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Abstract

Gene order gets evolved under events such as rearrangements, duplications, and losses,

which can change both the order and content along the genome, through the long his-

tory of genome evolution. Recently, the accumulation of genomic sequences provides

researchers with the chance to handle long-standing problems about the phylogenies,

or evolutionary histories, of sets of species, and ancestral genomic content and or-

ders. Over the past few years, such problems have been proven so interesting that

a large number of algorithms have been proposed in the attempt to resolve them,

following different standards. The work presented in this dissertation focuses on

algorithms and models for whole-genome evolution and their applications in phy-

logeny and ancestor inference from gene order. We developed a flexible ancestor

reconstruction method (FARM) within the framework of maximum likelihood and

weighted maximum matching. We designed binary code based framework to recon-

struct evolutionary history for whole genome gene orders. We developed algorithms

to estimate/predict missing adjacencies in ancestral reconstruction procedure to re-

store gene order from species, when leaf genomes are far from each other. We de-

veloped a pipeline involving maximum likelihood, weighted maximum matching and

variable length binary encoding for estimation of ancestral gene content, to recon-

struct ancestral genomes under the various evolutionary model, including genome

rearrangements, additions, losses and duplications, with high accuracy and low time

consumption. Phylogenetic analyses of whole-genome data have been limited to small

collections of genomes and low-resolution data, or data without massive duplications.

We designed a maximum-likelihood approach to phylogeny analysis (VLWD) based
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on variable length binary encoding, under maximum likelihood model, to reconstruct

phylogenies from whole genome data, scaling up in accuracy and make it capable

of reconstructing phylogeny from whole genome data, like triploids and tetraploids.

Maximum likelihood based approaches have been applied to ancestral reconstruction

but remain primitive for whole-genome data. We developed a hierarchical frame-

work for ancestral reconstruction, using variable length binary encoding in content

estimation, then adjacencies fixing and missing adjacencies predicting in adjacencies

collection and finally, weighted maximum matching in gene order assembly. Therefore

it extensively improves the performance of ancestral gene order reconstruction. We

designed a series of experiments to validate these methods and compared the results

with the most recent and comparable methods. According to the results, they are

proven to be fast and accurate.
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Chapter 1

Introduction and Contributions

Gene-order data have been extensively recognized and successfully conducted in the

biological research over the last few decades. Although nucleotide sequences and

amino acid sequences still dominate in phylogenetic research problems, gene order

data aligned from the permutation of genes along chromosomes are likely having

the potential to return more convincing and meaningful results. Since operations on

genes are much harder to occur than point mutations at the nucleotide level, gene

ordering allows researchers to trace further back in time than nucleotide sequences.

A set of evolutionary events based on rearrangements of genes and modifications of

gene contents has been biologically identified and mathematically modeled [5]. Deep

mathematical and algorithmic methods to copy with gene order permutations have

been developed to solve various biological problems. However, the performances are

still far from satisfaction, and with the emerging of whole genome and high-resolution

data, it is clear that novel approaches and algorithms are greatly in need to improve

the performance of current solutions of these problems.

1.1 Literature Review

In 1936, Dobzhansky and Sturtevant, for the first time, proposed to use the degree

of disorder between the ordering of genes in two genomes as a measurement of an

evolutionary distance between species. They described a scenario of inversion events,

to explain chromosomal differences among 17 groups of flies [57, 18]. But what on

earth allows us to utilize the order of genes to carry out all kinds of studies in compar-
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ative genomics? The key is that genes themselves are less subject to mutations and

are therefore rarely cut by rearrangement [49]. Therefore by viewing a chromosome

as a permutation of genes (or conservative blocks) in the order and several chromo-

somes are then placed as a genome. The organizing of geneorder data enables the

reconstructing of evolutionary events far back in time [51, 7].

Watterson, Later in 1982, presented the very initial and formative definition of the

chromosome inversion problem [66] and they were intended to come up with a distance

measurement between two organisms, in order to reconstructing a phylogenetic tree.

So how to compute the minimum amount of inversion events (defined as the edit

distance) to transform one genome into the other? Until nearly a decade later in 1995,

Hannenhalli and Pevzner [29] provided the first polynomial algorithm for the chromo-

some inversion problem, in which their finding has greatly advanced the development

of gene order research. The next significant progress in distance measurement be-

tween two genomes is the introduction of double-cut-and-join (DCJ) distance [70, 5].

Although DCJ is not directly and biologically observable or provable through gene or-

der study, the DCJ distance is then extensively favored since it can emulate a variety

of other events, while greatly simplifies the computational model.

Mostly, researchers who work on gene order data, focus on copying with two differ-

ent yet related problems: the phylogenetic reconstruction problem and the ancestral

reconstruction problem. Both together are widely known as Big Phylogeny Problem.

The phylogenetic reconstruction problem aims to reconstruct the phylogeny in terms

of a binary tree from a set of genomes of extant species, while the ancestral recon-

struction problem searches for the most plausible gene order of an ancestral genome.

An internal node in a phylogeny tree represent a ancestral genome.

A number of methods have been proposed for phylogenetic reconstruction prob-

lem from gene order and they can be roughly classified into parsimony-based and

distance-based according to the standards they follow. Saitou [50] presented the first
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distance-based method called Neighbor-joining aimed for treating DNA sequences.

Neighbor-joining was soon adopted for solving the phylogeny problem using gene-

order data since all distance-based methods are based on statistical clustering from

a distance matrix computed between each pair of genomes, In 2002, Desper [17]

presented a faster and more accurate algorithm for phylogeny reconstruction called

FastMe based on the minimum-evolution principle and the nearest neighbor inter-

changes (NNIs). Since the edit distance often severely underestimates the true num-

ber of events, some forms of corrections are needed. Empirical derived estimation

(EDE) [43] estimates the true number of inversions in which the minimum number of

inversions is initially computed between two genomes and an empirical correction is

applied based on a statistical model to compute the true inversion distance. Later

Lin developed TIBA [37] which provides a more accurate estimation mechanisim for

the true pairwise distances.

On the other hand, there are a wide collection of parsimony-based method for

gene order based phylogenetic reconstruction problem. Most of these parsimony-

based methods use direct optimization techniques. In particular, BPAnalysis [51]

was the first program written by Blanchette and Sankoff in 1998, to reconstruct phy-

logenies based on the breakpoint parsimony of gene orders. Moret and Tang [43, 44]

then in 2002 presented GRAPPA which greatly improves the results and the efficiency

of BPAnalysis through replacing the breakpoint median solver with an inversion me-

dian solver. Around the same time, Bourque and Pevzner proposed the MGR [8] which

instead of using the breakpoint distance, addressed the issue of handling multichro-

mosomal genomes.

Another type of parsimony-based methods relies on the encoding techniques of

gene order data, which transforms permutations into sequences and then uses existing

analysis tools for sequential data to reconstruct a gene order phylogeny. In particular,

Cosner proposed the first method of this kind application called Maximum Parsimony
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on Binary Encodings (MPBE) [14, 15] which produces one character for each gene

adjacency present in the data. Wang [65] later gave the second method called MPME

(M stands for multistates) in which each signed gene has exactly one character. In

all evaluations, both MPBE and MPME were easily surpassed by direct optimization

approaches.

To date, however, probabilistic methods for solving the gene order phylogenetic

reconstruction problem are introduced by a single effort from Larget [34], in which

a Bayesian approach showed a evidence of success on a couple of fairly close data

sets; this approach, however, failed to converge on a harder data set later analyzed

by Tang [61].

Although gene duplications and losses have long been studied by molecular biolo-

gists, their integration with rearrangements in a unified model has seen relatively little

work to date by bioinformists or computational scientists. In particular, Tang [61]

introduced a way of determining the gene content when solving the median prob-

lem in GRAPPA. Later Zhang [74] presented a new distance measurement for genomes

with gene inversions and losses which complies with triangle inequality standard. He

showed it that his method is remarkably more accurate than its predecessors, while

handling gene duplication is still out-of-reach. For distance methods, El-Mabrouk [20]

first introduced an exact algorithm for the computation of edit distances with inver-

sions and losses. More recently, Yancopoulos [71] suggested a way to compute edit

distances under indels, duplications, and DCJ operations, and Swenson [58] devel-

oped an algorithm to approximate the true evolutionary distance under indels, dupli-

cations, and inversions for single chromosomal genomes, showing good results under

simulation study. In 2011, Hu [30] introduced the first successful attempt to use

ML reconstruction based on whole-genome data; later, Lin [36] developed a faster

and more accurate yet simpler method MLWD in which they introduced a biased

transition model and a simplified gene-encoding scheme.
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For the ancestral reconstruction problem, a handful of methods have been devel-

oped using different methods and techniques. Traditional parsimony methods such

as GRAPPA and MGR are capable to compute the phylogeny and ancestral gene orders

at the same time, but are computational NP-hard problem. In order to boost the

accuracy and scalability at the same time, many works were published in the last few

years. MGRA relies on the notation of the multiple breakpoint graphs and is a more

recent derivative of MGR developed by Alekseyev [1] in 2009. GASTS, later developed

by Xu [69], is based on a fast and accurate heuristic for the inversion median solver

which is developed by [48]. It can scale up linearly instead of exponentially with the

size of the genomes involved. The Single-Cut-or-Join (SCJ) operation [23, 6] was pro-

posed as a new rearrangement distance between multi-chromosomal genomes, leading

to a fast median solver and Fitch-style algorithm for ancestral genome reconstruction.

A new framework InferCars has been established in 2006 by Ma [40] and at-

tracted a lot of attention in the last a couple of years. Unlike previous methods which

explicitly focus on a set of predefined evolutionary events, this framework focus on

gene adjacencies and the goal is usually to determine how likely an adjacency can be

observed in an ancestor. Later he presented a probabilistic version InferCarsPro [39]

by incorporating a modified Jukes-Cantor model. Gagnon introduced a new concept

of "Gapped Adjacency" and proposed a method called GapAdj [25] in 2012. GapAdj is

considered flexible since it can handle data set with unequal gene-content. By mixing

the framework of event-based (GRAPPA) and adjacency-based (InferCarsPro) meth-

ods, Zhang [75] proposed a method which inherits the high performance of direct

optimization and reduces its difficulty by fixing a portion of adjacencies before the

exact optimization step.
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1.2 Academic Contributions

All the works presented in this dissertation has been accomplished with close collabo-

ration with Dr.Jijun Tang. Only the works that we have taken the lead are presented,

including Variable Length Binary Encoding (VLBE) and its successor Maximum Like-

lihood on Whole-genome Data (VLWD) for the phylogeny problem, Maximum Like-

lihood based method using Weighted maximum matching for Ancestral Genomics

(FARM) and its extension for the ancestral genome reconstruction.

On Phylogenetic Reconstruction

In chapter 5, we described a series of maximum-likelihood approaches to phylogenetic

analysis from whole genome data. Following the previous framework, VLBE enables

VLWD to run significantly better, even the whole genome data set with a dozen of

thousands genes can be analyzed within hours.

Our methods possess the following advantages:

(i) Our methods utilize the maximum-likelihood analyzing tools which allow them

to run significantly better and faster than their parsimonious predecessors; even the

whole genome data set with a dozen of thousands genes can be analyzed within hours.

(ii) Our methods are very accurate and outperform the other competitors in almost

all cases according to our simulation experiments. (iii) A remarkable advantage of

our methods is their independence over evolutionary events, indicating that they can

handle any existing event in an unified way.

Related publications are listed below.

1. Zhou, Lingxi, et al. "Phylogeny Reconstruction from Whole-Genome Data Us-

ing Variable Length Binary Encoding." Bioinformatics Research and Applica-

tions: 12th International Symposium, ISBRA 2016, Minsk, Belarus, June 5-8,

2016, Proceedings. Vol. 9683. Springer, 2016.
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2. Zhou, Lingxi, et al. "Phylogeny Reconstruction Using Variable Length Binary

Encoding." BMC Bioinformatics submitted 2016.

On Ancestral Genome Reconstruction

In chapter 3 and chapter 4, we described two methods for ancestral genome recon-

struction FARM and its extension FARM+. FARM and FARM+ fall into typical adjacency-

based probabilistic approaches which try to answer how likely an adjacency to be

observed in an ancestor. And in FARM+, we introduce an missing adjacencies predic-

tion mechanism.

First, our methods are fast and is able to scale up to handle whole genome data

polynomially. This is achieved by treating each adjacency in the leaf genomes as a

unique and independent (binary) character. So we only need to compute a small

portion of all possible adjacencies and also cut the number of states for an adjacency

character to 2. Second, we adopted our biased transition model into the marginal re-

construction [72] to calculate the posterior probability of an adjacency in an ancestor.

This model has been proved in MLWD to be very useful in phylogeny reconstruction.

Third, FARM is able to handle gene losses, insertions and duplications, other than re-

arrangement. through a novel probabilistic approach for inferring ancestral genome

contents using the variable length binary encoding. The underlying idea is straightfor-

ward: by treating each occurance of a gene as a bit, we can compute the probability of

observing this occurance in an ancestral genome. Fourth, FARM implemented a more

sophisticated way to assemble gene adjacencies into a valid gene order permutation.

It replaces the greedy strategy and TSP solver with an exact solution by solving

weighted maximum matching problem. This strategy not only massively increases

the performance of method, but also significantly mitigates the issue of bad assembly

of gene adjacencies.

Related publications are listed below.
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Chapter 2

Background

2.1 Introduction to Gene Order

It is the adequacy of DNA replication that accounts for the diversity among living

organisms. A nucleotide sequence may evolve at the level of nucleotides in different

types, and it is well known that nucleotide sequences may also evolve by modifying

their orderings at a larger scale. Pioneerd by Dobzhansky and Sturtevant in 1936 [57],

they, for the first time, proposed to use the degree of disorder between the permuta-

tion of genes in two genomes as a measurement of an evolutionary distance between

organisms. They depicted a scenario of inversion to explain chromosomal difference

between 17 groups of flies [18]. As more operations are later discovered and general-

ized, such large-scale evolutionary operations are often called genome rearrangements,

including inversion, transposition and etc.; The other type of operations that change

the gene content of the genome are typically insertion, deletion and duplication. The

segments of a genome that all these operations act on are often biologically genes.

Therefore from the view that a genome is the collection of genes in the order of

which they are placed along one or more chromosomes, Because genes are less sub-

ject to point or bit mutations and are rarely cut by rearrangement [49], gene-order

data enables the reconstruction of evolutionary history with events far back in time

[51, 7].
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2.2 Gene Order Format and Evolutionary events

Given a set of n genes labeled as G = {1, 2, · · · , n}, a genome can be represented

by an set of chromosomes of these genes. A chromosome can be linear or circular

in which its end meets head. Each gene is presented with an orientation, which is

either marked as i or -i. A gene can also be represented by two ends of it, like i

being (it → ih). Two genes i and j are adjacent, if i is immediately followed by j, or,

equivalently, −j is immediately followed by −i, and they therefore form an adjacency,

denoted as (ih, jt). If a gene k is located at either end of a linear chromosome, we

define k as being adjacent to an extremity e to mark the beginning or ending of a

chromosome, noted as (e, kh) or (kt, e), called telomeres.

Genomic rearrangement events can change the ordering of genes on a chromosome,

or exchange and combine content across chromosomes. For example, let G be the

genome with a single linear chromosome,

G = {(1, 2, · · · , i− 1, i, · · · , j, j + 1, · · · , k, k + 1, · · · , n)}.

An inversion, or reversal, reverses a segment of genes on a chromosome. An

inversion between indices i and j (i ≤ j), transforms G to a new genome with linear

ordering

G′ = {(1, 2, · · · , i− 1,−j,−(j − 1), · · · ,−i, j + 1, · · · , n)}.

A transposition on genome G acts in this way, three indices i, j, k, with i ≤ j and

k /∈ [i, j], picking up the interval i, i + 1, · · · , j and inserting it immediately after k.

Thus genome G is replaced by (assume k > j)

G′ = {(1, · · · , i− 1, j + 1, · · · , k, i, i+ 1, · · · , j, k + 1, · · · , n)}

There are other events that are common as well. Translocation breaks at two

chromosomes and reattaches a part to another chromosome. A fusion joins two chro-

mosomes, while fission splits one chromosome into two. A deletion deletes a single or
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a segment of genes from a genome, while its opposite operation, an insertion, intro-

duces a gene or a segment of genes that have not been presented into a chromosome

at a time.

As to the multiple copy of genes, a whole genome duplication (WGD) accounts

for the operation on an ancestral node, by which genome G is transformed into

G′ = {(1, 2, · · · , i− 1, i, · · · , j, j + 1, · · · , k, k + 1, · · · , n),

(1′
, 2′
, · · · , i− 1′

, i
′
, · · · , j ′

, j + 1′
, · · · , k′

, k + 1′
, · · · , n′)}.

A segment genome duplication operates on one gene or a piece of genes instead of

entire genome. For instance, the genome G is transformed into

G′ = {(1, 2, · · · , i, ..., j, j + 1, ..., k, i′
, ...j

′
, k + 1, ..., n− 1, n)},

for 1 ≤ i ≤ j ≤ k ≤ n.

Given two genomes G1 and G2, we define the edit distance d(G1, G2) as the min-

imum number of events required to transform one into the other. The inversion

distance between two genomes measures the minimum number of inversions needed

to transform one genome into another. Hannenhalli and Pevzner [29] developed a

mathematical and computational framework for signed gene-orders and provided a

polynomial-time algorithm to compute inversion distance between two signed gene-

orders; Bader et al. [3] later showed that this edit distance can be computed in linear

time.

Yancopoulos et al. [70] proposed a universal double-cut-and-join (DCJ) operation

that accounts for common events such as inversions, translocations, fissions and fu-

sions, which resulted in a new genomic distance that can be computed in linear time.

Although there is no direct biological evidence for DCJ operations, these operations

are very attractive because they provide a simpler and unifying model for genome

rearrangement.
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Figure 2.1 A highly resolved Tree Of Life, based on completely sequenced genomes,
from https : //commons.wikimedia.org/wiki/F ile : Tree_of_life_int.svg

2.3 Phylogenetic Reconstruction with Gene Order Data

A phylogeny is a term that represents the reconstructed evolutionary history of a set

of organisms in the form of a binary tree (rooted or un-rooted), in which the given

set of organisms are descendants placed at the leaves, and internal nodes stand for

extinct ancestors connected by the edges. Figure 1 shows a highly resolved Tree Of

Life, based on completely sequenced genomes.

Many types of data can be used to reconstruct phylogenetic history from geo-

graphic and ecological, through the morphological and metabolic to the molecular

data [60]. By the rapid accumulation of molecular data and also due to its merit of

exact and easy accessibility, sequence-based data of a few genes long has become the

predominant source for phylogenetic analysis. But it suffers from some prominent

issues, especially, the well-known gene tree vs. species tree problem [46, 41]. Gene

order data, a relatively novel and promising data type, studies the whole-genome at

the same time from a higher-level perspective and hence naturally avoids the gene tree

vs. species tree problem. At the meanwhile, there are great mathematical challenges
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encountered in detecting and handling the genome-scale changes, not to mention to

employ existing techniques directly for sequences data. In the recent years, the phy-

logenetic reconstruction from gene-order data has drawn a lot of attention from both

computer scientists and biologists. Researchers have developed many methods [35]

in coping with this problem.

Methods for phylogenetic reconstruction of gene-order data can be roughly clas-

sified into three groups according to the criterion they follow.

• Maximum likelihood based methods: MLBE [30], MLWD [36], VLWD [77].

• Distance-based methods: Neighbor-join [50], FastME [17] and TIBA [37]

• Parsimony-based methods: BPanalysis [7], GRAPPA [43], MGR [8], SCJ [22],

MPBE [15] and MPME [43].

Neighbor-joining and FastME use a bottom-up clustering method for the creation

of phylogenetic trees. Distance-based methods are sometimes favored due to their

excellent scalability with the number and size of genomes as well as an acceptable

performance they can achieve. Their performances largely depend on how the dis-

tance measurement is defined and how well such lengths are congruent with the real

distance. Although Hannenhalli and Pevzner [29] provided the first polynomial al-

gorithm for computing the minimum number of inversion between two genomes, the

actual evolutionary distance, is always severely underestimated. To approach the real

number of evolutionary operations, Lin et al. proposed TIBA that relies on a simple

structural characterization of a genome pair under the DCJ model and significantly

improves the accuracy of distance methods.

Parsimony methods are built upon the fundamental assumption that the real phy-

logeny along with a set of ancestors must minimize the total number of evolutionary

operations required to generate the descendants from a common root node. Every

tree traversed is scored by summing the edit distance between the two nodes of each
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edge. In the context of gene-order data, the first heuristic BPAnalysis was proposed

by Blanchette et al. based on the breakpoint distance. BPAnalysis enumerates all

(2n− 5)!! trees and uses an iterative heuristic to label the internal nodes with signed

gene orders. To improve the speed and performance of BPAnalysis, Moret et al.

later reimplemented BPAnalysis and developed GRAPPA. GRAPPA not only suc-

cessfully augmented the BPAnalysis with more sophisticated search strategies and

high-performance algorithmic engineering, but also showed excellent extensibility to

accommodate newly-defined evolutionary distance. However, parsimony methods

following direct optimization depend on solving numerous instances of the median

problem. In particular, the median problem is defined as given three genomes, search

the fourth genome that minimizes the sum of the distances between it and the other

three. But for most evolutionary distance, solving for the exact median genome is

still NPhard [11, 9, 63]. Therefore, direct optimization methods are rather accurate

but also extremely time-consuming. One exception is the breakpoint like Single-cut-

or-join (SCJ) which has a polynomial time solution for the median problem, but

in overall, an exact, branch-and-bound search for the phylogeny with SCJ is still

NP-hard.

Later, other parsimony methods that transform gene-order data into sequence-

like string have also been proposed. For example, MPBE (Maximum Parsimony on

Binary Encoding) converts adjacency pairs from the signed permutation into strings

of binary characters. These strings are further converted into nucleotide sequences

and analyzed using common sequence parsimony software (e.g. PAUP* 4.0 [59]) to

return a phylogeny. Wang et al. later proposed a new set of encodings schemes

called MPME (Maximum Parsimony on Multistate Encoding) to improve the accu-

racy. These encoding-based parsimony methods can achieve slightly better accuracy

compared to the neighbor-joining method, yet they are still computationally very

expensive.
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Maximum-likelihood based methods that also transform gene-order data into

sequence-like string have been proposed in the past a few years. MLBE [36] by Hu

encodes gene order information into a binary sequence based adjacency list. Then

the sequence is converted into a sequence of amino acids by some strategy. Finally

the amino-acid-like sequence is fed into a maximum likelihood approach, like RAxML

to reconstruction the phylogenetic history. Later, Lin [36] proposed a new scheme

(MLWD) to encode whole genome data into binary sequences and also designed an

independent transition model for state change, leaving out the amino acids enco ding

apart. This approach has been proven to be of high accuracy, due to applying its

state transition model. Since this method avoids the process of transforming binary

encodings into artificial biological sequence and directly use ML reconstruction pro-

gram RAxML to build a tree from these sequences, it also significantly reduces its

running time to a very lower level.

2.4 Ancestral Gene Order Reconstruction

The success of phylogenetic reconstruction has demonstrated the power of reveal-

ing the evolutionary relation of a group of organisms by computational means. As

phylogeny often takes the form of the rooted binary tree, each internal node of the

tree can be naturally regarded as the common ancestor of the living organisms de-

scended from it. The predication of ancestral gene orders of these internal nodes has

been further investigated by both computer scientists and biologists, and a numb e

of methods have been developed to attack this problem.

Depending on whether or not the phylogeny tree is given, ancestral genome recon-

struction problem can b e classified into the small phylogeny problem (SPP) and the

big phylogeny problem (BPP). The SPP defines when the phylogenetic tree is given,

and the goal is only to reconstruct the ancestral genomes, while the BPP searches the

most appropriate tree along with a set of ancestral genomes with an optimized score,
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usually. In this study, we are interested in tackling the small phylogeny problem. Most

of the current metho ds solving SPP adopt either adjacency-based approach in which

rearrangements are only implicitly considered or rearrangement-based approach that

involves computing numerous instances of median problems. In particular, adjacency

based metho ds mainly fo cus on the analysis of indep endent gene adjacencies, try to

calculate or estimate a score for each gene adjacency to b e present in an ancestor. A

graph in which genes and adjacencies are vertices and edges is often constructed, and

gene adjacencies are rejoined into contiguous ancestral regions (CARs) by optimizing

the total score.

From another point of view, some methods employ a parsimonious framework

and suggest to use least number of changes to explain observed data; while the rest

estimates the parameters and use probabilities or likelihood to score the gene adja-

cencies. Table 2.1 summaries the difference between a number of methods for solving

SPP given gene-order data.

Table 2.1 Summary of current methods for solving small phylogeny problem (SPP)
from gene-order data.

Parsimonious Probabilistic
Adjacency − based InferCARs [40] InferCARsPro [39]

GapAdj [25] PMAG’s [21, 31]
FARM [76]

Rearrangement− based GRAPPA [43], MGR [8, 1] N/A
GASTS [69] SCJ [47]

In the context of rearrangement-based parsimonious methods, the median problem

can be formalized as follows: given a set of m genomes with permutations {xi}1≤i≤m

and a distance measurement d, find another permutation xt such that the median

score defined as ∑m
i=1 d(xi, xt) is minimized. GRAPPA and MGR (as well as their

recently successors) are similar methods that implemented a set of median solvers for

phylogeny and ancestral gene order reconstruction. However solving even the sim-
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plest case of median problem when m equals to three is NP-hard for most distance

measurements [12, 9, 63]. Specifically, GRAPPA, given a tree topology, iteratively

assigns median genomes to ancestral nodes in the tree until converged. Then the set

of gene order assignments that minimizes the tree score are reported as the resulting

ancestral genomes. Since the scoring procedure of GRAPPA involves solving numer-

ous instances of median problems, a fast median solver is playing a crucial crucial

rule in this method. Exact solutions to the problem of finding a median of three

genomes can be obtained for the inversion, breakpoint and DCJ distance measure-

ments [13, 53, 68]. Among all the median solvers, the best one is the DCJ median

solver proposed by Xu and Sankoff (ASMedian [68]) based on the concept of adequate

subgraph. Adequate subgraphs allow decompositions of an multiple breakpoint graph

into smaller and easier graphs. Though the ASMedian solver could remarkably scale

down the computational costs of median searching, it yet runs very slow when the

genomes are really distant. On the other hand, GASTS and SCJ are two heuristic

methods that are scaled up to handle high-resolution vertebrate genomes. GASTS is

based on a fast and accurate heuristic strategy for the inversion median [48] problem

searching procesure, in which only a few of the simplest decompositions of adequate

graphs will be solved. It provides a fast and robust scoring approach for a fixed tree

and presents very high accuracy in the simulation experiments, compared to MGR.

Signle-cut-or-join (SCJ) defines a breakpoint-like operation under which the median

problem and SPP can be resolved in polynomial time. It utilizes the Fitch’s small

parsimony algorithm to solve the SPP, in which each adjacency is viewed as a binary

character of state, being either present or absent. Ultimately, all adjacencies are de-

termined in ancestral genomes. This is the only known evolutionary operation for

which the SPP has a polynomial time solution.

Adjacency-based parsimonious method was formally introduced in InferCARs by

Ma in 2006 for the first time. It identifies a most-parsimonious scenario for the
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changes of each individual adjacency, introduces weights to the graph edges and

uses a greedy heuristic approach to search for vertex-disjoint paths in the graph.

Such path is known as contiguous ancestral regions (CAR). Later Ma introduced

InferCARsPro—an suceessor of the previous work in the probabilistic framework

for reconstructing ancestral genomes. The kernel of InferCARsPro is to predict the

posterior probability of observing an certain adjacency in the ancestral node based

on an extended Jukes-Cantor model for breakpoints. However, neither of them is

able to handle data set with unequal gene content and greedy heuristic often returns

a large number of CARs. Besides, both methods require users to input a phylogeny

with accurate branch lengths. To deal with these problems, GapAdj is developed to

handle unequal gene contents and uses TSP solver to assemble gene adjacencies into

genomes with a more reasonable number of CARs at a little sacrifices of accuracy.

The core of GapAdj is to consider a pair of genes, separated by up to a give number of

genes, as direct gene adjacency. GapAdj can also analyze data sets of unequal gene

contents by first inferring the ancestral gene content through a natural procedure

proposed in [27].

The adjacency-based Maximum likelihood method was first introduced in Infer-

CARsPro by Ma in 2010 and later formally described by Hu in 2013. Given a set of

genomes, along with its corresponding phylogenetic tree, PMAG series methods go

through three Phase 1: estimating the gene content of an internal node to predict

genes likely to present in this node; Phase 2: calculating the probability of each gene

adjacency collected from given data set; Phase 3: formalizing and solving an assembly

problem to place genes on chromosomes.

The content of a genome can be encoded into a sequence as in PMAG+ [31]. For

a gene i, if it does not appear in genome G, we will mark it as 0 in the sequence

representing G; otherwise, it is then encoded by its number of appearance and if the

copy number is larger than 9, it uses letters from A (10) t0 V. Table 3.2(c) shows
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the encoding of the two genomes in this table, where gene 3 appears twice in genome

G1, while gene 4 does not occur in G2. This encoding scheme by itself has several

limitations. First, it can only copy with data set with copy number of a gene no larger

than 32. Second, the encoded output, which serves as the input for RAxML, ignores

the transition model in it. Third, when there is an missing state of in the encoded

sequence, RAxML fails to return a sound result. Considering them, we designed a

new encoding scheme to overcome these shortcomings. The detail can be found in

Chapter 3.

Given the gene order of a genome, we also can easily obtain a set of adjacen-

cies equivalently representing each chromosome from the genome, and form a binary

sequence that specifies presence or absence of all the adjacencies [36], by viewing

all chromosomes in each genome as linear and applying an one-to-one encoding. A

gene i can be denoted by its head ih and tail it, so that there are a total of four

scenarios for two consecutive genes a and b in forming an adjacency: {at, bt}, {ah, bt},

{at, bh}, and {ah, bh}. If gene c is a telomere, we have a corresponding singleton set,

{ct} or {ch}. A genome can then be expressed as a multiple-set of adjacencies and

telomeres. We further write 1 (0) to indicate presence (absence) of an adjacency and

we consider only those adjacencies and telomeres that appear at least once in the

input genomes. For instance, genome G1 = (1, 2,−3, 3, 4) will be encoded with a set

of adjacencies T = {(1h, 2t), (2h, 3h), (3t, 3t), (3h, 4t), (0, 1t), (4h, 0)}. For an encoded

adjacency t = (ix, jy) and t
′ = (jy, ix), x and y ∈ {h, t}, t and t

′ are equivalent to

each other. Table 3.2 shows a result of encoding two artificial genomes into binary

sequences. So given a set of N genomes, PMAG methods apply this encoding to

each chromosome producing N adjacency sets, T1, ..TN , and recording each unique

adjacency into an adjacency list A. They then conduct a binary encoding for each

adjacency set in terms of the unique adjacency list A, generating N binary sequences.

Once obtaining the binary sequence encoding from input gene orders, PMAG meth-
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ods use the extended probabilistic approach for sequence data, described by Yang

[72], to compute the probability at each site. It applies the RAxML package, to

estimate the conditional probability for each site and the evolutionary distance, t,

for each branch. PAMG* iterates through steps, as described above, to compute the

probability of all adjacencies for each internal genome.

when these probabilities are obtained, all PMAG methods convert the problem

into a assembling problem–find the ancestral adjacencies. In PMAG, ancestral adja-

cencies are assembled by the greedy heuristic based on the adjacency graph proposed

by Ma [39]. This greedy method starts from a contig with the first gene and picks its

neighbor by using the adjacency with the highest probability; it then continues adding

new genes until there is no more valid connection, in which case the current contig is

closed and a new one will be formed. There are two issues with this approach that

motivated us to replace the greedy assembler with an new solver. First, the greedy

heuristic can achieve good approximation only when the data set is closely related

in which case most vertices in the graph have only one outgoing edge. Second, the

greedy heuristic tends to return an excessive number of contigs as it frequently leads

itself into dead end.

In PMAG+ and PMAG++, obtaining gene orders from (conflict) adjacencies can

be transformed into an instance of symmetric Traveling Salesman Problem (TSP),

as shown in [25] and [62]. In this case, we can transform gene ends into cities and

adjacency probabilities into edge weights in the TSP graph. However, the TSP prob-

lem is NP hard, currently the best TSP solver is limited within number of 85,900

cities, so these methods have difficulties in handling large genomes (with thousands

of genes), and the returned tour is not necessarily optimal, when a heuristic strategy

is used to scale up its input size. To overcome these and achieve better result, we re-

duce these assembly problem into a Weighted Maximum Matching Problem. Detailed

description of our work will be covered in Chapter 3.
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Chapter 3

Ancestral reconstruction under weighted

maximum matching

3.1 Motivation of FARM

Our new method FARM is designed to reconstruct ancestral genomic content and its

ordering under a flexible evolutionary scenario, which includes various evolutionary

events, including rearrangements, additions, losses, and duplications. Given a set of

genomes, along with its corresponding phylogenetic tree, this framework goes through

five phases: content estimation, adjacency collection, probability computation, ad-

jacency selection, and gene order assembly. The rest of this section describes these

steps in detail with an example input as given in Figure 3.1 and Table 3.1, in which

genomes experienced events of inversion, insertion, deletion, and duplication.

G3 G4 G2 G1

R

I7

I6

Figure 3.1 A tree of four species.
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3.2 Content Estimation

Given the information of leaf species and the phylogeny topology, FARM first predicts

all possible ancestral gene content in the target node. Unlike the method with rear-

rangement events only, in which every genome has exactly a complete and equal copy

of genes, every internal genome here has to consider all of the gene copies observed

in the leaves since a gene might either be absent or present in multiple copies.

The inference procedure views each observed gene as an independent character

with multiple states. Specifically, given a data set D with N species and that a set

of n distinct genes S = {g1, g2, ..., gn} are observed. For each leaf species Gi ∈ D,

it has gene content Si = {gi1 , ..., gik
} possibly with gix

= giy
when x 6= y. It can

be equivalently represented by a set of copy number, π = {πg1 , πg2 , ..., πgn}, in which

each element gij
has a copy value, if Tij

= {g | g = gij
∩g ∈ Si}, πij

=| Tij
|; otherwise

πij
= 0 for 1 ≤ j ≤ k. For instance, a total of six distinct genes {1, 2, 3, 4, 5} can

be identified from four species G1, G2, G3 and G4 with gene orders as represented

in Table 3.1, respectively. However, differing from what’s applied in PMAG+ to

estimate the gene content for the target node, FARM needs to deal with multiple

copies of a gene. Considering this, we adopt a multiple state encoding (ME) scheme

for genes, inspired by our multi-state encoding described in [30]. Our encoding of

gene content is analogous to the encoding of gene adjacencies.

The number of copies of each gene in the ancestral nodes is going to be estimated,

by expanding our alphabet from binary to multi-state. We use difference characters to

represent different number of copies. First we sort all the labels of genes in ascending

order and for each leaf genome, we go through every gene and put 1 if one copy gene

of that gene is found or 0 otherwise. For the number of gene is larger than 9, til 35,

we use characters from A · · ·Z to encode it.

Given three genomes G1, G2, G3 and G4 as shown in Table 3.2(a), by applying

the encoding of gene content, we come up with the sequences shown in Table 3.2(b).
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Table 3.1 Gene orders of four species.

species

G1 2 1 3 4 -5

G2 -1 -2 -4 -3

G3 -2 -4 -3 2 1

G4 2 1 2 -4

Since the encoded sequences have no difference with a common aligned sequences,

by giving the true phylogeny, we are able to infer the gene content in the ancestors.

Therefore our inference of gene content shares the same paradigm with the posterior

calculation of gene adjacencies;

however the existence status of a gene is purely determined by its own probability.

In particular, if the probability of seeing character , say, “1”, at the site is greater

than 0.5, we regard the gene as presence, otherwise it is absence. Once we finish

the inference of gene content for the ancestor under inference, those adjacencies that

contains absent genes are filtered out from the assemble of genome. It is worth noting

that by relabeling discontinuous gene identifiers into continuous ones, we can still use

the same greedy heuristic to assemble gene adjacencies.

3.3 Adjacency Collection

A genome can equivalently be encoded as a set of adjacencies, representing each

chromosome from the genome. In this dissertation, we view all chromosomes in the

input genome as circular and apply a one-to-one encoding on each gene. Given a

gene i, we encode it into ih → it, or, in the case of -i, as it → ih. So a genome can be

encoded in to a set of adjacencies. For instance, a circular chromosome (1, -2, 4, 3)

will then be encoded with a set of adjacencies, T = {(1t, 2t), (2h, 4h), (4t, 3h), (3t, 1h)}.

For an encoded adjacency t = (ix, jy) and t′ = (jy, ix), x and y ∈ {h, t}, t and t′ are

equivalent to each other.

Given a set of N genomes, we apply this encoding to each genome producing N
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adjacency sets, T1, ..TN , and recording each unique adjacency into an adjacency list

A. We then conduct a binary encoding the same to PMAG++ for each adjacency set

in terms of the unique adjacency list A, generating N binary sequences. As shown in

Table 3.5 and 3.3, we give the adjacencies set for each genome and binary sequences

of them, provided the input in Table 3.1.

3.4 Probability Computation

Once we collect the binary sequence encoding from input gene orders, we use the

extended probabilistic approach for sequence data, described by Yang [72], to compute

the probability at each site. We apply the same software package RAxML as PMAG

methods have used, since it can infer ancestral states of large scale sequence data. As

in our example, if we want to compute the probability for each adjacency at internal

node I6, we simply re-root the input tree while reserving the topology, to put the

target node I7 at root position.

Table 3.2 Example of encoding gene orders into binary sequences.

G1 : (1, 2,−3, 3, 4)
G2 : (3,−2, 1)

(a) Two signed linear genomes with inserted/deleted and duplicated genes

1 2 3 4

G1 1 1 2 1

G2 1 1 1 0

(b) Sequences for gene contents

{1t} {1h, 2t} {2h, 3h} {3t, 3t} {3h, 4t} {4h} {2t, 1t} {1h} {3t}
G1 1 1 1 1 1 1 0 0 0

G2 0 0 1 0 0 0 1 1 1

(c) Binary sequences for gene orders
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Table 3.3 A multi-state encoding with three species.

species 1 2 3 4 5

G1 1 1 1 1 1

G2 1 1 1 1 0

G3 1 2 1 1 0

G4 1 2 0 1 0

Table 3.4 Estimated result for the two internal nodes.
species 1 2 3 4 5

I6 1 2 1 1 0

I7 1 1 1 1 0

3.5 Weighted Maximum Matching (WMM) in Adjacency Selection

Given a undirected graph G(V,E), a matching M in G is a set of pairwise non-

adjacent edges; that is, no two edges share a common vertex. A maximum matching

is a matching that contains the largest possible number of edges. If edges are assigned

with weights, a weighted maximum matching (WMM) algorithm is then used to find a

maximum matching with minimum score. This problem can be solved in polynomial

time using Edmonds’ algorithm [19]. For demonstrative purpose, Figure 3.2 shows a

graph with its weighted maximum matching solution highlighted with dashed lines.

To select the desired adjacencies, we build a graph based on the leaf species’

adjacency set A = {a1, a2, ..., am}, content information SI = {g1, g2, ..., gk} estimated

in Table 3.4, as well as probabilities estimated from Table 3.5. We encode each gene

into multiple copies, if necessary, so that each possible occurrence is preserved in the

Table 3.5 Adjacencies of four species.

species

G1 (2t, 1h) (1t, 3h) (3t, 4h) (4t, 5t) (5h, 2h)
G2 (1h, 2t) (2h, 4t) (4h, 3t) (3h, 1t)
G3 (2h, 4t) (4h, 3t) (3h, 2h) (2t, 1h) (1t, 2t)
G4 (2t, 1h) (1t, 2h) (4h, 2h) (2t, 4t)
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Table 3.6 Binary encoding of adjacencies for genome G1, G2, G3 and G4.
(2t, 1h) (1t, 3h) (3t, 4h) (4t, 5t) (5h, 2h)(2h, 4t) (3h, 2h)(1t, 2t) (4h, 2h)(2t, 4t) (1t, 2h)
1 1 1 1 1 0 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0

1 0 1 0 1 0 1 1 0 0 0

1 0 0 0 0 0 0 0 1 1 1

target node. With gene content we have estimated in Table 3.4 right, for gene 2, it’s

going to have two copy in ancestral node I6. So we extend it into 2a and 2b. Gene

2a and 2b have all adjacencies (together with their probabilities) that gene 2 has.

We keep this mapping information by M Note we have expected no gene 5 in

internal node I6. We get a set of genes S = {1, 2a, 2b, 3, 4}. We build a graph G(V,

E). The set of nodes V include each gene g ∈ S. If two ends v, u ∈ S and adjacency

(u, v) ∈ A, edge (u, v) belongs to E. As the estimated probabilities range from 0 to

1, using them directly as edge weights may introduce undesirable impact associated

with handling small float points. The most straightforward way is to linearly correlate

the edge weight with its probability, however in such case, differences of weights

between adjacencies are too strong and adjacencies with smaller probabilities can

hardly be considered. To assign weight to each adjacency in a precise and fine-grained

1-

2a+

2a-

+ denotes head of a gene and - denotes tail of a gene

2b+

2b-

1+

4-

4+

3-

3+

Figure 3.2 Weighted Maximum Matching Graph.
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way(guarantee the return result is optimal), we curve up probabilities to sound edge

weights using the following formula:

w(f,g)(m) = log2(10m × (1− p(f,g)) + t) (3.1)

Here, (f, g) ∈ A, and p(f,g) is the probability of the observed adjacency (f, g)

and is the sole parameter determining the shape of the curve. m and t are two

shift parameters, ensuring w(f,g)(m) is within the range of (0, log2(10m)). According

to our experiments, FARM yields good results when m = 6 and t = 1, empirically.

FARM applies a revised N-cubed weighted matching algorithm to solve this maximum

matching problem we’ve formalized.

It then selects a set of potential adjacencies from the given encoded markers. With

this conversion, Table 3.5 is transferred into weighted edges in Graph G. Then we

apply the weighted maximum matching algorithm to that graph. As shown in Figure

3.2 and we get selected adjacency set

R = {(1+, 2a-), (1-, 2b-), (2a+, 4-), (2b+, 3+), (4+, 3-)}.

Table 3.7 Probabilities of adjacencies for genome G1, G2, G3 and G4.
(2t, 1h) (1t, 3h) (3t, 4h) (4t, 5t) (5h, 2h)(2h, 4t) (3h, 2h)(1t, 2t) (4h, 2h)(2t, 4t) (1t, 2h)
1.000 0.957 1.000 0.957 0.957 0.999 0.999 0.999 0.999 0.976 0.976

3.6 Gene Order Assembly

When FARM gets the selected set of adjacencies of encoded markers, we work toward

recovering the estimated gene order in two steps:

We, first, chain them up by the encoding nature that, ih and it are two ends of a

marker i and decode the adjacencies back to the gene-like order of encoded markers;

Second, then apply the mapping relation M to map the encoded mark back to

real gene order domain and in this step, duplicated genes are recovered. As in our

example, we get the gene order for node I6 = {(−1,−2,−4,−3, 2)}.
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Since we add telemere markers to encode both ends of each chromosome from leaf

genomes, we will easily get a chromosome by viewing the gene order between two

telemere markers as one. In the TSP solution by Hu, multiple connected extremities

are shrank to a single one and a segment genes between two extremities are taken

as a contig. Our construction of matching topology is a little different, we add only

a specical marker to encode all the extremities of each chromosome. It remains the

finall assembled contig number much closer than TSP solver to real ones. However

GapAdj requires extra steps and information to adjust the contig number. Instead

our inference of ancestral genome is uniform and directly from the solution of WMM,

minimizing the risk of introducing artifacts. This assembly mechanism, while main-

taining the assembled contig number in a very accurate way, will sometimes add one

or two rearrangment events to the final chromosome gene order.

3.7 Experimental Results

Experiments setup

To evaluate the performance of FARM, we generate a set of simulation gene order

data. The simulating procedure is carried out as follows. First, we produce a birth-

death tree T, which obeys the same way as [35]. Then we find the longest path

between two leaf nodes, with length = K. We apply different evolutionary rates

r ∈ {1, 2, 3, 4} so that the tree diameters are in the range of d ∈ {1n, 2n, 3n, 4n}:

larger diameter means a genome is more distant from its ancestor, and hence more

computationally expensive this data set will be. By timing 1/K to tree diameter, we

then get the length for a certain branch, but right now each branch on a tree has the

same length. To vary the length of each branch, we apply a variation coefficient to

each branch in this way: given a parameter c, for each branch we sample a number s

uniformly from the interval (-c,c) and multiply the original branch length by es. For
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the experiments in this paper, we set c with the value of 1. Thus, a branch would get

its length L get by,

L = r × n× (1/K)× es

For evolving on each branch, we use a series of evolutionary events, including inver-

sions, fusions, fissions, translocations, indels, segment duplications and whole genome

duplications. We set each event with a specific value of probability to be selected dur-

ing the simulation process.

We set up comparative experiments with InferCarsPro, GASTS and PMAG++ to

evaluate the performance of FARM under equal content model where each gene occurs

exactly once in each genome and deletion, insertion and duplication are not allowed.

As PMAG++ methods are still the most flexible for ancestral genome reconstruction

to date for unequal content ancestral genome reconstruction, we only compare FARM

with PMAG++ under unequal content. Within equal content testing, the genome

settings for all methods are 10 genomes and 1000 genes (considering the capability

of InferCarsPro), each data set with 80% inversion and 20% translocations. Within

equal content, we also test on large scale. The genome setting is 40 genomes and

5000 genes. Since both InferCarsPro and GASTS cannot handle large scale data,

we only compare FARM with PMAG++ on this data set. For the unequal content

testing, the genome settings for both use 10, 20, and 40 genomes containing 2000

genes, and 10, 20, and 40 genomes containing 5000 genes. Each of these setups are

generated both without WGD, 5 chromosomes per genome, and with WGD at root,

10 chromosomes per genome.

We generate 10 data sets for each setting and report the average accuracy of

content and adjacency using the equation

E = |T ∩ T
′|

|T ∪ T ′|
× 100%,

where T represents the amount of gene content, or gene adjacencies and telomeres
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in the true ancestral genome, and T ′ represents the amount of gene content, or gene

adjacencies and telomeres in the reconstructed genome.

We also report the average absolute difference of contigs per node using
∑N

i=1 |ci − C|
N

,

where C is the number of chromosomes of the true ancestor and ci is the actual

number of contigs in the reconstructed genome. In our experiment, this value is set

to 5 in the test without whole genome duplication, and 10 for data set with whole

genome duplication.

Small scale comparison under equal content

In this section, we pick three main competitors from both event-based and adjacency-

based methods, and compare them with FARM. In particular, we supply InferCAR-

sPro with multichromosomal genomic distances as its branch lengths computed by

GRIMM [64].The event-based method GASTS is simply run by providing the true

evolutionary tree and the input genomes.

As shown in Figure 3.3, we give the comparison on average adjacency accuracy

for reconstructed genomes. Both InferCarsPro and GASTS present significantly lower

accuracy than FARM. FARM runs slight better than PMAG++, and both of them

conserves the same trend of performance.

For the performance on assembly accuracy, we summarized the number of contigs

produced by various methods and computed the average absolute difference per node

for all cases in Figure 3.4. From the figure, the event-based method GASTS and the

TSP solver based method PMAG++ produced more relevant number of contigs than

FARM does, but the difference is really small.

InferCarsPro performs the worst among all the methods and as the evolutionary

rate gets larger, the result is getting worse. For the time consumption, InferCarsPro
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Figure 3.3 Accuracy of adjacency on data with 80% inversions, 20% translocations.
the x-axis represents the evolutionary rate for each data set with 10 genomes and
1000 genes, by which the tree diameter is {1× 1000, 2× 1000, 3× 1000, 4× 1000}.

.

does the worst and takes 445 mins to finish the easiest case, which is with evolutionary

rate of 1. GAST could get back a result within an hour and PMAG++ within 10

mins. FARM does the best and can finish every setting with 3 mins. It completes all

the test cases almost at the same time level, even though the tree diameter is getting

larger.

Large scale comparison under equal content

We compare FARM with PMAG++ to evaluate the performance under rearrange-

ment only with large scale data set. As shown in Figure 3.6, we give the comparison

on average adjacency accuracy for reconstructed genomes. FARM runs slight better

than PMAG++ for all the cases, while both of them conserves the same trend of per-

formance. For the performance on assembly accuracy, we summarized the number of

contigs produced by both methods and compute the averages of assembly accuracy

for all cases in Figure 3.7. From the Figure, we can see that FARM shows great

assembly performance, and is significantly better than PMAG++.
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Comparison under unequal content

As we have mentioned, FARM and PMAG++ both aim to formulate the conditional

probabilities of gene adjacencies, however due to applying TSP solver to handle as-

sembling, it is much more computationally demanding than FARM. In this section, we

compare the performance of FARM to PMAG++ on data set without whole genome

duplication and with whole genome duplication, together with other evolutionary

events.

To compare on data set without whole genome duplication, we set the evolution-

ary setting as described is Figure 4.6. In our experiments we see that FARM always

outperforms PMAG++ for every data setting on adjacency accuracy as shown in

Figure 3.8. It confirms that VLBE does performs better than multiple state encod-

ing in the phase of content estimation of PMAG++. FARM can achieve a minimum

average accuracy of above 70% in our testing cases. The improvement on adjacency

accuracy is much more significant than PMAG++, when the tree diameter r, is get-

ting larger. As for the performance on contig assembly, both of them have comparable

performance, as we can see from Figure 3.9. FARM can approximately reflect the

actual number of chromosomes in the true genomes as PMAG++ does.

To compare on data set with whole genome duplication, we set the evolutionary

setting as described in Figure 4.7. FARM continues to have a stable performance on

ancestral genomes assembling, when compared with the performance on the data set

without WGD. As shown in Figure Figure 3.10, in the most difficult case (50k × 10

and r = 4), FARM presents an improvement of more than 10 percent in adjacency

accuracy. Although the performance on contig assembling is slightly lower, when

compared with PMAG++, it is still competitive to each counterpart as shown in

Figure 3.11.

All tests are conducted on a workstation of 2.4Ghz, 8 core CPU and 4 GB RAM.

In Figure 3.13 and Figure 3.12, we summarize the running time of each method in
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each test case. Figure 3.12 and 3.13 also indicate another significant achievement in

this work is that FARM generally runs 3-5 times faster than PMAG++. PMAG++

is more computationally demanding than FARM, for which PMAG++ is limited to

copy with small tree diameter data sets, while larger tree diameter shows little impact

on the running time of FARM.

3.8 Conclusion

In this study, we implement a Flexible Ancestral Reconstruction Method embed-

ded with maximum likelihood and a weighted maximum matching algorithm. The

achievement in this work is we apply the weighed maximum matching to the an-

cestral reconstruction problem, which can be computed in polynomial time. That

allows FARM to be a flexible framework for the ancestor inference problem, which

can be extended into real gene order data. We set up comparison experiments with

InferCarsPro, GASTS, and PMAG++ separately with various genomic settings and

evolutionary rates, under both equal and unequal content model. According to the

results, we can see that FARM can not only outperform other methods under both

Figure 3.8 Accuracy of adjacency on data with 60% inversions, 5% fissions, 5%
fusions, 10% translocations, 5% insertions, 5% deletions, 10% duplications. n×N
means the datasets have n genes and N genomes.
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Figure 3.9 Absolute average difference of contig number on data with 60%
inversions, 5% fissions, 5% fusions, 10% translocations, 5% insertions, 5% deletions,
10% duplications. n×N means the datasets have n genes and N genomes.

equal content and unequal content model, in term of accuracy, but also achieves a

significant reduction in running time. This is because the weighted maximum match-

ing problem can be solved in polynomial time, while the TSP solvers embedded in

PMAG++ is an NP-hard problem. So FARM is fast and also flexible across a wide

Figure 3.10 Accuracy of adjacency on data with 60% inversions, 5% fissions, 5%
fusions, 10% translocations, 5% insertions, 5% deletions, 10% duplications, and one
whole genome duplication on the root node. n×N means the datasets have n genes
and N genomes.
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Figure 3.11 Absolute average difference of contig number on data with 60%
inversions, 5% fissions, 5% fusions, 10% translocations, 5% insertions, 5% deletions,
10% duplications, and one whole genome duplication on the root node. n×N
means the datasets have n genes and N genomes.

range of configurations and can be further applied into ancestral reconstruction on

real biological gene order data.
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Figure 3.13 Running time of FARM over PMAG+ and FARM over PMAG++ (in
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n× d.
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Chapter 4

Ancestral Reconstruction with Adjacency

Enhancement

4.1 Motivation

As described in the last chapter 3, after the calculation of probabilities for observing

each gene adjacency in an ancestor, the final task is to assemble gene adjacencies into

valid gene orderings. Since multiple options are available from a gene to another,

an efficient algorithm is much needed for the assembly. In the past, by modeling

the problem into an instance of TSP problem, an exact solution can be successfully

found. In GRAPPA, TSP solvers are implemented for solving the breakpoint median

problem. Later Tang [62] proved that the problem of searching the longest path in

a graph by visiting each gene’s head and tail exactly once is indeed a TSP problem;

however the edge weights can be either 0 or 1 which is oversimplified and indistin-

guishable. Recent method GapAdj [25] developed a better scoring mechanism to score

the gene adjacencies and reduced the problem to TSP problem. Before that, Ma [40]

proposed a greedy heuristic to stepwise add heaviest edges (highest probabilities) into

the path until no edge can be added and then detect and break cycles by removing

the edge with the smallest weight. This heuristic procedure has been implemented in

InferCars [40].

In PMAG [21], Hu chose to adopt the greedy heuristic to assemble the gene

adjacencies based on the facts that heuristic is efficient and produced acceptable

results according to our simulation study. However, there are mainly two reasons
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to find a substitution for existing strategies. For the first, the greedy heuristic can

only achieve good approximation, when the dataset is closely related in which case

most nodes in the graph have only one outgoing edge. For the second, as a sign of

bad assembly, greedy heuristic tends to return an excessive number of contiguous

ancestral regions (CARs) that is partly due to missing adjacencies. In PMAG+ [31],

Hu applied a TSP solver strategy to assemble gene adjacencies in to gene orders.

However, still, the performance of TSP relies heavily on an appropriate construction

of graph and assignment of edge weights that fit our problem.

As coverd in Chapter 3, to solve an ancestral genome reconstruction problem by

adjacency-based methods heavily depends on the leaf genomes, since they are the raw

materals (containing adjacencies we need) for later gene order assembly for an internal

genome. Ideally, we want the leaf material containing all the adjacencies for ancestor

genome. However, when it’s in the case where genomes of given leaf nodes are evolved

from distant tree topology that the true adjacencies presented in the ancetral nodes

are enormously different from the adjacencies from leaf nodes, it prevents existing

adjacency-based methods from achieving a good enough result. As we mentioned

in Chapter 3, InferCarsPro, PMAG series methods and FARM are trying their best

to score each observed adjaceny with a unique value, e.g, InferCarsPro directly uses

probablity as adjacency weight, so that, by each choosing strategy, they could select

a set of adjacencies, which could optimize the ancestral genome to as close as possible

to the true one. However, there are usually conflicts existing to achieve a optimal

one in a general model. An example of explanation for this will be gvien later. 2011,

Zhang [75] proposed a framework to improve the ancestral genome reconstruction

through fixing adjacencies estimated from a maximum likelihood method [39]. In his

work, he uses ASMedian to absorb adjacencies from PMAG into ASMedian. Zhang’s

method produces more accurate ancestral genomes than the maximum likelihood

method while the computation time is far less than that of pure median method.
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On the other hand, other than being difficult to score adjacencies, there are a

significantly large amount of adjacencies missing from leaf genomes. As we can see

from the statistics from Table 4.1, the leaf nodes can only provide 76.4% of the

materials that could contribute (percentage) in the reconstruction process. In other

word, there is 23.6% the materails missing from the procedure. Both enable FARM

to reconstruct ancestral genomes with significant improvement.

Table 4.1 Adjacency missing rate with under genome setting with 1000 genes and
60 genomes, of 40% inversion, 5% fission, 5% fusion, 10% translocation, 10%
insertion, 10% deletion and 20% duplication.

PMAG methods

Tree Diameter 1 × 1000 2 × 1000 3 × 1000 4 × 1000
Loss percentage 3.2% 7.3% 14.6% 23.6%

With these two observed, we are inspired to either exclude a set of adjacencies from

being ambiguity or absorb a set of adjacencies that are very likely to present in the

ancestral genome. Besides, we apply the variable length binary encoding in the step

of gene content estimation to preserve multiple copies of content and adjacencies.

Through these stategies, we could, to a large extent, improve the correctness in

ancestral reconstruction.

Before we get into our algorithms, we first give some definitions that we’ll use

later.

Definition for functions

• A− structure

In a tree, we define a node with its two children as A − structure. If its two

children are leaf nodes, we say it is a leaf A− structure.

• Adj(g)

Given a node (in tree representation) or a genome (in gene data representation),

Adj(g) represents all the adjacencies it contains.
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• Left(g)

Given a node g, Left(g) represents its left child.

• Right(g)

Given a node g, Right(g) represents its right child.

• Parent(g)

Given a node g, Parent(g) represents its parent.

• Uncle(g)

Given a node g, Uncle(g) represents the other child of Parent(Parent(g)), if

there is one.

• AdjIntersect(g1, ..., gn)

Given several nodes or genomes, AdjIntersect(g1, ..., gn) represents the set of

adjacencies presenting in all nodes or genomes.

• UnionIntersect(g1, ..., gn)

Given several nodes or genomes, UnionIntersect(g1, ..., gn) represents the set

of all adjacencies presenting in these nodes or genomes.

4.2 Variable Length Binary Encoding (VLBE) in Content Estimation

Thanks to the applying of Variable Length Binary Encoding in FARM as shown in

Chapter 4, the evolutionary history inference can be improved with the assisting of

Varialbe Length Binary Encoding as we have tested out in last chapter. Given the

information of leaf species and the phylogeny topology, FARM first predicts all possi-

ble ancestral gene content in the target node. Unlike the method with rearrangement

events only, in which every genome has exactly an whole and equal copy of genes,
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every internal genome here has to consider all of the gene copies observed in the leaves

since a gene might either be absent or present in multiple copies.

The inference procedure views each observed gene as an independent character

with multiple states. Specifically, given a data set D with N species and that a set

of n distinct genes S = {g1, g2, ..., gn} are observed. For each leaf species Gi ∈ D,

it has gene content Si = {gi1 , ..., gik
} possibly with gix

= giy
when x 6= y. It can

be equivalently represented by a set of copy number, π = {πg1 , πg2 , ..., πgn}, in which

each element gij
has a copy value, if Tij

= {g | g = gij
∩g ∈ Si}, πij

=| Tij
|; otherwise

πij
= 0 for 1 ≤ j ≤ k. For instance, a total of six distinct genes {1, 2, 3, 4, 5} can be

identified from four species G1, G2, G3 and G4 with gene orders as represented in

Table 3.1, respectively. However, differing from what’s applied in PMAG+ to estimate

the gene content for the target node, FARM needs to deal with multiple copies of a

gene. Considering this, we adopt a variable-length binary encoding (VLBE) scheme

for genes, and the advantages that VLBE has over the multiple-state encoding that

PAMG++ adopted are, 1), VLBE has no limitation in copy number of a gene, by

which the multiple-state encoding is limited within 32 states; 2), the VLBE more

accurately describes the transferring cost from one state to the other. In this encoding

scheme, the cost for a transition is proportional to the gap between two transferring

states. However, the transiting cost in multiple-state encoding is following a neutral

transition model of protein. 3), this encoding scheme by itself avoids the issue caused

by missing states (There will be no missing states in the coded sequences), because

the RAxML could not handle sequence with missing states.

The VLBE goes in this way: (1) screen through each genome from input data set

and capture the maximum state T and maximum gene marker M . (2) then for each

genome, we allocate an M chunks of blocks, each block with T cells. For each chunk

at i, it stores a copy number information for gene i that encode each gene gi = i into

a binary sequence si of length T , using the number of 1s to indicate occurrences of
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that gene and place these 1s in right first order. The rest is filled with 0’s. (3) we

append each sg at the right end of sg−1. As shown in table 3.4, The gene content of

genome G1, G2, G3 and G4 are encoded into four binary sequences correspondingly.

4.3 Improve Ancestral Reconstructin by Fixing Adjacencies

As we can see in Figure 4.1, in internal node I1, we are observing a set of adjacencies

Adj(I1) = {(1h, 2t), (2h, 5h), (5t, 4h), (4t, 3h), (3t, 1t)}.

If we were provided with these adjacencies of high probabilities, we’ll have edges,

mapping to these adjacences, with low weight in the matching graph, in which we are

trying to extract a set of adjacencies for assembling ancestral genome I1. However, it

is difficult to locate them correctly. Let’s go a little bit further. What evolved from

I1 are Adj(left(I1)) = {(1h, 2t), (2h, 5h), (5t, 3t), (3h, 4t), (4h, 1t)} and Adj(right(I1))

= {(1h, 4t), (4h, 5t), (5h, 2h), (2t, 3h), (3t, 1t)}.

So AdjIntersect( Adj(left(I1)), Adj(right(I1))) = {(1h, 2t), (2h, 5h)}, and in-

tuitively, adjacencies in this set are going to be assigned with high probability in

I1’s reconstruction raw materials. But still beyond enough. So we put our atten-

tion on set AdjUnion(Adj(left(I1)), Adj(right(I1))) −AdjIntersect( Adj(left(I1)),

Adj(right(I1))).

Let’s look at the upper structure, the subtree with Parent(I1) as its root, here,

Parent(I1) = Root. In the right child of Root, we see Adj(right(Root)) = {(2t, 1h),

(1t, 3t), (3h, 4t), (4h, 5t), (5h, 2h)}. We find that adjacencies {(3t, 1t), (3h, 4t), (4h, 5t)}

from genome G3, can be found either in genome G1 or G2. Most likely, thse ad-

jacencies are coming from the common ancestor – Root, and we can applies this

observing in ancestral reconstruction procedure, by fixing them with relatively high

probability as well. So here we propose a Adjacency Fixing algorithm to improve

the performance of ancestral reconstruction under Maximum likelihood and weighted
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Figure 4.1 A phylogenetic topology of three genomes, showing step by step how
new adjacencies are evolved.

maximum matching framework. Since extracting adjacencies from matching graph

using weighted maximum matching algorithm, to some extent, let’s say, is to avoid

bad decision in choosing, through AdjFix algorithm much more "correct" or "ex-

pected" adjacencies are signally enhenced to be chosen during the course of applying

WMM.

Algorithm AdjFix 1. Find an A− structure in tree topology;

2. Extract the intersect of adjacencies in two children;

3. Find the uncle of root of A− structure;

4. Find the union of Adj(left(root(A))) and Adj(Uncle(root(A))), and the union

of Adj(right(root(A))) and Adj(Uncle(root(A))), add them in to the raw materials

in root(A).

5. Iterate up in the tree until every internal node is fixed.

4.4 Ancestral Reconstruction from FARM

We use Figure 4.2 to demonstrates an example where the gene adjacency (1, 2) in the

ancestor I1 is missing in all its descendants—G1 and G2. Non-observed adjacencies

is assigned with an extremely large number in the Weighted Maximum Matching

graph in order to guarantee bypassing of these edges. However as we mentioned, it
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Figure 4.2 Demonstration the loss of gene adjacencies in descendant genomes.

1h 1t0 2h 2t 3t3h

I1 : {(1), (2, 3)}

1h 1t0 2h 2t 3t3h

I1 : {(−1, 2, 3)}

Figure 4.3 Ancestral node inferred by the greedy heuristic (left) and WMM (right).

is possible that a number of gene adjacencies show up in an ancestral genome but

are not found in any leaf genome. In case of using heuristic, missing edges lead to

additional CARs since the greedy heuristic is not able to foresee the breakage until it

is met. In contrast, WMM procedure can always find a complete set of edges at the

cost of introducing false positives. Using figure 4.2 as a toy dataset, figure 4.3 shows

the WMM graph constructed from the leaf genomes as well as the inferred ancestors

from both approaches. We used red color to indicate the edges included in solution.

Table 4.2 summaries the results in which the last column “dist” measures the DCJ

distances between true and inferred ancestor. Results implies that WMM is weaker

against the impact of missing adjacencies as it must always return a single complete

path. It is also noticeable that although greedy heuristic can recover one more correct

adjacency, their DCJ distance remains the same.

Since adding one missing adjacencies can at least reduce two false positives. If we

can retrieve some of the missing adjacencies back into the WMM graph with adequate

weights, the result of WMM will be enhanced. Based on the observation that none
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Table 4.2 Comparison of inferred ancestors against true ancestor.

True Adjs FP FN Dist
Greedy (0,1) (2,3) (3,0) (1,0) (0,2) (1,2) 1
WMM (2,3) (3,0) (0,-1) (-1,2) (1,2) 1

of current adjacency-based methods is capable of retrieving missing adjacencies while

rearrangement-based methods such as GASTS can find a large portion of missing

adjacencies back in their solution, we conducted a test which shows GASTS is able

to retrieve around 60% of missing adjacencies when genomes are not distant (20 out of

29.5 is found at 1n diameter). According to this finding, we propose to use a mixture

framework of both type of methods to enhance the performance of FARM. This

framework relies GASTS to initialize all internal nodes and then uses a randomized

method inspired from Zhang’s work [75] to add missing adjacency into TSP graph.

In particular, the framework follows these steps:

1. Run GASTS and FARM separately and compute the collection of adjacencies

which are in GASTS but not in FARM. The collection must contain all missing

adjacencies GASTS can retrieve.

2. Randomly select a certain percentage of adjacencies from the collection and add

the adjacencies to the WMM graph. Their edge weight is set to the average

weight of edges in the solution of WMM. Selected adjacencies contain both

correct and incorrect adjacencies, however correct adjacencies are more likely

to stay in the new solution. Thus we keep track of the appearances of selected

adjacencies in the new WMM solution.

3. Repeat step 2 a certain times and sort the frequencies of appearances for all

adjacencies in descending order.

4. Starting from the adjacency (g, f) with the current largest number of appear-

ances, we remove it from the list and add it to the graph with minimum weight
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Figure 4.4 The scenarios before and after adding the (g, f) with 0 edge weight.

of 0. Suppose current WMM score is S and (g, a), (b, f), (d, c), (a, b), (g, f),

(g, d), and (c, f) are the seven edges connecting with a, b, c, d, g and f of costs

at w1, w2, w3, w4, w5, w6 and w7 respectively as shown in figure 4.4.

5. In the new WMM solution with score S ′, by connecting (g, f), we assume two

edges (g, a) and (b, f) are removed. Therefore if S − S ′ ≥ w1 +w2−w4 which

indicates adding such adjacency at least does not increase the previous WMM

score, we then trust it as a missing adjacency.

6. If an adjacency is trusted, we update the current best WMM score and the

WMM graph, then repeat the step 4. If the list is empty or S − S ′ < w1 +

w2 − w4, we stop the whole process and return the current WMM solution as

our final result.

The rationale behind this procedure is that adding a missing adjacency not only

releases two detouring edges ((0, 1t) and (1h, 2h) as in figure 4.3) but also allow the

released genes to connect to their correct genes (0 and 1h are released and can now

join into the correct adjacency (0, 1h)). Thus in overall, the gain in WMM score by

adding a missing adjacency is expected to be no less than just rescuing two detouring

edges.
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(0,1,−3,0) (0,2,4,0)(0,1,0) (0,2,3,4,0)

Figure 4.5 Demonstration of mapping telomeres of chromosomes into unique
singletons.

Another aspect of proposed work is to amend the WMM graph to handle multi-

chromosomal genomes, since current graph can only return a single CAR containing

all the genes; on the other hand, greedy heuristic always generates a large number

of CARs. Investigation of this issue has been make in GapAdj, as its name implies,

it uses the concept of gapped adjacencies to find the relationship between CARs

and combine them into longer ones. Experiments shows that the number of CARs

GapAdj produced are highly correlated with the actual amount of chromosomes.

PMAG using greedy heuristic also suffers from this issue and the amount of CARs

is too large. Therefore we propose to modify the formation of WMM graph to allow

more accurate inference of CARs. We expect our inference of CARs be even closer to

the true amount than GapAdj can achieve. Our proposed approach relies on mapping

different telomeres in the leaf genomes into unique singletons. As gene is represented

by two vertices in the graph—its head and tail, singletons stands for telomeres which

are distinguished by the gene it connects to. Singleton is useful because it keeps track

of the two extremities of a chromosome. For example, label “0” is used to represent

telomeres of the genomes in the figure 4.5 and we identified five distinct telomere

adjacencies which are (0, 1),(1, 0),(0, 2),(4, 0) and (−3, 0). By mapping telomeres into

distinct singleton labels, we can insert these new vertices and construct a new graph

as shown in the figure 4.5. We call the collection of vertices representing actual heads

or tails of genes as gene community, while singleton community consists of all distinct

telomeres. With in a singleton community, each pair of vertices is connected with
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minimum weight 0. Singleton community and gene community are connected only

through the five telomere adjacencies. It is obvious that any solution of WMM must

traverse the telomere adjacencies n times, where n must be even. Then the number of

chromosomes is n
2 . Unused singletons will join with other singletons and contiguous

singletons will finally be collapsed in the solution. It is also noticeable that singleton

with low probabilities should be excluded in the first place, since a large potion of

telomere adjacencies are indeed false positives and hence introduce too many such

edges complicate our problem. Finally we screen the solution of WMM and cut the

path at two or more contiguous singletons to form a chromosome.

4.5 Experimental Results

Test VLBE under unequal content

As we have mentioned, FARM and PMAG++ both aim to formulate the conditional

probabilities of gene adjacencies, however due to applying TSP solver to handle as-

sembling, it is much more computationally demanding than FARM. In this section, we

compare the performance of FARM to PMAG++ on data set without whole genome

duplication and with whole genome duplication, together with other evolutionary

events.

To compare on data set without whole genome duplication, we set the evolutionary

setting as described is Figure 4.6. In our experiments we see that FARM always

outperforms PMAG++ for every data setting on both content accuracy and adjacency

accuracy as shown in Figure 4.6 and 3.8. It confirms that VLBE does performs

better than multiple state encoding in the phase of content estimation of PMAG++.

FARM can achieve a minimum average accuracy of above 70% in our testing cases.

The improvement on adjacency accuracy is much more significant than PMAG++,

when the tree diameter r, is getting larger. As for the performance on contig assembly,
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both of them have comparable performance, as we can see from Figure 3.9. FARM

can approximately reflect the actual number of chromosomes in the true genomes as

PMAG++ does.

To compare on data set with whole genome duplication, we set the evolutionary

setting as described in Figure 4.7. FARM continues to have a stable performance

on ancestral genomes assembling, when compared with the performance on the data

set without WGD. As shown in Figure 4.7, FARM shows slight improvement on

content estimation; and from Figure 3.10, in the most difficult case (50k × 10 and r

= 4), FARM presents an improvement of more than 10 percent in adjacency accuracy.

Although the performance on contig assembling is slightly lower, when compared with

PMAG++, it is still competitive to each counterpart as shown in Figure 3.11.

All tests are conducted on a workstation of 2.4Ghz, 8 core CPU and 4 GB RAM.

In Figure 3.13 and Figure 3.12, we summarize the running time of each method in

each test case. Figure 3.12 and 3.13 also indicate another significant achievement in

this work is that FARM generally runs 3-5 times faster than PMAG++. PMAG++

is more computationally demanding than FARM, for which PMAG++ is limited to

copy with small tree diameter data sets, while larger tree diameter shows little impact

on the running time of FARM.

Comparison on 12 Drosophila species

It is very difficult to evaluate the accuracy of our methods using real biological data

as we do not know true ancestral gene orders. Nonetheless, we test FARM and

PAMG++ on 12 fully sequenced drosophila species. Since the ground truth for

ancestral gene orders of these 12 drosophila species is unknown, we evaluate the

result in this way: First, we calculate the DCJ distance by UniMoG [4] on each

branch and compare it between FARM and PMAG++. Second, we average out the

sum of all these real lengths returned from each method. The tree topology of these 12
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Drosophila genomes is given in Figure 4.8 and branch lengths are presented in Table

4.6. The overall sum of branch lengths from FARM is 6001 and that of PMAG++

is 6099, which means FARM can obtain a better phylogenetic score than that of

PMAG++. On average, reconstructed ancestral genomes from FARM reduces 4.45

DCJ events per branch. By these, it confirms that by using the weighted maximum

matching and variable length binary encoding, FARM reconstructs internal genomes

with fewer events to explain the evolutionary history. Figure 4.8 shows the details of

how FARM outperforms PMAG++. For example, branch (A5, A7) and (A7, A8) are

two branches that bring significant difference between these two results. In addition,

PMAG++ requires more than 40 minutes to reconstruct ancestors, while FARM

finishes within a minute.

4.6 Conclusion

In summary, we introduced our ground works in chapter 2 and chapter 3 on gene

order phylogeny and ancestral genome inference. Our proposed work focuses on the

extension of FARM to address the following problems:

• Extend FARM to handle gene insertion, deletion and duplication.

Deduce gene content of ancestral genomes.

Assemble gene adjacencies into genomes when genes have duplications.

• Reduce our problem to an instance of WMM to replace the greedy heuristic.

Convert probabilities into edges weights.

Retrieve missing adjacencies from rearrangement-based methods.

Produce appropriate number of CARs.

We identified most difficulties and proposed our solution accordingly for each item.

In the evaluation phase, we will conduct extensive experiment and validate the per-
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Table 4.3 DCJ distance of each branch on the tree of 12 Drosophila genomes. A1
to A11 are ancestral genomes.

branch (A1, Dsec) (A1, Dsim) (A1, A2) (A2, Dmel) (A2, A3) (A3, Dyak)
FARM 33 112 36 53 55 98

PMAG++ 33 112 28 65 67 90

branch (A3, A4) (A4, Dere) (A4, A5) (A5, Dana) (A5, A7) NA

FARM 29 255 298 453 216 NA

PMAG++ 35 249 294 464 249 NA

branch (A6, Dpse) (A6, Dper) (A6, A7) (A7, A8) (A8, Dwil) (A8, A9)
FARM 299 94 489 238 1302 977

PMAG++ 295 98 474 282 1308 986

branch (A9, Dgri) (A9, A10) (A10, Dviri) (A10, A11) (A11, Dmoj) NA

FARM 76 50 379 19 440 NA

PMAG++ 78 64 368 46 413 NA

formance of our new implementations to the best of current competitors. Finally, as

all current adjacency-based methods evaluated their results by counting the number

of correct adjacencies, we propose to use DCJ distance between the inferred genome

and its according true ancestor as a direct measurement, after all our goal is to infer

ancestral genome, not ancestral adjacencies and gene adjacencies also can not reflect

structural variance between genomes.

In this study, we extended a Flexible Ancestral Reconstruction Method embedded

with variable length binary encoding. The achievement is, we use a variable binary

encoding scheme to estimate gene content, with which we improve the estimation of

ancestral gene content. We set up comparison experiments with PMAG++ with vari-

ous genomic settings and evolutionary rates, unequal content model (Since PMAG++

is the only method can handle unequal content). We also compare the performance

of FARM with PMAG++ using genomes of 12 fully sequenced drosophila species.

According to the results, we can see that FARM can not only outperform other meth-

ods under both equal content and unequal content model, in term of accuracy, but

also achieves a significant reduction in running time.
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Figure 4.6 Accuracy of content on data with 60% inversions, 5% fissions, 5%
fusions, 10% translocations, 5% insertions, 5% deletions, 10% duplications. n×N
means the datasets have n genes and N genomes.

Figure 4.7 Accuracy of content on data with 60% inversions, 5% fissions, 5%
fusions, 10% translocations, 5% insertions, 5% deletions, 10% duplications, and one
whole genome duplication on the root node. n×N means the datasets have n genes
and N genomes.
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Figure 4.8 The tree topology of 12 drosophila genomes.
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Chapter 5

Phylogeny Reconstruction from Whole Genome

Data Using Variable Length Binary Encoding

In this chapter, we designed a flexible frame work for Phylogeny Reconstruction, based

on maximum likelihood. First, we are going to explore, under maximum likelihood

scheme, how encoding scheme from whole genome data to sequence can assist on

phylogeny reconstruction and therefore design a method to reconstruct phylogeny

with high accuracy, roubusticity and scalability. Finally, we give the evaluation design

at the end of each part.

5.1 Motivation

Phylogenetic analysis is one of the main tools of evolutionary biology. Most of it

to date has been carried out using sequence data (or, more rarely, morphological

data)[55, 60, 54, 32]. Nowadays, sequence data can be collected in large amounts at

very low cost and, at least in the case of coding genes, is relatively well understood,

but it needs accurate determination of orthologies and gives us only local informa-

tion – and different parts of the genome may evolve at different rates or according

to different models. Events that affect the structure of an entire genome may hold

the key to building a coherent picture of the past history of contemporary organisms.

Such events occur at a much larger scale than sequence mutations – entire blocks of

a genome may be permuted (rearrangements), duplicated, or lost. As whole genomes

are sequenced at increasing rates, using whole-genome data for phylogenetic analy-
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Figure 5.1 A phylogenetic topology of three genomes. The 0 or 1 following the leaf
label represent absence or presence of a gene adjacency.

ses is attracting increasing interest, especially as researchers uncover links between

large-scale genomic events (rearrangements, duplications leading to increased copy

numbers) and various diseases (such as cancer) or health conditions (such as autism).

However, using whole-genome data in phylogenetic reconstruction has been proved

far more challenging than using sequence data and numerous problems plague exist-

ing methods: oversimplified models, poor accuracy, poor scaling, lack of robustness,

lack of statistical assessment, etc.

Determining the phylogeny between a group of organisms plays an essential role

in our understanding of evolution. A wide selection of methods have been devel-

oped for a specific biological data type, which are commonly aligned sequences of

nucleotides or amino acids. As nowadays more and more genomes are completely

sequenced, gene order of whole-genomes as a relatively new type of data attracts a

lot of attention in recent years. As we mentioned, MPBE and MPME are the first

two methods that reconcile the sequence data and gene-order data such that gene

orders can be encoded into aligned sequences without loss of information. There-

fore we can use parsimony softwares such as TNT [26] and PAUP* [59] developed

for molecular sequences to conduct gene order phylogeny searching. Although MPBE

and MPME failed to compete with direct-optimization approaches such as GRAPPA,
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they show great speedup and pave the way for future improvements. From another

aspect, beyond parsimonious framework, sequence data can be analyzed by searching

the phylogeny with maximized likelihood score as suggested by Felsenstein [24] in

1981. Such probabilistic approach is attractive since it is accurate and statistically

well-founded; even with very short sequence, it tends to outperform other methods.

Recent algorithm developments and the introduction of high-performance computa-

tion tools such as RAxML [55] have made the maximum likelihood approach feasible

for large scale analysis of molecular sequences.

Current approaches in the area of phylogenetic analysis are limited to very small

collections of closely related genomes using low-resolution data (typically a few hun-

dred syntenic blocks); moreover, these approaches typically do not include duplica-

tions and loss events. It was not until 2011, however, that the first successful attempt

to use ML reconstruction based on whole genome data was published [30]; results from

this study on bacterial genomes were promising, but somewhat diffcult to explain,

while the method appeared too time-consuming to handle eukaryotic genomes. later

2012, Yu [36] describes a maximum likelihood (ML) approach for phylogenetic analy-

sis that takes into account genome rearrangements as well as duplications, insertions,

and losses. This approach can handle high-resolution genomes (with 40,000 or more

markers) and can be used in the same analysis for genomes with very different num-

bers of markers. However, since the embeded encoding scheme in it igores the copy

information of both adjacency and content, its performance fades out when genomes

experienced a large number of duplications or whole genome duplications.

As we’ve discovered in last chapter. Variable Length Binary Encoding works

with a better performance on ancestral content estimation than Binary Encoding

or Multiple-State Encoding in ancestral genome reconstruction. This improvement

indicates that VLBE reserves more information than the simple Binary Encoding

or MLME method. Maximum-likelihood (ML) approaches seek the tree and related
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model parameters that maximize the probability of producing the given set of leaf

genomes. Theoretically, such approaches are much more computationally expensive

than both distance-based and parsimonybased approaches, but their accuracy has

long been a major attraction in sequence-based phylogenetic analysis. Moreover, in

the last few years, packages such as RAxML [56] have largely overcome computational

limitations and allowed reconstructions of large trees (with thousands of taxa) and

the use of long sequences (to a hundred thousand characters). These improvements

motivate us to utilize the technique and apply it for gene order phylogeny analysis

through encoding gene orders. Because of using RAxML package, our approach is

able to scale up to large trees reconstruction.

In the rest of this section, we will first describe three variations of Variable Length

Binary Encoding, transition model design, phylogeny reconstruction with VLWDx

and experiment design and analysis on VLWDx. Finally we will show our experi-

mental design along with evaluations of various methods.

5.2 Variable Length Binary Encoding

In this section, we first describe several versions of Variable Length Binary Encod-

ing schemes (VLBE) and then introduce Variable Length Binary Encoding based

Phylogeny Reconstruction with Maximum Likelihood on Whole-Genome Data with

VLBE (VLWDx). All of the methods are founded on the binary encoding of gene

orderings. By encoding, we want to produce a sequence like string while reserving

as completely as possible about the gene order information, and by incorporateing

a dedicated transition model deduced from adjacencies changes, VLWDx aims at

achieving more robust and scalable phylogenetic reconstruction performance, and

keeping running-time at a reasonable low level.

Before getting into the encoding detail, let’s first take a look at the way to interpret

genomes. Given a gene g, we denote the tail of it by gt and its head by gh. We write
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+g to indicate an orientation from tail to head (gt, gh), −g otherwise (gh, gt). Two

consecutive genes a and b can be connected by an adjacency with one of the following

four types: (at, bh), (ah, bh), (at, bt), and (ah, bt). If gene c lies at one end of a linear

chromosome, then we have a corresponding singleton set for it, ct or ch, called a telom-

ere; otherwise, they are all adjacencies, if it’s a circular genome. A genome can then be

represented as a multiset of adjacencies and telomeres (if there’s any). For example, a

simple genome composed of one linear chromosome (+a,+b,−c,+a,+b,−d,+a), and

one circular one, (+e, -f ), can be represented by the multiset of adjacencies and telom-

eres S = {(at), (ah, bt), (bh, ch), (ct, at), (ah, bt), (bh, dh), (dt, at), (ah), (eh, fh), (et, f t)}.

In the presence of duplicated genes, there is no one-to-one correspondence between

genomes and multiset of genes, adjacencies, and telomeres. For example, the genome

composed of the linear chromosome (+a,+b,−d,+a,+b,−c,+a) and the circular one

(+e,−f), would have the same multiset of adjacencies and telomeres as our toy exam-

ple. For data limited to rearrangements (i.e. for genomes with identical gene content),

we encode only the adjacency information. For a possible adjacency or telomere, we

apply V LBE1 to encode its presence or absence detail in a genome. We consider only

those adjacencies and telomeres that exist in at least one of the input genomes. If the

total number of distinct genes among the input genomes is n, then the total number

of distinct adjacencies and telomeres is 2n2 + 2, but the number of adjacencies and

telomeres that appear in at least one input genome is typically far smaller – in fact,

it is usually linear in n rather than quadratic. For the general model, which includes

gene duplications, insertions, and losses in addition to rearrangements, we extend the

encoding of adjacencies by also encoding the gene content. For each gene, we apply

V LBE2 or V LBE3 to indicate the presence or absence state of this gene in a genome.

In next tree subsections, we give three algorithms, and with genomes given in Table

5.2(1), we give the encoding results for each algorithm. Figure 5.2 gives a graphic

representation for genomes in Table 5.2(1).
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Figure 5.2 An example of a set of three genomes.

Variable Length Binary Encoding 1 (V LBE1)

Let G be a signed permutation of n genes. For linear genomes, gene 0 is added to

indicate the start and end of a genome generally. For a pair (i, j), 0 ≤ i, j ≤ n,

we apply V LBE1 to encode each adjacency. A detailed algorithm is provided as

following.

• Given a data set D of n genomes, screen over it, collect all unique adjacencies,

and get a list A ofm adjacencies; for each adjacency a ∈ A, count the maximum

state number of a, denote as MaxAdj(a).

• For each genome Di ∈ D, 1 ≤ i ≤ n, iterate each adjacency a ∈ A, get the copy

number of a ∈ Di, denote by AdjNum(i, a).

• For each adjacency a = A[j] if present in genome Di, we encode it into a binary

sequence in this way:

Place AdjNum(i, a) 1’s to indicate its copy number; append MaxAdj(a)

- AdjNum(i, a) 0’s to its left; otherwise place MaxAdj(a) 0s to indicate its

absence; get sequence seq(i, a), or seq(i, A[j]).

Append seq(i, A[j]) to seq(i, A[j − 1]), for each adjacency a = A[j], 1 ≤

j ≤ m; get a binary sequence for genome Di denoted by Si.
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Table 5.1 Example of the binary encoding throught V LBE1 (0 indicates the start
of a genome, 6 indicates the end of a genome).

G1 : (−2,−1,−3) (5.1)
G2 : (−1, 4, 2) (5.2)
G3 : (−2,−1,−4, 2) (5.3)

(a) Three signed linear genomes

Adjacencies
A 0,-2 -2,-1 -1,-3 -3,0 0,-1 -1,4 4,2 -1,-4 -4,2

S1 01 1 1 1 0 0 0 0 0

S2 00 0 0 0 1 1 1 0 0

S3 11 1 0 0 0 1 0 1 1

(b) Binary Encoding

• Encode each genome Di into Si, We get a set of binary sequences, denoted as

S.

Table 5.2 gives an example of such encoding. Most gene pairs are not shown in

this table because they do not appear in any of these genomes. Although there are

up to
(

2n+2
2

)
possible adjacencies, we can further reduce the length of these sequences

by removing those characters at which every genome has the same state.

After converting the gene orders into strings of 0 and 1, we tested several ML pack-

ages such as TREE-PUZZLE [52], GARLI [28] and etc. Among them, RAxML [55]

is the best by incorporating the rapid bootstrapping [56].

Variable Length Binary Encoding 2 (V LBE2)

V LBE1 is designed to encode a gene order into a binary sequence reserving as much

information as possible, concerning the gene order detail. However, we might also

want to keep the content information as well. So we propose V LBE2 to encode a

gene order into binary sequence. The algorithm is given as follows.
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• Given a data set D of n genomes, screen over it, collect all unique adjacencies,

and record them into a list A of m adjacencies;

For each adjacency a ∈ A, count the maximum state number of a, denote

as MaxAdj(a);

Collect all unique content, get a list C, with maximum gene denoted as

MaxGene.

• For each genome Di ∈ D, 1 ≤ i ≤ n, iterate every adjacency a ∈ A, get the

copy number of a ∈ Di, denote by AdjNum(i, a).

• For each adjacency a = A[j], we encode it into a binary sequence in this way:

Place AdjNum(i, a) 1’s to indicate its copy number; append MaxAdj(a) -

AdjNum(i, a) 0’s to its left, if present in genomeDi; otherwise placeMaxAdj(a)

0s to indicate its absence; result a sequence seqAdj(i, a), or seqAdj(i, A[j]);

Append seqAdj(i, A[j]) to seqAdj(i, A[j−1]), for each adjacency a = A[j],

1 ≤ j ≤ m; get a binary sequence for all adjacencies from Ai, get SAdj(i);

For each content g = C[t] ∈ C, append 1 to seqCont(i, Ct−1), if g presents

in Di. denote SCont(i).

• To encode each genome Di into Si, We combine SAdj(i) and SCont(i) togather

and get a set of binary sequences, denoted as S.

Table 5.2 Example of the binary sequences using V LBE2 (0 indicates the start of
a genome, 6 indicates the end of a genome).

Adjacencies Content
0,-2 -2,-1 -1,-3 -3,0 0,-1 -1,4 4,2 -1,-4 -4,2 1 2 3 4

G1 01 1 1 1 0 0 0 0 0 1 1 1 0
G2 00 0 0 0 1 1 1 0 0 1 1 0 1
G3 11 1 0 0 0 1 0 1 1 1 1 0 1
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Table 5.2 shows an example of binary sequences produced by V LBE2 from whole

genome data presented in Table 5.2(a). After converting the gene orders into strings

of 0 and 1, We’ll use RAxML package to reconstruct the phylogeny.

Variable Length Binary Encoding 3 (V LBE3)

V LBE2 is designed to encode a gene order into a binary sequence with as much

information as possible, concerning the gene order detail. We further want to know

how variable length binary encoding on content could make difference on phylogeny

reconstruction. So we propose V LBE3 to encode a gene order into binary sequence.

The detail is given as follows:

• Given a data set D of n genomes, screen over it, collect all unique adjacencies,

and record them into a list A of m adjacencies;

For each adjacency a ∈ A, count the maximum state number of a, denote

as MaxAdj(a);

Collect all unique content, get a list C, with maximum gene denoted as

MaxGene; for each gene g ∈ C, count the maximum copy number of g, denote

as MaxCont(g).

• For each genome Di ∈ D, 1 ≤ i ≤ n, iterate every adjacency a ∈ A, get the copy

number of a ∈ Di, denote by AdjNum(i, a); iterate every adjacency g ∈ C, get

the copy number of g ∈ Di, denote by ContNum(i, a).

• For each adjacency a = A[j], we encode it into a binary sequence in this way:

Place AdjNum(i, a) 1’s to indicate its copy number and appendMaxAdj(a)

- AdjNum(i, a) 0’s to its left, if a presents in genome Di; otherwise place

MaxAdj(a) 0s to indicate its absence; get a sequence seqAdj(i, a), or seqAdj(i,

A[j]).
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Append seqAdj(i, A[j]) to seqAdj(i, A[j−1]) for each a = A[j], 1 ≤ j ≤ m;

get a binary sequence for all adjacencies from Di, get SAdj(i);

• For each content g = C[t], we encode it into a binary sequence in this way:

Place ContNum(i, g) 1’s to indicate its copy number; appendMaxCont(g)

- ContNum(i, g) 0’s to its left; otherwise place MaxCont(g) 0s to indicate its

absence, if g presents in genome Di; get a sequence seqCont(i, g), or seqAdj(i,

C[t]).

Append seqAdj(i, C[t]) to seqAdj(i, C[t − 1]) for each g = C[t], 1 ≤ t ≤

MaxGene; get a binary sequence for all content from Di, get SCont(i);

• To encode each genome Di into Si, We combine SAdj(i) and SCont(i) togather

and get a set of binary sequences, denote as S.

Table 5.3 Example of binary sequences using V LBE3 (0 indicates the start of a
genome, 6 indicates the end of a genome).

Adjacencies Content
0,-2 -2,-1 -1,-3 -3,0 0,-1 -1,4 4,2 -1,-4 -4,2 1 2 3 4

G1 01 1 1 1 0 0 0 0 0 1 01 1 0

G2 00 0 0 0 1 1 1 0 0 1 01 0 1
G3 11 1 0 0 0 1 0 1 1 1 11 0 1

Table 5.2 shows the example of the binary strings of the genomes presented in

Table 5.2(a). Again, RAxML will be used to obtain trees from these binary sequences.

However, the transition model is still in need to design, which will be covered in next

subsection.

5.3 Building Transition Model

As mentioned above, V LBE1, V LBE2 and V LBE3 aim at transforming gene order

information to sequence-like string without losing important genomic information,

after encoding. Since fliping a state, 1 to 0 or 0 to 1, is dependent on the transition
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model within the encoding scheme, we have to design a transition model for each of

the encoding scheme. As in MLWD[36], Lin gives a transion model explanation for

the encoding scheme.

It is more desirable to develop a designated model from the characteristics of gene

rearrangements and the composition feature of genes for a method for gene-order

data under maximum likelihood method. Since our encodings are binary sequences,

the parameters of the model in all of them are simply the transition probability from

presence (1) to absence (0) and that from absence (0) to presence (1). So we set off

from the composition of the encoding and analyze how 0 is flipped to 1 or vice versa.

Let us first take a look at adjacencies. Every DCJ operation will select two

adjacencies (or telomeres) uniformly at random, and (if adjacencies) break them to

create two new adjacencies. Each genome has n + O(1) adjacencies and telomeres

(O(1) is the number of linear chromosomes in the genome, viewed as a constant).

Thus the transition probability from 1 to 0 at some fixed index in the sequence is
2

2n+O(1) under one DCJ operation. Since there are up to
(

2n+2
2

)
possible adjacencies

and telomeres, the transition probability from 0 to 1 is 2
n2+O(n) . Thus the transition

from 0 to 1 is roughly 2n times less likely than that from 1 to 0. Despite the restrictive

assumption that all DCJ operations are equally likely, this result is in line with general

opinion about the probability of eventually breaking an ancestral adjacency (high)

vs. that of creating a particular adjacency along several lineages (low)-a version of

homoplasy for adjacencies.

For content encoding, as for V LBE2 and V LBE3, we also have transitions for

gene content. Once again, the probability of losing a copy of gene independently

along several lineages is high, whereas the probability of gaining the same gene in-

dependently along several lineages (the standard homoplasy) is low. However, there

is no simple uniformity assumption that would enable us to derive a formula for the

respective probabilities-there have been attempts to reconstruct phylogenies based
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on gene content only[54, 32, 73], but they were based on a different approach-so we

experimented with various values of the ratio between the probability of a transition

from 1 to 0 and that of a transition from 0 to 1. Each site in our binary sequence

isn’t simply representing the present or absent of a single adjacency or a single certain

gene. Actually, it only represents a copy of gene or adjacency. we want to bring the

transion model to either a more general way or several detailed ways to accommo-

date various kinds of Whole-Genome Gene order data, taking the adjacency sequence

length and content sequence length into consideration for mixed encoding scheme

(V LBE2 and V LBE3).

5.4 Estimating The Phylogeny

Once we have encoded input genomes into binary sequences and have computed the

transition parameters, we use the ML reconstruction program RAxML (version 7.2.8

was used to produce the results given in this experiment) to build a tree from these

sequences. Because RAxML uses a time-reversible model, it estimates the transition

parameters directly from the input sequences by computing the base frequencies. In

order to set up the 2n ratio, we simply add a direct assignment of the two base

frequencies in the code. Athough this VLBE will generate a sequence no shorter

than that from other encoding mehtods metioned above(up to 2-3 times longer in our

expriments), it bring no disastrous load to the computation limitation of RAxML,

due to it’s excellent improvement on parallel coding.

5.5 Experimental Results

Experiments Design

We ran a series of experiments on simulated data sets in order to evaluate the per-

formance of our approach against a known "ground truth" under a wide variety of
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settings. We then ran our reconstruction algorithm on a data set of 18 genomes, of

yeasts, a data set of 6 genomes of plants and a data set of 11 genomes of mammalians,

obtained from the Eukaryotic Gene Order Browser (eGOB) database.23

Our simulation studies follow standard practice in phylogenetic reconstruction.24

citation We generate model trees under various parameter settings, then use each

model tree to evolve an artificial root genome from the root down to the leaves,

by performing randomly chosen evolutionary events on the current genome, finally

obtaining data sets of leaf genomes for which we know the complete evolutionary his-

tory. We then reconstruct trees for each data set by applying different reconstruction

methods and compare the results against the model tree.

The simulation process is carried out as follows. First, we produce a birth-death

tree T, which obeys the same way as [35]. Then we find the longest path between

two leaf nodes, with length = K. We apply different evolutionary rates r ∈ {1, 2, 3, 4}

so that the tree diameters are in the range of d ∈ {1n, 2n, 3n, 4n}: larger diameter

means a genome is more distant from its ancestor, and hence more computationally

expensive this data set will be. By timing 1/K to tree diameter, we then get the

length for a certain branch and we apply a variation coefficient to each branch in

this way to vary the length of each branch: given a parameter c, for each branch

we sample a number s uniformly from the interval (−c, c) and multiply the branch

length by es. For the experiments in this chapter, we set c with the value of 1. Thus,

a branch would get its length L get by,

L = r × n× (1/K)× es

For evolving on each branch, we use a set of evolutionary events, including inversions,

fusions, fissions, translocations, indels, segment duplications and whole genome du-

plications. We assign each event with a specific value of probability to be selected

during the simulation process.
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We compared the accuracy of three different approaches, V LWD1, V LWD2,

V LWD3 and MLWD. V LWDx (Variable Length Encoding Whole Genome Data,

of which the subscripts represent different encoding schemes covered above) is our

new approach; MLWD (Maximum Likelihood on Whole-genome Data) is a maxi-

mum likelihood based tool to reconstruct phylogeny on whole genome data, which

applies the custom transition probabilities estimation and maximum likelihood esti-

mation tool RAxML. We did not compare with the approaches of Lin, or those of

Hu et al. 19 or those of Cosner et al.,27 because MLWD outperforms the first one

[citation], and both second and third are too slow and also because the second is also

limited by their character encodings to a maximum of 20 taxa.

Simulation under General Model without Duplications

We simulate two settings of data to test our proposed method, and run both our

methods and MLWD. In this test, our method uses for encoding and the transition

parameter uses the 2n ratio. our method outperforms MLWD in every data setting

and the improvement is even more significant when the tree diameter gets larger for

V LWDx. This result is in line with the assumption (variable length binary encoding

can reserve more genome information) we made earlier and encourages us to dig

further in phylogenetic reconstruction through binary encoding. Figures 5.3 (a) and

5.3 (b) show error rates for different approaches; the x axis indicates the error rates

and the y axis indicates the tree diameter. Error rates are RF error rates[28] the

standard measure of error for phylogenetic trees. the RF rate expresses the percentage

of edges in error, either because they are missing or because they are wrong.

These representative simulations show that our VLWD approach can reconstruct

much more accurate phylogenies from genome data experienced various evolution-

ary events, than the previous binary encoding-based approach MLWD, in line with

experience in sequence-based reconstruction. V LWD3 also outperforms V LWD1
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and V LWD2, underlining the importance of fullest encoding the genome order in-

formation into sequence and the importance of estimating and setting the transition

parameters before applying the sequence-based ML method.

(a) 1, 000 genes (b) 1, 000 genes

Figure 5.3 RF error rates for different appraoches for trees with 60 species, with
genomes of 1, 000 genes and tree diameters from 1 to 4 time the number of genes,
under the evolutionary events without duplications.

Simulation under General Model with Duplications

Here we generated more complex data sets than for the previous set of experiments.

For example, among our simulated eukaryotic genomes, the largest genome has more

than 4,000 genes, and the biggest gene family in a single genome has 20 members.

We simulate two settings of data to test our proposed method, and run both our

methods and MLWD. Through this test, different encoding methods will contribute

to different performance of phylogeny reconstruction.

In our approach, the encoded sequence of each genome combines both the ad-

jacency and gene content information, which makes it difficult to compute optimal

transition probabilities, as discussed in Section 3. Thus we set a empirical value [35]

under simulation results. If the transition probability of any gene or adjacency from

0 to 1 in V LWDx is set to be m times less than that in the opposite direction, we

set all V LWDx (m = 1000).
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Figure 5.5 (a) and 5.5 (b) summarizes the RF error rates. Whereas all V LWD

methods again outperform MLWD, and V LWD3 can always maintain the best perfor-

mance. Generally, V LWDx can reconstruct more accurate phylogeny than MLWD.

Among V LWDs, V LWD3 achieve the best result. Comparing between Figure 5.5

and 5.5, we can find that MLWD returns similar result for data set without and with

whole genome duplication. Both the differences can be attributed to the encoding

scheme of V LWD3, which reserves the fullest genome information than others – since

we encode the number of copies of the gene, many duplication and loss events will

alter the encoded gene content. Whereas MLWD could only encode the presence or

absence for both adjacency and content.

(a) 1, 000 genes (b) 1, 000 genes

Figure 5.4 RF error rates for different appraoches for trees with 60 species, with
genomes of 1, 000 genes and tree diameters from 1 to 4 time the number of genes,
under the evolutionary events with free (segment) duplications.

VLBE phylogeny for real mammal genomes

In the previous results of this approach, we tested our VLBE approach on simulated

data set and achieved very good performance for reconstructing the phylogeny history

for the simulated genome data. Moreover, the VLBE approach can also be applied to

reconstruct the phylogeny for real genome data. In this section, we obtain the whole

genome data of eleven mammal species from online database Ensemble [16]. We first
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(a) 1, 000 genes (b) 1, 000 genes

Figure 5.5 RF error rates for different appraoches for trees with 60 species, with
genomes of 1, 000 genes and tree diameters from 1 to 4 time the number of genes,
under the evolutionary events with both segment and whole genome duplications.

encode all of the genes into gene orders by using the same gene order to represent all

of the homologous genes across different mammal genomes. If some gene has more

than one copies in the same genome, we still use same gene order to represent all of

the copies of this gene. Subsequently, we input the gene order content and adjacencies

into the VLBE approach to reconstruct the phylogenetic relationship for these eleven

mammal species 5.5. It only takes less than ten minutes for the VLBE to output the

final solution. We compare the VLBE phylogeny with the NCBI taxonomy, As Figure

5.5 showing, our VLBE approach correctly assign the Macaca mulatta and Macaca

fascicularis into the Macaca genus and assign the Pan troglodytes and Gorilla gorilla

into the Homininae genus. The Rattus norvegicus and Mus musculus are also been

correctly assigned into the subfamily Murinae. The Ovis aries and Bos taurus are

also been correctly assigned to the Bovidae family. We also compare this V LWD3

phylogeny with the previous gene order based mammal phylogeny study of Luo et

al. [38]. There are eight mammal species shared by these two phylogenies, and all

of the shared branches for these eight species agree with each other. Moreover, two

lowest bootstrap scores (68, 71) on the middle two branches in the tree of Figure

5.5 reflect the current controversial opinions in placing primates closer to rodents or
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Figure 5.6 Phylogeny reconstructed by VLWD for eleven mammal genomes, with
bootstrap values shown on branches.

Figure 5.7 Phylogeny reconstructed by VLWD for six plant genomes, with branch
lengths proportional to genomic distances.

carnivores [42, 45, 2, 33, 67, 10].

5.6 Conclusion

practice to date has continued to use pre-processed (manually) sequences of moderate

length using nucleotide-, aminoacid-, or codon-level models, regardless of many at-

tractive reasons for using whole-genome data in phylogenetic reconstruction. Mainly,

it is the lack of suitable/robust tools that has prevented more extensive use of whole-
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genome data and previous tools all suffered from serious problems in combined reasons

of limited data types, poor accuracy and scalability. The approach we presented is

trying to overcome all of these difficulties: it uses a fairly general model of genomic

evolution (rearrangements plus duplications, whole genome duplication, insertions,

and losses of genomic regions), is very accurate, scales as well as sequence-based ap-

proaches, is quite robust against typical assembly errors and omissions of genes, and

supports standard bootstrapping methods. Our analysis of a 11-taxon collection of

mammalians genomes, 6-taxon collection of plant genomes and 18-taxon collection

of yeast genomes, could not have been conducted, regardless of computational re-

sources, with any distance-based tools without accepting severe compromises in the

data (e.g., equalizing gene content) or the quality of the analysis. Also we design

a new encoding scheme to reserve fullest genome information in the course of phy-

logeny reconstruction using maximum likelihood method. Our analysis also helps

make the case for phylogenetic reconstruction based on whole-genome data for either

haploid or polyploid species. Indeedly, much work remains to be done. In particular,

using different transition probabilities for adjacencies and for content, by running a

compartmentalized analysis, should prove beneficial on large data sets.
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