim. These two factors are set by the user at the

beginning of the algorithm. We found that if we do not set a thresholdlim, the algorithm

will stop after the first 5 iterations as the objective function always goes down during this

time. Thus the algorithm has not actually converged. Hence we need to set a thresholdlim

so that the algorithm at least runs for that many iterations before it comes to a full stop.

We cannot set a very high value of thresholdlim, as the algorithm will then run longer than

needed. We discuss this in detail when we talk about Figure 5.28 later. At the same time

we cannot set a low value of this parameter. A thresholdlim ≤ 10 is often not sufficient for

some configurations as the system converges very fast (example Figure 5.24). For all the

experiments, the value of the parameters turnslim was set to 5.

In the layout shown in Figure 5.24(a), we have 5 sensors and 2 robot waypoints between
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Figure 5.24: Layout 1: Initial and Final layout with Algorithm 4
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Figure 5.25: Layout 2: Initial and Final layout with Algorithm 4
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each of them. The sensor and robot waypoints are all at a depth of 10m. The maximum

number of iterations is set to 300 and we are using k = 2000 and α = 0 for this layout.

Since α = 0, the distance function described in Section 4.4.3 has no effect on the final layout

of the sensor nodes. The algorithm takes 20 iterations to converge. The change in the

value of the controller objective function, the distance function and the overall controller

objective function can be seen in Figs 5.24(b),5.24(c), and 5.24(d) respectively. An important

observation from this configuration, which can be observed throughout all configurations,

is that the peripheral sensors and robot waypoints, on the same side, tend to move in

opposite direction so that the region is effectively covered. We also observe that as the

algorithm converges, overall controller objective function gradually decreases and tends

to go to 0 and the distance function stabilizes. The final layout of the algorithm is not an

ideal zigzagged layout as between the distances 30m to 60m there is only one sensor in

the lower half (at 45m) at a depth of 10.44m. Thus from this layout we learned that the

value of thresholdlim should be greater than 10.
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Figure 5.26: Layout 3: Initial and Final layout with Algorithm 4
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In Figure 5.25(a), there are 5 sensors and 2 intermediate robot waypoints at a depth

of 10m. Just like before, the maximum number of iterations is set to 300, k = 2000 but

α = 0.10 for this layout. Since α = 0.10, the overall objective function is composed of 90%

value of Equation 4.1 and the rest is the distance function described in Section 4.4.3. The

algorithm requires 21 iterations to converge. The change in the value of the controller

objective function, the distance function and the overall controller objective function can

be seen in Figs 5.25(b),5.25(c),and 5.25(d) respectively. An important observation from

the final layout is that just by changing the α by a fraction we can observe that the robot

waypoints tend to stick together as much as possible. Thus, when the first robot waypoint

goes towards the bottom, the next robot waypoint instead of moving in the opposite

directions places itself closer to the first waypoint and so on.
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Figure 5.27: Layout 4: Initial and Final layout with Algorithm 4

Once again in Figure 5.26(a), we study a network which has 5 sensors. But intermediate

robot waypoints is increased to 3 and placed at a depth of 10m. The maximum number

of iterations is set to 300, k = 2000 and α = 0.50 for this layout. Since α = 0.50, the

overall objective function is composed of 50% of Equation 4.1 and 50% Equarion 4.2. The
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algorithm requires only 13 iterations to converge. The change in the value of the controller

objective function, the distance function and the overall controller objective function can be

seen in Figs 5.26(b),5.26(c), and 5.26(d) respectively. Increasing the value of α has the effect

of assigning more weight towards minimizing the distance. This is very prominent in this

configuration. However, the peripheral nodes still move away to provide better coverage.

Now that we have studied the basic layout of the sensor network with 5 sensors, we

study bigger sized networks and verify if these also act similar to the networks with

5 sensors. In these experiments, the thresholdlim = 20 and turnslim = 5. In the layout

in Figure 5.27(a) there are 10 sensors and 3 intermediate robot waypoints, all initially

at a depth of 10m. The maximum number of iterations is set to 300, k = 2000 and

α = 0.10. Unlike the previous experiments, the value of hops is set to 3 instead of 1.

Therefore, we assume that the robot is able to communicate with the 3 nearest sensors

on either side. This implies that at the time of optimizing the current robot waypoint,

the location of all robot waypoints that are there between this one up to the third sensor

with which it can communicate will be considered. The algorithm requires 25 iterations

to converge. The change in the value of the controller objective function, the distance

function and the overall controller objective function can be seen in Figs 5.27(b),5.27(c), and

5.27(d) respectively. We observed that even though the distance objective function seems

to increase in magnitude, the displacement is very miniscule. The controller objective

function is gradually decreasing and since that has a major effect on the overall controller

objective function, the controller objective function decreases and tends to 0. In the final

layout, we observe that all the sensors and robot waypoints except the peripheral ones

tend to get arranged around the middle of the water column.

In the next layout shown in Figure 5.28(a), we have 10 sensors in zigzagged positions

at 7m and 23m respectively. There are 3 intermediate robot waypoints at a depth of 10m

between each pair of sensors. The number of iterations is set to 400, k = 2000 and α = 0.10.

No thresholdlim and turnslim were set so that the algorithm would run for all 400 iterations.

The change in the value of the controller objective function, the distance function and
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Figure 5.28: Layout 5: Initial and Final layout with Algorithm 4
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the overall controller objective function can be seen in Figs 5.30(a),5.28(c), and 5.28(d)

respectively. A zoomed section with only 35 iterations is shown in Figs 5.28(e),5.28(f), and

5.28(g) respectively. We found that the distance function increases for the first 9 iterations

and then remains comparatively steady till 35 iterations. But after that, the value gradually

increases. The more scattered network means better coverage and hence the controller

objective function gradually decreases. Since the change in magnitude of the distance

function is very small, the overall controller objective function is not greatly affected and

decreases over time leading to 0. The layout after 35 iterations can be seen in Figure 5.28(h).

We can see that the robot path is very different in the two diagrams. So, we calculated

the posterior error for each iteration in this configuration (Figure 5.29(a)). We can observe

that the least posterior error is obtained when the iterations are around 150. We plotted the

mobile robot path at 150 iterations in Figure 5.29(b). The total path length for this configu-

ration is 388.45m and for the the layout with 400 iterations is 433.12m. The difference in

path length is only 44.67m and the difference is posterior error value is -0.005. The change

in the value of the controller objective function, the distance function and the overall

controller objective function for 150 iterations can be seen in Figs 5.29(c),5.29(d),5.29(e)

respectively. We observe that even though the distance objective function is increasing, the

value is extremely small and negative. At the same time, as distance is increasing, the robot

waypoints are getting gradually scattered which subsequently decreases the controller

objective function. Since the α = 0.10, this has major effect on the overall objective function,

and which decreases as well.
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Figure 5.29: Additional Information on Figure 5.28

Finally, in the last layout we discuss an input dependency of Algorithm 4. In the layout

shown in Figure 5.30(a) we have 10 sensors and 3 robot waypoints between each of them.
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The sensors are all at 10m but the robot waypoints are initially placed in a zigzagged

layout at 0m and 30m respectively. The maximum adaptive number of iterations is set to

300 and we are using k = 4000 and α = 0.10. Just like Figure 5.28 the distance function

described in Section 4.4.3 has only 10% effect on the final layout of the sensor nodes. The

algorithm requires 37 iterations to converge. The change in the value of the controller

objective function, the distance function and the overall controller objective function can

be seen in Figs 5.30(b),5.30(c), and 5.30(d) respectively. We can observe that the distance

function gradually decreases, but this is because the robot waypoints are already placed at

the maximum distance positions at the edges of the water column and the algorithm works

so that the nodes cannot be placed outside the water column. Hence, any displacement in

the original positions will cause a decrease in distance. The controller objective function

and the overall objective function also decreases and the algorithm converges. But, in the

final layout, we find that the robot waypoints are still at the extremities and the sensors lie

around the middle of the water column. This is not a low cost path because, ideally, the

positions of the sensors and the robot waypoints would be interchanged in a low cost path.

But in the algorithm the sensors and robot waypoints are treated as individual sensing

points, and since the α = 0.10, the effect of minimizing distance is not prominent.

When α = 0.10, the maximum path length is 742.32m, and it takes the system only 37

iterations to converge. The posterior error values for the initial node layout, final node

layout, and final node layout without robot are 0.7169, 0.6726 and 0.8733 respectively.

When α = 0.50, then the maximum path length is 725.26m, and it takes the system more

than 100 iterations to converge. The posterior error values for the initial node layout, final

node layout and final node layout without robot are 0.7169, 0.6613 and 0.8733 respectively.

The maximum path length is smaller for α = 0.50 than for 0.10 as expected. However, the

effect of minimizing the distance is still not prominent because the sensor nodes which

were at 10m of the water column still stays closer to their starting locations, and the same

applies for the robot waypoints. Also the system is more stable when α values is lower.

For example, it takes lesser number of iterations to converge when α = 0.10 than when
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it is 0.50. Therefore, the algorithm is dependent on the starting configurations of the

sensors and robot waypoints. This is, in fact, a local minimum of the objective function

and the algorithms stops there. The dependency of the final layout of nodes on the input

layout of the sensors and robot waypoints is examined in detail in Sections 5.9.7 and 5.9.7,

respectively.
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Figure 5.30: Layout 6: Initial and Final layout with Algorithm 4

In the following sections we study the performance of Algorithm 4 on varying different

parameters. Firstly, in Section 5.9.1, we study the effect of k on the final result by keeping

the other factors constant. In Section 5.9.2 we study the algorithm by varying α. In

Section 5.9.3 the effect of varying the number of intermediate robot waypoints V between

two sensors nodes is evaluated. The effect of increasing network size on the running time

of the algorithm is studied in Section 5.9.4. In Section 5.9.5 we verify if the algorithm is

able to plan the the mobile robot path efficiently when one or more sensors stop working.

Section 5.9.6 lists the behavior of the algorithm when the water column has regions with

varying properties (different values of covariance). In Section 5.9.7 and Section 5.9.8, we
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vary the starting configuration of the sensors and the robot waypoints respectively and see

how that affects the resulting final layout. Finally in Section 5.9.9 we study the effect of

varying the hops parameter on the final path length.

5.9.1 Experiments on k

The parameter k is the constant in Equation 4.14 that controls the rate at which the depth

of the sensors changes in the water column. We performed experiments by taking different

values of k = [1000, 2000, 4000] and by keeping the rest of the parameters constant. We

experimented with three different networks:

• A network having 10 sensors which were arranged in a zigzagged manner at depths

7m and 23m respectively. V = 1, i.e., only one robot waypoint between a pair of

sensors, at depth of 10m (Figure 5.31(a)).

• A network having 10 sensors all at depth of 10m at starting. V = 1, i.e., only one

robot waypoint between a pair of sensors, at depth of 10m (Figure 5.31(b)).

• A network having 10 sensors all at depth of 10m at starting. V = 3, i.e., three robot

waypoints between a pair of sensors, at depth of 10m (Figure 5.31(c)).

The thresholdlim and turnslim were set to 20 and 5 respectively with the rest of the

parameters set as hop = 1, iterationsmax = 300, and [σs, σd] = [5, 4] respectively. The results

are shown in Figure 5.31 where the blue dots represents the value of the maximum path

length when k = 1000, red dots for k = 2000 and green dots for k = 4000. We averaged the

value of maximum path length for the three different k values and then fitted a curve to it.

We can observe that the maximum path length value for small k is smaller than others.

We noticed that increasing the value of k causes the nodes to move down the gradient

of H more quickly. If k value is small, these changes are slow and more gradual. If k is too

large, that can lead to oscillations around the final configuration or lead to instabilities in

the system. However, if the value of k is very small, then the system may not move fast

enough to converge within a reasonable number of steps.
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(a) zigzag with V = 1
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(b) straight with V = 1
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(c) straight with V = 3

Figure 5.31: α vs. Maximum Path Length
and Iterations required to Converge for a 10

sensor network starting in a zigzagged
layout with sensors at 7m and 23m

respectively. V = 1 at 10 m

Since the k controls how fast the depth

of the sensors can change, this implies that

with smaller values the system changes the

depths at a slower rate. We observed that

when V = 1, the peripheral sensors and

robot waypoints oscillate and hence, the

system often does not converge within the

specified iterationsmax. This is more promi-

nent when the k values are bigger, because

then the depth changes in bigger steps in

each iteration. We found that value of k

around 2000 gives the best result for all the

layouts.

5.9.2 Experiments on Changing α

The weight, α, determines whether the sens-

ing objective function or the distance func-

tion plays major role in determining the

length of the mobile sensor path, which

determines the position of the robot way-

points in the water column. We perform

experiments to determine how to control

the length of the mobile robot path by vary-

ing α. The α is used in the algorithm to

determine which of the objective functions

has a more prominent role in determining

where the robot way points will finally end up in the water column.
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(a) k=1000
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(b) k=2000
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(c) k=4000

Figure 5.32: α vs. Distance, Iterations for 10

sensors zigzagged at 7m and 23m
respectively. V = 1 at 10m

The sensing objective function tries to

distribute the way points evenly through

the water column in a zigzagged fashion

so that sensing is maximized. However, the

distance objective function tries to align the

robot waypoints in a straight line so that

the distance is minimized. The α controls

the impact of the objective functions on the

robot path length. So if the α = 0, the

sensing objective function plays the major

role and the distance objective function has

no effect on the robot path length. On the

other hand, if α = 1, the sensing objective

function does not play any role and the

distance function should try to align the

robot way points in a minimum distance

path, i.e., ideally, a straight line.

Figure 5.32 shows the data for a net-

work having 10 sensors which were ar-

ranged in a zigzagged manner at depths of

7m and 23m alternately. There is only one

robot waypoint between a pair of sensors

at 10m. The thresholdlim and turnslim were

set to 20 and 5 respectively. The rest of the

parameters were set as hop = 1, iterationsmax = 300 and [σs, σd] = [5, 4]. hop = 1 signifies

that the mobile robot can communicate with only the nearest node on each side.
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(a) k=1000
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(b) k=2000
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(c) k=4000

Figure 5.33: α vs. Distance, Iterations for 10

sensors starting in a straight layout 10m.
V = 1 at 10m

iterationsmax = 300 signifies that the al-

gorithm is run for a maximum of 300 iter-

ations, i.e., if the algorithm does not con-

verge within 300 iterations the algorithm

is stopped. We increase the value of α

from 0 to 1 in the intervals of 0.01. We

get Fig 5.32(a) for k = 1000, Fig 5.32(b)

for k = 2000, and Fig 5.32(c) for k = 4000.

The magnitude of the robot path length

vs. α is plotted along with the number

of iterations it has taken each of the lay-

outs. A curve is fitted to the maximum

path length. We observed that for k = 1000,

the system converges for each layout. How-

ever for k = 2000 and k = 4000, the sys-

tem does not always converge and run till

the iterationsmax, especially for small val-

ues of α. We can observe, between α = 0.0

to α = 0.7, the length of the path varies

widely. However, after α = 0.7, the path

length either remains constant or gradually

decreases. The curve fitting for maximum

path length has a similar pattern for all val-

ues of k. Therefore, for a zigzagged initial

layout of sensors, we can call α = 0.7 as the transition α such that the distance covered by

mobile robot for α < 0.7 is greater than that covered by it when α ≥ 0.7.
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(a) k=1000
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(b) k=2000
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(c) k=4000

Figure 5.34: α vs. Distance, Iterations for 10

sensors starting in a straight layout at 10m.
V = 3 at 10m

Figure 5.33 shows the data for a net-

work having 10 sensors which were ar-

ranged in a straight colinear layout at a

depth of 10m in the water column. There

is only one robot waypoint between a pair

of sensors at the same depth. Just like in

the case before, we set thresholdlim = 20,

turnslim = 5, hop = 1, iterationsmax = 300

and [σs, σd] = [5, 4] respectively. Once

again, we increase the value of α from 0 to

1 in the intervals of 0.01. We get Fig 5.33(a)

for k = 1000, Fig 5.33(b) for k = 2000, and

Fig 5.33(c) for k = 4000. In this layout,

we observed that for k = 1000, the system

converges for each layout. However, for

k = 2000, the system does not converge

for small values of α and for k = 4000, the

system does not converge for small as well

as large values of α. In these cases, the sys-

tem runs till the iterationsmax. However, the

fitted curve for all values pf k are compara-

ble and have similar maximum path length

irrespective of if the system converged or

not. For this layout, we observed, between

α = 0.0 to α = 0.5, the length of the path varies widely. However, after α = 0.5 the

path length variation decreases. The curve fitting for maximum path length has a similar

pattern for all values of k. Therefore, for a straight layout of sensors with one intermediate

robot waypoint, α = 0.5 is the transition α such that the distance covered by mobile robot
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for α < 0.5 is greater than that covered by it when α ≥ 0.5.

Figure 5.34 shows the data for a network having 10 sensors which were arranged

in a straight colinear layout at a depth of 10m in the water column. There are three

robot waypoints between a pair of sensors at the same depth. We set thresholdlim = 20,

turnslim = 5, hop = 1, iterationsmax = 300 and [σs, σd] = [5, 4] respectively. Once again, we

increase the value of α from 0 to 1 in the intervals of 0.01. We get Fig 5.34(a) for k = 1000,

Fig 5.34(b) for k = 2000, and Fig 5.34(c) for k = 4000. In this layout, the system converges

for all values of α. The maximum path length for k = 2000 and 4000 are comparable, but

for k = 1000 the path length is lesser for smaller values of α. For all the k for this layout,

between α = 0.0 to α = 0.6, the length of the path varies widely. However, after α = 0.6

the path length variation decreases. Therefore, for a straight layout of sensors with three

intermediate robot waypoints, α = 0.6 is the transition α such that the distance covered by

mobile robot for α < 0.6 is greater than that covered by it when α ≥ 0.6.

5.9.3 Experiments on Number of Intermediate Nodes, V

An important parameter that decides the final mobile robot path length is the number of

robot waypoints, V, that have been specified between two sensor nodes. More number

of robot waypoints gives the algorithm a finer control on the length and layout of the

mobile robot path. Each robot waypoint represents a new position where the mobile robot

can travel to collect data. However, intuitively, more number of robot way points also

mean that the system will need more number of iterations to converge. In this section we

perform experiments by varying the number of robot waypoints for two different starting

layouts:

• All the sensors and robot waypoints are arranged colinearly at 10 meters;

• Robot waypoints are arranged colinearly at 10 meters and sensors are arranged in a

alternate zigzagged layout at 30m and 0m respectively.
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(a) Initial & Final Node Layout for V = 1
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(b) Initial & Final Node Layout for V = 2
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(c) Initial & Final Node Layout for V = 3
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(d) Initial & Final Node Layout for V = 4
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(f) Final Posterior Error Value

Figure 5.35: Final Mobile Robot Path for a straight starting layout for R = 10, k = 4000,
hop = 1, itersmax = 200, α = 0.10, σs = 10, σd = 4)

The modified Adaptive Decentralized Control algorithm is run on each of these layouts for

four different values of V.

The initial and final layouts for straight and zigzagged layout are shown in Figure 5.35

and Figure 5.36 respectively. The corresponding value of the final objective function at the

beginning and end of the experiment are shown in Figure 5.35(e) and 5.36(e); and that of

the posterior error value in Figure 5.35(f) and 5.36(f). Table 5.6 shows the comparison of

the total distance traveled by mobile robot, total number of iterations required to converge,

and initial and final objective function values.
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(a) Initial & Final Node Layout for V = 1
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(b) Initial & Final Node Layout for V = 2
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(c) Initial & Final Node Layout for V = 3
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(d) Initial & Final Node Layout for V = 4
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Figure 5.36: Final Mobile Robot Path for a zigzagged starting layout for R = 10, k = 4000,
hop = 1, itersmax = 200, α = 0.10, σs = 10, σd = 4)

We can see in Figure 5.35, when the sensors are in a straight layout at the starting, there

is possibility of more variation in the mobile robot path because the sensors and robot

waypoints are treated equally and, hence, can move in either direction leading to wide

difference in planned paths. Also, we can observe that the total distance traversed by the

mobile robot increases on increasing the number of intermediate robot waypoints. This

is because increasing the robot waypoints gives granular control on where they should

be placed and due to the nature of the algorithm minimum distance path is not the most

effective path for gaining information. The maximum iterations was set to 200 and none of

the layouts needed more than that to converge. The number of iterations required for the
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Table 5.6: Comparison for layouts shown in Figure 5.35 and Figure 5.36

Layout V Total Distance Initial Objective Final Objective Iterations
Straight 1 133.25 0.8890 0.0093 80

2 199.90 0.8484 0.0190 89

3 207.90 0.9320 0.0122 115

4 234.64 0.8936 0.0113 140

Zigzag 1 120.53 0.0006 0.0005 12

2 126.41 0.0008 0.0007 11

3 127.75 0.0005 0.0004 10

4 136.78 0.0006 0.0011 32

algorithm to converge increases on increasing the number of intermediate robot waypoints,

which is expected. The final objective function value is only 1-2% of the initial objective

function value. The posterior error value on adding the mobile robot path is lesser than

when there is no robot in each of these cases. And the final posterior value is lesser than

the initial posterior error value even when the mobile robot is present in the system. On

increasing the number of intermediate robot waypoints, the value of the posterior error of

the final layout gradually decreases.

However, from Figure 5.36, we can observe that if the starting location of the sensors

is zigzagged or has been already optimized with the Adaptive Decentralized Control the

robot waypoints generally end up not moving much from their initial location. As we can

observe from the data in Table 5.6, the objective function at the beginning of the algorithm

is already very low compared to the values in the previous layout. This means the starting

layout is already capable of sensing the area very efficiently. The final value of objective

function for this starting layout is 80-90% of the initial value and the number of iterations

required to converge is much less than the other layout. This implies that the algorithm

considers the starting layout as a good layout for sensing and does not change it.

5.9.4 Experiments on Number of Iterations

The size of the sensor network depends on the sensors as well as the number of robot

waypoints in between two sensor nodes. On increasing the number of robot way points
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in between two sensors, the number of sensing locations in the water column increases.

This directly impacts the size of the network, even though the area of sensing remains the

same. The running time of the Adaptive Decentralized Control depends upon the size of

the network. Intuitively, if the network size increases, the time required for the Adaptive

Decentralized Control algorithm to converge should increase. But this may not be the case

for the Algorithm 4 because the coverage of the area of water column is more important.

Denser networks, i.e., networks having more number of sensors and robot sensing points

automatically cover more area of water and hence, often converge faster than sparse ones.
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Figure 5.37: Number of iterations to
converge for different α values and different
network size for V = 1 and thresholdlim = 10

The number of iterations that the al-

gorithm needs to converge can be a good

estimation for the running time of this algo-

rithm. In this section we present iteration

data to estimate the running time for the

algorithm on different sized networks and

study the factors which affect the running

time. However, we should note that one

iteration for a network with less number of

nodes does not take exactly same time as a

network with more number of nodes. This

is because each of the sensors and robot

way points are optimized individually. So

the number of iterations is only a rough estimation of the running time.

A network with ten sensors and one intermediate robot waypoint roughly takes 105 to

115 seconds per iteration, i.e., approximately 6 seconds per node per iteration. On the other

hand, a network with ten sensors and three intermediate robot waypoints takes roughly

380 to 395 seconds per iteration, i.e., approximately 10 seconds per node per iteration. This

is when all the nodes are arranged in a straight layout at the beginning of the algorithm.

For a zigzagged starting layout, the time taken per node per iteration is approximately 8
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seconds.
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Figure 5.38: Number of iterations to
converge for different α values and different
network size for V = 3 and thresholdlim = 10

As stated earlier in Section 5.9, the

main factors that affects the total num-

ber of iterations required to converge are

thresholdlim and turnslim. These two fac-

tors are set by the user at the beginning

of the algorithm. We ran the experiment

with thresholdlim = 10 for one intermedi-

ate robot waypoint in a network of 10 sen-

sors. The results are shown in Figure 5.37.

Here, the number of intermediate robot

waypoints was fixed at V = 1 and the num-

ber of sensors was varied in R = [5, 10] and

weight, α = [0.00, 0.10, 0.30, 0.50, 1.00].

We found, firstly, that experiments with one intermediate node is not very stable as

the peripheral nodes keep oscillating and often the algorithms runs till the iterationsmax is

reached. Secondly, if thresholdlim ≤ 10, the algorithm stops very soon for some configura-

tions. This is because the value of the objective function is monotonically decreasing from

a very high value to a low value in the first few iterations. If thresholdlim ≤ 10, then this

decrease can be wrongly interpreted as a gradient minimum, and the algorithm assumes

that it has converged.

Considering the above observations, we again ran two sets of identical experiments,

one with thresholdlim = 10 and the other with thresholdlim = 20 respectively for a network

of sensors with three intermediate robot waypoints (V = 3). The value of the parameters

turnslim was set to 5. For these experiments, we considered two different sizes of sensor

network, R = [5, 10]. All the sensors were initially placed at 10 meters. Then we varied

the weight factor, α = [0.00, 0.10, 0.30, 0.50, 1.00], and k = [2000, 4000] respectively. The

maximum number of iterations was set to iterationsmax = 300, i.e., if the algorithm does



114

not converge within 300 iterations then it stops. The field Iterations to Converge is the total

number of iterations that the algorithm needs to converge to the steady state.

Table 5.7: Iterations required to converge

α iterations Path Length
Posterior Error

Initial Final Final w/o Robot

R = 5, V = 3, k = 2000 :
0.0 15 107.23 0.811 0.699 0.884

0.1 15 96.499 0.811 0.694 0.884

0.3 21 90.695 0.811 0.696 0.884

0.5 15 91.087 0.811 0.689 0.884

1.0 56 53.724 0.811 0.705 0.884

R = 5, V = 3, k = 4000 :
0.0 15 116.94 0.811 0.692 0.884

0.1 15 101.47 0.811 0.681 0.884

0.3 15 76.829 0.811 0.691 0.884

0.5 15 83.786 0.811 0.688 0.884

1.0 56 53.724 0.811 0.705 0.884

R = 10, V = 3, k = 2000 :
0.0 15 176.1 0.790 0.665 0.873

0.1 15 196.4 0.790 0.664 0.873

0.3 15 159.68 0.790 0.669 0.873

0.5 15 144.01 0.790 0.667 0.873

1.0 22 128.89 0.790 0.668 0.873

R = 10, V = 3, k = 4000 :
0.0 15 189.7 0.790 0.652 0.873

0.1 15 214.93 0.790 0.646 0.873

0.3 15 194.3 0.790 0.652 0.873

0.5 15 154.28 0.790 0.651 0.873

1.0 22 128.89 0.790 0.667 0.873

In Figure 5.39, we show the data for the experiment with the number of intermediate

robot waypoints fixed at V = 3 and varied the number of sensors, R = [5, 10] and weight,

α = [0.00, 0.10, 0.50, 1.00] respectively for when thresholdlim = 10. The results are shown in

Table 5.7. We can observe that, keeping the network size constant, the number of iterations

depends both on α and k. In Figure 5.39, we show the same data for thresholdlim = 20.
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Figure 5.39: Number of iterations to
converge for different α values and different
network size for V = 3 and thresholdlim = 20

We can observe that there is not much

difference in the number of iterations for

k = 2000 and α = 0.00. Sometimes the

number of iterations for k = 2000 is more

than that for k = 4000. This is because

when k = 2000, the depths of sensors

and robot waypoints are changed in small

increments. So k = 2000 takes longer

time to converge. Another important ob-

servation is that the number of iteration

required to converge is always more for

thresholdlim = 20 than for thresholdlim = 10.

One reason is that in the first case we are deliberately running the algorithm for more

number of iterations. At the same time, this also shows that for thresholdlim = 10 the

algorithm can converge at a local minimum instead of the global minimum.

5.9.5 Experiments on Missing Sensors (Uneven node layout)

Sometimes, unforeseen circumstances may lead to one of more sensors not acting as

expected. The sensors might not be deployed at the correct location, or battery might die

leading to they sensors becoming inactive. In such scenario, Algorithm 4 should plan

the path of the mobile robot such the entire water column is covered in the best possible

manner. A method of testing that is comparing two layouts:

• all sensors are working;

• one or more sensors not working.

We simulated such a scenario with the help of ten sensor nodes. In the first layout, we

arranged all the sensor nodes at a depth of 10 meters and added three intermediate robot

waypoints between each of them. In the second layout, everything was kept same except
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two sensors were erased from the layout. These were the fourth sensor (at a distance of 60

meters from the shore) and the ninth sensor (at a distance of 135 meters from the shore).

The algorithm was run on both the scenarios and the results are presented in Figure 5.40

and table 5.8.
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(a) Original Layout: No Missing Nodes
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(b) Missing Sensors: Sensors 4 and 9 are missing
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(c) Change in Posterior Error over time - original
layout
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(d) Change in Posterior Error over time - Missing
Sensors layout

Figure 5.40: Initial and Final Sensor and Mobile Robot Path layout for Uneven Node
layout (Details:k = 4000, hop = 1, Iterationsmax = 100, α = 0.10, σs = 5, σd = 4)

Table 5.8: Comparison for layouts shown in Figure 5.40

Layout
Posterior Error

Iterations Total Distance
Initial Final Final w/o Robot

Original 0.748 0.610 0.856 36 175.05

Missing Sensors 0.735 0.605 0.884 42 181.11

Figure 5.40(a) shows the initial and final node layout for the original layout and

Figure 5.40(b) for the one with the missing sensors. As we can see, when a sensor is

missing the robot waypoint is moved in such a way that the location originally covered by

a sensor is now covered by the robot waypoints that are nearest to it. This is especially
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prominent for the missing sensor at 60 meters from the shore line. The posterior error

changes over time for the original layout and the layout with missing sensors is represented

in Figure 5.40(c) and Figure 5.40(d) respectively. The red bar represents the value of the

posterior error at the final location when mobile robot path is not considered. The blue

line represents the magnitude of the posterior error changing over time from the initial

layout to the final layout. This data is presented in Table 5.8. We can observe, for the final

layout without the mobile robot path, the decrease in posterior error is 3.17% from when

the fourth and ninth sensors are missing to when all the sensors are present. However,

when the mobile robot path is added in the calculation of the posterior error, we observe

that the decrease is -0.83%, the negative sign implying that the sensing is better in absence

of the the fourth and ninth sensors with the mobile robot path than when the sensors are

present. However, in this scenario, the algorithm takes a longer time to converge and the

total distance covered by the mobile robot is more than when the sensors are present. We

tested this algorithm on several different layout and found similar results. Thus we can

conclude that the algorithm behaves as expected.

5.9.6 Experiments on Region of Interest

The characteristic of a column of water may not be uniform at all regions. Information

content of one region may vary from the adjacent region due to various reasons. The

algorithm should respond to such characteristics and align the sensor network and the

plan the mobile robot path such that all regions are well covered. In this section, we

simulate an area of water column with different properties by changing the covariances, σs

and σd, of a particular region and keeping the covariances of the rest of the region constant.

A region with lower values of σs and σd signifies that there is lesser correlation between

the adjacent points in the water column. Therefore, there is more variation. Such a region

is called a region of interest because to estimate the overall information from such region,

more number of sensors needs to be deployed. Intuitively, if an area of water column

has such a region of interest of interest, on running the Algorithm 4, the sensors and robot
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(a) Sensors and Robot Way Points in ascending
pattern
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(b) Sensors in ascending pattern; Robot Way
Points in a straight line at 15m
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(c) Sensors and Robot Way Points at 0m
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(d) Sensors and Robot Way Points at 15m
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(e) Sensors and Robot Way Points at 30m
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(f) Sensors and Robot Way Points starting in a
zigzagged pattern

Figure 5.41: Plots showing the initial & final layout for Sensors and Robot Way Points in
presence of a specific Region of Interest denoted by the grey region. The sensors and robot
way points concentrate there to gain more information. (Details: R = 10, V = 1, k = 2000,

hop = 1, iterations = 40, α = 0.10).

waypoints should concentrate towards this region instead of getting distributed uniformly

throughout the water column. This is an important property because, in the real world, the

concentration of organic matter is often not uniform, and to gain information, the sensors

should be deployed in such a way that information gain is maximized.

To implement this functionality, we need to incorporate a small change to the algorithm.

While calculating Cov(pi, q) in Equation 3.11, if the q is a point in the region of interest, we

use σs and σd that are exclusive for this region (σs
ROI and σd

ROI) instead of using the values

which are same for the rest of the water column. The characteristics of the water column

can change over time. This can again be reflected in the varying values of covariances over

time. The algorithm will take care of any such changes by using a different value of σs and

σd at different iterations, as specified by the user.
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For running this simulation we designated the top right-hand-side quadrant of the

water column as the region of interest (ROI). It was specified by halving the value of σd, i.e,

while the rest of the water column had a covariance [σs, σd] = [10, 4], this region had the

covariances set to [σs, σd] = [5, 2]. The experiments were run for: V = 1, k = 2000, hop = 1,

iterationsmax = 40 and α = 0.10. The sensors and the robot waypoints were started at

six different layouts and then the algorithm was run on each layout for 40 iterations.

Figure 5.41 shows the results of the simulation.

We tested the algorithm with six different starting configurations as shown in Fig-

ure 5.41. The six different starting layouts are:

• Both Sensors and Robot waypoints in ascending pattern

• Sensors in an ascending pattern and all Robot waypoints at 10 meters

• Both Sensors and Robot waypoints in at 0 meters ,i.e., bottom of water column

• Both Sensors and Robot waypoints in at 10 meters

• Both Sensors and Robot waypoints in at 30 meters ,i.e., top of water column

• Alternating Zigzagged layout for both Sensor and Robot waypoints

For all these layouts, after running the algorithm for 40 iterations we find that all the

sensors and robot waypoints are placed either inside the ROI or very close to the ROI. We

can thus observe that the algorithm performs as per expectation.

5.9.7 Experiments on Starting Configuration of Sensors

When a sensor network is optimized with Algorithm 4 with or without intermediate robot

waypoints, most of the times, the sensors get aligned in an alternately zigzagged position

to maximize sensing irrespective of their starting position. The same layout is obtained

when the same sensors are optimized through Algorithm 4 since it is an extension of the

previous algorithm. In absence of the constraint of the distance the sensors and robot way
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(a) Robot Waypoints initially in a straight line at
depth 10m
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(b) Robot Waypoints initially in zigzag patter be-
tween 7m and 23m
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(c) Robot Waypoints initially in an ascending or-
der from 7m to 23m
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(d) Robot Waypoints initially in a descending or-
der from 23m to 7m

Figure 5.42: Initial and Final Sensor and Mobile Robot Path layout for varying Sensor start
locations but fixed robot waypoints start location (Details: R=10, k=4000, hop=1, α = 0.10,

σd = 5)

points would ideally get arranged in a similar fashion. However, when the sensors and the

robot waypoints are optimized together, the starting position of the nodes may or may not

affect the final layout. To get the resolution to this question, we examined four different

starting layouts and studied the results. The four different layouts that are studied are:

• All sensors arranged at 10 meters in a colinear fashion.

• Sensors arranged in a zigzagged fashion at 7 meters and 23 meters alternately.

• Sensors arranged in a monotonically ascending order from 7 meters to 23 meters.

• Sensors arranged in a monotonically descending order from 23 meters to 7 meters.

In all the cases, we placed one robot waypoint in between two sensors and arranged at

10 meters. The final configurations are shown in Figure 5.42. We observed that irrespective

of the starting positions, in each of the layouts, the sensors and the robot waypoints are

arranged alternately. However, the exact positions of sensors and robot waypoints depend

on their positions in the starting layout.
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Figure 5.42(a) has a layout in which initially both the sensors and the robot waypoints

start at 10 meters. In the final layout, all the sensors move up and all the robot way

points move towards the bottom. Alternately, between sensors and robot waypoints, the

zigzagged arrangement of nodes is maintained.

In Figure 5.42(c), the sensors at the bottom of the water column go further down,

whereas the ones that are near the surface go further up. Robot waypoints, that were in

between sensors which go down, goes up and vice versa. A similar pattern is observed

in Figure 5.42(d) where the sensors are arranged in a descending order. In both these

scenarios the peripheral robot waypoints moves in the opposite direction of the nearest

sensors to provide better coverage. In some cases, we observed oscillation in the ending

positions of the peripheral sensors and robot way points until the algorithm stops running.

The difference in the zigzagged pattern between sensors and robot waypoints occur

in the case of Figure 5.42(b). Here, sensors are arranged in a zigzagged fashion and

robot waypoints are across the center of the water column at 10m. In this layout, in the

initial few iterations, the first robot waypoint places itself near the surface, because the

sensor just lying before it is moving towards the bottom of the water column. Due to

the distance constraint, this upward movement of the first robot waypoint, pulls all the

robot waypoints upwards towards the surface. But as per initial layout, the last sensor

position is towards the surface. Therefore, the peripheral robot waypoints try to stay closer

towards the bottom of the water column. A zigzagged layout of sensors is already an

efficient layout for sensing because the layout of the sensors does not change much in

this scenario. We observe a lot of oscillations and the layout does not converge until the

maximum number of iterations is reached.

In all these layouts, we observed that the position of the first robot waypoint plays a

major role in how the rest of the nodes are going to be arranged. In every iteration, the

location of the robot waypoints are optimized based on their order in the water column.

Hence, the first and the last robot waypoints play a major role in determining the layout of

the path with more emphasis on the first robot waypoint.
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(a) Robot Waypoints initially in a straight line at
depth 10m
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(b) Robot Waypoints initially in zigzag patter be-
tween 7m and 23m

20 40 60 80 100 120 140
0

10

20

30

40

Distance between sensors (x−axis) [m]

D
ep

th
 (

z−
ax

is
) 

[m
]

(c) Robot Waypoints initially in an ascending or-
der from 7m to 23m
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(d) Robot Waypoints initially in a descending or-
der from 23m to 7m

Figure 5.43: Initial and Final Sensor and Mobile Robot Path layout for varying Sensor start
locations but fixed robot waypoints start location (Details: R=10, k=4000, hop=1, α = 0.10,

σd = 5, V=3)

We observed that for none of the configurations, except the one in which the sensors

and robot waypoints are all arranged in the same straight line, the final posterior error

value is less that the initial posterior error value (Figure 5.45(a)). We found out this was due

to the fact that none of the configurations converge within 100 iterations due to oscillation

in the peripheral nodes. So we ran the experiments for 300 iterations. The posterior

error values of the initial layout, the final layout and that of the final layout without the

mobile robot sensing path is shown in Figure 5.45(b). We can observe that even for 300

iterations none of the configurations converge. This might be due to the high value of

k = 4000 which makes the system slightly unstable. Also, as we have discussed before, the

configurations with V = 1 are inherently unstable configurations, especially if the sensors

are arranged in a zigzagged pattern. This is because the peripheral sensors often oscillate

between two equally effective positions, since there other factors like distance constraints

with nearest robot waypoint to limit the movement. This change is reflected throughout

the layout and affects the position of other robot waypoints in the layout. There are only

a few sensors. So a small displacement in the position of one sensor can cause a big

difference in distance between the two adjacent robot waypoints. This in turn affects the
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objective function.
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(a) Robot Waypoints initially in a straight line at
depth 10m
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(b) Robot Waypoints initially in zigzag patter be-
tween 7m and 23m
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(c) Robot Waypoints initially in an ascending or-
der from 7m to 23m
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(d) Robot Waypoints initially in a descending or-
der from 23m to 7m

Figure 5.44: Initial and Final Sensor and Mobile Robot Path layout for varying Sensor start
locations but fixed robot waypoints start location (Details: R=10, k=4000, hop=1, α = 0.10,

σs = 5 ,σd = 10)

Next, we ran the experiment with V = 3. The initial and final node layouts are shown

in Figure 5.43. For the initial straight layout of robots and sensors (Figure 5.43(a)), we

observed that the sensors and robot waypoints get evenly spaced out. For the zigzagged

initial layout (Figure 5.43(b)), the robot waypoints tend to stay at the middle of the water

column. The two other layouts, ascending and descending layout of sensors act mainly

like before, i.e., the nodes closer to the surface climb up and the ones closer to the bottom

of the water column go down. For this layout each of the algorithm converges much

before the maximum number of iterations is reached. In the layout of Figure 5.43(a), the

sensors and robot waypoints spread out evenly to cover the area of water. But in all the

other layouts the robot waypoints stay close together, even though α is only 0.10. So these

layouts can be one of the many local minima. The posterior error comparison can be seen

in Figure 5.45(c).We can observe that the posterior error value of the final layout is less

than that of the initial layout in all the cases.

Finally, we ran the experiment with V = 1 and [σs, σd] = [5, 10]. In the other layouts

[σs, σd] were set to [5, 4]. The purpose of this experiment was to test how the layout of the
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(a) Posterior Error (iterationsmax = 100) for Fig-
ure 5.42
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(b) Posterior Error (iterationsmax = 300) for Fig-
ure 5.42
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(c) Posterior Error (iterationsmax = 300) for Fig-
ure 5.43
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(d) Posterior Error (iterationsmax = 300) for Fig-
ure 5.44

Figure 5.45: Posterior Error Comparison

nodes change when there is greater covariance along the depth of the water column. The

initial and final node layouts are shown in Figure 5.44. In this scenario, for all the layouts,

we observe that the robot waypoints stay closer to each other even though V = 1. The

nodes hardly move from their initial positions. The reason may be since staying at the

same position the nodes are now able to scan more depth along the water column and they

do not need to change their depths to effectively distribute themselves. The posterior error

values of the initial layout, the final layout and that of the final layout without the mobile

robot sensing path is shown in Figure 5.45(d). We can observe a similar pattern as the

other layouts with V = 1. However, the difference in posterior error values between the
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initial and final layouts is not significant. This is again because the nodes do not change

from their initial positions by much.

Table 5.9: Comparison of Starting Positions of Sensors where
R = 10, thresholdlim = 10, turnslim = 5, k = 4000, α = 0.10, hops = 1

Layout V Iterations Path Length
Posterior Error

Initial Final Final w/o Robot
Straight 1 100 134.94 0.765 0.765 0.874

1 300 187.72 0.765 0.781 0.873

3 15 205.13 0.790 0.646 0.873

1 300 187.72 0.804 0.788 0.875

Zigzag 1 100 164.79 0.747 0.808 0.871

1 300 176.00 0.747 0.798 0.856

3 35 146.76 0.702 0.672 0.877

1 300 176.00 0.775 0.796 0.878

Ascending 1 100 147.44 0.740 0.782 0.869

1 300 158.48 0.740 0.787 0.872

3 15 143.34 0.657 0.605 0.857

1 300 165.82 0.779 0.788 0.880

Descending 1 100 147.61 0.740 0.768 0.861

1 300 148.68 0.740 0.771 0.863

3 15 137.61 0.657 0.608 0.858

1 300 145.23 0.779 0.790 0.874

A comparison of the three different runs can be seen in Table 5.9. The posterior error

value of the layouts without robot is even more than the value at the initial layout in all

the experiments. This is because when the mobile robot sensing path is taken out we

are removing all the robot waypoints from the water column. So, firstly, the number of

sensing nodes decreases. Secondly, the algorithm is optimized such that sensor and robot

waypoints together maximize the sensing in the region. When the robot waypoints are

removed, the arrangement of the sensor positions by itself may not be ideal for sensing the

information from the entire workspace.
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(a) Robot Waypoints initially in a straight line at
depth 10m
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(b) Robot Waypoints initially in zigzag patter be-
tween 7m and 23m
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(c) Robot Waypoints initially in an ascending or-
der from 7m to 23m
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(d) Robot Waypoints initially in a descending or-
der from 23m to 7m

Figure 5.46: Initial and Final Sensor and Mobile Robot Path layout for fixed Sensor start
locations but different robot waypoint start location (Details: R=10, k=4000, hop=1,

maxIters=100, α = 0.10, σd = 5)

5.9.8 Experiments on Starting Configuration of Mobile Robot Waypoints

After experimenting with different starting layouts of sensors in Section 5.9.7, in this

section we examine the effect of different starting layout of the robot waypoints while

keeping the location of the sensors fixed. Again, we chose similar layouts for the robot

waypoints so that the results can be compared with Section 5.9.7. In all the cases, the

sensors were arranged at 10 meters depth of the water column. In between two sensors, a

robot waypoint was placed at different depths depending on the layout. The four different

starting layouts for the robot waypoints that were studied are given below:

• All robot waypoints arranged at 10 meters in a colinear fashion.

• Waypoints arranged in a zigzagged fashion at 30 meters and 0 meters alternately.

• Waypoints arranged in a monotonically ascending order from 0 meters to 30 meters.

• Waypoints arranged in a monotonically descending order from 30 meters to 0 meters.

We test the different layouts with all same modifications that we tested for changing

start position of sensors. For the first scenario we tried setting iterationsmax = 100 and
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(a) Robot Waypoints initially in a straight line at
depth 10m
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(b) Robot Waypoints initially in zigzag patter be-
tween 7m and 23m
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(c) Robot Waypoints initially in an ascending or-
der from 7m to 23m
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(d) Robot Waypoints initially in a descending or-
der from 23m to 7m

Figure 5.47: Initial and Final Sensor and Mobile Robot Path layout for fixed Sensor start
locations but different robot waypoint start location (Details: R=10, k=4000, hop=1,

maxIters=300, α = 0.10, σd = 5)

then with iterationsmax = 300. The initial and final node layouts for these experiments are

shown in Figure 5.46 and Figure 5.47 respectively.

In all cases, except zigzag layouts shown in Figure 5.46(b), and 5.47(b), we obtain

comparable results to the final layouts described in Section 5.9.7. In the ascending

robot waypoints scenario (Figure 5.46(c),5.47(c)), and descending robot waypoint scenario

(Figure 5.46(d) and 5.46(d)), the robot waypoints are arranged in an ascending and

descending fashion respectively. We observed that after optimization, the robot waypoints

which were near the bottom of the water column go towards the bottom of the water

column and those towards the surface reach closer to the surface. Since there is a distance

constraint, the robot waypoints tend to stay close to each other, but the location of the

waypoints are also controlled by the neighboring sensors on either side, so this is not very

clear when V = 1.

The posterior error values of the initial layout, the final layout and that of the final

layout without the mobile robot sensing path is shown in Figure 5.49(a) and Figure 5.49(b)

respectively. The posterior error value of the final layout is more than that of the initial

layout for all the configurations except when the robot waypoints are arranged in a
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(a) Robot Waypoints initially in a straight line at
depth 10m
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(b) Robot Waypoints initially in zigzag patter be-
tween 7m and 23m
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(c) Robot Waypoints initially in an ascending or-
der from 7m to 23m
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(d) Robot Waypoints initially in a descending or-
der from 23m to 7m

Figure 5.48: Initial and Final Sensor and Mobile Robot Path layout for fixed Sensor start
locations but different robot waypoint start location (Details: R=10, k=4000, hop=1,

maxIters=100, α = 0.10, σd = 5)

zigzagged fashion. For the same reasons as in the case of Section 5.9.7, the algorithm never

converges and runs till iterationsmax is reached.

When we implemented the same set of experiments for V = 3, the algorithm converged

soon. The initial and final node layout and posterior error comparison for the different

layouts are depicted in Figure 5.47. Except the straight layout shown in Figure 5.47(a), for

all other layouts the robot waypoints stay close together. Figure 5.47(b) is one of the layouts

we have discussed extensively at the beginning of the section on AdaptivePath method of

path planning. The posterior error values of the initial layout, the final layout and that of

the final layout without the mobile robot sensing path is shown in Figure 5.49(c). In all

cases the final layout has lesser posterior error value than the starting layout. For all the

layouts, the algorithm converges.

Finally, we executed the experiments for V = 1 and [σs, σd] = [5, 10]. The initial and

final node layout and posterior error comparison for the different layouts are depicted

in Figure 5.48. In this scenario, for all the layouts, we observe that the robot waypoints

stay closer to each other even though V = 1. The sensors hardly move from their initial

positions and the mobile robot path is greatly affected by the initial position of the first
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(a) Posterior Error (iterationsmax = 100) for Fig-
ure 5.46
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(b) Posterior Error (iterationsmax = 300) for Fig-
ure 5.46
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(c) Posterior Error (iterationsmax = 300) for Fig-
ure 5.47

1 2 3 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Layout #

P
os

te
rio

r 
E

rr
or

Posterior Error Comparison

 

 

Posterior Error w/o Robot
Initial Posterior Error
Final Posterior Error

(d) Posterior Error (iterationsmax = 300) for Fig-
ure 5.48

Figure 5.49: Posterior Error Comparison

robot waypoint. Since the σd had a high value, each node can scan greater depth along the

water column. The posterior error values of the initial layout, the final layout and that of

the final layout without the mobile robot sensing path are shown in Figure 5.49(d). We

can observe a similar pattern as the other layouts with V = 1. However, the difference in

posterior error values between the initial and final layouts is not significant because the

nodes do not change their position very much from their initial positions. A comparison

of the four different runs can be seen in Table 5.10.
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Table 5.10: Comparison of Starting Positions of Robot Waypoints where
R = 10, thresholdlim = 10, turnslim = 5, k = 4000, α = 0.10, hops = 1

Layout V Iterations Path Length
Posterior Error

Initial Final Final w/o Robot
Straight 1 100 134.94 0.765 0.765 0.874

1 300 187.72 0.765 0.781 0.873

3 15 205.13 0.790 0.646 0.873

1 300 187.72 0.804 0.788 0.875

Zigzag 1 100 236.14 0.816 0.788 0.848

1 300 226.21 0.816 0.788 0.849

3 37 742.32 0.717 0.673 0.873

1 300 226.21 0.816 0.784 0.874

Ascending 1 100 148.84 0.754 0.771 0.859

1 300 156.81 0.754 0.768 0.861

3 15 142.32 0.688 0.636 0.851

1 300 158.59 0.780 0.786 0.877

Descending 1 100 145.37 0.754 0.803 0.854

1 300 147.51 0.754 0.798 0.854

3 15 135.81 0.713 0.671 0.873

1 300 149.63 0.780 0.791 0.874

5.9.9 Experiments on Number of Hops

In this section, we discuss the effect of the parameter hops on the running time, the mobile

robot path length, and sensing efficiency of the layouts obtained after running Algorithm 4.

For performing these sets of experiments, we considered a network with 10 sensors having

3 intermediate way points between each pair. All the sensors and the robot waypoints

are arranged initially at 10m depth. The other parameters are set as thresholdlim = 20,

turnslim = 5, k = 2000 and α = [0.01, 0.10, 0.50] respectively. The maximum path length

traversed by the mobile robot, the number of iterations required to converge, the initial

and final objective function values, and the initial and final posterior error of the sensor

network layout and the posterior error of the final layout without the mobile robot path

are shown in Table 5.11 for comparison. We can observe that for all values of hops, the

maximum path length traversed by the mobile robot is highest for α = 0.01, followed by
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Table 5.11: Hops data for
R = 10, V = 3, iterationsmax = 300, thresholdlim = 20, turnslim = 5, k = 2000 where h is

hops, dist is total path length, i is iterations to converge

α h dist i
Objective Function Posterior Error
Initial Final Initial Final Final w/o Robot

0.01 1 189.82 25 10.4 0.005 0.748 0.592 0.851

2 216.29 25 10.4 0.005 0.748 0.597 0.851

3 187.85 25 10.4 0.005 0.748 0.604 0.849

4 199.45 25 10.4 0.005 0.748 0.593 0.849

0.10 1 179.54 25 9.4 -0.013 0.748 0.586 0.851

2 188.45 25 9.4 -0.013 0.748 0.602 0.851

3 186.40 25 9.4 -0.013 0.748 0.607 0.850

4 189.06 25 9.4 -0.013 0.748 0.591 0.850

0.50 1 147.18 25 5.1 -0.092 0.748 0.602 0.855

2 156.23 30 5.1 -0.092 0.748 0.595 0.854

3 148.00 27 5.1 -0.092 0.748 0.605 0.854

4 168.34 25 5.1 -0.092 0.748 0.599 0.854

α = 0.10 and then α = 0.50, which confirms that the parameter hops does not change

the way the algorithm functions. We expect a greater value of hops which implies that

the algorithm will have better knowledge of the position of neighbors surrounding the

particular node. As a result, more informed position will be chosen. However, the changes

in the final objective function value and posterior error value for the different hops for

same α is not very significant.

5.9.10 Experiments on a-priori deployed realistic Sensor Network

In this section, we took a network which has ten sensors all arranged at 10m depth of

the water column. We sent this input to Algorithm 4 without any intermediate robot

waypoints and get a layout of sensor locations which are optimized to maximize the

information gain from the water column. Then, we added intermediate robot waypoints,

V = [1, 2, 3], to the network. These set of sensors and robot waypoints are then input to

Algorithm 4. The algorithm optimizes the positions of the robot waypoints with respect to

the positions of the sensors. At the same time, it optimizes the positions of the sensors



132

with respect to the path of the mobile robot.
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(b) V = 2
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(c) V = 3

Figure 5.50: Posterior Error Comparison Section 5.9.10

Table 5.12: Comparison Table for Section 5.9.10

R = 10, iterationsmax = 100, thresholdlim = 20, turnslim = 5, k = 2000 and dist is total path
length

V α iterations Path Length
Objective Function
Initial Final

1 0.01 100 137.49 2.79 0.02

0.05 100 128.03 2.68 0.02

0.10 100 134.90 2.54 0.03

0.50 41 129.11 1.41 0.04

2 0.01 100 138.06 3.67 0.01

0.05 100 152.20 3.52 0.01

0.10 100 149.43 3.34 0.01

0.50 100 149.95 1.85 0.04

3 0.01 36 136.50 4.43 0.00

0.05 53 159.23 4.24 0.00

0.10 34 137.86 4.01 -0.01

0.50 66 145.34 2.14 -0.09

For performing these sets of experiments we vary the values of α and V. The values of

α chosen are [0.01, 0.05, 0.10, 0.50] and that of V are [1, 2, 3]. The result of the experiment is

represented in the Table 5.12. The Figure 5.50 shows the comparison of the posterior error

values for the different layouts. Figure 5.50(a) represents the comparison of the posterior

error value when V = 1, Figure 5.50(b) that of V = 2 and Figure 5.50(c) that of V = 3.
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The Layout # 1 corresponds to α = 0.01, Layout # 2 corresponds to α = 0.05, Layout #

3 corresponds to α = 0.10, and Layout # 4 corresponds to α = 0.50 in all the figures. As

discussed before, from the Figure 5.50(a) and the Table 5.12, we can conclude that V = 1

is not a stable configuration. For V = 2, even though the algorithm runs till maximum

number of iterations for all the the layouts, the posterior error of the final Layout is much

less than that of the initial layout. For this particular starting layout of sensors and robot

waypoints, we can observe, the combination of V and α values that leads to good final

layout are V = 1, α = 0.05, V = 2, α = 0.10, and V = 3, α = 0.05, respectively.

5.10 Comparison
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Figure 5.51: Compariosn with One
Intermediate Robot Waypoint

In this section we compare the three different

path planning algorithms VoronoiPath, Tan-

BugPath and AdaptivePath. We compare the

algorithms with respect to one single layout of

the sensors. The mobile robot will be deployed

in an environment with an existing sensor net-

work. To reproduce this scenario we assumed

a network of ten sensors which we optimized

with the help of Algorithm 4 with zero robot

waypoints. Thus the ten sensors are distributed

in the network such that the sensing is max-

imum in this layout. We now introduce the

mobile robot in this scenario to improve the

sensing even further. At first, we find out the

different paths planned by the three different

algorithms. Then we select horizontal locations

in the water column and find out at what depth the mobile robot is positioned for the three

different planned paths. Finally, we compare the algorithms with respect to the sensing
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efficiency which is measured by the value of the posterior error for the different layouts.

To successfully make comparison between the three algorithms we have to make sure

that the conditions under which path planning is performed is same for all three methods.

To make sure of this, we implement the algorithms under the following constraints and

assumptions:

• The VoronoiPath algorithm does not have any parameter constraints since it does

not depend on any input parameter that can affect the planned path. So we do not

have to assume anything special for comparing the path obtained with the other

algorithms.

• For TanBugPath algorithm we have two variables: the sensor view radius (rS) and

the robot view radius (rR). For our AdaptivePath algorithm we assume identical

sensor and robot waypoints. So here we assumed rS = rR = 5m.

• For the AdaptivePath algorithm we assumed hops = 1, iterationsmax = 300, thresholdlim =

20, turnslim = 5, k = 2000, α = 0.10.

The path planned by AdaptivePath algorithm depends on the number of robot way-

points specified at the start of the algorithm. However, the path planned by VoronoiPath

and TanBugPath algorithms have no such dependency. Therefore, we plan the path by

AdaptivePath algorithm by assuming V = [1, 2, 3] each and then we find out the locations

in the water column which is comparable to these robot waypoints for VoronoiPath and

TanBugPath algorithms. The different scenarios are discussed below.

We considered a network of ten sensors which are already optimized by Algorithm 4

with V = 0. So the network consists of ten sensors and no robot waypoints. To be able to

compare between the three different path planning algorithms, we chose the points in the

mobile robot path where we have placed the robot waypoints for AdaptivePath algorithm.

Wwhen V = 1, the positions of the robot waypoints in the water column start horizontally

at 22.5m and proceed with gaps of 15m between each. The Figure 5.51 shows the initial

and final layouts of the sensors and the mobile robot path for the three different algorithms.
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The positions marked with a majenta colored circle are the robot sensing locations in

case of the VoronoiPath and TanBugPath algorithms. The initial robot waypoints are

represented with a red diamond and the final ones with a red circle for the AdaptivePath

algorithm. Figure 5.54(a) shows the magnitudes of the posterior error calculated at the

beginning and the end of the algorithm. We observe that the VoronoiPath algorithm gives

us the best result, followed by TanBugPath method and finally, AdaptivePath algorithm.
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Figure 5.52: Compariosn with Two
Intermediate Robot Waypoint

Again for V = 2, we considered the same

network of ten sensors which are already opti-

mized by Algorithm 4 with V = 0. When V = 2,

the positions of the robot waypoints in the water

column start horizontally at 20m and 25m, and

then proceed increasing monotonically at gaps

of 15m for each each. The Figure 5.52 shows the

initial and final layouts of the sensors and the

mobile robot path for the three different algo-

rithms. Figure 5.54(b) shows the magnitudes of

the posterior error calculated at the beginning

and the end of the algorithm. We observe that

the VoronoiPath algorithm gives us the best

result, followed by TanBugPath method and

finally, AdaptivePath algorithm.

For V = 3, once again, we considered the

same network of ten sensors which we considered for V = 1 and V = 2. When V = 2,

the positions of the robot waypoints in the water column start horizontally at 18.75m,

22.5m and 26.25m, and then proceed increasing monotonically at gaps of 15m for each

each. The Figure 5.53 shows the initial and final layouts of the sensors and the mobile

robot path for the three different algorithms. Figure 5.54(c) shows the magnitudes of the

posterior error calculated at the beginning and the end of the algorithm. We observe that
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the VoronoiPath algorithm gives us the best result, followed by AdaptivePath algorithm

and finally, TanBugPath method.

5.10.1 Comparison Summary

The three different algorithms has different strengths and weaknesses. Once algorithm can

be better at a certain scenario compared to the others depending upon the environment,

complexity of the mobile robot and other factor. In this section, we compare the algorithms

based on the following factors:

• A-Priori Network Knowledge

• Ease of Implementation

• Communication Requirement

• Energy Requirement

• Sensing Efficiency

A-Priori Network Knowledge: VoronoiPath is a global algorithm where the location of

all sensors must be known at the beginning and it is computed centrally. The algorithm

is run before the robot enters water, and the sensing locations are provided to the robot.

Once the robot enters the water it cannot change these sensing locations. If positions of

sensors change after the algorithm is run, the path of robot does not reflect this change.

TanBugPath is a local path planning algorithm. This implies all processes for planning

path of a robot through an underwater sensor network is done real-time on-board the

robot. Thus this algorithm takes real-time changes in sensor locations into account while

planing path. The robot should be equipped with efficient sensors and a processor for

making real-time decisions.

AdaptivePath is an adaptive decentralized algorithm. Each of the sensors can indepen-

dently decide their location in the water column. On introducing the robot waypoints, the

sensor closest to the robot waypoints determine the best position for the robot waypoints
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along with its own position. Thus, the task of determining the good sensing locations

is distributed between the sensors. After the robot enters the water, the nearest sensor

communicates the immediate sensing locations to it through acoustic communication.

20 40 60 80 100 120 140
0

10

20

30

40

Distance [m]

D
ep

th
 [m

]

(a) VoronoiPath Method

0 20 40 60 80 100 120 140 160 180
−10

0

10

20

30

40

Distance [m]

D
ep

th
 [m

]

(b) TanBugPath Method

0 20 40 60 80 100 120 140 160
0

10

20

30

40

Distance between sensors (x−axis) [m]

D
ep

th
 (

z−
ax

is
) 

[m
]

(c) AdaptivePath Method

Figure 5.53: Compariosn with One
Intermediate Robot Waypoint

Ease of Implementation: In terms of ease

of implementation, VoronoiPath planning

is centralized and relatively easy to imple-

ment as long as the global knowledge of

the sensors is available. When the robot

enters the water, it already knows its path.

So as long as the robot is able to localize

itself, it will be able to traverse the planned

path. Hence, it is easy to implement.

This is followed by the AdaptivePath

where each sensor runs an algorithm to up-

date its depth locally. These sensors, at the

same time, optimize the locations of nearest

robot waypoints on either side. When the

robot enters the water it should be able to

communicate with the nearest sensor and

move towards the specified robot waypoint. This can be done with acoustic communication

and onboard localization.

TanBugPath is marginally more difficult to implement than AdaptivePath. The

robot needs to communicate with the nearest sensor and needs to maintain a threshold

distance with each sensor to plan the path. It also needs a method to localize itself in water.

Finally, for planning a real-time path, it should have a computer with high processing

power. These processes should all be tied together making it slightly difficult to implement.
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Communication Requirement: VoronoiPath has the least communication requirement

when the robot is inside the water column as it does not need to communicate with the

sensors to learn about sensing locations. However, it needs information on all sensor

locations beforehand, so in a real time environment all the sensors need to send this

information to the central processing system before it departs. Therefore, we can say that

it has the highest communication requirement. This is followed by TanBugPath and then

AdaptivePath. For TanBugPath the robot communicates with nearest sensors to know

positions of the next sensors. In AdaptivePath, the robot is dependent on sensors to

know next sensing locations. Therefore, communication is crucial in this case. For all the

algorithms, the robot needs to localize itself in the water column.

Table 5.13: Table for Comparison of maximum Path Length of Robot when it moves from
one sensing location to the next one directly

V Voronoi Path Length Tangent Bug Path Length Adaptive Path Length
1 120.62 125.84 134.90

2 151.19 131.32 149.43

3 166.50 134.90 137.86

Energy Requirement: An important factor in comparing the algorithms is energy effi-

ciency of the planned robot paths. A zigzagged path is generally longer and consumes

more energy than a relatively straight path. Thus, even in cases where a zigzagged path is

sensing efficient, it may not be energy efficient. Often the Voronoi path is longer compared

to Tangent Bug and Adaptive path for the same input sensor locations. As an example

consider the layout shown in Figure 5.53. For VoronoiPath, the path depends on the

location of the sensors only. The robot moves through the Voronoi vertices on its path and

hence the total distance covered is 226.35m for this layout. This distance can be shortened

if the robot moves from one sensing location to the next and does not traverse the vertices.

In TanBugPath, the distance depends on the robot start position, the sensing radii rS

and rR, and interval size. In the example the distance covered by a robot is 139.77m. For

AdaptivePath, the distance depends on starting location of robot waypoints, number of
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intermediate robot waypoints V, the weight factor α and k value. The average distance for

this layout is 140.73m.

We find similar results for different layouts, although poor initial node configurations

can cause AdaptivePath to get stuck in a sub-optimal local minima.

Sensing Efficiency: Posterior error is a common metric for defining how well an area is

covered by sensors as discussed in Section 5.5. A lower value of posterior error signifies

better sensing than a higher value. AdaptivePath is optimized with respect to an objective

function. But VoronoiPath and TanBugPath algorithms do not have any objective

function. So we compare the algorithms with respect to the posterior error of the final

configuration of sensors and robot path. Figure 5.54 shows the plots of the posterior

error values of the final configuration, with and without mobile robot, for three different

robot sensing location configurations. It can be observed that the VoronoiPath method

performs best for all V and performance of the TanBugPath algorithm is comparable to

that of AdaptivePath algorithm. This was found on repeated experiments with different

layouts.
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Figure 5.54: Compariosn with One Intermediate Robot Waypoint

We can observe that posterior error value of the final configuration without robot is

different for AdaptivePath, than VoronoiPath and TanBugPath. In AdaptivePath, the

sensors present in network adapt their positions depending on robot’s path. This is highly

desirable. Finally, we can observe that, for all algorithms, increasing the number of sensing
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Table 5.14: Comparison of Path Planning Algorithms

Measure Voronoi Path Tangent Bug Path Adaptive Path
A-Priori Network Centralized Centralized Decentralized
Knowledge

Ease of Easy Complicated Moderate
Implementation

Communication Least/Highest Moderate High
Requirement

Energy Longer path Moderate Path Length depends on
Requirement length length start layout, V and α

Sensing Efficiency Highest Comparable to Comparable to
AdaptivePath TanBugPath

Change in Sensor Not taken into Taken into account Taken into account
Locations account

Sensor Position Remains Static Remains Static Changes based on
robot path

locations decreases posterior error value.

Table 5.14 summarizes these. The table also shows that since VoronoiPath precom-

putes the path of the robot before its enters water, any changes in sensor locations is

not taken into account after the path has been decided. For TanBugPath and Adap-

tivePath any immediate changes in sensor locations is considered. However, in case of

VoronoiPath and TanBugPath, the traversal of the robot does not have any effect on the

positions of sensors already present in the water column. The AdaptivePath algorithm,

on the other hand, rearranges the position of the sensors based on the robot’s path to

improve the overall sensing. This is an important feature of this algorithm.
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5.11 Summary

In this Section, we simulate three different path planning algorithms for planning the

path of a mobile underwater robot through a network of semi-mobile sensors. The path

planning algorithms are: 1) Global Path Planning with VoronoiPath method, 2) Local

Path Planning with the help of TanBugPath method, and 3) Adaptive path Planning with

the AdaptivePath method. We simulate all the algorithms using the software Matlab.

We perform experiments on these algorithms by varying different parameters. Finally, we

compare the paths planned by the three algorithms with respect to a particular sensor

network. Next, in Chapter 6, we present the contributions of this thesis, the lessons learned

and the future work.
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Chapter 6

Conclusion

The application of wireless sensor networks and robots to the domain of underwater

exploration has huge potential for monitoring the health of river and marine environments.

Monitoring these environments manually is costly and difficult. If a sensor network

is deployed underwater, it could help us monitor variables such as water temperature,

pressure, conductivity, turbidity, pollutant and also the behavior of underwater ecosystems.

In this thesis we describe an underwater sensor network system that consists of semi-

mobile sensors and a mobile robot. Then we introduce three different path planning

algorithms for planning the path of the mobile robot through the network of the semi-

mobile sensors. The three algorithms are VoronoiPath, TanBugPath and AdaptivePath.

VoronoiPath is a global, TanBugPath is a local and AdaptivePath is a decentralized

algorithm. The mobility of the underwater robots enhances the performance of the system

and results in better information gain from the area of water column. Also with the help of

the mobile robot large areas can be covered more efficiently with sparse sensor networks.

In TanBugPath and AdaptivePath, we show that the mobile robot does not need global

information, it can travel from one node to the next to know the locations that it should

be sensing next. In such cases communication is possible only when the robot and the

sensors are in close proximity to each other.

We implemented the algorithms in simulation, then presented a detailed analysis and
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comparison.

6.1 Thesis Contributions

This thesis makes a number of theoretical contributions, including:

• Three different path planning algorithms for traversal of a mobile robot through

a network of semi-mobile sensors which improve sensing through a area of water

column. The algorithms are:

– A global path planning algorithm, VoronoiPath;

– A local path planning algorithm, TanBugPath;

– A decentralized path planning algorithm, AdaptivePath. We prove that the

algorithm is convergent.

• Analysis and comparison of the three algorithms, based on implementation method,

ease of implementation, energy requirement, communication requirement and sens-

ing efficiency.

This thesis also contributes to the field from an experiment perspective:

• Simulations verifying the performance of the VoronoiPath, TanBugPath and Adap-

tivePath algorithms;

• Experiments and implementation of the three algorithms showing their performance

under different input parameters.

6.2 Future Work

The research presented in this thesis can be taken in different directions in the future.

Firstly, since all these algorithms consider a 2D slice of the water column we can expand

these algorithms so that they can be used to plan the path of a mobile robot in a 3D
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environment. We can do this by either extending these algorithms to include the case

where more than one mobile robot can be used to sense from different slices of the water

column, or by making one single mobile robot scan horizontally as well as vertically along

the 3D slice of the water column to improve the overall sensing.

Another interesting direction for future work, will be to design the algorithms in such

a way that the mobile robot return to the point in the water column from where it starts.

Right now, the mobile robot starts from a starting point and moves towards the goal which

is either a point just before or just after the last sensor in the network. While deploying

this algorithm in real world, this would mean that the user has to estimate where the

robot is going to end up in the water column and collect it from there. If we can design

the algorithms such that the robot comes back to the starting point then the problem of

deployment will become much simpler. Lastly, one of the most important applications

of this thesis is to implement the algorithms discussed here in the real world, compare

performances of the robots, and analyze if they match the theoretical perspective.

Finally, the goal of this thesis has been to introduce a method of underwater monitoring

using semi-mobile underwater sensor networks and mobile underwater robots. We hope

that the system and algorithms presented in this thesis will motivate future research in

underwater robotics.
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Appendix A

Figure A.1 shows the objective function comparison for the layouts shown in Figure 5.2 in

Section 5.6.1.

Figure A.2 shows the objective function comparison for the layouts shown in Figure 5.4 in

Section 5.6.2.

Figure A.3 and A.4 show the objective function comparison for the layouts shown in

Figure 5.6 in Section 5.6.3.

The rest of this chapter contains the remaining functions that are needed by the TanBug-

Path algorithm.
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Figure A.1: Comparison of Objective Function for layouts shown in Figure 5.2
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Figure A.2: Comparison of Objective Function for layouts shown in Figure 5.4
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Figure A.3: Comparison of Objective Function for α = 0.00 for layouts shown in Figure 5.6
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Figure A.4: Comparison of Objective Function for α = 1.00 for layouts shown in Figure 5.6
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Algorithm 5 TanBugPath: Remaining Functions
Require: Original Sensor layout, sensors; Sensor View Radius, rS; Robot View Radius,rR; Robot Start position,

pstart; Robot Destination,pend
Ensure: Mobile Robot Way Points, pathF

points;
1:
2:
3: procedure FindNextPos(target, robot, interval)
4: slope← targetY−robotY

targetX−robotX

5: intercept← robotY − slope ∗ robotX
6: robotnewX ← robotX + interval
7: robotnewY ← slope ∗ robotnewX + intercept
8: robotnew ← [robotnewX , robotnewY ]
9: return robotnew

10: end procedure
11:
12: procedure FindTangentPoints(probot,ptarget,rR,rS)
13: c1 ← [ptarget, rS]
14: hyp← dist(probot,ptarget)
15: rnew ←

√
|hyp2 − rS

2|
16: c2 ← [probot, rnew]
17: [ f lag, t1, t2]← cir2Intersection(c1, c2)
18: return [ f lag, t1, t2]
19: end procedure
20:
21: procedure IfMoveAlongCurve(Snear, rS, ptarget, probot)
22: circle← [Snear, rS]
23: line← [probot; ptarget]
24: [test, p1, p2]← cirLineIntersection(circle, line)
25: moveAlongCurveFlag← false

26: if test == 1 then
27: if (dist(probot, p1) == 0 AND dist(ptarget, p1) > dist(ptarget, p2)) OR (dist(probot, p2) == 0 AND

dist(ptarget, p1) < dist(ptarget, p2)) then
28: moveAlongCurveFlag← true

29: end if
30: end if
31: return moveAlongCurveFlag
32: end procedure
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Algorithm 5 TanBugPath: Remaining Functions (cont.)
33:
Require: circle1(cir1X , cir1Y , cir1R): robot position; circle2(cir2X , cir2Y , cir2R): target position
Ensure: f lag, i1, i2
34:
35: procedure Cir2Iintersection(circle1, circle2)
36: dist←

√
(cir1X − cir2X)2 + (cir1Y − cir2Y)2

37: totalR ← cir1R + cir2R
38: di f fR ← |cir1R − cir2R|
39: if dist > (cir1R + cir2R) then . The 2 circles do not intersect; No intersection.
40: f lag← −3
41: i1, i2 ← [0, 0]
42: else if dist < |cir1R − cir2R| then . One circle lies inside the other circle; No intersection.
43: f lag← −2
44: i1, i2 ← [0, 0]
45: else if (dist == 0) AND (cir1R == cir2R) then . The 2 circles are co-incident; Infinite solutions.
46: f lag← −1
47: i1, i2 ← [0, 0]
48: else . The circles intersect at 2 points
49: f lag← 1
50: i1 ← first intersection point.
51: i2 ← second intersection point.
52: end if
53: return f lag, i1, i2
54: end procedure
55:
Require: Line: Connects the 2 points (x1, y1, z1) and (x2, y2, z2); Circle: Center (x3, y3, z3) and Radius r
Ensure: f lag; Point1; Point2
56:
57: procedure CirLineIntersection(circle, line)
58: a← (x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2

59: b← 2((x2 − x1).(x1 − x3) + (y2 − y1).(y1 − y3) + (z2 − z1).(z1 − z3))
60: c← x2

3 + y2
3 + z2

3 + x2
1 + y2

1 + z2
1 − 2[x3.x1 + y3.y1 + z3.z1]− r2

61: t← b2 − 4ac
62: if t < 0 then . The line does not intersect the circle.
63: f lag← −1
64: p1, p2 ← [0, 0]
65: else if t == 0 then . The line is a tangent to the circle. One intersection point at u = −b/2a.
66: f lag← 0
67: p1 ← intersection point.
68: p2 ← [0, 0]
69: else . The line is a secant to the given circle. 2 intersection points.
70: f lag← 1
71: p1 ← first intersection point.
72: p2 ← second intersection point.
73: end if
74: return f lag, p1, p2
75: end procedure
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