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ABSTRACT 

The purpose of this study was to prioritize subwatersheds using water quality data and watershed 

characteristics.  Water quality data was provided through studies by the Arkansas Natural Resources 

Commission, Beaver Water District, Arkansas Water Resources Center, and publicly available USGS 

gage data.  A total of 114 sites across five HUC-8 watersheds were analyzed, including 12 USGS gages.  

Watershed characteristic data was retrieved from USGS and Arkansas GeoStore geodatabase 

repositories.  A significant linear relationship between baseflow and stormflow nutrient concentrations was 

established allowing for the use of baseflow concentrations in the prioritization methodology.  Pearson 

correlation, linear regression, classification and regression tree, and change point analysis were used to 

study relationships between watershed characteristics and four constituents; nitrate-nitrogen, total 

nitrogen, soluble reactive phosphorus, and total phosphorus.  Human disturbance of the landscape, 

particularly forested area and agricultural production in the riparian buffer were the most significantly 

correlated with nutrient concentrations.  The density of poultry houses within the watershed as well as a 

combined human disturbance index were also significantly correlated to nutrient concentrations.  These 

relationships were used to develop prioritization methodologies for HUC-12 subwatersheds, ranking them 

in order of predicted constituent concentration.  The first method utilized percent forest within the riparian 

buffer to separate watersheds by the predicted change point in nutrient concentrations; ultimately, those 

exhibiting less than 50% forested buffer were identified as a priority.  The second method also used 

significant change points to classify nutrient trends as either high or low, but included multiple metrics: 

agricultural land use in the riparian buffer, forested riparian buffer, human use index, and poultry house 

density.  Subwatersheds were ranked higher in priority as they increased in the number of predictors 

indicating high nutrient concentrations.  Finally, as a way to corroborate the results, analysis of variance 

was performed on subwatersheds identified as a priority versus those that were not using available water 

quality data.  Priority subwatersheds contained significantly higher nutrient concentrations.  Empirical 

watershed models and prioritization schemes such as this one may provide a viable alternative to 

extensive deterministic watershed modeling in watersheds lacking adequate water quality data. 
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I. INTRODUCTION 

Watershed models are used to fill in the gaps in our understanding of watershed hydrology, the effects of 

human influence on the landscape, and identify nutrient sources.  Physical watershed models require 

data from multiple sources, including meteorology, hydrology (H), water quality (WQ), permitted effluent 

discharges, and even satellite imagery of soils, land use and topography.  Model calibration and 

validation are critical steps in model application, producing a representation of the watershed being 

assessed and predicting H/WQ based on the criteria of the study (Moriasi et al 2007). 

Ultimately, these models are used to further our understanding of how H/WQ will likely respond to 

watershed changes or possibly to “influence legal, regulatory, and programmatic decision making” 

(Harmel et al. 2006).  Watershed models might be used to evaluate the effects of best management 

practices (BMPs) on H/WQ (e.g., Gitau & Chaubey 2010) or to identify subwatersheds that are potential 

nutrient sources relative to the rest of the catchment (e.g., Pai et al 2011).  These subwatersheds could 

be prioritized (i.e., subwatershed prioritization) to help local, state and federal programs focus time, 

energy and resources to efficiently address WQ problems and likely result in measurable improvements.  

For example, Saraswat et al (2010a, 2010b, 2013a, 2013b, & 2013c) prioritized subwatersheds in several 

HUC-8 watersheds in Arkansas based on nutrient yields from the landscape, separating the 

subwatersheds in categories representing low to high priorities for future funding. 

The problem facing many watershed modelers is limitations on the availability of data, both temporally 

and spatially.  While meteorology, permitted effluent discharges, soils, land use, and topography are 

readily available for the entire watershed, H/WQ are often limited in availability across the watershed or 

not available at all.  To account for watersheds with limited or no H/WQ data, parameterization from a 

model of another similar watershed may be used as a surrogate (Wagener & Wheater 2006).  This 

method, called regionalization, has been used successfully to calibrate/validate watersheds; however, 

confidence is highly dependent on the similarity of the paired catchment (Sellami et al. 2013).  In data-

limited situations, some states have even found it suitable to develop and use watershed models that 

have neither been calibrated nor validated for H/WQ (e.g., see Saraswat et al 2013a & 2013c).  WQ data 

collection for model calibration and validation is a significant budgetary and temporal investment that is 
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not always feasible under the current fiscal constraints of governing bodies.  However, it is important that 

non-calibrated models do not become the default approach for data-limited watersheds as they may or 

may not accurately predict nutrient sources and prioritize subwatersheds correctly (McCarty et al 2015).  

When considering that resources of local, state, and federal governments will be employed based on the 

recommendations of a model, it becomes even more necessary to ensure that there is high confidence in 

the model and its predicted priority subwatersheds.  The confidence in subwatershed prioritization has 

been increased when the model output was compared to landscape characteristics (Pai et al 2011) or 

measured WQ data (McCarty et al 2015). 

If a watershed model is limited in the spatial or temporal scope of H/WQ for calibration and validation, a 

suggested alternative may be to explore the use of the available WQ and watershed characteristic data to 

help prioritize subwatersheds using simple statistical relationships.  The goal of this study was to develop 

a decision tree based on statistical analysis to help local, state and federal programs prioritize 

subwatersheds for BMP implementation and financial resources with priority U.S. Geological Survey 8-

digit hydrologic unit code (HUC-8) watershed in Arkansas. The specific objectives were to:  

• establish a positive linear relationship between nutrient concentrations observed during baseflow 

and stormflow;  

• with an observed significant positive relationship, statistical analysis will then be used to show 

relationships between baseflow nutrient concentrations and watershed characteristics;  

• finally, those watershed characteristic-nutrient relationships will be used to develop a decision 

tree to prioritize subwatersheds.   
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II. LITERATURE REVIEW 

1. NUTRIENTS AND WATER QUALITY 

Eutrophication of US water bodies as a result of excess nutrients from human influence has been 

identified as an important problem impacting surface waters today.  The consequences of eutrophication 

of our water bodies include increased algal growth, loss of habitat, large diurnal dissolved oxygen swings, 

loss of designated use, loss of aquatic biodiversity and fish kills, as well as decreased life span for lakes 

and reservoirs (Carpenter et al 1998).  Harmful algal blooms (HABs) have been associated with eutrophic 

conditions, and the toxins produced by cyanobacteria can have harmful effects on humans and livestock 

(Carpenter et al 1998).  Nutrient loadings to drinking water supplies also impact the formation of 

disinfection byproducts (DBPs), which result from natural organic matter in the drinking water interacting 

with disinfectants used by drinking water treatment plants (Mash et al 2014).     

While point sources of nutrients have been on the decline since the 1960’s (Sharpley et al 1999), non-

point sources from combined agricultural and urban runoff today are often the largest contributors to 

excess nutrients in our streams.  Studies have shown a positive relationship between soil nutrients in 

agricultural fields and nutrient concentrations in runoff during rainfall events (Burwell et al 1975, Sharpley 

1985, Pote et al 1996, Sims et al 1998, Sharpley et al 1999).  Multiple studies have documented the 

positive relationship between land use influenced by human activities (e.g., row crops, pasture and urban 

development) in the catchment and nutrient concentrations in streams and rivers (McFarland & Hauck 

1999, Omernick 1976, Peterson et al 1998, Giovannetti et al 2013, Jones et al 2001, Strayer et al 2003).   

As water interacts with the environment during a runoff event or transport though the subsurface, the land 

surface and subsurface and its characteristics play a pivotal role in what nutrients will be transported to 

the stream.  Agricultural lands may contribute to greater phosphorus and nitrogen concentrations due to 

fertilizer enrichment while also contributing to sedimentation from cultivation practices (McFarland & 

Hauck 1999, Carpenter et al 1998).  Urban lands may contribute to nutrient enrichment through increased 

impervious surfaces which is correlated to increased suspended solids in urban watersheds, as well as 

changes in hydrology which cause erosion within the fluvial channel.  Urban areas also include nonpoint 

sources such as lawn fertilizers, construction areas, septic systems, and pet wastes (Carpenter et al 
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1998).  Reduction in forests and wetlands to make way for pasture and development decreases the 

watersheds ability to assimilate nutrients, changes the variety of habitat, and disrupts geomorphic 

processes, ultimately impacting stream functioning and degrading habitat (Allan 2004).   

2. WQ MONITORING 

Nutrient levels that lead to eutrophication are measured using WQ monitoring programs.  These 

programs need to have clear objectives as most have limited financial and personnel resources.  Two of 

the most relevant goals in WQ monitoring are addressing in-stream ecologically relevant nutrient 

concentrations and identifying load transport to standing waters.  Each requires a specific sampling 

strategy.  Nutrient concentrations during baseflow conditions are the most important for aquatic biota, and 

therefore, require a sampling at multiple places throughout the watershed (Stamm et al 2013).  Load 

transport requires discharge and WQ monitoring across a range of flows because of changes in nutrient 

concentrations during runoff events (Miller & Drever 1977).  Determining the nonpoint source contributors 

to baseflow concentrations requires a broad sampling strategy that captures the variation in land use 

throughout the catchment.  Giovannetti et al. (2013), Massey et al. (2013), and Haggard et al. (2010) 

each had over 20 baseflow sampling sites.  Sampling for load transport also benefits from multiple 

sampling sites, however, it is cost prohibitive in most watersheds to have any more than a handful.   

Load estimation for a stream or river can be done several ways.  Water quality monitoring using in situ 

automatic sampling equipment, called auto samplers, has high capital cost, but is consistent.  Properly 

maintained and calibrated equipment will ensure that the entire discharge range is captured.  Water 

quality monitoring by hand, or manual sampling, has lower initial costs, but requires a crew on standby to 

capture storm events.  This may prevent a crew from being able to access multiple sites at once, and 

depending on the distance needed to travel, may result in not adequately describing the range in 

discharge.  Either the high capital cost of auto samplers or the limitations of manual sampling make it 

difficult to quantify nutrient loads at more than a handful of sites within a watershed (Harmel et al 2006b).   

Auto samplers are programmed to take time-interval or flow-interval samples.  Time-interval samples are 

triggered once the flow reaches a minimum threshold and are taken at regular intervals.  Flow-interval 

samples are taken based on a specific flow volume interval (e.g., 1000 m3).  Time-interval sampling is 
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simple and economical, while flow-interval sampling provides better load accuracy as the greater 

proportion of samples is during higher flows.  Time-interval and flow-interval sampling require continuous 

discharge measurements.  Time-interval requires discharge for the flow component of the load calculation 

and flow-interval requires discharge to inform when samples should be taken.   

Manual and auto sampling programs can utilize discrete or composite samples.  Composite samples 

should always be flow weighted, in other words, the varying samples placed in the bottle either manually 

or automatically are proportional to the discharge at the time they were collected.  There are many ways 

to estimate loads.  Simple load calculations for composite samples can be calculated by multiplying the 

total flow from the storm event by the composite nutrient concentration.  Pollutant loads from discrete 

samples can be calculated using the following equation (1): 

���� = ∑ ��	�
�
�
�
�       (1) 

The load is equal to the sum of the products for a series of discrete measurements.  For each sample 

during a storm event, discharge (Qi) is multiplied by concentration (Ci) and then multiplied by the interval 

in time between observations (Dt) (Gulliver et al 2010).  This yields a rough approximation of loads that 

becomes more accurate when sample numbers are increased.  As the time between samples increases, 

the quality of the load becomes poorer.  If high intensity flow and concentration data are available, loads 

can be derived by integration of the previous equation.  High intensity sampling with an auto sampler can 

yield excellent results, however, there are a limited number of bottles and capacity within bottles, which 

restricts the runoff duration that can be captured (Harmel 2006b).   

Discrete samples taken over a period of time often only capture a few samples per storm event.  Taken 

over the course of a season or even a year may result in a data set that can be used to predict loads 

using a statistical method.  There are multiple methods and programs available to compute loads e.g., 

USGS’s LOADEST (Runkel et al 2004), and LoadRunner (Booth et al 2007).  Input into each of these 

programs requires the time and date of the samples, the nutrient concentration at that time, and the 

corresponding discharge.  A regression or rating curve model is then used to approximate a load-

discharge relationship which is used to estimate loads.  Models range from simple linear regression 
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(equation 2) to 2nd order polynomial functions that include Julian day of sampling (equation 3) in order to 

account for changes in seasonality.   A sample of the range in complexity of load models is given by: 

���� = �� + ����	      (2) 

���� = �� + ����	 + ����	
� + �� sin�2������� + � cos�2������� + �#����� + �$�����

�  (3) 

where L is equal to the load, a0 through a5 are model coefficients, Q is the stream discharge, and dtime is 

decimal time.  Selection of the correct model can be optimized using Akaike Information Criteria (AIC, 

Runkel et al 2004). 

Sampling programs that capture the spatial-temporal variations in the watershed are required in order to 

adequately describe nutrient sources.  Nonpoint source nutrients are associated with sources such as 

urban, pasture, and crop production (McFarland & Hauck 1999, Omernick 1976, Peterson et al 1998, 

Giovannetti et al 2013, Jones et al 2001, Strayer et al 2003).  Based on the location of these practices 

within a watershed, nonpoint source pollution tends to be a spatially diverse problem (Biswas et al 1999; 

Javed et al 2009).  Site selection is designed to quantify water chemistry across a variety of land uses in 

order to account for the spatial variations.  There should be as many sites as resources will allow, which 

is subjective.  Giovannetti et al (2013), Haggard et al (2010) and Massey et al (2013) all had a minimum 

of 20 sites within a HUC-8 watershed.  Water chemistry also varies temporally with seasonal trends in 

nutrient concentrations (Haggard et al 2003), and water sampling should be routine and cover at least a 

year to capture these temporal trends (Harmel et al 2006b).  

3. MODELLING 

Physical models, such as the Soil and Water Assessment Tool (SWAT), can be used to fill in the gaps in 

our understanding of watershed hydrology, the effects of human influence on the landscape, and identify 

nutrient sources across the entire watershed, adequately characterizing each HUC-12 outlet.  Physically-

based watershed models play an increasing role in how we use federal, state, and local resources for the 

implementation of BMPs to address eutrophication (Pai et al 2011).  Most modern physically-based 

watershed models are based loosely on the Stanford Watershed Model (Crawford & Linsley 1966) which 

tried to include all elements of the hydrologic cycle.  Singh & Woolhiser (2002) describe over 40 models 
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that have been used to address water resources and environmental issues, including flooding, stream 

bank erosion, sedimentation, management of water resources, and military applications.   

Models have shown the ability to predict N and P with statistically significant results (Abbaspour et al 

2007).  In physically-based models, there is often insufficient data to fully characterize spatial variability.  

Additionally, real hydrologic processes are represented by imperfect model processes.  This has resulted 

in a need to calibrate and validate watershed models.  It was shown in McCarty et al (2015) that without 

this calibration and validation, models may or may not accurately predict nutrient transport and sources 

across the watershed.  Calibration is a trial and error process where a handful of parameters are adjusted 

to achieve similarity in simulated and observed streamflow and water quality at a particular monitoring 

site.  Ideally, this site will be situated at the watershed outlet (Cao et al 2006).  The watershed model 

calibrated and validated at one point in the catchment, usually representing a large drainage area of 

mixed nutrient sources, is then used to predict loads at smaller catchments.  This practice is typical of 

most watershed models, even though there is a high degree of spatial-temporal variability across the 

watershed. 

4. SUBWATERSHED PRIORITIZATION 

Physical models have been used to evaluate BMPs, TMDLs, and water quality targets (Santhi et al 2006; 

Harmel & Smith 2007), predict nutrient loads from the landscape (Young et al 1989; Preston & Brakebill 

1999; Pai et al 2010), and to prioritize subwatersheds (Pai et al 2011).  Prioritization is the process of 

selecting or ranking subwatersheds out of a larger watershed area based on a set of predefined criteria 

(Maas et al 1985; Tripathi et al 2003).  The criteria used may be nutrient concentration, loads, or some 

other criteria based on conceptual models and/or known land use-water quality relationships.   

Initial efforts to prioritize fields or watersheds focused more on establishing which landscapes were critical 

based on criteria such as manure sources and fertilization rate and timing.  Maas et al (1985), developed 

guidelines for selecting critical areas within agricultural watersheds.  Their basis for determining a critical 

area was a nine step process that included  

• characterizing the WQ impairment,  
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• estimating pollutant reductions,  

• determining if reductions can be met by reducing nonpoint sources,  

• identifying the largest agricultural pollutant sources,  

• ranking the magnitude of those sources,  

• and evaluating the distance of those sources to the impaired water body.   

Methods were tested on 32 agricultural watersheds ranging in size from 800 to 12,000 hectares, but the 

classification into priorities was not compared against measured WQ data.   

Biswas et al (1999) prioritized subwatersheds on the basis of watershed morphometry.  Watershed shape 

parameters had negative correlation with rainfall-runoff ratio and form factor was also inversely related to 

sediment yield.  Stream length, order, bifurcation ratio, drainage density, texture ratio, and relief ratio all 

have established or conceptual relationships with the potential for soil erosion.  Using these morphometric 

characteristics, watersheds were ranked in order of erosion risk.  Watershed rankings were then validated 

using the sediment yield index showing agreement in the results.  However, the results were not validated 

using loads from measured WQ data. 

Javed et al (2009) expanded on this work (Biswas et al 1999) classifying subwatersheds into low, 

medium, and high erosion risk categories for morphometric and land use characteristics (e.g., forest, 

scrub, water, cultivated land, etc.).  Morphometric categories were ranked similar to Biswas et al (1999).  

For land use prioritization, watersheds were ranked according to percent changes in particular land use 

categories over a specific time interval.  For instance, increase in cultivated land would be given a high 

priority whereas increase in open forest would be give a low priority; the basis of these rankings was the 

conceptual model that forested watersheds have lower stream nutrient concentrations and loads relative 

watershed with increasing human activities (e.g., cultivated crops, pasture, or urban development).  

Rankings were summed into a compound value representing morphometric and land use rankings for 

each subwatershed and a low, medium, and high range for compound values was developed to rank 

each subwatershed.  These methods were repeated on a different watershed with similar results (Javed 

et al 2011), however again the results of this prioritization study were not confirmed with measured WQ 

data.     
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In a recent study for the Illinois River Watershed Partnership (Haggard et al 2010), Illinois River 

subwatersheds were prioritized based on the relationship of stream nutrient concentrations to land use.  

Water quality data was available from every subwatershed outlet in the Arkansas portion of the watershed 

and used to establish regression relationships with stream nutrient concentrations and combined percent 

urban and pasture, as well as percent forest land uses; a confidence interval was fitted to each 

regression.  Nutrient concentrations in streams were positively correlated to the combined urban and 

pasture and negatively correlated to the forest land use.  Watershed outlets that were above the 

confidence band (i.e., ones with high nutrients relative to other subwatersheds with similar land use 

properties) were selected as high priority.  Sites falling within the confidence band were classified as 

medium priority, and sites below the confidence band (i.e., sites with low nutrients relative to other 

subwatersheds with similar land use) were classified as low priority.   

Subwatersheds have also been prioritized based on the output of a calibrated and validated SWAT 

model.  In Tripathi et al (2003), SWAT was used to determine nutrient losses and sediment yields in 

subwatersheds.  Ranks were assigned to subwatersheds according to sediment yield.  Subwatersheds 

were considered critical for nutrient losses if they exceeded the EPA nutrient criterion threshold of 10 mg 

L-1 for NO3-N and 0.5 mg L-1 for SRP (Tripathi et al 2003).   

Using a similar approach to Tripathi et al (2003), Pai et al (2011) used a calibrated and validated SWAT 

model to predict loads at the subwatershed scale, subtracting loads from upstream subwatersheds to 

isolate individual subwatershed contributions.  Percentile rank was used to classify the subwatersheds 

flow-weighted concentrations, based on load divided by total flow.  Watersheds in the highest percentiles 

(80-100%) classified as high priority for nutrients and those with the lowest percentiles (0-20) classified as 

low with an additional gradient of priorities in between.  Pai et al (2011) used several methods to validate 

their subwatershed priorities.  Subwatershed flow-weighted nutrient concentrations were positively 

correlated with percentage of pasture area and negatively correlated with forested area, following the 

conceptual model established with WQ data for this region (e.g., Haggard et al 2010; Haggard et al 2003; 

Giovanetti et al 2013).  The priorities developed from the Illinois River watershed study (Haggard et al 

2010) were compared to those developed for the same watershed by Pai et al (2011), showing 
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substantial overlap in the subwatersheds listed as medium and high for priorities; i.e. nutrient 

concentration or loads were high relative to other subwatersheds.   

5. HYPOTHESIS 

The following hypothesis will be tested in this research:   

Baseflow and Stormflow Nutrient Concentration Comparison 

• H01: The slope of nutrient concentrations observed during baseflow compared with nutrient 

concentrations observed during stormflow will not be different than zero (α=0.05). 

• Ha1: The slope of nutrient concentrations observed during baseflow compared with nutrient 

concentrations observed during stormflow will be significantly different than zero (α=0.05). 

Watershed Characteristics and Nutrient Concentration Comparison 

• H02: The slope of nutrient concentrations compared with watershed characteristics will not be 

different than zero (α =0.05) 

• Ha2: The slope of nutrient concentrations compared with watershed characteristics will be 

significantly different than zero (α =0.05). 

Deviation along Watershed Characteristics with Nutrient Concentration 

• H03: There will not be a change in deviation along watershed characteristics (x) with nutrient 

concentrations (y), (α=0.05). 

• Ha3: There will be a significant change in deviation along watershed characteristics (x) with 

nutrient concentrations (y), (α=0.05). 
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III. METHODS 

1. STUDY AREA DESCRIPTIONS 

The five watersheds assessed in this study come from three different Level IV ecoregions (Omernick, 

1987) that span Arkansas along with sections of Oklahoma and Missouri.  Each watershed has different 

land scape characteristics that are attributable to their ecoregion or human influence (Table 1).  The 

watersheds were selected for their inclusion in the Arkansas Non-Point Source priority watershed list 

(ANRC, 2011), as well as the availability of WQ data relevant to the objectives of this study.  The 

watersheds ranged in size from 197,000 ha (Strawberry River watershed) to 661,000 ha (Upper Saline 

River watershed).  The Illinois River watershed contained the highest population density (663 persons km-

2), while the other watersheds had population densities less than 200, and the Strawberry River 

watershed contained the lowest population density (55 persons km-2).  Mean elevations ranged from 119 

(Upper Saline River watershed) to 439 m above sea level (Beaver Reservoir watershed).  Urban 

development was low (5-10%) across all watersheds, whereas forest and pasture were more variable.  

The Illinois River watershed had the highest proportion of agricultural land use (primarily pasture) at 45%, 

while the Upper Saline River watershed only contained 5%.  The Upper Saline River watershed contained 

the highest percentage (76%) of forested lands.  Water coverage was higher in the Beaver Reservoir 

watershed due to the presence of two large reservoirs in the White River system. 

Table 1. Descriptive information for the watersheds under study.  

 

Watershed HUC # Area (ha)

Population 

Density1 

(persons/km2) Ecoregion

Mean 

Elevation (m) 

(std. dev.)

Annual 

Precipitation 

(cm) Urban

Pasture/ 

Crops Forest Water Other2

Poteau 11110105 493000 189 Arkansas Valley (37) 236 (97) 121 5 30 61 1 3

Upper Saline 08040202 444000 143 Ouachita Mountains (36) 119 (68) 133 7 5 76 <1 12

Strawberry 11010012 197000 55 Ozark Highlands (39) 176 (52) 124 5 32 59 <1 4

Illinois 11110103 428000 663 Ozark Highlands (39) 334 (66) 119 10 45 43 <1 2

Beaver 11010001 661000 121 Ozark Highlands (39) 439 (94) 119 5 30 61 4 0

1 - CAST, 2006
2 - Other = barren, scrub, and wetlands

Land Use
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Figure 1. Study watershed map detailing the HUC-8 boundary, select rivers, 303d listed water bodies, 
discharge permitted facilities, active USGS Gages, and urban centers. 
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Poteau River Watershed 

The Poteau River watershed (HUC 11110105) spans the central Arkansas-Oklahoma state line.  The two 

main tributaries on the Arkansas side, the Poteau and James Fork Rivers flow westerly.  Once inside 

Oklahoma, the Poteau River turns north where it eventually intersects the Arkansas River near the city of 

Fort Smith, AR.  Other major tributaries include the Black Fork and Fourche Maline rivers as well as Brazil 

Creek.  There are seven active USGS gages in the watershed (Figure 1). 

The Poteau River watershed occupies the Arkansas Valley ecoregion of Arkansas and Oklahoma.  

Historic land uses typical of the Arkansas Valley include a mix of forest, savanna, and prairie.  Presently, 

rugged areas are typically forested and conversely, level areas have been cleared for livestock.  Stream 

gradients in the Arkansas Valley are typically lower than the surrounding Ozark Highlands and Ouachita 

Mountains (EPA 2012).   

The Poteau River watershed has some significant urban centers that include the cities of Fort Smith, 

Poteau, and Pocola.  On the Arkansas side of the watershed, it is mostly rural apart from Fort Smith, a 

city of roughly 80,000.  Due to the location of Fort Smith, its impact on the watershed as a whole is 

negligible.  Population, urban, and industry growth for the watershed as a whole is steady.   

Rivers listed under the section 303d program include sections of the Black Fork, Fourche Maline, Brazil 

Creek, and multiple reaches of the Poteau River (ANRC, 2012; Figure 1).  There are six permitted 

discharge facilities in the Arkansas portion of the watershed, whereas locations for permitted facilities in 

Oklahoma were not available upon request.  Water-quality problems include elevated metals and 

phosphorus enrichment from point and nonpoint sources (ANRC, 2012). 

Upper Saline River watershed 

The Upper Saline watershed (HUC 08040203) flows southeast out of the Ouachita National Forest into 

the Central Plains, finally draining into the Ouachita River.  Major tributaries include the North, Alum, 

Middle, and South Forks of the Upper Saline, as well as Hurricane Creek.  There are seven active USGS 

gaging stations within the watershed (Figure 1).   
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The Upper Saline River’s headwaters reside in the Ouachita Mountains ecoregion and are heavily 

forested with a mix of oak, hickory, and pine.  The anthropogenic activities within this watershed include 

urban development, logging, recreation, and pasture management, although the Upper Saline River 

watershed has less poultry farming than that seen in the other watersheds studied.  The lower portion of 

the Upper Saline River watershed resides in the South Central Plain ecoregion where extended 

floodplains contain forested bottomland and more elevated positions contain a mix of oak, hickory and 

pine (EPA, 2012). 

The watershed contains three major urban centers, the cities of Benton and Sheridan, and Hot Springs 

Village.  The city of Benton, as a satellite to Little Rock, has experienced exponential growth over the last 

twenty years.  Hot Springs village, a recreational retirement village, has also seen increased growth.  

However, population density within the village does not approach what is seen in a typical city with 

average lots sizes greater than 0.13 hectares.   

Stream reaches classified as impaired under section 303d include a length portion of the Upper Saline 

River as well as Big Creek (ANRC, 2012).  There are 15 active permitted discharge facilities within the 

watershed, however, a large contingency of the watershed remains rural and therefor uses septic 

systems.  Water-quality parameters listed for non-attainment of designated use include dissolved oxygen, 

minerals, BOD, and mercury contamination.   

Strawberry River watershed 

The Strawberry River watershed (HUC 11010012) runs northwest to southeast where it drains into the 

Black River.  Major tributaries include North Big Creek and South Big Creek.  There is one active USGS 

gage within the watershed (Figure 1), which currently only records river stage.   

The Strawberry River watershed resides in the Ozark Highlands Central Plateau ecoregion.  The terrain is 

less rugged than the other Ozark Highlands ecoregions that reside on the Springfield Plateau.  Karst 

features also occur but are less prolific.  Level areas are dominated by pastureland and rugged areas by 

forest.  The bottom portion of this watershed transitions into the Mississippi Alluvial Plain ecoregion where 

there is flatter terrain and an abundance of crop land (EPA 2012).   
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The watershed is sparsely populated (20,000 people) with only one significant urban area, the Horseshoe 

Bend Retirement community, which would be equivalent to a suburban landscape (ANRC, 2012).  

Population growth in this area is slow, with the major industry being livestock production.  Most residents, 

due to the watersheds rural nature, are on septic systems.   

Sections categorized as impaired by section 303d include a 60.3 km section of the Strawberry River due 

to turbidity (ANRC, 2012).  Additional pollutants of concern include suspended sediments and fecal 

coliform bacteria with suspected sources being unpaved roads, streambank erosion, and grazing in 

riparian areas.  There are seven permitted discharge facilities, the most significant being Horseshoe 

Bend.   

Beaver Reservoir Watershed 

The Beaver Reservoir watershed (HUC 11010001), flows northerly with the headwaters located in rural 

and forested areas of Washington and Madison counties.  Beaver Reservoir, a 106 km stretch of the 

White River is located in the watershed.  Major tributaries include the White River, the Kings River, 

Richland Creek, and War Eagle Creek.  There are 10 active USGS monitoring stations located in the 

watershed (Figure 1). 

The Beaver Reservoir watershed resides in the Ozark Highlands ecoregion of Arkansas (EPA 2012) that 

is characterized by highly soluble and fractured limestone with karst features.  Streams with gravel 

substrate and heavy spring influence are common.  Northwest Arkansas, which includes the Beaver 

Reservoir watershed, is a fast growing region driven by strong corporate influence.  The reservoir at the 

center of this watershed is the drinking water supply for Northwest Arkansas’ 500,000+ people.  It is also 

one of the most popular recreation destinations in the area.  Large urban centers include Fayetteville, 

Springdale, Rogers, and Bentonville.  Most of the urban areas lie to the west of the watershed boundary 

and the majority of discharge from point sources end up in adjacent catchments.  The city of Fayetteville 

discharges half of their effluent to this watershed and there are additional smaller communities with 

discharge permits within the watershed.   
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Water-quality concerns from point and non-point sources include turbidity, siltation, nutrients, and 

pathogens.  Multiple studies have been performed in Northwest Arkansas to assess the impact of point 

and non-point sources on nutrient concentrations in streams and rivers (Giovannetti et al 2013; Haggard 

et al 2003; Haggard et al 2007; Migliaccio et al 2007; Hufhines et al 2011).  Rivers within the watershed 

classified as impaired on the 303d list include portions of the White River, West Fork of the White River, 

and Kings River (ANRC, 2012).   

Illinois River Watershed 

The Illinois River watershed (HUC # 11110101), flows southwest, with its upper reaches in Northwest 

Arkansas and its tailwaters in Oklahoma.  The river flows into Lake Tenkiller in Oklahoma and finally the 

Arkansas River, near Gore, OK.  Main tributaries include Osage, Spring, and Flint Creeks (ANRC, 2012).  

There are 17 active USGS monitoring stations (Figure 1).  The watershed resides in the Ozark highlands 

ecoregion (EPA 2012) as described in the Beaver Reservoir watershed.  The headwaters of the Illinois 

River watershed reside in Northwest Arkansas, sharing many similarities to the Beaver Reservoir 

watershed.   

Impaired waterways listed for non-attainment of designated use include sections of Osage Creek, Clear 

Creek, Baron Fork, and the Illinois River (ANRC, 2012).  Some of the major permitted facilities on the 

Arkansas side of the watershed include WWTPs for the city of Fayetteville, Rogers, Springdale, and 

Siloam Springs.  Permitted facilities data was not available for the state of Oklahoma.  Like the Beaver 

Reservoir watershed, the Illinois River watershed has been designated a nutrient surplus area from 

applied poultry litter, received extensive study (Brion et al 2010, Ekka et al 2006, Haggard 2010, Jarvie et 

al 2012), and shares similar pollution concerns.   

2. WATER QUALITY DATA 

Data for the Poteau River, Upper Saline River and Strawberry River watersheds were from a study by the 

Arkansas Water Resources Center (AWRC) designed to evaluate the performance of SWAT models 

developed for each watershed (Table 2, Massey et al 2013).  Data for the Beaver Reservoir watershed 

were collected from a study by the Beaver Water District and University of Arkansas with a goal to 

understand the relationship between land use and stream WQ (Table 2, Giovannetti et al 2013).  Data for 
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the Illinois River watershed were from a study conducted by the AWRC to recommend watershed 

management strategies to the Illinois River Watershed Partnership (Table 2, Haggard et al 2010).  In 

addition to the collected samples from the three studies cited above, five USGS stream gages were 

selected to provide additional data relative to the objectives of this study.  Two were in the Illinois River 

watershed (Gages 07196900 and 07195000) and three in the Beaver Reservoir watershed (Gages 

07050500, 07049000, and 07048600).  Water quality data retrieved for these gages from the USGS 

database were for the years 2007-2014. 

Table 2. Water quality data sources, sampling periods, and constituents. 

 

The water quality constituents selected for study were Nitrate-Nitrogen (NO3-N), Total Nitrogen (TN), 

Soluble Reactive Phosphorus (SRP), and Total Phosphorus (TP).  In Giovannetti et al. (2013), Massey et 

al. (2013), and Haggard et al. (2010) water samples were collected from the vertical centroid of flow, 

where the water was actively flowing and likely well mixed, using a Wildlife Supply Company horizontal 

alpha water sampler, telescoping sample pole, or by hand.  Quality assurance/quality control (QA/QC) 

protocol, laboratory analysis methods, and method detection limits are all consistent with those described 

in McCarty et al. (2015).   

Site selection for Giovannetti et al. (2013), Massey et al. (2013), and Haggard et al. (2010) was based on 

varying land use and also ease of access.  All of the sampling temporal periods approached a year or 

more in length, capturing potential seasonal variations in concentrations (Table 2).  Samples from these 

studies were collected monthly during baseflow conditions and during select stormflow events.  Massey et 

al (2015) collected stormflow at USGS stream gages within each watershed (7 out of 60 sites) while 

Giovannetti et al (2013) and Haggard et al (2010) both collected stormflow at all sites (n=54).  In order to 

sample during baseflow conditions, two criteria were used: no runoff producing rain in the previous 48 

Watershed Data Source

Sampling 

Frequency Sampling Period

Number 

of Sites Nutrients Sampled

Beaver Giovannetti et al. 2013 Monthly 06/2005-07/2006 20 NO3-N, TN, SRP, TP

Illinois Haggard et al. 2010 Monthly 02/2009-11/2009 29 NO3-N, TN, SRP, TP

Poteau Massey et al. 2013 Monthly 10/2011-9/2012 20 NO3-N, TN, SRP, TP

Saline Massey et al. 2013 Monthly 10/2011-9/2012 20 NO3-N, TN, SRP, TP

Strawberry Massey et al. 2013 Monthly 10/2011-9/2012 20 NO3-N, TN, SRP, TP
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hours, and no significant change in the hydrograph from the previous day (±10%).  When a particular site 

did not have available discharge, the closest USGS gage was used to determine if baseflow conditions 

were present.  Baseflow water quality was sampled monthly for the watershed studies at a total of 114 

sites.   

Stormflow WQ was sampled in a similar manner to baseflow.  Sampling for stormflow conditions was 

conducted when a rainfall event produced a significant rise in the hydrograph (>10%).    When a particular 

site did not have available discharge, the closest USGS gage as well as visual observation of the flow 

level was used to determine if stormflow conditions were present.  Samples were collected during the 

rising, peak, and falling limbs of the hydrograph. 

Water samples from the five additional USGS stream gages were collected by USGS personnel at routine 

intervals using the equal-width-increment, or equal-discharge-increment approach described in USGS 

(2006).  QA/QC and sample processing were in accordance with Wilde et al (2004).  Water samples were 

analyzed at the National Water Quality Laboratory with laboratory analysis methods and method 

detection limits for NO3-N, TN, SRP, and TP described in Patton & Kryskalla (2003).  The USGS does not 

collect samples by baseflow and stormflow.  Therefore, the USGS samples had to be separated into 

baseflow and stormflow samples to match the data from Giovannetti et al. (2013), Massey et al. (2013), 

and Haggard et al. (2010).  Using USGS gage discharge at the time of sampling, baseflow separation 

software (Lim et al. 2005) was used to divide the discharge into baseflow and stormflow discharge 

components.  Flow from a particular day was categorized as baseflow when greater than 90 percent of 

the total flow was determined to be baseflow by the separation software.  Water quality data collected on 

a baseflow day was considered baseflow water quality and the inverse was true for stormflow.   

3. LAND USE METRIC DEVELOPMENT AND SUBWATERSHED EXTRACTION 

The drainage area of each sample site was delineated using a Digital Elevation Model (DEM) in ArcGIS 

(ESRI 2011).  Layers needed to perform this analysis included the DEM, HUC-8 and HUC-12 boundaries, 

national hydraulic dataset flow lines, and site locations.  GIS data sources included the Arkansas 

GeoStore Data Repository, USGS National Map, TIGER US Census Data, and the National Atmospheric 

Deposition Program.  The sites are nested within drainage area boundaries, so the geospatial information 



 

19 

is reflective of the upstream delineated catchment.  In this study, the catchments are not necessarily 

independent due to nesting.   

The 2006 National Land Cover Database (NLCD06, Fry et al. 2011) was used to develop 21 out of 33 

total metrics.  Details within the NLCD06 layer show total area of forest, wetland, pasture, barren, and 

forest land uses, which have all been shown to significantly impact stream nutrient concentrations 

(McFarland & Hauck 1999; Omernick 1976; Giovannetti et al 2013; Strayer et al 2003).  Metrics for forest 

and pasture categories were also selected to determine if there were specific effects on nutrients when 

varying densities were located in the riparian zones.  Jones et al. 2001 found riparian forest to be the 

most important variable in predicting NO3-N concentrations in streams.  While Jones et al. (2001) 

explored a 30 m distance for forest and agriculture, this study included 60, 90, and 120 m buffers.  Finally, 

urban, pasture, and row crops were combined into a Human Use index to account for the human 

disturbance to the landscape using a single indicator (Table 3).   

Other layers were used to provide detail that does not exist within the NLCD06 database.  The potential 

for erosion and increased suspended solids was explored by examining the density of roads, the 

predominance of hydrologic soil groups C and D, and watershed characteristics like stream density, 

gravelius index, and average slope per site catchment.   As shown in Jones et al. (1997), there is a 

relationship between stream particulate phosphorus and suspended sediment.  Census population data 

per county was extrapolated to yield site catchment population density.  Poultry production data was used 

to determine the poultry house density per site catchment.  Finally, nitrate deposition data from the 

atmospheric nitrate deposition program was used to determine mean and total nitrate deposition per site 

catchment (Table 3).   
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Table 3. Land use metrics for predicting water quality and their development.  

NLCD06 values can be obtained through Fry et al. (2011). 

Land Use Metric Unit Metric Definition

% Forest (%FOR) % (Sum of the areas of NLCD06 categories 41, 42, & 43 within the 

delineated watershed)/(total delineated watershed area)

% Urban (%URB) % (Sum of the areas of NLCD06 categories 22, 23, & 24 within the 

delineated watershed)/(total delineated watershed area)

% Barren (%BAR) % (Area of NLCD06 category 31 within the delineated 

watershed)/(total delineated watershed area)

% Wetland (%WETL) % (Area of NLCD06 category 90 & 95 within the delineated 

watershed)/(total delineated watershed area)

% Pasture (%AG) % (Sum of the areas of NLCD06 categories 81 & 82 within the 

delineated watershed)/(total delineated watershed area)

Forested Riparian Buffer 

Proportion (FORXS30, 60, 

90, 120)

% (Sum of the areas of NLCD06 categories 41, 42, & 43 within a 30, 

60, 90, & 120 m river buffer of the delineated watershed)/(total 

delineated watershed area)

% Forested Riparian Buffer 

(%FORXS30, 60, 90, 120)

% (Sum of the areas of NLCD06 categories 41, 42, & 43 within a 30, 

60, 90, & 120 m river buffer of the delineated watershed)/(total 30, 

60, 90, 120 m riparian buffer area)

Pasture Riparian Buffer 

Proportion (AGXS30, 60, 

90, 120)

% (Sum of the areas of NLCD06 categories 81 & 82 within a 30, 60, 

90, & 120 m river buffer of the delineated watershed)/(total 

delineated watershed area)

% Pasture Riparian Buffer 

(%AGXS30, 60, 90, 120)

% (Sum of the areas of NLCD06 categories 81 & 82 within a 30, 60, 

90, & 120 m river buffer of the delineated watershed)/(total 30, 60, 

90, 120 m riparian buffer area)

Human Use Index (HUI) % (Sum of the areas of NLCD06 categories 22, 23, 24, 81, & 82 

within the delineated watershed)/(total delineated watershed area)

Road Density (RDDEN m/ha (Total length of road within the delineated watershed)/(total 

delineated watershed area)

Roads by Streams (RXS) m/ha (Length of road within a 30 m buffer of streams)/(total delineated 

watershed area)

Population Density 

(POPDEN)

n/a Mean population density per delineated watershed area, as 

calculated by dasymetric mapping tool and weighted by urban 

land use

Poultry House Density 

(PHD)

n/a (Total number of poultry houses in the delineated watershed)/(total 

delineated watershed area*10000)

% Hydrologic Soil Group D 

(%HSGD)

% % of Total delineated watershed area with HSG D soils

% Hydrologic Soil Group C 

& D (%HSGCD)

% % of Total delineated watershed area with HSG C+D soils

Mean Nitrate Deposition 

(NADP)

kg/ha Mean annual atmospheric NO3 deposition (kg/ha)

Total Nitrate Deposition 

(NADPTOT)

kg (NADP/10000)*Total Delineated Watershed Area (m 2̂)

Stream Density (STRDEN) m/ac (Total length of streams within the delineated watershed)/(total 

delineated watershed area)

Gravelius Index 

(GRAVIND)

n/a (0.28*delineated watershed perimeter)/(square root of total 

delineated watershed area)

Average Slope (AVGSLP) degrees Average slope of the delineated watershed
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4. STATISTICAL ANALYSIS 

Water quality data provided by Giovannetti et al. (2013), Massey et al. (2013), and Haggard et al. (2010) 

was in the form of geometric mean nutrient concentrations for each site within the watersheds.  For each 

site, a baseflow and stormflow geometric mean was provided.  Geometric mean was also chosen to 

summarize WQ data for the additional USGS gages.  The primary reason for this was to match the data 

provided by Giovannetti et al. (2013), Massey et al. (2013), and Haggard et al. (2010).  Geometric mean 

is typically applied to log-normally distributed datasets.  However, our confidence in distribution fitting was 

low due to the number of samples taken at each site (n<30).  All statistical analysis were completed using 

a significance level of 0.05.  Statistical tests were performed on two separate WQ databases, one that 

included sites downstream of permitted discharge facilities (114 sites) and one that excluded those sites 

(74 sites). 

Linear regression and multiple linear regression (MLRA) were performed using JMP Pro 11 (JMP Pro 

2014) with stepwise forward selection.  A regression model was constructed using baseflow and 

stormflow concentrations at sites where there was data separated into the two flow regimes (n=61).  

Regression and MLRA models were created pairing WQ and land use metrics.  Pearson correlation 

between land use and WQ was also explored.  After completion of the multiple linear regression models 

(MLRA), multicollinearity was evaluated between predictors with allowable variance inflation factors (VIF) 

of less than 5 or tolerance value (1/VIF) of greater than 0.2.  

Change points in the WQ data and their associated significance and confidence intervals were assessed 

using nonparametric change point analysis (nCPA, Qian et al. 2003; King and Richardson 2003) in R 

3.1.1 (R Core Team 2014).  This was done to model the how the variance in WQ data changed in 

accordance with watershed characteristics (Table 3).  A 90% confidence interval was calculated using 

bootstrap simulations set to resample the original dataset with randomized data replacement and 

recalculate the change point over 1000 times.  Statistical significance was approximated using a 

permutation test.  The difference in the means of the permuted datasets was then compared to the 

difference in the means of the change point separated data, with the ratio between yielding a p-value. 
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Classification and regression tree analysis (CART) was utilized to determine if there were additional splits 

in the WQ data associated with land use metrics.  CART analysis was performed using MVPART library 

(Therneau et al. 2014) in R 3.1.1 (R Core Team 2014).  Regression trees were constructed for each 

water quality constituent (NO3-N, TN, TP, SRP) using all of the developed land use metrics (Table 3).  

CART tree size was determined using V-fold cross-validation (De’ath and Fabricius 2000).  Model cross-

validations were conducted by dividing the data into 10 similarly sized, randomized subsets.  As each 

new tree split was determined, cross-validation selected 9 of the 10 data subsets to re-create the tree 

model and then predict the remaining subset.  This process yielded the relative error associated with 

each tree split.  Pruning of the model was then conducted using the cross-validation minimum error rule 

(De’ath and Fabricius 2000).  Each tree split had to yield at least ten observations, each terminal branch 

was required to have least eight observations, with an effective minimum split of 16 observations.   
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IV. RESULTS AND DISCUSSION 

1. BASEFLOW CONCENTRATIONS 

Geometric mean concentrations of NO3-N, TN, SRP, and TP during baseflow were variable across the 

five watersheds.  However, when comparing minimum and maximum geometric mean concentrations for 

each watershed and constituent, these values were within one order of magnitude.  This shows overlap in 

the ranges of concentrations among the five watersheds, but the data from the individual watersheds was 

often grouped low or high relative to the other datasets.  This suggests that qualitatively, the nutrient 

concentrations at sites within one watershed were not wholly different from any of the other watersheds.  

Overall, the medians of the geometric mean nutrient concentrations across watershed sites were highest 

in the Illinois River watershed and lowest in the Strawberry river watershed (Table 4).   

Table 4. The range in baseflow geometric mean nutrient concentrations observed across sites within 
each watershed.  Data for sites below permitted discharge facilities is also included. 

 

Geometric mean NO3-N concentrations during baseflow varied three order of magnitude across 

watersheds ranging from 0.003 to 5.29 mg L-1 (Table 4).  The median of the geometric mean NO3-N 

concentrations across watersheds varied two orders of magnitude with the lowest median value observed 

at the Upper Saline River watershed (0.031 mg L-1) and the highest at the Illinois River watershed (2.32 

mg L-1).   Sites within the Beaver Reservoir, Illinois River, and Upper Saline River watersheds showed a 

NO3-N (mg L-1) TN (mg L-1) SRP (mg L-1) TP (mg L-1)

Beaver 

Range 0.050 - 2.280 0.170 - 2.330 0.003 - 0.150 0.009 - 0.212

Median 0.377 0.520 0.008 0.019

Illinois 

Range 0.210 - 4.580 0.680 - 4.520 0.010 - 0.160 0.020 - 0.170

Median 2.320 2.340 0.040 0.070

Poteau 

Range 0.020 - 0.472 0.289 - 1.496 0.001 - 0.156 0.014 - 0.265

Median 0.058 0.528 0.003 0.045

Saline 

Range 0.003 - 5.291 0.105 - 6.324 0.003 - 0.069 0.012 - 0.144

Median 0.031 0.365 0.004 0.028

Strawberry 

Range 0.022 - 0.482 0.132 - 1.053 0.003 - 0.032 0.009 - 0.256

Median 0.085 0.289 0.004 0.015
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greater range in geometric means (less than 0.21 to greater than 2.28 mg L-1) than sites within the Poteau 

River and Upper Saline River (0.02 to 0.5 mg L-1) watersheds.  However, there was still overlap in ranges 

for NO3-N among all the watersheds.    

Nitrate concentrations represented on average approximately 51% of the total nitrogen, ranging from 1% 

to over 95% across the watersheds.  The baseflow geometric means of TN across all watershed sites 

ranged from 0.11 to 6.3 mg L-1.  Both the lowest and highest baseflow geometric mean for a site was 

observed in the Upper Saline River watershed (Table 4).  The range in geometric mean concentrations of 

TN varied an order of magnitude across all watersheds, but all of the ranges overlapped to some degree.  

The median baseflow geometric mean TN concentration across watersheds ranged from 0.289 

(Strawberry River watershed) to 2.34 (Illinois River watershed) mg L-1, although the median was less than 

0.60 mg L-1 for the other watersheds.    

Geometric mean SRP concentrations during baseflow at each site varied two orders of magnitude across 

the watersheds, and ranged from 0.003 to 0.160 mg L-1 (Table 4).  Median values of baseflow geometric 

mean SRP concentrations across watersheds also varied an order of magnitude; the lowest median value 

(0.003 mg L-1) was from the Poteau River watershed, while the highest median value (0.04 mg L-1) was 

from the Illinois River watershed.  The range in SRP geometric means was similar across the Beaver 

Reservoir, Illinois River, and Poteau River watersheds (less than 0.01 to greater than 0.15 mg L-1), 

whereas the range in the other two watersheds was tighter on the lower end.  Overall, the range in SRP 

concentrations overlapped well across these watersheds. 

The proportion of TP as SRP was variable across the streams sampled in each of these watersheds, 

ranging from 5 to over 95% with an average of 39%.  Similar to SRP, baseflow geometric mean TP 

concentrations across sites varied two orders in magnitude ranging from 0.009 to 0.265 mg L-1 (Table 4).  

The median of the baseflow geometric mean TP concentrations was highest for sites in the Illinois River 

watershed (0.07 mg L-1), and lowest in the Strawberry River watershed (0.015 mg L-1).  Again, the range 

in geometric mean of the TP concentrations overlapped across these watersheds. 
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2. BASEFLOW AND STORMFLOW WATER QUALITY REGRESSION 

Geometric mean concentrations of nutrients during baseflow and stormflow at each site were compared 

in a regression model.  When sites from the five watersheds were combined, a significant (P<0.0001) and 

positive linear relationship was found for NO3-N, TN, SRP, and TP (r2>0.46, Figure 2).  The geometric 

mean concentrations of NO3-N, TN and SRP at baseflow explained more than 70% of the variability in 

stormflow concentrations when data was combined across all watersheds.  Geometric mean 

concentrations of TP at baseflow explained 46% of the variability in stormflow concentrations.   

 
Figure 2.  Regression of baseflow versus stormflow constituent concentration data across the Beaver 
Reservoir, Illinois River, Poteau River, Strawberry River, and Upper Saline River watersheds.  The 
dashed black line represents the 1:1 relationship whereas the solid black line represents the baseflow to 
stormflow regression trend line.  Watersheds are separated by color: Beaver Reservoir watershed=Black, 
Illinois River watershed =Red, Poteau River watershed =Green, Upper Saline River watershed =Blue, and 
Strawberry River watershed =Purple. 
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Geometric mean concentrations of nutrients during baseflow and stormflow were also compared for sites 

within the Beaver Reservoir and Illinois River watersheds separately.  These also showed significant 

positive correlation for NO3-N, TN, SRP, and TP (r2>0.43).  There was not enough data to support a 

similar regression model for sites within the Poteau River, Upper Saline River, and Strawberry River 

watersheds separately, therefore, their data was combined.  The result of combining sites within the 

Poteau River, Upper Saline River, and Strawberry River watersheds was similar to the outcome when all 

sites were included.  A significant and positive linear regression was found for NO3-N, TN and SRP 

(r2>0.49), while TP was marginally significant (r2=0.32, P=0.054). 

Overall, the range in geometric mean concentrations across the nutrients were similar under baseflow or 

stormflow conditions across and within the watersheds (0.72 – 0.92).  The slopes of these linear 

regressions were all just less than one with intercepts above zero.  For sites that had overall low 

concentrations (less than 1.0 mg L-1 NO3-N, TN; less than 0.05 mg L-1 SRP), geometric mean 

concentrations for NO3-N, TN, and SRP tended to be greater during stormflows relative to baseflow.  

However, for sites that had overall high concentrations, NO3-N, TN and SRP tended to have greater 

concentrations during baseflow compared to stormflow.  This suggests that nutrient concentrations in 

streams were likely diluted by rainwater (~0.8 mg L-1 NO3-N, NADP 2011).  Similar dilution trends were 

also observed by Poor & McDonnell (2007).  Dilution was most evident in the Illinois River watershed (red 

data points), whereas the other watersheds had stormflow concentrations that were consistently greater 

than baseflow concentrations.   

Geometric mean TP concentrations during stormflow were generally greater than those observed during 

baseflow.    This observation is likely the result of particulate Phosphorus transport during runoff events 

(Sims et al 1998; Sharpley et al 1994).  Brion et al (2010) suggested that a similar increase in phosphorus 

during storm events within a smaller headwater catchment of the Illinois River watershed was also likely 

due to particulate phosphorus from sediment in runoff or phosphorus being released from instream 

sediments.  This was not seen in the SRP concentrations relationship as it is a measure of dissolved 

phosphorus, while TP is the combination of dissolved and particulate phosphorus.   
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The statistically significant regressions found for each constituent suggest that when concentrations are 

high for baseflow, the concentrations will also be high for stormflow as well.  In addition, when 

concentrations are low for baseflow, the concentrations will most likely be low for stormflow.  Analysis of 

variance (ANOVA) was conducted and revealed that the variation between geometric mean nutrient 

concentrations observed during baseflow and stormflow was not statistically different (P>0.2) than the 

variation within baseflow and stormflow for NO3-N, TN, and SRP.  This suggests that when examining the 

data across all watersheds, baseflow and stormflow NO3-N, TN, and SRP concentrations for a given site 

are not significantly different.  These nutrient concentration relationships for baseflow and stormflow 

conditions are important to the next portion of this study because the concentrations during baseflow 

across all the sites monitored in these five watersheds were used to establish statistical relationships with 

watershed characteristics.   

3. LAND USE RELATIONSHIPS 

Baseflow nutrient concentrations were significantly correlated to multiple land use metrics across the five 

watersheds (Table 5).  The analysis conducted for the full database which included permitted discharge 

facilities (n=114 sites) had sites that were outliers due to high effluent concentrations.  These sites 

reduced overall correlation with land use.  As one of the objectives of this study is to determine the 

influence of land use on WQ, the Pearson correlation analysis presented will be for the reduced database 

(n=74) that excluded sites downstream from permitted discharge facilities. 

The proportion of pasture within a 30 m riparian buffer out of the entire subwatershed pasture area had 

the highest correlation with geometric mean concentrations of nutrients.  Nitrate-N and TN had correlation 

coefficients greater than 0.80 while SRP had a correlation coefficient of 0.68 and TP a correlation 

coefficient of 0.48.  The 60, 90, and 120 m riparian buffers for this metric also had high correlation with 

nutrients.  Poultry House Density (PHD) and Human Use Index (HUI) were the next highest correlations, 

showing that as the density of poultry houses and human development increased in the watershed so did 

geometric mean concentrations of nutrients in the stream.  Poultry house density was most highly 

correlated with NO3-N, TN, and SRP with correlation coefficients greater than 0.72, while TP had a 
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correlation coefficient of 0.52.  Human Use Index was shared the highest correlation with NO3-N and TN 

(r>0.72), while SRP had a correlation coefficient of 0.64 and TP a correlation coefficient of 0.52.   

When examining the metrics each constituent was most correlated with, NO3-N and TN shared the 

highest correlation (r>0.80) with the proportion of pasture within a 30 m riparian buffer out of the entire 

subwatershed pasture area (AGSX30).  Nitrate-N and TN also shared high correlation (r>0.70) with 

percentage pasture in the subwatershed (%AG), Human Use Index (HUI), and poultry house density 

(PHD).  As area devoted to these activities increased, geometric mean concentrations increased.   

Soluble reactive P was most highly correlated with PHD and had a correlation coefficient of 0.76.  Soluble 

reactive P also showed high positive correlation (r>0.62) with AGXS30, percent pasture (%AG), percent 

pasture in the 30 m riparian buffer (%AGXS30), and HUI.  Total P was most highly correlated (r=-0.59) 

with percentage of forest within a 30 m riparian buffer (%FORXS30).   Total P also showed high 

correlation (r=0.56) with percent pasture within a 60 m riparian buffer (%AGXS60) as well as percent 

forest in the subwatershed (%FOR) with a correlation coefficient of -0.54.   

Multiple studies have documented the positive relationship between land use influenced by human 

activities (e.g., row crops, pasture and urban development) in the catchment and nutrient concentrations 

in streams and rivers.  Similar to the relationships found here, these studies showed a positive correlation 

with agriculture and nutrients and a negative correlation between forest and nutrients (McFarland & 

Hauck 1999; Omernick 1976; Giovannetti et al 2013; Strayer et al 2003).  Where this study differs is in the 

inclusion of more detailed watershed characteristics, such as riparian land uses and poultry production.  

While the previous studies all identified urban, agriculture, and pasture as being correlated with increased 

nutrient concentrations, the results here highlight two important factors.  First, there is a spatial 

connectedness between land use and water quality where riparian land uses appear to be more important 

than overall subwatershed land use.  Secondly, specific agricultural practices, such as poultry production 

also had high correlation with nutrients, suggesting that the driving factor for increased nutrient 

concentrations in these watersheds is not the presence of pasture, but the application of poultry litter on 

those pasture areas. 



 

 
 

2
9

Table 5. Simplified Pearson correlation matrix for land use metrics (independent variable) and water quality constituents (dependent variable).  
Land use metrics displayed were significantly correlated to constituents (P<0.05) and had an absolute value of the correlation coefficient greater 
than 0.25.  Riparian buffer metrics were condensed to show only the distance that shared the highest correlation with all constituents.  
Abbreviations for land use metrics are given in Table 3. 

 

 

N TN SRP TP %FOR %AG RDDEN RXS %RXS FORXS120 %FORXS120 AGXS30 %AGXS30 HUI NADEP PHD STRDEN SLOPE

N 1.00 0.98 0.78 0.45 -0.67 0.72 0.37 0.48 0.37 -0.53 -0.65 0.80 0.68 0.71 -0.54 0.73 0.63 -0.37

TN 1.00 0.79 0.57 -0.70 0.74 0.37 0.46 0.34 -0.56 -0.70 0.82 0.72 0.74 -0.50 0.72 0.65 -0.45

SRP 1.00 0.75 -0.59 0.65 0.28 0.32 0.27 -0.49 -0.58 0.68 0.62 0.64 -0.53 0.76 0.49 -0.35

TP 1.00 -0.54 0.49 0.27 0.20 0.16 -0.51 -0.58 0.48 0.53 0.52 -0.27 0.52 0.30 -0.47
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Total-N and NO3-N were highly correlated across these watersheds (r=0.98).  Both showed the same 

relation with land use metrics, where correlation coefficients were nearly identical in magnitude and 

direction.  This relationship held true within each watershed as well.  This suggests that for the purposes 

of this study, NO3-N and TN are interchangeable, and to make the results simpler, NO3-N was removed 

from the remainder of the analysis.   

4. REGRESSION ANALYSIS 

While Pearson correlation was used to evaluate the strength and direction of association between nutrient 

concentrations and all the developed land use metrics, a linear model was used to predict nutrient 

concentrations from land use.  Sites below permitted discharge facilities were not included in the 

regression analysis in order to isolate the influence of land use on water quality.  In the correlation 

analysis it was determined that the proportion of pasture land use in the 30 m riparian buffer relative to 

the entire subwatershed pasture area (AGXS30) had the highest correlation across all four constituents.  

Therefore, it was selected for the initial single metric regression model (Figure 3).  The proportion of 

pasture within a 30 m riparian buffer out of the entire subwatershed pasture area (AGXS30) was 

significant for each constituent (P<0.0001), but r2 was variable, ranging from 0.67 for TN to 0.23 for TP 

(Table 6).   

The results also highlight how sites from each watershed vary within the linear model (Figure 3).  The 

Illinois River watershed in red, had high nutrient concentrations and riparian pasture relative to other 

watersheds.  In contrast, the sites within the Strawberry River watershed had nutrient concentrations that 

did not exhibit a signal with AGXS30 (slope~0).  Nutrient concentrations were roughly the same 

regardless of AGXS30.  This could observation can be interpreted by examining the relationships 

between pasture and poultry production.  In the Illinois River, Poteau River, and Beaver Reservoir 

watersheds where poultry production is comparatively high, correlation analysis suggests that the 

application of poultry litter is responsible for the relationship between pasture and WQ.  The Strawberry 

River watershed, on the other hand, has comparatively very little poultry production.  In light of this fact, 

the results are consistent with the suggested poultry-WQ relationship. 
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Figure 3.  Results showing linear regression plots relating land use metrics to water quality constituents.  
Watersheds are separated by color: Beaver Reservoir watershed=Black, Illinois River watershed=Red, 
Poteau River watershed=Green, Upper Saline River watershed=Blue, and Strawberry River 
watershed=Purple. 
 
Table 6. Results of linear regression analysis relating water quality constituents to AGXS30 land use 
metric.  AGXS30 was significant at P<0.05. 

 

Constituent (mg L-1)

Number of 

Sites Metric

Total Variation 

Explained (r2) P

TN 74 AGXS30 0.67 < 0.0001

Equation: TN = 0.034+32.391*(AGXS30)

SRP 74 AGXS30 0.46 < 0.0001

Equation: SRP = 0.001+0.431*(AGXS30)

TP 74 AGXS30 0.23 < 0.0001

Equation: TP = 0.022+0.441*(AGXS30)
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If, however, poultry litter application is driving the pasture-WQ relationship, the question should be asked, 

why was pasture and not poultry house density the most highly correlated across all nutrients?  The 

answer to this may be one of several things.  There may be some other activity taking place in the 

riparian pasture areas that is additive in explaining variance in the WQ data.  Or, the quality of the data 

used to build the poultry house density layer is lower than that used for pasture area.  The poultry house 

location layer provided by the state of Arkansas does not distinguish between active or inactive poultry 

houses.  All poultry houses were included in the metric, regardless of their operational status with the 

assumption that even inactive houses may still be contributing to nutrient concentrations in streams from 

legacy litter applications.  Finally, it may be an issue of resolution in the data.  Of the sites included in the 

analysis, 15 of 74 had zero poultry houses, while 73 of 74 had some proportional riparian pasture 

(AGXS30).  The truncated range in the poultry metric may have contributed to the correlation being lower 

than that of AGXS30, even if poultry litter application was the most significant contributor to nutrient 

concentrations.  

Stepwise forward multiple linear regression selected the proportion of pasture land use in the 30 and 60 

m riparian buffer relative to the entire subwatershed pasture area (AGXS30 and AGXS60), percentage of 

forest in the 30 m riparian buffer, and poultry house density (PHD) as the most significant metrics to 

predict WQ.  A significant model was developed for each constituent (Figure 4).  The percentage of 

variability in WQ explained by these metrics ranged from 40% for TP to 71% for TN (Table 7).  This is an 

improvement over the single metric linear regression models.  Variance inflation factors were all below the 

suggested threshold for multicollinearity (VIF<5) and tolerance values were all greater than 0.4 (Neter et 

al. 1996).  However, Pearson correlation analysis revealed collinearity between PHD and AGXS30 of 

0.74.  This suggests that it may not be appropriate to utilize both AGXS30 and PHD in a multiple linear 

regression model as it runs the danger of being over-fitted because of the redundancy of the two 

predictors.  Correlation between PHD and %FORXS30 was not as strong comparatively (r=-0.57). 
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Figure 4.  Results showing predicted to observed plots for water quality constituents.  Models were 
generated using stepwise multiple linear regression analysis relating land use metrics to water quality.  
Solid red lines represent a one-to-one relationship. Watersheds are separated by color: Beaver Reservoir 
watershed=Black, Illinois River watershed=Red, Poteau River watershed=Green, Upper Saline River 
watershed=Blue, and Strawberry River watershed=Purple. 
 
Table 7. Results of stepwise regression analysis relating water quality constituents to land use metrics. 

  
 
 

Constituent 

(mg L-1)

Number of 

Sites Metric VIF

Total Variation 

Explained (%) P

TN 74 AGXS30 2.18 < 0.0001

PHD 2.18 0.71 0.008

Equation: TN = 0.019 + 24.883*(AGXS30) + 0.009*(PHD)

SRP 74 PHD 1.88 < 0.0001

AGXS60 1.88 0.62 0.014

Equation: SRP = 0.0012 + 0.0004*(PHD) + 0.0763*(AGXS60)

TP 74 %FORXS30 1.48 0.0002

PHD 1.48 0.4 0.021

Equation: TP = 0.056 + 0.0002*(PHD) - 0.044*(%FORXS30)
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5. CART AND NCPA 

In the linear analysis, we excluded sites with point sources because they reduced the impact of land use 

within the analysis.  CART, however, has the advantage of being able to use categorical data such as the 

presence or absence of permitted discharge facilities upstream of the sampling site.  Categorical data as 

well as continuous data can be selected for tree splits.  CART analysis was performed on the full dataset, 

including point-source influences, with the hope that the categorical point source variable would be used 

as one of the primary tree splits to separate the sites with high concentrations due to point sources.  As 

will be seen however, this was not the case, requiring a separate analysis with the point sources 

removed.  The entire land use metric dataset was used during the CART analysis.  Results indicated that 

a significant hierarchical structure exists between nutrients and land use metrics regardless of the 

inclusion or exclusion of point sources. 

While CART provided primary tree splits within the nutrient data based on land use metrics, it did not 

provide the significance or uncertainty associated with the splits.  In addition, CART will select the most 

appropriate split, but there may have been others that were significant and meaningful for the purposes of 

this study.  Change point analysis was then used to find additional change points besides the primary tree 

split as well as the significance and uncertainty associated with those change points.   

Full Data Set Analysis 

When sites downstream of permitted discharge facilities were included in the model, the pruned 

constituent regression trees included two variables: forested percentage of the 30 m riparian buffer 

(%FORXS30) and proportion of forest in the riparian area (90 m) relative to the entire forested area 

(FORXS90).  Additional buffer distances (60, 90, 120 m) were analyzed for each riparian metric and 

included in the model.  CART analysis showed that the 30 and 90 m buffer distances were the most 

significant across all three nutrients (Figure 5).  Even though the presence of point sources was included 

in the model as a categorical variable, CART failed to select it as a primary tree split.   
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Figure 5.  Results for CART (classification and regression tree) analysis of water quality constituents for 
all watershed sampling sites.  Scatterplots illustrate the response of constituents at each tree split.  The 
vertical solid line represents threshold of the predictor that best explains the variation in the constituent 
data.  The vertical grey box surrounding the threshold line indicates the 90% confidence interval of the 
threshold.  Split value is display above each tree split.  The constituent mean and number of samples is 
displayed at each terminal point of a split.  Watersheds are separated by color: Beaver Reservoir 
watershed=Black, Illinois River watershed=Red, Poteau River watershed=Green, Upper Saline River 
watershed=Blue, and Strawberry River watershed=Purple. 
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Soluble reactive P and TP tree splits occurred when 15% of the watershed forested land use was within 

the 90 m riparian buffer.  For SRP, sites below 15% averaged 0.04 mg L-1, while sites above averaged 

0.007 mg L-1.  For TP, sites below 15% averaged 0.075 mg L-1, while sites above averaged 0.026 mg L-1.  

The CART model for TN contained a single tree split when 51% of the riparian buffer was forested 

(%FORXS30).  When forested riparian buffer was greater than 51%, TN averaged 0.435 mg L-1.  Sites 

with less than 51% forested buffer averaged 2.4 mg L-1.   

Looking closer at the data and how each watersheds sites are spread within the models, it can be seen 

that forested riparian area for the Illinois River watershed is lower than the other sites but concentrations 

are generally higher (Figure 5).  The Upper Saline River and Strawberry River watersheds, when 

compared to the Illinois River watershed, have lower nutrient concentrations, while the Poteau River and 

Beaver Reservoir watersheds are in between the two.  Sites with the highest concentrations (TN greater 

than 5.0 mg L-1; SRP and TP greater than 0.15 mg L-1) in Figure 5 are exclusively due to point source 

influence.   

The top ten change points for each constituent and their associated significance are displayed in Table 8.  

Change point analysis for the CART splits revealed that each contained a statistically significant 

relationship; r2-values for each constituent were greater than 0.28.  The coefficient of determination for 

each change point was summed across nutrients and then used to rank change points high to low.  In this 

way, the top ranking change point explained the most variability across all three nutrients.  The change 

point that explained the most variability across all three constituents was percentage of forested riparian 

buffer (%FORXS60).   
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Table 8. Nonparametric change point analysis (nCPA) statistics for the entire predictor data set.  All sites 
and their subsequent constituent concentrations are included.  The top ten significant change points are 
displayed for each constituent.  CART selected change points are bolded. 

 

One particular issue with using riparian land use as a predictor of WQ and therefore a possible 

management tool is with spatial resolution of rivers included in the analysis.  The GIS river file used in this 

analysis included all perennial, ephemeral, and intermittent streams.  This resolution of streams may be 

Change 

Point r2
P 5% 95%

TN

%FORXS30 0.509 0.56 0.001 0.409 0.529

%FORXS60 0.504 0.55 0.001 0.382 0.509

AGXS30 0.066 0.54 0.001 0.045 0.066

AGXS60 0.129 0.54 0.001 0.089 0.132

AGXS90 0.178 0.53 0.001 0.141 0.196

AGXS120 0.205 0.52 0.001 0.189 0.252

HUI 0.467 0.52 0.001 0.456 0.58

%AGXS30 0.434 0.51 0.001 0.408 0.435

%FORXS90 0.363 0.51 0.001 0.363 0.519

%FORXS120 0.447 0.5 0.001 0.347 0.529

SRP

FORXS90 0.15 0.29 0.001 0.138 0.157

FORXS120 0.195 0.29 0.001 0.179 0.204

%FORXS60 0.504 0.29 0.001 0.388 0.516

AGXS30 0.051 0.28 0.001 0.035 0.066

AGXS60 0.12 0.28 0.001 0.066 0.133

AGXS90 0.156 0.28 0.002 0.099 0.194

%FORXS30 0.528 0.28 0.001 0.419 0.59

FORXS60 0.107 0.28 0.001 0.088 0.108

AGXS120 0.22 0.27 0.001 0.126 0.252

%FORXS90 0.485 0.26 0.003 0.36 0.575

TP

FORXS90 0.15 0.28 0.002 0.138 0.157

FORXS120 0.195 0.28 0.001 0.186 0.206

%FORXS30 0.528 0.27 0.001 0.487 0.609

%FORXS60 0.504 0.27 0.001 0.474 0.675

FORXS60 0.106 0.25 0.002 0.092 0.11

%FORXS90 0.485 0.23 0.001 0.475 0.659

FORXS30 0.057 0.22 0.002 0.049 0.066

%FORXS120 0.486 0.22 0.002 0.469 0.659

%AGXS60 0.404 0.2 0.003 0.332 0.457

%AGXS90 0.409 0.19 0.005 0.341 0.461
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too fine when translating the results to decision makers.  For instance, the results show a strong 

correlation between forested riparian area and WQ.  A decision maker might then conclude that 

increasing forested buffer in perennial channels would have a significant impact on WQ.  What these 

results support however is that one would have to increase forested buffer in perennial, ephemeral, and 

intermittent streams in order to see results.  Buck et al. (2003) found that the stream order played a 

significant role in the predictive power of land use.  In larger streams, upstream land use was shown to be 

more important, while in smaller streams, more localized land use was more important for determining 

water quality.  Future studies should seek to establish relationships by flow category (or stream order) to 

determine if the length of stream miles to be treated based on land use-water quality relationships could 

be shortened.   

Point Sources Excluded Analysis 

When sites below permitted discharge facilities were not included in the CART analysis, the pruned 

constituent regression trees contained two variables: poultry house density (PHD), and %FORXS30.  

Both TN and SRP contained a single split at 38.4 poultry houses per 4000 hectares (PHD).  When PHD 

was greater than 38.4, TN averaged 2.45 mg L-1 and SRP averaged 0.036 mg L-1.  When PHD was less 

than 38.4, average TN was 0.548 mg L-1 and SRP was 0.008 mg L-1.  TP contained a single split at 54% 

forested riparian buffer (%FORXS30).  Sites with greater than 54% forested buffer averaged 0.023 mg L-1 

TP while sites with lower averaged 0.055 mg L-1 TP (Figure 6). 

The top ten change points for each constituent are displayed in Table 9.  Change points for the CART 

selected splits were significant and explained a greater portion of the variability than the dataset that 

included sites below permitted discharge facilities (r2>0.43).  PHD was most significant for TN and SRP 

(r2>0.53), while %FORXS30 was most significant for TP (r2=0.43). 
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Figure 6.  Results for CART (categorical and regression tree) analysis of water quality constituents 
excluding sites with point-source influence.  Format as in Figure 5. 
 



 

40 

Table 9. Nonparametric change point analysis (nCPA) statistics for the entire predictor data set.  
Constituent concentrations from sites with point source influence are excluded.  The top ten significant 
change points are displayed for each constituent.  CART selected change points are bolded. 
 

 

When sites below permitted discharge facilities were removed, predictive ability with change points was 

increased.  Significant change points were found for almost all the predictors and 22 out of 30 were 

associated with riparian buffers (Table 9).  A common change point that explained the most variability 

Change 

Point r2
P 5% 95%

TN

PHD 38.36 0.62 0.001 33.97 41.13

HUI 0.467 0.61 0.001 0.451 0.607

AGXS30 0.067 0.6 0.001 0.0416 0.071

AGXS60 0.135 0.6 0.001 0.083 0.145

AGXS90 0.208 0.6 0.001 0.132 0.219

%FORXS30 0.517 0.59 0.001 0.409 0.52

%FORXS60 0.486 0.59 0.001 0.387 0.491

%FORXS90 0.46 0.59 0.001 0.363 0.477

%FORXS120 0.447 0.59 0.001 0.347 0.73

%FOR 0.478 0.58 0.001 0.339 0.484

SRP

PHD 38.36 0.53 0.001 27.59 78.805

AGXS90 0.155 0.5 0.001 0.147 0.211

AGXS60 0.1 0.49 0.001 0.088 0.142

AGXS120 0.205 0.48 0.001 0.193 0.294

HUI 0.467 0.47 0.001 0.449 0.579

%FOR 0.476 0.46 0.001 0.339 0.487

%AGXS90 0.482 0.46 0.001 0.411 0.548

%AGXS120 0.49 0.46 0.001 0.419 0.546

%AGXS60 0.465 0.457 0.001 0.396 0.535

%AG 0.462 0.45 0.001 0.253 0.62

TP

%FORXS30 0.535 0.43 0.001 0.401 0.551

%FORXS60 0.483 0.42 0.001 0.388 0.548

%FORXS90 0.46 0.42 0.001 0.363 0.486

%FORXS120 0.447 0.42 0.001 0.388 0.477

%AGXS60 0.465 0.42 0.001 0.405 0.491

%AGXS90 0.482 0.42 0.001 0.411 0.503

%AGXS120 0.49 0.42 0.001 0.419 0.514

FORXS120 0.186 0.41 0.001 0.168 0.208

FORXS90 0.148 0.39 0.001 0.13 0.16

HUI 0.467 0.38 0.001 0.448 0.535
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across all three constituents was found using the same method detailed in the full dataset analysis.  The 

predictor that that explained the most variation among all constituents was %FORXS30, which differs 

from the predictor selected for the full dataset analysis by a 30 m distance.  Forested riparian buffer 

(%FORXS30) was the top most predictive change point for TP, but it was the 12th most predictive change 

point for SRP (r2=0.44) and the 6th for TN (r2=0.59).   

The point source excluded analysis confirm the findings of Cox et al. (2013) which established a 

relationship between poultry house density and WQ for baseflow and stormflow conditions.  Cox et al. 

(2013) found that for the Illinois River watershed, poultry litter accounted for a majority of the phosphorus 

loading to the watershed.  Other studies have also demonstrated the water quality impacts from poultry 

litter runoff (Haggard et al 2005b; Ciparis et al 2012; Sauer et al 1999 & 2000). 

6. PRIORITIZATION OF SUBWATERSHEDS 

Human influence on land use change in the riparian zone proved to have the greatest influence on water 

quality as demonstrated by the statistical methods used here.  Agreement among the statistical methods 

makes it easier to move forward with prioritization of HUC-12 subwatersheds using a change point, as it 

marks a statistically clear change between lower and higher nutrient concentrations for a give land use 

metric. 

A single-metric prioritization methodology was developed in order to provide a simple approach for 

watershed management.  Ideally, it would be the single most important land use metric when predicting 

nutrient concentrations.  In this way, decision makers would only have to examine a watershed for a 

single factor.  As shown using change points, when sites below permitted discharge facilities were 

removed from the analysis, percent forest in the 30 m riparian buffer (%FORXS30) explained the most 

variability across all nutrients.   

A multi-metric prioritization methodology was also developed to explain more of the variability in nutrient 

concentrations by using additional land use metrics.  For the multi-metric analysis, there were four metrics 

that explained the most variability when analyzed for change points: %FORXS30, HUI, Poultry House 

Density (PHD), and proportion of the entire watershed’s agricultural land use that resides in the 60 m 
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riparian buffer (AGXS60).  However, we wanted to strive for simple predictors, therefore we selected a 

common buffer distance for our riparian land use metrics of 30 meters, which would complement the 

single-metric watershed priority selections as well as provide an easy comparison between the two 

significant riparian indicators, pasture and forest.  This necessitated the use of percent pasture within the 

30 m buffer (%AGXS30) in place of the more confusing metric AGXS60.  The percentage of pasture 

within a 30 m buffer (%AGXS30), similar to the percentage of forest within a 30 m buffer (%FORXS30), 

are metrics that give the percentage of a particular land use within a 30 m riparian buffer out of the entire 

buffer area.  This differs from AGXS60 in that AGXS60 gives the percentage of pasture land use within 

the riparian buffer out of the entire watersheds land use.  The land use metric substitutions that replaced 

those selected by change point analysis yielded a total reduction in predictive power of roughly 2%.  For 

most predictors, the change points were the same across all constituents, however, for PHD, the change 

point ranged from 38.4 - 43.4.  For simplicities sake, an average PHD across the three nutrients of 40 

was used to represent the change point.  Priority HUC-12s are displayed for each watershed in Figures 7 

through 11. 
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Figure 7.  Single and Multi-Metric watershed priority map for the Beaver Reservoir watershed.  
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Figure 8.  Single and Multi-Metric watershed priority map for the Illinois River watershed. 
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Figure 9.  Single and Multi-Metric watershed priority map for the Poteau River watershed. 
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Figure 10.  Single and Multi-Metric watershed priority map for the Upper Saline River watershed. 
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Figure 11.  Single and Multi-Metric watershed priority map for the Strawberry River watershed. 
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When comparing the subwatersheds that were selected as a priority for the single-metric versus the multi-

metric methodology, there is considerable overlap.  The greatest percentage of priority subwatersheds 

were found for the Illinois River watershed with over half of the subwatersheds selected by either 

methodology.  In contrast, at most only five subwatersheds were selected for the Strawberry River 

watershed representing around 20% of its total subwatersheds.  The multi-metric methodology provided 

additional priority subwatershed resolution for every watershed except the Upper Saline River watershed, 

which did not have a single basin that met the priority criteria for HUI, PHD, or %AGXS30.   

Most watershed models will use observations from a single watershed to quantify land use and nutrient 

relationships (Saraswat et al 2010a, 2010b, 2013a, 2013b, 2013c; Haggard et al 2010).  In this study 

though, the criteria to prioritize each subwatershed was normalized across five watersheds.  This method 

has its advantages and disadvantages.  When priorities are normalized across all five watersheds, it is 

useful to see that water quality problems faced in the Strawberry River or Upper Saline River watersheds 

pale in comparison to those faced in the Illinois River and Beaver Reservoir watersheds.  Because of this, 

the Strawberry River and Upper Saline River watersheds have very few subwatersheds that even 

registered as priorities.  If looking to prioritize watersheds at the state level, this can be beneficial, as it 

provides resolution as to which subwatersheds are the most important.  However, when looking at the 

priorities from the watershed level, there is not as much resolution in watersheds like the Upper Saline 

River and Strawberry River watersheds.  This could lead to difficulties determining where to focus efforts 

to restore water quality.   

When examining the priority maps developed in other studies, our priorities are consistent with their 

findings.  The most agreement is found in priorities for the Poteau River (Saraswat et al. 2013b), Illinois 

River (Haggard et al. 2010; Saraswat et al. 2010a), and Beaver Reservoir (Saraswat et al. 2010b) 

watersheds.  However, due to the low resolution of priorities offered by our study in the Upper Saline 

River (Saraswat et al. 2013c) and Strawberry River (Saraswat et al. 2013a) watersheds, priority 

agreement is not as apparent.  In a comparison study of the STEPL, SPARROW, and SWAT models for 

the Beaver Reservoir watershed, the SPARROW and SWAT models compared favorably even though 

SPARROW is a multiple regression model and SWAT is a deterministic model (Morgan, 2007).  However, 
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unlike these previous models, this analysis can be easily applied to other watersheds with similar land 

uses and agricultural practices.  Future studies should expand on this work and group specific regions by 

watershed characteristics that are most associated nutrient concentrations.  In this way, managing a 

watershed for nonpoint source nutrients with limited H/WQ data could be as simple as applying the 

appropriate land use model and validating the results with a targeted sampling program. 

We performed a final check to ensure that the priority selections complimented the actual water quality 

conditions sampled.  Sites were isolated from the multiple sampling studies whose delineated watersheds 

were a match for the HUC-12 boundaries.  In this way, the water quality seen at the site would be directly 

correlated to the land use within the HUC-12 and not be influenced by HUC-12s upstream.  Sites with 

point source influence were removed from this analysis.  A one way ANOVA was performed on the data 

set for each nutrient.  Results showed that sites selected as a priority had significantly higher nutrient 

concentrations that those that were not selected (Figure 12).   Draft EPA TN nutrient criteria 

concentrations for Level III Ecoregions IX and XI are 0.69 and 0.31 mg L-1, respectively while TP criteria 

for IX and XI are 0.037 and 0.01 mg L-1, respectively (Evans-White et al. 2014).  Sites selected as a 

priority for TN had a mean concentration of 2.06 mg L-1, far higher than the established nutrient criteria, 

while those not selected had a mean of 0.53 mg L-1.  Sites selected as a priority for TP had a mean 

concentration of 0.069 mg L-1 while those not selected were 0.026 mg L-1. These results are not 

conclusive as our watersheds span multiple ecoregions, however, it confirms that in general, sites 

selected as a priority exceeded the nutrient criteria set by the EPA while sites that were not selected were 

more closely in line with those nutrient limits.  As more watershed concentration data becomes available, 

it will be possible to separate out these relationships by watershed and Level III Ecoregion to determine if 

priority subwatersheds are exceeding their specific ecoregion nutrient criteria. 
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Figure 12.  Priority site selection ANOVA showing the difference in concentrations for sites selected as a 
priority by the land use metrics.   
 

The ANOVA results also indicate that some of the subwatersheds selected as a priority contained 

baseflow geometric mean nutrient concentrations that were below the draft EPA nutrient criteria for TP 

and TN.  Again, this highlights the importance of confirming the results of this priority analysis with a 

targeted sampling program before any management strategies are put into place.  One of the strengths of 

this analysis is that it narrows the scope of the watershed that will need to be assessed.  Instead of a 

broad sampling program that captures the spatial variability in land use, a targeted sampling program can 

be used that is aimed at confirming the predicted concentration levels.   
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V. CONCLUSIONS 

This study examined the relationship between developed land use metrics and baseflow WQ in order to 

develop a prioritization methodology for select Arkansas watersheds (HUC-8).  Linear regression was 

used to test the hypothesis that the slope of nutrient concentrations observed during baseflow compared 

with nutrient concentrations observed during stormflow will be zero.  Regression slopes were not equal to 

zero and linear relationships were significant allowing us to reject the null hypothesis H01.  Pearson 

correlation analysis and linear regression analysis was used to test the hypothesis that slope of nutrient 

concentrations compared with watershed characteristics will be zero.  Correlation analysis showed 

significant positive and negative land use-water quality relationships.  For specific land use metrics, 

slopes were not equal to zero and linear relationships were significant.  Results from correlation and 

regression analysis determined that the null hypothesis Ho2 could be rejected.  Finally, CART and nCPA 

were used to test the hypothesis that there will not be any change or deviation along watershed 

characteristics (x) with nutrient concentrations (y).  Change point was able to identify multiple significant 

changes in deviation along land use metrics with nutrient concentrations allowing us to reject Ho3.  

As baseflow WQ was used in this study, it was necessary to validate its use.  Land use impacted WQ is 

typically thought of as coinciding with runoff events, however, additional factors have shown that streams 

impacted for nutrients due to land use have higher baseflow concentrations as well.  We were able to 

confirm a significant and positive linear relationship for the five watersheds used in this study showing 

that streams with higher stormflow nutrient concentrations also have higher baseflow concentrations and 

vice versa. 

Riparian buffer zones, a spatial category assessed in previous studies were further studied here by 

exploring land uses a variety of distances from the stream centerline.  Land use within the riparian buffers 

were shown to have increased significance compared to the overall watershed land use.  The majority of 

the highest correlated land use indicators for each nutrient were associated with the riparian buffer.  This 

relationship held true regardless of the inclusion or exclusion of point source effluent impacted sites.  As 

increased distances were included as part of the stream buffer that took up a larger portion of the 
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watershed area, the closer they resembled the watershed land use as a whole.  Peak significance varied 

between 30 and 60 m for differing land use metrics.   

The most significant metrics identified by correlation, regression, and nCPA were used to establish a 

model that was subsequently applied to all subwatersheds (HUC-12s) to make recommendations on their 

priority for use of local, state, and federal resources.  Through ANOVA, subwatersheds selected as a 

priority were shown to have higher concentrations of nutrients than those not selected.  Established 

nutrient criteria were also used to confirm the results.  In addition, there was significant overlap of 

subwatersheds selected as priorities with those selected from other studies.   

While most studies of this kind will examine a single watershed, we sought to incorporate the effects over 

a large portion of the state of Arkansas with the intention of seeing if there were common relationships 

regardless of ecoregion or other various spatial contexts.  While we were able to establish significant 

relationships across the entire dataset, when analyzing each watershed in isolation, they did not always 

hold true.  For some of the watersheds the reasons were simple.  For instance, the dominance of the 

poultry industry in the NW corner of the state created a significant WQ relationship that was able to 

overwhelm the dataset in such a way that it remained significant even after the inclusion of non-poultry 

producing areas such as the Strawberry River and Upper Saline River watersheds.   

The most significant outcome of this study is its application to watersheds with similar land uses and 

nutrient concentrations.  There are multiple HUC-8 watersheds within the Ozark Highland ecoregion that 

have high poultry production and pasture within the riparian buffer.  Consequently, they are also very 

limited in H/WQ data.  A simple approach to managing these watershed would be to apply this model and 

then verify the selected priority subwatersheds with a limited monitoring program.  This approach reduces 

the overall number of sites as well as the uncertainty in selecting sites to monitor.   

This study has shown its value for the State of Arkansas in furthering its understanding of land use-WQ 

relationships.  While this study focused on the confines of the state boundary, further analysis should be 

focused on a three or four state region.  In this way, watersheds could be grouped into more “like” 

categories to examine relationships that are specific to that area.  Watersheds in the NW corner of 
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Arkansas NE corner of Oklahoma, and SW corner of Missouri would likely be lumped together due to the 

Ozark Highlands ecoregion, but also because of the strong presence of poultry production.  Watersheds 

in Eastern Arkansas would likely be lumped together with those from Western Mississippi in the 

Mississippi Alluvial Plain Ecoregion.  Land use relationships here would likely center around the impacts 

of crop production, furthering the need to understand agricultural impacts in the riparian zones.  

Prioritization models based around areas of similar land use would be beneficial in reducing the amount 

of water quality monitoring that is necessary to adequately characterize a watershed.  Ultimately they 

would enable the efficient use of local, state, and federal resources for water quality mitigation.   
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