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Testing is an effective means for assuring the quality of software. In programs with

Graphical User Interfaces (GUIs), event sequences serve as test cases for executing

system tests. To aid in the test generation process, researchers have developed meth-

ods that automatically derive graph models from GUIs, which can then be traversed

to create sequences for testing. Recent advances using these graph models incorpo-

rate combinatorial interaction testing sampling techniques to generate longer GUI

test cases, which exercise more event interactions and have been shown to improve

fault detection. However, because the models extracted are only approximations of

the actual event interactions, the generated test cases might suffer from problems

of infeasibility. Specifically, widgets or buttons can become disabled, or the events

cannot be dispatched once triggered, causing the test cases to terminate prematurely.

These problems are caused by violations of temporal constraints on the event interac-

tion sequences. The lack of awareness of these constraints during GUI test generation

means that coverage of the event interactions may be lost, potentially weakening the

fault detection effectiveness and reducing the quality of the generated GUI test suites.

In this work, we propose a framework for automatically repairing GUI test suites

that contain infeasible sequences. We begin by identifying the set of infeasible pat-

terns that we expect to see in GUIs. We then develop a genetic algorithm for test

suite repair. An evaluation on small-sized synthetic GUI subjects demonstrates that

our technique is able to cover over 99% of the full combinatorial coverage of the events

in these subjects and it outperforms a random algorithm for the same purpose. We



then apply this technique to some non-trivial GUI subjects, and show that it is able

to increase the combinatorial coverage of test suites for non-trivial GUIs to 98% of

their feasible coverage, and that the types of constraints discovered match those that

we have previously identified.
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Chapter 1

Introduction

Graphical User Interfaces (GUIs) are prevalent in today’s software systems, spanning

from operating software and networking systems to desktop applications and wireless

web interfaces. As its name indicates, a GUI is an interface for users to send com-

mands to and control the underlying business logic modules of the software system;

it also passes output information from the computation to the users. It is the face of

an application, and a bridge between the users and the core business logic modules

of the application. The quality of GUIs directly and largely affects the reliability and

usability of the entire software system. Research has shown that faults discovered

from underlying modules with the GUIs often lies in the business logic of the appli-

cation itself [3]. A faulty GUI might compromise the quality of a software product,

reducing user satisfaction. In this sense, the quality assurance of the GUIs is very

important. Testing, as an effective quality assurance method, has been widely used

to assure the dependability of GUIs [36, 15, 24, 1, 10, 14].
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1.1 Motivation

Because of the event-driven nature of modern GUI software, the basic black-box

approach for GUI testing is to simulate events initiated by users on the Application

Under Test (AUT), and then check the correctness of the behavior by examining the

GUI states and the output from the GUIs. Unlike white-box techniques, which rely on

code coverage of the applications, a black-box approach tests the GUI applications by

building test cases according to the specifications and requirements, and checking the

correctness of the output from the application. Although it can be used at different

levels, a component or system level is usually preferred. For example, to test whether

we can draw colored straight lines in the the Windows program Paint correctly, we

can use a test case containing three events (shown in Figure 1.1). We start the

Paint application, select “Line” as the shape (step 1), “Orange” as the color (step

2), and then draw a line on the canvas (step 3). If a straight line in orange appears

between the starting point and the ending point of the mouse drag, the behavior

and the output of the GUIs are considered correct. From this example, we can see

that it usually requires several events to finish a meaningful task on a GUI, which

means testing separate individual events is not enough. Event sequences are usually

employed for testing the GUIs. As the execution of events proceeds, the initial state

of the GUIs is changed, and the preceding events produce a state where the following

events are executed.

Research has shown that longer event sequences are more likely to discover faults

for GUIs [26, 39]. However, generating long event sequences in GUI testing leads to

two problems. The first problem is the exponential testing space. For example, for

a 10-event GUI, the number of all possible length-10 test cases is 1010. Even when

considering possible restrictions on the combinations, the number might still be large.
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Step 1: select line Step 2: select orange Step 3: draw a line

Figure 1.1: An example GUI test case

For the example of Paint, all of the possible test cases consisting of the three events

Select Line, Select Orange and Draw a Line are listed in Table 1.11. It is common

for even very simple GUIs to have a large number of events. For example, the simple

Windows editor WordPad contains 325 events [24], and therefore in theory there are

32510 length-10 test cases which can be generated for it. Even if we can run a million

test cases per second, a thorough walkthough of all the test cases will still cost over

416895303700 years! This means that we need some method to select a subset of

sequences for GUI testing. The second problem is constraints on event interactions.

The events of a GUI need to follow certain rules for the order of execution. For

example, before a modal window is closed, any event in its parental window cannot

be executed. Similarly, if clicking on a button A disables another button B, a click

on B following a click on A receives no response from the GUIs. This entails that the

execution of the events needs to follow particular flows/paths, otherwise some events

may not be executed successfully.

Research has been conducted to aid the automated test generation for GUIs.

Event-flow graphs (EFGs) and event-interaction graphs (EIGs) [22] divide all events

for a GUI program according to modality of its windows, and depict the execution

1All the positions in this thesis are zero-based.
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Table 1.1: Exhaustively listing test cases for events in Figure 1.1.

No. Positions
0 1 2

1 Select Line Select Line Select Line
2 Select Line Select Line Select Orange
3 Select Line Select Line Draw a Line
4 Select Line Select Orange Select Line
5 Select Line Select Orange Select Orange
6 Select Line Select Orange Draw a Line
7 Select Line Draw a Line Select Line
8 Select Line Draw a Line Select Orange
9 Select Line Draw a Line Draw a Line
10 Select Orange Select Line Select Line
11 Select Orange Select Line Select Orange
12 Select Orange Select Line Draw a Line
13 Select Orange Select Orange Select Line
14 Select Orange Select Orange Select Orange
15 Select Orange Select Orange Draw a Line
16 Select Orange Draw a Line Select Line
17 Select Orange Draw a Line Select Orange
18 Select Orange Draw a Line Draw a Line
19 Draw a Line Select Line Select Line
20 Draw a Line Select Line Select Orange
21 Draw a Line Select Line Draw a Line
22 Draw a Line Select Orange Select Line
23 Draw a Line Select Orange Select Orange
24 Draw a Line Select Orange Draw a Line
25 Draw a Line Draw a Line Select Line
26 Draw a Line Draw a Line Select Orange
27 Draw a Line Draw a Line Draw a Line

order of the events using graphs. Event semantic interaction graphs (ESIGs) [40, 41]

take this a step further. The semantics (i.e., the tasks the events do) are analyzed

for the events, and the events are partitioned into groups where the events in one

group interact with others in the same group while the events in different groups do

not interact with each other. If one event does not interact with another event, they

can be tested separately. These models and partition techniques not only reflect the
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constraints on the event interaction, but also help restrict the test generation in a more

definite space. However, the precision of these models are highly dependent on the

techniques used for their extraction. State-of-the-art techniques for obtaining these

models rely on dynamic runs of the AUT. That is, the GUI application is started,

and the component hierarchies are extracted from the dynamic information to build

the models. This step may be repeated several times to achieve a more precise model.

Because the dynamic execution still may not show all of the possible aspects of the

behavior of the AUT, the resulting models may not contain all the information for

the event interactions. The precision of the models is dependent on the information

revealed in the dynamic runs of the AUT.

Recent advances in model-based GUI testing leverage the combinatorial interac-

tion testing techniques to sample the testing space derived by the ESIGs [39]. A

sampling method based on a covering array is generated for the events of an ESIG,

and each row of the covering array becomes a test case for the corresponding ESIG.

Because of the properties of covering arrays, all the n-way combinations of the events

at every n positions of the event sequences are covered by the test cases. More details

on combinatorial interaction testing and covering arrays will be discussed in Chap-

ter 2. This technique has two advantages. First, long test cases for GUIs can be

generated systematically at different confidence levels. Second, more context (i.e.,

states) may be exposed due to the coverage on all the n-way combination at any

n positions. This method incorporates more cases where different combinations of

events get executed in different contexts, and studies have demonstrated that it is

able to find more (and hard) faults than traditional techniques that use shorter test

cases [39].

However, in the work of Yuan et al. [39], the generated test cases may contain

infeasible event interactions, so that test cases cannot run to completion. For example,
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Case 1: Manual Update is selected Case 2: Automatic Update is selected

Figure 1.2: An example of infeasibility

one test case for TerpPresent 3.0 ([39], a program for preparing presentations) is (New,

Remove Slide, Insert Background Image, . . . ). Because the New operation by default

creates a file containing only one slide, after Remove Slide, Insert Background Image

cannot be successfully performed because no slide is left any more. The cause of such

problem is that the generated test cases do not fully conform to the constraints on the

event interaction and follow infeasible paths of event-flows. More specifically, because

the construction of the event graph models relies on one or several runs of the GUI

program, they may not capture and reflect precisely the actual constraints in GUIs,

especially those that require specific context to disclose. For example, considering

the events Undo and Redo, although they interact with each other, if the model

does not capture the fact that Redo cannot be executed before Undo, an infeasible

test case (Redo, Undo) might be generated. Because Redo is initially disabled, it

obviously cannot be executed. This problem is more severe in long sequences than

short sequences, because longer sequences are likely to contain more complicated

constraints which involve many events.

Next, we use another example to show problems that the infeasible test cases

can cause. Consider three events, Manual Update, Automatic Update and Warn on

Incompatibility, where the first two are exclusive-or options and the third is an option

under the second (see Figure 1.2). A constraint here is that selecting Manual Update

disables Warn on Incompatibility. If the model does not reflect this interaction, an

infeasible test case (Automatic Update, Manual Update, Warn on Incompatibility)
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may be generated. We call the combinations that cause the infeasibility infeasible

combinations, and the rest feasbile combinations. The pair (Manual Update, Warn

on Incompatibility) is an infeasible combination in the above test case.

Simply dropping all infeasible test cases can achieve the feasibility of the test suite,

but may potentially lose coverage of certain feasible combinations. For example, con-

tinuing the above example and assuming we want to cover 2-way combinations of the

events, if the test case (Automatic Update, Manual Update, Warn on Incompatibility)

is abandoned, the coverage for the combination Automatic Update and Manual Update

at position 0 and 1 may be lost if no other test case covers it. Another question arises:

can we instead keep the infeasible test cases and run only the feasible part of them

to maintain coverage? The answer is still no. If we consider the above test case, it is

obvious that it stops after the execution of Manual Update because Warn on Incom-

patibility cannot be executed. Even if the test case remains, the actual coverage for

the feasible pair Automatic Update and Warn on Incompatibility at position 0 and 2

is still missed. As a result, generating new test cases for the uncovered combinations

in the test suite is needed to maintain a high coverage.

1.2 Contributions

In this thesis, we propose a technique for repairing the GUI test suites by searching

for new feasible test cases to complete the coverage of feasible combinations. We

begin with a covering array to generate an initial test suite for all events under

consideration, and execute each test case dropping the infeasible ones. We then use a

genetic algorithm to search the event sequence space for new feasible test cases that

help to increase the combinatorial coverage lost by abandoning the infeasible test

cases. This research makes the following contributions:
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• We identify patterns of event interactions that may cause infeasibility. These

patterns are summarized from event interactions of real GUI applications, and

our evaluation demonstrates that they do exist and do cause certain types of

infeasibility.

• We present a framework for reparing GUI test suites. Under this framework, a

genetic algorithm is designed for searching for new feasible test cases by using

the feedback from dynamic execution of infeasible test cases.

• We conduct an evaluation on small-sized synthetic programs to investigate the

feasibility of the technique. The results show that the framework is able to

recover the coverage of the test suite on feasible combinations to more than

99% while maintaining the feasibility of the test cases.

• We apply our technique to several non-trivial GUI applications. The evaluation

shows that our technique can also repair the test suites of non-trivial GUI

subjects to cover more than 98% of the feasible combinations. Moreover, the

finally uncovered combinations reported by the algorithm help us discover the

constraints that exist in the GUIs but were not properly modeled.

The rest of this thesis is organized as follows. We next review the background

knowledge and discuss related work (Chapter 2). In Chapter 3, we define and analyze

the problems we try to solve in this thesis. With these, we present our framework

and algorithms for solving the problems in Chapter 4. After an evaluation for the

feasibility of our technique, we apply it for non-trivial GUI applications in Chapter 5.

An evaluation for the improved algorithm is then carried out on several non-trivial

GUI subjects. Finally, in Chapter 6 we conclude the thesis.
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Chapter 2

Background and Related Work

In this chapter, we will review background on model-based GUI testing, combinatorial

interaction testing and evolutionary testing. We will also briefly discuss how they are

related to our work.

2.1 GUI Testing

GUI testing is an effective means for assuring the quality of GUI programs. It is

usually conducted on an integration or a system level using black-box approaches. To

perform GUI testing, first, the application to test is identified. After some analysis on

the GUI application and necessary preparation, a set of GUI test cases are generated.

For each test case, test oracles will also be generated. A test oracle is used for judging

whether the test cases run correctly on the GUI application. Then, the test cases are

run on the GUIs to exercise the functionalities of the GUI application. The behavior

of the GUIs, such as whether a dialog pops up after clicking on a button, whether the

text in a label is set correctly after selecting a radio button, and etc., and the output

of the GUI application are observed and compared to the corresponding test oracle
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for this test case to determine whether the test case run correctly. If not, debugging

and fault localization techniques will be used for locating faults in the code of the

application. Finally, patches and updates can be developed to fix the bugs. GUI

testing can be carried out both manually and automatically. An automated DART

process is shown for smoke tests for GUIs in [26]. A lot of tools can be leveraged for

GUI testing [1, 10, 14, 31, 12]. In this work, we focus on automated GUI testing,

especially the automated GUI test generation.

Due to the event-driven nature of GUIs, the basic elements for constructing GUI

test cases are events. So we first define an event of a program.

Definition 1 (Event). An event is an action disptached to and handled by a program.

An event may be initiated outside the scope of a program (such as by a human user,

the operating system, the network, or other applications, etc.), or by the program

itself. The piece of code in the program responsible for handling an event is usually

called an event handler. Event handlers are usually implemented as asynchronous

callback subroutines. A program is event-driven if it changes its behavior in response

to events. A GUI program is not necessarily event-driven, but in this work, we

only consider event-driven GUIs. With the definition of events, we can define GUIs

considered in this thesis.

Definition 2 (GUI [22]). A GUI, G, is a hierarchical, graphical front-end to a soft-

ware system that accepts as input user-generated and system-generated events from a

finite set of events EG = {e0, e1, . . . , en−1} and produces deterministic graphical out-

put. A GUI contains a set of graphical objects OG = {o0, o1, . . . , om−1}; each object

oi has a fixed set of properties Poi = {poi0, poi1, . . . , poiq−1}. At any particular time

t during the execution of the GUI, these properties have discrete values, the set of

which (PG = {oi ∈ OG | Poi}) constitutes the state of the GUI.
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To test a GUI, the events that can be performed on it are identified and sent to the

GUI. For each event ei, the GUI changes its state from Pbefore to Pafter. The states

of the GUI are checked against the oracle state for correctness. First, the starting

state Pstart is checked to ensure that the GUI is in a correct starting state. After the

execution of an event ei, the consequent state Pafter is checked against the oracle state

Poracle after ei. If Pafter = Poracle, the behavior of the event is considered correct. The

oracle states can be fetched either manually or automatically [25].

The events for a GUI can be used to construct test cases for it.

Definition 3 (GUI test case). For a GUI, G, a test case c1 is a finite sequence

(e0, e1, . . . , ek−1), where ei ∈ EG, 0 ≤ i < k, and k is the length of the test case.

A GUI test case is an event sequence. In this work, we use these two terms inter-

changeably. A randomly generated GUI test case is not guaranteed to be executable

due to the interaction among the events. Usually, we generate a set of test cases to

form a test suite for testing different aspects and features of a GUI.

For convenience, we use l(c) to denote the length of the test case c. We also use

cG,k to denote the set of all length-k test cases for a GUI, G.

Definition 4 (GUI test suite). For a GUI, G, a test suite Ck is a set of GUI test

cases of the same length k for G. Formally, Ck ⊆ cG,k.

While in general, the test cases in a GUI test suite do not need to be of the same

length, in this thesis, we consider all the test cases in a GUI test suite to have the

same length. Therefore, a GUI test suite C is a |C| × k array, where k is the length

of the test cases in it.

1c is used to distinguish from the strength t for a covering array.



12

Save All 

Save 

New 

File 

Save All 

Save 

New 

(a) (b) (c)

Figure 2.1: An example of a GUI and its models: (a) A simple GUI, (b) its EFG,
and (c) EIG

There has already been a lot of work on model-based GUI testing, including those

using finite state machines [29], pre- and post-conditions [17], and directed graph

models [26]. We talk about graph models because of its relevance to this work.

An EFG is a directed graph that models all possible event sequences that may

be executed on a GUI [22]. In EFGs, nodes denote the events in the GUI and edges

represent a relationship between events. An edge from node nx to node ny means that

the event represented by ny may be performed immediately after the event represented

by nx along some execution path. This relationship is called follows. An EFG can

be represented by a set of nodes N representing events in the GUI and a set E of

ordered pairs (ex, ey), where {ex, ey} ⊆N, representing the directed edges in the EFG;

(ex, ey) ∈ E if and only if ey follows ex.

Figure 2.1(a) presents a GUI example that consists of four events, New, Save,

SaveAll, and File. Figure 2.1(b) shows the GUI’s EFG; the four nodes represent the

four events; the edges represent the follows relationships. For example, the event

New follows File.

EIGs simplifies EFGs such that they do not include events to open or close menus,

or open windows as nodes. The result is a more compact, and hence more efficient,

GUI model. An EFG can be automatically transformed into an EIG by using graph-

rewriting rules (details are presented in [37]).
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Figure 2.1(c) shows the corresponding EIG. Note that the EIG does not contain

the menu-opening File event. The graph-rewriting rule used to obtain this EIG was

to (1) delete File because it is a menu-open event, (2) for all remaining events ex

replace each edge (ex,File) with edge (ex, ey) for each occurrence of edge (File, ey),

and (3) for all ey, delete all edges (File, ey). The GUI’s EIG is fully connected with

three nodes representing the three events.

The basic motivation of using graph models to represent a GUI is that graph-

traversal algorithms may be used to “walk” the graph, enumerating events along

visited nodes, thereby generating test cases. An approximation of these models can

be constructed automatically using a reverse engineering technique called GUI Rip-

ping [21]. A GUI Ripper automatically traverses a GUI under test and extracts the

hierarchical structure of the GUI and events that may be performed on the GUI.

The GUI Ripper is not perfect, i.e., parts of the retrieved information may be incom-

plete and just for a specific path of execution, which is why we say that it outputs

an approximation of the EFG. As a result, it is possible that some event sequences

generated via these graphs are infeasible.

In more recent work [40], a new feedback-based technique has been developed

for GUI testing. This technique requires an initial seed test suite to be created and

executed on the software. Feedback from this execution is used to augment a model

of the GUI and automatically generate additional test cases. The seed test suite is

generated using the EIG model and executed on the GUI using an automatic test

case replayer. During test execution, the run-time state of GUI widgets is collected

and used to automatically identify an Event Semantic Interaction (ESI) relationship

between pairs of events. This relationship captures how a GUI event is related to

another in terms of how it modifies the other’s execution behavior. The ESI rela-

tionships are used to construct a new model of the GUI – ESIG. The ESIG combines
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the ESI relationship, dynamic feedback obtained in terms of event execution, into

the seed test suite generated from the structural model EIG, and therefore captures

certain structural and dynamic aspects of the GUI. The ESIG is used to generate

new test cases. These test cases have an important property such that each event

is ESI-related to its subsequent event, i.e., it influences the subsequent event during

execution of the seed test suite. However, because of the complexity of GUIs, multiple

events might contribute to the change of the behavior of another event. So even when

using an ESIG, we may still encounter infeasible test cases [39].

A technique for repairing GUI test cases for regression testing is developed in

[23]. When the structure of a GUI is modified, test cases from the original GUI test

suite are either reusable or unusable on the modified GUI. The proposed algorithm

(1) automatically determines reusable and unusable test cases from a test suite after

a GUI modification, (2) determines the unusable test cases that can be repaired so

that they can execute on the modified GUI, and (3) uses repairing transformations to

repair the test cases. The challenges of repairing sequences are fewer in the context

of regression testing because the differences between the two versions’ EFGs is used

to drive the repair. Our focus on this thesis is repairing GUI test suites rather than

GUI test cases.

2.2 Combinatorial Interaction Testing

Combinatorial interaction testing (CIT) is a technique for testing combinations of

input parameters to a software system. For example, Table 2.1 shows part of the input

parameters the file-listing command “ls”. In the table, we show three parameters that

can be specified for different behaviors of the command. To ensure the correctness of

the interaction on these parameters, we need to test the combinations of the input
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Table 2.1: Some input paramters of “ls”.

Color Block Size Sort Method
Never 1KB by status

Always 1MB by time
Auto 1GB by size

parameters, such as (Never, 1MB block size, Sort by time) and (Always, 1KB block

size, Sort by size). The number of all the combinations for this is 3*3*3 = 27.

Although it is easy to test all the combinations for this example, it might be very

hard to apply it to a program with, for example, 20 parameters, where each contains

5 possible values because of the exponential growth of the testing space. In real

applications, it is not unexpected for a program to have many input parameters [28].

To this end, covering arrays are used to systematically sample the testing space.

Definition 5 (Covering array [4]). A covering array (written as CA(N ; t, k, v)) is

an N × k array on v symbols such that any t of the k columns contains all ordered

subsets of size t of the v symbols at least once.

In the definition, t is the strength of the array, k is the number of the columns of

the array, and v is the number of possible values for each column of the array. The

number of possible values for each column can be different, and this is depicted by

another type of covering array named mixed level covering array [4]. In this work, we

only consider the type of covering array where the number of values for each column

is the same. The v symbols are not necessarily the same for each column; each column

can have its own (different) v symbols (or values). One of all ordered subsets of size t

of the v symbols appearing on t of the k columns is called a t-set. The total number

of t-sets for CA(N ; t, k, v) is
(
k
t

)
vt. A t-set is different from a t-way combination. A

t-set does not only consider the combination of t values, but also the positions of these

t values at the k columns. For example, a combination (e1, e2, e3) and a combination
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(e1, e2, e3) at column 1, 2 and 4 (i.e., a 3-set (e1, e2, e3)) respectively are different.

The former does not contain position information and implies that the combination

can appear at any three columns, such as (e1, e2, e3) at column 2, 4 and 5, or (e1,

e2, e3) at column 1, 3 and 4, etc. The latter contains the position information for

the three values, i.e., the three values in this 3-set at only appear at column 1, 2 and

4. This example shows that when a t-way combination is combined with positions, it

becomes a t-set. Table 2.2 shows 2-way covering array for the “ls” example. If we pick

any two columns from the table, we can see that all the combinations for the values

of these two columns appears once. This covering array covers all the 2-sets for the

example. If we remove the last row, the 2-sets lost are (Auto, 1GB), (Auto, by status)

and (1GB, by status) at positions (0, 1), (0, 2) and (1, 2) respectively. However, in

general, a t-set might be covered by multiple rows, therefore deleting one of the rows

will not necessarily reduce the coverage of a specfic t-set. Next we define this type of

coverage.

Definition 6 (Combinatorial coverage). Given the strength t, the number of columns

k, and the number of possible values v, the number of t-sets covered by an arbitrary

M × k array A (M is the number of rows) is called its combinatorial coverage,

written as covt,k,v(A).

Obviously, covt,k,v(CA(N ; t, k, v)) =
(
k
t

)
vt.

In this work, the concept of covering arrays are leveraged for GUI test generation.

For a GUI, G, if we want to test all the t-way combinations of the events using length-

k test cases, we can use CA(N ; t, k, |EG|) to generate the test suite. For example,

for a GUI containing three events {Save, SaveAll ,New}, we can use CA(9; 2, 4, 3) to

generate length-4 test cases to test all the 2-way combinations. Table 2.3 shows all

the test cases. In this example, we assume that any event in EG can appear at any
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Table 2.2: A 2-way covering array for the input parameters of “ls”.

Color Block Size Sort Method
Never 1KB by status
Never 1MB by size
Never 1GB by time

Always 1KB by time
Always 1MB by status
Always 1GB by size

Auto 1KB by size
Auto 1MB by time
Auto 1GB by status

Table 2.3: Length-4 test cases for testing 2-way combinations of
{Save, SaveAll ,New}.

No. 1 2 3 4
1 Save Save Save New
2 Save SaveAll SaveAll Save
3 Save New New SaveAll
4 SaveAll Save New Save
5 SaveAll SaveAll Save SaveAll
6 SaveAll New SaveAll New
7 New Save SaveAll SaveAll
8 New SaveAll New New
9 New New Save Save

position, and one event can be executed multiple times in a row. It is true for the

three events in the example, however, for other events, it is not always the case, which

means, the generated test cases are not always executable.

2.3 Search Algorithms and Evolutionary Testing

An emerging field of software engineering, called search based software engineering

utilizes meta-heuristic search to solve common software engineering problems [11].

Meta-heuristic search techniques can be applied to problems which can be described

as an optimization problem, but that cannot be solved through exhaustive methods.
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Algorithm 1 Genetic Algorithm for Adding a Single Test Case

Ensure: A optimal solution.
1: Generate initial population
2: Evaluate fitness of and rank the chromosomes in the population
3: while Stopping criteria not satisfied do
4: Select the best-fit chromosomes for reproduction
5: Breed new chromosomes through crossover and mutation operations, and add

them into the population
6: Evaluate the fitness of new chromosomes and rank all the chromosomes
7: Drop off the least-fit chromosomes to maintain population size
8: end while

The problem can be specified as a set Σ of feasible solutions (or states) together

with a cost c(S) associated with each S ∈ Σ. An optimal solution corresponds to a

feasible solution with overall (i.e. global) minimum (or maximum) cost. Evolutionary

algorithms are a type of meta-heuristic search algorithm that conduct the search in

a way inspired by the biological evolutionary process. Usually an evolutionary algo-

rithm contains phases such as reproduction, mutation, recombination and selection,

etc., which all exist in the biological evolution [7].

A genetic algorithm is one of the most commonly used evolutionary algorithms.

Algorithm 1 shows a framework for a genetic algorithm. In a typical genetic algorithm,

all the possible solutions are modeled as chromosomes or individuals, which contains

a set of alleles or genes. A population is composed of many individuals, and is used

for the evolution. The population size may be selected according to the nature of the

problem. A population at a particular time is call a generation. At the beginning of

the algorithm, an initial population is generated randomly or through other methods.

This serves as the first generation. For each consecutive generation, the individuals in

the population are paired as parents and a crossover or recombination stage takes

place for them to exchange and combine information, and breed a set of children.

These children are added as new individuals to the population. In this way, the
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population size grows after each generation. To maintain a stable population, a

selection phase is used to select a portion of one successive generation for producing

the next generation, while others in the successive generation are dropped.

The selection is based on the evaluation of the fitness of the chromosomes. A

fitness function is designed to judge how good a chromosome is, i.e., how close it is

to a desired “optimal” solution. In the selection, all the chromosomes in current pop-

ulation are ranked by the fitness, and then qualified chromosomes are selected. The

diversity of a population is important for the search because when the chromosomes

are too similar to each other, it is easy for them to converge to a local optimum. If

the reached local optimum is not the global optimum, the evolution may slow down

or even stop. If the search is trapped, it is hardly able to escape from that because

of the similarity of the chromosomes. To avoid this, a mutation operator is applied

to the population for introducing diversity.

A classic method for doing mutation is changing arbitrary alleles of chromosomes

in the population. Although the mutation may harm the fitness of chromosomes,

it provides a chance for the trapped chromosomes to escape from local optima. The

evolution terminates when the stopping criteria are satisfied. The choice of stopping

criteria varies. A simple stopping criterion can be that a good enough chromosome

(i.e., solution) is found. However, it is not always easy to reach the global optimum,

and sometimes a local optimum might be enough. The number of consecutive bad

moves is used for this purpose. A bad move is a move where the most-fit chromosome

in the successive generation is no better than the parental generation. When the

evolution keeps making bad moves, it indicates that the search has reached a plateau

and is trapped in some local optimum. The more consecutive bad moves, the more

likely it is this situation. Under this situation, the search can be stopped because it

is unable to make any progress. Similarly, the maximum number of generations can
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also serve as a stopping criterion to prevent the search from going too far. Stopping

criteria may be also dependent on budget or resources allowed. For example, when the

time limit or the maximum allowed memory usage has been reached, the algorithm

stops.

One common way to automate test generation/feedback is through the use of

evolutionary algorithms such as genetic algorithms [27, 34, 16, 20]. In the work of

[27], Pargas et al. leveraged a genetic algorithm for searching test data that can

cover certain targets (such as statements, branches, paths, etc.). In the work of

[34], Tonella designed a genetic algorithm for generating unit tests for objects. It

considers both the input data as well as method invocation sequences, but suffers

from potentially infeasible test cases. Other work using meta-heuristic search to

generate test sequences such as that of Marchetto and Tonella [19] is related in that

they generate long sequences for testing web applications. Their focus is to provide

test case diversity, but they may also suffer from infeasibility. We expect that our

work may also benefit this type of test sequence generation.

Genetic algorithms have been used for generating CIT samples [32]. Our work is

closely related to this thread of research, but genetic algorithms have only been used

to generate single CIT samples without temporal constraints. More recent work by

Arcuri and Yao [2] and Weimer et al. [35] present genetic programming solutions to

repair faulty source code. Although they too focus on repair, their goal is quite differ-

ent from ours in that they are targeting source code and using genetic programming

to evolve new non-faulty statements.
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Chapter 3

Identifying Infeasible Patterns

Infeasible test cases are not desired during GUI test generation. They reduce the

confidence and usefulness of the test suite in terms of combinatorial coverage. To

avoid generating infeasible GUI test cases, we first define what is considered to be

infeasible in this work. After that, we analyze why and in what forms the infeasibility

occurs. We learn and identify several patterns from the event interactions of real

GUIs, and these patterns summarize the possible cases where the infeasibility may

occur. Some of the material in this chapter has been published in [13].

3.1 Feasibility of GUI Test Cases

Definition 7 (Feasibility). For a GUI, G, and any k > 0, c = (e0, e1, e2, . . . , ek−1) is

a test case in cG,k. If all ei ∈ c can be triggered, dispatched to and responded to by G,

c is feasible; otherwise, c is infeasible.

Infeasibility occurs when any of triggering, dispatching or handling the event can-

not be successfully performed. For example, in Java Swing, if a menu item is disabled,

the click event on it can be triggered, however, the event will not be dispatched to



22

the event handler by the library, and thus the event cannot be handled by the cor-

responding event handler and there will no response from the GUI. Similarly, if a

modal dialog is not closed before attempting to send an event to its parental win-

dow, the parental window rejects the event because it cannot get the GUI focus of

the current application (because usually only one window can hold the focus at one

time). In either case, the event cannot be successfully passed to the corresponding

event handler, so is not processed by the GUI.

In an infeasible GUI test case, there must be at least one event that cannot be

executed successfully. Because the events are executed in order, when the first event

that cannot be executed successfully is encountered, we say that the GUI test case is

infeasible.

Definition 8 (Failure point). For a GUI, G, and c = (e0, e1, . . . , ek−1), a length-k

test case for G,

• if c is feasible, its failure point f(c) = k.

• if c is infeasible, the failure point f(c) = i, where 0 ≤ i < k, and the sequence

(e0, e1, . . . , ei−1) is a feasible test case for G.

Although the first event not run to completion is treated as the failure point,

there can be more events that are infeasible behind the event at the failure point.

However, because the first infeasible event prevents the following events to exhibit

their infeasibility, the infeasible events beyond the event at the failure point are

ignored. Using the failure point, we are able to determine whether a GUI test case is

feasible or not.

Infeasibility appears to be failures on the event execution using the GUI testing

tools, which are very similar to those caused by faults, however, they are caused by

different reasons. Next, we discuss infeasibility and faults.
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Infeasibility vs. Faults: Faults are violations of the specifications of GUIs.

They may cause failures during the interaction between the GUI application and

human users. For example, when the Redo event is executed, if the event Undo is not

redone, there is a fault in the application. Infeasibility is different. In specifications,

infeasibility is described as exclusion of certain event interactions. That means, these

event interactions are not allowed in the execution of GUI applications. For example,

if the application is currently at the first page of a document, the event Previous

Page cannot be executed because there is no page before the first page. During the

development, such event interactions are usually avoided by disabling or hiding GUI

components.

To the human users that interact with the GUIs, infeasibility means they cannot

execute certain events while faults mean they cannot get the expected output or

behavior from the GUI. Typically, when a user interacts with a GUI application,

the infeasibility does not cause failure. They are simply forbidden to execute these

events. But faults usually cause failures that prevent the users from obtaining correct

information from the GUI.

The reason why we cannot easily distinguish between infeasibility and faults is

because we are using automated tools to run test cases. The tool sends events to the

application, and judges whether the event can be executed successfully. The failure

occurring here can be either caused by the fact that the event cannot be executed or

that the event is not executed correctly. Further, since a fault can be anything that

violates the specifications, it can “pretend” to be an infeasible event interaction. For

example, executing the event Undo should enable the event Redo. A fault can keep

Redo disabled after executing Undo. Then the event Redo cannot be executed. It

appears to have an infeasible event interaction here, but actually it is caused by a

fault. So when we generate test cases, we make several assumptions to avoid these
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situations. We leave the thorough analysis of failures and infeasibility as our future

work.

3.2 Infeasible Patterns: Event Constraints

Infeasible test cases appear to cause failures during the execution because of the

violation of the constraints on the event interaction. Now we analyze the reasons for

the infeasibility at a finer granularity. Because the execution of events is actually

the execution of the code of their corresponding event handlers, the constraints on

the event interaction are actually the constraints on the code elements. Figure 3.1

shows an example code fragment which is simplified from real GUI applications for

handling events Undo and Redo. The command pattern [6] is used in it. Two buttons,

undoButton and redoButton (line 4), are used in the GUI for events Undo and Redo

respectively. They are initially disabled (lines 5–10). When the events are triggered,

methods undoPerformed (lines 18–26) and redoPerformed (lines 27–36) will be used

to handle events Undo and Redo respectivley. Method undoableActionPerformed

performs an undoable action (lines 11–17). From the code, we can see that after an

undoable event is performed, the undoButton will always be enabled (line 15) while

the redoButton will always be disabled (line 16). This means that the Redo event

can never follow an Undoable event. Because redoButton and undoButton are both

disabled at the startup of the application, they need to be enabled to perform the

Redo and Undo events respectively. The way to enable the undoButton is to perform

an Undoable event, because after invoking the event handler of an Undoable event,

the undoButton is always enabled. The way to enable the redoButton is to perform

an Undo event, because the redoButton is always enabled after performing an Undo

event. Meanwhile, the Redo event also enables the undoButton, however, the Redo
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1. class ExampleGUIApplication {

2. List<Action> actions;

3. int pos = 0;

4. JButton redoButton, undoButton;

...

5. public void initialize() { // both buttons are first disabled

6. redoButton = new JButton("Redo");

7. redoButton.setEnabled(false);

8. undoButton = new JButton("Undo");

9. undoButton.setEnabled(false);

...

10. }

11. public void undoableActionPerformed(Action event) {

12. event.execute();

... // remove actions after ‘‘pos’’

13. actions.add(event);

14. pos = actions.size() - 1;

15. undoButton.setEnabled(true);

16. redoButton.setEnabled(false);

17. }

18. public void undoPerformed() {

19. Action currentAction = actions.get(pos);

20. currentAction.undo();

21. pos = pos - 1;

22. redoButton.setEnabled(true);

23. if (pos == 0) {

24. undoButton.setEnabled(false);

25. }

26. }

27. public void redoPerformed() {

28. pos = pos + 1;

29. Action currentAction = actions.get(pos);

30. currentAction.redo();

31. undoButton.setEnabled(true);

32. if (pos == actions.size() - 1) {

33. redoButton.setEnabled(false);

34. }

35. }

36. }

Figure 3.1: An example of event handlers
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event also needs to be enabled before it can be performed. So using a Redo event to

enable the undoButton needs events Undoable and Undo to be executed before it in

order.

Although at the code level, the events may interact with each other through the

elements of programs, such as variables and methods, etc., at a higher level, the event

interactions show interesting patterns. After an informal study on the behavior of the

GUIs, we find several patterns for the constraints on event interactions and classify

them into four broad categories, disabled, requires, consecutive and excludes. This

study is preliminary, and the classification is based on the author’s experience and

observation. In this work, we consider this as a starting point, and leave a deeper

and thorough exploration of constraints on GUI applications as future work.

All of the examples shown are illustrated with short sequences for simplicity,

however we can find examples for most of these constraints that are longer. For

instance, we may have two, three or more events that are excluded or two or more

events that require another event. We return to the issue of arity of constraints in our

evaluation (Chapter 4) where we have designed synthetic programs to mimic each of

these patterns of infeasibility.

Disabled Event Constraint: This type of constraint occurs when an event is always

disabled. A menu item or widget exists for the event, but it will never be visible or

enabled. The existence of this constraint might signal an error in the GUI, or we may

encounter it during in-house development or in a program provided as a beta-release

for preview. For instance, commercial software companies may release a beta version

of a product for end-user testing, however, some features in the software might not

have yet passed internal testing, or may not be suitable for early release. These may

be turned off or disabled. This type of constraints can also appear within a specific

set of events. For example, considering events Undo, Zoom In and Zoom Out, because
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(a) Undo is disabled (b) Zoom In and Zoom Out do
not enable Undo

Figure 3.2: Disabled constraint

(a) Redo disabled (b) After Undo, Redo enabled

Figure 3.3: Requires constraint

Zoom In and Zoom Out are not undoable events, and Undo is disabled at startup,

combinations of these events never enable Undo. In this case (within the range of

these events), Undo can also be considered as a disabled event. Figure 3.2 shows such

an example.

Requires Constraint: This constraint indicates that some event needs another

event to be executed before it is enabled. An example of this type of constraint

is illustrated by the Redo operation. Before one can execute Redo they must first

execute Undo. Figure 3.3 shows an example of this sequence in Microsoft Office 2010.

Consecutive Constraint: This constraint means that two events cannot be exe-

cuted consecutively. Usually, in this type of constraint, the execution of the first event

disables the second event, making it unexecutable. The second event is re-enabled

if another event occurs between them. An example of this type of constraint is the

sequence Save as, Save. When these are executed sequentially, the Save event may be
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(a) Save as is invoked (b) Save is disabled (c) Save is re-enabled after
Type in editor

Figure 3.4: Consecutive Constraint

(a) Trial version is chosen (b) Cannot Add to Movie:
by clicking on No thanks only works with “PRO” version

Figure 3.5: Excludes Constraint

disabled. But another event such as Type in editor may re-enable the second event.

We show an example of this sequence from Eclipse 3.5 in Figure 3.4.

Excludes Constraint: This type of constraint is similar to the last one, however

once the first event has been enabled there is no way to re-enable the second event

within the current group of events. An example of this type of constraint can be seen

in QuickTime 7. After QuickTime is downloaded and installed, it is by default an

evaluation version. A window asks whether the user wants to select the professional

version (see Figure 3.5(a)). If the user chooses to stay in the evaluation version, then
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features only provided in the professional version are disabled (see Figure 3.5(b)).

As a result, for instance, the sequence No Thanks, Add to Movie is always infeasible

whether or not events occur between them.

Compound Constraint: This type of constraint is a combination of multiple con-

straints above. Real GUI programs may contain many constraints rather than a single

one. For example, Eclipse 3.5 contains the Requires constraint for Redo and Undo, as

well as the Event Consecutive constraint for Save, Save as and Type in editor.

3.3 Summary

In this chapter, we presented a study for the feasibility of GUI test cases. The study

shows that infeasible event interactions do exist in test cases for real applications. We

summarize our observation for these and catergorize the discovered infeasible patterns

into four types of constraints. These constraints reflect the most commonly seen

infeasibility that occurs in real GUI applications. Based on these, we next propose a

framework for generating and repairing GUI test suites when these infeasible patterns

occur.
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Chapter 4

Framework

In this chapter, we present a framework for repairing GUI test suites when infeasibility

is detected. First, we formally define what GUI test suite repair is, and set up the

goals for this process. A repair algorithm is the core part of our framework. With

the repair algorithm as the central element of our framework, the entire process is

elaborated step by step. Some of the work in this chapter appeared in [13].

4.1 GUI Test Suite Repair

In non-trivial GUI applications, event interactions tend to be complicated. To thor-

oughly model constraints on the event interactions of GUIs requires a lot of manual

effort. Some events are even only triggered in a special situation. The user usually

needs to follow specific (sometimes very special) operations to set up contexts where

certain events can run. If the users do not know the “hidden” event flows to follow,

it is very likely that they will miss constraints when modeling the GUIs, especially

when modeling without prior knowledge or assistance for the GUIs.

The GUI ripper from [21] automatically rips the component hierarchies for GUI
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programs. However, the state-of-the-art techniques for doing so rely on one or more

dynamic runs of the GUI programs to discover the structures of the GUIs. The

problem for this is that one run (or even more) does not necessarily show all the

possible event flows existing in the GUI, so the models extracted from the GUI may

not contain all the possible event interactions. Then, the constraints on the event

interactions may not be fully reflected by the models derived from the GUI. Although

manual work can also be employed to help this effort, as we show earlier, it is very

hard to gaurantee that all the possible event flows can be found by human.

Static analysis does not always thoroughly identify the constraints on the event

interactions either. Modern GUIs are usually implemented with the help of GUI

libraries, and in these libraries, polymorphism, callback methods, reflection and multi-

threading are widely used. This may impede precise analysis on the programs [30, 18].

Moreover, the source code of the libraries may not be available and the GUIs and the

underlying business logic may be implemented in different programming languages.

All of these pose big challenges on static analysis for GUIs. When static analysis

techniques are used, they may need to dive into the libraries. However, the cost of

analyzing the libraries can introduce a large overhead, even for very small GUIs.

Summarizing all of the above, modeling all the constraints in a GUI can be ex-

tremely difficult. In this work, instead of extracting constraints from the GUIs and

generating GUI test suites according to the constraints, we propose a method to gen-

erate GUI test suites without knowing the exact constraints in the GUIs and use the

feedback from the actual execution of the generated test cases to repair the test suite.

Before describing the framework, we define the GUI test suite repair and then discuss

assumptions that must hold.

Definition 9 (GUI test suite repair). For a GUI, G, and CG, a test suite for G, a
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GUI test suite repair for CG is a transformation from CG to another test suite C ′G,

where every test case c ∈ C ′G is feasible, and the lengths of the test cases in CG and

in C ′G are the same.

If all the test cases in CG are feasible, the GUI test suite repair for CG is trivial,

because we can let C ′G = CG. The same CG can be repaired to obtain different C ′Gs.

In this work, our goal is to design a GUI test suite repair such that given a strength

t, a GUI, G, and a length-k GUI test suite CG, the test suite C ′G obtained after repair

satisfies covt,k,v(C
′
G) ≥ covt,k,v(CG), where v = |EG|.

4.2 Assumptions

This work makes several assumptions.

• No prior knowledge of the constraints on the event interaction: When we repair a

given GUI test suite, we assume no knowledge on the constraints that exist in the

GUIs. Rather, we learn the feasibility of a GUI test case by directly executing

it. This assumption is based on the observation that learning constraints from

the GUI can be expensive and error-prone. During the repair, we keep a record

for the covered t-sets, and after that, the uncovered ones can be extracted.

These uncovered t-sets are caused by the constraints on GUIs. From them, we

can derive constraints that cause infeasiblity.

• Deterministic GUI behaviors: Real GUIs might provide functionalities related

to random conditions, such as time, randomly generated numbers, etc. The

randomness introduced in the GUIs can change the constraints in the GUIs on

the fly. For example, when the traffic of the network is busy, some functionalities

might be disabled, while when the traffic returns to normal, these functionalities
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are enabled. Because we use the information from the execution of test cases to

determine whether they are feasible, we want the information to be consistent

regardless of random conditions. Otherwise, the information from one run of

the test case cannot be directly used to determine whether it is feasible. In this

work, we do not consider such non-deterministic behavior of GUIs, and assume

that AUTs consistently provide determinstic behaviors.

• Assuming that we have a fault-free version for determining the feasibility of

GUI test cases: In the work of Memon et al. [26], fault-free versions are used

to generate oracles for the GUI test cases. Similarly, in this work, we also

need fault-free versions of the AUT to determine whether a GUI test case is

feasible. As we discussed, it can be very difficult to distinguish between a fault

and infeasibility. If we do not have such versions, the failures occurring during

the execution of test cases might be caused by faults in the AUTs rather than

infeasibility. And in test generation, event sequences that reveal these faults will

be treated as infeasible and will be avoided. We leave the issue of differentiating

faults and infeasibility as future work.

4.3 GUI Test Suite Repair Framework

Figure 4.1 provides an overview of our GUI test suite repair framework. The input to

the framework is an ESIG (or other similar graph model) (1) and the GUI structure

extracted during ripping. The main controller (2) passes the graph and GUI structure

to the test case assembler (3) which sends the ESIG model to a covering array gen-

erator (5) with the desired strength of testing (i.e., 2-way, 3-way, etc.). The covering

array generator returns an initial set of event sequences for testing. In between the

framework and the covering array generator is a base component interface (4). This
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Figure 4.1: The framework for GUI test suite repair

serves as an adapter for the external tools. Once the test case assembler has a covering

array, it assembles this into concrete test cases using the GUI structural information.

These are passed back to the controller and the test suite repair phase begins (6).

The repair algorithm interfaces through the base component interface with a test case

replayer (7). When the repair phase is complete the framework returns a test suite

containing only feasible test cases.

There are three points in this framework that can be fit into by difference imple-

mentations. We use two plug-ins to achieve 1) the initial covering array generation

and 2) test case replaying. The third point is the component for the repair algorithm.

For our current instantiation of this framework, we use a simulated annealing algo-

rithm developed by Garvin et al. [9] for the covering array generation and a modified

version of GUITAR [10] for test case execution. We have modified GUITAR by adding

exception handling that detects when events become unavailable during replay and
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to report that the test case is infeasible and at which point in the sequence.

4.3.1 Discussion on Implementation

We made several design decisions for the implementation of the framework and discuss

these below.

Test Case Execution: Usually, the test case replayer needs to run a set of test cases

for the repair algorithm at one time. To improve the performance of execution, the

framework is designed to run test cases in parallel. In the base component interface,

one guard thread is created for the process of running each test case. The thread

starts a process for the replayer to run the test case, monitors the running status,

and finally collects and reports the results. Here we choose to run test cases in

separated processes because running different test cases in the same process may

unexpectedly change program states. For example, if two test cases are run within

the same process, the global states (such as static variables) of the AUT may be

changed after the first test case finishes, and since the global states are accessible by

any threads within the process, the execution of the second test case is very likely to

be affected. An extreme example is that if there is a System.exit(0) in an event

handler of the AUT and the first test case contains an event processed by this event

handler, the process might terminate prematurely after it reaches that event without

running the second test case. Although techinques might be used to deal with these

issues (such as state recovery, etc.), in order to keep the tool simple and clean, we

decide to run test cases on the AUT in separated processes. Since we assume the

behavior of the GUIs we test is deterministic, which means each run of the same test

case under the same context must give identical results, we keep a list of executed

test cases in the base component interface to avoid running the same test case twice.
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Execution Result Collection: Because we run the test cases in separated pro-

cesses, the way our framework communicates with the test case replayer turns to

communication between processes. As a result, the test case replayer needs to sup-

port this feature to pass results into our framework. Files are used for this purpose.

The test case replayer outputs information and results of the execution into a file

before it ends, and the guard thread for each test case read in the content of the file

for analysis and use in the repair algorithm. A unique path is generated for the result

file of each test case so that no result overwrites others.

Recognition of Feasibility: In the results of execution, the test case replayer is

required to provide the feasibility of the test case run. If an event in the event sequence

is infeasible, we can discover that by checking the accessibility and certain properties

of the related components. For example, if a window or a component is not accessible

because it has disappeared, or it has not been created, or it cannot get the focus of

current GUI, the events on them cannot be executed successfully, and therefore these

events are infeasible. Likewise, if a button is disabled, the event clicking on it cannot

be executed, and we can call isEnabled() on the button to see if it can be executed.

The method isVisible() is also used for such checking. Before the execution of an

event, related properties are checked to see whether it can be successfully executed.

If not, the test case is infeasible. At the same time the failure point where the test

case stops is also recorded.
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Figure 4.2: Using Genetic Algorithm as Repair Algorithm

4.4 A Genetic Algorithm for Repairing GUI Test

Suites

The core part of our framework is the repair algorithm. Figure 4.2 shows an overview

of our repair algorithm ((6) in Figure 4.1). Algorithm 2 shows the details for the

repair algorithm. While different types of algorithms for repair are possible, in this

work, we have used a genetic algorithm (shown in Algorithm 3) because the problem

of repair is an optimization problem; we want to generate a minimal set of new test

cases that complete the feasible coverage.

First, we walk through Algorithm 2. The first part of the repair is to execute

the initial set of test cases and remove any tests that fail due to constraints (step

1, lines 4–51). If all test cases are feasible (step 2, lines 6–8), it exits. If there are

any infeasible ones, it begins the repair phase. We set a number of iterations for

our algorithm and for each iteration the algorithm adds at most one test case. The

number of iterations chosen is based on an estimate of how large we will allow the

1We show the steps in figures and lines in algorithms together.



38

Algorithm 2 GUI Test Suite Repair Algorithm

Require: M : an event-flow model
Require: G: a GUI structure model
Require: t: the strength for the test cases
Require: s: the size factor
Require: k: the length of test cases
Ensure: A GUI test suite T

1: E ← {event e | e ∈M} {Set of all events}
2: Generate a covering array CI = CA(N ; t, k, |E|)
3: Generate the initial test suite I using CI

4: Execute each test case in I with the help of G to evaluate feasibility
5: T ← {feasible test cases in I}
6: if T = I then
7: return T
8: end if
9: Rounds← s · |I| − |T |

10: for i← 1 to Rounds do
11: best = Invoke the genetic algorithm with I.
12: if best 6= NULL then
13: T ← T ∪ {best}
14: end if
15: end for
16: return T

repaired test suite to grow. It is set to the maximum number of test cases that can

be added (line 9). The constant s is the size factor, and typically it is greater than

one. Because we can add at most one test case per iteration, the size factor indicates

how many times of the size of the initial test suite the final test suite can grow to.

For example, if the size of the initial test suite is 10, the size factor 2, and 3 feasible

test cases are already added into the final test suite, then we may use at most 17

iterations to complete the final test suite.

For each iteration we run the genetic algorithm (steps 3–6, line 11). The algorithm

returns the best test case and adds this to the final test suite. It is possible that the

genetic algorithm does not converge in some iterations on a test case that increases

coverage. In this case no test cases are added and the final test suite will be smaller
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Algorithm 3 Genetic Algorithm for Adding a Single Test Case

Require: Pinitial: a GUI test suite
Ensure: A feasible test case with the best new coverage, or NULL

1: Population← Pinitial

2: nGens← 0 {Experienced number of generations}
3: nBadMoves← 0 {Experienced number of bad moves}
4: LastBest← −∞ {Best fitness from last generation}
5: while nGens < MAX GENS and nBadMoves < MAX BAD MOVES do
6: Execute each test case in Population and calculate fitness
7: Sort Population in the ascending order of fitness from the best to the worst
8: best← best test case of Population
9: if fitness(best) is not better than LastBest then

10: nBadMoves← nBadMoves + 1
11: else
12: nBadMoves← 0
13: end if
14: LastBest← fitness(best)
15: Crossover(Population)
16: Select(Population)
17: Mutate(Population)
18: nGens← nGens + 1
19: end while
20: best← best test case of Population
21: if fitness(best)> 0 then
22: return best
23: else
24: return NULL
25: end if

than the maximum possible size (line 12–14).

Next, we discuss the genetic algorithm designed for the repair. Algorithm 3 shows

the detailed genetic algorithm for searching for one test case. It accepts an initial

GUI test suite as the initial population, and returns the best feasible test case if any

is found in the search. In the algorithm, lines 1–4 do the initialization. The loop from

line 5 to 19 is the main part for the evolution. In the loop, it first executes all the

test cases in the current population (line 6) and rank them according to the fitness

calculated (line 7). If the fitness of the best test case in the population is not better
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than that of the one in the previous population, the current generation is considered

as a bad move (line 8 –14). After that, crossover and mutation are done to generate

the next population, and selection is used to eliminate worst individuals in the current

population (lines 15–17). When the stopping criteria are met, the evolution stops.

If the best individual in the final population is good enough, then return it as the

test case to add; otherwise, NULL is returned to indicate no good enough test case is

found for this iteration (lines 20–25). We discuss the parameters used in the genetic

algorithm next.

Chromosome and Population: The chromosome for this algorithm is a test case

(or an event sequence), where the alleles are the events that form the sequence. The

population is a list of test cases. The initial population is a set of test cases generated

randomly.

Stopping Criteria: We use three criteria as our stopping criteria. First, a maximum

number of generations is used to ensure that the algorithm always stops. Second, a

maximum number of bad moves helps predict whether the algorithm has converged.

If the best fitness of current population is worse than that of the previous one, it

is considered a bad move. Third, if the best test case of the population already

covers the maximum number of t-way combinations one test case can cover, the

algorithm stops. It is worth noting that in real applications, we do not know the

exact constraints ahead of time so we cannot know whether a test case completes 100

percent of feasible coverage; therefore, in practice, this will not be a realistic stopping

criterion.

Fitness Function: We consider two factors in the fitness function. One is the

feasibility of the test case, and the other is the new coverage a test case can con-

tribute based on the coverage already achieved. The feasibility information is achieved

through test case execution. We define the failure point of an execution for a test



41

e0 e1 e2 e3 e4 e5

e′0 e′1 e′2 e′3 e′4 e′5

e0 e1 e′2 e3 e4 e′5

e′0 e1 e′2 e′3 e4 e′5

Figure 4.3: Crossover. 2-sets e1 and e4 at position 1 and 4 and e′2 and e′5 at position
2 and 5 are the new coverage of these two test cases respectively. During crossover,
the new coverage of the two test cases are exchanged.

case to be the position of the event which is not successfully executed. If a test case

is feasible, its failure point is equal to the length of the test case. For example, the

failure point of the test case (e1, e2, e3) which fails at e2 is 1. Given a length-k

test case c, the failure point is f(c), and the number of newly covered t-sets that c

contributes is cov(c), the fitness function is defined as

fitness(c) = b · cov(c)− p · (k − f(c)),

where b and p are both non-negative numbers. The factor b assigns a bonus to new

t-way combinations which can be introduced by c. The definition of cov(c) in the

fitness function can be adapted to other coverage criteria to generalize the framework

for test suites other than those derived from CIT (i.e., covt,k,v(c)). The factor p is

used to penalize infeasibility. In our implementation b = 10 and p = 100, 000. This

very large value of p ensures that infeasible test cases are more likely to be thrown

out. In fact, we could have used a binary value for p, i.e., feasible/infeasible. However,

we have left this generic for now.

Crossover and Mutation: For crossover we rank the test cases in descending order

and pair consecutive chromosomes. The chromosomes are crossed over in pairs. For

example, if the population contains test cases 1, 2, 3, 4, 5 and 6 in order, the pairs

for crossover are 1 and 2, 3 and 4, and 5 and 6. For each pair, the events providing
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new coverage of the test cases are exchanged. Figure 4.3 shows the crossover for two

test cases e = (e0, e1, . . . , e5) and e′ = (e′0, e
′
1, . . . , e

′
5). The new t-sets they can cover

are e1 and e4 at position 1 and 4, and e′2 and e′5 at position 2 and 5 respectively.

The crossover exchanges the two t-sets to generate two new test cases (the right part

of the Figure 4.3). After this crossover, we can see both of the new test cases have

these two t-sets, and are better than the original ones. The two new test cases are

added into the current population for selection. It should be noted that when there

are many new t-sets in the original test cases, the exchange may overwrite some of

them. However, because we do not drop the original test cases, we will lose the new

coverage discovered in the crossover.

Mutation ensures diversity in our population. Given a mutation rate mr, the

number of events mutated is calculated against the total number of events in the

current population p using mr × p. The positions to mutate are chosen randomly

from all of the chromosomes. Events in these positions are replaced by an event that

is randomly chosen respectively.

Selection: We use a linear selection, picking the best S chromosomes where S is the

population size.

Final Test Suite: After the stopping criteria is met, the evolution of test cases ends

and the one with highest fitness is returned. Because we impose a large penalty for

infeasible test cases, they will have a negative fitness value. Therefore, if the fitness

of a test case is zero or positive, it is feasible. However, if the fitness is zero, it

contributes no new combinations. As a result, we only add test cases with a positive

fitness to the suite; if there are no test cases with a positive fitness in an iteration,

none are added.
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4.5 Evaluation

We have designed a set of experiments to determine the feasibility of our framework.

Although our ultimate goal is to apply this to large scale GUI software, we have chosen

to first experiment on a set of synthetic subjects. The advantages of this approach

are that we can control the types of constraints, we know the target feasibility for

coverage, and we do not suffer from any non-determinism or native faults that might

appear in a real environment. This will allow us to evaluate the potential effectiveness

and performance of our approach in isolation before moving to real subjects. The

evaluation presented here is not trivial, however. The experiments constitute a total

effort of 363 machine-days of computational time.

We have developed three research questions that we aim to answer in this study:

• RQ1: Can the framework generate test sequences that increase feasible coverage

using a genetic algorithm?

• RQ2: How does a genetic algorithm compare with a random approach?

• RQ3: How does the framework scale to longer test sequences?

4.5.1 Subjects

We have created seven subject programs that contain the types of constraints de-

scribed in Section 3. Table 4.1 describes the details of each program. The programs

are written in Java and each event is of the type Button Click, with no functionality

other than the enabling/disabling of other events defined by the specified constraints.

The first six programs each contain a single constraint. The last program (Comp)

contains a combination of constraints taken from three of other subjects. The first

four programs, (Disb, Reqs, 2Cons, 2Excl), each contain three events. The next two,
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Table 4.1: Subject programs 1
No. Full Name No. Abbreviated Constraint Description

Events Name
1 Disabled Event Constraint 3 Disb One event is always disabled
2 Requires Constraint 3 Reqs One event requires another event to

be executed before it
3 Consecutive Constraint (2-way) 3 2Cons A pair of events is infeasible when ex-

ecuted sequentially
4 Excludes Constraint (2-way) 3 2Excl A pair of events is infeasible if exe-

cuted (possibly non-consecutively) in
sequence

5 Event Consecutive (3-way) 4 3Cons A sequence of three events is infeasible
when executed

6 Excludes (3-way) 5 3Excl A (possibly non-consecutive) se-
quence of three events are infeasible

7 Compound Constraints 5 Cmpd Includes constraints found in Subject
2, 3 and 5

(3Cons, 3Excl), contain four events and the last program, (Comp), contains five. The

additional events in the last three programs allow for the more complex/longer con-

straints to be defined. Since constraints may be of differing arity, for the consecutive

and excludes constraints we have included two versions. One has constraints between

only two events (2Cons and 2Excl) and the other has 3-way constraints (3Cons and

3Excl).

4.5.2 Independent Variables

Our independent variables are the seven subject programs, the length of the test se-

quences and the target coverage of our test suites, defined by the CIT sample strength

(e.g., 2-way, etc.). For 2-way coverage we run only one of the 3-way constrained pro-

grams (3Cons) since the 3-way constraints will not reduce the coverage of any pairs

of events, although they may still render certain test cases infeasible. For the 3-way

coverage we drop Disb, the subject with only one disabled constraint, since we expect

very similar behavior as is seen in the 2-way coverage; a single event is removed from

the pool. Our preliminary results confirm these observations.
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4.5.3 Dependent Variables

We examine three aspects of the repair to determine its success and quality. The

first metric is concerned with coverage of the test suites after repair. We calculate

the number and percentage of t-sets (pairs or triples of events) that are feasible given

the program constraints. We examine both the original test suites and the repaired

ones and compute the increase in CIT coverage as the increase in the ratio of feasible

t-sets divided by covered t-sets. Second we quantify the size of the original and final

(repaired) test suite and calculate the percentage increase measured by the number

and percentage of new test cases. Finally we consider both the time to execute and

the number of test cases executed during the repair of the algorithm. For this metric

we do not consider running the original test suite since that is a constant factor in

our experiments.

4.5.4 Experimental Methodology

The experiments are carried out on a computing cluster with AMD 2.4GHz dual-

core 64-bit processors, 16GB shared memory, Linux 2.6.18, and Java 1.6. For each

experiment, we ran five trials to reduce bias due to the randomness in our algorithms.

We report averages of the results.

Random Algorithm: For RQ2 we developed a random algorithm to gauge the

difficulty of incidentally covering all feasible t-sets. We use the maximum test suite

size that is used for the genetic algorithm and then try to iteratively generate a set of

random test cases of that size. At each stage we keep the set of test cases that gives us

the highest new coverage. Since we expect that some test cases will be infeasible using

random generation, we calculate coverage for all test cases, regardless of feasibility.

If a test case is infeasible we calculate the coverage up until the point where it failed,
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giving preference to the random algorithm. (The genetic algorithm will discard the

coverage for the entire test case). At the end of all iterations, the random algorithm

returns the set of tests cases that cover the greatest number of new t-sets.

Algorithm Parameters: In our implementation of the genetic algorithm we use

the following parameters. We derived these heuristically, but leave a systematic

tuning of the algorithm for future work. The maximum number of generations for

the genetic algorithm is 106, the maximum number of consecutive bad moves is 100,

the population size is set at 100 and the mutation rate is set to 0.03. For both the

genetic algorithm and the random algorithm we set the size factor to be 1.5 for 2-way

coverage, and 1.3 for 3-way coverage. For the random algorithm we set the number

of iterations to 106. The timeout for the random algorithm is approximately 1.5 as

long as the genetic algorithm on average giving the random algorithm more time to

obtain new coverage when competing with the genetic algorithm.

4.5.5 Threats to Validity

We describe the main threats to validity that we have identified. First we wrote

the programs that are used for experimentation and seeded the constraints. While a

threat, we believe that these are realistic small samples of the types of infeasibility

that are seen in practice. We have used a small number of events in each program (3-

5), and these events do not contain any real functionality. However, in some systems

where we group interacting events in an ESIG we think that the number of events may

be realistic. We also believe that the lack of functionality provides better determinism

in the test harness since we do not have to contend with problems related to thread

ordering during replay. We have used a single set of parameters for the genetic

algorithm and random algorithm which may impact their final results. We wrote

many programs to implement this framework and cannot be one hundred percent
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certain that they are fault free, but we have validated our results with a different

set of tools and have made every attempt to confirm that the numbers are reported

correctly. Finally, we realize that there are other metrics that we may have collected,

we feel that coverage, execution time, and test suite size are a legitimate starting set

for this work.

4.6 Results

We examine the results for each research question next2.

4.6.1 RQ1: Framework Effectiveness

Table 4.2 shows the results for repairing test suites with length-5 test cases. For each

subject we provide the number of t-sets in the original model, followed by the number

that are feasible given the constraints. We then show the average initial size of the

test suite, the average number of feasible test cases from within that test suite and

the final size followed by the percentage increase. We then show the initial, final and

average final coverage for the repaired test suite using our genetic algorithm. The last

column shows the percentage increase in coverage. We point out a few results from

this table. First, in all subjects except the last, we reach 100% feasible coverage.

The last subject has a goal of 3-way coverage and has compound constraints. We

see a range of increased coverage from 4.0% in the 3-way, 3Excl subject to 233% for

2-way coverage the Disb subject. This subject has one event that is always disabled

therefore its initial test suite had only a single feasible test case.

2Full experimental results and artifacts are available for download at: http://www.cse.unl.

edu/~myra/artifacts/icst2010
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For each subject we compare the size increase of the final test suite. Although

we provide an upper bound for our final test suite that is as high as 1.5 times that

of the original, we see that in five experiments the number of test cases increases by

less than 10%. In two cases (bold) we have reduced the size of the test suite from

the original size. This is due to constraints that remove a large number of feasible

combinations. For the other six subjects we see a range of increased sizes but only

one reaches the maximum (2-way coverage with compound constraints).

From this data we answer RQ1 by concluding that we can increase feasible coverage

with our approach.

4.6.2 RQ2: Comparison with a Random Algorithm

We now compare the results of our genetic algorithm against a random algorithm.

We do this to validate the need for a guided search and to infer the difficulty of the

problem. The results of RQ2 are shown in Table 4.3.

In this table we first show the subject parameters and target coverage for length-5

and length-10 sequences. We show the space size of each subject which represents

the total number of unique sequences in the search space. We then show the total

number of t-sets and the number of feasible ones. The next set of columns provides

data from the covering array before repair. The last two sections show data first for

the random algorithm and then for the genetic algorithm after repair. We present

data for the final size of the test suite, the percentage size increase, the final missed

coverage (represented as the number of t-sets). We then show the percentage of target

feasible coverage for each problem. Finally, we show the number of test cases executed

during repair and the time in minutes(m) hours(h) and days(d).

We show the final coverage percentage for the genetic algorithm in bold when it
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exceeds that of the random algorithm. There are only two cases where this does not

occur. The first is for the first subject, of length 5, where one event is disabled. Both

the genetic algorithm and the random algorithm reach 100% coverage on average. The

second case occurs in the length-5 test sequences for 2Cons where both algorithms

again reach 100% coverage.

To examine the coverage further we graph the percent coverage in the initial test

suite, and after repair for both the random algorithm and the genetic algorithm. We

show this data in Figures 4.4 and 4.5. The x-axis shows the subject and length

while the y-axis shows the percent coverage. We can see that in all cases both of

the repair algorithms improve coverage, but that the genetic algorithm outperforms

the random algorithm in most subjects.

We next look at the size of the final test suites. The random suites are consistently

larger than the genetic algorithm. This is not unexpected given our implementation,

but even in cases such as 2Excl, 3-way which has a 4.2% reduction or a 10.7% increase

(for length-5 and length-10 sequences respectively) for the genetic algorithm, a 30%

increase in test cases does not necessarily improve coverage. The random suites, with

up to 35% more test cases, have only 89% and 74% coverage compared to 100% for

the genetic algorithm.

Finally we examine the run time and number of executed test cases. Since we set

the timeout of the random algorithm to be approximately 1.5 times of the time used

by the genetic algorithm, the repair time for each of the groups using the random

algorithm is longer than that using genetic algorithm. However, we can see that except

Disb and 2Cons, 2-way for length 5, all the groups using the random algorithm have

a lower final coverage than the genetic algorithm.

From this data we answer RQ2 by concluding that the genetic algorithm outper-

forms the random algorithm.
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4.6.3 RQ3: Scalability of the Genetic Algorithm

Our last research question examines scalability. To answer this, we examine length 15

and 20 sequences. We only show data for 2-way coverage due to resource limitations.

The results of this experiment are shown in Table 4.4. In this table we show the

coverage of pairs of events, the number of executed test cases and the time in hours

and days. We show missing coverage in bold. As can be seen, we have achieved 100%

coverage in all cases but two. Both cases of missing coverage occur on the 3Excl

subject where we have to exclude any combination of a specific 3-event sequence.

Although we have not achieved 100% coverage we are only missing on average 3.0

and 9.0 pairs respectively for length 15 and 20 which is a minor percentage of the

final coverage. We have also increased our original coverage by more than 90% since

none of the initial test cases ran to completion. The time data is not as encouraging.

The shortest running repair takes slightly less than one day to complete, while most

repairs take from one to two days of computational time. The longest running repair,

the compound constraint of length 20 takes almost 3 weeks to converge.
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Figure 4.4: Comparison of Coverage for 2-way Criteria

We examine this further in Figure 4.6. In the two graphs we plot first the number

of executions and then the time in hours for each program. We examine data for length

5, 10, 15 and 20. The curves of the lines are similar between graphs, indicating that
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Figure 4.5: Comparison of Coverage for 3-way Criteria

the overriding factor in execution time is the number of test cases executed. This

is consistent with other research that points out that setup time to execute a test

case is more important than the length of the sequence [38]. These programs have

dummy events so this may not always be true in real systems. More notably, these

graphs point out that there is a big jump in both executions and run time moving

from length 10 to 15.

This data leads us to answer RQ3 as follows. From the perspective of coverage the

algorithm appears to scale well. However, execution time does not. We believe that

optimizations and other heuristics to terminate the genetic algorithm and to tune

the parameters are needed before this can be applied to large systems. We believe

that an adaptive method that repairs test suites incrementally during testing may be

effective.

4.7 Summary

In this chapter, we presented a framework for GUI test suite repair. We discussed

the process and algorithms used for the repair in detail. An evaluation was also

conducted for our tool implementation for the framework. The results show that our

technique can repair the GUI test suite for the synthetic programs. When compared
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Figure 4.6: Comparison of Numbers of Test Case Executions and Execution Time for
GA

to a random algorithm, we demonstrate that the genetic algorithm is necessary and

can achieve better results for GUI test suite repair. In the next chapter, we optimize

our algorithm for the application to non-trivial GUIs.
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Chapter 5

Application to Non-Trivial GUIs

In this chapter, we apply our framework to a few non-trivial GUIs used in previous

work applying CIT to GUI test generation. These non-trivial GUI subjects contain

more constraints than the synthetic programs, and the event interactions and states

in these applications are more complicated than those in the synthetic programs. For

example, a test case for a non-trivial application may contain a combination of 3-way,

4-way and 5-way constraints. When a 2-way criterion is used, all the 2-sets in the

test case are feasible, however, the test case will still not be selected because the

combination of the above constraints in it make it infeasible. This shows that in non-

trivial applications the search might be more likely to encounter infeasible test cases

due to the interference of constraints, so it may need to cover a larger space in order

to find feasible test cases. Although such situations can also be found in the synthetic

programs, it is more prevalent in these non-trivial GUIs. Also, the execution of non-

trivial GUIs are more difficult to control than that of the synthetic programs. In

the synthetic programs, the button clicks do nothing, while in the non-trivial GUIs,

it may take a relatively long time to process a button click event, etc. Therefore,

the synchronization for the execution of the events need to be carefully considered,
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otherwise the states of the GUIs may err. Moreover, more GUI components (such

as tabs, tables, etc.) need to be supported for the execution of test cases. In this

chapter, we analyze the bottleneck of the algorithms based on the observation from

last chapter, and figure out several methods to overcome it. After that, we try an

optimized algorithm on several non-trivial GUI subjects. The evaluation shows that

although our technique still cannot escape from the exponential complexity in the

worst case, it is able to repair the test suites for these GUI subjects with reasonable

efficiency.

5.1 Optimizing the Algorithm

From our evaluation in Chapter 4, our algorithm suffers from scalability problems.

The time for the genetic algorithm is the main contributor of the total time for

the GUI test suite repair. Naturally, a subsequent question is: what is the main

contributor to the time for genetic algorithm? A brief study showed that the time

used for the execution of test cases exceeds 90% of the total time for the genetic

algorithm. Table 5.1 shows the results for two groups of the subject “Cmpd”. To

shorten the time for the entire execution, we set a timeout for each execution. Our

tool checks if it is timed out at the beginning of each round. Because it always finishes

the ongoing round before each check, it might take a longer time than the specified

timeout. Because the test cases are run in parallel rather than back to back, the sum

of the time for the execution of individual test cases is not the total execution time.

Instead, we time the execution of groups of test cases run at one time separately, and

add of all the times for groups together to achieve an estimation of the time for the

execution of test cases.

Compared to the time for the execution of GUI programs, the manipulation of
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Table 5.1: Time for the execution of test cases occupies most of the time for the
genetic algorithm. For each group in the table, population size is 100; maximum
number of consecutive bad moves is 100; size factor is 1.5; number of test cases that
run in parallel is 3. timeexe is the time for the execution of test cases; timegenetic is
the time for the genetic algorithm. Time is in milliseconds.

Strength Length Timeout timeexe timegenetic
timeexe

timegenetic

2-way 20 5 days 437131401 444592413 98.3%
(5.06 days) (5.15 days)

3-way 10 7 days 590403510 634244802 93.1%
(6.83 days) (7.34 days)

the data structures in memory for the genetic algorithm only counts for a very small

part. This is because running the GUI test cases usually requires initialization of

the display and settings, which costs a relatively long time (usually in seconds rather

than milliseconds) than performing events and terminating themselves.

Since the bottleneck is found, the main goal for optimizing the genetic algorithm

is to reduce the time used on the execution of test cases. There are several directions

that we can take to reach this goal, and we believe the following three would be

good ones. First, if the number of test cases to execute is reduced, the time for the

execution will be reduced. Second, if the time for the execution of individual test

cases can be reduced, the total time for the execution will also be reduced. In [38],

it is found that the time for the setup of the execution of the test cases takes a large

portion of the total execution time, and therefore reducing time for these may be

helpful. Third, we can adjust the parameters of the genetic algorithm to make the

criteria for the search slightly weaker, so that the search may take a shorter time.

We discuss each next, but only focus on the first one when applying the optimization

since we believe it has the greatest impact. The other two are left as our future work.
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5.1.1 Reducing the Number of Test Cases to Execute

The genetic algorithm presented in Chapter 4 tries to find the best test case for each

round and adds it into the final test suite. Due to our selection of the parameters for

the fitness function, the best test case found has two properties: (1) feasible; (2) with

an optimal new coverage. The genetic algorithm first determines whether all the test

cases in the current population are feasible by executing all of them, and then ranks

them according to their new coverage. This strategy actually executes the test cases

that will never be selected (those test cases that are infeasible and with little new

coverage). Skipping executing these test cases may help reduce the number of test

cases to execute. But we still need to find out the best test case according to the

feasibility, which is determined through execution. Picking the best test case with

limited execution of test cases is the key of the optimization. The new method is

described next.

For each generation, we first calculate the potential new coverage each test case

can contribute assuming it is feasible. Because the calculation of the potential new

coverage can be fulfilled by checking the covered t-sets, it is much cheaper than the

execution. After that, all of the test cases are sorted in decreasing order by potential

new coverage, and executed one by one (or several by several) until a feasible one is

found. The first feasible test case must be the best one for this generation because

it is feasible and has an optimal new coverage in the population of this generation.

In this way, we can keep the best test case for each generation, and the best test

case in the final generation is treated as the best test case for this round. This new

method swaps the two steps in the old method, and uses a selective approach for the

execution of test cases.

This improvement only requires a minor modification to the genetic algorithm.
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We replace line 6–8 of Algorithm 3 with Algorithm 4. For those test cases that are

not executed in one generation, the failure point is set to 0 by default. This means

they are given death penalties and will never be selected as the best test case for that

round. However, in the selection phase of the genetic algorithm, the “dead” test cases

may still be selected for next generation because they might contain feasible t-sets

that are not covered. The selection is based on the potential new coverage those test

cases can introduce. Although the new method is likely to improve the performance,

it should also be noted that when the constraints are complicated, especially when

only very few test cases are feasible, it might not outperform the previous genetic

algorithm because it may still execute all the test cases in one generation in order to

find a feasible one.

Algorithm 4 Improvement on test case execution (replacing line 6–8 of Algorithm 3)

1′: Calculate the potential new coverage for each test case in Population assuming
it is feasible

2′: Sort Population in the descending order of the potential new coverage of the test
cases

3′: best← −∞
4′: for i← 1 to |Population| do
5′: Execute the test case c with ith rank in Population
6′: if c is feasible then
7′: best← fitness(c)
8′: break
9′: end if

10′: end for
11′: Calculate fitness for each test case in Population
12′: Sort Population in the ascending order of fitness from the best to the worst
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5.1.2 Reducing the Time for the Execution of Individual

Test Cases

We examined the main contributor to the time of the execution of the test cases, and

found that delays used in the replayer significantly lengthen the time for the execution.

The delays are used to give enough time for the execution of the event handlers to

finish and for the GUIs to be synchronized. The delays cannot be eliminated in

general. For example, if one event hander starts another thread, which subsequently

starts even more threads, the time for handling the event might be much longer than

the time merely for the execution of the code in the event handler. And it is very

hard to the predict the time for the execution because the scheduling for the thread

execution can vary for different runs. A possible idea for eliminating the delays is to

let the events notify the replayer when they finish (this may require notification chains

from the threads and other things started by the event handler), but the GUI libraries

we use do not support explicit notification at the end of the execution of the events

on the library level, therefore doing this would require modification in the libraries.

Another thing to mention is that the execution time for an event is application-

specific, because different applications need to perform different computations for

handling events. Actually, even events in the same application are very likely to

use different execution times. However, we may adjust the delays by studying the

applications, and set them to a reasonable value within which most of the events can

finish. For exceptional cases, such as the case that the execution of the test cases is

lengthened due to unexpected interruption on the system, the test case replayer will

rerun the test cases automatically.

While we leave accelerating the execution of individual test cases as our future

work, we leverage the execution of test cases in parallel to make full use of the machine.
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Because the test case replayer needs to do initialization for the test cases, including

I/O and system settings, etc., parallelization can greatly maximize the usage of the

machine time. But we need to balance the number of test cases to execute in parallel,

because too many outstanding running instances (such as five) may lead to too much

competition in the thread and process scheduling.

5.1.3 Tuning the Parameters for the Genetic Algorithm

The third method is tuning the parameters of the gentic algorithm. In the exper-

iments, we found that because we do not know the constraints in the GUIs when

generating the test suites, the maximum number of generations and the maximum

number of consecutive bad moves serve as the stopping criteria. If the maximum num-

ber of generations and the maximum number of consecutive bad moves are decreased,

the search may reach the stopping criteria more quickly. However, the selection of

these two numbers varies for different applications. For applications with fewer con-

straints (such as the synthetic programs), these two numbers can be selected smaller,

while for others, the numbers need to be larger. If we choose too small numbers for

them, the search may not try hard enough so that it may miss a lot of coverage; on

the other hand, if we choose too large numbers for them, the search may try too hard

so that it takes too long to finish.

The population size also affects the number of test cases to execute. For exam-

ple, a population size of 50 is more likely to require less test cases to execute than a

population size of 100, although sometimes it might not be the case due to generated

duplicate test cases (because we only execute a test case once regardless of duplica-

tion). The mutation rate may affect the progress of the search as well. Mutation not

only improve the variety of the population, it may also destroy the new coverage by
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replacing an event with another. In the latter case, the search might be lengthened.

We leave all these as our future work for more detailed study.

5.2 Evaluation

We have designed a set of experiments to evaluate our techniques on non-trivial

GUIs. A group of GUI subjects that were used to evaluate GUI testing techniques

are selected from [39]. These subjects have been used in a lot of research on GUI

testing [26, 40, 37, 39], and are well understood. Also, according to the experiments

in [39], many of the generated test cases for these groups are infeasible despite careful

modeling. This is why we select them to apply our technique to repair the test suites

generated for each group in this experiment. Unlike the subjects used in Chapter 4,

the subjects here were developed by others, so we do not know the constraints in them.

Rather than validating the result with known infeasible t-sets, we derive constraints

from the finally uncovered t-sets and validate these constraints on the corresponding

GUIs manually.

We answer the following research questions in this study:

• RQ1: Can the repair framework increase the combinatorial coverage of test

suites for non-trivial GUIs?

• RQ2: Does test repair scale to non-trivial GUIs with respect to execution time?

• RQ3: Do the discovered patterns match the constraints/patterns in Chapter 3?

5.2.1 Subjects

We select nine groups of six subjects from [39]. The selected subjects include four

applications from TerpOffice series and four open source GUI programs from Source-
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Table 5.2: Subject programs 2

No. Program LOC Group No. Abbreviated Task Description
Name Events Name

1 TerpPaint 3.0 13315 4 11 TPa-G4 Clipboard Operations
2 TerpPresent 3.0 44591 5 14 TPr-G5 Content
3 TerpWord 3.0 22806 1 14 TW-G1 Table Operations
4

TerpSpreadSheet 3.0 6337
1 14 TS-G1 Format Cell

5 5 8 TS-G6 Table Format
6 CrosswordSage 0.35 3220 4 14 CS-G4 Preference Settings
7

FreeMind 0.80 24665
1 11 FM-G1 Map Operations

8 2 18 FM-G2 Format
9 4 10 FM-G4 Clipboard Operations

Forge. As the names indicate, TerpPaint, TerpPresent, TerpWord and TerpSpread-

Sheet are respectively for graphics painting, presentation, word processing and spread-

sheet processing. They are developed by students in computer science from Univer-

sity of Maryland, College Park [33]. CrosswordSage is a tool for creating professional

looking crosswords with powerful word suggestion capabilities [5], and FreeMind is a

mind-mapping software [8]. They are both written in Java.

For each subject, we select one or more ESIG groups. These groups are partitioned

according to the event semantic interactions in the subjects. The numbers of events

in each group are listed in Table 5.2. Each group focuses on one specific task. For

example, events in group 1 of TerpWord 3.0 (abbreviated as TW-G1) are all related

to Table operations; events in group 2 of FreeMind 0.80 (abbreviated as FM-G2)

are all used for formatting the map and displays. We also list lines of code for each

subject in the table.

5.2.2 Metrics

For the three research questions, we design metrics for them respectively. The first

metric is the increase on the combinatorial coverage obtained by repair. The initially

and finally covered t-sets are calculated for the initial and the final test suite respec-

tively. After that, the increase on the number of covered t-sets can be calculated by
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subtracting the initial coverage from the final coverage. This says whether our tech-

nique is able to repair the GUI test suites. Second, the time for the repair is recorded.

We time the test execution in the genetic algorithm, the entire genetic algorithm and

the entire repair respectively. These three times can be used for the analysis of the

performance and further analysis for improvement. Third, we learn from the finally

uncovered t-sets for constraints, and extract constraints from them. The learned con-

straints are quantified and compared to the formerly identified infeasible patterns.

5.2.3 Experiment Methodology

The experiments are carried out on a computing cluster with AMD 2.4GHz dual-core

64-bit processors, 16GB shared memory, Linux 2.6.18, and Java 1.6. Our tool imple-

mentation is run for each group on an individual processor. We believe this assures

more precise timing. In the experiments, we reuse existing covering arrays from [39],

and then rebuild all the models for the programs using the new GUITAR framework

[10]. First, an initial test suite is constructed using the existing covering array. After

that, all of the test cases in the initial test suite are run on the corresponding subject

to determine the feasibility of the test cases and the initial combinatorial coverage.

The feasible test cases are directly added into the final test suite, and the repair

starts.

The initial test suite is used as the initial population for the genetic algorithm. In

the experiments, we choose the following parameters for the genetic algorithm. The

maximum number of generation is 106; the max number of consecutive bad moves

is 100; the population size is 100; the mutation rate is 0.03; the size factor is set

to 1.5 times. In the genetic algorithm, the execution of the test cases is conducted

on the new GUITAR replayer [10]. Because the new GUITAR framework switches
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its event handling to the Java accessibility package and is still under development,

some of the old events that can be replayed using the old replayer cannot be ripped

and replayed in the new GUITAR framework. In the experiments, instead of deleting

these events, we use a NULL event as a placeholder for them each. The NULL

event does not carry out any GUI operation, and is used as if the original event can

succeed. We replace one event (out of 11) in TPa-G4 and one event (out of 14) in

TPr-G5 with a NULL event respectively in our experiments. All the events in the

other groups are reproducible. After the repair, instead of validating the results with

known constraints, we learn constraints manully from the finally uncovered t-sets and

validate them on the corresponding subjects.

5.2.4 Threats to Validity

In this evaluation, although we tried to make our experiments objective and reason-

able, we still have several threats to validity. First, because the new GUITAR frame-

work cannot deal with some events in the old artifacts, we replace them with NULL

events. However, because NULL events do nothing, we might miss some interactions

between the original event and other events. If these interactions cause infeasibility,

our experimental results may not reflect them correctly. To correct possible errors,

we use a manual method to check the results against the AUT.

Second, because the subjects are not developed by us, the constraints in them

are not known to us. When we check whether the uncovered t-sets cannot really

be covered, we use a manual method, that is, we try event combinations on the

AUT to test if they can be be executed successfully. Because the number of possible

combinations is very large, besides the manual execution, we also use the constraints

learned from other combinations to help reduce the space. Although we try to, we
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still cannot ensure that the constraints learned are 100% correct.

5.3 Results

We discuss results of the experiments and answer the research questions.

5.3.1 RQ1: Applicability to Non-Trivial GUIs

Table 5.3 shows the results for repairing the subjects. For each group, we first list

the number of all t-sets and the number of feasible t-sets manually learned from the

remaining uncovered t-sets. We examine the sizes of initial and final test suites, as

well as the initial coverage and the final coverage for the feasible t-sets. Next, we

provide data for the number of executed test cases and times used for each parts.

“Time for Execution” is the time used for the execution of test cases during the

evolution of the genetic algorithm; “Time for GA” is the total time for the genetic

algorithm (excluding the time for the execution of the initial test suite); and “Total

Time” is the time from the tool is started until it ends.

From the table, comparing the columns for the initial combinatorial coverage

(“Init. C. C.”) and for the final combinatorial coverage (“Final C. C.”), or those for

the corresponding percentages, we can see increases between about 10% (for TPa-G4)

and 90% (for TS-G5) on the initial coverage. For all of the groups, our algorithm is

able to repair the test suite to cover more than 98% of the feasible t-sets. For group

TPa-G4 and TPr-G5, because one event in each is replaced by a NULL event, both

of their final test suites cover one 2-set that should not be covered. In the table,

the calculation of the final combinatorial coverage in percentage (column “%Final C.

C.”) excludes this 2-set respectively for the two groups. Otherwise, for example, the
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combinatorial coverage for TPa-G4 would be 5438
5437

, which is greater than 100%. We

discuss this in more details later.

While the combinatorial coverage is almost fully regained for all the groups, the

sizes of the final test suites are not significantly increased. Comparing the columns for

the sizes of the initial test suite (“Init. Size”) and the final test suite (“Final Size”),

we can see the maximum increase on the number of test cases is 70 (for TW-G1).

Also we discovered that the number of test cases for some groups are even reduced,

such as TS-G1 (reduced by 50), TS-G5 (reduced by 30) and FM-G2 (reduced by 1).

However, the sizes of the final test suites do increase compared to the numbers of

initially feasible test cases for all the groups.

5.3.2 RQ2: Scalability for Non-Trivial GUIs

Table 5.3 also shows the results for the second research question. We answer the

second research question using the number of executed test cases and the time used

for the execution (shown in the last four columns). We can see that the total time

for the repair still remains at a relatively high level. For some groups, it still needs

more than ten days to finish the repair. However, at the same time, we can see that

most of the time is still used for the execution of the test cases (see column “Time

for Execution”). The time for the test execution still takes the more than 90% of the

time for the genetic algorithm for most of the groups. So reducing the time used on

the execution of test cases will remain the main focus on future improvement.

Also, we find that the speeds for the execution of different groups are different.

For example, for group TW-G1, it takes 33.97 days to run 126648 test cases while for

group CS-G4, it takes only 15.36 days to finish 129779 test cases. This demonstrates

that the time for the execution of events in different programs are different, so even
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Table 5.4: Number of uncovered t-sets for each type of constraint.

Subjects
Constraint Types Actual Feasi. but Infeasi. Expected

Disb Reqs 2Cons 2Excl Other No. Uncov. Uncov. but Cov. No. Uncov.
TPa-G4 0 0 8 0 0 7 0 1 8
TPr-G5 0 0 38 0 0 42 5 1 38
TW-G1 0 392 67 0 0 570 111 0 459
TS-G1 2340 0 0 0 0 2340 0 0 2340
TS-G5 1260 0 0 0 0 1260 0 0 1260
CS-G4 0 1040 0 0 0 1063 23 0 1040
FM-G1 0 317 23 0 0 364 24 0 340
FM-G2 1575 0 0 0 0 1575 0 0 1575
FM-G4 0 293 7 0 0 346 46 0 300

if some group executes less test cases than others, it still can take a longer time.

5.3.3 RQ3: Matching for Discovered Patterns

Table 5.4 shows the number of uncovered t-sets for each type of constraint found at

the end of the repair. Because our experiments are for 2-way criteria, the constraints

Consecutive and Excludes are 2-way Consecutive and 2-way Excludes respectively.

We list the actual number of uncovered t-sets, number of feasible t-sets but not

covered, number of infeasible t-sets but covered and expected number of uncovered t-

sets. Among these four numbers, only the actual number of uncovered t-sets is directly

from the results of the experiments, while the other three are achieved through manual

analysis.

Groups TPa-G4, TPr-G5, TS-G1, TS-G5, CS-G4 and FM-G2 contain only one

type of constraint, while groups TW-G1, FM-G1 and FM-G4 contain more than

one type of constraint. However, for each type of constraint, we only list the total

number of t-sets that are not covered by the final test suite, without considering the

exact reasons. That means even though for some groups, there is only one type of

constraint, they may be caused by different event interactions. For example, in CS-

G4, among the 1040 uncovered t-sets, eight event interactions cause the infeasibility.

They are that events Proxy Address, Proxy Port, User Name and Password in both
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Word and Crossword modes all require the checkbox Use Proxy to be selected before

them.

We next examine the uncovered t-sets for each group. We start with the uncovered

t-sets (the “Actual No. Uncov.” column). First, we check whether the t-sets can be

covered by certain sequences. This is carried out by adding events at other positions

to manually form test cases. The test cases are performed manually on the AUT

to learn the behavior, and then we manually guess and try more combinations that

might cover these t-sets. Those that are really covered by some combinations are

categorized as feasible t-sets but uncovered (the “Feasi. but Uncov.” column). After

that, we use the t-sets that are found not covered to explore whether any t-sets that

cannot be covered are covered. This is achieved in several ways, including constructing

different t-sets for the same uncovered t-way combination, replacing the events in the

uncovered t-way combinations with similar events, etc. Then, the events in these new

t-sets are compared and analyzed against those in the actually uncovered t-sets to

see whether they are feasible or one. For example, when a pair of events appears

to be infeasible at all of the pairs of the positions except several, it is reasonable to

suspect whether they should also be infeasible in the exceptions. If these t-sets are

really infeasible, they are catergorized as infeasible but covered (the “Infeasi. but

Cov.” column). We also refer to the logs for the acutal execution of related test cases

during the repair to confirm the reasons that cause (or do not cause) the infeasibility.

Next, we show the process of manual learning for the constraints through an

example, group TPa-G4. Table 5.5 shows the uncovered 2-sets after repair for TPa-

G4. From the table, we can see an obvious pattern: the combination (Select All,

Copy To) cannot appear consecutively. After trying the combinations on the AUT,

we found that because Copy To following Select All opens a dialog that is not captured

by the model, the replayer cannot execute the succeeding events so the test case is
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Table 5.5: Number of uncovered t-sets due to each type of constraint.

No. Positions
0 1 2 3 4 5 6 7 8 9

1 Select Copy
All To

2 Select Copy
All To

3 Select Copy
All To

4 Select Copy
All To

5 Select Copy
All To

6 Select Copy
All To

7 Select Copy
All To

infeasible. Interestingly, the pair is covered at all the positions except 7 and 8, and

8 and 9. After referring to the logs, we found that one test case (. . . , Select All,

Copy To, NULL) covers the pair at position 7 and 8. Because the NULL event does

nothing, it can still be executed even if a unknown dialog is opened after Copy To.

If the original event Draw on Canvas is used here, the test case will be infeasible.

The coverage at position 8 and 9 is because when the replayer successfully executes

the last event, it programmatically closes the window (by calling dispose() method)

rather than closes the application by clicking the close button. So the termination

will not be impeded by the unknown dialog, and the execution of the test case is

considered successful. After the above analysis, we find that the coverage at position

7 and 8 should not have been covered if we use the original event, while the coverage

at position 8 and 9 is due to the way the replayer controls the execution and can be

covered. As a result, the 2-set (Select All, Copy To) at position 7 and 8 is infeasible

but covered, while that at position 8 and 9 is feasible. In summary, we learned a

Consecutive constraint on the event interactions: event Select All and event Copy To

cannot appear consecutively except that they appear at the end of a test case.

The 2-set that is infeasible but covered for group TPr-G4 is also caused by the use
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of NULL events. Other groups do not have infeasible but covered t-sets. Compared

to the finally covered t-sets (column “Final C. C.” in Table 5.3), the numbers of

feasible but uncovered t-sets are relatively small (column “Feasi. but Uncov.” in

Table 5.4). This again demonstrates that our technique is able to discover uncovered

feasible t-sets and generate proper test cases to cover most of them.

From the table, we find that there are disabled events in group TS-G1, TS-G5

and FM-G2. For example, in FM-G2, the event Cloud Color is disabled no matter

how the events in the group are arranged. It is only enabled by another event named

Cloud, which is not included in the group. So within the range of the events of this

group, Cloud Color is disabled, and whenever it appears, the test case becomes in-

feasible. We also see that there are no Excludes constraints in these groups. This

is normal, because the Excludes constraints entail very strong conditions – wherever

the combination of events in it occur, the test case becomes infeasible. In real GUIs,

Excludes constraints may rarely occur, especially for the most commonly used func-

tionalities of a GUI application, that when some events are executed, certain events

are not longer able to be executed.

In summary, the infeasible patterns discovered from the non-trivial GUI appli-

cation match those presented in Chapter 3. Also, the constraints learned from the

uncovered t-sets present reasonable restrictions on the event interactions of the ap-

plications. They are all constraints widely seen in common GUI applications.

5.4 Summary

In this chapter, we optimized our algorithm and applied the technique to several

non-trivial GUI subjects. The evaluation shows that our approach can repair the

test suites for non-trivial GUIs. The time used for the execution of test cases in
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the algorithm is still the target for future improvement. Also, we manually learn

constraints for the GUIs through the uncovered t-sets. As we expected, the learned

constraints match those identified from real GUI programs. Our technique not only

generates and repairs GUI test suite, but can also serve as a guide for the modeling

of the constraints in the GUIs.
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Chapter 6

Conclusions and Future Work

Today’s GUIs are event-driven. Event sequences serve as typical GUI test cases in

model-based GUI testing techniques. Research has also shown that longer sequences

are more likely to generate fault-detection effective test cases, so recent advances

combine the model-based method and the CIT sampling method for a systematic

generation of GUI test cases. However, because of the constraints on the event inter-

actions, the generated test cases suffer from infeasibility problems. Specifically, the

generated test cases cannot run to completion because some events in them cannot

execute successfully.

In this work, we analyzed this problem and identified infeasible patterns from real

GUI applications. We then proposed a framework for generating and repairing GUI

test suites. This framework first uses a covering array tool to generate the initial

test suite, and then, an approach that incorporates feedback from execution of test

cases is used to avoid infeasible patterns in test cases. While different ways can be

leveraged for the feedback approach, we designed a genetic algorithm to evolve the

test suite. The algorithm ensures not only that the test cases in the final test suite

are all feasible, but also the combinatorial coverage of the final test suite.
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We carried out an evaluation for our implementation of the framework on a set of

synthetic programs. The results show that our technique can significantly increase the

coverage of the test suite while maintaining a reasonable size for it. We also compared

the genetic algorithm with a random algorithm. Even with a shorter execution time,

the genetic algorithm provides a higher final coverage. The study on the scalibility

shows that the time used for the execution of test cases is the bottleneck of the repair

process and does not scale well.

To improve our implementation for the framework, we tried to reduce the time

used on the execution of test cases. We then applied the improved implementation

to non-trivial GUIs. An evaluation shows that the improved implementation is able

to repair the test suites for non-trivial GUIs. We tried to learn and summarize the

constraints from the finally uncovered t-sets manually. The learned constraints match

the types we discovered from real GUI applications.

6.1 Future Work

This work suggests several directions of future work. First, a study on the fault-

detection effectiveness of the repaired test suites should be conducted to see they

improve the ability of fault detection for non-trivial GUIs since ultimately the rea-

son for higher coverage is to detect more faults. Second, more effective feedback

approaches for the repair may be discovered. Now the feedback is information from

pure test execution, which is quite expensive. In the future, information from direct

dynamic and static analysis may also be fed back to improve the performance. Third,

automated approaches for learning the constraints from the finally uncovered t-sets

can be designed. This may involve in learning techniques which automatically extract

patterns from a large amount of data. Fourth, after the patterns are learned, they
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can be used for improving the precision of the models for the GUIs. In this way, the

test generation can have a much better pre-knowledge of the constraints on the event

interaction. Finally, besides repairing the test suites, repairing individual test cases

can also be studied to see if they help the fault detection.
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