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Abstract

In this thesis we investigate the problem of approximating point cloud data, or more gener-
ally, measures, by one-dimensional objects. Our approach is variational, as we will study
certain functionals and the extent to which their minimizers (of finite length) can provide
adequate approximations to data. In the first part of this thesis, the approximating objects
we consider are curves, and our main goals are to understand their behavior and provide a
robust and efficient algorithm for computing them. Aside from data analysis applications
in which we assume data to have a one-dimensional structure, we are also motivated by
settings in which the data approximation problem has a physical meaning. Such is the
case in urban planning, and in particular the problem of finding optimal networks for trans-
portation. In the second part of the thesis we will propose a new set of functionals that
model this problem and establish basic existence properties. We then develop an algorithm
for computing local minimizers, and investigate the suitability of the approach through a
set of numerical examples that also give a glimpse into how the complexity of low-energy
configurations increases with the total mass of the data.
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Chapter 1

Introduction

The focus of this thesis is on approximating a given measure by a one-dimensional object.
We will call the measure µ and think of it as a distribution of data in Rd. The motivation
for studying this problem arrives from at least two different channels.

One is from the perspective of data analysis and machine learning, where data is often
given as high-dimensional due to of a large number of raw features or variables observed. In
such cases, it is common that the high-dimensionality of the data combined with noise ob-
scures a simpler intrinsic structure that can be efficiently described by a lower-dimensional
object. To put it simply, if we have data in Rd (for d > 1) that we have reason to believe is
supported close to a one-dimensional subset, our goal is to find a one-dimensional set that
best represents the data.

From another perspective, even if the distribution of data is not supported near a one-
dimensional subset, we may still want to approximate it with such. One example of this
is in urban planning for the purpose of designing networks for transportation or irrigation
systems. In this setting, the measure µ is regarded as a population distribution, and the goal
is to find a network (a one-dimensional subset of Rd) that both provides a good coverage
of the population and is feasible to build and maintain (i.e., it is not too costly).

Our approach to this problem is variational – we investigate functionals defined over
one-dimensional subsets of Rd, and whose values aim to measure how well a given set
approximates the data µ, with lower values being preferred. Occasionally we may refer to
a given one-dimensional set as a configuration, and its value in the functional as its energy.
We will therefore seek configurations that minimize the considered energy.

In this thesis we explore a number of functionals for approximating measures with one-
dimensional objects. Where we propose new functionals, we will prove that minimizers
exist, and investigate some their basic properties. A major component of this thesis is to
provide efficient numerical algorithms for approximating minimizers of the functionals. It
will become evident that the functionals have a complicated energy landscape, with many
local minima, which we will pay particular attention when designing algorithms.

This thesis consists of two main parts. The first part deals with approximating the
measure µ by a single or multiple curves. The relevance and applicability of this approach
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lie mostly in the data analysis and machine learning domains where one seeks to recover
the one-dimensional structure of µ, if it has such. The second part of the thesis deals with
general one-dimensional sets and functionals that are particularly relevant to designing
networks for the transportation needs of a given population represented by µ.

We begin by introducing the average-distance problem, which ties together the data
analysis and urban planning perspectives, and served as one starting point for this work.
Throughout, µ will be a finite and positive compactly supported Borel measure on Rd for
d ≥ 2 unless otherwise noted.

1.1 Average-distance problem
The average-distance problem was introduced by Buttazzo, Oudet, and Stepanov in [12],
and was provided in the following constrained form.

Problem 1.1.1 (ADP, constrained). Given ` > 0,

minimize
ˆ
Rd
d(x,Σ)dµ(x)

over
Σ ∈ A` := {Σ ⊆ Rd : Σ compact and connected,H1(Σ) ≤ `}.

In the above d(x,Σ) represents the Euclidean distance to the set Σ, while H1(Σ) rep-
resents the one-dimensional Hausdorff measure, which measures the length of the set Σ 1.
The problem has been studied having in mind applications to transportation network design.
In this context, a network Σ is sought which minimizes total distances to the passengers
(distributed according to µ), with the constraint representing a budget to build and/or main-
tain the network. A related problem, which was the focus of Buttazzo and Stepanov in
[14], involves finding a network along which one measure can be optimally transported to
a second given measure. There one may think a distribution of resources (e.g. workers)
that are to be transported where they are needed (e.g. workplaces), and traveling along the
network is free. It was shown that this latter problem can be reduced to the average-distance
problem 1.1.1 with an appropriate choice of µ [61].

Existence of minimizers of the average-distance problem follows from the Blaschke
and Gołąb theorems (2.2.2, 2.2.4), and in recent years much progress has been made in
understanding the properties of the minimizers. An overview article summarizing many of
the findings has been written by Lamenant [43]. We highlight some of them below.

Perhaps some of the most important results are regarding the topology of the mini-
mizers. For dimension d = 2 it was shown by Buttazzo and Stepanov in [14] that any
minimizer is topologically equivalent to a tree, i.e., it is a finite union of Lipschitz curves
containing no loops. Furthermore, Buttazzo and Stepanov showed that curves will only
meet at triple junctions, that is, no more than three curves will meet at a point.

1see Chapter 2 for definitions for these and other notation to follow
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As is common in optimization and calculus and variations, a problem in a penalized
form can be eaiser to study than its constrained form. The penalized form of the average
distance problem is as follows.
Problem 1.1.2 (ADP, penalized). Given λ > 0,

minimize Eλ
µ(Σ) :=

ˆ
Rd
d(x,Σ)dµ(x) + λH1(Σ)

over
Σ ∈ A := {Σ ⊆ Rd : Σ compact and connected}.

The applications and interpretations of the penalized problem are very similar. The
difference is that instead of having a budget for building the network, it is incorporated
with the cost of traveling to the network, and one seeks to minimize this aggregate cost.
From a data analysis perspective, the first term can be seen as a fidelity term that measures
how well the network approximates the data, while the H1 term as a regularization that
penalizes the complexity of the approximation.

A topic of significant interest has been the regularity of minimizers. In [59], Slepčev
showed that minimizers can have corners, even if the measure µ has a smooth density with
convex support. The construction involved approximating a counterexample measure µ
by a sequence discrete measures µn, and used the fact that the sequence of correspond-
ing minimizers converge (up to a subsequence) in Hausdorff distance to the minimizer
corresponding to µ, which is implied by Γ−convergence of the functional with respect to
convergence of measures in the weak-∗ topology.

Later in [45], Lu and Slepčev proved that minimizers satisfy the following total curva-
ture bound

k∑
i=1

|γ′i|TV ≤
1

λ
µ(Rd)

where {γi}ki=1 are Lipschitz curves whose union gives the minimizing network. The total
variation (TV) above allows to treat the curvature as a measure, with delta masses at loca-
tions of corners, which is necessary in light of the possible lack of regularity. On the way to
showing the above bound, the authors proved a desirable topological lower semi-continuity
result. More precisely it states that if µn

?
⇀ µ and Σn ∈ argmin Eλ

µn , then as along a sub-

sequence Σn
H→ Σ ∈ argmin Eλ

µ , it holds that for sufficiently large n, Σ is homeomorphic
to a subset of Σn.

For applications, it is often the case that the measure µ is discrete, consisting of finitely
many masses, in which case more can be said about minimizers of the average-distance
functional 1.1.2. For the moment, let us consider the empirical measure

µ =
n∑
i=1

miδxi .

Suppose that Σ is a minimizing network, and let vi denote the projection of xi onto Σ.
Then Σ is a Steiner graph for the points {vi}ni=1, i.e., Σ is the geometric graph of minimum
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length that contains {vi}ni=1 (see Figure 1.1 for an illustration). Unlike a minimum spanning
tree, the vertices of the Steiner tree do not need to be a subset of {vi}ni=1, which makes the
problem significantly more difficult. Indeed, the Steiner tree problem is NP-hard in general.
Together with the fact that the points {vi}ni=1 are not known a priori makes the problem very
challenging from an optimization point of view.

b

b

b

b

b

b

b

b

b

b

b

xi

vi
Σ

Figure 1.1.1: Given data points xi the minimizing network Σ for the average-distance
problem will be a Steiner tree for the points vi (in red) – the projections of xi onto Σ.

On a different note, minimizers inherit an interesting property of Steiner trees, which is
that all angles are at least 120 degrees, and at vertices of degree 3 all angles are exactly 120
degrees. These facts, proven by Gilbert and Pollack in [33], hold for any dimension d, and
thus imply that the edges at triple junctions lie in a common plane.

1.2 Dimensionality reduction
Let us temporarily shift our perspective to what from machine learning and data mining
is known as the dimensionality reduction problem. Given a distribution of data µ in Rd,
the dimensionality reduction problem is to find a lower-dimensional representation of µ.
There have been many approaches to this problem from the machine learning and statistics
community. One of the most well-known is principal component analysis (PCA), which
finds a lower dimensional subspace spanned by lines (referred to as principal components),
along which the variance of the data is maximized. Mathematically, the principal compo-
nents can be obtained via a singular value decomposition of the mean-zero centered data

4



matrix. As this reduction is linear, a number of non-linear approaches have been pro-
posed. Among them are methods including multidimensional scaling [41], locally linear
embedding [55], Isomap [62], Laplacian eigenmaps [5], diffusion maps [18], which all find
lower-dimensional representations of the data by aiming to preserve local distance infor-
mation. All of these methods apply to one-dimensional, as well as higher-dimensional,
reductions of the data.

Our focus here will be on the problem of reducing the data to one dimension, where
more work has been done. An interesting recent approach is based on estimating the density
function of the data and finding its ridges [16, 24, 30], which we further discuss in Chapter
3. In the 80’s, Hastie and Stuetzle [35] studied the problem in a more classical setting where
the approximating object is a curve. The curves they sought are called principal curves,
and can seen as a nonlinear generalization of the first principal component. Principal curves
have the mean projection property, which is that every point on the curve is the mean of
data that project there. As we later note, the original principal curves are unstable and prone
to overfitting, and many modifications followed [21,23,32,39,60,63]. A number of works
treat the problem by adding a regularization term to the objective functional. Among them
are works of Tibshirani [63] (square curvature penalization), Kegl, Krzyzak, Linder, and
Zeger [39] (length constraint), Biau and Fischer [6] (length constraint), and Smola, Mika,
Schölkopf, and Williamson [60] (a variety of penalizations including penalizing length).
The following formulation with a length penalty regularization plays a signifcant role in
much of this thesis.

1.3 Penalized principal curves

Problem 1.3.1 (PPC). Given λ > 0 and p ≥ 1, the penalized principal curves are minimiz-
ers of

Eλ
µ(γ) :=

ˆ
Rd
d(x,Γ)pdµ(x) + λL(γ) (PPC)

over

γ ∈ C := {γ : [0, a]→ Rd
∣∣ a ≥ 0, γ is Lipschitz with |γ′| ≤ 1, L1 − a.e.},

and where L(γ) := |γ|TV is the length of γ, and Γ := γ([0, a]) is its image.

The penalized principal curve problem is an average-distance problem for parametrized
curves, with note that the general exponent p can also be included in the ADP. We remark
that in machine learning and statistics, p = 2 is most often used. That is the case for
the original principal curves, which were initially sought as critical points of the above
energy without the length term [35]. It easy to see that without the length term or other
regularization Problem 1.3.1 is ill-posed, as one can approximate µ arbitrary well with a
long enough curve. The length term can therefore be seen to penalize the complexity of the
approximation, whose quality is represented by the fidelity or error term

´
Rd d(x,Γ)p.
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Penalized principal curves were studied in [44] by Lu and Slepčev. There, the authors
showed their existence and investigated their regularity. In particular, they proved that
minimizing curves are injective (i.e. do not self-intersect) in dimension d = 2 if p ≥ 2 or if
µ has bounded density. They also showed that any minimizer γmin has the following total
curvature bound

|γ′min|TV ≤
p

λ
diam(supp(µ))p−1µ(Rd).

We will investigate penalized principal curves in more detail in Chapter 3. Our objective
will be to understand the relationship between the data and the minimizers, and illustrate
how the length scales present in the data and the parameters of the functional dictate the
length scales seen in the minimizers. In particular, we will provide the critical length scale
below which variations in the input data are treated as noise and establish the typical error
(bias) when the input curve is smooth. We emphasize that the former has direct implica-
tions for when penalized principal curves begin to overfit, and can furthermore assist with
parameter selection when one has knowledge of level of noise present in the data.

We will also propose a fast numerical algorithm for computing (approximate) penal-
ized principal curves. As we further discuss in Chapter 3, several of the approaches for
computing regularized principal curves suffer from poor local minima arising from the
non-convexity of the considered functionals. Our strategy will be to enlarge the space over
which the (PPC) functional is considered, allowing for multiple curves.

1.4 Multiple penalized principal curves
We introduce an extension of (PPC) which allows for configurations to consist of more
than one curve. Since (PPC) can be made arbitrarily small by considering γ with many
components, a penalty on the number of curves is needed. We will refer to minimizers for
the problem that follows as multiple penalized principal curves.

Problem 1.4.1 (MPPC). Given λ1 > 0, λ2 > 0, minimize

Eλ1,λ2
µ (γ) :=

ˆ
Rd
d(x,Γ)pdµ(x) + λ1 (L(γ) + λ2 (k(γ)− 1)) (MPPC)

over
γ ∈ A :=

{
γ = {γi}ki=1 : k ∈ N, γi ∈ C, i = 1, ..., k

}
,

and for γ ∈ A we define k(γ) := |γ|, the cardinality of the set γ.

We may view this functional as penalizing both zero- and one-dimensional complexities
of approximations to µ. On the one hand, we can recover the (PPC) functional by taking
λ2 large enough. On the other hand, taking λ2 small enough leads to a k-means clustering
problem which penalizes the number of clusters, and has been encountered in [11, 42].

The main motivation for introducing (MPPC), even if only one curve is sought, has to
do with the non-convexity of the (PPC). We will see that numerically minimizing (MPPC)
often helps evade undesirable (high-energy) local minima of the (PPC) functional. As
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(MPPC) is a relaxation of (PPC) to a larger configuration space, the energy descent for
(MPPC) allow for curve splitting and reconnecting. It will be this mechanism that enables
us to evade the local minima of (PPC).

In Chapter 3 we will prove the existence of multiple penalized principal curves, and
will investigate the connectedness. We do the latter by identifying a critical linear density,
which is the density of the projected data onto the curve with respect to its length. The
critical linear density together with the scale over which it is recognized give us insight as
to when minimizers can recover one-dimensional components of the data.

We will also provide a detailed algorithm for computing approximate minimizers. The
algorithm has a desirable computational complexity, that is both linear in the number of
data points, and their dimension d. We will demonstrate the algorithm on a number of
datasets, and compare results with popular approaches (subspace-constrained mean shift
algorithm, and diffusion maps).

1.5 Optimal networks for selective-transport
We turn our attention to what may seem like a substantially different problem. Let us revisit
the setting where µ represents a distribution of agents, and suppose that every agent has a
distribution of locations they desire or need to visit. In this setting, instead of only being
given the measure µ, we are given a joint distribution π on Rd ×Rd that describes the cou-
pling between transport origins and destinations. The first marginal of π is the distribution
of origins µ, and the second marginal gives the aggregated distribution of destinations. For
example, if π = µ⊗ µ, then every agent wishes to visit every other agent. The goal is then
to find a network that minimizes a total cost consisting of the cumulative transportation
cost together with the cost of building the network. If we again represent the latter cost by
H1(Σ) and we let cΣ(x, y) denote cost of reaching y from x with the available network Σ,
then we have the following problem.
Problem 1.5.1 (Optimal network for selective-transport). Given λ > 0 and a Borel measure
π on Rd × Rd, minimize

ONTπ(Σ) :=

ˆ
Rd×Rd

cΣ(x, y)dπ(x, y) + λH1(Σ) (1.5.1)

over Σ ∈ A.
Let us now discuss the choice of the cost function cΣ. Given the motivation for the

problem, one may assume that every agent pays the distance they travel outside the network,
while the distance they travel inside the network is discounted by some factor α ∈ [0, 1).
In other words, if we let

Gx,y := {γ closed and connected: {x, y} ⊆ γ ⊆ Rd}

denote the set of paths containing x and y, then we may define the cost

cΣ(x, y) = inf{H1(γ ∩ ΣC) + αH1(γ ∩ Σ) : γ ∈ Gx,y}.
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This cost function will be of particular interest for transportation-inspired applications, and
will be the emphasis in Chapter 4.

We note a connection to the average-distance problem, which can be recovered with a
different choice of the cost function. Indeed, let

cΣ(x, y) = d(x,Σ)p + d(y,Σ)p + αd̃Σ(x, y)

where d̃Σ(x, y) denotes the intrinsic distance between the projections of x and y onto Σ.
That is, let

d̃Σ(x, y) := inf
x̃∈ΠΣ(x),ỹ∈ΠΣ(y)

dΣ(x̃, ỹ)

where
dΣ(x̃, ỹ) := inf

x̃,ỹ∈Σ′⊆Σ,Σ′connected
H1(Σ′)

and ΠΣ(x) := arg minx̃∈Σ |x̃− x| denotes the projection set. Then (1.5.1) reduces to

2

ˆ
Rd
d(x,Σ)pdµ(x) + α

ˆ
Rd

ˆ
Rd
d̃Σ(x, y)dµ(x)dµ(y) + λH1(Σ).

Taking α = 0 then gives the average-distance problem.
In Chapter 4, we will study this problem and some close variants. One of the variants

we consider includes a scenario in which the distribution of destinations for each agent
changes with the available network, with less costly destinations being preferred. We also
propose a model for planning an optimal city, which includes a joint search over the trans-
portation network Σ and the population distribution µ. The problems are closely related
to optimal transportation, including the works of [12, 14], which we will discuss in more
detail. We will prove existence of minimizers for the problems, and provide a numerical
algorithm for approximating minimizers. Finally, we will show applications to both detect-
ing one-dimensional structure of data, and computing optimal transportation networks for
populations of varying sizes.

8



Chapter 2

Preliminaries

2.1 Notation
• | · | : Euclidean norm

• | · |TV : total variation (defined in 3.2.1)

• d(x,A) : distance from point x ∈ Rd to set A ⊆ Rd, i.e. d(x,A) := inf{|x − y| :
y ∈ A}

• H−→ : Hausdorff convergence of sets (Def. 2.2.1)

• H1 : one-dimensional Hausdorff measure (Def. 2.2.3)

• Ld : Lebesgue measure on Rd

• B(X) : the set of Borel subsets of X

• P(X) : the set of Borel probability measures on X

• supp(µ) : the support of the measure µ (Def. 2.3.2)

• ∗−⇀ : weak-? convergence of measures (Def. 2.3.1)

• f#µ : push-forward measure of µ by f (Def. 2.3.4)

• Γ→ : Γ−convergence of functionals (Def. 2.4.1)

2.2 Hausdorff distance and measure, Blaschke and Gołąb
theorems

We briefly state some results regarding compactness of the Hausdorff metric (Blaschke’s
theorem), and lower semi-continuity of the one-dimensional Hausdorff measure (Gołąb’s
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theorem), that will be important in establishing existence of minimizers. For convenience
of the reader, we first recall the Hausdorff distance between sets.

Let (X, d) be a metric space. Let E be a subset of X , and let CE denote the family of
all nonempty closed subsets of E.
Definition 2.2.1 (Hausdorff distance). For C,D ∈ CE the Hausdorff distance is defined as

dH(C,D) := min{1, h(C,D)}

where
h(C,D) := inf{r ∈ [0,+∞] : Cr ⊆ D and D ⊆ Cr}

and for any set A ⊆ X , Aε is the ε−neighborhood of A, i.e.

Aε := {x ∈ X : d(x,A) < ε}.

The Hausdorff distance is a metric, and we will write H−→ to denote convergence in
Hausdorff distance. That is, Cn

H−→ C if limn→∞ dH(C,Cn) = 0. The following compact-
ness theorem holds.

Theorem 2.2.2 (Blaschke). Let (X, d) be a metric space. If E is a compact subset of X ,
then (CE, dH) is a compact metric space.

We now recall the Hausdorff measure.
Definition 2.2.3 (Hausdorff measure). Let A be any subset of X , and let δ > 0. Define

Hk
δ (S) := inf

{
∞∑
i=1

(diam(Ai))
k
∣∣∣ diam(Ai) < δ,A ⊆

∞⋃
i=1

Ai

}
where diam(Ai) := sup{d(x, y)|x, y ∈ Ai} denotes the diameter. We then define the
k−dimensional Hausdorff measure

Hk(A) := sup
δ>0
Hk
δ (A).

We note that it is common for the Hausdorff measure to include a scaling factor so that
Hd = Ld (on Rd) for d > 1. Throughout we will restrict our attention to H1, which as
defined coincides with L1 (on R). The use of H1 is to provide a measure of the length of
sets that lie in Rd, d ≥ 1.

We have the following lower semicontinuity result for the one-dimensional Hausdorff
measure.

Theorem 2.2.4 (Gołąb). Let (E, d) be a complete metric space. Suppose {Cn}n∈N ⊆ CE
is such that each Cn is connected, and Cn

H−→ C for some C. Then C is connected and

H1(C) ≤ lim inf
n→∞

H1(Cn).

For more on Hausdorff distance and measures, and proofs of these theorems, see for
example [3].
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2.3 Measure theory
We start by recalling the definition of weak-? convergence (sometimes also known as nar-
row or weak convergence, or convergence in distribution) and Prokhorov’s theorem. We
then define the push-forward measure, and state the disintegration theorem, which will be
used in computing the second variation of the (MPPC) functional. For further reference on
these, one may for instance see [2]. Throughout, we let X be a metric space and let P(X)
denote the set of Borel probability measures on X .

Definition 2.3.1 (Weak-? convergence of measures). A sequence of measures {µn} ⊆
P(X) converges weakly-? to µ ∈ P(X) if

lim
n→∞

ˆ
X

f(x)dµn(x) =

ˆ
X

f(x)dµ(x)

for every continuous and bounded function f on X . In this case we write µn
?
⇀ µ.

Definition 2.3.2 (Support). The support of a measure µ ∈ P(X) is the set

supp(µ) := {x ∈ X : µ(U) > 0 for each neighborhood U of x} .

Theorem 2.3.3 (Prokhorov). If a set of measuresM⊆ P(X) is tight, i.e.,

∀ε > 0 ∃Kε compact in X such that µ(X \Kε) ≤ ε ∀µ ∈M

thenM is relatively compact in P(X) with respect to weak-? convergence.

An immediate consequence that we will later use is that if {µn} is a sequence of mea-
sures with supp(µn) ⊆ K for all n with K compact, then along a subsequence µn

?
⇀ µ.

Definition 2.3.4 (Push-forward measure). Let X1, X2 be separable metric spaces, µ ∈
P(X1), and f : X1 → X2 be a Borel function. Then the push-forward of µ by f is the
measure on X2 defined by

f#µ(B) := µ(f−1(B)) ∀B ∈ B(X2),

where B(X2) denotes the set of Borel subsets of X2.

Theorem 2.3.5 (Disintegration). Let µ ∈ P(Rd), π : Rd → Rd be a Borel function,
and ν := π#µ. Then there exists a ν–a.e uniquely determined family of Borel probability
measures {µx}x∈Rd ⊆ P(Rd) such that

µx(Rd \ π−1(x)) = 0 for ν − a.e. x ∈ Rd

and ˆ
Rd
f(x)dµ(x) =

ˆ
Rd

(ˆ
π−1(x)

f(y)dµx(y)

)
dν(x)

for every Borel function f : Rd → [0,+∞].
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We note that we have stated a simplified version of the disintegration theorem, which
applies more generally when initial and target spaces are any separable Radon metric
spaces.

Let us now state two more results that help us establish existence of minimizers for
optimal network models in Chapter 4. The first is a generalized Fatou lemma, provided
somewhat recently in [26] (Theorem 1.1).

Proposition 2.3.6 (Generalized Fatou). Let S be a metric space, {πn} be a sequence of
finite Borel measures on S such that πn

?
⇀ π, and let {fn} be a sequence of non-negative

measurable functions on S. Then
ˆ
S

lim inf
n→∞, s′→s

fn(s′)dπ(s) ≤ lim inf
n→∞

ˆ
S

fn(s)dπn(s).

We also have the following lower semi-continuity result that can be found in [28] (The-
orem 5.19).

Theorem 2.3.7. Let E be a compact subset of Rn and let f : Rm → (−∞,∞] be a convex,
lower semi-continuous function. Then the functional

v 7→
ˆ
E

f(v(x))dx

is sequentially lower semi-continuous with respect to weak-? convergence, for integrable
functions v : E → Rm.

2.4 Γ-convergence
We now review a tool that allows us to formalize convergence of a sequence of functionals.
Γ-convergence provides one such notion, and we recall its definition.

Definition 2.4.1 (Γ-convergence). Let X be a metric space, and Fn : X → [−∞,∞] be a
sequence of functionals on X . We say that the sequence {Fn} Γ-converges to F , and we
write Fn

Γ→ F , if the following two properties hold:

1. (Liminf inequality) For every x ∈ X and every sequence {xn} ⊂ X such that xn →
x, it holds

F (x) ≤ lim inf
n→+∞

Fn(xn).

2. (Limsup inequality) For every x ∈ X there exists a sequence {xn} ⊂ X such that
xn → x and

F (x) ≥ lim sup
n→+∞

Fn(xn).

Γ-convergence has the important property that minimizers of converging functionals
will converge to a minimizer of the limiting functional.
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Proposition 2.4.2. Suppose {Fn} is a sequence of functionals bounded from below with
corresponding minimizers xn, i.e. Fn(xn) = minx∈X Fn(x). If xn → x and Fn

Γ→ F , then
x is a minimizer of F , and

lim
n→∞

Fn(xn) = F (x).

Γ− convergence has several other nice properties, such as stability under continuous
perturbations, and we refer the reader to [8] for further information.

2.5 ADMM algorithm
Here we describe the alternating direction method of multipliers (ADMM), which we will
later use as a sub-step in computing approximate minimizers of the considered functionals.
The algorithm is a special case of the split Bregman algorithm of Goldstein and Osher
[34] when the constraints are linear, and is closely related to a number of other splitting or
alternating algorithms for convex problems [25]. For more information we refer the reader
to a review article by Boyd et al. [7].

The ADMM algorithm solves problems of the form

minimize f(x) + g(z)

subject to Ax+Bz = c

where f and g are convex functions on Rm and Rl respectively, and A ∈ Rp×m, B ∈ Rp×l.
The augmented Lagrangian for the problem is

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2

∣∣Ax+Bz − c
∣∣2

where y represents a dual variable, and ρ > 0 is a parameter. ADMM then consists of the
following iterations

xk+1 = arg min
x

Lρ(x, z
k, yk)

zk+1 = arg min
z

Lρ(x
k+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

The updates can be seen a gradient ascent on the dual problem with the augmented La-
grangian. The only difference is that the updates for x and z are split into separate, alter-
nating steps. By rescaling the dual variable via u = 1

ρ
y, one can rewrite the steps into the

following simpler form

xk+1 = arg min
x

(
f(x) +

ρ

2

∣∣Ax+Bzk − c+ uk
∣∣2) (2.5.1)

zk+1 = arg min
z

(
g(z) +

ρ

2

∣∣Axk+1 +Bz − c+ uk
∣∣2) (2.5.2)
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uk+1 = uk + Axk+1 +Bzk+1 − c. (2.5.3)

One of the main appeals of ADMM is that it allows one to split the problem into two
separate minimizations that decouple the roles of the functions f and g. This is particularly
useful when one of the functions is not smooth, such as a term involving the `1-norm (which
we will be our case). In such problems, ADMM leads to updates that can be computed very
quickly and which are simple to implement.

The ADMM algorithm is known to converge for any value of ρ > 0 under mild as-
sumptions. Two sufficient assumptions provided by Boyd et al. [7] are

1. the epigraphs of the function f and g are closed convex sets, where the epigraph of
f is

epif = {(x, t) ∈ Rm × R : f(x) ≤ t},

and

2. the unaugmented Lagrangian L0 has a saddle point.

These somewhat basic assumptions will hold for the problems we consider, and they guar-
antee convergence of the objective to an optimal value, of the residual to zero (which im-
plies feasibility of iterates in the limit), and of the dual variable to an optimal value. In
practice, the algorithm can sometimes be slow to converge to high accuracy, and linear con-
vergence has been proven in special cases (e.g. [36, 51]). However, ADMM does usually
convergence to a reasonable degree of accuracy in less than 50 iterations, which together
with its fast updates and simplicity make it very suitable for our purposes.
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Chapter 3

Multiple Penalized Principal Curves

3.1 Introduction

The goal of this chapter is to more closely investigate the penalized principle curves and
multiple penalized principal curves that were briefly described in the introduction. The
contents here are mostly contained in paper written by Slepčev and the author [40]. The
contributions of this chapter break down into two main components. The first concerns
obtaining a better understanding of the behavior of penalized principal curves, while the
second involves introducing their extension through the (MPPC) functional to multiple
curves, largely for the purpose of more robust computation.

As we touched upon, one of the shortcomings of the original principal curves is that they
tend to overfit noisy data. Several variants, and in particular, regularizations, of principal
curves have thus been proposed. However, a closer understanding of the behavior of the
objects studied has been lacking. Adding a regularization term to the objective functional
is a common way to address overfitting, but doing so also introduces bias: when the data lie
on a smooth curve the minimizer will only approximate them, and will not exactly recover
the curve. Our objective will be to understand the relationship between the data and the
minimizers, and illustrate how the length scales present in the data and the parameters of
the functional dictate the length scales seen in the minimizers. In particular, we will provide
the critical length scale below which variations in the input data are treated as noise and
establish the typical error (bias) when the input curve is smooth. We emphasize that the
former has direct implications for when penalized principal curves begin to overfit, and can
furthermore assist with parameter selection when one has knowledge of the level of noise
present in the data.

Our second contribution will involve introducing and further investigating the (MPPC)
functional, permitting its minimizers to consist of more than one curve (multiple penalized
principal curves). The motivation is twofold. The data itself may have one-dimensional
structure that consists of more than one component, and the relaxed setting would allow it
to be appropriately represented. The less immediate appeal of the new functional is that
it will guide the design of an improved scheme for computing penalized principal curves.
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Namely, for many datasets the penalized principal curves functional has a complicated en-
ergy landscape with many local minima. This is a typical situation and an issue for virtually
all present approaches to regularized principal curves. As we explain below, enlarging the
set over which the functional is considered (from a single curve to multiple curves) and
appropriately penalizing the number of components leads to significantly better behavior
of energy descent methods (they more often converge to low-energy local minima).

We will find that topological changes of multiple penalized principal curves are gov-
erned by a critical linear density. The linear density of a curve is the density of the pro-
jected data on the curve with respect to its length. If the linear density of a single curve
drops below the critical value over a large enough length scale, a lower-energy configura-
tion consisting of two curves can be obtained by removing the corresponding curve seg-
ment. Such steps are the means by which configurations following energy descent stay in
higher-density regions of the data, and avoid local minima that penalized principal curves
are vulnerable to. Identification of the critical linear density and the length scale over which
it is recognized by the functional further provide insight as to the conditions under and the
resolution to which minimizers can recover one-dimensional components of the data.

Finally, we will provide a detailed algorithm for computing approximate minimizers.
We will apply modern optimization algorithms based on alternating direction method of
multipliers (ADMM) [7] and closely related Bregman iterations [34, 52] (see Section 2.5)
for local curve fitting, and we outline routines for executing topological changes, curve
re-parametrization, and initialization. The resulting algorithm has favorable computational
complexity that is linear in both the number of data points and the dimension of the space
they lie in. At the end, we will present numerical examples that both illustrate the theo-
retical findings and support the viability of the approach for point clouds with substantial
noise and in high dimensions.

3.1.1 Related work.

The original principal curves are prone to overfitting, as carefully explained in [32], and are
difficult to compute numerically. A number of works treat the problem by adding a regular-
ization term to the objective functional, in a similar fashion to penalized principal curves.
Among them are works of Tibshirani [63] (square curvature penalization), Kegl, Krzyzak,
Linder, and Zeger [39] (length constraint), Biau and Fischer [6] (length constraint), and
Smola, Mika, Schölkopf, and Williamson [60] (a variety of penalizations including pe-
nalizing length). The work of Biau and Fischer [6] also discusses model-selection based
automated ways to choose parameters of the given functional for the specific data set. Wang
and Lee [67] also use model selection to select parameters, but ensure the regularity of the
minimizer in a different way. Namely they model the points along the curve as an autore-
gressive series.

Regarding methods for computation of regularized principal curves, Kegl, Krzyzak,
Linder, and Zeger [39] proposed a polygonal-line algorithm that penalizes sharp angles.

16



Figure 3.1.1: Example of a point cloud generated by noisy samples of two curves (not
shown): a section of a circle and a curved helix wrapping around it. The green curves shown
represent the one-dimensional approximation of the data cloud obtained by minimizing the
proposed functional (MPPC) using the algorithm of Section 3.4.

Feuersänger and Griebel employ sparse grids to minimize a functional with length squared
regularization [27] for manifolds up to dimension three. While these approaches take mea-
sures against overfitting data, they do not address the problem of local minima, resulting in
performance that is very sensitive to the initialization of the algorithms. Verbeek, Vlassis
and Kröse [65] approach this issue by iteratively inserting, fitting, and connecting line seg-
ments in the data. This approach is effective in some situations where others exhibit poor
performance (e.g. spiral in 2-d, some self-intersecting curves, and curvy data with little
noise). However, in cases of higher noise the algorithm overfits if the number of segments
is not significantly limited. A better understanding of the impact of the number of segments
on the final configuration is still needed, despite some efforts to automate selection of this
parameter [67].

Gerber and Whitaker [32] offer an interesting approach to principal curves without
regularization. Their approach recognizes that the difficulty in the principal curve problem
lies in the unknown intrinsic ordering of the data, and they therefore minimize a suitable
functional over coordinate mappings – functions that induce an ordering on the ambient
space. The authors show that for any sufficiently smooth coordinate mapping, there is a
unique corresponding differentiable curve that satisfies the self-consistency property. In
[31], Gerber, Tasdizen, and Whitaker minimize a functional over coordinate mappings that
penalizes the corresponding total squared projection distance. However, critical points of
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the functional are only saddle points, as was later noted in [32], where Gerber and Whitaker
instead minimize non-orthogonality of projections. While critical points of the functional
in [32] are global minima, the functional values no longer indicate fit quality, and obtaining
a desirable curve strongly depends on the coordinate mapping initialization. The authors
note that initialization can be provided by spectral methods such as Isomap [62], Locally
Linear Embedding [55], and Laplacian Eigenmaps [5]. In Example 3.4.2 with data on a
noisy spiral, one can see in Figure 3.4.7 that the ordering obtained by Diffusion Maps [18]
(a robust spectral method) can be incorrect.

A different class of approaches to finding one-dimensional structures is based on esti-
mating the probability density function of the point cloud and then finding its ridges [24].
Estimation of density ridges has been substantially developed and studied – see works of
Chen, Genovese, and Wasserman [16], Genovese, Perone-Pacifico, Verdinelli, and Wasser-
man [30], and Pulkkinen [54]. Of existing methods, these approaches seem to have the best
performance in consistently locating one-dimensional structure. The Subspace Constrained
Mean Shift (SCMS) algorithm of Ozertem and Erdogmus [53] is widely used for this ap-
proach, and is based on the Mean Shift algorithm of Comaniciu and Meer [19]. It is im-
portant to note that the SCMS algorithm does not parameterize the found one-dimensional
structure, which consists of an (unordered) set of points. Another significant difference
between our approach and SCMS is that we seek a one-dimensional structure with low
approximation error, measured as part of the functional we consider, while SCMS does
not require the found ridges to approximate the data well. See Example 3.4.2 and Figure
3.4.3 for an example where not all ridges are close to the data. We also note that in high
dimensions SCMS faces a combination of computational difficulties, the primary of which
is accurately estimating the Hessian of the density function (found using a kernel density
estimator), as is discussed in Section 3 of [53].

Finally we mention the work of Arias-Castro, Donoho, and Huo [4] who studied op-
timal conditions and algorithms for detecting (sufficiently smooth) one-dimensional struc-
tures with uniform noise in the background.

3.1.2 Outline

We first restate the objective functionals both for single and multiple penalized principal
curves, and recall some of the related approaches in Section 3.2. We then establish simple
properties of the functionals, including the existence of minimizers and their basic regu-
larity. Under assumption of smoothness we derive the Euler-Lagrange equation for critical
points of the functional. We conclude Section 3.2 by computing the second variation of the
functional. In Section 3.3 we provide a number of illustrative examples through which we
investigate the relation between the length scales present in the data, the parameters of the
functional, and the length scales present in the minimizers. At the end of Section 3.3 we
discuss parameter selection for the functional when one has some estimates of quantitative
properties of the data. In Section 3.4 we describe the algorithm for computing approximate
minimizers of the (MPPC) functional. In Section 3.4.7 we provide some further numerical
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examples that illustrate the applicability of the functionals and algorithm, including com-
parisons to the SCMS and Diffusion Maps algorithms. Section 3.5 contains the conclusion.
Appendix 3.3.4 contains some technical details of an analysis of a minimizer considered in
Section 3.3.

3.2 The functionals and basic properties
Let us we restate the functionals for single and multiple penalized principal curves. We will
also recall and prove some of their basic properties. LetM be the set of finite, compactly
supported measures on Rd, for d ≥ 2 and µ(Rd) > 0.

3.2.1 Penalized principal curves
Given a measure (distribution of data) µ ∈ M, λ > 0, and p ≥ 1, the penalized principal
curves are minimizers of

Eλ
µ(γ) :=

ˆ
Rd
d(x,Γ)pdµ(x) + λL(γ) (PPC)

over γ ∈ C := {γ : [0, a] → Rd : a ≥ 0, γ is Lipschitz with |γ′| ≤ 1, L1 − a.e.}, and
where Γ := γ([0, a]), d(x,Γ) is the distance from x to set Γ and L(γ) is the length of γ:

L(γ) := |γ|TV := sup

{
n∑
i=2

|γ(xi)− γ(xi−1)| : 0 ≤ x1 < x2 < ... < xn ≤ a, n ∈ N

}
.

(3.2.1)
We recall that the functional is closely related to the average-distance problem introduced
by Buttazzo, Oudet, and Stepanov [12] having in mind applications to optimal transporta-
tion networks [14]. The (PPC) functional can be viewed as a restriction of the penalized
average distance problem to the set of curves, instead of general connected one-dimensional
sets. One notable difference is also that in general the length term depends on the curve γ as
a function, not through its image. However, in [44] Lu and Slepčev showed that minimiz-
ing curves are injective (i.e. do not self-intersect) in dimension d = 2 if p ≥ 2 or if µ has
bounded density, and therefore in such cases the problem has a geometric interpretation,
allowing one to minimize the energy over embedded curves.

The first term in (PPC) is a fidelity term that measures how well the curve γ approx-
imates the data, while the second term serves as a regularization that penalizes the com-
plexity of the approximation. As mentioned earlier, the functional is similar to a number
of others in the statistics and machine learning literature as regularizations of the principal
curves problem [63], [39], [6], [60].

We recall that (PPC) has been studied in [44], where existence of minimizers was
shown, along with the following total curvature bound

|γ′min|TV ≤
p

λ
diam(supp(µ))p−1µ(Rd).
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The total variation (TV) above treats the curvature as a measure, with delta masses at
locations of corners, which may exist even if µ has smooth density supported in a convex
set [59].

3.2.2 Multiple penalized principal curves
We now restate the extension of (PPC) which allows for configurations to consist of more
than one component. Since (PPC) can be made arbitrarily small by considering γ with
many components, we penalize the number of components through a second parameter λ2

with the following functional

Eλ1,λ2
µ (γ) :=

ˆ
Rd
d(x,Γ)pdµ(x) + λ1 (L(γ) + λ2 (k(γ)− 1)) , (MPPC)

where γ is now a set consisting of k(γ) curves. More precisely, we aim to minimize
(MPPC) over the admissible set

A :=
{
γ = {γi}ki=1 : k ∈ N, γi ∈ C, i = 1, ..., k

}
,

and for γ ∈ A we define k(γ) := |γ|, the cardinality of the set γ. With an abuse of notation
we also denote the length of γ ∈ A by L(γ) =

∑k(γ)
i=1 L(γi).

We call elements of A multiple curves, and the minimizers to (MPPC) multiple penal-
ized principal curves. The functional can be seen to penalize a combination of the zero-
and one-dimensional complexities of approximations to µ. Namely, at one end when λ2 is
large enough, the minimizer will be a connected curve, and this problem recovers the (PPC)
problem. At the other end, if λ2 is small enough, the problem becomes a k-means clustering
problem which penalizes the number of clusters. The connection to clustering will be made
more evident when we further investigate the role of λ2, and discuss a numerical algorithm
for finding minimizers to (MPPC).

As we will see, our main motivation for considering (MPPC), is due to the difficulty
of minimizing (PPC) over its considered space. The energy landscape of (PPC) has many
local minima, and the ability of energy-descent methods to find acceptable configurations is
often very sensitive to initialization. Enlarging the configuration space to allow for multiple
curves provides energy-descent methods new directions in which to go, specifically, the
disconnecting and reconnecting of curves, which is the mechanism that enables one to
evade many local minima of (PPC).

3.2.3 Existence of minimizers of (MPPC)

We show that minimizers of (MPPC) exist in A. We follow the approach of [44], where
existence of minimizers was shown for (PPC). We first cover some preliminaries, including
defining the distance between curves. If γ1, γ2 ∈ C with respective domains [0, a1], [0, a2],
where a1 ≤ a2, we define the extension of γ1 to [0, a2] as
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γ̃1(t) =

{
γ1(t) if t ∈ [0, a1]

γ1(a1) if t ∈ (a1, a2].

We let
dC(γ1, γ2) = max

t∈[0,a2]
|γ̃1(t)− γ2(t)|.

We have the following lemma, and the subsequent existence of minimizers.

Lemma 3.2.1. Consider a measure µ ∈M and λ1, λ2 > 0, p ≥ 1.

(i) For any minimizing sequence {γn} of (MPPC)

(a) lim supn→∞ k(γn) ≤ 1 + 1
λ1λ2

(diam(supp(µ)))p, and

(b) lim supn→∞ L(γn) ≤ 1
λ1

(diam(supp(µ)))p

(ii) There exists a minimizing sequence {γn} of (MPPC) such that ∀n, Γn is contained
in Conv(µ), the convex hull of the support of µ.

Proof. The first property follows by taking a singleton as a competitor. The second follows
from projecting any minimizing sequence onto Conv(µ). Doing so can only decrease the
energy, as shown in [14, 44]. The argument relies on the fact that projecting onto a convex
set decreases length.

Lemma 3.2.2. Given a positive measure µ ∈ M and λ1, λ2 > 0, p ≥ 1, the functional
(MPPC) has a minimizer in A. Moreover, the image of any minimizer is contained in the
convex hull of the support of µ.

Proof. The proof is an extension of the one found in [44] for (PPC). Let {γn}n∈N be a
minimizing sequence in A. Since the number of curves k(γn) is bounded, we can find a
subsequence (which we take to be the whole sequence) with each member having the same
number of curves k. We enumerate the curves in each member of the sequence as γn =
{γin}ki=1. We assume that each curve γin is arc-length parametrized for all n ∈ N, i ≤ k.
Since the lengths of the curves are uniformly bounded, let L = supn,i L(γin), and extend the
parametrization for each curve in the way defined above. Then for each i ≤ k, the curves
{γin}n∈N satisfy the hypotheses of the Arzelà-Ascoli Theorem. Hence for each i ≤ k, up to
a subsequence γin converge uniformly to a curve γi : [0, L] → Rd. Diagonalizing, we find
a subsequence (which we take to be the whole sequence) for which the aforementioned
convergence holds for all i ≤ k. Moreover, the limiting object is a collection of curves
which are 1-Lipschitz since all of the curves in the sequence are. Thus γ := {γi}ki=1 ∈ A.

The mapping Γ 7→
´
Rd d(x,Γ)pdµ(x) is continuous and Γ 7→ L(Γ) is lower-

semicontinuous with respect to convergence in C. Thus lim infn→∞E
λ1,λ2,p
µ (γn) ≥

Eλ1,λ2,p
µ (γ), and so γ is a minimizer.
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3.2.4 First variation
In this section, we compute the first interior variation of the (PPC) functional considering
γ to be a smooth curve and µ to be a measure with density and supported near γ. In the
case of multiple curves, one can apply the following analysis to each curve separately.

Given a curve γ : [a, b]→ Rd, we consider variations of the form γ(s, t) = γ(s)+tv(s),
where v ∈ C2([a, b],Rd), v(a) = v(b) = 0. That is, we only perturb the interior of the
curve, and not its endpoints. We note that one could allow for v(a) and v(b) to be nonzero
(as has been considered for example in [59]), but it is not needed for our purposes. Letting
γs denote the partial derivative in s, we can furthermore assume (by re-parameterizing the
curves if necessary) that |γs| = 1 and that v is orthogonal to the curve: v(s) · γs(s) =
0 ∀s ∈ [a, b].

We make a few simplifying assumptions on γ and the underlying measure µ. Namely,
we assume that the compactly supported measure µ is absolutely continuous with respect
to the Lebesgue measure Ld, and that γ is C2. Although minimizers may have corners as
mentioned earlier, we generally expect that minimizers to be C2 except at finitely many
points, and that our analysis therefore applies to intervals between such points. In addition,
we assume that the projection of data onto γ is unique. That is, letting Γt := γ([a, b], t), we
assume that

Πt(x) = arg min {|x− y| : y ∈ Γt}

is unique for x ∈ supp(µ). In other words µ is supported within the reach of γ. We note
that the assumption is inconsequential since the absolutely continuity of µ implies that the
set of points where Πt is non-unique has µ-measure zero [49].

In order to determine how the energy (PPC) is changing when γ is perturbed, we first
compute how the distance of points to Γt is changing with t. For x ∈ supp(µ) let g(x, t) :=
d(x,Γt)

2 = |x− Πt(x)|2. Then

∂g

∂t
= −2(x− Πt(x)) · γt (3.2.2)

and further computations give

∂2g

∂t2
= 2

(
|γt|2 − (x− Πt(x)) · γtt −

(γt · γs − (x− Πt(x)) · γst)2

|γs|2 − (x− Πt(x)) · γss

)
. (3.2.3)

In the above, γ and its derivatives are evaluated at (s∗(x, t), t), where s∗(·, t) := γ( · , t)−1 ◦
Πt maps points in supp(µ) to [a, b]. Equivalently, s∗(x, t) = arg mins∈[a,b] d(x, γ(s, t)).
We postpone use of (3.2.3) until the second variation in the next section.

In what follows we will, somewhat selectively, suppress dependence on s and t for
readability. Taking the derivative in t of L(γ) =

´ b
a
|γs| ds, combining it with (3.2.2), and

changing coordinates so that the approximation-error term is written as double integral, we
obtain

dE

dt
=
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ˆ b

a

(
λ1

γs
|γs|
· γst − 2α(s)

ˆ
Π−1
t (γ)

(x− Πt(x)) · γt |1− ~K · (x− Πt(x))| dµs(x)

)
dL1(s),

where |1+ ~K·(Πt(x)−x)| is the Jacobian for change of coordinates, and ~K is the curvature
vector of γ. Here we have used the disintegration theorem (Theorem 2.3.5) to rewrite an
integral for µ over Rn as an iterated integral along slices orthogonal to the curve (which
contain the set of points that project to a given point on the curve). The probability mea-
sure supported on the slice Π−1

t (γ(s, t)) is denoted by µs, while α is the linear density
of the projection of µ to Γt, pulled back to the parameterization of γ( · , t). More pre-
cisely, α := d(s∗(·, t)#µ)/dL1 is the Radon-Nikodym derivative of s∗(·, t)#µ with respect
to the Lebesgue measure on the line. The measure s∗(·, t)#µ is the push-forward of µ by
the mapping s∗(·, t), that is the measure defined by s∗(·, t)#µ(A) = µ((s∗(·, t))−1(A)) =
µ(Π−1

t (γ(A, t))) for any Borel set A ⊂ [a, b]. We note that although s∗(·, t)#µ may have
atoms at the endpoints a, b, γt is zero there so it does not affect the above expression.

Integrating by parts we obtain
dE

dt

∣∣∣∣
t=0

=

ˆ b

a

(
−λ1

~K · γt − 2α(s)

ˆ
Π−1(γ)

(x− Π(x)) · γt |1− ~K · (x− Π(x))| dµs(x)

)
dL1(s).

We conclude that γ is a stationary configuration if and only if

λ1
~K(s) = −2α(s)

ˆ
Π−1(γ)

(x− Π(x)) |1− ~K(s) · (x− Π(x))| dµs(x) (3.2.4)

for L1− a.e. s ∈ (a, b).

3.2.5 Second variation.
In this section we compute the second variation of (PPC) for the purpose of providing con-
ditions for linear stability. That is, we focus on the case that a straight line segment is a
stationary configuration (critical point), and find when it is stable under the considered per-
turbations (when the second variation is greater than zero). This has important implications
for determining when the penalized principal curves start to overfit the data, and is further
investigated in the next section.

If γ is a straight line segment, ~K = 0, and (3.2.4) simplifies to

γ(s) = x̄(s) :=

ˆ
Π−1(γ(s))

x dµs(x)

for L1− a.e. s ∈ (a, b) such that α(s) 6= 0. This simply states that a straight line is a critical
point of the functional if and only if almost every point on the line is the mean of points
projecting there. In other words, the condition is equivalent to γ being a principal curve (in
the original sense).
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The second variation of the length term is

d2

dt2
L(γ) =

ˆ b

a

(
γst
|γs|
− γs
|γs|2

(
γs
|γs|
· γst

))
· γst +

γs
|γs|
· γstt ds

=

ˆ b

a

1

|γs|

(
|γst|2 −

(
γs
|γs|
· γst

)2
)

+
γs
|γs|
· γstt ds.

(3.2.5)

We note that 0 = (γs · γt)s = γss · γt + γs · γst, and therefore γs · γst = 0, so that the second
variation of the length term becomes just |γst|2. Using (3.2.3) we again change coordinates,
and evaluating at t = 0 we obtain

d2E

dt2

∣∣∣∣
t=0

=

ˆ b

a

(
λ1|γst|2 + 2α(s)

ˆ
Π−1(γ)

(
|γt|2 − ((x− Π(x)) · γst)2) dµs(x)

)
ds.

(3.2.6)
We will use this second variation in the next section to determine when straight lines are
linearly stable (local minimizers of the functional).

3.3 Relation between the minimizers and the data
In this section, our goal is to relate the parameters of the functional, the length-scales
present in the data, and the length-scales seen in the minimizers. To do so we consider
examples of data and corresponding minimizers, use the characterization of critical points
of (MPPC), and perform linear stability analysis.

3.3.1 Examples and properties of minimizers
Here we provide some insight as to how minimizers of (MPPC) behave. We start by char-
acterizing minimizers in some simple yet instructive cases. In the first couple of cases
we focus on the behavior of single curves, and then investigate when minimizers develop
multiple components.

Data on a curve.

Here we study the bias of penalized principal curves when the data lie on a curve without
noise. If µ is supported on the image of a smooth curve, and a local minimizer γ of (PPC) is
sufficiently close to µ, one can obtain an exact expression for the projection distance. More
precisely, suppose that for each s ∈ (a, b), Π−1(γ(s)) contains one element xs in supp(µ).
That is, xs is the only point in supp(µ) projecting to γ(s). Then (3.2.4) implies

λ1K(s) = 2α(s)h(s)(1 +K(s)h(s))

where h(s) := |γ(s) − xs|, K denotes the unsigned scaler curvature of γ, and α is the
projected linear density. Suppressing dependence on s, we have
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h =
1

2K

(√
1 + 2

λ1K2

α
− 1

)
≈


√

λ1

2α
if 1
K �

√
λ1

α

λ1K
2α

if 1
K �

√
λ1

α
.

(3.3.1)

Note that always h ≤
√

λ1

2α
. We illustrate the transition of the projection distance h indi-

cated in (3.3.1) with the example below.

Example 3.3.1. Curve with decaying oscillations. We consider data uniformly spaced on
the image of the function x

5
sin(−4π log(x)), which ensures that the amplitude and period

are decreasing with the same rate, as x→ 0+. In Figure 3.3.1, the linear density of the data
is constant (with respect to arc length) with total mass 1, and solution curves are shown
for two different values of λ1. For x small enough the minimizing curve is flat, as it is

not influenced by oscillations whose amplitude is less than
√

λ1

α
. As the amplitude of

oscillations grows beyond the smoothing length scale the minimizing curves start to follow
them. As x gets larger and K becomes smaller, the projection distances at the peaks start
to scale linearly with λ1, as predicted by (3.3.1).

Indeed, as K decreases to zero the ratio of the curvature of the minimizer to that of the
data curve approaches one and α converges to a constant. Hence from (3.3.1) it follows
that the ratio of the projection distances at the peaks converges to the ratio of the λ1 values.

Linear stability.

In this section we establish conditions for the linear stability of penalized principal curves.
For simplicity we consider the case when supp(µ) ⊂ R2. Suppose that γ : [0, L] → R2

is arc-length parametrized and a stationary configuration of (PPC), and that for some 0 ≤
a < b ≤ L, γ([a, b]) is a line segment. As previously, we let α denote the projected linear
density of µ onto γ.

We evaluate the second variation (3.2.6) over the interval [a, b], where the considered
variations of γ are γt(s) = v(s) = (v1(s), v2(s)), where γs · γt = 0. Since γ is a line
segment on [a, b], we can consider coordinates where v1(s) = 0. We then have

d2E

dt2

∣∣∣∣
t=0

=

ˆ b

a

λ1(v′2)2 + 2α(s)

ˆ
Π−1(γ)

(
v2

2 − (v′2(x− Π(x)))
2
)
dµs(x) ds.

We define the mean squared projection distance

H(s) :=

(ˆ
Π−1(γ)

(x− Π(x))2dµs(x)

) 1
2

(3.3.2)

and obtain
d2E

dt2

∣∣∣∣
t=0

=

ˆ b

a

(
λ1 − 2α(s)H(s)2

)
(v′2)2 + 2α(s)v2

2 ds. (3.3.3)
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Figure 3.3.1: Numerical results shown for n = 3000 uniformly spaced data points (in gray)
on the image of x

5
sin(−4π log(x)) for x ∈ [.001, e3.25], and two different values of λ1. (The

bottom plot is a continuation of the top.)
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We see that if λ1 ≥ 2α(s)H(s)2 for almost every s ∈ (a, b), then d2E
dt2

∣∣∣
t=0

> 0 and so γ is
linearly stable.

On the other hand, suppose that λ1 < 2α(s)H(s)2 on some subinterval – without loss
of generality we take it to be the entire interval (a, b). Consider the perturbation given by
v2(s) = sin(ns). Then the RHS of (3.3.3) becomes

n2

ˆ b

a

(
λ1 − 2α(s)H(s)2

)
cos2(ns)ds+ 2

ˆ b

a

α(s) sin2(ns)ds

and we see the first term dominates (in absolute value) the second for n large enough.
Hence

γ is linearly unstable if λ1 < 2α(s)H2(s) for all s ∈ (a′, b′) (3.3.4)

for some a ≤ a′ < b′ ≤ b.

In the following examples we examine linear stability for some special cases of the data
µ.

Example 3.3.2. Parallel lines. We start with a simple case in which data, µ, lie uniformly on
two parallel lines. In Figure 3.3.2 we show computed local minimizers starting with a slight
perturbation of the initial straight line configuration, using the algorithm later described in
Section 3.4. The data lines are of length 2, so that α = 0.5 for the straight line configuration.
Using λ1 = 0.16 the condition for linear instability (3.3.4) of the straight line steady state
becomes 0.4 < H . The numerical results show that the straight line steady state does
indeed become unstable when H becomes slightly larger than 0.4.

−1 0 1

−0.4

−0.2

0

0.2

0.4

−1 0 1

−0.4

−0.2

0

0.2

0.4

Figure 3.3.2: The data are gray line segments at height H = ±0.4 on the left image and
H = ±0.44 on the right image. We numerically computed the local minimizers (green)
of (MPPC) among curves with fixed endpoints at (−1, 0) and (1, 0), starting with slight
perturbation of the line segment [−1, 1]× {0}.

Example 3.3.3. Uniform density in rectangle. Consider a probability measure, µ, with
uniform density over [0, L] × [0, 2h] with L � h. Linear instability of the line segment
[0, L] × {h} (which is a critical point of (PPC)) can be seen as indication of when a local
minimizer starts to overfit the data. It follows from (3.3.2) that H2 = 1

3
h2, and from (3.3.4)

that λ∗1 = 2
3L
h2 is the critical value for linear stability.
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In Figure 3.3.3, we show the resulting local minimizers of (PPC) when starting from a
small perturbation of the straight line, for several values of λ1, for h = 1

2
and L = 4. The

results from the numerical experiment appear to agree with the predicted critical value of
λ∗1 = 1/24, as the computed minimizer corresponding to λ1 = 1/27 has visible oscillations,
while that of λ1 = 1/23 does not.

0 1 2 3 4
0

1

Figure 3.3.3: Numerical results showing local minimizers of (PPC) for various values of
λ1. The data are a grid of n = 361 × 81 uniformly spaced points with total mass equal to
1. Curves with decreasing amplitude correspond to λ1 = 1/1000, 1/150, 1/50, 1/27, 1/23.
Recall that the critical value for linear stability is λ∗1 = 1/24. The initial curve used for all
results was a randomly perturbed straight line segment [0, 4] × {1

2
}. The endpoints were

kept fixed at (0, 0.5), (4, 0.5) to avoid boundary effects.

To illustrate how closely the curves approximate that data we consider the average mean
projection distance, H , for various values of λ1. We expect that the condition for linear
stability of straight-line critical points (3.3.4) applies, approximately, to curved minimizers.

In particular, we expect that curves where H is larger than approximately
√

λ1

2α
will not be

minimizers and will be evolved further by the algorithm. Here we investigate numerically

if for minimizers H ≈
√

λ1

2α
, as is the case in one regime of (3.3.1). Our findings are

presented in Figure 3.3.4.

Example 3.3.4. Vertical Gaussian noise. Here we briefly remark on the case that µ has
Gaussian noise with variance σ2 orthogonal to a straight line. We note that the mean
squared projection distance H is just the standard deviation σ. Therefore linear instability
(overfitting) occurs if and only if λ1 < 2ασ2.

Role of λ2.

We now turn our attention to the role of λ2 in (MPPC). Our goal is to understand when
transitions in the number of curves in minimizers occur.

28



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

H√
λ1
2α

λ1

Figure 3.3.4: We compare the average mean projection distance H (defined in (3.3.2)) to√
λ1

2α
(smoothing length scale) for the Experiment 3.3.3. We consider a somewhat broader

set of λ1 values than in Figure 3.3.3. We observe good agreement with the expectation,

partly motivated by (3.3.4), that H ∼
√

λ1

2α
.

By direct inspection of (MPPC), it is always energetically advantageous to connect
endpoints of distinct curves if the distance between them is less than λ2. Similarly, it
is never advantageous to disconnect a curve by removing a segment which has length less
than λ2. Thus λ2 represents the smallest scale at which distinct components can be detected
by the (MPPC) functional. When distances are larger than λ2, connectedness is governed
by the projected linear density α of the curves, as we investigate with the following simple
example.

Example 3.3.5. Uniform density on line. In this example, we consider the measure µ to
have uniform density α on the line segment [0, L] ⊂ R. We defer the technical details of
the analysis to Section 3.3.4; here we report the main conclusions. By (3.3.11) there is a
critical density

α∗ =

(
4

3

)2
λ1

λ2
2

such that if α > α∗ then the minimizer γ has one component and is itself a line segment
contained in [0, L]. It is straightforward to check that γ will be shorter than L by a length
of h =

√
λ1/α on each side. Note that at the endpoints H2 = h2/3, which is less than the

upper bound at interior points predicted by (3.3.1).
On the other hand, if α < α∗ and L is long enough then the minimizer consists of

regularly spaced points on [0, L] with space between them approximately (because of finite
size effects)

gap ≈ 2

(
3λ1λ2

4α

) 1
3

. (3.3.5)

An example of this scenario is provided in Figure 3.3.5.
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Figure 3.3.5: A minimizer for n = 1000 uniformly spaced points on a line segment, with
total mass 1. Here λ1 = 1/16, λ2 = .6 and the critical value for connectedness is λ∗2 = 4/3.
The optimal gap between the points is 1.6, compared to the approximation of ≈ 1.53 given
by (3.3.5). The discrepancy is due to the finite length of the line segment considered in the
example.

3.3.2 Summary of important quantities and length scales.

Here we provide an overview of how length scales present in the minimizers are affected by
the parameters λ1 and λ2, and the geometric properties of data. We identify key quantities
and length scales that govern the behavior of minimizers to (MPPC). We start with those
that dictate the local geometry of penalized principal curves.

α — linear density (defined in Section 3.2.4). Given data as an absolutely continuous
measure with compact support, and a smooth curve γ : [a, b]→ Rd, the linear density
α : (a, b) → R is the density of data projected onto the curve. Since α can vary
over the curve, one may consider its values locally to help facilitate the following
discussion.√

λ1

2α
— smoothing length scale (discussed in Sections 3.3.1 and 3.3.1 and illustrated in
Example 3.3.3). This scale represents the resolution at which data will be approx-
imated by curves. Consider data generated by a smooth curve with data density
per length α and added noise (high-frequency oscillations, uniform distribution in a
neighborhood of the curve, etc.). Noise centered around the curve will be ignored as

long as its mean squared projection distance is less than
√

λ1

2α
. In other words,

√
λ1

2α

is the length scale over which the noise is averaged out. Noise below this scale is
neglected by the minimizer, while noise above is interpreted as signal that needs to

be approximated. For example, if we take as data a line drawn by a pen, then 2
√

λ1

2α

is the widest the pen tip can be, for the line to be considered as such by a minimizer
of (PPC).

λ1K
α

— bias or approximation-error length scale (discussed in Section 3.3.1). Consider
again data generated by smooth curve with data density per length α and curvatureK.

If the curvature of the curve is small (compared to
√

λ1

α
) and its reach is comparable
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to 1/K, then the distance from the curve to the minimizer is going to scale like λ1K
α

.
That is, the typical error in reconstruction of a smooth curve that a minimizer makes
(due to the presence of the length penalty term) scales like λ1K

α
.

In addition to the above length scales, the following quantities govern the topology of
multiple penalized principal curves:

λ2 — connectivity threshold (discussed in Section 3.3.1). This length scale sets the
minimum distance between distinct components of the solution. Gaps in the data of
size λ2 or less are not detected by the minimizer. Furthermore, this quantity provides
the scale over which the following critical density is recognized.

λ1

λ2
2

— linear density threshold (discussed in Example 3.3.5 and Appendix 3.3.11). Con-
sider again data generated (possibly with noise) by a smooth curve (with curva-

ture small compared to
√

λ1

α
) with data density per length α. If α is smaller than

α∗ =
(

4
3

)2 λ1

λ2
2

+ O(K), then it is cheaper for the data to be approximated by a series
of points than by a continuous curve. That is if there are too few data points the
functional no longer sees them as a continuous curve. If α > α∗, then the minimizers
of (PPC) and (MPPC) are expected to coincide, while if α < α∗, then the minimizer
of (MPPC) will consist of points spaced at distance about

(
λ1λ2

α

) 1
3 . Note that the

condition α < α∗ can also be written as
√

λ1

α
< 3

4
λ2, and thus the minimizer can be

expected to consist of more than component if the connectivity threshold is greater
than the smoothing length scale.

We also remark the following scaling properties of the functionals. Note that Eλ1,λ2
aµ =

aE
λ1/a,λ2
µ for any a > 0. Thus, when the total mass of data points is changed, λ1 should

scale like |µ| to preserve minimizers. Alternatively, if µL(A) := µ(A
L

) for every A ⊆ Rd

and some L > 0, one easily obtains that Eλ1,λ2
µL

(Lγ) = L2E
λ1/L,λ2/L
µ (γ).

3.3.3 Parameter selection
Understanding the length scales above can guide one in choosing the parameters λ1, λ2.
Here we present a couple of approaches for selecting parameters when one has some
estimate of quantitative properties of the data, including the linear density of the one-
dimensional structures, and the level of noise or the distance between distinct components.
In what follows, we assume that the data measure µ has been normalized, so that it is a
probability measure.

A natural quantity to specify is a critical density α∗, which ensures that the linear den-
sity of any found curve will be at least α∗. From Section 3.3.2 it follows that setting α∗

imposes the following constraint on the parameters: 16
9
λ1

λ2
2

= α∗. Alternatively, one can set

31



α∗ if provided a bound on the desired curve length – if one is seeking a single curve with
approximately constant linear density and length l or less, then set α∗ = l−1.

There are a couple of ways of obtaining a second constraint, which in conjunction with
the first determine values for λ1, λ2.

Specifying critical density α∗ and desired resolution H∗.

One can set a desired resolution for minimizers by bounding the mean squared projection
distance H . If α∗ is set to equal the minimum of α along the curves then, the spatial

resolution H from the data to minimizing curves is at most
√

λ1

2α∗
. Consequently, if one

specifies α∗ and desires spatial resolution H∗, or better, the desired parameters are:

λ1 = 2α∗H∗2 and λ2 =
4
√

2

3
H∗.

Choosing proper H∗ depends on the level of noise present in the data. In particular, H∗

needs to be at least the mean squared height of vertical noise in order to prevent overfitting.

Specifying critical density α∗ and λ2.

One may be able to choose λ2 directly, as it specifies the resolution for detecting distinct
components. In particular, there needs to be a distance of at least λ2 between components,
in order for them to detected as separate. Once set, λ1 = 9

16
α∗λ2

2.
Typically one desires the smallest (best) resolution λ2, that does not lead to α∗ larger

than desired. Even if a single curve is sought, taking a smaller value for λ2 can ensure less
frequent undesirable local minima. One case of this is later illustrated in Example 3.4.1,
where local minimizers can oscillate within the parabola.

Example 3.3.6. Line segments. Here we provide a simple illustration of the role of param-
eters, using data generated by three line segments with noise. The line segments are of
the same length, and the ratio of the linear density of data over the segments is approxi-
mately 4:2:1 (left to right). In addition, the first gap is larger than the second gap. Figure
3.3.6 shows how the minimizers of (MPPC) computed depend on parameters used. In the
Subfigures 3.6(a), 3.6(b) 3.6(c) we keep λ1 fixed while decreasing λ2. As the critical gap
length is decreased, and equivalently having more components in the minimizer becomes
cheaper, the gaps in the minimizer begin to appear. It no longer sees the data representing
one line but two or three separate lines. the only difference between functionals in Subfig-
ures 3.6(c) and Subfigures 3.6(d) is that λ1 is increased from 0.008 to 0.024. This results in
length of the curve becoming more expensive. In Subfigure 3.6(d) we see that, due to low
data density per length (α), the minimizer approximates the two data patches to the right
by singletons rather than curves.
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Figure 3.3.6: Minimizer of (MPPC) shown for different parameter settings. λ1 and λ2.

3.3.4 Analysis of the uniformly distributed data on a line segment
In this subsection we provide the derivation of the critical density α∗ referenced in Example
3.3.5. Consider data uniformly distributed with density α on a line segment [0, L]. The
functional (MPPC) takes the form

Eλ1,λ2
µ (γ) :=

ˆ L

0

d(x, γ)pαdx+ λ1(L(γ) + λ2 k(γ)) (3.3.6)

where for convenience we have let k(γ) denote the number of components of γ minus
1. We restrict ourselves to γ such that {0, L} ⊂ range(γ), so that γ takes the form γ =⋃k +1
i=1 [ai, bi], where a1 = 0, and bk +1 = L. Define τ :=

∑k +1
i=1 τi, g :=

∑k
i=1 gi, where

τi := bi − ai and gi := ai+1 − bi. We make the following observations:

Lemma 3.3.7. The energy Eλ1,λ2
µ is invariant under redistribution of total length of γ,

assuming that the number of components is k +1, and that the gap sizes remain constant.
More precisely, if γ̄ =

⋃k +1
i=1 [āi, b̄i], γ̃ =

⋃k +1
i=1 [ãi, b̃i] and there exists a permutation σ of

{1, . . . , k} such that ḡi = g̃σ(i) for i = 1, ..., k, then Eλ1,λ2
µ (γ̄) = Eλ1,λ2

µ (γ̃).

Lemma 3.3.8. For k > 0 fixed, the energy Eλ1,λ2
µ is minimized when the length of the gaps

between components are uniform. More precisely, consider an arbitrary γ =
⋃k +1
i=1 [ai, bi],

with total gap g defined as above. Let γ̃ have k +1 components such that g̃i = g/ k,
implying that g̃ = g. Then Eλ1,λ2

µ (γ̃) ≤ Eλ1,λ2
µ (γ), with equality only if gi = g̃i.

Proof. The result is trivial for k = 0. We prove the result for k = 1. Consider γ with
g = g1 + g2. The fidelity part of the energy Eλ1,λ2

µ , as a function of g1 is

F (g1) = 2

ˆ g1/2

0

xpαdx+ 2

ˆ (g−g1)/2

0

xpαdx.
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Thus
dF

dg1

=
1

2p−1
α (gp1 − (g − g1)p)

and
d2F

dg2
1

=
p

2p−1
α
(
gp−1

1 + (g − g1)p−1
)
≥ 0.

By these we see that g1 minimizes the energy if and only if g1 = g/2 = g2. The result for
k ≥ 2 follows since one can consider the above situation by looking at the gaps formed by
three consecutive components.

Using Lemma 3.3.7 we may assume that each component not containing the endpoints
0 or L has the same length l, and that the two components containing the endpoints are of
length l/2. By Lemma 3.3.8, the gaps between the components are L−k l

k
. We first consider

k > 0 fixed, and minimize the energy w.r.t. l in the range l ∈ [0, L
k
). The energy

E = λ1 k l + 2 k

ˆ L−k l
2 k

0

xpαdx+ λ1λ2 k

= λ1 k l +
2

p+ 1
k

(
L− k l

2 k

)p+1

α + λ1λ2 k

(3.3.7)

is convex on [0, L
k
). Taking a derivative in l we obtain

dE

dl
= λ1 k− k

(
L− k l

2 k

)p
α.

Setting the derivative to zero and solving for l, and by noting that if there is no solution on
[0, L

k
) then E is a nondecreasing function of l, we get that the energy is minimized at

l∗k =


L
k
− 2

(
λ1

α

)1/p if k ≤ L

2(λ1
α )

1/p =: k̄

0 else.
(3.3.8)

As we indicate above let k̄ = L

2(λ1
α )

1/p . For k between 1 and k̄, plugging back into (3.3.7)

we get that the minimal energy is

Emin(k) = λ1L+ λ1λ2 k− 2p

p+ 1

(
λ1

α

)1/p

λ1 k (3.3.9)

By direct inspection we verify that (3.3.9) is the (minimal) energy in the case that there is
only one component (no breaks in the line). We note that (3.3.9) is linear in k, and hence
for k between 0 and k̄, the minimizing value is at a boundary:

k∗ =

{
0 if λ2 ≥ 2p

p+1

(
λ1

α

)1/p⌊
k̄
⌋

otherwise
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We now consider k > k̄ when all components have length zero (l∗k = 0). The energy in
this case is

El=0(k) :=
2

p+ 1

(
L

2

)p+1
1

kp
α + λ1λ2 k

Considering k as a real variable we note that El=0(k) is a convex function. Taking a deriva-
tive in k gives

dEl=0

d k
=
−2p

p+ 1

(
L

2 k

)p+1

α + λ1λ2.

If λ2 ≥ 2p
p+1

(
λ1

α

)1/p then dEl=0

d k
≥ 0 for k > k̄.

If λ2 <
2p
p+1

(
λ1

α

)1/p then the point where the minimum is reached

k̄
∗
l=0 =

L

2

(
(p+ 1)λ1λ2

2pα

)− 1
p+1

satisfies k̄
∗
l=0 > k̄ and thus belongs to the range considered. If k̄

∗
l=0 is an in-

teger then it is the minimizer of the energy, otherwise the minimizer is in the set
{bk̄∗l=0c, bk̄

∗
l=0c + 1}. In all cases let us denote by k∗l=0 the minimizer of the energy:

k∗l=0 = arg mink=bk̄∗l=0c,dk̄
∗
l=0eEl=0(k).

We note that there is a special case that k∗l=0 < k̄. In that case the minimizer of the
energy with exactly k∗l=0 + 1 components will be the one considered in the analysis of the
1 ≤ k ≤ k̄ case, and thus will have segments of positive length l∗ given by formula (3.3.8).

To summarize, the optimal number of components will be
1 if λ2 ≥ 2p

p+1

(
λ1

α

)1/p

bk̄c+ 1 if λ2 <
2p
p+1

(
λ1

α

)1/p
, and k∗l=0 < k̄

k∗l=0 +1 if λ2 <
2p
p+1

(
λ1

α

)1/p
, and k∗l=0 ≥ k̄.

(3.3.10)

In the first case, there is just one single connected component. In the second case there are
bk̄c + 1 components, each with equal positive length. We note that by Lemma 3.3.7 there
exists a configuration with the same energy where one of these components has positive
length, while the rest have zero length. The third case is that each of the components
has length zero. We point out that if k̄ is integer-valued and λ2 <

2p
p+1

(
λ1

α

)1/p, then the
minimizer will have k∗l=0 +1 components.

We can now derive conclusions to the structure of minimizers if L � 1. From above
we conclude that the minimizer will have one component (and be a continuous line) if
λ2 ≥ 2p

p+1

(
λ1

α

)1/p, and break up into at least bk̄∗l=0c + 1 components otherwise. Rearrang-
ing, the condition also provides the critical density at which topological changes (gaps) in
minimizers occur:

α∗ =

(
2p

p+ 1

)p
λ1

λp2
. (3.3.11)
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Finally we note that the typical gap length is L/(k̄∗l=0) that is

L∗ = 2

(
(p+ 1)λ1λ2

2pα

) 1
p+1

. (3.3.12)

3.4 Numerical algorithm for computing multiple penal-
ized principal curves

For this section we assume the data measure µ is discrete, with points x1, x2, ..., xn ∈
Rd and corresponding weights w1, w2, ..., wn ≥ 0. The weights are uniform (1/n) for
most applications, but we make note of our flexibility in this regard for cases when it is
convenient to have otherwise.

For a piecewise linear curve y = (y1, ..., ym), we consider projections of data to yi’s
only. Hence, we approximate d(xi, y) ≈ min{|xi − yj| : j = 1, ...,m}, unless otherwise
stated. (Notation: when a is a vector, as are xi, yj in the previous line, |a| denotes the
Euclidean norm). Before addressing minimization of (MPPC), we first consider (PPC)
where y represents a single curve. The discrete form is

m∑
j=1

∑
i∈Ij

wi|xi − yj|2 + λ1

m−1∑
j=1

|yj+1 − yj| (3.4.1)

where

Ij := {i : (∀k = 1, ...,m) |xi − yj| ≤ |xi − yk|} (3.4.2)

represents the set indexes of data points for which yj is the closest among {y1, . . . , ym}. In
case that the closest point is not unique an arbitrary assignment is made so that I1, ..., Im
partition {1, ..., n} (for example set Ĩj = Ij\

⋃j−1
i=1 Ii).

3.4.1 Basic approach for minimizing (PPC)

Here we restrict our attention to performing energy decreasing steps for the (PPC) func-
tional. We emphasize again that this minimization problem is non-convex. The projec-
tion assignments I1, ..., Im depend on y itself. However, if the projection assignments
are fixed, then the resulting minimization problem is convex. This suggests the follow-
ing expectation-maximization algorithm outlined in Algorithm 1.

Note that if the minimization of (3.4.1) is solved exactly, then Algorithm 1 converges
to a local minimum in finitely many steps (since there are finitely many projection states,
which cannot be visited more than once).
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Algorithm 1 Computing local minimizer of (PPC)
Input: data x1, ...xn, weights w1, ..., wn, initial curve y1, ..., ym, λ1 > 0
repeat

1. compute I1, ..., Im defined in (3.4.2)
2. minimize (3.4.1) for I1, ..., Im fixed as described in Section 3.4.1

until convergence

Minimize functional with projections fixed

We now address the minimization of (3.4.1) with projections fixed (step 2 of Algorithm 1).
One may observe that that his subproblem resembles that of a regression, and in particular
the fused lasso [64].

To perform the minimization we apply the alternating direction method of multipli-
ers (ADMM) [7], given in Section 2.5. We rewrite the total variation term as |Dy|1,2 :=∑m−1

i=1 |(Dy)i|, where D is the difference operator, (Dy)i = yi+1−yi and | · | again denotes
the Euclidean norm. An equivalent constrained minimization problem is then

min
y,z : z=Dy

m∑
j=1

∑
i∈Ij

wi|xi − yj|2 + λ|z|1,2

Expanding the quadratic term and neglecting the constant, we obtain

min
y,z : z=Dy

|y|2w̄ − 2(y, x̄)w̄ + λ|z|1,2 (3.4.3)

where notation was introduced for total mass projecting to yj by w̄j =
∑

i∈Ij wi, center
of mass x̄j = 1

w̄j

∑
i∈Ij wixi, and weighted inner product (y, x̄)w̄ =

∑m
j=1 w̄j(yj, x̄j). One

iteration of the ADMM algorithm then consists of the following updates:

1. yk+1 = argminy |y|2w̄ − 2(y, x̄)w̄ + ρ
2
|Dy − zk + bk|2

2. zk+1 = argminz λ|z|1,2 + ρ
2
|Dyk+1 − z + bk|2

3. bk+1 = bk +Dyk+1 − zk+1

where ρ > 0 is a parameter that can be interpreted as penalizing violations of the con-
straint. As such, lower values of ρ tend to make the algorithm more adventurous, though
the algorithm is known to converge to the optimum for any fixed value of ρ > 0.

The minimization in the first step is convex, and the first order conditions yield a tridi-
agonal system for y. The tridiagonal matrix to be inverted is the same for all subsequent
iterations, so only one inversion is necessary, which can be done in O(md) time. In the
second step, z decouples, and the resulting solution is given by block soft thresholding

zk+1
i =

{
vki − λ

ρ

vki
||vki ||

if ||vki || > λ
ρ

0 else
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where we have let vki = (Dyk+1)i + bki . We therefore see that ADMM applied to (3.4.3) is
very fast.

Note that one only needs for the energy to decrease in this step for Algorithm 1 to
converge to a local minimum. This is typically achieved after one iteration of ADMM.
In such cases few iterations may be appropriate, as finer precision typically gets lost once
projections are updated. On the other hand, the projection step is more expensive, requir-
ing O(nmd) operations to compute exactly. It may be worthwhile to investigate how to
optimize alternating these steps, as well as more efficient methods for updating projections
especially when changes in y are small. In our implementation we exactly recompute all
projections, and if the resulting change in energy is small, we minimize (3.4.1) to a higher
degree of precision (apply more iterations of ADMM before again recomputing projec-
tions).

3.4.2 Approach to minimizing (MPPC)

We now discuss how we perform steps that decrease the energy of the modified functional
(MPPC). We allow y = y1, ..., ym to consist of any number, k, of curves, and we denote
them y1 = (y1, ..., ym1), y2 = (ym1+1, ..., ym1+m2), ..., yk = (ym−mk+1, ..., ym), where
m1 +m2 + ...+mk = m. The indexes of the curve ends are sc =

∑c
j=1 mj for c = 1, ..., k,

and we set s0 = 0. The discrete form of (MPPC) can then be written as
m∑
j=1

∑
i∈Ij

wi|xi − yj|2 + λ1

k−1∑
c=0

mc+1∑
j=1

|ysc+j+1 − ysc+j|+ λ1λ2(k − 1). (3.4.4)

Our approach to (locally) minimizing the problem over y, k, m1, ...,mk is to split the func-
tional into parts that are decreased over different variables. Keeping k, m1, ...,mk constant
and minimizing over y1, ..., ym we can decrease (3.4.4) by simply applying step 1 and step
2 of Algorithm 1 to each curve yi, i = 1, ..., k (note that step 2 can be run in parallel).
To minimize over k, m1, ...,mk we introduce topological routines below that disconnect,
connect, add, and remove curves based on the resulting change in energy.

Disconnecting and connecting curves

Here we describe how to perform energy decreasing steps by connecting and disconnecting
curves. We first examine the energy contribution of an edge {i, i′} := [yi, yi′ ]. To do
so we compare the energies corresponding to whether or not the given edge exists. It is
straightforward to check that the energy contribution of the edge {i, i′} with respect to the
continuum functional (MPPC) is

∆Ei,i′ := λ1|yi′ − yi| − λ1λ2 −
∑
j∈Ii,i′

wj min (|yi − Πi,i′(xj)|, |yi′ − Πi,i′(xj)|)2

where Ii,i′ is the set of data points projecting to the edge {i, i′}, and Πi,i′ is the orthogonal
projection onto edge {i, i′}. Our connecting and disconnecting routines will be based on
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the sign of ∆Ei,i′ . We note that above criterion is based on the variation of the continuum
functional rather than its discretization (3.4.4), in which projections to the vertices only
(not edges) are considered. Our slight deviation here is motivated by providing a stable
criterion that is invariant to further discretizations of the line segment [yi, yi′ ]. While we
use the discrete functional to simplify computations in approximating the optimal fitting of
curves, we will connect and disconnect curves based on the continuum energy (MPPC).

We first discuss disconnecting. We compute the energy contribution for each existing
edge and if ∆Ei,i′ < 0, then we remove edge {i, i′}. Note this condition can only be true
if the length of the edge is at least λ2. It may happen that all edge lengths are less than
λ2, but that the energy may be decreased by removing a sequence of edges, whose total
length is greater than λ2. Thus, in addition to checking single edges, we implement an
analogous check for sequences of edges. The energy contribution of a sequence of k edges
{i, i+ 1}, {i+ 1, i+ 2}, ..., {i+k− 1, i+k} (including the corresponding interior vertices
yi+1, ..., yi+k−1) is given by

∆Ei:i+k :=λ1

(
k−1∑
l=0

|yi+l+1 − yi+l| − λ2

)

+
k−1∑
l=0

∑
j∈Ii+l,i+l+1

wj
(
(xj − Πi+l,i+l+1(xj))

2 − (min{|xj − yi|, |xj − yi+k|})2) .
The routine for checking such edge sequences is outlined in Algorithm 2.

Algorithm 2 Removing appropriate edge sequences
Input: data x1, ...xn, weights w1, ..., wn, connected curve y1, ..., ym, projections I ,
λ1, λ2 > 0
set i = 1, k = 1, len = |yi+1 − yi|
repeat

repeat
increment k = k + 1, len = len+ |yi+k − yi+k−1|

until len > λ2 (or i+ k = m, in which case break)
compute ∆Ei:i+k
if ∆Ei:i+k < 0 then

remove edge sequence {i, i+ 1}, {i+ 1, i+ 2}, ..., {i+ k − 1, i+ k}
decrease len = len− |yi+1 − yi|, advance i = i+ k − 1, reset k = 1

end if
increment i = i+ 1

until i > m− 1

Connecting is again based on the energy contribution of potential new edges. We use a
greedy approach to adding the edges. That is, we compute ∆Ei,i′ for each potential edge
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{i, i′}, and add them in ascending order, connecting curves until no admissible energy-
decreasing edges exist. We note that finding the globally optimal connections is essentially
a traveling salesman problem, which is NP-hard. More sophisticated algorithms could be
used here, but the greedy search is simple and has satisfactory performance.

Management of singletons:

Here we describe the procedures for topological changes via adding and removing compo-
nents of the multiple curves. This is achieved by adding singletons (curves whose range is
just a single point in Rd), growing them into curves, and by removing singletons. Even if
one is only interested in recovering one-dimensional structures, singletons may play a vital
role. In particular, any low-density regions of the data (background noise or outliers) can
often be represented by singletons in a minimizer of (MPPC), allowing the curves to be
much less affected in approximating the underlying one-dimensional structure.

Below we provide effective routines for energy-decreasing transitions between con-
figurations involving singletons. For checking whether (and where) singletons should be
added, we examine each point yi individually. If yi is itself not a singleton, we compute
the expected change in energy resulting from disconnecting yi from its curve, placing it at
the mean x̄i of the data that project to it, and reconnecting the neighbors of yi, so the num-
ber of components only increases by one. The change in the fidelity term will be exactly
−w̄i(x̄i − yi)

2, where w̄i =
∑

j∈Ij wj is the total mass projecting to yi. Thus we add a
singleton when

λ1λ2 < w̄i(x̄i−yi)2+λ1

(
|yi − ymax(1,i−1)|+ |yi − ymin(m,i+1)| − |ymax(1,i−1) − ymin(m,i+1)|

)
.

If yi is itself a singleton, then one cannot exactly compute the change in the energy due
to adding another singleton in its neighborhood without knowing the optimal positions of
both singletons. We restrict our attention to the data which project onto yi, and note that if
those points are the only ones that project to the new singleton, then adding the singleton
may be advantageous only if the fidelity term associated to yi is greater than λ1λ2. If
that holds, we perturb yi in the direction of one of its data points, place a new singleton
opposite to yi with respect to its original position, and apply a few iterations of Lloyd’s
k-means algorithm (with k = 2) to the data points that projected to yi. We keep the two
new points if and only if the energy decreases below that of the starting configuration with
only yi.

A singleton yi gets removed if doing so decreases the energy. That is if

λ1λ2 >
∑
j∈Ii

wj
(
|xj − yi|2 − d(xj, y−i)

2
)

where d(xj, y−i) := min{|xj − yi′| : i′ ∈ [m], i′ 6= i}.
Since singletons are represented by just a single point and cannot grow by themselves,

we also check whether transitioning from singleton to short curve is advantageous. To do
so we enforce that the average projection distance d̃i to a singleton yi is less than

√
λ1/α̃,
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which represents the expected spatial resolution, where α̃ = w̄i/(4d̃i) is an approximation
to the potential linear density. Thus we add a neighboring point to yi if

d̃i =
∑
j∈Ii

wj|xj − yi| > λ1/w̄i.

Since this is based on an approximation, we also explicitly compute the posterior energy to
make sure that it has indeed decreased, and only in this case keep the change.

Note that for each singleton yj , minimizing the discrete energy (3.4.1) with projections
fixed corresponds to placing yj at its center of projected mass w̄i. Hence for singletons
Algorithm 1 reduces to Lloyd’s k-means algorithm.

In summary, we have fast and simple ways to perform energy decreasing steps involv-
ing the λ2 term of the functional. Even when minimizers are expected to be connected,
performing these steps may change the topological structure of the curve, keeping it in
higher density regions of the data, and consequently evading several potential local minima
of the original functional (PPC).

3.4.3 Re-parametrization of y
In applying the algorithm described thus far, it may, and often does, occur that some regions
of y are represented with fewer points yi than others, even if an equal amount of data are
projected to those regions. That is, there is nothing that forces the nodes yi to be well spaced
along the discretized curve. To address this, we introduce criteria that liw̄i be roughly
constant for i = 1, ...,m, where li = 1

2

∑
{|yi − yj| : j ∈ {i − 1, i + 1} ∩ [1,m]} and

w̄i is the total weight of points projecting to yi. This condition is motivated by finding for
fixed m the optimal spacing of yi’s that minimizes the fidelity term of the discrete energy
(3.4.4), under the assumption that the data are distributed with slowly changing density in
a rectangular tube around straight line y.

3.4.4 Criteria for well-resolved curves
Here we discuss criteria for when a curve can be considered well-resolved with regard to
the number of points m used to represent it. Namely, one would like to have an acceptable
degree of resolution, without requiringm too large and needlessly increasing computational
time. We suggest two such conditions.

One is related to the objective of obtaining an accurate topological representation of the
minimizer, specifically the number of components. In order to have confidence in recov-
ering components at a scale λ2, the spacing between consecutive points on a discretized
curve should be of the same scale. Thus we impose that the average of the edge lengths is
at most λ2

2
.

Another approach for determining the degree of resolution of a curve is to consider
its curvature. One may calculate the average turning angle and desire that it be less than
some value (e.g. π

10
). If λ2 is not small enough, the first condition will not guarantee small
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turning angles, and so we include this criterion as optional in our implementation. We note
that in light of the possible lack of regularity of minimizers [59], it would not be reasonable
to limit the maximal possible turning angle.

If either of the above criteria are not satisfied, we add more points to the curves where
we expect they would decrease the discrete energy the most. Consistent with the criteria
above for re-parametrization of the curves, we add points along the curve where liw̄i is the
largest.

3.4.5 Initialization

Finally, we discuss initialization. While the procedures described above enable the algo-
rithm to evade many undesirable local minima, initialization can still impact the quality of
the computed local minimizers. One of the simple ideas that we found to work very well is
to initialize using singletons. We note that when the number of singletons is a fixed number
k then minimizing (MPPC) reduces to minimizing the k-means functional. Thus to position
the singletons for fixed k we use the standard Lloyd’s algorithm to find the k-means cluster
centers. We denote the (MPPC) energy of the k-means centers by E(k). To determine a
suitable value of k we perform a line search by starting with k = 1 and double it as long
as E(k) decreases, and then halve the intervals until a (local) minimizer k is found. We list
the steps in Algorithm 3.

Algorithm 3 Initializing with singletons
Input: data x1, ...xn, weights w1, ..., wn, and λ1, λ2 > 0.
Set k = 1/2, E(k) = +∞
repeat

Let k = 2k
Compute the k-means centers Ck = {c1, . . . , ck}, and energy E(k) := Eλ1,λ2

µ (Ck)
until E(k) > E(k/2)
Let k′ = bk

2
c, k′′ = k′

repeat
Let k′′ = bk′′

2
c, k = k′ + k′′

Compute the k-means centers Ck = {c1, . . . , ck}, and energy E(k) := Eλ1,λ2
µ (Ck)

if E(k) < E(k′) then
k′ = k

end if
until k′′ = 1
Output: y = Ck′
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Algorithm 4 Computing local minimizer of (MPPC) [Main Loop]
Input: data x1, ...xn, weights w1, ..., wn, initial curve y1, ..., ym, λ1, λ2 > 0.
set iter = 0
repeat

1. iter = iter + 1
2. compute I1, ..., Im, defined in (3.4.2)
3. run ADMM on non-singleton curves to decrease energy (3.4.4) as described in
Section 3.4.1
4. replace singletons yj by their center of mass: yj = x̄j
if iter + 4 = 0 (mod top_period) then

remove appropriate edge sequences as described in Section 3.4.2 and Algorithm 2
else if iter + 3 = 0 (mod top_period) then

add or remove appropriate singletons as described in Section 3.4.2
else if iter + 2 = 0 (mod top_period) then

add appropriate connections as described in Section 3.4.2
else if iter + 1 = 0 (mod reparam_period) then

add points and re-parametrize the curves if needed as described in Sections 3.4.3,
3.4.4

end if
until convergence

3.4.6 Overview

Thus far we have described all of the main pieces of our algorithm to compute local min-
imizers of (MPPC). Here we describe how we put these pieces together. Algorithm 1,
which includes ADMM for decreasing the discrete energy (3.4.1), computes approximate
local minimizers of (PPC). To approximate local minimizers of (MPPC), we break up the
minimization into separate parts. One consists of a “local” step that updates the place-
ment of each curve, and is accomplished by running the ADMM step of Algorithm 1 on
each curve. On the other hand, the inclusion of routines to disconnect, connect, add, and
remove curves allows us to perform energy-decreasing steps of (MPPC) in a more global
topological fashion.

We provide an general outline for finding local minimizers of (MPPC) in Algorithm 4.
The (potentially) topology-changing routines outlined in 3.4.2, 3.4.2 are run on a regular
basis throughout the steps of Algorithm 1. In particular we run them every top_period =
10 iterations and we run the reparameterization of curves every reparam_period = 5
iterations. The performance for different values, as well as for different order of operations
was similar.

Finally, we note that the the computational complexity of the algorithm is dominated
by the step of computing the projections I1, ..., Im, which requires O(mnd) operations.
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3.4.7 Further numerical examples

We present a couple of further computational examples which illustrate the behavior of the
functionals and the algorithm. For some of the examples, we include comparisons with
results from other approaches including the Subspace Constrained Mean Shift algorithm
and Diffusion Maps.

Example 3.4.1. Parabola. We begin with an example that illustrates the cutting and recon-
necting mechanism used in the Algorithm 4 for finding minimizers of (MPPC). We use
data that are uniformly distributed on the graph of the parabola x = y2 for y ∈ [−3, 3]
and set λ1 = 0.12 and λ2 = 4/3. For illustration, we first run Algorithm 4 for minimizing
(PPC) (the same as main loop of Algorithm 4 without allowing any topological changes)
starting from a small perturbation of the line segment [0, 9] × {0}. The result is shown
in Figure 3.1(a). We then turned on the cutting routine, described in Algorithm 2. The
segments to be cut are indicated on Figure 3.1(a) as dashed lines. Figure 3.1(b) shows a
subsequent configuration, after a few steps of ADMM relaxation, but prior to reconnecting.
Edges that are about to be added in the reconnection step (described in Section 3.4.2) are
shown as dashed blue lines.

0 9
−3

0

3

(a) Local minimizer of (PPC) with
edges to be cut indicated.

0 9
−3

0

3

(b) Subsequent configuration, with
edges to be added indicated.

0 9
−3

0

3

(c) Minimizer of (MPPC)

Figure 3.4.1:

Example 3.4.2. Noisy spiral. Here we consider data generated as noisy samples of the
spiral t 7→ (t cos(t), t sin(t)), t ∈ [3, 14], shown as a dashed line in Figure 3.2(b). 2000
points are drawn uniformly with respect to arc length along the spiral. For each of these
points, noise drawn independently from the normal distribution 1.5N2(0, 1) is added. In
Figure 3.4.2, we show the results of algorithms for minimizing (PPC) and (MPPC). The
initialization used for both experiments is a diagonal line corresponding to the fist principal
component. The descent for (PPC) does not allow for topological changes of the curve and
subsequently gets attracted to a local minimum. Meanwhile, Algorithm 4 for minimizing
(MPPC) is able to recover the geometry of the data, via disconnecting and reconnecting the
initial curve.
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(a) Local minimizer of (PPC)
−1 0 1

−1

0

1

(b) Local minimizer of (MPPC)

Figure 3.4.2: Numerical results on data generated by a spiral (in purple) plus Gaussian
noise. On the left, (PPC) is used to find the local minimizer given by the green curve, using
the first principal component (blue) as initialization. On the right, (MPPC) (with the same
initialization) is minimized to find the green curve, using critical linear density α? = .09.
In both cases λ1 = .01.

For this dataset we also include results of the Subspace Constrained Mean Shift (SCMS)
algorithm [53], also studied in [16, 17, 30] as means to find one-dimensional structure in
data. SCMS seeks to find the ridges (of an estimate) of the underlying probability density
of the data. The ridge set of a function F : Rd → R is defined as the set where ∇F is
an eigenvector of the Hessian of F and the eigenvalues of all remaining eigenvectors are
negative (the point is a local maximum along all orthogonal directions). In practice, given
a random sample one uses a kernel density estimator (KDE) to approximate the probability
distribution. SCMS algorithm takes a set of points as input, and successively updates each
point until it converges to a ridge point of the KDE of a specified bandwidth. The output
is then a list of unordered points that approximate the ridge set. We apply SCMS using
a Gaussian kernel density estimate (KDE) for two different bandwidth, which both give
good results. The algorithm is initialized with 2500 points on a 50x50 mesh in the range
of the data. As shown in Figure 3.4.3, the algorithm does output points approximating the
underlying one-dimensional structure. However, we note that mathematically there are a
number of ridges of the KDE going between the layers of the spiral. The SCMC algorithm
captures those with high enough density and large enough "basin of attraction". We note
that as the kernel bandwidth increases, the number of undesirable ridges decreases, but
their intensity increases (the density at the remaining ridges is higher). Removing points
on the mesh that have density below a given threshold has been suggested for noisy data
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(a) SCMS with bandwidth 0.15 (b) SCMS with bandwidth 0.2

Figure 3.4.3: There are more undesirable ridges for small bandwidths. Decreasing the
bandwidth further can also result in gaps in the desirable spiral filament. There are fewer
undesirable ridges at higher bandwidth, but they have higher density. Increasing the band-
width further introduces a significant bias of the main ridge, compared to the generating
curve.

[17, 30], and doing so can improve the results here by eliminating some of the undesirable
ridges. However this introduces a parameter (density threshold) that needs to be chosen
carefully (see appendix A of [17]).

Example 3.4.3. Noisy grid with background clutter. In the following example we illustrate
the robustness of the proposed approach to background noise. We use data in R3 with
an underlying grid-like structure, shown in Figure 3.4.4. The data consist of 2400 points
generated by four intersecting lines with Gaussian noise, plus 2400 more points uniformly
sampled from the background [0, 3]× [0, 3]× [−.75, .75].

Since the linear density of data in the background noise is less than that of the inter-
secting lines, the computed minimizer approximates the data in the background by isolated
points (in green). For the parameters we used, this is predicted by the discussion of the den-
sity threshold in Section 3.3. By choosing λ1 and λ2 so that the critical density threshold
α∗ =

(
4
3

)2 λ1

λ2
2

is between the linear density of the background noise and the linear density
of the lines, the background noise will be represented by isolated points, which allows the
curves to appropriately approximate the intersecting lines.

We note that although the algorithm succeeds in approximating the one-dimensional
structure of the data, it is not able to recover the intersections due to the simpler structure
of configurations we consider in (MPPC). In such cases where our approach cannot identify
the global topology, we presume it may be possible to use the obtained approximation as
input for other approaches that aim to recover the topology of the data [58].
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Figure 3.4.4: Computed minimizer on data generated from four intersecting lines forming
a grid with Gaussian noise and background clutter in R3, with λ1 = 7 × 10−4, λ2 = 0.2.
The minimizer consists of curves and isolated points (green). The larger blue dots represent
the discretization (points yi) of curves which are a part of the minimizer.

Example 3.4.4. Zebrafish embryo images. Here we demonstrate performance of the algo-
rithm on a high-dimensional dataset that consists of grayscale images.

In [22] Dsilva et al. develop a technique for finding the temporal order of still im-
ages of a developmental process. They consider the problem where both the time ordering
and the angular orientation of the images are unknown. To be able to handle both vari-
ables simultaneously they use vector diffusion maps [57]. One of the tests they performed
to validate their approach was on images taken from a time-lapse movie that captures
zebrafish embryogenesis [https://zfin.org/zf_info/movies/Zebrafish.
mov] (Karlstrom and Kane [38]).

In this case the angle of rotation is fixed, and recovering the temporal order can be done
using diffusion maps [18] alone, see Figure 3.6(b). Here we demonstrate that these images
can also be ordered using our method.

As in [22], we apply our algorithm to 120 consecutive frames (roughly corresponding
to seconds 6-17 in the movie) of 100x100 pixels in order to test how well it can recover
the development trajectory. Thus each image is represented as a point in R10,000. We note
that there is almost no noise in the dataset, but emphasize that the goal here is to recover a

47

https://zfin.org/zf_info/movies/Zebrafish.mov
https://zfin.org/zf_info/movies/Zebrafish.mov


Figure 3.4.5: The top row shows 10 images of zebrafish embryos in random order. The
bottom row shows 10 images ordered by the found curve that minimizes (MPPC).

single curve passing through data whose true order is not provided to the algorithm.
After normalizing the data, we run our algorithm with parameters λ1 = 10−3 and

λ2 = 2. The low value for λ1 is appropriate given that there is virtually no noise. The
high value of λ2 ensures that a single curve is found, and so the functional (PPC) is also
being minimized. Our algorithm outputs a curve that correctly ranks all of the original im-
ages. Figure 3.4.5 shows a random sample of the images used, along with their found true
ordering. In Figure 3.6(a), we visualize the found curve in R3 using the first three principal
components.

−1

0

−0.6

0

0.6

−0.4

0

0.4

(a) The curve found minimizing (MPPC)

−1

0

−0.6

0

0.6

−0.4

0

0.4

(b) Color-coded first embedding coordinate of
the diffusion map

Figure 3.4.6: On both images the first three principal components are used for visualization.
The (MPPC) algorithm was applied to all 120 images, while we applied diffusion maps
to only the first 104 images due to a slight camera shift that resulted in relatively large
euclidean distance between images 104 and 105. Both methods perfectly ranked their
respective data, and some (simple) preprocessing done in [22] allows diffusion maps to
work on the full 120 images.

Example 3.4.5. Noisy spiral revisited. In the previous example we discussed the feasibility
of using nonlinear dimensionality reduction techniques such as diffusion maps to order
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Figure 3.4.7: Color-coded one-dimensional embeddings provided by the diffusion maps
algorithm for three settings of the scaling parameter ε. No values for ε recover the intrinsic
ordering of the data. Larger values (left and middle) cannot detect the finer structure, while
a smaller value (right) separates two outliers at the top (colored red and brown) from the
rest of the data.

the data. Since the data in Example 3.4.4 had almost no noise, one can obtain a good
ordering using many different methods. Spectral dimensionality reduction techniques are
often successful even when substantial noise is present. However, when there is significant
overlap in the distribution of data whose generating points have large intrinsic distance,
spectral methods can fail to recover the desired one-dimensional ordering. The example
below illustrates this and indicates that in some situations minimizing (MPPC) gives better
results in ordering the data than diffusion maps.

We revisit the noisy spiral data considered in Example 3.4.2, and run the diffusion
maps algorithm using a range of scaling parameters ε = (d

c
)2, where d denotes the median

of the pairwise distances of the data points. After testing a wide range of parameter values
c, we found that for all values tested the spectral embedding fails to recover the desired
one-dimensional ordering. We display the typical results (which correspond to c = 0.5, 2,
and 4) in Figure 3.4.7. Larger values of ε lead to an embedding that differentiates the
data linearly from bottom left to top right, while smaller values lead to an embedding that
separates outliers in the top from the rest of the data points. On the other hand minimizer
of (MPPC) can correctly recover the one-dimensional structure, as shown in Figure 3.2(b).

3.5 Discussion and conclusions
In this chapter, we proposed a new objective functional (MPPC) for finding one-
dimensional structures in data that allows for representation consisting of several com-
ponents. The functional introduced is based on the average-distance functional and is a
regularization of principal curves. It penalizes the approximation error, total length of the
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curves, and the number of curves used. We have investigated the relationship between the
data generated by one-dimensional signal with noise, the parameters of the functional, and
the minimizer. Our findings provide guidance for the choice of parameters, and can further
be used for multi-scale representation of the data. In addition, we have demonstrated that
the zeroth-order term helps energy descent based algorithms converge to desirable configu-
rations. In particular, energy descent approaches for (PPC) very often end up in undesirable
local minima. The main reason for this is of topological nature – points on the approximate
local minimizer represent the data points in an order which may be very different from the
true ordering corresponding to the (unknown) generating curve. The added flexibility of
being able to split and reconnect the curves provides a way for resolving such topological
obstacles.

We have developed a fast numerical algorithm for estimating minimizers of (MPPC). It
has computational complexityO(mnd), where n is the number of data points in Rd, and m
is the number of points used in the approximating curve(s). We demonstrated the effective-
ness of the algorithm in recovering the underlying one-dimensional structure for real and
synthetic data, in cases with significant noise and in very high dimensions. The robustness
and computational efficiency of the algorithm compare favorably to existing methods, and
further offer promise for scalability of approximating one-dimensional structures in very
large and complex high-dimensional data.

Despite these advancements, we expect there are a few aspects of the functionals that
can be further investigated. One of these concerns whether we can select the parameters of
the functional in a more systematic way, without relying on any of the quantitative estimates
of the data involved in the discussion in Section 3.3.3. In particular is the selection of λ1,
which has the role that minimizers are linearly stable as long as the mean squared projection

distance is less than
√

λ1

2α
. This may suggest that minimizers for which the mean squared

projection distance is greater than
√

λ1

2α
are not overfitting, and hence are appropriately

approximating the data. Thus, starting with a high value of λ1, and decreasing it right until
the minimizer becomes linear stable may be a strategy that is worth investigating.

Another direction for future work is in obtaining theoretical results on when the pro-
posed algorithm can approximately recover the curve from which the data are generated.
In the case that the data lie on a smooth curve with positive reach, the resolution estimates
support the claim that the global minimizer will recover the generating curve (up to bias)
for a small enough value of λ1 and large enough value of λ2. In this setting, we also believe
that the generating curve can always be numerically recovered (up to bias), by comput-
ing a series of local minimizers for path of (MPPC) problems. In particular, the proposed
algorithm can be seen as solving a sequence of problems with λ2 increasing, if adding con-
nections (done greedily) are limited to one at a time after the previous run converges. As
is, the algorithm starts with singletons, and connects and grows them until it is advanta-
geous to do so, based on the values of λ1, λ2. We expect that if one fixes λ1 small enough,
and starts with a low λ2 value that is continuously increased up to a high enough value,
the computed local minimizers should progress to a global minimizer that represents the
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generating curve up to a controllable bias. Proving this in the simple case of no noise, and
potentially extending it to cases with noise (under suitable assumptions on the reach) would
further support our approach.

Recently there has been a significant effort to recover one-dimensional structures that
are branching and intersecting, which are beyond the capability of multiple penalized prin-
cipal curves (at the topological level). The ability to recover graph structures and the topol-
ogy of the data is very valuable, and facilitates a number of data analysis tasks. Several
notable works are based on Reeb graphs and related objects [15, 29, 58]. We note that
these approaches are sensitive to noise, whose presence also significantly slows down the
respective algorithms. We believe computing multiple penalized principal curves could be
valuable as a pre-processing step for simplifying the data prior to applying graph-based ap-
proaches that find the connectivity network of the data set. Recalling the data from Example
3.4.3 and Figure 3.4.4, we see that although our approach does not recover the topological
structure, it does identify and appropriately simplify the one-dimensional structure present
in the data. The graph-based approaches should work much better on the simplified green
curves or (or blue points) than on the original point cloud. We end by remarking that re-
covering more complicated one-dimensional structures of data will be further discussed in
the following chapter.
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Chapter 4

Optimal Networks for
Selective-Transport

4.1 Introduction
In this chapter we investigate a new set of models for networks that represent well a given
measure µ on Rd. In contrast to the last chapter, for the most part here we will think of the
measure as a population of agents, for which we want to find networks (one dimensional
subsets of Rd) that best meet the transportation needs of the population. We will investigate
models where we assume that every member of the population is selective in their need to
visit a distribution of locations of interest. This assumption will distinguish our approach
from previous work on optimal transportation networks. The networks we seek will have a
low cost that balances the total transportation cost of the population and the cost of building
and maintaining the network. We will propose two models for optimal networks in this
sense, and propose a third model for a setting in which the population measure µ is jointly
sought with the network. We will establish existence of minimizers for the problems, and
provide an algorithm for approximating optimal networks. Lastly, we will provide a couple
of numerical examples that aim to illustrate how the complexity of the optimal networks
increases as the population grows. One application to recovering one-dimensional of data
will also be provided.

4.1.1 Background and related work
There are a number of works related to urban planning and the models we consider. How-
ever, most of the work we are aware of considers the problem of finding a network along
which two given distributions µ and ν are optimally matched. In these models, one can view
µ to represent a distribution of workers, and ν to represent a distribution of work locations.
The approaches are based on the framework of optimal transportation, and inherently as-
sume that any worker is suitable for any working location. Below we review some of the
related approaches, starting with classical optimal transportation, in which there is no role
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of networks.

Optimal transport

In 1781, Monge introduced the following problem [50]. Given two compactly supported
(Borel) probability measures µ and ν on Rd, let T denote the set of maps T : Rd → Rd

such that T#µ = ν. That is, T ∈ T satisfies µ(T−1(A)) = ν(A) for all Borel sets A ⊆ Rd.
Given a cost c(x, y) : Rd × Rd → R of transporting from x to y, Monge’s problem is then

OTM(µ, ν) := inf
T∈T

ˆ
Rd
c(x, T (x))dµ(x). (4.1.1)

A common choice for the cost function is c(x, y) = |x− y|p for p ≥ 1.
Monge’s problem faces some difficulties regarding existence of optimal transportation

maps – maps that minimize (4.1.1). A major one is that the set of admissible maps T may
be empty if the measure µ has atoms. Optimal transport maps are known to exist and be
unique in the case that µ is absolutely continuous and c(x, y) is a strictly convex function
of |x− y|.

It was not until the 1940’s that Kantorovich proposed another formulation [37] that al-
leviated some of these problems. Kantorovich’s problem amounts to relaxing the class of
transportation maps T to transportation plans, which allow for mass to be “split”. Trans-
portation plans are probability measures on Rd × Rd with first marginal µ and second
marginal ν. More precisely, the set of transportation plans is defined as

Π(µ, ν) =
{
π ∈ P(Rd × Rd) : π(A× Rd) = µ(A), π(Rd ×B) = ν(B) ∀A,B ⊆ Rd

}
and Kantorovich’s problem is then

OTK(µ, ν) := inf
π∈Π(µ,ν)

ˆ
Rd×Rd

c(x, y)dπ(x, y). (4.1.2)

Note that for any given transportation map T ∈ T , (I × T )#µ defines a corresponding
transportation plan, and so (4.1.2) is a relaxation of (4.1.1). In contrast to transportation
maps, optimal transportation plans (minimizers of Kantorovich’s problem) exist in the gen-
eral case that c is a lower semi-continuous function that is bounded from below.

Using optimal transport one may define a distance between measures, known as the
Wasserstein distance:

Wp(µ, ν) := min

{ˆ
Rd×Rd

|x− y|pdπ(x, y) : π ∈ Π(µ, ν)

} 1
p

,

where p ≥ 1. It can be shown the the Wasserstein distance is indeed a metric, and fur-
thermore that it metrizes weak-? convergence of measures. That is, µn

?
⇀ µ if and only if

Wp(µn, µ)→ 0 for any p > 1. For reference on the facts stated here and further results on
optimal transportation we point the reader to a recent book by Santambrogio [56], along
with a couple of other good references [1], [66] .

54



Branched transport

We now turn our attention to finding optimal networks for transportation problems. The
first model we describe is motivated by transport related phenomena that exhibit ramifi-
cation or branching patterns. As in the Monge and Kantorovich problems, the branched
transport problem deals with moving or transporting an initial distribution µ to a distribu-
tion ν, but differs in its core assumption that transporting mass together is less costly than
transporting the mass separately.

When the measures are discrete, the branched transport problem can be formulated us-
ing a weighted and directed geometric graph. Suppose µ =

∑k
i=1 aiδxi , and ν =

∑l
j=1 biδyj

are discrete measures with the same total mass. Let G be a graph with vertices V (G) and
straight edges E(G) with a weight function w : E(G)→ [0,∞). We denote the in-degree
at vertex v by

dv :=
∑

u:(u,v)∈E(G)

w((u, v))−
∑

u:(v,u)∈E(G)

w((v, u)).

G is required to satisfy the mass preserving conditions that i) dxi = −ai for i = 1, ..., k, ii)
dyj = bj for j = 1, ..., l, and iii) dv = 0 for v ∈ V (G) \ {x1, ..., xk, y1, ..., yl}. One then
seeks to minimize

BT a(G) :=
∑

e∈E(G)

c(w(e))l(e)

where l(e) denotes the length of edge e, and c is the concave cost c(m) = ma. This
formulation can be extended to the non-discrete measures, and is sometimes called the
flux-based formulation, introduced by Xia in [68].

The problem in the general setting can be formulated in the following way, in terms of
subsets Σ of Rd.

BT a(Σ) := inf
F :Σ→Rd\{0}
F=FH1|Σ
div F=µ−ν

ˆ
Σ

c(|F |)adH1 with ca(m) = ma (4.1.3)

where a ∈ (0, 1) is a parameter indicating the discount for transporting mass in bulk. The
measureF describes the mass flux treating µ as a source and ν as a sink, and F is its density
with respect to the one-dimensional Hausdorff measure restricted to Σ. This formulation
(4.1.3) was provided in [10], where it was shown to be equivalent to original formulations
[48, 68]. In [48], the authors take an approach based on patterns that describe the position
of each particle at every time, in contrast to the approach of Xia in [68], where only the
flux of the particles is described at every point (as above). Equivalence between the earlier
formulations has also been studied in [46, 47].

We note that in the branched transport problem, any candidate network will contain the
supports of the given measures, and therefore in the case of absolutely continuous mea-
sures, the minimizing set Σ will necessarily be of infinite length. This is a key difference
from the urban planning problem that we consider next.
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Urban planning

Here we consider a model for urban planning introduced in [9]. There, Brancolini and
Buttazzo propose a problem for finding networks with low total transportation cost between
given measures µ and ν. In contrast to the branched transport formulation (4.1.3), the
networks considered in this approach do not cover all of the transportation. Instead, the
cost of transportation is simply discounted when done over the network.

Let
Gx,y := {Γ closed and connected: {x, y} ⊆ Γ ⊆ Rd}

denote the set of paths containing x and y. One may takeH1(Γ∩ΣC) +αH1(Γ∩Σ) as the
cost associated to transport path Γ, where α ∈ [0, 1) represents the cost per distance when
traveling along the network. The transportation cost from x to y can then be defined as

cΣ(x, y) = inf{H1(Γ ∩ ΣC) + αH1(Γ ∩ Σ) : Γ ∈ Gx,y}. (4.1.4)

Given a transportation plan π ∈ Π, the total transportation cost is then

TCπ(Σ) :=

ˆ
Rd×Rd

cΣ(x, y)dπ(x, y),

and the optimal network problem is then find Σ closed and connected that minimizes

ONTµ,ν(Σ) := inf
π∈Π(µ,ν)

TCπ(Σ) + λH1(Σ). (4.1.5)

The second term can be seen as a penalty that represents the cost of building the net-
work. Without it, or another regularization term, the problem would be ill-posed as the
total transportation cost could be made arbitrarily small. In [9], Brancolin and Buttazzo
prove existence of minimizers to the problem, allowing for costs that depend more gener-
ally onH1(Γ∩Σ),H1(Γ∩ΣC), andH1(Σ). We will focus our attention on the cost (4.1.4)
unless otherwise indicated.

Though seemingly different from the branched transport problem, this urban planning
problem can be cast in a branched transport setting through both pattern and flux-based
frameworks in [10]. The difference from (4.1.3) is that the reformulated (4.1.5) would not
be in terms of the cost ca(m) = ma, but the cost cλ,α(m) = min(m,αm+ λ) instead. The
difference in cost functions here is crucial, and as the latter cost is not strictly subadditive,
it does not promote branching to same effect.

The behavior of minimizers to the urban planning problem has been studied in some
special cases, in particular when α = 0 and when the length penalty is replaced by a length
constraint. That special case closely resembles the constrained average-distance problem
(1.1.1), the main difference being that not all mass is required to travel to the network. Like
in the average-distance problem, it has been shown that minimizers in this special case will
not have loops when the measures µ, ν are absolutely continuous. For this property and an
Ahlfors regularity result we refer the reader to [13] (Theorem 3.8).
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4.2 Optimal networks for selective-transport

We introduce a new set of models for selective-transportation. The main difference in the
models we propose is that they assume fully specified, or otherwise constrained, transporta-
tion plans. In other words, the problems do not seek to merely match given distributions,
but rather aim to minimize total transportation costs that take into account the agents’ po-
tentially different needs for their distribution of destinations.

4.2.1 Specified transport plan

Consider the setting of (4.1.5), but with a pre-specified transportation plan π whose first
marginal µ corresponds to a distribution of agents. The problem of interest is then to
minimize the functional

ONTπ(Σ) := TCπ(Σ) + λH1(Σ) (4.2.1)

over Σ closed and connected.
The second marginal of π can be seen as the distribution of destinations, aggregated

across all agents. Taking the second marginal and the first marginal µ as given, the “only”
difference from the urban planning problem (4.1.5) is that here there is no infimum over
transportation plans, as one is instead specified. We note that this subtle change in the
formulation does not only affect the problem interpretation and modeling aspects, but can
also drastically affect the behavior of solutions and methods to compute them.

In the special case that π = µ ⊗ µ, (ONT) represents a “universal” transport problem
in which every agent seeks to visit every other agent.

4.2.2 Dynamic transport plan

Let us know consider an slightly different setting. Suppose that instead of the target distri-
butions of all agents being pre-specified, they change depending on the available network,
and that each agent may have a need of only visiting a certain fraction β of the total popu-
lation, which would be selected in a cost-minimizing fashion. One may take the following
approach to model this setting. Let

BΣ(x, r) := {y : y ∈ Rd, cΣ(x, y) ≤ r}

denote the points within cost r of x, and let

rβx,Σ := min{r > 0 : µ(BΣ(x, r)) ≥ β}

denote the minimum cost for which x is within reach of fraction β of the population. [The
minimum above does exist since µ(BΣ(x, ·) is non-decreasing and upper semi-continuous,
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and therefore the set over which the minimum is taken is compact.] The total transportation
cost would then correspond to

ˆ
Rd

ˆ
Rd
cΣ(x, y)1BΣ(x,rβx,Σ)(y)dµ(y)dµ(x). (4.2.2)

Note that if µ is absolutely continuous, then rβx,Σ is such that µ(BΣ(x, rβx,Σ)) = β.
However, if µ has atoms, then it may happen that µ(Bc(x, r

β
x,Σ)) > β. To avoid difficulties

with the lower semi-continuity of the transportation cost (4.2.2) and subsequent existence
of minimizers, we alternatively set up the problem in the framework of transportation plans
to allow for splitting of mass.

Given a distribution of agents µ, let Πβ(µ) denote the set of Borel measures on Rd×Rd

such that π ≤ µ ⊗ µ (on all Borel sets) and π(A × Rd) = βµ(A). We then set the
transportation cost

TCβ
µ (Σ) := inf

π∈Πβ(µ)
TCπ(Σ), (4.2.3)

and the optimal network for these dynamic transport plans then minimizes

ONDT βµ (Σ) := TCβ
µ (Σ) + λH1(Σ). (4.2.4)

Let us briefly show the equivalence of (4.2.2) and (4.2.3) when µ is absolutely contin-
uous. We later prove (Proposition 4.4.5) that the infimum in (4.2.3) can be replaced with
minimum, so let πΣ ∈ Πβ(µ) denote the minimizing plan for a given network Σ. Since πΣ

is absolutely continuous with respect to µ⊗ µ we have that

TCβ
µ (Σ) = TCπΣ

(Σ) =

ˆ
Rd

ˆ
Rd
cΣ(x, y)

dπΣ

d(µ⊗ µ)
(x, y)dµ(y)dµ(x),

where dπΣ

d(µ⊗µ)
(x, y) ≤ 1. Moreover, for every x ∈ Rd and every ε > 0

ˆ
B(x,ε)

ˆ
Rd

dπΣ

d(µ⊗ µ)
(x, y)dµ(y)dµ(x) = π(B(x, ε)×Rd) = βµ(B(x, ε)) =

ˆ
B(x,ε)

βdµ(x)

which implies that ˆ
Rd

dπΣ

d(µ⊗ µ)
(x, y)dµ(y) = β

for µ−a.e. x ∈ Rd. Combined with the fact that dπΣ

d(µ⊗µ)
(x, y) ≤ 1, this implies the mini-

mizing plan πΣ must satisfy

dπΣ

d(µ⊗ µ)
(x, y) = 1BΣ(x,rβx,Σ)(y)

µ⊗ µ−a.e., which is what we wanted to show. Lastly, we note that taking β = 1 recovers
the specified transportation functional ONTµ⊗µ.

58



4.3 Optimal settlement design
We consider an extended setting in which the population distribution given by µ is not
specified. Namely, we seek both a measure and network that minimize a quantity measuring
the overall burden or cost of the population. In allowing for flexibility in the settlement of
the population, we introduce a term that measures aversion to congestion, or alternatively
a desire for personal space. That is, we assume that as agents have a need of visiting others
in the population, and prefer to pay minimal cost in doing so, they also prefer to reside in a
low-density region. We note that a kind of balancing term is needed, otherwise the optimal
settlement would collapse to a single point.

Let us consider an absolutely continuous measure µwith density ρ. We then seek (µ,Σ)
that minimize

PC(µ,Σ) := TCµ⊗µ(Σ) + λ1H1(Σ) + λ2

ˆ
Rd
ρpdx (4.3.1)

where p > 1 indicates a magnitude of aversion to higher-density regions. We note that this
preference can also be interpreted to represent the amount of real estate that each agent has
– they have less in higher density regions.

Note that when µ is discrete, one can define the problem using a smoothened out density
via a convolution with a smoothly decaying function, also know as a kernel density esti-
mate. Let µ =

∑n
i=1 δximi. Given a nonnegative smooth decreasing function K : R → R

with
´
K(t)dt = 1, a kernel density estimator for µ is

ρ̂h(x) =

ˆ
Rd
Kh(|x− τ |)dµ(τ) =

n∑
i=1

Kh(|x− xi|)mi

where Kh(t) = 1
h
K( t

h
), and h > 0 is a smoothing parameter known as the bandwidth of

the kernel K. In this setting we seek (µ,Σ) that minimize

PCn,h(µ,Σ) := TCµ⊗µ(Σ) + λ1H1(Σ) + λ2

ˆ
Rd
ρ̂phdx (4.3.2)

where µ is a discrete measure with at most n atoms.

4.4 Existence of minimizers
In order to prove the existence of minimizers for the problems above, we first show that the
cost function we consider is lower semi-continuous with respect to Hausdorff convergence
in Σ. We note that a proof for more general cost functions is given in [9], and here we
provide an alternate, more direct proof for the cost function (4.1.4).

Our approach is to express the cost function in terms of geodesics on Rd with respect
to a Riemannian metric g. We define g as

gΣ
x (u, v) =

(
1− (1− α)1Σ(x)

)2

(u · v)
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for x, u, v ∈ Rd. Let

C :=
{
γ : [0, a]→ Rd

∣∣ a ≥ 0, γ is Lipschitz with |γ′| ≤ 1,L1 − a.e.
}

denote the space of curves that we will consider, and let

Cx,y :=
{
γ ∈ C

∣∣x, y ∈ range(γ)
}

denote the curves containing x, y ∈ Rd.
Before proceeding further, let us also define the following metric on C. Given γ1, γ2 ∈ C

with respective domains [0, a1], [0, a2] and a1 < a2, we define the extension of γ1 to [0, a2]
as

γ̃1(t) =

{
γ1(t) if t ∈ [0, a1]

γ1(a1) if t ∈ (a1, a2].

We then let
dC(γ1, γ2) = max

t∈[0,a2]
|γ̃1(t)− γ2(t)|.

For γ ∈ C with domain [0, a] we let

δΣ(γ) :=

ˆ a

0

gΣ
γ(s)(γ

′(s), γ′(s))
1
2ds

denote the cost of curve γ. We can then express the cost (4.1.4) as

cΣ(x, y) = inf
γ∈Cx,y

δΣ(γ).

In order to prove the lower semi-continuity of c(·)(x, y), we first show the existence of
geodesics. To do that, we need the following lower semi-continuity property of g.

Proposition 4.4.1. Assume Σ and Σn are closed sets such that Σn
H−→ Σ, and γ, γn ∈ C are

arc-length parametrized with common domain [0, a] and such that γn → γ with respect to
dC . Then

lim inf
n→∞

gΣn
γn(s)(γ

′
n(s), γ′n(s)) ≥ gΣ

γ(s)(γ
′(s), γ′(s))

for all s ∈ [0, a].

Proof. Fix s ∈ [0, a]. Note that |γ′(s)| ≤ |γ′n(s)| = 1 for all n ∈ N. Thus it suffices to
check that

1Σ(γ(s)) ≥ lim inf
n→∞

1Σn(γn(s)).

This is trivial if γ(s) ∈ Σ, so suppose that γ(s) /∈ Σ. We want to show that there exists
n0 ∈ N such that for all n > n0 γn(s) /∈ Σn. Assume for contradiction that there exists a
subsequence for which γn(s) ∈ Σn for all n. Then

d(γ(s),Σ) ≤ d(γ(s), γn(s)) + dH(Σn,Σ)→ 0.

Since Σ is closed, this implies γ(s) ∈ Σ which is a contradiction.

60



Proposition 4.4.2. Given closed Σ ⊆ Rd and x, y ∈ Rd, there exists γ ∈ Cx,y such that
cΣ(x, y) = δΣ(γ).

Proof. Let {γn} ⊆ Cx,y be a minimizing sequence for cΣ(x, y). We may assume that all
γn are arc-length parametrized (re-parametrizing if necessary). We may further assume
that the lengths of all γn are uniformly bounded by a constant L (depending on α). We
extend the domain of all γn to [0, L]. Since the sequence {γn} is uniformly bounded and
equicontinuous, by the Arzelà-Ascoli theorem we may find a subsequence and a curve
γ : [0, L] → Rd such that γn → γ uniformly with respect to dC . Note that γ will be
1-Lipschitz, so γ ∈ Cx,y. Moreover, by Proposition 4.4.1 and Fatou’s lemma we have that

δΣ(γ) ≤ lim inf
n→∞

δΣ(γn),

which shows cΣ(x, y) = δΣ(γ).

Proposition 4.4.3 (Lower semi-continuity of cost). If (xn, yn) → (x, y) ∈ Rd × Rd, and
{Σn}n∈N is a sequence of closed subsets of Rd that converge to Σ in Hausdorff distance,
then

cΣ(x, y) ≤ lim inf
n→∞

cΣn(xn, yn).

Proof. Since the cost functions {cΣn} are 1-Lipschitz on Rd × Rd, it suffices to prove that

cΣ(x, y) ≤ lim inf
n→∞

cΣn(x, y).

Let {γn} ⊆ Cx,y be such δΣn(γn) = cΣn(x, y) for all n, and γ ∈ Cx,y such that δΣ(γ) =
cΣ(x, y). We may again assume the lengths of γn are uniformly bounded, and arc-length
re-parametrize and extend the curves to a common domain [0, L]. By Arzelà-Ascoli we
can find a subsequence and γ̃ ∈ Cx,y with domain [0, L] and such that γn → γ̃ in dC . By
Proposition 4.4.1 and Fatou’s lemma we have

lim inf
n→∞

δΣn(γn) = lim inf
n→∞

ˆ L

0

gΣn
γn(s)(γ

′
n(s), γ′n(s))

1
2ds

≥
ˆ L

0

gΣ
γ̃(s)(γ̃

′(s), γ̃′(s))
1
2ds ≥ δΣ(x, y))

4.4.1 Specified transport plan
We can now directly show existence of minimizers for the specified transport problem
(ONT). We will let ΠC denote the set of compactly supported finite Borel measures on Rd,
and let A denote the set of compact and connected subsets of Rd with finiteH1 measure.

Proposition 4.4.4. Given λ > 0 and π ∈ ΠC , the functional (ONT) has a minimizer over
the admissible set A.
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Proof. Let {Σn} be a minimizing sequence (of compact connected subsets of Rd). Since π
is compactly supported, we may assume all Σn are subsets of a compact set. By Blaschke’s
theorem, we find a subsequence (which we take to be the whole sequence) and a compact
connected set Σ such that Σn

H−→ Σ. By Gołąb’s theorem we have that

H1(Σ) ≤ lim inf
n→∞

H1(Σn).

The lower semi-continuity of c(·)(x, y) (Proposition 4.4.3) combined with Fatou’s lemma
gives

TCπ(Σ) ≤ lim inf
n→∞

TCπ(Σn),

and therefore Σ is a minimizer of ONTπ.

4.4.2 Dynamic transport plan
We first show that for any given network, there is an optimal transportation plan satisfying
the transport requirements.

Proposition 4.4.5. For any probability measure µ with compact support, Σ ⊆ Rd compact,
and β > 0, there exists π ∈ Πβ(µ) such that

TCπ(Σ) = inf
π̃∈Πβ(µ)

TCπ̃(Σ).

Proof. This follows from the fact that, in the sense of weak convergence of measures,
Πβ(µ) is closed and TC(·)(Σ) is lower semi-continuous. Indeed, let {πn} be a minimizing
sequence for inf π̃∈Πβ(µ) TCπ̃(Σ). Since µ is compactly supported, the sequence {πn} is
tight and by Prokhorov’s theorem we may find a subsequence (which we take to be the
whole sequence) that weakly converges to a Borel measure π.

To check that π ∈ Πβ(µ), note that for all continuous and bounded functions φ on Rd

ˆ
Rd×Rd

φ(x)dπ(x, y) = lim
n→∞

ˆ
Rd×Rd

φ(x)dπn(x, y) =

ˆ
Rd
φ(x)βµ(x)

where we have used the fact that φ is continuous and bounded on Rd × Rd. Since φ is
arbitrary, this implies that π(A×Rd) = βµ(A) for any Borel set A. Similarly, we have that
for all continuous and bounded functions φ on Rd × Rd

ˆ
Rd×Rd

φ(x, y)dπ(x, y) = lim
n→∞

ˆ
Rd×Rd

φ(x, y)dπn(x, y) ≤
ˆ
Rd×Rd

φ(x, y)d(µ⊗ µ)(x, y)

which shows that π ≤ µ⊗ µ.
Finally, note that cΣ(x, y) is continuous and (therefore also) bounded on the support of

µ⊗ µ. Thus,

TCπ(Σ) =

ˆ
Rd×Rd

cΣ(x, y)dπ(x, y) = lim
n→∞

ˆ
Rd×Rd

cΣ(x, y)dπn(x, y) = lim
n→∞

TCπn(Σ)
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The existence of minimizers for (4.2.4) now follows from the following generalized
Fatou lemma (Proposition 2.3.6). (Alternatively, one can use the fact that the Wasserstein
distance metrizes weak convergence of measures together with the Lipschtiz continuity of
cΣ.)

Proposition 4.4.6. For any probability measure µ with compact support, β ∈ (0, 1), and
λ > 0 the problem ONDT βµ has a minimizer over the admissible set A.

Proof. Let Σn be a minimizing sequence. Note that since µ is compactly supported, so is
the sequence {Σn}. By Blaschke’s theorem, there is a compact Σ ⊆ Rd such that Σn

H−→ Σ
up to a subsequence. Let πn, π ∈ Πβ(µ) denote the plans that minimize TC(·)(Σn) and
TC(·)(Σ) respectively. Since the sequence {πn} is tight, by Prokhorov’s theorem there ex-
ists π̃ ∈ Πβ(µ) such that πn weakly converges to π̃ up to a (further) subsequence. By the
lower-semicontinuity of the cost functions (Proposition 4.4.3) and Fatou lemma (Proposi-
tion 2.3.6) we have that

lim inf
n→∞

TCπn(Σn) ≥ TCπ̃(Σ) ≥ TCπ(Σ).

This together with Gołąb’s theorem shows that Σ is a minimizer of ONDT βµ .

4.4.3 Optimal settlement

In order to prove existence of minimizers of the optimal settlement model (4.3.1), we first
prove the following compactness result for a minimizing sequence. In the following we let
M1 denote the set of finite absolutely continuous probability measures Rd.

Proposition 4.4.7. Let {(µn,Σn)}∞n=1 be a minimizing sequence of (4.3.1) over the ad-
missible set M1 × A. Then there exist R > 0 and n0 ∈ N such that for ∀n > n0,
supp(µn) ⊆ B(0, R) and Σn ⊆ B(0, R).

Proof. For any µ,Σ, it suffices to construct a lower energy configuration (µ̃, Σ̃) contained
in B(0, R).

Let R > r > 0, and let m1 = µ(B(0, R) \ B(0, r)), m2 = µ(B(0, R)C), ε =
µ(B(0, r)C) = m1 + m2. For properly chosen r, R we obtain a competitor to (µ,Σ)
with µ̃ = µ|B(0,R) + m2

|B(0,r)|L
d|B(0,r), and Σ̃ as the projection of Σ onto B(0, R). Note that

projecting onto a convex set decreases length, soH1(Σ) ≥ H1(Σ̃).
We estimate the change in energy due to using µ̃ in place of µ. The change consists of

moving the mass m2 from outside B(0, R) to inside B(0, r). The change in the transporta-
tion cost is bounded from above by

m1m2(R− r)−m2(1− ε)α(R− r) = m2(R− r) (m1 − α(1− ε)) .
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On the other hand, the change in the density term is given by
ˆ
B(0,R)

(
ρ+

m2

|B(0, r)|
1B(0,r)

)p
− ρpdLd

≤ m2

|B(0, r)|

ˆ
B(0,r)

p

(
ρ+

m2

|B(0, r)|

)p−1

dLd = crm2

where the inequality follows from Taylor’s theorem, and cr is a quantity that decreases as
r increases. Therefore the total change in energy is bounded above by

m2 (cr − (R− r)(α(1− ε)−m1)) .

Taking both r and R large enough, we can make the change in energy negative, which
concludes the proof.

The existence of minimizers of (4.3.1) now follows.

Proposition 4.4.8. Given λ1, λ2 > 0 and p > 1, the functional (4.3.1) has a minimizer over
the admissible setM1 ×A.

Let {(µn,Σn)}∞n=1 be a minimizing sequence, and let ρn denote the density of µn. By
the previous proposition, we may assume that supp(µn) ⊆ B(0, R) for all n ∈ N for some
R > 0. By Prokhorov’s theorem, there exists a subsequence of {µn}∞n=1, which we take
to be the whole sequence, and µ (with density ρ) such that µn

∗−⇀ µ (in the sense of weak
convergence of measures). Furthermore, by Blaschke’s theorem there exists a compact set
Σ such that Σn

H−→ Σ up to a subsequence (which we again take to be the whole sequence).
The lower semi-continuity of H1(·) follows by Gołąb’s theorem. In addition, the lower
semi-continuity of the density term

lim inf
n→∞

ˆ
Rd
ρpndx ≥

ˆ
Rd
ρpdx

holds from Theorem 2.3.7. It remains to check that the total transportation cost is lower
semi-continuous with respect to Hausdorff convergence in Σ and weak convergence of µ.
We have that

|TCµn⊗µn(Σn)− TCµ⊗µ(Σn)|

=

∣∣∣∣ˆ
Rd×Rd

cΣn(x, y)d(µn ⊗ µn)(x, y)−
ˆ
Rd×Rd

cΣn(x, y)d(µ⊗ µ)(x, y)

∣∣∣∣
≤ sup

f :Lip(f)≤1

ˆ
Rd×Rd

f(d(µn ⊗ µn)− d(µ⊗ µ))(x, y)

since {cΣn} are Lipschitz continuous with Lipschitz constant 1. By weak convergence of
measures we then have that the quantity vanishes in the limit. On the other hand, we have
that

lim inf
n→∞

TCµ⊗µ(Σn) ≥ TCµ⊗µ(Σ)
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from Proposition 4.4.3. Thus we can conclude that

lim inf
n→∞

[TCµn⊗µn(Σn)− TCµ⊗µ(Σn) + TCµ⊗µ(Σn)− TCµ⊗µ(Σ)] ≥ 0

and therefore (µ,Σ) is a minimizer of PC.

4.4.4 Γ−convergence
Here we briefly comment that the Γ−convergence of the specified and dynamic transport
functionals with respect to weak convergence of the measures is immediate from the lower
semicontinuity of the cost function.

Lemma 4.4.9. Given β ≤ 1, µn
?
⇀ µ in PR, then ONDT βµn

Γ→ ONDT βµ with respect to

Hausdorff convergence of sets in A. Likewise, if πn
?
⇀ π in PR, then ONTπn

Γ→ ONTπ in
the same sense.

Proof. By definition of Γ−convergence we need to check the following two properties

• Lower semi-continuity: If µn
?
⇀ µ and Σn → Σ in Hausdorff distance, then

lim inf
n→∞

ONDT βµn(Σn) ≥ ONDT βµ (Σ).

• Construction: If µn
?
⇀ µ then for any Σ ∈ A there exists a sequence Σn ∈ A such

that Σn → Σ in Hausdorff distance and

lim
n→∞

ONDT βµn(Σn) = ONDT βµ (Σ).

The lower semi-continuity property follows directly from the lower semi-continuity of the
cost (Proposition 4.4.3) and the generalized Fatou lemma (Proposition 2.3.6). The con-
struction property follows by taking Σn = Σ and the definition of weak convergence of
measure. The Γ−convergence of ONT is analagous.

From Γ−convergence we have the following property regarding convergence of mini-
mizers.

Corollary 4.4.10. Given β ≤ 1, µn
?
⇀ µ, and that Σn is a minimizer of ONDT βµn , it

follows that along a subsequence Σn converge in Hausdorff distance to a minimizer of
ONDT βµ . The analagous statement also holds for ONT .

Proof. By Blaschke’s Theorem, we can find a subsequence of Σn that converges to some
Σ ∈ A. The Γ−convergence will imply that Σ is a minimizer of ONDT βµ . From the con-
struction property, for any Σ̃ ∈ A we can find a sequence Σ̃n converging to Σ̃ in Hausdorff
distance, and such that

lim
n→∞

ONDT βµn(Σ̃n) = ONDT βµ (Σ̃).
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By the lower semi-continuity property and the fact that Σn is a minimizer of TNTµn we
have

ONDT βµ (Σ) ≤ lim inf
n→∞

ONDT βµn(Σn) ≤ lim inf
n→∞

ONDT βµn(Σ̃n) = ONDT βµ (Σ̃),

which shows that Σ is a minimizer of ONDT βµ .

4.5 Numerical algorithm
In this section we outline a numerical algorithm for minimizing the optimal network trans-
portation functional

TCπ(Σ) + λH1(Σ). (ONT)

We focus on the case π = µ⊗ µ, and remark that extension to the case of general π can be
done without much difficulty. We start by introducing the discrete functional.

4.5.1 Discrete functional
Let X = {x1, x2, ..., xn} represent the locations of the agents, with masses m1,m2, ...,mn

so that µ =
∑n

i=1 miδ(xi). We consider the transportation plan π = µ⊗ µ, and we restrict
our attention to the case that Σ is piecewise linear. In particular, we assume Σ can be repre-
sented by an undirected geometric graph (Y,EY ), with vertices Y = {y1, y2, ..., ym} ⊆ Rd,
and EY a set of edges. Then the functional (ONT) in this discrete setting is

n∑
i=1

n∑
j=1

mimjcΣ(xi, xj) + λ
∑

{a,b}∈EY

|a− b|, (4.5.1)

which we minimize over Σ = (Y,EY ). We make a slight simplification of our definition
of cΣ in the continuous setting, and no longer consider the graph Σ = (Y,EY ) as a set,
in which paths can enter and exit at any point. Instead, we will restrict paths to enter and
exit Σ only from the vertices Y . Note that as the graph (Y,EY ) becomes more refined, the
difference between the two cost functions vanishes.

We now define a weighted graph from which we can compute the simplified cost func-
tion cΣ. Let G = (V,E,W ) be an undirected weighted graph on V = X ∪ Y , where we
consider the complete edge set w, and define the weights wa,b as

wa,b =

{
α|a− b|, if {a, b} ∈ EY
|a− b|, otherwise.

Next for xi, xj ∈ X , we define geod(xi, xj) as the set of edges contained in a (distinct)
shortest path between xi and xj on G. We have that
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cΣ(xi, xj) =
∑

{a,b}∈geod(xi,xj)

wa,b.

We may denote the total mass through {a, b} ∈ E as

ma,b =
n∑
i=1

n∑
j=1

mimj1

(
{a, b} ∈ geod(xi, xj)

)
and its energy contribution with

Ma,b = ma,b

(
1

(
{a, b} /∈ EY

)
+

(
α +

λ

ma,b

)
1

(
{a, b} ∈ EY

))
. (4.5.2)

Then we may write (4.5.1) in the simple form

1

2

∑
a∈V

∑
b∈V

|a− b|Ma,b. (4.5.3)

(The 1
2

is there since we have double counted each edge, and the weights Ma,b already
incorporate masses from both directions.) Our goal is to minimize (4.5.3) over (Y,EY ).
The first order conditions for minimality over Y are

n∑
i=1

yk − xi
|yk − xi|

Myk,xi +
m∑
l=1

yk − yl
|yk − yl|

Myk,yl = 0 ∀yk ∈ Y.

4.5.2 Minimization over Y
We consider a strategy for minimizing over Y , with EY fixed. In what follows enumerate
V = {vi}m+n

i=1 where vi = yi for 1 ≤ i ≤ m, and vi = xi for m < i ≤ m + n. For ease of
notation we let ei,j = {vi, vj} and Mi,j = Mvi,vj .

Note that Mi,j will be zero for most i, j ∈ {1, 2, ...,m + n}. Let Ẽ denote the edges
e 6⊆ X for which Me is nonzero. In addition, let σ : Ẽ → {1, 2, ., , nẼ} be an (bijective)
enumeration of these edges, where nẼ := |Ẽ|. We define the linear operator D : Rm×d →
RnẼ as

(Dy)σ(ei,j) =

{
yj − yi if m ≥ i > j ≥ 1

yj if m+ n ≥ i > m ≥ j ≥ 1

In other words, D is simply an incidence matrix for the vertices Y = {vi}mi=1 in the graph
(V, Ẽ). We also define the constant vector c ∈ RnẼ

cσ(ei,j) =

{
0 if m ≥ i > j ≥ 1

−xi−m if m+ n ≥ i > m ≥ j ≥ 1.
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Minimizing (4.5.3) over Y is then equivalent to

min
y,z :Dy+c=z

nẼ∑
e=1

|ze|Mσ−1(e).

We may apply ADMM to the above, and it consists of the following steps

yk = arg min
y

ρ

2
|Dy + c− zk + bk|2 (4.5.4)

zk+1 = arg min
z
|z|M,1,2 +

ρ

2
|Dyk + c− z + bk|2 (4.5.5)

bk+1 = bk +Dyk+1 + c− zk+1 (4.5.6)

where |z|M,1,2 =
∑nẼ

e=1 |ze|Mσ−1(e).
We note that the solution to the first step is given by

yk = (DTD)−1DT (zk − bk − c)

where DTD is the m×m Laplacian matrix of the vertices Y in (V, Ẽ) with entries

(DTD)i,j =


degẼ(yi) if i = j

−1 if {vi, vj} ∈ Ẽ
0 otherwise.

where degẼ(yi) denotes the degree of yi in Ẽ. In general, graph Laplacians are not in-
vertible. However, as DTD is the Laplacian for only a subset of the vertices, it will be
invertible as long as (V, Ẽ) is a connected graph and one of the rows is strictly diagonally
dominant. The latter condition is satisfied as long as there there is an edge e in Ẽ with
e ∩X 6= ∅ and e ∩ Y 6= ∅ (i.e. the network is being used by at least one data point), which
holds in all non-degenerate cases.

The solution to the second step above is given by soft-thresholding. Letting vke =
(Dyk)e + ce + bke for e ∈ {1, 2, ..., nẼ} we have

zke =

{
vke −

Mσ−1(e)

ρ
vke
|vke |

if |vke | >
Mσ−1(e)

ρ

0 otherwise.

4.5.3 Computing geodesics
The minimization over the vertices of the network Y requires computation of geodesics,
which may change as soon the network’s vertices or edges are modified. Recall that the
geodesics needed are those between the data points X on the complete weighted graph
(X ∪ Y,E,W ). We therefore compute all pairs shortest paths on (X ∪ Y,E,W ) after
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Algorithm 5 All pairs shortest paths for (X ∪ Y,E,W ) (Floyd-Warshall)
Input: (m+ n)× (m+ n) weight matrix W
initialize geodesic distance matrix dΣ = W and (m + n) × (m + n) matrix next with
next(i, j) = j if i 6= j, 0 otherwise.
for k = 1 : m do

for i = 1 : m+ n do
for j = 1 : m+ n do

if dΣ(i, j) > dΣ(i, k) + dΣ(k, j) then
dΣ(i, j) = dΣ(i, k) + dΣ(k, j)
next(i, j) = next(i, k)

end if
end for

end for
end for
Output: dΣ, next.

every change to the network graph (Y,EY ). To do so, we use a slight simplification of the
Floyd-Warshall algorithm (see for instance Section 25.2 of [20]) outlined in Algorithm 5.

Considering the initial geodesic pairwise distances W , we know that one only needs
to loop through the vertices Y on the network in the outermost loop, since only by going
through one of them may the current shortest distance dΣ be improved. Using the output
matrix next one can easily reconstruct the geodesics, via the meaning that next(i, j) = k
implies k should be visited from i if on the way to j. The complexity of computing the
shortest paths on the graph (X∪Y,E,W ) is henceO(m(m+n)2), or simplyO(mn2) since
m ≤ n. We also note that computing the weights W for the graph requires O((m + n)2d)
time, and therefore the total complexity for computing geodesics is O((m+ d)n2).

4.5.4 Local minimization over EY

While the updates over the vertices Y update the geometry of the network, we also want
to update the topology of the network through the edges EY . We observe the following
simple strategy for decreasing the energy (4.5.3) over the edges EY if the vertices Y are
fixed. In view of (4.5.2), we update EY corresponding to the (local) optimality condition

{a, b} ∈ EY ⇐⇒ α +
λ

ma,b

< 1 ⇐⇒ ma,b >
λ

1− α
. (4.5.7)

We note that while this update does help achieve lower energy configurations for Σ,
relying on it does get us far in finding low energy minima. The problem of course is that
the masses ma,b depend on the geodesics, which depend on the network connectivity. In
particular, it may happen only after adding (or removing) an edge {a, b} and recomput-
ing the geodesics that the edge mass ma,b favors the presence (respectively absence) of
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the edge. This creates a significant combinatorial challenge in which several topological
configurations might need to be tested in order to obtain a desirable local minimizer.

There are however very simple heuristics that may be of help. One that we consider
consists of testing to add edges that have high ratio of geodesic distance to Euclidean dis-
tance. That is, for all non-edges {yi, yj} /∈ EY we compute cΣ(yi,yj)

|yi−yj | , and temporarily add
one such pair with probability proportional to the ratio, recompute geodesics, and check if
the energy decreases. If the energy decreases we accept the change, otherwise we do not.
Since the geodesics need to be recomputed for every such test, we limit their frequency to
at most once per updating the geometry Y .

4.5.5 Algorithm overview
Here we provide an overview of the algorithm for computing local minimizers of (4.5.3).
The algorithm consists of alternating updates of the vertices Y and the edges EY with
re-computing the geodesics, and is outlined in Algorithm 6.

Algorithm 6 Computing local minimizer of (4.5.3)
Input: initial network graph Σ0 = (Y 0, E0

Y )
repeat

1. compute geodesics using Floyd-Warshall (Algorithm 5)
2. compute edge masses M given in (4.5.2)
3. update Y by applying ADMM steps until the energy (4.5.3) decreases
4. update the edges EY as given by the condition (4.5.7), and the heuristic described
in 4.5.4

until convergence
Output: local minimizer Σ = (Y,EY )

The overall complexity of the algorithm is O((m + d)n2), as it is dominated by the
step of computing geodesics. Finally, note that all of the steps in Algorithm 6 decrease the
energy, and so the algorithm does converge.

4.6 Numerical examples
In this section we demonstrate the Algorithm (6) on a few different discrete measures µ.
One of the examples illustrates how the approach might be used to recover one-dimensional
structure of data, while the second example aims to find the optimal transportation networks
for uniformly distributed populations.

Example 4.6.1 (One-dimensional grid structure). We first revisit an earlier example in
which data are concentrated around a grid-like structure. The example is similar to Ex-
ample 3.4.3, except that we restrict the data to R2, and do not add background noise. The
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data here consist of 240 points generated by four intersecting lines with Gaussian noise,
and are shown on the left of Figure 4.6.1 along with the initialization for the algorithm.

Like the initialization strategy for computing multiple penalized principle curves, here
we initialize with small components, but not singletons which do nothing for the (ONT)
energy. Let us make the following observation to justify initializing with multiple compo-
nents, given that we formally considered the (ONT) functional over connected (and com-
pact) sets. Note that we may consider the functional over compact sets with a fixed bound
on the number of components, which ensures the lower semicontinuity of theH1 measure,
and therefore also the existence of minimizers. We note that in the numerical setting, the
number of components will always be bounded by the number of data points n. Further-
more, if a minimizer to the problem over the larger configuration space is connected, then
it is also a minimizer to our (ONT) problem.
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Figure 4.6.1: Data concentrated around a grid structure. The initialization of the algorithm
is shown on the left. On the right is a computed minimizer for α = 0.1, λ = 0.02, obtained
by only using the criteria (4.5.7) for updating edges.

We first ran the algorithm only using the basic criteria (4.5.7) to update the edges of the
network. The resulting configuration is shown on the right in Figure 4.6.1. Although the
segments in the initialization are not distributed evenly along the data, the found network
does approximate a large portion of the grid. Notably, there is a missing piece correspond-
ing to the left vertical line, which the edge-update criteria (4.5.7) was not able to resolve.

Using the heuristic for adding edges described in Section (4.5.4) however, the algorithm
is able to recover the full grid structure (albeit without the topology). The found minimizer,
shown in Figure 4.6.2, does indeed have lower energy 0.4757, compared to 0.4975 for
the minimizer without a loop (in Figure 4.6.1). In Figure 4.6.2, we also show the non-
network edges with non-zero weight of the graph (X ∪ Y,E,W ). With a close look one
can observe that several of the data may enter the network through different points (or not
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Figure 4.6.2: The computed local minimizer for the data and initialization shown in Figure
4.6.1, using the heuristic for adding edges described in (4.5.4). On the right the same
minimizer is shown (green) together with the positive-weight edges on the full graph (X ∪
Y,E,W ).

at all), depending on which which direction they are to travel to.

Example 4.6.2 (Optimal transportation network for uniform population distribution). In
this example, our aim is to understand what the optimal transportation networks will look
like for a uniformly distributed population. We will consider a uniform distribution inside
a ball, and we are particularly interested in how optimal networks change as the population
grows.

We note that have the following two scaling properties of the (ONT) functional. For the
first, consider re-scaling the diameter of the measure µ by a factor of L, that is µL(A) :=
µ(A

L
) for every Borel set A. Then we have that

Eλ
µL

(LΣ) = LEλ
µ(Σ),

since our cost function cΣ(x, y) also scales linearly with the length of the network and the
diameter of the population. In other words, simply scaling the population only changes
minimizers by the same scaling factor. On the other hand, if we re-scale the total mass of
the measure µ by a, then we get the following property

Ea2λ
aµ (Σ) = a2Eλ

µ(Σ).

In view of these scaling properties, we consider a sequence of population distributions
with increasing total mass. We expect the optimal networks to become more complex as
the mass increases, so we also refine the distribution (increase n) simultaneously. More
precisely, we fix the mass of every point to 1

200
, and increase the number of data points n

in successive runs. We also increase λ linearly with n (λ = n
3200

), since experiments and
heuristics otherwise show that the average distance to the network decreases as n grows (if
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λ is fixed), causing the resolution of the computed minimizers to progressively worsen due
to the discrete data.

That λ should scale like n can be supported by the following heuristic argument. Since
the spacing between the points is kept fixed, the area scales like n, while the radius like√
n. If we let ` denote the average projection distance to the network, then the total trans-

portation cost behaves like n2(` + α
√
n), while the the total length of the network would

be roughly n
`
. First order conditions for the energy n2(` + α

√
n) + λn

`
with respect to `

give `∗2 = λ
n

. Therefore, if the average distance ` to a minimizing network is to remain
constant, then λ should behave like n. Note that in light of the second scaling property
above, we have that

Enλ
nµ(Σ) = nEλ√

nµ(Σ)

and thus our experiments are equivalent to increasing the total mass at the rate
√
n and

keeping λ fixed.
We generate the data by evenly spacing a number of points on concentric circles (rings)

of increasing size. The spacing between consecutive rings is fixed so that it is roughly the
same as the distance between consecutive points on any ring.
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Figure 4.6.3: n = 95 (left) and n = 133 (right) data points shown with the lowest-energy
local minimizers found.

We computed local minimizers for a range of n values (95, 133, 227, 347, 661, 856,
1321, 1887), and for each we ran the algorithm using a variety of initial configurations.
Throughout we used α = 0.1, and fixed the mass of each point to 1

200
, increasing λ = n

3200

along the way (as explained above). Shown in Figures 4.6.3, 4.6.2, 4.6.2, and 4.6.2 are
the lowest energy local minimizers that we found. It is interesting for us to note that for
increasingly larger cities (starting with n = 347), we found several configurations achiev-
ing energy comparable (within a few percent) to that of the minimizers shown. Indeed, for
the larger cities, we make no claim that the topology of the shown configurations is similar
to that of the global minimizers, but from our experiments we do believe that the found
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networks are close in terms of the (ONT) energy. This perhaps has positive implications
for applications in designing networks for transportation. Namely, there would be options
for building networks with similar total costs, and careful design may not be so crucial.
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Figure 4.6.4: n = 227 (left) and n = 347 (right) data points shown with the lowest-energy
local minimizers found.
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Figure 4.6.5: n = 661 (left) and n = 856 (right) data points shown with the lowest-energy
local minimizers found.

In Figure 4.6.2 we illustrate how the energies and lengths of our computed minimizers
relate to n via log-log plots. We note that the log-log plot for the energy seems to be re-
markably linear. The slope of the least squares line is 2.17, while the slopes of the segments
are 2.22, 2.19, 2.17, 2.15, 2.16, 2.14, 2.16, 2.16, 2.20. We note that the heuristics above
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Figure 4.6.6: n = 1321 (left) and n = 1887 (right) data points shown with the lowest-
energy local minimizer found.

predict the energy should scale like n2.5. The consistent discrepancy from our experiments
is intriguing, and is one that we do not have a good explanation for. On the other hand, the
plot for the length is not as consistent, with the slope of the least squares line being 1.21
(individual slopes: 1.92, 1.44, 0.74, 1.39, 0.87, 1.02, 1.88, 1.03, 1.05). Perhaps this is not
surprising, since as we noted earlier, there seem to be many network configurations with
varying total length that achieve similar low energy. In both plots we included results for
two more values of n (177, 491) for which we did not show found configurations, since
they are similar to some shown above (for nearby values of n).

4.7 Further discussion

There are a number of directions that remain open for the selective-transport functionals
that we have proposed.

Of significant interest is a better understanding of the relation between the parameters
of the functional, the measure µ, and the properties of the minimizers, their topology in
particular. This is not as direct to obtain as in the case of penalized curves, due to a more
general configuration space and a transportation term whose influence is difficult to pre-
cisely understand. However, we believe some progress in this regard should be attainable.

On the algorithmic side, there a couple of areas where improvement would be very
much valued. One of the biggest is in dealing with the non-convexity of the functionals and
correctly identifying the topology of the global minimizers. In the case of data with a clear
one-dimensional structure, one may expect that it can be appropriately recovered following
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Figure 4.6.7: log-log plots of the energy (left) and length (right) of the computed minimiz-
ers against n.

an initialization strategy suggested by the algorithm for (MPPC), i.e. by initializing with
short components. One might then hope that the components would grow and eventually
connect to recover the underlying structure. However, there is a significant difference for
the selective-transport problem we consider, which lies in our choice of the cost-function.
Namely, for our geodesic cost-function the data are not forced to go through any part of
the network, and therefore network components which are too small might be used for
little or no transportation, preventing them to grow or connect. This seems to be the case
in general, even though this initialization approach did a reasonable job in recovering the
grid in Example 4.6.1. To address some of these concerns, one may consider more strict
cost functions that force the data to visit a part of the network, and returning to functionals
closer to the average-distance functional could be a starting point.

We conclude with a remark regarding the efficiency of the proposed algorithm for com-
puting optimal networks for selective-transport. Although the algorithm has a feasible run-
time (a few hours on a standard laptop) for computing local minimizers for problems on the
order of n ∼ 1000 data points, the complexity does scale quadratically with n. This could
present difficulties for computing optimal transportation networks for much larger cities,
and even more so for data analysis applications with a very large number of data points. We
expect that the computational complexity may be improved, especially if one considers cost
functions more closely related to the penalized principal curves and the average-distance
problems.
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Chapter 5

Conclusion

In this thesis we investigated different models and methods for approximating a measure µ
with a one dimensional object. We focused on two approaches with different applications,
but stemming from a common framework inspired by the average-distance problem.

We proposed a functional for computing multiple penalized principal curves, and
demonstrated its value as a tool for recovering the one-dimensional structure of data, when
it has such. We found quantitative relationships between the data and parameters of the
functional that govern how the minimizing curves behave. In particular we understood the
scale at which minimizers approximate the data and when they become linearly unstable,
as well as when they consist of multiple components. On the computational side, we de-
veloped a fast numerical algorithm, and demonstrated its suitability through a number of
examples that also illustrated its robustness to local minima in cases of significant noise.

One of the limitations of multiple penalized principal curves and minimizing networks
of the average-distance problem is in the topologies that they can recover. We can say this
was part of the motivation for introducing additional models in which the approximating
objects are networks, although the problems are largely motivated by the independent ap-
plication of finding networks that best serve the transportation needs of a given population.
To this end, we proposed a few models for optimal networks for selective-transportation.
We established existence of minimizers, and provided a numerical algorithm for approx-
imating them. In contrast to multiple penalized principal curves, with the functionals we
proposed for networks remain desires for better understanding the behavior of minimizers,
and for dealing with non-convexity in computing them numerically. Extending analysis
and efficient numerical algorithms from relatively simple curves to potentially complex
networks has proven difficult, and is an interesting direction for future work.

Finally, we note that extending the framework to allow for higher dimensional approx-
imations to measures remains very much open. In our setting of one-dimensional approxi-
mations, the functionals we consider have natural interpretations which make them appeal-
ing and perhaps easier to understand. A naive approach of using a H2 term in the ADP
functional does not get far, as any set with finiteH2 measure can be approximated arbitrary
well by a set with zero H2 measure (or by a sequence of sets with positive H2 going to
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zero). Careful investigation is needed to find an extension to the setting of two-dimensional
(and higher) approximations that is both theoretically appealing and practically suitable for
applications.
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