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As the speed of microprocessors tails off, utilizing multiple processing cores per

chip is becoming a common way for developers to achieve higher performance. How-

ever, writing concurrent programs can be a big challenge because of common concur-

rency faults. Because concurrency faults are hard to detect and reproduce, traditional

testing techniques are not suitable. New techniques are needed, and these must be

assessed. A typical method for assessing testing techniques is to embed faults in

programs using mutation tools, and assess the ability of techniques to detect these.

Although mutation testing techniques can be used to represent common faults, ap-

proaches for representing concurrency faults have not been created. In this paper, we

introduce a methodology for injecting mutations related to concurrency faults, focus-

ing on four common concurrency fault patterns as mutant operators. We implement

the approach in the Eclipse IDE. We empirically study our approach’s effectiveness

by using it to seed various types of concurrency faults based on the four fault patterns

in a set of programs. This approach generates many times more mutants than can

be seeded by hand. We then execute the original programs and these mutants. We

characterize the mutants in terms of detectability as part of our study. The results

show that using the proposed tool, concurrent fault injection tool (CFIT) is feasible

and efficient.



iii

ACKNOWLEDGMENTS

I would like to thank my two advisors. Dr. Gregg Rothermel and Dr.Witty

Srisa-an for their invaluable guidance, support and encouragement over the past few

years.

Dr. Gregg Rothermel led me into a wonderful research area and taught me how

to do rigorous research. As a good mentor, he provided me with valuable advice all

the time and gave me advice and support when I ran into trouble in my life. I would

like to thank him for everything he did for me.

Dr. Witty Srisa-an has also had a great influence on me. He led me into the

gorgeous system’s area and taught me how to be a good programmer. I would like

to thank him for his infinite encouragement and patience. Without him, I can not

imagine how I could achieve the goal that I previously thought was not possible.

All his advising and mentoring are valuable to me and I will remember it now and

forever. I do not know how I can possibly thank him enough. I hope I can repay him

by making him proud of me in the future.

I would like to thank Dr. Anita Sarma for offering time to serve as my committee

member, reviewing my thesis and delivering me valuable feedback and suggestion.

I would like to thank all my friends in the Esquared lab and UNL, Tingting

Yu, Pingyu Zhang, Jianguo Wang, Jian Hu, Yin Guo, Miao Zhen, Nic Colgrove,

Thammasak Thianniwet, Yalan Liang,etc. I can not imagine how I could survive

without you through all these years. Especially, I would like to thank Jianguo Wang,

Jian Hu, Yin Guo and Pingyu Zhang for huge help when I had trouble. I appreciate

everything they did for me.

Finally, I would like to thank my family, Mom, Dad, and my loving spouse - Zhen

Hu, for their infinite love and encouragement.



iv

Contents

Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1

2 Background 4

2.1 Types of Concurrency Faults . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Mutation Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Mutation Testing Tool . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Architecture of Eclipse Plug-ins . . . . . . . . . . . . . . . . . 9

2.4.1.1 Extension Points . . . . . . . . . . . . . . . . . . . . 9

2.4.1.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 C/C++ Development Tooling (CDT) . . . . . . . . . . . . . . 11

2.4.2.1 Visitor Pattern API for ASTs . . . . . . . . . . . . . 12

3 Design and Implementation 13

3.1 Fault Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13



v

3.1.1 Remove Unlock . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Remove Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.3 Remove Paired Lock and Unlock (Critical Section Violation) . 16

3.1.4 Switch Lock Order . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Implementation of a Concurrency Fault Injection Tool . . . . . . . . . 18

3.2.1 CFIT Architecture . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1.1 Injection Action Extension . . . . . . . . . . . . . . . 18

3.2.1.2 Mutation System . . . . . . . . . . . . . . . . . . . . 19

3.2.1.3 Mutant Property . . . . . . . . . . . . . . . . . . . . 20

3.2.1.4 Database . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1.5 Hibernate . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1.6 CFIT Working Process . . . . . . . . . . . . . . . . . 23

4 Empirical Study 27

4.1 Purpose of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Objects of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Study Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Conclusion and Future Work 38

Bibliography 39



vi

List of Figures

2.1 Deadlock circular wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Eclipse plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Extensions and extension points . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Bug patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Concurrent fault types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Class ASTVisitor in DOM AST . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Class LockManagementVisitor . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 CFIT procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Snapshot of programs after modifications made by CFIT . . . . . . . . . 26

4.1 Experiment procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



vii

List of Tables

3.1 Concurrency Fault Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Mutant Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Remove Unlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Remove Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Remove Paired Lock and Unlock . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Switch Lock Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 The total numbers of detected mutants based on all 4 mutant operators

and the number of detected mutants based on the percentage of test cases 34

4.7 Deadlocks for Base Program . . . . . . . . . . . . . . . . . . . . . . . . . 35



1

Chapter 1

Introduction

As the speed of microprocessors tails off, utilizing multiple processing cores per chip

is becoming a common way for developers to achieve higher performance. To do this,

developers shift from writing sequential code to employing thread-level parallelism.

Writing dependable concurrent programs can, however, be challenging, because im-

proper synchronization of access to shared resources can lead to runtime errors such

as deadlocks, critical section violations, livelock, and starvation which are difficult to

detect, isolate, and correct during pre-deployment.

Typically, a concurrent program consists of two or more processes or threads

that cooperate in performing a task[8]. Since there are multiple processes or threads

executing simultaneously, shared variables or resources may be accessed concurrently.

Without proper protection, these accesses can result in intermittent runtime errors

that occur only when under specific execution interleavings or occurrences of specific

events.

Currently, there are many techniques used to detect concurrency faults, such as

data race detection[13][28][33], atomicity violation detection[14], pattern analysis[25],

and fault-localization[26][37][31]. Moreover, common testing techniques involving per-
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formance testing and stress testing are always used to deal with concurrency faults.

However, performance testing and stress testing are very time consuming and it can

be difficult to reproduce the concurrency faults they detect. Thus, we need better

testing techniques to address concurrency issues.

Currently, researchers use mutation testing approaches to represent common but

hard to detect faults, in order to make testing more efficient. Mutation testing is a

fault-based software testing technique that uses mutants that slightly modify a piece

of code in a program to check the quality of a new testing technique and repro-

duce faults that are hard to detect[16][11]. There are several existing approaches for

defining mutation operators for concurrent programs[35][27][15][24][38][22]; however,

these approaches still rely on using manually injected mutants and output-based test

oracles.

Injecting mutants manually is neither efficient nor complete, especially when it is

applied to modern concurrent software systems that tend to have large code bases. In

addition, output based oracles are not sufficient because occurrences of concurrency

faults do not always lead to erroneous outputs; therefore, they often elude traditional

testing approaches that rely on output-based oracles for fault detection. As such,

internal test oracles, which detect faults by monitoring aspects of internal program

and system states[39] can be more effective for detecting these types of faults.

In previous work[39], Yuetal. empirically investigated the use of internal test

oracles based on manually seeding mutants in 5 applications. The results show that

internal oracles can be more effective than output-based oracles. However, due to the

fact that manual seeding of mutants is time consuming and inaccurate, an automatic

concurrency fault seeding tool is necessary. In this paper, we introduce an automatic

concurrent fault injection tool (CFIT) based on an Eclipse plug-in for C/C++. We

use four common concurrent fault patterns as mutant operators. We then empirically
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study our tool’s effectiveness by using it to seed various types of concurrency faults

based on four fault patterns in the same five programs. This approach generates many

times more mutants. We then execute the original programs and these mutants. We

characterize these mutants as part of our study. The results show that using the

proposed tool, CFIT, is feasible and efficient.

The remainder of this thesis is organized as follows. In Section 2, we provide

background information relevant to the remainder of the thesis. We describe the

design and implementation of our concurrent fault injection tool (CFIT) in Section

3. Section 4 presents our empirical study. Conclusions and future work are discussed

in Section 5.
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Chapter 2

Background

In this chapter, we discuss background information related to this work. First, we

describe and provide examples of common concurrency faults. We then describe

mutation testing approaches and existing tools to support such testing. Last, we

provide an overview of the Eclipse plug-in architecture.

2.1 Types of Concurrency Faults

In this section, we describe four types of concurrency faults: critical section violations,

deadlock, livelock, and starvation.

Critical section violations occur when two or more processes or threads attempt to

access and update a shared resource at the same time. This situation is very common

in multi-threaded or multi-process systems. This type of fault occurs when shared

resources are not properly protected by lock operations that synchronize concurrent

access to those resources. As an example, suppose there are two processes P1 and P2,

both that can perform write operations on a variable a. Initially, a is set to 0. If a is

not properly protected, both P1 and P2 can concurrently write to a. Thus, the two
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processes race to update the shared resource. As such, the final value of a depends on

who has the last access. Code snippet A provides an example of this type of common

data race in an application. Function autoIncrement updates global variable a. In a

scenario where two threads execute autoIncrement simultaneously, the final value of

a may not be 2.

1 . i n t a = 0 ;

2 . void autoIncrement ( ) {

3 . // lock ( ) ;

4 . a++;

5 . // unlock ( ) ;

6 . }

7 . main ( ) {

8 . autoincrement ( ) ;

}

Code snippet A

Deadlock is a situation in which more than one thread or process are blocked

permanently because each is waiting to access a shared resource that is blocked by

one of the others at that time. There are four conditions that must be met for

deadlock to occur: mutual exclusion (only one process or thread can access a shared

resource in a critical section at a time), hold-and-wait (a process or thread may hold

a shared resource while awaiting assignment of other resources), no preemption (no

resource can be released from a process or thread holding it) and circular wait (each

process or thread holds at least one shared resource requested by the other processes

or threads)[36]. An example is provided in Figure 2.1. There are two shared resources,

RS1 and RS2, and two processes, P1 and P2; RS1 is held by P1 and RS2 is held by

P2. There is no preemption and each process has exclusive access to the held resource.
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Because P2 needs RS1 which is held by P1, and P1 needs RS2 which is held by P2, a

circular wait occurs. Code snippet B indicates a common instance of such a deadlock

scenario in an application. If two threads are used in this program, there is a specific

interleaving sequence T1(1), T2(6), T1(2), T2(7) that can cause a deadlock to occur.

void RS1 ( ) {

. . .

1 . l ock1 ( ) ;

2 . l ock2 ( ) ;

3 . // c r i t i c a l s e c t i o n .

4 . unlock2 ( ) ;

5 . unlock1 ( ) ;

. . .

}

void RS2 ( ) {

. . .

6 . l ock2 ( ) ;

7 . l ock1 ( ) ;

// c r i t i c a l s e c t i o n

8 . unlock2 ( ) ;

9 . unlock1 ( ) ;

. . .

}

Code snippet B

A livelock is similar to a deadlock except that processes or threads are not blocked

permanently by each other. Rather, they are constantly processed by the CPU. An

example is when a spinlock instead of blocking is used to synchronize a region. Two

threads can be spinning on a lock. They are both executing on the processor but
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Figure 2.1: Deadlock circular wait

without making any progress toward completion.

Starvation is a situation in which a process or thread can never access shared

resources. As an example, suppose three processes with three different priority levels

need to access a shared resource. If the process with the highest priority keeps using

the resource, the other two lower priority processes would not be able to access the

resource.

2.2 Mutation Testing

Mutation testing is a fault-based software testing technique that uses mutants that

slightly modify a piece of code of the program to check the quality of a new testing

technique and reproduce faults that are hard to detect[16][11]. Mutation testing has

been studied since 1977. Mutation testing is based on the Competent Programmer

Hypothesis and the Coupling Effect Hypothesis[11]. The Competent Programmer

Hypothesis assumes that programmers are competent and write programs that are

close to being correct. A correct program can be created from an incorrect program

that includes syntactically small faults and with a few small code modifications. The
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Coupling Effect Hypothesis indicates that test cases that distinguish all programs

differing from a correct one by only simple errors are so sensitive that they can

distinguish programs with more complex differences. So mutation testing can be

used to simulate complex real-world bugs, especially for bugs that are hard to detect

and reproduce.

2.3 Mutation Testing Tool

Without a fully automated mutation testing tool, creating mutants can be a cum-

bersome process, especially for large programs. Therefore, the development of mu-

tation testing tools is necessary. Various mutation testing tools have been devel-

oped. MuJava[27] is a mutation tool for Java that includes class-level operators.

MOTHRA[12] is a mutation testing tool for Fortran. MILU[21] is an efficient and

flexible mutation testing tool designed for both first order and higher order mutation

testing in C. Jester is the first open source mutation testing tool for Java. Its two

mutation operators are very similar; one changes 0 to 1 and the other replaces predi-

cates with TRUE and FALSE[18]. Pester[18] is a Python version of Jester. Nester[1]

is an open source tool for C Sharp. Moreover, there are several mutation tools like

INSURE++[30], PLEXTEST[20], CERTITUDE[9] available commercially.

2.4 Eclipse

Eclipse is an integrated development environment (IDE). It is written mostly in Java.

Typically, it consists of a base workspace and an extensible plug-in system for cus-

tomizing the environment[2]. Plug-ins can be used to build arbitrary applications

in different programming languages under different development environments. In
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other words, everyone can contribute plug-ins and Eclipse can use its strong extensi-

ble plug-in system to integrate various features in a single working platform.

2.4.1 Architecture of Eclipse Plug-ins

Eclipse is not just a single working platform, but rather a small kernel with a plug-in

loader surrounded by thousands of plug-ins. The small kernel is based on a container

that is implemented by OSGi R4 and provides the environment to control the plug-ins

execution[10]. Each plug-in contributes itself in a structured manner, may be based

on services provided by another plug-in and each may in turn provide services on

which other plug-ins may rely. An Eclipse plug-in, typically, consists of two compo-

nents, extensions and extension points, respectively. The concept of extensions and

extension points allow functionality to be contributed to plug-ins by other plug-ins(see

Figure 2.2).

2.4.1.1 Extension Points

When a plug-in wants to allow other plug-ins to extend portions of its functionality,

it declares an extension point. The extension point declares a contract, typically, a

combination of XML markup and Java interfaces, that extensions must conform to[2].

Plug-ins must implement that contract in their extension if they want to plug in to

that extension point.

2.4.1.2 Extensions

Extensions are plug-ins which contribute an extension. Typically, these plug-ins pro-

vide an extension based on the contract that was defined by a corresponding extension

point. Extensions can be either code or data (see Figure 2.3).
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Figure 2.2: Eclipse plug-ins
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Figure 2.3: Extensions and extension points

2.4.2 C/C++ Development Tooling (CDT)

As we mentioned, in Eclipse everything is a contribution (plug-in). Because of its

strong extensible plug-in system, Eclipse is not only an IDE for Java programming,

but also an IDE for other popular programming languages like C++ and PHP. When

Eclipse was used only as a Java programming IDE, the development tooling in Eclipse

was Java development tooling (JDT). When Eclipse became a general application

platform, each programming language provided its own corresponding development

tooling. For C/C++, C/C++ development tooling (CDT) is an Eclipse plug-in that

transforms Eclipse into a powerful C/C++ IDE. It can offer many of the features

Eclipse provides to Java developers to C/C++ developers. Basically, the core of

CDT consists of a preprocessor, parsers (C/C++), an abstract syntax tree (AST),

an AST rewrite API, semantic analysis (name resolution), an indexer and an Index

API. The tool we create in this work is not development tooling or a compiler, so we

rely on only three core parts of CDT, a preprocessor that converts text into a token

stream, parsers (C/C++) that convert the token stream into an AST and an abstract

syntax tree (AST) representation of the syntactic structure of source code written in

C/C++.
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2.4.2.1 Visitor Pattern API for ASTs

An abstract syntax tree (AST) is a tree representation of abstract syntactic structure

of source code written in a programming language[3]. Basically, an AST is used for

semantic analysis where the compiler checks whether the element of the programming

language is correctly utilized. However, traversing an AST is not an easy job. The

problem here is that the type of each node is different. For example, the AST of

a = b + c has three different nodes, an assignment operator, a variable id and an

arithmetic operator. Since each node may correspond to a class, the AST traversal

may go through all the classes, which makes the program hard to read and maintain.

The solution to this problem is to utilize a design pattern called the visitor pattern

instead of sifting through all the classes. The visitor pattern lets us traverse the AST

using different visitors. More accurately, each node of the AST has an accept method

accepting a call from a visitor that performs its custom traversal. So we can use the

visitor pattern to traverse a particular block, statement, expression or declaration in

a source file.
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Chapter 3

Design and Implementation

3.1 Fault Patterns

In this section, we present a set of fault patterns designed as mutants, with which to

seed a healthy C/C++ program. First, we created a concurrency fault taxonomy to

identify the reasons for the most common concurrency faults. We used the ROS[4] bug

repository as a resource to do this. ROS stands for Robot Operating System, and

is a flexible framework for writing robotics software. To collect the most common

concurrency faults, we used the terms deadlock, synchronization, mutex and race

condition as keywords to query for faults related to concurrency. Table 3.1 presents

data on keywords and real faults. Figure 3.1 presents the real reasons these faults

occur. We can see that most concurrency faults are associated with lock() or unlock()

methods. Figure 3.2 represents the most common fault types. We found that most

faults can generate deadlock or race conditions. So according to the data we collected,

we designed four types of mutant operators. They are Remove Unlock, Remove Lock,

Remove Paired Lock and Unlock and Switch Lock Order, respectively.
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Keywords Deadlock
Race
Condi-
tion

SynchronizationMutex
Multiple
Thread

SimultaneousTotal

Keywords
Contain-
ing

91 246 72 189 62 55 715

Related 5 15 3 3 6 2 34

Table 3.1: Concurrency Fault Taxonomy

Figure 3.1: Bug patterns
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Figure 3.2: Concurrent fault types

3.1.1 Remove Unlock

Improper use of unlock or missing unlock faults are very common in concurrent pro-

grams. This type of fault occurs when developers do not use unlock() functions

properly. For example, an unlock() may not be paired with its lock() in cases where

interactions among threads are complicated. Meanwhile, this type of fault can cause

deadlock. The Remove Unlock operator is the mutant used to delete one unlock

method in concurrent programs to simulate a fault due to a missing unlock. Program

A provides a simple example of this type of fault.

P1{

1 . Lock (mutex ) ;

2 . x++;

3 . . . .

4 . //Unlock (mutex ) ; // f a u l t

}

Program A
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3.1.2 Remove Lock

Incorrect or missing locks are another very common type of fault in concurrent pro-

grams. This type of fault occurs due to improper use of lock operations in a program

that may require multiple locks to be managed. The Remove Lock operator is the

mutant used to delete locks in concurrent programs to simulate missing lock faults.

Program B provides a simple example of this type of fault.

P2{

1 . //Lock1 ( ) // f a u l t

2 . . . .

3 . Lock2 ( )

4 .

5 . Lock3 ( )

6 . . . .

}

Program B

3.1.3 Remove Paired Lock and Unlock (Critical Section

Violation)

Critical section violations are a common faults in concurrent programs. This type of

fault occurs if a critical section is not protected properly, allowing it to be accessed

by multiple threads at one time. Typically, this type of fault is the main reason for

critical section violations. The Paired Lock and Unlock operator is the mutant used

to delete paired lock and unlock methods in the same block in concurrent programs

to simulate faults due to critical section violations. Program C provides a simple

example of this type of fault.
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P3{

1 . //Lock ( ) ; // f a u l t

2 . x++;

3 . . . .

4 . //Unlock ( ) ; // f a u l t

}

Program C

3.1.4 Switch Lock Order

Incorrect lock order is another cause of concurrency faults in concurrent programs.

This type of fault occurs due to improper use of lock operations in programs that

require multiple locks to be managed. The Switch Lock Order operator is the mutant

used to change the lock order in the same block in a concurrent program, to simulate

this class of fault. Program D provides a simple example of this type of fault. M P4

represents the program after injecting a mutant.

P4{

1 . Lock1 ( ) ;

2 . Lock2 ( ) ;

3 . . . .

4 . Unlock2 ( ) ;

5 . Unlock1 ( ) ;

}

M P4{

1 . Lock2 ( ) ; // f a u l t

2 . Lock1 ( ) ; // f a u l t

3 . . . .
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4 . Unlock2 ( ) ;

5 . Unlock1 ( ) ;

}

Program D

3.2 Implementation of a Concurrency Fault

Injection Tool

The Concurrent Fault Injection Tool (CFIT) is our concurrency fault mutation sys-

tem for the C/C++ programming languages. It automatically generates mutants

for concurrent mutation testing based on the aforementioned fault patterns. CFIT

is developed as an Eclipse plug-in. It can analyze single C/C++ source files or a

whole C/C++ project. Mutants of a C/C++ file are generated inside conditional

compilation constructs in the original source file and activated via an automatically

generated mutant header file.

3.2.1 CFIT Architecture

CFIT consists of four components: Injection Action Extension, Mutation System,

Mutant Property, and Database.

3.2.1.1 Injection Action Extension

The Injection Action Extension is a module that performs fault seeding. Its main

GUI is in the form of a pop-up menu. It is an extension connecting to a particular

extension point, org.eclipse.ui.popupMenus. This extension point is used to add new

actions to context menus defined by other plug-ins. To use this plug-in, the user only
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needs to right click the project that is the target for injected faults. Next, on the

pop-up menu, the user selects the fault injection option. Mutants will be injected

automatically and the mutant source file and mutant header file will automatically

be generated in a user specified path (see Figure 3.6).

3.2.1.2 Mutation System

The Mutation System is the core component of CFIT. It consists of three parts: CDT

parser, abstract syntax tree (AST) and mutant property.

CDT is implemented in the C/C++ development tooling. Because CDT has a full

C/C++ parser and AST, we decided to use the CDT parser and AST directly. The

CDT parser is the component used to parse C/C++ source code. It takes a C/C++

program as input and parses the source into a token list. The token list, typically,

will generate an abstract syntax tree. However, because the official CDT does not

let the user access the AST, we downloaded a developed version of the CDT package

which includes a test mode that lets the developer use a DOM AST component and

a debugging component.

The main package for the AST for C/C++ is called org.eclipse.cdt.ui.tests.DOMAST.

It is located as a sub-project of CDT called org.eclipse.cdt.ui.tests. This package is

mainly used for traversing an AST in the form of a GUI so that the CDT developer

can retrieve the ASTNode information during development. Each C/C++ source

file is represented as a subclass of the ASTNode class. Each specific AST node pro-

vides specific information about the object it represents. To traverse an AST and

obtain ASTNode specific information, we use the visitor pattern. This lets us write

user defined plug-ins that process the AST. We built subclasses based on the visitor

pattern extending the ASTVisitor class (Figure 3.3), which is an abstract base class

to which visitors can traverse AST nodes and override methods that users specify
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for different subclasses. Moreover, because the CDT DOM AST has its own built-in

node classes that each has an accept (ASTVisitor) method, we do not need to build

these accept methods by ourselves. In other words, we only need to create a visitor

object extending ASTVisitor and override several overloaded visit methods for each

node type, and then we can process the AST in forms that we want.

Figure 3.4 provides an example, showing a subclass of ASTVisitor. The LockMan-

agementVisitor class is used to obtain all lock methods in one IASTTranslationUnit

and their AST node-specific information in a single C/C++ source file. IASTTrans-

lationUnit is a compilable unit of source. Typically, we consider it to be the root of

an AST. It accepts a user defined visitor class (e.g. LockManagementVisitor) and

processes a particular traversal based on several overridden visitor methods. Since

we can get ASTNode information such as line number, parent ASTNode, children

ASTNodes, etc. in a source file, we can operate on any statements, expressions, or

variables in any desired manner. For example, if we want to remove one specific

lock method in a specific compound statement, we only need to get this specific lock

method’s ASTNode information based on a user-defined visit method in a specific

subclass that extends the ASTVisitor class. Then according to the ASTNode’s spe-

cific information, we can easily locate that lock method in a source file and insert the

conditional compilation directives that implement the mutation using specific string

operations.

3.2.1.3 Mutant Property

The Mutant Property is the component used to retrieve user specified mutant op-

erators as the input for the mutation system. Right now, as described earlier, we

have four mutant operators: Remove Unlock, Remove Lock, Switch Lock Order and

Remove Paired Lock and Unlock. We use Java properties file format to set up the



21

Figure 3.3: Class ASTVisitor in DOM AST

Figure 3.4: Class LockManagementVisitor
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rules for mutants. If we want to open a mutant operator, we set the property value

to “yes”. If not, we set the property value to “no”. For example, RemoveUnlock=yes

tells the mutation system to activate the remove unlock pattern during runtime. Each

time, we seed only one type of mutant: if one mutant operator is opened, the other

three must be closed.

The mutant template is another Java properties file that is used to obtain lock or

unlock information in an application. For example, if we want to seed a Remove Un-

lock pattern in an application, we need to specify the unlock method name in the mu-

tant template. For example, Unlocker=pthread mutex unlock represents the case of a

Remove Unlock pattern opening in which the mutant system will seed the mutant only

when the unlock method name of the specific application is pthread mutex unlock.

3.2.1.4 Database

Due to the large number of mutants generated by CFIT, we use a database to conve-

niently track each mutant’s specific information, including the name of the injected

source file, the fault pattern, and the location of the mutant (line number).

3.2.1.5 Hibernate

Because our database is designed with respect to an object relational mapping model,

we chose the Hibernate ORM as our database framework. However, due to the way

Eclipse RCP (and Eclipse in general) delegates class loading to buddy plug-ins[5], it is

necessary to wrap third-party libraries in a plug-in to ensure that the correct context

class loading occurs at runtime. Hibernate is an open source software providing a

framework with which to map an object oriented model to a traditional relational

database[7]. Because Hibernate is a third party library for Eclipse RCP, importing

Hibernate into a single Eclipse plug-in project will not activate the database. To solve
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Figure 3.5: CFIT procedure

this problem, we built another plug-in project just for the database part, imported

all the libraries, and used this standalone plug-in as a dependency of CFIT. Then the

database can be active during the CFIT run-time.

3.2.1.6 CFIT Working Process

Figure 3.5 represents the working process of CFIT. The mutation system takes the

AST from the CDT parser and the mutant property that a user has defined as in-

put and generates a mutant in the form of conditional compilation in the source

code and a mutant header file as the mutant switch. Each mutant is represented in

the form “FaultMutantPattern MutantId”. For example, if mutant operator prop-

erties activate the Remove Unlock pattern and the mutant template sets unlock to

pthread mutex unlock, Fault Remove Unlock m0 will be generated in the form of

conditional compilation. FaultRemoveUnlock m0 indicates that the mutant removes

one unlock method in the source and its id is listed as 0.

As an example, Program E illustrates how a mutant is generated in a source file.
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At the same time, a mutant switch corresponding to that mutant is generated in the

mutant header file “sourceFileName mutant.h”. Each mutant header file contains

a certain quantity of mutants starting with two slashes that can also be considered

as a comment in a regular program. Each mutant is represented in the form of a

#define directive that defines a constant and creates a macro. If a mutant needs to

be active, we only need to remove the two slashes and then the mutant will switch

from comment to macro.

Program F is a simple example showing how a mutant header file works. We

combine program E and program F to show how a mutant is activated. In program

F, when we remove two slashes from the first line, #define FAULT unlock remove m0

0 will be activated from comment status. At this point, FAULT unlock remove m0

is defined and the constant value of this definition is 0. In other words, it is de-

fined. Returning to program E, line 1 represents whether FAULT unlock remove m0

is defined, so the routine will go to line 2 that does nothing, omitting the call to

the pthread mutex unlock(mutex) method, and then go to line 5 and continue. If we

switch the first line of the mutant header file from macro status to comment again,

the mutant FAULT unlock remove m0 will be closed, and then if we rerun program

E, line 4 will be executed. So we can see that when one type of mutant is set, all fea-

sible mutants will be seeded in the source file in the form of conditional compilation

and be listed in the mutant header file. It is convenient to open and close a mutant

by just deleting two slashes or adding two slashes back.

P5{

. . .

1 . #i f d e f FAULT unlock remove m0

2 .

3 . #e l s e

4 . pthread mutex unlock (mutex ) ;
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5 . #end i f

. . .

}

Program E

//#de f i n e FAULT unlock remove m0 0

//#de f i n e FAULT unlock remove m1 0

//#de f i n e FAULT unlock remove m2 0

. . .

Program F
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Figure 3.6: Snapshot of programs after modifications made by CFIT
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Chapter 4

Empirical Study

In this chapter, we provide an empirical evaluation of the proposed framework. We

focus on its efficiency and ability to generate challenging mutants that can be helpful

in studying techniques for uncovering difficult to detect concurrency faults.

4.1 Purpose of Study

The purpose of this study is to evaluate the feasibility of the approach of using an

automation injection tool instead of manually injecting concurrency faults in studies

of testing, and assess the efficiency of mutant generation and characteristics of the

mutants that can be exposed. We consider the following research questions:

RQ1: Whether and to what extent are mutants generated by CFIT detectable?

RQ2: Are the mutants not too easily detectable?

RQ3: Is our tool efficient enough?
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4.2 Objects of Study

To evaluate our tool and methodology, we chose five concurrent programs. They

include BBUF, which is an implementation of the producer and consumer program,

AGET, which is a multithreaded FTP download application, PFSCAN, which is a

parallel file scanner, BZIP[6], which is a multithreaded compression program, and

DININGPHILOSOPHER, which is an example from the Oracle Thread Analyzer[29].

The reason we select these programs for our study is because they include real-world

programs, commonly used concurrency benchmarks and commercial tools. Further-

more, these applications have been used in prior studies of techniques for testing for

concurrency faults[39].

Because our object programs are not distributed with test cases, we needed to gen-

erate test cases for them. We consider three factors in generating test cases: test input

data, other relevant parameters, and specified thread execution interleavings[23]. Be-

fore we generate a large number of test cases, we need to consider output files based

on the four mutant operators used by CFIT. Each injected program contains a corre-

sponding mutant specification in the form of a header file. It specifies mutants that

have been injected into the program and supports the ability to enable one particular

mutant through a mutant generator program. For example, if one mutant header file

includes 8 mutants, after running the mutant generator program, 8 different versions

of that program will be generated. For each version of the program, we created a

set of valid test input values and command options with different numbers of threads

ranging from 1 to 5.

For each of these test inputs, we assigned a thread interleaving by randomly

selecting a set of program locations at the granularity of instructions. We randomly

added yield points to these selected locations; this has a high probability of achieving
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determinism[23]. A yield point is used to make a thread voluntarily suspend its

execution. This creates an environment where interleavings happen more frequently

and under much greater control by the tester. This is accomplished by injecting sleep

functions for a finite amount of time so that the scheduler would pick other threads

to run. This allows a tester to control thread interleaving.

Program G provides a simple example of how a yield point works. Between lines

2 and 3, a sleep function call is inserted as the yield point to cause the current thread

(thread A) to suspend execution for one second. Thus, another thread (thread B) is

scheduled while thread A is sleeping, resulting in a controlled interleaving. To further

explore different interleaving patterns at runtime, we generated 10 test cases with

different yield points for each mutant.

. . .

1 . movl ( count ) , %eax ;

2 . addl $1 , %eax ;

s l e e p (1000) ; // Yie ld po int

3 . movl %eax , ( count ) ;

. . .

Program G

The end result of this process is a relatively large number of test cases. For

example, if we have 8 mutants for the RemoveUnlock pattern, there will be 8 * 10 * 5

= 400 executions, where 8 is the number of mutants, 10 is the number of test inputs

used for each mutant and the number of threads ranges from 1 to 5. Moreover, the

number 400 here is just for one type of mutant operator; if each of 4 mutant operators

can generate 400 test cases, there would be 400 * 4 = 1600 unique test cases generated

for that program.
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4.3 Study Operation

Figure 4.1 illustrates the process we used to generate and execute test cases on all of

the faulty versions of each object program, with one mutant activated on each exe-

cution. The reason we activate only one mutant in each execution is to avoid fault-

interactions and masking effects, and to allow us to accurately determine whether

each mutant was indeed detected. The basic procedure is as follows: (1) CFIT gener-

ates a number of mutant files including mutant source files and corresponding mutant

header files. (2) A mutant generator opens each mutant header file and then gen-

erates a new version of the program based on each specified mutant; these are then

compiled. (3) TC Gen is the test case generation tool. Each test case consists of

different yield point files generated by the yield point generator (YP Gen), a set of

test inputs, a number of threads ranging from 1 to 5, and various command options

for each object program based on different types of mutants. (4) We use Pin, which

is a dynamic binary instrumentation tool,[19] to execute the test cases. (5) We then

employ an algorithm based on wait-for graphs [34] to detect deadlocks. If a circular-

wait condition is detected, the deadlock detector reports the program, the specific test

case, the specific mutant, and the number of threads that result in that particular

deadlock. Moreover, the system also creates an event log after each execution that

can be used for further analysis.

4.4 Result

Table 4.1 lists our five concurrent programs and data on their mutants. Column 1 is

the name of the program. Numbers of lines of code is listed in Column 2. Columns
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Figure 4.1: Experiment procedure

3 to 6 report the numbers of mutants generated based on each mutant operator.

Program NLOC Rm Unlock Rm lock

Rm
paired
Lock and
Unlock

Switch
locks
order

BBUF 256 8 6 6 0
DIN.PHIL 104 5 4 3 0
AGET 846 2 2 2 0

PFSCAN 752 12 11 10 1
BZIP 4232 10 11 9 142

Table 4.1: Mutant Data

Tables 4.2–4.5 report results regarding the effectiveness of the proposed framework

in creating challenging but detectable mutants. Each table represents a particular

fault pattern. In each table, Column 1 provides the name of the object program.

Column 2 provides the number of mutants of that mutant operator generated by

CFIT. Column 3 denotes how many deadlocks are detected after executing the mu-

tants. Column 4 is the report of the mutation score for that type of mutant. The
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mutation score is based on the ratio between the percentage of detected and injected

mutants.

Program Rm Unlock DLs Detected Mutation Score

BBUF 8 6 75%
DIN.PHIL 5 5 100%
AGET 2 2 100%

PFSCAN 12 5 40%
BZIP 10 4 40%

Table 4.2: Remove Unlock

Table 4.2 is the result of the RemoveUnlock mutant operator. We can see that

deadlocks occur in all of the programs (see Column 3). However, except for on

programs DIN.PHILO and AGET, not all of the mutants are detected or killed. The

mutation score for BBUF is 75%, and for both PFSCAN and BZIP it is 40%.

Program Rm lock DLs Detected Mutation Score

BBUF 6 0 0%
DIN.PHIL 4 2 50%
AGET 2 0 0%

PFSCAN 11 3 27%
BZIP 11 0 0%

Table 4.3: Remove Lock

Table 4.5 reports the results when we apply the Switch Lock Order mutant oper-

ator. Note that BBUF, DIN.PHILO and AGET do not have mutants of this type. In

these three applications, there is only one lock statement in each block. For PFSCAN,

only one mutant is generated and it is killed by our test cases. For BZIP, 94 mutants

are killed out of 142.

Next we describe the results reported in Table 4.3 and Table 4.4. We can see that

both the Remove Lock and Remove Paired Lock and Unlock mutant operators did
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not cause deadlock to occur in BBUF, AGET and BZIP. Therefore, the experiment

results show that two mutant operators, Remove Unlock and Switch Lock Order,

can cause deadlock to occur more easily than mutant operators Remove Lock and

Remove Paired Lock and Unlock. The reason for this is that removing an unlock

can cause a thread to exclusively hold a resource without releasing it, resulting in

circular waits. We also find that switching the order of two locks often results in

circular wait. Although the mutants generated by Remove Lock and Remove Paired

Lock and Unlock are hard to kill, deadlocks still occur during run time. The reason

for this is that these two mutant operators can easily cause data races and data races

are a potential factor that can lead to deadlock.

Program Rm lock DLs Detected Mutation Score

BBUF 6 0 0%
DIN.PHIL 3 3 100%
AGET 2 0 0%

PFSCAN 10 1 10%
BZIP 9 0 0%

Table 4.4: Remove Paired Lock and Unlock

Program Rm lock DLs Detected Mutation Score

BBUF 0 - -
DIN.PHIL 0 - -
AGET 0 - -

PFSCAN 1 1 100%
BZIP 142 94 66%

Table 4.5: Switch Lock Order

To further evaluate our mutation approach, Table 4.6 lists the total numbers of

detected mutants based on all 4 mutant operators and the number of detected mutants

based on the percentage of test cases. For example, if a mutant is detected by all test

cases, then it would be reported in the last column (80% - 100%). Due to the need to
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produce meaningful results in experiments on testing techniques, seeded faults should

be neither too easy nor too hard to detect[17]. If they are too hard to detect, then all

mutants are not likely to be killed by any test cases, and they provide no ability to

differentiate approaches. (Note, however, that some of mutants that cannot be killed

may actually be equivalent mutants, which are mutants that behave equivalent to the

base program.) Conversely, if mutants are too easy to detect, then almost any test

cases can detect them, and they are likely to be detected by any testing technique,

again providing no ability to differentiate approaches.

Program NMs 0.1-20% 20-40% 40-60% 60-80% 80-100%

BBUF 6 1 0 1 1 3
DIN.PHIL 10 0 0 0 0 10
AGET 2 0 0 0 0 2

PFSCAN 10 8 0 0 0 2
BZIP 98 34 3 9 1 51

Table 4.6: The total numbers of detected mutants based on all 4 mutant operators
and the number of detected mutants based on the percentage of test cases

We now turn to our research questions. We first consider whether mutants are

detectable (RQ1). Based on results reported in Tables 4.2 through 4.5, we can see

that only in the cases of BBUF and AGET under the Remove Lock and Remove

Paired Lock and Unlock patterns did mutants fail to cause deadlock to occur. In the

remaining three programs injected mutants did cause deadlocks to occur. Although

mutants under Remove Lock and Remove Paired Lock and Unlock for BBUF and

AGET are not killed, we have not determined whether these are equivalent mutants

or whether the test cases are not adequately constructed to reach them. We leave

this analysis as future work. In summary, our experiment results show that a large

proportion of the mutants generated by CFIT are detectable.

We now consider whether our mutants are not too easily detectable (RQ2). Table
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4.6 reports that around 34% of all mutants fall in the category of 0.1-20% detection

ratio. In this category, mutants are detectable but only by some test cases. As such,

these mutants are detectable but detecting them can be challenging1. However, on

DIN.PHILO and AGET, results are not encouraging, with all mutants being easily

detected. We believe this is due to the problem discussed earlier, namely, most of the

test cases for these programs are not strong enough to detect more difficult-to-detect

mutants. Like RQ1, we will further investigate this issue as part of future work.

Finally, we consider whether our tool can operate efficiently (RQ3). As a prelim-

inary evaluation, we measured the amount of time needed to inject 244 faults across

all four fault patterns in all five applications. The amount of time needed was around

5 minutes. On the other hand, manual injection would likely take longer to perform

the same task. As such, we conclude that the proposed CFIT is efficient.

Program DLs Detected

BBUF F
DIN.PHIL T

AGET F
PFSCAN F

BZIP F

Table 4.7: Deadlocks for Base Program

4.5 Discussion

Before we discuss our results, we also ran another experiment using the same test

cases to run the base programs. The results are shown in Table 4.7. We can see that

deadlock previously exists in DININGPHILOSOPHER. The other four applications

have no detectable deadlocks prior to apply CFIT.

1We used increment of 20% as previously used by [32].
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We now discuss the results of our empirical study. With respect to mutation score,

the results show that DININGPHILOSOPHER has the highest score across all fault

patterns except for the Switch Lock Order pattern. As a reminder, the Switch Lock

Order pattern is not applicable to this program. The scores for Remove Unlock and

Remove Paired Lock and Unlock are 100%. For Remove Lock, the score is only 50%

but yet, this score is still the highest when compared to those of the remaining four

programs. According to the result showing in Table 4.6, we can see that all killed

mutants are located in the 80–100% category, implying that all mutants generated

by CFIT for DININGPHILOSOPHER are easily detectable.

DININGPHILOSOPHER was released by Oracle as a test program for its tool,

Thread Analyzer. This particular tool can be used to analyze the execution of a

multithreaded program. Typically, it can detect multithreaded programming errors

such as data races and deadlocks in code that is written using the POSIX thread API,

the Solaris thread API, OpenMP directives, or a mix of these[29]. As a test program,

it already contain sources of deadlock before we injected it with mutants. As such,

adding more mutants causes deadlock to occur even more easily, which is reflected in

its high mutation score.

Next, we analyzed the mutation score of the remaining 4 programs. For Remove

Lock and Remove Paired Lock and Unlock, only PFSCAN has mutants 4 out of 21

that can cause deadlock to occur. The remaining three programs do not have any

mutants that can cause deadlock to occur. As we mentioned above, the reason most

of mutants are not killed by our test cases is that some may actually be equivalent mu-

tants. Other non-equivalent mutants may fail to be killed may be due to inadequate

test cases.

For the Remove Lock or Remove Paired Lock and Unlock, we basically remove

protection from critical sections. This can result in data races. It is quite possible
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that data races can lead to deadlocks. We found 4 mutants that can cause deadlocks

due to races.

Finally, we analyzed the mutation scores of Remove Unlock and Switch Lock

Order patterns. Missing corresponding unlocks or incorrect lock orders are major

fault patterns that can cause deadlocks in concurrent programs. This is because

missing unlock operations can result in more mutually exclusive resources. Mutual

exclusion is an important factor that can lead to deadlocks. Switching lock orders

can also lead to more hold and wait instances in nested locking situations. According

to Table 4.2 and Table 4.5, the experiment results indicate that mutants based on

these two patterns are likely to cause deadlocks.
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Chapter 5

Conclusion and Future Work

In this paper, we have presented a methodology for injecting mutations related to

concurrency faults. We built an automatic concurrent fault injection tool (CFIT)

based on an Eclipse plug-in for C/C++. In an empirical study, we evaluated our

tool’s effectiveness by using it to seed various types of concurrency faults based on

four fault patterns into five concurrent programs. Our results show that using the

proposed concurrent fault injection tool (CFIT) is feasible as a basis for empirically

evaluating testing techniques.

In future work, we intend to incorporate more mutant operators into CFIT such

as Shift Critical Section and Modify Mutex. We also intend to extend our study of

internal oracles to take other concurrency faults into account such as critical section

violations and starvation. Finally, we intend to perform more empirical studies to

evaluate the effect of equivalent mutants and non-equivalent mutants that are not

killed in our work.
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