
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Fall 12-2012

A Unifying Approach to Behavioral Coverage
Elena Sherman
University of Nebraska-Lincoln, esherman@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Sherman, Elena, "A Unifying Approach to Behavioral Coverage" (2012). Computer Science and Engineering: Theses, Dissertations, and
Student Research. 50.
http://digitalcommons.unl.edu/computerscidiss/50

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/50?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages

A UNIFYING APPROACH TO BEHAVIORAL COVERAGE

by

Elena Sherman

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

Under the Supervision of Professor Matthew B. Dwyer

Lincoln, Nebraska

December, 2012

A UNIFYING APPROACH TO BEHAVIORAL COVERAGE

Elena Sherman, Ph. D.

University of Nebraska, 2012

Adviser: Matthew B. Dwyer

Developing methods for validating that a program works as intended is one of the key

research areas in software engineering. Ideally a program P must exhibit its expected be-

havior, or property, φ on all of its inputs, i.e., P |= φ. The software engineering community

has developed various program analysis approaches to assess whether P |= φ. In general,

these approaches can be partitioned into dynamic and static program analysis. The former

execute P on a particular input and checks that the execution conforms to φ. The latter in-

terprets the code of P and check that on all possible executions of P the property φ holds.

Unfortunately, in general neither dynamic nor static analysis can independently determine

P |= φ.

The idea of combining information computed by different analyses has been circulating

in the research community since the mid 1960’s and has shown the benefits of analyses uni-

fication. Several approaches have been developed for combining multiple static analyses,

and combining static and dynamic analyses. These approaches mainly deal with combining

the intermediate result of one analysis to help another analysis with deciding P |= φ. This

dissertation takes an alternative approach by allowing each analysis to determine P |= φ

under some conditions. Then, combining the final results of such analyses causes P |= φ to

hold under a weaker condition until, ultimately, an unconditional final result is produced.

This dissertation formalizes and implements a unification framework that combines

computed information from analyses and disseminates that information among other anal-

yses. This framework is extensible since the only requirement that an analysis should

satisfy is to have querying and reporting capabilities. Conducted in this context of the uni-

fication framework, our experiments have shown that combining results from a diverse set

of analyses produces weaker conditions for P |= φ than analyses can achieve operating in

isolation.

iv

ACKNOWLEDGMENTS

First, I would like to thank my husband, Glen, and my mother, Maria. Without their support

and patience this dissertation would not have been possible.

I also thank my adviser and mentor, Dr. Matthew Dwyer, for the guidance and encour-

agement he provided and, of course, for keeping his door always open. He puts significant

effort in developing his students into research scientists with high ethical values.

Further, I would like to thank the members of my committee: Dr. Sebastian Elbaum, Dr.

Myra Cohen and Dr. Christine Kelley for their input and valuable comments. Dr. Elbaum

and Dr. Cohen have been an inseparable part of my graduate studies. Working with them

inside and outside the classroom environment has greatly influenced my career path and

has undoubtedly benefited me as a researcher.

I would also like to thank my colleagues in the ESQuaReD lab and CSE department

for being ever available to help and answer questions. I especially would like to thank my

colleague and friend, Katie Stolee, who provided needed compassion and moral support all

the way through this academic journey.

v

GRANT INFORMATION

This research was supported in part by National Aeronautics and Space Administration un-

der grant number NNX08AV20A and Air Force Office of Scientific Research under award

#FA9550-10-1-0406

vi

Contents

Contents vi

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Introductory Background on Program Properties and Analyses 4

1.1.1 Dynamic Analysis . 6

1.1.2 Static Analysis . 8

1.2 Partial Results of Static Analysis . 10

1.3 Conditional Static Analysis . 12

1.4 Combining Path Property Coverage . 15

1.5 Thesis Statement and Contributions . 17

2 Background and Related Work 19

2.1 Dynamic Program Analysis . 21

2.1.1 Testing and Adequacy Criteria . 21

2.1.2 Dynamic Symbolic Executions . 22

2.2 Static Program Analysis . 25

vii

2.2.1 Data-Flow Analysis . 25

2.2.2 Predicate Abstraction . 28

2.2.3 Combining Program Analysis . 30

2.3 Conditional Program Analysis . 32

2.3.1 Conditional Data-flow Analysis 35

3 Unification Framework 38

3.1 Generalized View of Analysis . 39

3.2 The Space of Π and LD parameters . 44

3.3 The Unification Framework Overview . 46

4 Path Property Coverage 49

4.1 Properties and Paths . 50

4.2 Defining Sets of Paths . 52

4.3 Encoding Path Languages . 53

4.3.1 BDDs for PPC . 55

4.3.2 Iterative Paths . 57

4.3.3 Assessing and Querying PPC . 58

5 Instantiation of the Unification Framework 63

5.1 Unification Framework . 64

5.1.1 Algorithm . 64

5.1.2 Implementation . 66

5.2 Adapting Existing Analyses . 67

5.2.1 Conditional Data-Flow Analysis 68

5.2.1.1 Algorithm . 68

5.2.1.2 Implementation . 71

viii

5.2.2 Adapting a Conditional Data-Flow Analysis 72

5.2.2.1 Algorithm . 72

5.2.2.2 Implementation . 74

5.2.3 Adapting Dynamic Symbolic Execution 74

5.2.3.1 Algorithm . 74

5.2.3.2 Implementation . 76

6 Evaluation 78

6.1 Experiment Set Up . 79

6.1.1 Analyses . 79

6.1.2 Programs . 80

6.1.3 Evaluation Infrastructure . 80

6.2 RQ1: Comparing CSA and DSE . 82

6.2.1 Experiment Design . 83

6.2.2 Results and Analyses . 84

6.3 RQ2: Comparing the Result of CSA on Π′ ⊂ Π 86

6.3.1 Experiment Design . 86

6.3.2 Results and Analyses . 87

6.4 RQ3: Comparing a Single Analysis and a Set of Analyses 89

6.4.1 Experiment Design . 91

6.4.2 Results and Analyses . 93

6.5 Summary and Limitations of Results . 95

7 Conclusion 101

7.1 Future Work . 103

Bibliography 105

ix

List of Figures

1.1 Partial result example: source code (left), CFG (middle), and the sign analysis

result (right) . 6

1.2 Partial result example: DSE on inputs (−1, 0) (left), and (1, 0) (right) 11

1.3 Conditional analysis example: source code (left), CFG (middle), and signs

analysis (right) . 14

1.4 Conditional signs analysis (right) and test case with DSE (left) results 16

2.1 Lattices for zero domain (left), signs domain (middle) and P (Z) domain (right). 29

3.1 Different analysis instantiations based on Π and L. 45

3.2 Concept of combining results of different analyses. 45

3.3 Generating and Exploiting PPC . 47

4.1 PPC store BDD encodings for Example . 56

4.2 Explanation of subtree coverage criterion . 59

4.3 Special case of sub-tree coverage for SA:b3: execution tree(left), BDD(middle),

CFG(right) . 60

6.1 RQ3 results for CSAzero and one tcas . 97

6.2 RQ3 results for CSAzero and wbs . 98

6.3 RQ3 results for CSAsign and one tcas . 99

x

6.4 RQ3 results for CSAsign and wbs . 100

xi

List of Tables

6.1 Artifacts for the experiments . 81

6.2 Data for the SA part of the experiment . 84

6.3 Data for the DSE part of the experiment . 85

6.4 RQ2 results for asw . 90

6.5 RQ2 results for one tcas . 90

6.6 RQ2 result for wbs . 90

1

Chapter 1

Introduction

2

An important problem in software engineering is assessing to what degree a program

P works as expected. To address this problem the software engineering community has

developed several widely used techniques such as dynamic and static analyses. This dis-

sertation focuses on analysis techniques that analyze sets of program executions, which are

referred to as behaviors, with the goal of determining certain facts about those behaviors,

e.g., assertion holds, no null references.

The nature of dynamic analysis is such that it examines a single program behavior at a

time and is always able to decide whether the fact for it holds or not. Using this technique

one can validate a program by analyzing each of its behaviors. However, for a program

with infinitely many behaviors, i.e., programs containing loops checking all behaviors of

P by the means of dynamic analysis, is intractable. Thus, in practice, dynamic analysis

cannot be used to examine all behaviors of P . On the contrary, static analysis considers all

of P ’s behaviors at once, even if there are infinitely many of them. Unfortunately the set

of analyzed behaviors may contain infeasible ones – behaviors that do not appear in actual

program executions. Due to its over-approximating nature, static analysis is not able to

determine whether the fact fails to hold on feasible or infeasible behaviors. Therefore this

type of analysis can potentially produce no definitive answer.

This summary of static analysis presents the customary view of the technique which is

to compute the answer for all program behaviors. Yet, if a static analysis is able to calculate

a definitive answer for only a subset of behaviors then this answer is discarded. For exam-

ple, for the program on Figure 1.1 a static analysis can determine that behaviors executing

the true branch of the second conditional statement will never violate the assertion since

this branch is determined to be infeasible. In another program example on, Figure 1.3,

the same analysis can produce a definitive result when the set of behaviors analyzed is re-

stricted to those that execute the true branch of the first conditional statement. Utilizing

such partial results of static analysis can lead to better assessment of program behaviors by

3

allowing each analysis to work with the set of behaviors for which it can calculate definitive

results. Then partial results from different program analyses can be combined to examine

all behaviors of P .

The key challenge in implementing this approach is deriving an encoding of program

behaviors that can be used across different analyses, i.e., representation of program be-

havior should be independent of analysis type. Moreover, abstracting away from analy-

sis implementation detail makes it possible to incorporate dynamic analysis since it can

be viewed as an analysis on a single behavior. Additional requirements on the encoding

include the ability to compose behaviors and querying the composed behaviors for com-

pleteness. An encoding that satisfies these requirements can be used to design a unifying

framework that composes the analyzed behaviors from different analyses and determines

when all behaviors have been examined.

This dissertation proposes such a unifying framework for program behaviors that makes

it possible to salvage partial results of a static analysis, to exploit the power of static analysis

by allowing it to examine a subset of behaviors, and to enable the conjunction of the results

of program behaviors from different analyses. The goal of the dissertation is to explore

how this unification framework affects the evaluation of the conformance of P ’s behaviors

to the expected behaviors – ones that meet explicitly specified correctness properties.

This introductory chapter explains how an expected behavior is characterized, what

conformance to the expected behavior means, and the ways to evaluate that conformance.

Next, the chapter briefly explains traditional dynamic and static analyses techniques for

verifying P ’s behavior and drawbacks of each analysis technique. These explanations are

followed by three research questions exploring methods that benefit from the proposed

unification framework. Each question is accompanied by an example that illustrates in

detail the benefits of methods. The introduction concludes by posing the thesis statement

and highlighting the additional contributions of the dissertation.

4

1.1 Introductory Background on Program Properties

and Analyses

P is said to behave correctly, i.e., conform to its expected behavior, when P satisfies a

predetermined set of requirements. For instance, a text editing application is required to not

end unexpectedly on a Save operation or a Square Root program must return the square root

of its input value. Depending on the complexity of P and the criticality of the requirements,

the level of effort that developers invest in assuring P ’s compliance with properties may

vary significantly. For example, if the Square Root program is a component of an avionic

navigation system then it is imperative to validate that on all possible inputs this program

returns the correct value. However, if the text editing application fails to save a file, then

some editing changes are lost, but this may be judged to be noncritical and only worth a

small amount of effort to validate.

The validation that P satisfies its requirements is becoming an increasingly automated

process. For this reason requirements are translated from their English descriptions to

formulae composed of predicates over the observable executable behavior of P , i.e., events

or data values. This formal description of a requirement is commonly referred to as a

property – denoted φ. For example, the obvious requirement, name it φSR, for the Square

Root program can be expressed via the output (xout), and input (xin) values as φSR ,

∀xin: xin == xout ∗ xout. Generally a property incorporates two parts: what to verify

and where to verify. The “what” component is commonly described by a predicate, e.g.,

xin == xout ∗ xout, and the “where” component qualifies the predicate, e.g., ∀xin. Since

requirements can be arbitrary complicated many formal theories have been developed to

accommodate the expressiveness of English descriptions. This dissertation only considers

state properties expressed as assertions which predicate φmust hold on all feasible program

executions.

5

To summarize, in the scope of the dissertation a program P works as expected when P

conforms to φ on any input to P – denoted P |= φ. A straightforward way of evaluating

whether P |= φ is by analyzing P (statically or dynamically) on every input and deter-

mining whether φ is violated on any of them. For a technique like testing that evaluates

each input individually this verification approach is impractical since the size of the input

domain can be arbitrary large. Fortunately, an alternative criterion exists which is based

on a structural representation of P known as a control flow graph (CFG). The CFG of P

is a directed graph where a node represent a basic block, i.e., a sequence of totally ordered

statements in P , and edges are the possible flow of control between blocks. A path in a

CFG represents a possible program execution. The CFG over-approximates the number of

paths in a program because it does not account for potential dependencies between control

flow branches. According to the structural adequacy criteria presented in [45] executing all

feasible paths in the CFG is equivalent to executing P on all inputs. Hence an alternative

evaluation of whether P |= φ is to determine whether φ holds on all feasible paths in the

CFG.

The measurement describing how many paths have been validated, i.e., covered, is

referred to as path coverage. In this dissertation, path coverage aimed at verifying φ is

denoted as path property coverage (PPC). PPC characterizes the degree to which P |= φ.

Since many distinct inputs to P execute the same path, the number of inputs required to

cover all feasible paths is usually far less than the size of the input domain. This fact makes

the verification a more realistic task comparing to the exhaustive evaluation of P ’s input

domain. Essentially, path coverage based verification partitions the input domain of P into

equivalence classes with two domain elements being in the same class if they execute the

same path. An equivalence class represents a partition of the input domain.

6

i f (x <= 0){
y = −x ;

} e l s e {
y = x ;

}
i f (y < 0){

x = 1 ;
}
a s s e r t (x != 0)

x<=0

y=-x y=x

y<0

x=1

x!=0

assert false;

T F

T

F

T F

x<=0

y=-x y=x

y<0

x=1

x!=0

assert false;

(>,>)

(−/0,>) (+,>)

(−/0, 0/+) (+,+)

(>, 0/+)

(>,⊥)

(>, 0/+)

(+,⊥)

(>, 0/+)

(0, 0/+)(−/+, 0/+)

Figure 1.1: Partial result example: source code (left), CFG (middle), and the sign analysis
result (right)

1.1.1 Dynamic Analysis

One widely used automated process for determining the degree to which P |= φ is testing.

A single test, or a test case, consists of executing P on one of its inputs and validating that

φ holds, e.g., for the Square Root example it would be running it with xin = 4 and checking

that φ == true. Testing P on any element from a domain partition ensures the same result

for any element of the partition. Therefore, knowing if two input values are in the same

domain partition or not helps to minimize testing efforts.

A näive way of determining if two input values are in the same partition is to execute P

on each of them and compare the traversed paths. An alternative approach is to characterize

the partition as a logical formula over the P ’s arguments. Two input values belong to that

partition if each of them satisfies the formula. Dynamically such a logical characterization

of a path can be generated by dynamic symbolic execution (DSE) [40, 16]. In DSE a

program is executed on a concrete value but alongside of the execution DSE tracks the

7

propagation of input values in a symbolic form and records the imposed constraints on these

symbolic values. Execution of each conditional statement gives rise to a single constraint

in the form of a predicate over symbolic values. The resulting conjunction of the generated

constraints, called the path condition, characterizes the domain partition of the executed

path. This implies that a domain partition can have a dual representation, one as a path in

the CFG of P and another as a logical formula over P ’s input parameters.

To demonstrate the DSE concept consider the code on the left of Figure 1.1. In this

and the following examples, the property, φ is embedded as an assertion into the code.

The control flow graph (CFG) of this program (the middle of Figure 1.1) desugars the

assert(x!=0) into an explicit branch that controls the execution of a false assertion

when the condition (x!=0) fails to hold. The positive (true) and negative (false) outcomes

of a branch are labeled with T and F , respectively. The concrete input of (−1, 0) executes

the path as presented on the left of Figure 1.2. The elided portions of the CFG are not part

of the executed path and, thus, are not considered by the DSE runs. The remaining edges

are annotated on both sides – the left side with the concrete values of x and y variables and

the right side with the corresponding symbolic values and the constraints imposed on these

values delimited by a comma.

Initially the values of x and y are presented by the symbolic values X and Y , respec-

tively, with no constraints associated with either of the symbolic values. On the input

(−1, 0) DSE executes the first branch and adds X ≤ 0 constraint to the path condition.

After executing y=-x statement the symbolic value of x is negated and assigned to y. The

building of the path condition proceeds in similar manner for the rest of the execution.

A dynamic analysis such as testing or DSE is inherently conditional, in the sense that

its result holds when the input values satisfy the path condition, i.e., holds on a single

path. In order to prove that P |= φ an analysis must determine that P |= φ for all domain

partitions. A dynamic analysis may do this by accumulating the information from a set of

8

executed tests. Because of the duality in the domain partition representation, P |= φ holds

when either all feasible paths in the CFG have been executed or the disjunction of path

conditions becomes a tautology, i.e., the analysis becomes unconditional.

Nevertheless, using a dynamic analysis for program verification is a daunting task for

two main reasons. One is that identifying infeasible paths in a CFG requires extra non-

trivial effort like performing additional checks on path conditions of DSE. The second

reason is the possibility of infinitely many paths in P on loops bounded by the input pa-

rameters. The presence of loops reduces the problem of covering all paths to the problem

of executing P on all elements of its input domain. Therefore, for an arbitrary P verifying

that P |= φ by means of testing is generally considered intractable.

1.1.2 Static Analysis

An alternative approach for deciding whether P |= φ is program verification. A verifica-

tion technique analyzes program behaviors relative to φ statically, i.e., without executing

the program. This dissertation explores static analyses, data-flow analyses in particular,

as an instance of the program verification approach. The choice of data-flow analyses is

explained by the restriction on the type of φ. Since φ is expressed as an assertion over pro-

gram variables, the information propagated in a data-flow analysis may be used to reason

about φ.

A static analysis interprets P ’s code by over-approximating the executable paths of P ,

i.e., besides feasible paths the analysis may examine infeasible paths as well. The primary

advantage of the over-approximation of paths is that it enables a static analysis to reason

about infinitely many paths. This power comes from the ability of static analyses to perform

computations on sets of concrete values described by predicates, e.g., the notZero , e 6=

0 predicate describes all concrete values of the expression e that are not 0. The set of

9

predicates, commonly referred to as an abstract domain, is one of the defining components

of a static analysis. Static analysis computes abstract values for each program statement and

propagates these abstract values forward or backward through CFG edges. Static analysis

continues with the computation until there is no change in the newly calculated abstract

values, i.e., the computation reaches fix point.

To illustrate static analysis technique, consider the sign static analysis, SAsign, that at-

tempts to prove that φ holds on all paths of the CFG. This flow-sensitive analysis abstracts

integer values according to their sign, i.e., whether they are less than (–), equal to (0),

greater than zero (+), or their combination 0/+, –/0 or –/+. In general, the analysis approx-

imates the sign of a value by recording a set of signs (a subset of {–, 0, +, 0/+, –/0, –/+})

for each variable; for notational convenience the set of all abstract values, {–, 0, +, 0/+, –/0

,–/+}, is denoted >, the top element, and the empty set of abstract values is denoted ⊥, the

bottom element. Essentially > represents any value of the concrete domain and ⊥ implies

that no such value exists in the concrete domain.

The right side of Figure 1.1 shows the results of the sign analysis. Compared to the

original CFG the graph is annotated with the result of the analysis and contains two addi-

tional unlabeled nodes placed at the merge points of control flows. The edge from a merge

node to the subsequent node is labeled with the joined abstract values of the merged control

flows. In this example where φ is expressed as assert(x=!0.

There are two variables in this program, so the analysis records a pair of sets, (x, y),

which is initially (>,>), i.e., any value in the concrete domain. SAsign propagates this

initial values to the first conditional statement x<=0 where it determines that on the false

branch the values of x only can be greater than zero, i.e, +, while on the true branch its

value only can belong to –/0 set. Since no actions have been performed on y its abstract

value remains >. At the assignment statement y=x the analysis assigns the abstract value

of x to y. Similarly, SAsing treats y=-x on the opposite branch. At the merge point of the

10

branches SAsigns combines abstract values of each variable by performing union operation

on the corresponding sets, i.e., for x –/0 ∪ + = > and for y 0/+ ∪ + = 0/+. Thus the

abstract values of the first merge point, i.e, before node y<0, over-approximates abstract

values of the merged control flows, i.e., the value of x was –/0 on one incoming edge and +

on another while the joined value of x is >. When the concrete set representing a variable

value increases, e.g., from + to 0/+, it is said that the analysis loses its precision. The

analysis processes the rest of the program in the same manner.

In this example the analysis fails to verify P |= φ since both branches of the assertion

statement are feasible, i.e., neither of the variables are assigned to ⊥. When the abstract

value of a variable is assigned to ⊥ element it means that no concrete values exists for that

variable, which means the execution leading to such abstract value assignment is infeasible.

When a static analysis determines that P |= φ then it means that φ holds on both

feasible and infeasible sets of paths. However, the inability of a static analysis to distinguish

between feasible and infeasible paths negatively affects its applicability when the analysis

fails to prove that P |= φ as it happens in the example in Figure 1.1. This means that of

the paths the analysis considered there exists at least one on which φ does not hold, but it

is unknown if that faulty path is feasible or not. If the path is feasible then this is a true

violation of φ. If the violation happens on an infeasible path then it is a false violation, i.e.,

false positive.

1.2 Partial Results of Static Analysis

To eliminate false positives verification can proceed further in one of two ways. The first

approach is to identify a feasible path leading to the assertion violation and another is to

enrich, i.e., refine, the set of predicates. For example, the abstract domain of zero and

notZero may be partitioned further, i.e., refined, into −, 0 and + sets. Unfortunately,

11

x<=0

y=-x

y<0

x!=0

(−1, 0) (X ,Y); ∅

(−1, 0)

(X ,Y); X ≤ 0

(−1, 1)
(X ,−X); X ≤ 0

(−1, 1) (X ,−X); X ≤ 0 ∧ ¬(−X < 0)

(−1, 1)

(X ,−X); X ≤ 0 ∧ ¬(−X < 0) ∧ X 6= 0

x<=0

y=x

y<0

x!=0

(1, 0) (X ,Y); ∅

(1, 0)

(X ,Y); ¬(X ≤ 0)

(1, 1)

(X ,X); ¬(X ≤ 0)

(1, 1) (X ,X); ¬(X ≤ 0) ∧ ¬(X < 0)

(1, 1)

(X ,X); ¬(X ≤ 0) ∧ ¬(X < 0) ∧ X 6= 0

Figure 1.2: Partial result example: DSE on inputs (−1, 0) (left), and (1, 0) (right)

the information calculated by the original, i.e., failed, analysis is typically discarded by

existing analysis techniques. Yet, this information might contain some partial results, like

an infeasible branch of a conditional statement that may be useful. Such partial results

imply that none of the paths in the CFG traversing that branch outcome violates φ. Hence,

if present, this partial information contributes to the PPC of P .

To illustrate the concept of partial result of static analysis, consider the program exam-

ple in Figure 1.1 where on the left is the code, CFG is in the middle and the result of SAsign

is on the right.

Even though SAsign is not able to prove P |= φ since both outcomes of x!=0 are

possible, it can determine that the true branch of y<0 branch is infeasible because one of

the abstract values is⊥. Thus providing a partial output indicating that all paths in the CFG

that traverse (>,⊥) edge are infeasible and thus vacuously do not violate φ. Such partial

results imply that none of the paths in the CFG traversing that branch outcome violates φ.

Hence, if present, this partial information contributes to the PPC of P . In order to evaluate

the benefit of the partial information produced by a static analysis, its PPC contribution can

be compared to the amount of work needed by another analysis, such as DSE to achieve

the same PPC.

12

In order for DSE to achieve the same PPC it should execute paths that traverse all

feasible prefixes leading to y<0. In the current example there are two prefixes – one with

the positive and another the negative outcomes of x<=0 branch. The concrete input of

(−1, 0) realizes the execution of the former and (1, 0) input executes the latter. Figure 1.2

presents the results of DSE executions for each input.

In order to determine if the positive outcome of y<0 is feasible, the last constraint of

the path condition after y<0 branch is negated for each DSE run, i.e., X ≤ 0 ∧ (−X < 0)

for (−1, 0) and ¬(X ≤ 0) ∧ X < 0 for (1, 0), and the modified path condition is checked

for satisfiability. Clearly neither of the modified path conditions are satisfiable. Since on

neither branches of x<=0 the positive outcome of y<0 is possible, DSE conveys that the

true branch of y<0 is never executed, which is exactly the same as the partial result of

SAsign.

Generally in order for DSE to prove that an outcome of a condition statement is infea-

sible it must explore all possible prefixes leading to that statement, which can be a large

number especially if prefixes include loops. Moreover, if the information about an infea-

sible outcome has been calculated by a static analysis then there is no need to invoke a

decision procedure for that condition statement in a DSE run.

The discussion above leads to the following research question:

Q1: How does the effort of generating PPC from partial information from a

data-flow analysis compare to the effort required by ideal DSE runs to obtain

the same PPC?

1.3 Conditional Static Analysis

Over-approximation of program paths may cause static analyses to fail in verifying P |= φ.

The reason for this over-approximation is the requirement imposed on a static analysis to

13

express the value of a variable at each merge point of control flows as a single element

of its abstract domain. At a merge point of control flows the static analysis combines

the variables’ abstract values propagated along the merging control flows. The combined

abstract values are then expressed as a single element from the abstract domain. This merge

operation may introduce imprecision into the static analysis result by over-approximating

the result of the merged values.

One way to improve the precision of a static analysis is to allow it to operate on a

subset of paths because the fewer paths the analysis considers the fewer merge operations

it performs. The traditional way of restricting the set of paths to be analyzed is by assigning

initial abstract values to the program arguments. For example, Cousout&Cousout in [14]

incorporated an entry assertion on P ’s initial states into the definition of a program analysis.

This restriction on entry values is also called a precondition. Similarly to dynamic analyses,

the map between a precondition and the set of paths the precondition caused to analyze is

not known a priori. Moreover, the map may be neither injective, i.e., each precondition

maps to a unique set of path, nor surjective, i.e., there are paths that cannot be described

by any precondition. This happens when the abstract domain elements cannot precisely

describe the set of predicates that govern branching in P . If expressing an arbitrary set of

paths through a precondition is impossible then imposing a restriction on P ’s arguments

cannot guarantee an improvement in the analysis precision.

This dissertation proposes the use of explicitly defined sets of paths as an alternative

precondition definition. In this approach a static analysis propagates its data-flow facts

only through edges included in the path-based precondition. In the literature[8, 13, 32]

such an approach is called conditional analysis since an analysis can determine that φ holds

conditionally, i.e., only on some set of paths.

14

i f (x > 1) {
w h i l e (y < 2) {

x = x + 2 ;
y ++;

}
} e l s e {

x = x − 2 ;
}
a s s e r t (x != 0) ;

x > 1

y < 2

x = x+2;

y++;

x = x-2;

x != 0

assert false;

T

F

T
F

T F

x > 1

y < 2

x = x+2;

y++;

x = x-2;

x != 0

assert false;

(>,>)

(+,>)

(>,>)
(+,>)

(+,>)

(+,+)

(+,>)

(+,>)

(>,>)

(>,>)

(−/+,>) (0,>)

Figure 1.3: Conditional analysis example: source code (left), CFG (middle), and signs
analysis (right)

To illustrate the idea of conditional static analyses consider a small fragment of code

on the left of Figure 1.3. As in the previous example the middle of Figure 1.3 presents the

CFG and on the right shows the results of SAsign.

The results of SAsign show that the abstract values (>,>) reach the condition tested

by the assert. This means that the assert condition may or may not be violated – the assert

is not violated in this example on any program execution. Unlike the previous example

where SAsign was able to produce partial information, here the analysis fails to produce

any PPC. Even in this simple example, it may take a minute to spot the fact that the source

of the false violation report in the analysis is the inability to precisely analyze the false

branch out of x>1. The source of this imprecision is the misalignment between the SAsign

input domain partition and the program predicates, i.e., using its abstract domain elements

SAsign has no means to accurately describe x>1 or y<2 predicates, thus it safely over-

15

approximates them by > element. This type of imprecision leads to false warnings and in

larger programs, spotting false reports can be very time consuming [38].

Despite the fact that the original application of the sign analysis was ineffective the

analysis can output PPC on a subset of paths. For example, restricting the set of paths

analyzed by SAsign to the paths for which x>1 holds enables SAsign to determine that the

assertion is never violated on those paths. The left side of Figure 1.4 shows the result of

the conditional SAsign . Thus conditional static analysis may allow for sufficient precision

to decide φ for that condition.

Naturally the PPC resulting from a conditional static analysis must be composed with

the condition itself, i.e., if a conditional analysis determines that φ holds then it is only

known to hold on the paths that the analysis has examined. Similarly to dynamic analyses

in order for a conditional static analysis to determine whether P |= φ the results of the

analysis with different conditions must be combined. However, unlike a dynamic analysis

which always returns PPC, a conditional static analysis might not produce any new PPC

comparing to its full version. For example, if the condition of SAsign is the set of paths

with the false outcome of x>1 then no additional PPC is produced. The effectiveness of a

partial static analysis is the subject of the second research question.

Q2: How much additional PPC does a conditional static analysis produce on a

set of paths Π′ compared to the PPC obtained by the same analysis on a larger

set of paths Π ⊃ Π′?

1.4 Combining Path Property Coverage

In the context of this dissertation a conditional static analysis can be directed towards a

set of paths for which PPC has not been determined. A dynamic analysis can also be

directed to traverse an unexplored path by executing the dynamic analysis on the concrete

16

x > 1

y < 2

x = x+2;

y++;

x != 0

assert false;

(>,>)

(+,>)

(+,>)

(+,>)

(+,+)

(+,>)

(+,>)

(+,+) (⊥,+)

x > 1

x = x-2;

x != 0

(1, 2) (X ,Y); ∅

(1, 2) (X ,Y); ¬(X > 1)

(−1, 2) (X − 2,Y); ¬(X > 1)

(−1, 2) (X ,Y); ¬(X > 1) ∧ ¬(X − 2 = 0)

Figure 1.4: Conditional signs analysis (right) and test case with DSE (left) results

input values from a domain partition with unknown PPC. The strategy of finding a suitable

condition depends on the analysis. For example, a set of paths analyzed by a conditional

static analysis might be systematically decreased, e.g., split in half. While for DSE a new

concrete value can be calculated by taking a previously explored path condition, negating

one of its conjuncts and solving for the symbolic value the prefix up to the selected conjunct

together and that negated conjunct. In the literature this dynamic technique of finding were

inequivalent concrete values is known as concolic execution [40].

The execution of the code in Figure 1.3 by DSE on input (1, 2) will result in the prop-

agation of concrete values and symbolic constraints along the program execution path as

illustrated on the right of Figure 1.4 where, as usual, the left side of an edge is annotated

with the concrete values and its right side is annotated with symbolic variable values and

path conditions. The information from this test case demonstrates that all program exe-

cutions where ¬(x>1) holds are guaranteed not to violate the assertion (since the assert

branch condition is unsatisfiable, ¬(X > 1) ∧X − 2 = 0 ≡ ⊥ – the infeasible outcome of

the assert condition). However, due to the presence of the loop, any reasonable number of

17

test cases exploring the true outcome of x>1, is not able to provide a complete coverage of

the program executions.

Regardless of the amount of time given to conditional SAsign described in the previous

section (displayed on the left of Figure 1.4) and DSE, their inherent weaknesses prevent

either of the analyses to produce complete PPC for this example. However, their combined

PPC verifies that P |= φ since DSE is able to prove it on one part of the CFG and SAsign on

its complement. Hence, the accumulation of path coverage from multiple analyses provides

a more accurate assessment of the space of program behaviors that have been analyzed and

found to satisfy the assertion.

To generalize the previous example, let each each of n distinct analyses accumulate

within time t its own PPCt
i i ∈ {1 . . . n}. Obviously ∀i PPCt

i ⊆ ∪nj=1PPC
t
j . But more

interesting is the question of whether the PPCt
i from different analysis complement each

other or are redundant. Since dynamic and static analyses are based on different techniques

and static analyses have different abstract domains one might expect that there is little

redundancy in PPCi. In this case running each of the analysis t/n amount of time and

combining their PPC might result in greater PPC than the PPC provided by any single

analysis running for t amount of time, i.e., ∀i PPCt
i ⊂ ∪nj=1PPC

t/n
j . This conjecture is

addressed by the third research question.

Q3: Given a fixed effort, how does the PPC of a single analysis compare to the

combined PPC of a set of diverse analyses?

1.5 Thesis Statement and Contributions

If the hypotheses posed in the research questions are found to hold, then they will support

the overall goal of the dissertation:

18

A unifying approach that incorporates a range of program analyses can effi-

ciently produce greater behavioral coverage than analyses operating in isola-

tion.

To answer the research questions and hence to support the thesis statement the disser-

tation work first needs to adequately pose and quantify these questions. Formalizing the

notions of PPC is one of the conceptual units. Because some analyses can reason about

infinitely many paths methods that employ counting and enumeration of PPC are not ap-

plicable. Thus in order to quantify and compare PPC of different analyses the dissertation

develops an alternative structural description of path coverage. Moreover, since research

on dynamic and static analyses emerged from separate research communities, each type of

analyses has historically been viewed as a distinct framework. Thus, the essential building

blocks in pursuing the thesis statement are adopting a unified view on different analyses

and describing the analyses’ behavioral coverage in a uniform way. In addition, to enable

accumulation and sharing of behavioral coverage among analyses a unification framework

is defined and implemented. The important properties of such a framework are to com-

pactly yet descriptively represent behavioral coverage and to enable efficient querying of

the stored behavioral coverage information.

The rest of the dissertation is organized as follows. The next chapter presents back-

ground information on program analyses and describes related work on partial analyses

and on combining static analyses. The formalism presented in that chapter lays necessary

foundations for the rest of the dissertation. Chapter 3 includes the overall vision on the

behavioral coverage framework. Path property coverage is presented in Chapters 4. The

posed research questions and the thesis statement are addressed in the penultimate Chap-

ter 6. The last chapter presents the conclusion and elaborates on future work.

19

Chapter 2

Background and Related Work

20

In order to streamline the explanation of the related work and the novel analysis unifica-

tion framework the dissertation first presents relevant background information for several

dynamic and static program analyses. The main differences between these two analysis

techniques is that dynamic analysis is performed during program execution while static

analysis interprets the source code of P . Here dynamic program analysis is exemplified

by testing and dynamic symbolic execution techniques which are used in the dissertation

experiments. The static analysis section consists of an explanation of data-flow analysis

and information on its variations: predicate abstraction and logical interpretation. These

variations provide more precise analysis than traditional data-flow static analysis.

This chapter proceeds by summarizing previous work on combining analysis as an-

other technique that increases the precision of the cumulative analyses. The section on

combining analysis highlights the differences between combining intermediate results and

final results of program analyses. This dissertation focuses on combining final results of

different analyses which evaluate a program assuming different conditions. The section

on conditional analysis describes related work that seeks improvement in precision when

only part of a program’s state space is explored and letting the same, or another analysis,

complete the verification of the remaining state space. The remainder of the chapter briefly

explains how the idea of conditional analysis has been extended to data-flow analysis.

Since every analyses technique discussed here utilizes a graph representation of P ’s

structure the definition of Control Flow Graph (CFG) [1] is given first.

Definition 2.0.1 (CFG). CFG is a directed graph where a node l is a statement, and an

edge (l, l′) represents the control flow between statements l and l′, i.e., the order in which

statements are executed.

A conditional statement has two outgoing edges, i.e., branches,: one to the statement

executed on its true outcome and another to the statement executed on its false outcome.

21

Since the outgoing edge of the last statement in the body of a loop points back to the loop’s

condition it creates a cycle in CFG. A CFG has one root node, i.e., the entry point for P ,

and one or more leaf nodes, i.e., the termination points for P . A CFG represents all paths

that P may execute.

2.1 Dynamic Program Analysis

2.1.1 Testing and Adequacy Criteria

A single test case consists of two parts: an execution of P on concrete input values and

the evaluation of the execution for conformance with φ. Running a finite set of test cases,

called a test suite, comprises testing. Since exhaustive testing, i.e., testing the whole input

domain, is prohibitively expensive a decision must be made on what test cases to include

into a test suite. There are two distinct approaches for test case selection. One of them takes

into account the internal structure of P and the other does not. The former is commonly

referred to as a white-box or design-based testing while the latter is called a black-box

or requirements-based testing [28]. Since the proposed framework exploits the coverage

information of paths in P we discuss white-box testing in more detail.

In white-box, or structural, testing the quality of a test suite is quantified by the number

of CFG elements such nodes, edges or paths, it was able to execute, i.e., cover. The intuition

is that coverage of an additional element of a CFG requires a test case that traverses a

different path through the CFG, thus potentially exposing additional errors [7]. Moreover,

structural testing allows for exhaustive coverage of at least some structural elements in

P ’s CFG [35]. The requirement for complete coverage of feasible CFG elements, such as

nodes or edges, is called an adequacy criterion and is used to guide the construction of a

test suite [45]. When a test suite meets the objectives for an adequacy criterion it is said to

22

be adequate, i.e., tested appropriately, for this criterion. The commonly known structural

adequacy criteria are method, statement, branch and path. These criteria generally require

different numbers of CFG paths to cover their elements. The larger the number of paths

are covered by the criterion adequate test suite the higher confidence that P |= φ. The

strength of a criterion corresponds to the size of its adequate test suite. Therefore criteria

have different strength of determining that φ holds in P . Various structural criteria can be

organized into a partial order according to their strength with the path-adequacy criterion

being the maximum element [21].

The monitoring of coverage information is generally done through program instrumen-

tation but it also can be implemented in the execution environment of P , e.g., Java Virtual

Machine (JVM). An instrumentation-based coverage tool analyzes P ’s code to construct a

CFG and to instrument P with additional code. During P ’s run the inserted code commu-

nicates to the coverage tool what statements have been executed. Using this information

and the previously constructed CFG the tool then produces cumulative coverage informa-

tion. In practice, coverage tools usually track weaker coverage elements like class, method

and statement, e.g., EMMA [37], the state of practice tools track branch coverage, e.g.,

gcov [22] and Cobertura [18], and almost none handle path coverage.

2.1.2 Dynamic Symbolic Executions

Symbolic execution (SE) [31] interprets P on symbolic input values instead of concrete

ones. During the interpretation of P , symbolic execution denotes the values of program

variables as expression over symbolic inputs. Using the discussion in [31] the notion of SE

can be defined as

23

Definition 2.1.1 (Symbolic execution). An alternative semantic for a programming lan-

guage where the real data objects can be represented by arbitrary1 symbols. Such compu-

tation accepts symbolic inputs and produces symbolic formulas as outputs.

When symbolic execution encounters a conditional statement it generates boolean ex-

pressions, i.e., conditions, for each branch of the statement. Each path in the CFG is as-

sociated with a distinct list of conditions. The conjunction of these conditions is called a

path condition – pc. Thus pc is a Boolean expression over symbolic inputs that uniquely

describes a path in the CFG. On entry to P the value of pc is set to true and at a conditional

statement with the symbolic expression q, pc is extended for the true branch to pc ∧ q and

for the false branch to pc ∧ ¬q. The symbolic execution for each branch then proceeds in-

dependently. A state of a symbolically executed program contains the mapping of program

variables to their symbolic expression and also the current pc. Thus for the program on

Figure 1.3 the symbolic state after x=x-2 is σ = (x 7→ X − 2, y 7→ Y ;¬(X > 1)), where

pc is ¬(X > 1) and symbolic expression of x and y are X − 2 and Y respectively, with X

and Y being symbolic input values.

Since SE interprets P statically it may encounter cases when the pc is unsatisfiable

because of the presence of data dependencies that make some branches infeasible. In order

to determine if the constructed pc that includes the condition for a new branch is satisfiable

or not, a symbolic execution formulates the pc as a query to a constraint solver. If the pc

is unsatisfiable then symbolic execution abandons that branch. For the same example on

Figure 1.3 consider a path that traverses the false branch of x>1. Before evaluating the

x!=0 condition the path has pc = ¬(X > 1) and the variable x is mapped to X − 2.

When interpreting x!=0 SE generates new pc by extending the current pc in two ways.

One adds the false branch pcf = (¬(X > 1)∧X −2 6= 0) and another adds the true branch
1In this context arbitrary means unconstraint value of the object type

24

pct = (¬(X > 1)∧¬(X − 2 6= 0)). A solver determines that pct is satisfiable while pcf is

not.

As with any path-sensitive analysis symbolic execution can run indefinitely in the pres-

ence of loops. In order to guarantee the termination of symbolic execution a bound, k, is

set on the maximum number of times it can unroll a loop. For the same program example if

k = 0 then symbolic execution generates two additional paths (X > 1∧¬(Y < 2)∧¬(X 6=

0)) and (X > 1 ∧ ¬(Y < 2) ∧ X 6= 0).

As discussed in Section 1.1.1 dynamic symbolic execution (DSE) [40, 16] is a com-

bination of testing, i.e., concrete execution, and symbolic execution. Similar to testing a

program is executed on concrete values but the alongside of the concrete execution sym-

bolic execution is performed as well. DSE collects pc along the executed path thus logically

expressing a set of input values that execute the same path. The main difference between

symbolic and dynamic symbolic executions beside the number of paths they analyze is that

the former requires calls to a solver while the latter does not because it only follows feasible

paths. The following definition of DSE is compiled from [40, 16]

Definition 2.1.2 (Dynamic symbolic execution). Simultaneous realization of concrete and

symbolic executions of a program on a concrete input.

One extension of DSE, called concolic testing [40], is used for test case generation.

After executing an initial test case and obtaining its pc = q1 ∧ q2 ∧ · · · ∧ qn each condition

qi is systematically negated to produce a new Boolean expression pci = q1 ∧ q2 ∧ · · · ∧¬qi,

i ∈ {1 . . . }. Next the constraint pci is passed to a solver to find an assignment to symbolic

values that satisfy that constraint. If a solution exists then a new test case is created other-

wise pci is said to be infeasible. The dissertation uses DSE to collect a characterization of

the program behavior that is covered by a test suite.

25

2.2 Static Program Analysis

2.2.1 Data-Flow Analysis

A common class of static analyses are the flow-sensitive data-flow analyses which calculate

facts about the flow of data values along program paths [33]. There are significant varia-

tions among data-flow analyses. They typically differ in the facts that they compute, e.g.,

they may approximate values of selected program variables or relations among variables,

such as, data dependence analyses. Another variation in the analyses deals with whether

the computed facts at particular program locations hold on all CFG paths leading to that

point or on at least one of such path. Since φ is assumed to be a universal property the

dissertation considers only analyses that determine facts that hold on all program paths.

In any case, a data-flow analysis computes the set of facts by traversing a CFG. Sec-

tion 1.1.2 demonstrated an instance of data-flow analysis. For each node in the CFG, the

fact on the exit of the node, i.e., after the interpretation of statements corresponding to the

node, is computed as a function of the facts coming from all entries to that node, i.e., after

the interpretation of all predecessor nodes. This computation is captured by two types of

equations.

The first equation takes the incoming facts of the node and merges them together into

a single entry fact. Depending on the analysis, its merge function can combine incoming

facts such that they hold for all paths leading to the node or for at least one path. This

equation for a node s is expressed as

ins = mergep∈pred(p)(outp)

where outp are the exit facts of the predecessors p of s in the CFG and ins is the result of

the merged outp facts.

26

The second equation produces the exit facts of the node by propagating the ins through

statements associated with s and modifying facts according to the rules for s, e.g, remov-

ing elements from the entry set and/or adding elements to the entry set. This equation is

expressed as

outs = props(ins)

The function props, a transfer function, is constructed for each combination of s and

ins, i.e., it is parametrized by the node type and the fact type.

Since the facts on the exit of one node becomes the entry facts of another node, the

changes in the former would require the recalculation of the latter. In the presence of loops

in P , this may require iterative calculation that continues until a fixed point is reached.

Reaching a fixed point is an important requirement for a data-flow analysis since it

guarantees analysis termination. This requirement restricts the choice for the types of facts

that analyses can propagate. In particular, the set of facts must be organized into a partially

ordered set satisfying the ascending chain condition. The set of facts comprises an abstract

domainD and the partial relation between elements ofD is presented as a partially ordered

set, i.e., a lattice, LD [33]. The ascending chain condition guarantees that during iterative

merges the size of facts will not grow infinitely and eventually will stabilize. Any complete

lattice satisfies that condition.

The following formal definition of a static analysisA is the same as presented by Flem-

ming Nielson et al., [33]:

Definition 2.2.1 (Data-flow analysis). Given:

• The complete lattice DA that describes the abstract domain of A.

• CFGP for a program P .

27

• A set of monotone transfer functions FA for each statement l ∈ CFGP that maps an

element of DA to itself, i.e., fl ∈ FA : DA 7→ DA.

• Entry statements E in CFGP .

• An initial value ι ∈ DA for statements in E.

Then the set of equations for forward A is defined as follows on entry and exit of each

statement l ∈ CFGP :

Ain(l) =
⊔
{Aout(l′) | (l′, l) ∈ CFGP} t ιlE

where ιlE =

 ι if l ∈ E

⊥ if l 6∈ E

Aout(l) = fl(Ain(l))

where t is the least upper bound operator, ⊥ is the bottom element of DA for which

∀d ∈ DA : ⊥ t d = d and ∀l ∈ CFGP : fl(⊥) = ⊥. For the safety properties ⊥

corresponds to the empty set of concrete values and > to the set containing all concrete

values. The value of ι is assigned to >, i.e., the analysis considers all possible input values

for a program. The solution of the above set of equations provides is the result of the

analysis for P .

Since in the context of the dissertation φ is expressed as a predicate over program

variables the facts for analyses considered here must describe program states, i.e., mappings

between the program variables and their values. Those facts are referred to as property

facts since deciding P |= φ depends on them. Property facts represent an intermediate

result in the sense that they cannot reason about φ directly. In order to determine P |= φ,

the static analysis is augmented with a results decision, which is specifically designed to

28

reason about φ by examining the computed property facts. This results decision is what

produces the final result of static analysis. For example, the intermediate result of SAsign

on Figure 1.1 are the labels of CFG edges and the final result of SAsign is the output that

the true branch of y<0 is infeasible.

Different static analyses can be instantiated from the same analysis framework by vary-

ing the abstract domain D of the framework. Since both transfer and merge functions take

the elements of abstract domain as arguments, changes in D requires the modification of

those functions. The finer the partitions of the concrete domain described by the abstract

domain D, the more precise the corresponding static analysis. Thus for the lattice Lzero de-

picted on the left of Figure 2.1 the static analysis framework instantiates SAzero, while for

SAsign from the previous chapter is instantiated by Lsign that is on the middle of the same

figure. In this case SAsign is said to be more precise than SAzero since the former anal-

ysis can represent finer sets, e.g., non-positive integer values, which cannot be described

by the elements of Lzero. Obviously, a static analysis can achieve the utmost precision

when its abstract domain is the power set of concrete integer values, i.e., LP(Z), since such

domain has an element that exactly describes any set of values that a variable can take on

during program executions. However, as depicted on the right of Figure 2.1 LP(Z) does not

satisfy the ascending chain condition, i.e., the sets can increase indefinitely. Thus LP(Z)

cannot be used to instantiate a static analysis. In general, a static analysis may not use, for

D, the concrete values computed by the program. Instead it uses an element that safely

over-approximates values that leads to the imprecisions in property facts calculations.

2.2.2 Predicate Abstraction

UsuallyD of a static analysis is fixed permanently and the analysis applies the same reason-

ing to all programs. However, the expressiveness of elements of D may not be sufficient to

29

>

0 !0

⊥

>

0/+−/0 −/+

0− +

⊥

>

..
.

{−1, 0, 1, 2}. . .

{−1, 0, 1}.

{0, 1}{−1, 0}.

{0} {1}{−1}

⊥

Figure 2.1: Lattices for zero domain (left), signs domain (middle) and P (Z) domain
(right).

describe the predicates in P . For instance, it is reasonable to use the Lzero abstract domain

if the predicate of conditional statements in P are of the form x==0 or x!=0. However,

if P contains only predicates of form x<1 then using SAzero will approximate the value

of x with > on both branches which leads to an empty final result. But if D is designed

to contain elements representing P ’s predicates then the precision of such analysis can be

greatly improved over static analysis with a fixed abstract domain.

This is exactly what the predicate abstraction [24] technique does. Predicate abstrac-

tion partitions the concrete set of values into abstract sets that is suited for a particular P .

In this approach P is analyzed first to determine suitable elements of D. Besides regular

partitions described by predicates with a single variable, e.g., x==0, D of predicate ab-

straction can contain predicates that characterize the relation between variables, e.g., x<y.

This feature makes predicate abstraction particularly useful in finding the loop invariants

since they commonly consist of several program variables. The key challenge for predicate

abstraction technique is to identify such predicates [20].

30

2.2.3 Combining Program Analysis

Refining the abstract domain of static analysis may not increase the precision of the analy-

sis. It may happen that the values of one set of variables can be precisely expressed through

one abstract domain while the values of another set of variables do not have exact repre-

sentations in the same domain. For example, no elements of Dsign can express sets of even

or odd values. Likewise, no elements of Dparity = {⊥, even, odd,>} can express posi-

tive or negative values. In order to increase the precision, SAsign and SAparity need to be

made into a single analysis where the new abstract domain is the combination of Dsign and

Dparity.

The classic work on combining program analysis is presented in the work of Patrick

Cousot et al, [14] where the authors described three possible unifications of abstract do-

mains. The first is the direct product of two domains which produces the same result as

when the two analyses are run independently of each other. This type of combination does

not increase the precision of the analysis and is considered to be trivial.

The next type is the reduced direct product where the elements of the new domain with

the same semantic are merged into one. For instance the element (0, odd) of the direct

product Dsign × Dparity has the same semantic as (⊥,⊥) element because 0 is an even

number. In a similar fashion transfer functions are redesigned to include the reasoning

between the domains. For instance, (+, odd)− 1 = ({0,+}, even).

The third type of analysis combination is described by the reduced direct power which

is a set of all isotone maps from elements of the first domain to the elements of the second

domain. Formally the reduced power L
LD1
D2

is the set of all isotone maps from D1 to D2

with f v g if and only if ∀x ∈ D1 f(x) vLD2
g(x). Essentially, the reduced direct power

of two abstract domains allows for the interaction between variables with different abstract

domains. For example when the abstract value of one variable depends on the evaluation

31

of the abstract value of another variable, e.g., for boolean b=x>0 when x 7→ + then b

7→ true.

Examples demonstrating the implementation of static analysis combination using the

reduced direct power can be found in work by Cliff Click et al., [12] and Jeffrey Fischer

et al., [19]. They clearly demonstrate that combining different analysis requires non-trivial

effort. The main drawback of the reduced direct product or reduced direct power is that

they demand a complete rewriting of the previous analyses which is a tedious, error-prone

and labor intensive work. This shortcoming has prompted several researches to look for

a ways to automatically combine analyses in an efficient way using some general analysis

assembler. This issue has been addressed by Patrick Cousot et al., [14] which stated that

in general, it is not possible to design such an assembler and any attempt to automate the

combination of analyses will produce sub-optimal results.

Yet, there may exist special classes of program analysis for which automated optimal

combination is possible. The work on logical interpretation [26, 43] explored these pos-

sibilities. Logical interpretation aims to identify static analyses whose merge and transfer

functions can be expressed as Satisfiability Modulo Theories (SMT) problems. Thus an

analysis is designed using some theory and implemented with an SMT solver as the anal-

ysis engine. The abstract domain of logical interpretation consists of formulas over the

theory’s atoms and the program variables. The relation of the domain elements is done not

by the inclusion relations but by implication relations between formulas. The elements of

the logical lattice are computed online during analysis. The advantage of logical interpreta-

tion based analyses is the ability to automatically combine these analyses using techniques

developed in SMT community. However, not all program analyses can be instantiated or

combined using logical interpretation framework. For example, logical interpretation can

only combine analyses which are described by disjoint theories, i.e., theories that only share

the equality symbol.

32

So far the combination of program analyses, or combining analyses, has focused on

combining the intermediate results of analyses to achieve better precision for deciding

P |= φ, i.e., the final result. Where intermediate results can be viewed as invariants calcu-

lated by a static analysis while the final result is the decision made by the analysis based

on the invariants. However, in the literature combining analysis also can imply the combi-

nation of the analyses final results. For example in the paper by Shay Artzi et al., [4] the

authors combined the final results of several analyses that determines whether the param-

eters of a method are immutable. In that work if one analysis determines that a parameter

is mutable or immutable then the next analysis does not analyze that parameter. Similarly,

the dissertation focuses on combining final results of different program analyses that ana-

lyze programs under different conditions. The next section describes the related work of

conditional analysis technique.

2.3 Conditional Program Analysis

Previous research has introduced two “conditional” notions – conditional soundness and

conditional analysis. In their essence the two concepts are related – the result of an analysis

holds only under some conditions. They deviate in the approaches that they use to obtain

the unconditional result. Conditional soundness relies on another analysis to prove that

the program states that do not satisfy the condition are not reachable, i.e., the program

executions containing those states are infeasible. While conditional analysis may use the

same or a different analysis to show that those unsatisfying states do not violate properties

by appearing in program executions that either conform to the properties or are infeasible.

The work on conditional soundness presented by Christopher Conway et al., [13] ex-

plored the dependency of the soundness of one analysis on the result of another analysis.

Many analyses assume that a program is “well-behaved”. For example SAsign assumes

33

the absence of overflow conditions when the rule + “plus” 1 produces not expected +,

but −/+. The authors demonstrated this concept on a pointer analysis for C program. A

points-to analysis can produce sound results if the program is memory safe, i.e., there is no

out of bound memory accesses. The authors argued that it is possible to combine points-to

and memory safety analyses into a single analysis but such an approach is not scalable.

Thus they proposed to first perform points-to analysis assuming that the program is mem-

ory safe and after that run the memory safety analysis with the points-to analysis result to

prove that the assumption holds.

Besides explaining the concept of conditional soundness the authors also formalized

it through a set of definitions. They specified a conditional soundness with respect to a

predicate θ on a concrete state. Then an analysis is defined to be θ sound when it over-

approximates program behavior reachable through concrete states satisfying θ. Thus, an

analysis applies its transfer function only to the states satisfying θ. However, the transfer

function can produce non-θ states, but those states will not be explored on the next applica-

tion of the transfer function. In order to prove unconditional soundness of the first analysis,

the second analysis explores the states produced by the first analysis and proves that the

resulting non-θ states are unreachable in the program.

The work by Mayur Naik et al., [32] on static race detection for multi-threaded pro-

grams is conceptually similar to the previous paper on conditional soundness. A static race

detection algorithm analyzes memory accesses m1 and m2 guarded by locks l1 and l2 re-

spectively. It assumes thatm1 andm2 may alias and thus the algorithm aims to prove that l1

and l2 must alias in order for a program to be race free. The alternative approach proposed

in this paper assumes that l1 and l2 must not alias and then it is left to show that m1 and

m2 cannot refer to the same memory location. The absence of aliasing between m1 and

m2 is easy to show when mi is the field of the object referred by li and that the field mi

34

is only reachable through that object. However, in order to make the result of the analysis

unconditionally sound another analysis must be prove that l1 and l2 in fact must not alias.

Dirk Beyer et al., in their paper on conditional model checking [8] emphasized the fact

that when a model checker fails either to verify a program or to produce a counterexam-

ple then the effort put into the exploration of the program’s state space is wasted. These

situations arise when either the model checker runs out of computational resources or its

unable to decide on the predicate of a branch condition. The latter takes place when the

model checker is not designed to handle the theory used in the predicate, e.g., the predicate

analysis cannot handle non-linear arithmetic.

In the case of resource exhaustion, i.e., either running out of memory or timing out, in-

stead of conventional termination the authors proposed an informative termination where-

upon shutting down the model checker produces data that describes the parts of the state

space it was able to verify. To characterize the parts of the analyzed state space the model

checker enhances each abstract state with a predicate that uniquely describes that state.

Hence, when the model checker depletes its computational resources, instead of termi-

nating with a run-time exception, it returns a condition describing the set of states it has

analyzed. The condition is expressed as a conjunction of the analyzed state predicates. A

subsequent run of a model checker can use the negated condition to guide itself to the part

of the state space that was not analyzed by the previous model checker. This characteristic

of conditional model checker corresponds to the notion of conditional analysis.

In the case of undecidable predicates the authors proposed to proceed with such pred-

icate interpretation that permits the model checker to proceed with the verification, e.g.,

assuming that an assertion it cannot reason about does hold. The encountered assumptions

for taken branches are encoded as an automaton that is used to guide the further analysis

to the assumed branches. These assumptions must be analyzed further by another model

checker that is capable to reason about them. If the subsequent model checker determines

35

that these assumptions hold then the verification is complete. This side of conditional

model checker relates to the idea of conditional soundness.

A conditional model checker integrates assumptions, i.e., conditional soundness for

certain states, and predicate, i.e., conditional analysis, information into the characteristic

of abstract states. At the end of the execution the conditional model checker traverses

the reached abstract states and produces the condition and the branch outcome assumption

information. The experiments presented in the paper have shown that applying conditional

model checkers with feedback capabilities increased the number of programs that can be

verified.

2.3.1 Conditional Data-flow Analysis

The dissertation extends the notion of conditional analysis to data-flow analysis. The re-

quirement to analyze all paths can lead to a loss in precision due to the computations in

merge. This can be avoided by forcing the analysis to consider fewer predecessor state-

ments at merge points. This can be achieved by constraining the set of paths a static analysis

examines. If the static analysis was able to decide P |= φ on that set of paths then the result

is conditional and the condition is a predicate that describes that set of paths.

The conditional static analysis Aθ is described by its condition θ which can be used to

identify the set of paths to be analyzed. In this work θ is represented by the set of branch

edges in CFGP , at most one for each conditional statement l, which the analysis must

include while excluding their counterparts. If l has l′ and l′′ as its true and false targets,

respectively, then θ can contain the edge (l, l′), or the edge (l, l′′), or none of them. To

capture the relation between the opposite branches of l let (l, l′) = ¬(l, l′′) and the vice

versa (l, l′′) = ¬(l, l′). If (l, l′) ∈ θ then the values of all variables xi incoming to the target

of its opposite edge l′′, i.e., along edge ¬(l, l′), will be set to ⊥. For brevity ∀i : xi = ⊥

36

is denoted as ⊥ state. The same principle applies when (l, l′′) ∈ θ. When none of the

edges are present in θ then the analysis treats them in its usual manner, i.e., propagates the

information through both branches.

Thus a traditional data flow analysis is a conditional analysis with θ = ∅, i.e, A = A∅.

In the related work on the conditional model checking a condition θ also consists of “path”

part. In the case when a model checker cannot reason about some set of paths it records

them in a structural way which is similar to θ path-based condition.

With the proposed path-based of the constraint θ a conditional analysis Aθ can be de-

fined as;

Definition 2.3.1 (Conditional data-flow analysis). Given:

• The complete lattice DAθ that describes the abstract domain of Aθ.

• CFGP for a program P .

• A set of monotone transfer functions FA for each statement l ∈ CFGP that maps an

element of DAθ to itself, i.e., fl ∈ FAθ : DAθ 7→ DAθ .

• Entry statements E in CFGP .

• An initial value ι ∈ DA for statements in E.

• Set of edges θ to be excluded from CFGP .

37

Then the set of equations for forward Aθ is defined as follows on entry and exit of each

statement l ∈ CFGP :

Aθin(l) =
⊔
{Aθout(l′) | (l′, l) ∈ CFGP ,¬(l′, l) 6∈ θ} t ιlE

where ιlE =

 ι if l ∈ E

⊥ if l 6∈ E

Aθout(l) = fl(Aθin(l))

where for the first equation we assume ∀d ∈ DAθ : ∅ t d = d. Using the condition θ

and CFGP one can determine the set of path Π that the conditional static analysis (CSA)

examines.

38

Chapter 3

Unification Framework

39

One of the contributions of the dissertation is the unification framework that combines

the final results of multiple program analyses that test or verify properties expressed as

predicates over program variables at specific locations in the code. The development of

such framework requires an abstracted view of program analyses that dissociates their inter-

nal implementations. The goal of the next two sections is to present a generalized analysis

concept and discuss how the analyses described in the previous chapter can be instantiated

from it. The presented abstracted view of analyses is relevant to the unification framework

and might not, in general, be applicable for other purposes.

3.1 Generalized View of Analysis

One common factor among analyses is that they analyze program’s behaviors for some part

of its input domain which can be expressed as a set of predicates over input variables or as a

set of CFG paths. In program testing, expressing the extent to which a program’s executions

have been analyzed is typically done indirectly, and weakly, using some syntactic coverage

metric, e.g., the percentage of statements executed, and not in terms of the input domain

that has been considered. If assertions are considered, whose predicates create branching

within the programs flow of control, then path coverage produces the finest distinction

between input domains that is needed to reason precisely about property satisfaction, i.e.,

verification, or falsification, fault detection. For this reason, in the unification framework

the implicit or explicit path-based Π representation is chosen to describe the input domain.

Analyses vary in the sets of CFG paths, Π ⊆ ΠCFG that they are able to analyze,

where ΠCFG denotes all paths in the CFG. A single test or dynamic symbolic execution

(DSE) is only capable of analyzing a single path π ∈ ΠCFG. Symbolic execution (SE)

and conditional static analysis (CSA) are able to analyze a subset of paths, i.e., ΠSE ⊆

ΠCFG and ΠCSA ⊆ ΠCFG respectively. The traditional static analysis (SA), i.e., as in

40

Definition 2.2.1, considers all CFG paths, i.e. ΠSA = ΠCFG. Since SA is an instance of

CSA with θ = ∅ , i.e., all CFG paths are analyzed, the dissertation refers CSA with such

conditions as SA.

Obviously, differentiating program analyses by the set of paths they analyze cannot

unambiguously identify an analysis. For example, a single path can be analyzed by CSA

and DSE. In the previous chapter it has been discussed that the data-flow framework can be

instantiated to produce different analysis by considering various abstract domains which

determine the precision of the analysis. Similarly, the abstract domain can also be used

to describe testing, DSE and SE. The abstract domain of testing is the concrete domain

Dc ≡ P(Z), where as before P(Z) is the power set of integer values. DSE and SE use an

abstract domain with symbolic precisionDs which consists of any symbolic expression that

can be encountered during program executions. Depending on the program, the element of

Ds can be different while its expressive power, i.e., the precision, stays the same.

To illustrate an instance of Ds for DSE consider the code below.

vo id m (i n t x) {

1 : i f (x < 4) {

2 : x ++; }

3 : x = 2∗x ;

}

When DSE executes the code on input 0, it will traverse πx=0 = 1 → 2 → 3 path. Let xn

denotes the variable x after the statement n. Then, computed by DSE, the symbolic values

41

for xn along every path comprise the domain of x:

Ds =

⊥,

X < 4 ∧ x1 := X ,

X ≥ 4 ∧ x1 := X ,

X < 4 ∧ x2 := X + 1,

X < 4 ∧ x3 := 2(X + 1),

X ≥ 4 ∧ x3 := 2X ,

>

Where, for instance, the element X < 4 ∧ x2 := X + 1 is interpreted as x after line two

can hold a value in the set of integers less than five.

Besides Π and D the result produced by SA or CSA also depends on how the data-flow

equations presented in Definitions 2.2.1 and 2.3.1 respectively have been computed. The

most accurate solution is the MOP (Meet Over all Paths) where the least upper bounds of

abstract values are taken over all paths leading to a statement and those paths are individ-

ually calculated, i.e., the result of transfer functions is never merged but propagated up to

that statement. However, the MOP solution for data-flow equations might not always be

computable. Thus, the MFP (Maximal Fixed Point) solution is used which is always com-

putable and safely over-approximates the result of MOP [33]. This dissertation focuses on

SA and CSA that use the MFP approach for solving their data-flow equations. In the future

work the proposed generalized view of analysis will be augmented to consider for MFP

and MOP based analyses and analyses that might use mixed MFP and MOP approaches,

e.g., refinements in model checking [11] or abstractions in symbolic execution [2].

Thus, in the context of this dissertation a program analysis can be described by two

parameters:

42

1. the precision of the analysis determined by an abstract domain D commonly repre-

sented as a lattice LD; and

2. the set of paths Π ⊆ ΠCFG which the analysis examines.

The only requirement on LD is that it must relate to the concrete domain LC of a

variable by a Galois connection (LC , α, γ, LD) such that α : LC → LD, γ : LD → LC and

∀lC ∈ LC , ∀lD ∈ LD the following correspondence holds: α(lC) � lD iff lC � γ(lD) [33].

This requirement states that there should exist two functions one from the concrete domain

to the abstract, called the abstraction function α, and another from the abstract domain to

the concrete, called the concretization function γ. Moreover, if the element of the abstract

domain over-approximates the abstract value to which an element of the concrete domain

is mapped to by the abstraction function then the concretization function must map that

abstract element to a concrete value that over-approximates the original concrete value.

For example for the domain Dzero the abstraction function maps the element of concrete

integer domain {1} to the !0 element of Dzero. In turn the concretization function maps the

!0 to all sets of P(Z) that do not contain 0. Each such set over-approximates the initial {1}

set.

For the second parameter Π, three cases can be identified with different Π. In the first

case, all paths in Π are loop-free and can be paired with exactly one acyclic paths of CFG. In

the second case, paths in Π may loop, but the number of iterations of the loops are bounded

by k < ∞. In this instance the paths are instantiated from CFG by copying k times the

nodes of repeated loops. Finally, if Π contains an unbounded number of loop iterations

then paths map directly to paths to the CFG structure, but in this case D has additional

restrictions. In particular, the domain D of analysis should satisfy the Ascending Chain

Condition which ensures the termination of data-flow analyses [33].

43

Upon termination an analysis provides the final result that decides that P |= φ. Yet, all

analyses implicitly contain information on the set of paths, which is defined as Π̃, on which

φ holds, which is the set of paths they analyze, i.e., Π̃ = Π.

However, when SA and CSA cannot decide P |= φ for Π they may decide it for a subset

of the analyzed paths i.e., Π̃ ⊆ Π, e.g., an infeasible branch for which φ trivially holds. In

cases when SA or CSA cannot decide P |= φ, its Π̃ = ∅.

The above discussions result in the following two definitions:

Definition 3.1.1 (Partial result). For a given program P , property φ and a set P ’s paths Π,

if an analysis A runs on paths Π and determines that P |= φ on Π̃ 6= ∅ and Π̃ ⊂ Π then Π̃

is a partial result of A.

Definition 3.1.2 (Analysis instance). Analysis instance A is determined by an abstract

domain DL and the set of paths Π it analyzes.

Definition 3.1.3 (Final result). For a program P and property φ, the final result of A is the

set of paths Π̃ ⊆ ΠCFG for which P |= φ, i.e., Π̃ is a function of P , φ and A.

Usually the result of DSE is a single path π, i.e., the path that it has executed, for which

DSE generates the path conditions. This dissertation considers an extended version of DSE

that can provide the final result for a set of paths that have common prefixes with the ex-

ecuted paths. It does this by negating each condition in the path condition and checking

the conjunction of the prefix up to the negated condition and the negated condition for sat-

isfiability. If it is unsatisfiable then the alternative branch of the prefix is infeasible and

therefore all paths containing the prefix and that branch cannot violate φ. The extended

DSE can detect if all alternative branches for the executed path are infeasible and the exe-

cuted path does not violate φ. In the worst case, when all alternative branches are feasible,

the extended DSE produces the same result as a regular DSE – only verifies the executed

44

path. In the rest of the dissertation, all references to DSE imply this extended version of

DSE.

3.2 The Space of Π and LD parameters

Given that the introduced analyses can be described by two parameters L and Π, one can

imagine a space of analyses varying with L and Π. Figure 3.1 depicts instances of various

analyses in this space, with Π varying along the y-axis and L along the x-axis. On y axis

π is a single path, Π′ is a set of paths and ΠCFG all paths in CFG. On x axis label Lc

represents the concrete domain, Ls the symbolic abstract domain and Lp the parity abstract

domain. The elements of y-axis are partially ordered by the path inclusion relation, i.e.,

π ∈ ΠCFG and Π′ ∈ ΠCFG. The elements of x-axis are partially ordered by the domain

precision, i.e., Lc ≺ Ls ≺ Lp.

Thus, testing T is identified by the concrete domain Lc and a single path π it is capable

of analyzing. DSE is defined over a single path and symbolic abstract domain Ls. The

conditional parity static analysis CSAp is instantiated by a set of paths Π′ and the parity

abstract domain Lparity ≡ Lp while traditional parity static analysis SAp is instantiated

by the same Lp and ΠCFG. Some other SA is instantiated by all paths and some abstract

domain La. The Ideal point in Figure 3.1 represents the situation when all information

about the program is known, i.e., we can verify any program property for any set of paths.

This point corresponds to the case when SE is able to explore all of the program’s feasible

paths and the facts on the exit and the entry of each basic block is expressed with Ls

precision for each path. With this information any assertion property of the program can

be verified.

As was discussed in the previous section, the result of an analysis is a set of paths

Π̃ ⊂ Π for which φ holds. When analysis outputs Π̃ = ∅ then the analysis cannot provide

45

LD

Π

Lc Ls Lp

{π}

Π′

ΠCFG

T DSE

SE

Ideal

CSAp

SAp

Figure 3.1: Different analysis instantia-
tions based on Π and L.

LD

Π̃

Lc Ls Lp

{π}

Π′

Π′′

ΠCFG

DSEφ

SEφ

DSEφ + SEφ
SApφ

DSEφ + SEφ+SApφ

φ verified

Figure 3.2: Concept of combining results
of different analyses.

any definitive information about property satisfaction. When Π̃ ⊂ Π then the analysis

produces a partial result. When Π̃ = ΠCFG then the analysis has determined that the

property holds.

Since SE already uses Ls, which is sufficient to give a definite answer on every analyzed

path, then Π̃ = Π as shown on Figure 3.2. The subscript φ identifies the result of an analysis

for that property. The extended DSE can have |Π̃| ≥ 1 such that π ∈ Π̃. The picture depicts

the worst case result for DSE, when Π̃ = {π}. For illustration purposes assume that paths

Π, e.g., Π′ and Π′′ on this Figure, are disjointed. The ultimate objective of combining final

results of different analyses is to demonstrate that φ holds for all program paths without

regard to the values of LD. Pictorially this equates to the case when the sum of analyses

crosses the dashed line on Figure 3.2 – which represents the set of all possible program

paths.

The progression of information accumulated when combining the results of multiple

analyses together can be seen on Figure 3.2 when the results of SEφ and DSEφ are com-

46

bined. In this case the set of paths for which φ holds has increased to Π′ ∪ {π} which

were calculated with the domain precision of Ls. When the information computed by SApφ

is added the combined result has moved even closer to the goal line while the value of

L shifted in between Ls and Lp, i.e., some paths have information with accuracy of Ls

and some with Lp. The next section describes this conceptual representation of combining

analyses framework in greater details.

3.3 The Unification Framework Overview

The above analyses parametrization presents the opportunity for controlling analyses through

Π and combing their final results Π̃. This section proposes the unification framework that

accumulates Π̃ which is referred to as path-property coverage (PPC) and exploits cumula-

tive PPC to control analyses by generating new conditions θ that are translated to Π for the

subsequent analyses. Figure 3.3 sketches the unification framework where existing anal-

yses can be adapted to allow them to be integrated into the framework and where PPC

of each analysis can be stored and queried. For a correctness property, expressed as an

assertion φ, and a program P , there are many different static and dynamic analysis tech-

niques (A1, . . . , An) that might be applied to provide information to developers about the

satisfaction or falsification of φ.

Early in development, or early in a maintenance phase of P , an analysis Ai, may be

able to quickly detect violations of φ. In such situations, developers should use Ai as is, but

once it becomes difficult to detect violations we advocate a shift in the approach. Existing

analyses are modified to add a reporting capability, Ai ◦ reporti, to characterize the set

of program executions Π̃ on which Ai can definitively show that φ holds. This reporting

capability can be thought of as a meta-analysis that runs alongside Ai, but does not modify

the operation of the analysis – importantly Ai ◦ reporti does not attempt to verify φ on P .

47

P

φ

control
A1

report

control
. . .

report

control
An

report

query

store 1 CFG

2

3
4

5

P
P
C

(P
,φ
,A

n
)

Figure 3.3: Generating and Exploiting PPC

As will be discussed in Chapter 4 a PPC report, PPC(P, φ,Ai), is a symbolic en-

coding of a set of program executions Π of P . For example, the set of executions that

traverse nodes in the set {1, 2, 3, 5} in the CFG could be encoded as the regular language

1; 2; (3; 2)∗; 5, where ‘;‘ denotes concatenation, or as a logical expression that defines the

conditions under which the left branch of 1 is taken.

Each analysis run adds potentially new information to a store that accumulates PPC for

P and φ; additional stores can accumulate PPC for other properties. As it will be discussed

in Chapter 4, the store is not simply a database of coverage reports, but an integrated rep-

resentation of the set of paths that have been covered, relative to φ, by previous analysis

runs. Moreover, it is encoded in a canonical form that can be mapped to representations

commonly used by program analyses (such as CFGs), and that can be queried.

One potential use of the store is to render depictions of the extent to which a program’s

executions have been analyzed and found to conform to φ. In the extreme case, such a

depiction would simply be a statement that φ holds on all executions of P – φ is verified.

In general, even the application of a series of sophisticated analyses may be unable to

achieve such verification. The bottom right of Figure 3.3 sketches a simple visualization

of a program’s CFG, where dotted edges and filled nodes indicate that all executions of

48

those nodes and edges have been shown to conform to φ, dashed edges indicate that some

executions conform, and solid edges have not yet been analyzed. Such visualizations could

help developers understand the relative effectiveness of different analyses or to decide that

a sufficient degree of coverage has been achieved based on their deployment scenario.

Another way to use accumulated PPC is to use it to control the application of subse-

quent analyses but generating the set of path Π for subsequent analyses to consider. For

example, just as the dotted edges and solid nodes of the CFG visualization communicate

to a developer that no more analysis is needed of those edges and nodes, so too can that

information be queried from the store and used to restrict the application of an analysis

to a portion of the program. Such control information must, of course, be expressed in a

form that can be used effectively by a given analysis. For example, a flow-sensitive static

analysis might consume a description of the fragment of the CFG over which the analysis

should be performed, whereas a symbolic execution or random test generator might use a

logical characterization of an input subdomain. In general, with both control and report-

ing capabilities added to an analysis the combination controli ◦ Ai ◦ reporti provides a

feedback mechanism to drive the further accumulation of PPC .

The vision sketched in Figure 3.3 is broad in scope and presents numerous research

and engineering challenges. The dissertation focuses on defining the foundational concepts

that will allow to pursue this vision. Specifically, the next Chapter formalizes PPC and

defines how path information related to PPC can be efficiently stored. Section 5.2 illustrates

how different analyses can be adapted to report PPC and to allow their application to be

controlled by information queried from the PPC store.

49

Chapter 4

Path Property Coverage

50

The dissertation focuses on characterizing sets of program executions that conform to

explicitly stated correctness properties. This chapter presents a model of sets of program

executions and explains how that model can be mapped onto an efficient data structure that

permits sets of executions produced from different program analyses to be combined and

queried.

4.1 Properties and Paths

This dissertation considers properties that can be encoded as boolean valued expressions

embedded into the program, e.g., assertions. To simplify the presentation, only a single

such property, φ, is considered, but the approach can be generalized to sets of safety prop-

erties. This is left for the future work.

As was explained in the previous chapter, the CFG is used as a foundational repre-

sentation for program executions. The presentation here assumes a single CFG, but inter-

procedural control flow can be treated in a similar fashion – this is left to future work.

In general, a path in a CFG represents a set of program executions, i.e., those that

traverse the path but compute different values. Let p be the location at which φ is evaluated.

It might happen that after executing the statement at location p some executions end up in

a state satisfying φ, and in other executions the state at p satisfies ¬φ. Without loss of

generality, φ can be incorporated into the program as an additional branch condition bφ

after the statement p. With this modification a single path through the CFG is able to

precisely describe the satisfaction or falsification of φ for each program execution.

To formalize, let B be the set of branches in a CFG where each vertex associated with

a branch statement is identified by a unique id. Let, as before ΠCFG be the set of paths in

the CFG; Π̂ ⊆ ΠCFG denotes the feasible program paths. A path π ∈ ΠCFG is uniquely

represented by the sequence of the CFG edges that correspond to branch outcomes. Such

51

an edge is represented as a boolean valued variable bid whose value corresponds to the

branch outcome, e.g., bq is the true outcome of branch q and ¬bq the false outcome. The

value of the ith branch on the path is written π[i]. It is said that π satisfies φ, π |= φ, if

∀i : π[i] 6= ¬bφ.

In the unification framework an existing analysis A reports set of paths Π̃A ⊆ ΠCFG

for which φ holds. Before path property coverage is defined, the concept of covered paths

for A is formalized first.

Definition 4.1.1 (Covered paths of an analysis). Given a program P and correctness prop-

erty φ at the location p then an analysis A covers paths Π̃A ⊆ ΠCFG if

∀π ∈ Π̃A : π |= φ

Section 5.2 explains how existing analysis, A, can be adapted to report Π̃A. Any path

that is not covered is referred to as uncovered. In general, Π̃A ⊂ ΠCFG and for particularly

buggy programs, or imprecise analyses, it is even possible that Π̃A = ∅, i.e., the analysis is

unable to cover any paths.

Using the preceding formal description of ΠA path property coverage is defined as

follows

Definition 4.1.2 (Path Property Coverage). Given a program P with feasible execution

paths Π̂ and correctness property φ at the location p, it is said that path property coverage

for φ is achieved by a set of analyses A if

Π̂ ⊆
⋃
A∈A

Π̃A

This approach seeks to accumulate subsets of Π̂ from dynamic analyses and combine

them with subsets of Π from static analyses. When analyses calculate that sets of infeasible

52

paths, i.e., subsets of ΠCFG − Π̂, satisfy φ they can also be accumulated - since overesti-

mating Π̂ still permits judgement of PPC.

Unlike traditional test adequacy criteria, these numeric estimates of the percentage of

Π̂ that has been covered by an analysis is not useful or feasible. Such an estimation would

require the ability to measure |Π̂| and |Π̃A|, which is not particularly feasible, but the goal

of the dissertation is to represent those sets symbolically and to avoid enumerating them.

4.2 Defining Sets of Paths

An analysis need not reason about individual paths. For example, a static data-flow analysis

generally reasons about the behavior of the set of execution prefixes (suffixes) that reach

each program statement. For instance, it might reason about the set of paths that have

different prefixes and suffixes, but that share a common edge ¬bq in the CFG, i.e., {π|∃i :

π[i] = ¬bq}.

One can represent a set of CFG paths as a regular languageL over an alphabet of branch

outcomes.

Definition 4.2.1 (Path Language). Given a CFG, G, with branch statements, B, the set of

CFG paths covered by analysis A, LA, can be defined as a regular language over Σ =

B ∪ B̄, where B̄ = {¬b|b ∈ B}. Thus Σ describes false and true outcomes of branch

statements.

A single run of a program that satisfies φ, perhaps the simplest form of dynamic anal-

ysis, would produce a path language that corresponds to the sequence of branch outcomes

executed. If all paths that share the common edge ¬bq satisfy φ, then this is captured by

the path language L¬bq = .∗;¬bq; .∗. A static analysis that demonstrates that all paths in the

CFG satisfy φ would produce a path language, LCFG, defined by the NFA produced by la-

53

beling all CFG branch edges with the appropriate element of Σ, labeling all non-branching

edges with ε, making branch bφ the accept state, and the first statement the start state. In

the case of loops there will be repeated occurrences of edges with a given branch id and

outcome.

This means of representing a set of paths allows for over-approximating the set of fea-

sible program paths – by including infeasible branch outcomes – which is a common ap-

proach to mitigating static analysis cost. Moreover, a path language may include not only

infeasible program paths, but the paths that are not even present in LCFG. For instance,

a flow-insensitive analysis that is able to prove a property holds would produce a path

language Σ∗ which significantly overapproximates the LCFG.

A flow-sensitive analysis takes a more refined approach by considering only the branch

sequences that correspond to paths in the CFG. Such an analysis can produce a set of paths

encoded as a subset of LCFG. For example, L = bq; .
∗;¬bk represents the set of paths

starting with bq taken, followed by some edges and ending with bk not taken. The path

language can then be formed by taking L ∩ LCFG; flow-sensitivity can be enforced after

the fact in this way to any path language representation.

Since regular languages are closed under union, the path languages produced by mul-

tiple analyses can be combined. Using regular languages, however, may not yield a par-

ticularly efficient representation, so path languages are mapped to another encoding where

such operation is more efficient.

4.3 Encoding Path Languages

First consider the simplified setting of programs without loops,i.e., CFG paths are a se-

quence of k elements from Σ without repetition, where k ≤ |B|. Once the basic framework

54

for encoding path languages in this setting is presented, the framework will be extended to

programs with loops.

Let B denote the Boolean domain {true, false}. Partitioning paths into covered, and

uncovered, sets is equivalent to defining a Boolean-valued function βφ : ΠCFG → B,

which maps π to true if π is covered and to false otherwise. Since the primary interest

is in universal properties, i.e., properties that hold on all feasible program executions, then

it is implied that an infeasible path trivially satisfies any property φ. Because of this, the

function βφ does not distinguish feasible and infeasible paths.

Any π ∈ ΠCFG can be expressed as a Boolean function γπ : Bk → B. Thus, βφ can be

expressed as a disjunction of such functions, βφ =
∨
π∈Πcov

γπ. This reduces the problem

of combining covered paths to logical operations on k boolean variables and the problem

of finding path property coverage for φ to determining when βφ becomes a tautology, i.e.,

βφ ≡ 1.

For this purpose a bijection is established between the set of branches B and a set of

boolean variables V , i.e., v : B → V . Then γπ can be defined as a function γπ(v1, . . . , vi, . . . , vk),

where vi ∈ V , such that γπ is true if the assignments to vi correspond to the sequence of

branches taken in π. The assignments corresponding to π are defined as follows. If ∃bi ∈ π

then vi = true, if ∃¬bi ∈ π then vi = false. If none of two cases apply, i.e., bi is not

executed in π, then value returned by γπ does not depend on vi.

One approach to building γπ is to form the disjunction of boolean expressions corre-

sponding to each k-tuple that is consistent with π. A boolean expression for a k-tuple is

built as the conjunction of literals li, which may be either vi and ¬vi. Note that when lj does

not appear in π, then the two k-tuples (l1, . . . , true, . . . , lk) and (l1, . . . , false, . . . , lk),

where true and false are in the ith position, must be disjoined:

(l1 ∧ · · · ∧ vj ∧ · · · ∧ lk) ∨ (l1 ∧ · · · ∧ ¬vj ∧ · · · ∧ lk)

55

which simplifies to

(l1 ∧ · · · ∧ li−1 ∧ li+1 ∧ · · · ∧ lk)

Therefore each γπ can be expressed as the conjunction of the literals for branch variables

present in π while leaving literals for variables like vj out.

This simplification allows to define γ not only for a single path but also for a set of

paths expressed as a path language, γL. Sequences of wildcard characters .∗ have a similar

semantics as the unexecuted branch variable vj discussed above. That is γL evaluates to

true when the values of variables appearing in the regular expression are set to their tuple’s

value in that expression and the assignments to the rest of variables does not affect the

result.

For example, the regular expression .∗; bq; .∗ encoding the result of a flow insensitive

analysis would be encoded as γ1 = vq. The encoding of the flow sensitive analysis’ covered

paths bq; .∗;¬bk would be translated into γ2 = vq ∧ ¬vk. If these analyses target the same

φ, then their coverage can be combined as βφ = γ1 ∨ γ2 = vq ∨ (vq ∧ ¬vk).

4.3.1 BDDs for PPC

Instead of expressing βφ in this Boolean logic format the dissertation utilizes the more

efficient Reduced Ordered Binary Decision Diagram (BDD) encoding [9]. A BDD is a

rooted, acyclic, directed graph with only two leaf nodes 1 (true) and 0 (false). Figure 4.1

illustrates several BDDs. Intermediate nodes are called decision nodes and correspond to

boolean variables. Each decision node has two children: low, when its variable evaluates

to 0 (shown as a dashed edge), and high, when its variable is evaluated to 1 (shown as a

solid edge). The path from the root of the tree to the (shaded) leaf node 1 corresponds to

the assignment of boolean variables for which βφ evaluates to true. The upper left BDD

56

test (1, 2)

v1

v3

10

∨
DSE (1, 2)

v1

v3

10

=

PPC (1, 2)

v1

10

PPC (1, 2)

v1

10

∨ Asign(x > 1)

v1

10

=
PPC

1

Figure 4.1: PPC store BDD encodings for Example

in Figure 4.1 evaluates to true when ¬v1 ∧ v3. When βφ ≡ 1 the BDD encoding is a single

leaf node 1; see the lower right BDD in Figure 4.1.

Definition 4.3.1 (PPC Store). Given a path language, L, defined over an alphabet of

branch literals, B ∪ B̄, representing a set of covered paths, store(L) is a BDD defined

over a set of variables V = {v(b)|b ∈ B} according to the rules:

store(ε) = false,

store(.) = true,

store(b) = v(b),

store(¬b) = ¬v(b),

store(e1; e2) = store(e1) ∧ store(e2),

store(e1|e2) = store(e1) ∨ store(e2)

An analysis technique exploits the information it calculates to encode the most general

formulation of its path language and associated PPC store. To illustrate, consider the PPC

store computed for the example presented in Figure 1.3. When test (1, 2) is run then the

57

false branch of condition (x > 1) is taken – this branch is represented by v1 in the BDD

– and then the assert condition is true – the assert branch is represented by v3. Hence the

BDD labeled “test (1, 2)” is generated which represents ¬v1 ∧ v3. The dynamic symbolic

execution of that path is able to prove that the false branch for the assert condition is infea-

sible so that path, encoded by the BDD labeled “DSE (1, 2)”, is accumulated in the PPC

store, “PPC (1, 2)”. After the sign analysis Asign is run on the sub-CFG associated with

x > 1, it is able to determine that all paths through the loop result in the false branch for the

assert being infeasible. When the “Asign(x > 1)” BDD is added to the PPC store the result

is the value 1 which indicates that path property coverage has been achieved. Section 4.3.3

provides additional examples of BBDs for PPC.

Using a BDD for encoding βφ leads to a compact encoding of path property coverage.

The efficiency of the BDD encoding strongly depends on the variable ordering [9]. A

variable order that corresponds to the order in which branches appear in the program’s text

is chosen for the experiments for the sake of convenience. The future work will explore the

efficiencies of different orderings.

4.3.2 Iterative Paths

Some analyses explicitly analyze individual loop iterations. For example, a dynamic analy-

sis analyzes each iteration as it executes the program and a symbolic execution considers a

bounded set of unrolled loop iterations. For such analyses, a generated path language may

contain multiple occurrences of a branch bi occurring within a loop. To consider this case

store(L) is adapted to accommodate analysis results for iterative programs by producing

unique branch identifiers for branches within loops. Specifically, for a branch bi in loop l,

the framework creates bi1 , . . . , bimax(l) – one for each loop iteration. This branch naming

58

scheme is generalized appropriately for nested loops, i.e., for a loop nest l1, . . . , lk a branch

in the innermost loop will have
∏

i=1...kmax(li) unique branch identifiers.

Analyses may explore different numbers of loop iterations and this may cause the do-

main of βφ to increase over time. The creation of new BDD variables does not invalidate the

previously recorded BDD results since any new variables were, by definition, not involved

in previous analyses.

It is important to note, that many static analyses, such as data flow analyses, need not

unroll loops. When they are able to prove that a property holds they do so by reasoning

about all paths through a region of the program. In this case, the specific branching within

any loops in the region is, by virtue of the analysis result, irrelevant to property satisfaction

and those branches can be left out of the path language and associated BDD encoding. This

is precisely why the sign analysis Asign, when applied to x > 1, did not produce a BDD

which includes variables modeling the branch condition for the while loop. The abstract

values flowing out of the loop, (+,+), provided all of the information necessary about the

inner workings of the loop to determine property satisfaction.

4.3.3 Assessing and Querying PPC

The path adequacy criterion is based on “a priori” knowledge of the total number of feasible

paths in a program. The difficulty of determining that number using static code analyses

makes assessing the percentage of path coverage intractable due to the presence of infeasi-

ble paths and potentially infinitely many paths.

The dissertation takes an alternative approach, which abstracts from path coverage and

considers execution subtree coverage. This approach does not require the explicit construc-

tion of execution trees.To illustrate the concept of subtree coverage and how to obtain the

subtree coverage information, consider the illustration in Figure 4.2.

59

b1

b2

b3

test:b1; b2; b3

v1

v2

v3

10

b1

b2

b3

test ∨ DSE:b1; b2;¬b3

v1

v2

10

b1

b2

b3

test ∧ DSE ∨ CSA:¬b1;¬b2

v1

v2v2

10

Figure 4.2: Explanation of subtree coverage criterion

Each of the three figures corresponds to information associated with the set of paths

covered by a test run (top), the prior test run and DSE (middle), and the previous test

and DSE runs and conditional static analysis (CSA) (bottom). The left side of each figure

depicts the execution tree of a program with their conditional statements bi labels on the left.

The covered subtrees of the execution tree as the result of the corresponding analyses run

are shaded in grey. The right side depicts the PPC store’s BDD representation of analyses

result.

In the top picture a test run executes a single path. This results in the coverage of a

single subtree, on b3 level, that consists of a single leaf node indicating that the true branch

60

b1

b2

b3

v3

0 1

b1

b2

b3

Figure 4.3: Special case of sub-tree coverage for SA:b3: execution tree(left), BDD(middle),
CFG(right)

b3 has been covered in the context of b1 ∧ b2 prefix. The right side of the figure shows this

information encoded in BDD form.

The middle picture is more interesting. It shows that when the executed path is analyzed

by DSE and ¬b3 is found to be infeasible, then a larger subtree is covered. This means that

after executing the true branch of b1 and then the true branch of b2, all subsequent program

behavior is guaranteed to be consistent with φ – either because it was observed directly or it

was inferred by DSE. It is said that the prefix length of this covered sub-tree is 2. The BDD

on the right depicts the PPC store where it can be seen that the prefix length is nothing

more than the length of a path from the root of the BDD to 1.

The bottom picture shows the scenario when an additional static analysis determines

that ¬b1,¬b2 is infeasible. As a result another subtree on level 3 has been covered. The

two covered subtrees are described by the two paths of length 2 of the corresponding BDD.

(Note, that ¬b1 might be infeasible by itself because SA over-approximates the behavior.)

When execution tree subtrees corresponding to a branch of a conditional statement bi

have been covered, the BDD will collapse those prefixes and have that branch only at the

top of BDD. This situation is shown on Figure 4.3 when SA has determined that all paths

that contain the true branch of b3 do not violate φ. In this case the information from the

BDD can be mapped straight to the CFG which indicates that all subtrees in the execution

tree of the true branch of b3 have been evaluated. Thus all CFG nodes which are reachable

61

from the CFG entry node through the true branch of b3 cannot contribute to φ violation –

the CFG coverage is depicted on the right of Figurefig:SepcialTreeCoverage.

Since testers are more familiar with CFG than with execution trees, the subtree cover-

age of CFG as in the last example should be more intuitive than the subtree coverage of

execution trees shown on Figure 4.2. Yet, these cases can also be projected to the CFG by

introducing some notion of “partially” covered subtrees. This degree of partially cannot

be obtained from a BDD directly and more likely should be used together with CFG. This

effort is left for future work. The following definition of the proposed subtree coverage is

defined not for a set of test as regular adequacy criteria but for the set of program analyses.

Definition 4.3.2 (Subtree adequacy criterion). The analysis set A is l-level subtree ade-

quate for a program P , if for every subtree with prefix of size l in P ’s CFG, there exist

some subset of analyses A′ ⊆ A that covers that subtree. A is adequate when all subtrees

at 0 level are covered, i.e., when the corresponding BDD returns true value.

Note, that no additional data structures besides BDD are needed to obtain the subtree

coverage information.

In general, the previous examples illustrate that the smaller the prefix lengths for cov-

ered subtrees in the BDD the greater coverage of paths. The intuition is that the lower the

level of subtrees that are covered, the closer the program is to being PPC adequate. Char-

acterizing the length and number of prefixes in the PPC store provides insight into how an

analysis contributes new PPC coverage information.

In addition to characterizing coverage information, the BDD can be used to extract the

information about uncovered program paths that should be targeted by future analyses. All

paths in a BDD that lead to 0 leaf node describe the set of uncovered program paths. For

example at the top picture of Figure 4.2 there are three paths ¬v1, v1;¬v2 and v1; v2;¬v3

62

leading to 0 leaf node. Thus the paths with prefixes b1, b1;¬b2 and b1; b2;¬b3 should be

analyzed by the next analyses.

The translation of a prefix to θ condition of CSA is straightforward. It would be valuable

for the unification framework to keep track of θ for each CSA to avoid the repetitive analysis

runs that will increase PPC in BDD store.

DSE can execute a given prefix if it is expressed as pc. The translation from PPC

encoding to pc can be done inside the unification framework provided the framework keeps

pc for previously executed DSE or SE runs. When the unanalyzed prefix is given, the

unification framework can look at the analyzed DSE and SE paths and use pc of the path

with the longest common prefix up to the last condition and the last condition is the negation

of the prefix’s last condition to generate input values that will explore the needed prefix.

For example, if prefix is b1; b2;¬b3 then the framework chooses a path containing b1; b2; b3.

Next it selects the first three conditions of the corresponding pc which are pcb1∧pcb2∧pcb3 .

After that the last condition is negated to produce pc′ = pcb1 ∧ pcb2 ∧ ¬pcb3 . Solving pc′

will provide DSE with an input to traverse the needed prefix.

The next Chapter explains how the unification framework has been instantiated and

how the existing analyses have been adapted to fit into the unification framework.

63

Chapter 5

Instantiation of the Unification

Framework

64

All implementations described in this chapter are written in the Java programming lan-

guage. The first part of this chapter describes the instantiation of the unification framework

depicted on Figure 3.3 while the second part presents the implementations of CSA and

DSE and their adaptations which allow for the analyses integration into the unification

framework. The presentation of each implementation starts with an algorithm description

followed by discussion of essential implementation details.

5.1 Unification Framework

The unification framework has two main functions. One function is the accumulation of

PPC. This task is accomplished by obtaining PPC information from a set of analyses and

saving it in the PPC store. The second objective is the generation of analysis control. This

is done by querying the PPC store for unexplored paths and passing that information in the

form of control to the next analysis in the execution queue. As discussed in the previous

chapter, this framework uses a BDD as its choice of the PPC store. The language L for a

set of paths of PPC is encoded as a set of branch literals, called a prefix.

5.1.1 Algorithm

Algorithm 5.1 describes the implementation of the unification framework presented in

Chapter 3. The algorithm consists of three functions: UnificationFramework which

is the core algorithm, and the two auxiliary functions generate and accumulate that cor-

respond to the framework’s two main functionalities.

The UnificationFramework receives two parameters: a program P and bφ which is

the conditional statement of the assertion φ. When the false branch of bφ, i.e., ¬lφ (recall

that lq is a branch literal for bq) is executed the assertion is violated. On line 2 the framework

65

Algorithm 5.1 Unification framework instantiation
1: function UnificationFramework(P ,bφ)
2: A← {A1, A2, . . . , An}
3: bddStore← false
4: while bddStore 6= true and ¬resources do
5: A← select(A)
6: Π← generate(bddStore)
7: PPC ← A(P, bφ,Π)
8: bddStore← accumulate(bddStore, PPC)
9: end while

10: report(bddStore)
11: end function
12: function generate(bddStore)
13: for all unsatCube ∈ bddStore do
14: prefix← convertToPPC(unsatCube)
15: Π← Π ∪ {prefix}
16: end for
17: return Π
18: end function
19: function accumulate(bddStore, PPC)
20: for all prefix ∈ PPC do
21: cube← convertToBDD(prefix)
22: bddStore← bddStore ∨ cube
23: end for
24: return bddStore
25: end function

initializes the set of analyses A that later it can dispatch. Line 3 initializes bddStore, the

BDD implementation of the PPC store, to false, i.e., an empty set of analyzed paths.

The algorithm next iterates lines 4 through 9 until either all paths have been analyzed,

i.e., bddStore is true, or the resources threshold has been reached. These two conditions

guarantee the termination of the algorithm. If the algorithm terminates when bddStore ==

true then it reports on line 10 that P |= φ. If the termination occurs because of the

resources condition has been satisfied then the algorithm reports the condition for which

P |= φ.

66

On line 5 the algorithm selects the next analysis A to be executed. Line 6 generates

a set of prefixes that describes the set of uncovered paths A must analyze. On line 7 the

framework runs the analysis and assigns its result, i.e., the set of prefixes, to the PPC

variable. Line 8 adds the analysis result into the PPC store.

The generate function on lines 12-18 takes the BDD store as an argument. It queries

the BDD for unsatisfiable cubes. An unsatisfiable cube is a set of BDD variables of a path

leading to the BDD’s zero node. On line 14 each such cube is converted to the correspond-

ing set of branch literals, i.e., a prefix. The resulting prefix is added to the set Π is returned

to the main algorithm.

The accumulate function takes as its input the BDD store and the set of prefixes PPC.

Then on line 21 each prefix is translated to its BDD’s representation, i.e., a cube – a satis-

fiable assignment. Then the cube is added to the BDD store using the disjunction operator.

The set of analysis A can contain a special analysis Aslice that computes that static

forward slice of the program variables involved in the property φ; this is similar to [27].

Any paths that lie outside the slice trivially satisfy φ and thus are reported as covered in

PPC. This is called property based slicing. If such analysis is present then the framework

should be directed to execute Aslice first.

5.1.2 Implementation

In the current implementation the set A consists of three intra-procedural analyses: two

CSA with Dzero and Dsign domains, and DSE. The analysis Aslice also has been imple-

mented. The intention of the dissertation is not to implement the most precise or sophis-

ticated analysis possible, but rather to understand how different types of analyses can pro-

vide, or fail to provide, coverage of program paths. The next section describes in detail

how these three analyses have been implemented.

67

The PPC store is implemented using JDD [29] which is an open source decision di-

agram library written in Java. It has a rich API that allowed for querying for satisfying

assignments, determining various BDD statistics, and producing visual depictions of the

BDDs. To collect PPC information, the set of satisfying assignments for the BDD is ana-

lyzed which is used in reporting.

The reporting produces the visual representation of the BDD in dot format and also

displays the distribution of the lengths of cubes, i.e., the satisfying paths. As discussed

in Section 4.3.3 the length and number of the BDD’s paths provide insights into how an

analysis contributes PPC. This information provides useful data to a researcher and may

not be relevant to end user.

5.2 Adapting Existing Analyses

In general, in order to incorporate a new analysis A into the unification framework, A must

be extended to have at least the PPC reporting capability and preferably the controlling ca-

pability. The effort required to implement these two features for A depends on the internal

design of A. As the following sections show extending the reporting capability for DSE is

straightforward because it only requires the tracking of the executed path. However, adding

reporting to CSA requires additional post processing of the calculated intermediate result.

Yet, implementing the control feature for CSA requires less effort than implementing it for

DSE, since controlling DSE requires the translation from PPC to the concrete input values.

Nevertheless, A is only extended once but that effort allows the final results of A to be

combined with any existing analysis in A.

This section discusses two different analyses and describes their adapted algorithms

that permit the analyses to be integrated into the unification framework. Specifically, it

demonstrates how a conditional static data flow analysis and the execution of a dynamic

68

symbolic execution can be modified to generate PPC and parameterized to target a portion

of a program’s input domain.

5.2.1 Conditional Data-Flow Analysis

For PPC, only the set of paths that do not violate φ are considered. For an analysis to

determine that no paths violate the assertion, it must be the case that the false branch bφ

is infeasible. If such a judgement cannot be made, then any branch outcomes that can be

judged to be infeasible will contribute to PPC. If an infeasible branch outcome is found,

then all paths that the data-flow analysis traversed leading up to that branch outcome are

guaranteed to not violate φ. Thus the goal of CSA is to determine infeasible branches given

the condition θ.

In this section the algorithm for CSA is presented in two steps. First the core data-

flow algorithm is described that computes entry and exit facts for each statement, i.e., the

intermediate facts. The second algorithm describes how infeasible branches are determined

from those facts.

5.2.1.1 Algorithm

There are several algorithms that compute data flow equations described in Definition 2.2.1.

Those algorithms compute a fix point of the intermediate facts, i.e., when upon iteration

over statements no changes to the intermediate facts are detected. The algorithm described

below is a work-list based algorithm similar to the one sketched in [3]. Instead of iterating

over all statements, work-list based algorithms only consider those statements for which

the incoming facts have been changed.

Algorithm 5.2 describes the core data-flow algorithm of CSA, which computes the in-

termediate facts.The function WorkList takes three parameters: program P , the set of

69

Algorithm 5.2 A work-list algorithm for conditional static analysis
1: function WorkList(P ,θ, L)
2: ({s}, {(l, l′)}, e)← CFG(P)
3: ein ← >
4: sout ← ⊥ ∀s ∈ {s}
5: W ← {s}
6: while W 6= ∅ do
7: n← remove a statement from W
8: oldState← nout
9: nin ← ∪pout ∀p ∈ predecessors(n)

10: if n is a conditional statement then
11: (l, l′)t ← true branch of n
12: (l, l′)f ← false branch of n
13: if (l, l′)t ∈ θ then
14: noutt ← ⊥
15: noutf ← Fnf (nin)
16: else if (l, l′)f ∈ θ then
17: noutt ← Fnt(nin)
18: noutf ← ⊥
19: else
20: noutt ← Fnt(nin)
21: noutf ← Fnf (nin)
22: end if
23: else
24: nout ← Fn(nin)
25: end if
26: if oldSate 6= nout then
27: for all c ∈ successor(n) do
28: if c 6∈ W then
29: W ← W ∪ {c}
30: end if
31: end for
32: end if
33: end while
34: end function

excluded edges θ and the abstract domain L that defines transfer functions F used by the

analysis.

First the algorithm initializes the three tuple ({s}, {(l, l′)}, e) from the CFG of P , where

{s} is the set of statements, {(l, l′)} is the set of edges and e is the entry statement. Next, on

70

lines 3-5 the algorithm initializes the incoming facts of e to the top element, the outgoing

facts of all statement to the bottom element and adds all statements to the work-list W .

Then while the work-list is not empty, a statement is removed from W and processed

in the following way. First, on line 8 the statement’s current outgoing facts are recorded.

This information will be used later to decide if a new statement should be added to W or

not. Next, on line 9 all incoming facts from its predecessor are combined. If n is not a

conditional statement then on line 24 a transfer function of that statement is applied to the

incoming facts of n to compute the outgoing fact of the statement.

A conditional statement receives a special consideration on lines 11 through 21. First,

on lines 11 and 12 the true and false branches of n are identified. If one of those branches

are in the exclude set θ then the outgoing facts for those branches are set to the bottom

element, i.e., lines 14 and 18. Otherwise the branches are processed as usual.

At the end of computation the fresh facts for nout are compared to their old values stored

in oldSate. If the values are not the same then all successor for n are added to work-list W

for processing.

Algorithm 5.3 uses these computed intermediate facts to produce the set of infeasible

branches. CSA is parametrized by the program P , the conditional statement of φ, the set of

exclude edges and the abstract domain of the analysis. The first, third and fourth parameters

are passed straight to the core algorithm and bφ is used locally for the detecting infeasible

branches.

After invoking the WorkList function on line 4 the algorithm initializes the set of

infeasible branches to an empty set and identifies the true branch of bφ. Then the algorithm

iterates over all branches of the program to determine infeasible branches.

A branch is infeasible if 1) the value of its incoming fact is not ⊥, because it means

that its predecessors are already infeasible; 2) its outgoing facts have⊥ value, i.e., the main

criteria for infeasibility; 3) the branch is not part of the exclude set and 4) the branch is not

71

Algorithm 5.3 Algorithm for conditional static analysis
1: function CSA(P ,bφ, θ, L)
2: WorkList(P, θ, L)
3: B ← conditionalStatements(P)
4: infeasibleBranches← ∅
5: (lφ, l)← true branch of bφ
6: for all (lb, l) ∈ CFG(P) : b ∈ B do
7: if bin 6= ⊥ ∧ (lb, l)out == ⊥ ∧ (lb, l) /∈ θ ∧ (lb, l) 6= (lφ, l) then
8: infeasibleBranches← infeasibleBranches ∪ {(lb, l)}
9: end if

10: end for
11: return infeasibleBranches
12: end function

the true outcome of the conditional statement of φ, because the goal of the analyses is to

show that ¬(lφ, l) is infeasible. Detecting infeasibility of ¬(lφ, l) can only raise a warning

that under θ, φ is violated, but it is unknown whether θ corresponds to a feasible set of

paths.

5.2.1.2 Implementation

The core data-flow algorithm described by the WorkList function has been implemented

using the Soot [44] Java optimization framework. Soot has a rich set of extensible static

analysis components that can be utilized to implement a custom static analysis such as

CSA with different abstract domains. In this case the branched forward analysis has been

extended to implement the WorkList function.

While this current implementation does cause the analysis to traverse the excluded sub-

CFG, no information from that sub-CFG is computed or merged. Another alternative would

be to modify the CFG by removing exclude edges to control the analysis.

72

Algorithm 5.4 Adapting conditional static analysis
1: function CSAi(P ,bφ,Π)
2: L← Li
3: θ ← excludeBranches(P,Π)
4: ∆← CSA(P, bφ, θ, L)
5: PPC ← ∅
6: for all infeasibleBranch ∈ ∆ do
7: {prefix} ← intersect(P,Π, infeasibleBranch)
8: PPC ← PPC ∪ {prefix}
9: end for

10: return PPC
11: end function

5.2.2 Adapting a Conditional Data-Flow Analysis

This section describes how the above CSA algorithm can be adapted to fit into the unifica-

tion framework. To be incorporated in the unification framework the analysisA ∈ A should

accept the set of paths to analyze, Π, described by a set of prefixes and return PPC which

is also a set of prefixes. Thus, the purpose of the adaptation is to augment the main CSA

algorithm with two functionalities: translating Π to θ and translating infeasibleBranches

to PPC.

5.2.2.1 Algorithm

Algorithm 5.4 describes the steps for extending CSA. CSA is parametrized by a program

P , the property’s conditional statement bφ and a set of paths Π it must analyze. Line 2 of

the algorithm assigns the abstract domain for ith analysis instance. On line 3 the algorithm

calls excludeBranches method that translated Π into the set of exclude edges θ. This

function uses the CFG of P for identifying those edges.

On line 4 the core CSA algorithm returns the set of infeasible branches ∆ expressed

through branch literals. The rest of the algorithm describes how each branch literal is

combined with θ to produce PPC for the unification framework.

73

The set of infeasible paths, PPC, is initialized to an empty set on line 5. Next, each

infeasible branch is translated into the path language that can be described by a set of pre-

fixes where each prefix describes a distinct path in CFG, i.e., paths that don’t subsume each

other. This is done on line 7 by invoking the intersect function. This function intersects

LCFG, the language of the analyzed paths Π and the language of infeasibleBranch. On

line 7 the resulting set of prefixes is added to PPC. After processing all infeasible branches

the analysis returns PPC.

To illustrate how PPC of CSA is produced according to the algorithm, consider the

controlled sign analysis Asign on the right side of Figure 1.4. In this case Π is described

by a single prefix {bx>1} that is translated to the exclude set θ = {¬bx>1}. This causes the

analysis to avoid the sub-CFG rooted at that branch outcome. The resulting analysis is able

to determine that ¬bφ, the false outcome of the x 6= 0 test, is infeasible – since x 7→ + is

inconsistent with x 6= 0. The function intersect takes the language of Π

LΠ = .∗; bx>1; .∗

and intersects it with the language of the infeasible branch

L¬bφ = .∗;¬bφ; .∗

resulting in

LΠ∩¬bφ = .∗; bx>1; .∗;¬bφ

Next, the result is intersected with the language of CFG LCFG giving the final result of

LΠ∩¬bφ∩CFG = bx>1; .∗;¬bφ

74

which is expressed as the set of branch literals {bx>1,¬bφ}.

5.2.2.2 Implementation

The adaptation of CSA is implemented for CSAzero and CSAsign instances of CSA. They

both use the same data-flow implementation only the former is instantiated with Dzero

domain and the latter withDsign domain as depicted in Figure 2.1. When multiple variables

are present, the lattice is simply the product of the per-variable lattices. The analyses can

reason about variables of int and double types.

The same data-flow implementation implies that all reporting and controlling capabil-

ities have been added once and adding another CSA with a domain D to A reduces to

implementing the transfer functions associated with D.

The auxiliary function excludeBranches and intersect are implemented by traversing

the CFG with the DFS graph search algorithm. For example, intersect traverses all CFG

paths and selects those that are described by Π and contain infeasibleBranch.

5.2.3 Adapting Dynamic Symbolic Execution

5.2.3.1 Algorithm

Algorithm 5.5 describes how the DSE analysis is adapted to fit into the unification frame-

work. The algorithm takes a program P , bφ and Π. The bφ value allows DSE to avoid

collecting pc after bφ has been executed. Next the set of paths given by the unification

framework is translated to the concrete input values that traverse a path from Π. Unlike

a conventional DSE that returns a set of pc this version of DSE returns a set of tuples

∆ = {(branch, pc)} where branch is the branch literal of an executed branch and pc is the

path condition that governs the execution of that branch. The result of DSE run is assigned

to ∆ on line 3.

75

Algorithm 5.5 Adapting dynamic symbolic execution
1: function DSE(P ,bφ,Π)
2: θ ← getInputs(P,Π)
3: ∆← DSE(P, φ, θ)
4: PPC ← ∅
5: prefix← ∅
6: PC ← true
7: for all (branch, pc) ∈ ∆ do
8: PC ′ ← PC ∧ ¬pc
9: if ¬SAT (PC ′) then

10: prefix′ ← prefix ∪ {¬branch}
11: PPC ← PPC ∪ {prefix′}
12: end if
13: PC ← PC ∧ pc
14: prefix← prefix ∪ {branch}
15: end for
16: PPC ← PPC ∪ {prefix}
17: return PPC
18: end function

The rest of the algorithm constructs PPC which is initialized to an empty set. As before

prefix contains the set of branch literals describing a set of paths. The PC variable stores

the conjunctions of path conditions of the current prefix. The initial value of PC is set to

true on line 6.

Besides constructing prefix for the executed path lines 7 through 15 also attempt to

generate a richer PPC using PC. If it can be determined that ¬pci is unsatisfiable then it

means that all paths with the prefix

l1; . . . ;¬li

will not violate φ and therefore can be added to PPC. This is what lines 8-12 do. Next,

the values of PC and prefix are updated. Upon loop termination the prefix for Π is added

to PPC. The algorithm returns generated PPC to the unification framework.

76

5.2.3.2 Implementation

The current implementation of Algorithm 5.5 does not generate the concrete input values

for a given Π. As discussed at the end of the previous chapter, to enable logical represen-

tation of Π an additional data structure is required to store ∆ of the previous DSE runs.

Presently getInputs function returns a random generated input values or input values from

a test suite.

Note that the approach of controlling an analysis by restricting its input domain differs

from the approach used in static analysis. The latter uses the structure of CFG to effectively

restrict its input domain, while the former uses the explicit description of input domain of

variables. Some analysis, such as symbolic execution (SE), could use both types of control

information. The input domain of SE can be restricted by either providing preconditions on

input variables expressed through a set of constraints or during the SE where the symbolic

executor can choose to avoid some branch outcomes.

Instead of using an existing symbolic execution framework, such as Symbolic PathFinder

(SPF) [36] a new DSE has been implemented. This route simplifies the mapping of static

analyses and DSE results to branch outcomes – both analyses express their results in terms

of Soot’s 3-address intermediate representation, jimple.

DSE implementation can be done in one of two ways: instrumenting P to generate

pc and instrumenting P to generate traces from which pc are constructed. In the first ap-

proach [23, 42, 16] DSE executes a program while simultaneously building pc through

instrumentation. The instrumentation consists of calls to a symbolic interpreter that keeps

track of symbolic states of each variable. In the second approach [41] a program is in-

strumented to produce a trace that can be post processed by a symbolic interpreter. The

trace-based approach consists of two steps: executing a program while recording a trace

and interpreting the trace to generate pc. The implemented DSE uses this trace-based ap-

77

proach. As mentioned in the algorithm description, besides the information needed for pc

generation a program is also instrumented to record executed branches.

Soot is used to instrument subject programs. It allows to inject code at the program

expression level to record analysis results and perform dynamic symbolic execution. This

instrumentation tracks the outcome and the condition of the taken branch and expressions

of variables. Upon program termination the instrumentation accumulated information is

recorded in a file. That file is post-processed to produce the sequence of executed branches

and path condition generated at each branch.

As discussed in the algorithm each branch outcome of the executed path is analyzed

to determine whether it is infeasible based on the path condition computed by DSE. The

Choco [10] constraint solver is used to determine satisfiability of those conditions.

It can happen that DSE may not scale to larger methods because of the overhead of

recording a path might be high. The future work will analyze literature on path profiling

work like one by Ball, et al. [5] to consider efficient alternatives to path recording.

78

Chapter 6

Evaluation

79

The goal of the evaluation work is to explore the benefits of the unification framework

through a series of experiments. The following section explains a general set up of the ex-

periments by describing the type of analyses and program artifacts used in the experiments.

In addition the next section presents an evaluation infrastructure for systematically deriving

the constraints θ for conditional static analysis. Afterward in the remaining three sections

attempt to answer each of the research questions posed in the beginning of the dissertation.

6.1 Experiment Set Up

6.1.1 Analyses

To answer the three research questions in Sections 6.2-6.4 the experiments are run on the

three analyses, SAzero, SAsign and DSE, described in the previous chapter. Having two

static analyses with comparable domains, i.e., Dzero ≺ Dsign, allows us to observe the

impact of domain precision on the results.

Since the size of the Dzero domain is smaller than the size of the Dsign domain, im-

plementing SAsign is significantly harder than SAzero. The majority of effort is allocated

to implementing transfer functions. For a given expression that takes k variables, where

k ≤ 2 in Soot, a transfer function must be implemented for each possible abstract value of

these k variables. Thus, the number of transfer functions grows exponentially with respect

to the abstract domain size. Hence, if the results of SAzero are comparable with SAsign then

one may determine whether the extra information produced by the more precise analysis is

worth the effort of implementing it.

Even though the implemented static analyses are extended to handle double data

type, the current implementation of DSE lacks this capability. Therefore the results for

80

asw program are reported for just the static analysis part. If time permits DSE will be also

extended.

6.1.2 Programs

The three analyses are run on three subject programs one tcas [17], wbs [30] and

asw [30]. These programs are the Java equivalent of functions used in the NASA aircraft

navigation systems. Since the implemented analyses are intra-procedural the functionality

of each program was inlined into one method. The main characteristics of the programs

are the absence of loops and large numbers of conditional statements in the jimple rep-

resentation. On the one hand the absence of loops limits the generality of the results, but

on the other hand it makes the comparison between PPC of dynamic and static analyses

more impartial, because the latter is not disadvantaged by the presence of loops. Table 6.1

provides the number of lines and the number of conditional statements in the jimple rep-

resentation of each program. Despite the differences in source code size the programs are

comparable in terms of branch complexity.

This experiment considers the worst case scenario when an assertion is placed at the

end of the method and its variables data-dependent on all other program variable, i.e.,Aslice

would not be able to prune any part of CFG. Thus verifying that assertion is equivalent to

analyzing all program paths. If time permits more experiments will be run with different

assertions.

6.1.3 Evaluation Infrastructure

In some experiments the evaluation of CSA requires the systematic generation of Π, a set

of paths, for the above programs. Since the existing BDD based path generator is not

designed for this purpose, an external generator of valid Π is implemented. The external

81

program # lines # conditional stmt
asw 347 49
one tcas 160 43
wbs 155 45

Table 6.1: Artifacts for the experiments

path generator produces Π with predefined characteristics. For example, a common prefix

of length m. A prefix is a set of branch literals that appear consecutively in one of the CFG

paths, i.e., Π is a prefix if LΠ does not start with .∗, does not have .∗ between branch literals,

and LΠ ∩ LCFG = LΠ.

The generator first builds a branch dependency graph that describes the control depen-

dencies between the conditional statements of the CFG. Thus, if the true branch of b1 leads

to b2 and the false branch of b1 to b3 then an edge labeled 1 is added between b1 and b2 and

an edge labeled 0 is added between b1 and b3. Conditional statements b2 and b3 have no

edges between them since they appear on two different branch outcomes. When branches

bi and bj appear in sequence, i.e., bi is not nested in bj , then an edge labeled 2 is added

between them, meaning that on any branch outcome of bi the conditional statement bj will

execute next.

Next the generator traverses the branch dependency graph by using some directives.

For example the building of a prefix of size m starts from the first conditional statement

then one of its outcomes is randomly selected. Based on the branch outcome value the

graph is traversed to the next conditional statement. This process is repeated m steps. This

process is used for generating prefixes for CSA in the experiments described below.

Also, this external generator can be useful in the context of the unification framework.

It might be the case that the BDD based Π generator repeatedly produces Π for which an

analysis returns an empty PPC, i.e., the analysis is getting ”stuck” with inadequate θ. Then

82

the external generator might extract a subset of paths from Π by, for example, extending a

short prefix.

Even though the external generator produces valid prefixes for CFG, i.e., their paths are

in LCFG, it might be the case that they describe infeasible paths. To increase the feasibility

of paths produced by the external generator, the BDD store can be used to check if a current

prefix has been evaluated before. The current implementation of the external generator

lacks this feature.

6.2 RQ1: Comparing CSA and DSE

The experiments in this section attempt to answer the following research question:

Q1: How does the effort of generating PPC from partial information from a

data-flow analysis compare to the effort required by ideal DSE runs to obtain

the same PPC?

The introductory example for this research question has shown that it may require several

DSE runs to obtain the same PPC as a single run of SA. But, in general, situations may

also exist where a single run of DSE can obtain the same information as SA. This research

question attempts to compare the efforts needed for SA and DSE runs to achieve the same

PPC.

Recall that different DSE tools can vary in their implementations, i.e., trace-based or

instrumentation-based, and the type of SMT solver used. Therefore beside the execution

time, reporting the number of DSE runs and calls to SMT solver are incorporated to better

describe the DSE effort.

83

6.2.1 Experiment Design

The first step in the experiment is to run two SA instances on the three subject programs.

Recall that the result of the SA part of the experiment are the set of infeasible branches, i.e.,

the partial result of SA. Any CFG path containing an infeasible branch trivially conforms

to φ. However, an infeasible branch by itself cannot describe what part of the CFG should

be analyzed by DSE to obtain the same result. Thus, for each program using its branch

dependency graph the analyzed part of CFG is determined. This operation is equivalent to

the intersection of the language containing the infeasible branch with the language of CFG,

call it PPCSA∩CFG.

There are two approaches to using this information to determine whether PPCDSE =

PPCSA. The first method is to encode PPCSA∩CFG as a BDD. Then after each DSE run,

whose PPC is also encoded as BDD, compare the BDD’s of PPCDSE and PPCSA∩CFG for

inclusion. Note, that PPCDSE =PPCDSE∩CFG. If after adding the set of satisfying assign-

ment of the PPCSA∩CFG BDD to the BDD of PPCDSE the set of the satisfying assignment

of the latter BDD is the same then DSE has achieved the same PPC as SA. The draw-

back of this approach is that the result of a DSE run contains branches that are irrelevant

to PPCSA∩CFG. For example, if the infeasible branch of PPCSA∩CFG is b10, t, i.e., true

outcome of b10 conditional statement, then all branches that appear after it in the trace do

not contribute to the target PPC. Such irrelevant branches require extra effort for DSE to

process thereby disadvantaging it in a comparison.

An alternative approach is to truncate DSE traces based on PPCSA∩CFG information.

This way only the relevant branches are analyzed and added to BDD. In this case PPCDSE =

PPCSA when BDD returns true. Checking this adequacy criterion also requires less effort

than in the first method. The experiment employs this second method.

84

program #infeasible branches time
SAzero SAsign

asw 12 19 3.0s
one tcas 2 2 2.9s
wbs 0 1 3.0s

Table 6.2: Data for the SA part of the experiment

DSE is run twice, first in the search mode to determine a path adequate test suite from a

set of test cases, and second in re-run mode. On the second run DSE executes the adequate

test suite and collects the report data. Only this second run is counted. Note that this

underestimates the cost of a real DSE-based analysis, such as Cute [40], since the test suite

generation cost is not counted.

The test cases from which DSE determines the adequate test suite is generated partly

from the information of possible domain partitions of the input variables. These facts

are obtained by code inspection and manual analyses of DSE traces. Since the deeper an

infeasible branch is in the CFG the more domain partitions for input variables are required,

i.e., more CFG paths to inspect and test cases to analyze, the timeout for search has been

set to 1 hour. The time out cases will be indicated by ∗.

6.2.2 Results and Analyses

Table 6.2 shows the data for the SA part of the experiment. The first column indicates

the program for which the analysis has been performed. The next two column display the

number of infeasible branches detected by each type of static analyses. The last column

shows the time in seconds that it took for the analysis to produce the result. This time

includes PPC generation and BDD construction. In two out of three programs SAsign was

able to detect additional infeasible branches.

85

program branch #test cases search time test suite time SAT calls

one tcas
22,t 3072 25m 432 11m 1658
∗34,t 6144 60m 488 28m 2718

wbs 27,t 192 70s 144 44s 1726

Table 6.3: Data for the DSE part of the experiment

Table 6.3 describes the results of DSE runs for two programs. The first column displays

the program name. The second column identifies the infeasible branch produced by SA.

The asterisk indicates that the full adequacy has not been reached for that branch. The third

column shows the number of test cases from which DSE searches for a path adequate test

suite. The fourth column displays the time it took for DSE to find the adequate test suite.

The column “test suite” contains the size of the test suite found within the search time. The

penultimate column shows the time it took for DSE in the re-run mode to execute that test

suite. The last column shows the number of unique calls to SAT solver. If the prefix of a

DSE traces has been analyzed before it was not checked for unfeasibility again.

The comparison of those two tables makes it apparent that the effort required by DSE

to obtain the same PPC as SA is greater than the effort required by SA. It takes SA several

seconds to obtain the set of infeasible branches, while for DSE in the best case it takes 44

seconds and in the worst case 28 minutes.

For one tcas program DSE has spent the majority of execution time on SAT calls.

Even though more SAT were made on wbs program the SAT queries generated by one tcas

have higher complexity which took by the solver longer to process.

The main challenge in this experiment was to generate a set of test cases of manageable

size that contain an adequate test suite. The complexity of finding such a set depends on

the number of input variables and the possible partitioning of their input domains. Obvi-

ously the deeper the infeasible branch is positioned in the CFG the finer the partitioning of

variable input domains, which leads to a larger number of test cases to search in. Thus the

86

position of the infeasible branch in the CFG also affects DSE effort to achieve the adequate

PPC.

Since the cost of DSE run does not include the search time, its results are optimistic.

Using concolic execution may reduce the search time of the optimal test suite. But, it will

still require the same amount of effort from DSE to analyze infeasible paths.

6.3 RQ2: Comparing the Result of CSA on Π′ ⊂ Π

The second research questions states:

Q2: How much additional PPC does a conditional static analysis produce on a

set of paths Π′ compared to the PPC obtained by the same analysis on a larger

set of paths Π ⊃ Π′?

The development of CSA was based on the premise that by analyzing a smaller set of paths

CSA performs less data-flow fact merging which is a key source of precision loss in SA.

Thus the reduction in merge operations should make the result of CSA more precise. This

research question aims to characterize the number of unique infeasible branches generated

from execution prefixes of different lengths, since the longer the prefix the fewer merges

CSA performs. Thus, the measure of PPC is unique infeasible branches, as before, and Π

is manipulated by varying prefix length.

6.3.1 Experiment Design

The PPC of the experiment is evaluated as the number of new infeasible branches detected

by CSA. An infeasible branch bi of a prefix of size m is considered to be new if bi cannot

be determined by any proper subset of prefixes of that prefix, i.e., of sizes m − 1. The

relation between the path prefixes of size m − 1 and m is described by Π′ ⊂ Π where Π′

87

is described by the shorter prefix and Π by the longer prefix. Comparing the number of

infeasible branches between different prefix sizes will answer the research question.

A complete characterization of the path subset relation requires the exhaustive traversal

of P ’s branch dependency graph to generate all possible paths. Since the number of paths

can become exponentially large such a comprehensive method for path generation is not

suitable. Instead the branch dependency graph is used to randomly generate distinct paths.

Next, a CSA is run with every prefix of each generated path. To make sure that the same

prefix is not analyzed twice the implementation tracks the set of analyzed prefixes. If a

prefix of the length k has not been analyzed yet then its result, i.e., the number of infeasible

branches, is added to the result for the prefixes of the length k.

For example, consider the path l1, l2, l3. First the analysis is run on the path’s prefix l1

and its result is recorded for k = 1. Next, the analysis is run on l1, l2 and for that prefix

only those infeasible branches are recorded that the previous runs, i.e., with l1, was not able

to produce. Finally CSA is run with the l1, l2, l3 prefix and the new infeasible branches are

added to the prefixes of that size. If the next path to be analyzed is described by l1,¬l2 then

l1 will not be run by CSA since that prefix has been evaluated before.

In the experiment 1000 distinct paths have been generated for each program. The max-

imum length of generated paths was 35 for asw, 36 for one tcas and 45 for wbs. To

ensure that the experiments can be reproduced the paths for each program first were gener-

ated and written to a file. Then these paths are read from the file and each path is evaluated

in the manner described in the previous paragraph.

6.3.2 Results and Analyses

Tables 6.4-6.6 show the results of the experiments for the three programs. The first col-

umn of each table describes the length of the prefix analyzed by CSA. The second column

88

“#all” shows the total number of unique prefixes of such length, e.g., there can be only

two prefixes of length one which are l1 and ¬l1. The third column “#prefixes” displays the

number of prefixes of each length for which CSA was able to produce infeasible branches.

If the result of CSAsign is different from CSAzero its result is shown in parentheses. The

next column “#infeasible” contains the total number of infeasible branches produced by

the prefixes in the previous column.

In the experiment setting Π is represented by a row i and Π′, which is a proper subset

of Π, is represented by any i + k row where k ≥ 1. Thus, row 4 contains the result for

prefixes of length 4 and row 5 for prefixes of length 5 which subsume the prefixes of row

4. Moving from one row down to the next corresponds to subsetting the paths.

For example, consider the data for the prefix of length 13 in Table 6.4. The line indicates

that the total unique prefixes of that length is 945, but for only 36 of them is CSAzero able

to calculate the 292 infeasible branches. Note, that 292 branches are not necessary unique

since the prefixes of the same length might find the same infeasible branches. For the

same set of prefixes CSAsign was able to find infeasible branches for only two prefixes, in

parentheses in row 13, and there were on average seven per each such prefix.

This result might seem contradictory since CSAsign must detect at least all infeasible

branches that CSAzero does. This is because the relation between these two infeasible

branch sets is not apparent from the data. If for a given prefix CSAsign finds an infeasible

branch leading to some part of the CFG, that part of CFG is not analyzed by CSAsign. But

if CSAzero fails to mark this branch infeasible then it will analyze that part of CFG and

possibly detect infeasible branches there.

Each table only shows the data up to the last prefix which produces some result for

at least one of the analysis. Therefore, CSA fails to find additional PPC for asw and

the prefixes with length 19 to 35. For one tcas this range is between 20 and 36, and

for wbs this range is between 22 and 45. Thus, CSA does not produce results for paths

89

corresponding to longer prefixes and as the data indicate the length should be limited to

about half of the maximum path length.

The data clearly show that restricting the path to be analyzed, i.e., Π ⊂ Π′., can yield

additional precision. However, the increase is not consistent among programs. Constrain-

ing paths for wbs produces on average between 2 and 4 new infeasible branches. While for

one tcas this number is between 1 and 3. The identification of new infeasible branches

for asw is not that consistent. At some prefixes an analysis can determine up to 8 infeasible

branches, but the majority of larger prefixes produce no new information.

Even though longer prefixes can allow for CSA to find additional PPC there are only a

small fraction of those prefixes do so compared to the available prefixes, e.g., 36 out of 945.

This suggests that additional information generated by the analysis or by an external data

dependency analyzer can be used to detect prefixes of the same length that might produce

additional PPC, i.e, generating a good θ. For example CSA can track the merge points on

which it looses precision. Then it makes this information available to a prefix generator

which choses prefixes that eliminate those merge points.

In this experiment only paths that can be described by a prefix have been considered.

However, the path language is much richer and can describe such path subsumption relation

as .∗; bn; .∗ and .∗; bn; .∗; bk. In order to fully comprehend the Π ⊂ Π′ relation a more diverse

set of subsumption relations should be analyzed.

6.4 RQ3: Comparing a Single Analysis and a Set of

Analyses

The third research question of this dissertation is:

90

le
ng

th
#a

ll
#p

re
fix

es
#i

nf
ea

si
bl

e
0

1
1

12
(1

9)
1

2
2

16
(2

1)
2

4
0

0
3

8
0

0
4

16
0

0
5

32
10

(4
)

20
(4

)
6

64
0

0
7

12
8

0
0

8
25

0
0

0
9

42
4

45
(8

)
93

(8
)

10
62

8
0

0
11

78
3

0
0

12
89

4
0

0
13

94
5

36
(2

)
29

2(
14

)
14

96
7

0
0

15
98

2
0

0
17

99
5

0
0

16
99

1
12

(1
)

12
(1

)
19

99
8

1(
0)

5(
0)

18
99

8
2(

0)
10

(0
)

Ta
bl

e
6.

4:
R

Q
2

re
su

lts
fo

ra
s
w

le
ng

th
#a

ll
#p

re
fix

es
#i

nf
ea

si
bl

e
0

1
2

2
1

2
2

3
2

4
4

5
3

8
0

0
4

16
2

2
5

32
4

4
6

64
4

8
7

12
8

0
0

8
25

3
2

2
9

46
3

2
8

10
65

6
9

38
11

72
4

13
47

12
66

6
10

41
13

55
9

5
18

14
44

4
0(

2)
0(

2)
15

38
7

2
4

16
36

1
0

0
17

35
1

0(
1)

0(
1)

18
35

0
1

1
19

35
0

1
2

Ta
bl

e
6.

5:
R

Q
2

re
su

lts
fo

ro
n
e
t
c
a
s

le
ng

th
#a

ll
#p

re
fix

es
#i

nf
ea

si
bl

e
0

1
0(

1)
0(

1)
1

2
2

12
(1

4)
2

4
2

2
3

8
3

3(
4)

4
16

3
8

5
32

6
26

(2
7)

6
64

10
40

(4
4)

7
12

8
9

41
(4

6)
8

25
4

15
58

(6
2)

9
44

7
20

72
(7

7)
10

63
9

9
26

(2
8)

11
80

0
7

14
12

90
0

4
8

13
94

8
2

4
14

96
9

1
1(

2)
15

98
2

0
0

17
99

2
2

2(
4)

16
99

1
2

2(
4)

19
94

5
0

0
18

97
8

0
0

21
83

3
1(

0)
1(

0)

Ta
bl

e
6.

6:
R

Q
2

re
su

lt
fo

rw
b
s

91

Q3: Given a fixed effort, how does the PPC of a single analysis compare to the

combined PPC of a set of diverse analyses?

The first research question has shown that DSE can produce the same result as CSA even

though achieving the same PPC requires additional DSE runs. However, as the second

research question indicates, CSA was able to produce new information only for a few

prefixes. Thus, on the one hand several DSE runs can produce the same result as a single run

of CSA, but on the other hand CSA cannot produce a new partial result for every θ. Since

the recourse allocation for DSE or CSA runs is depended on the analyses implementation,

the evaluation assumes equivalent effort required for a single DSE or CSA run. Given

a budget of N runs, i.e, the effort measure, one needs to decide how to allocate them

between DSE and CSA to optimize PPC. If all N runs are given to DSE then the analysis

might immerse itself in one part of CFG by meticulously exploring it. If allN runs are to be

allocated to CSA then it might analyze many prefixes without increasing PPC. This research

question explores the changes in PPC when a program is analyzed by the combination of

DSE and CSA where N/2 runs are allocated to DSE and another N/2 to CSA. The N/2

was chosen as starting point for further experiments. Then the combined result is compared

to PPC of DSE and CSA running N times in isolation.

6.4.1 Experiment Design

First each analysis is run separately for one tcas and wbs programs. The effort N was

chosen to be 1000 for one tcas and 400 for wbs is 400. This choice was dictated by the

complexity of the input domain of each program.

DSE is executed on a random set of inputs, which are unique but do not necessarily

produce unique paths. The result of DSE runs are recorded into the BDD store PPCdse.

92

The results of DSE run were recored after N/2,i.e, PPCdse/2, runs for use in the combining

analysis part of the experiment.

Each of CSAzero and CSAsign were run in two modes: random and controlled. In the

random mode, CSArandom, θ is a prefix of random length m. Such a prefix is generated

by randomly traversing the branch dependency graph up to depth m. The total of 1000

prefixes of various length were generated for one tcas and 400 for wbs. The result was

recorded into the BDD store, PPCsar of each analysis. Also after the half of the prefixes

have been analyzed CSArandom records the PPC value, i.e., PPCsar/2 into a separate BDD

store to be combined with PPCdse/2.

In the controlled mode CSAcontrolled obtains θ directly from the BDD store. The unex-

plored prefix is obtained from the BDD store by querying BDD for its unsatisfying cubes,

i.e.,“paths” leading to the zero node. If CSAcontrolled cannot produce PPC for all prefixes

acquired from the BDD store, then it uses one of the prefixes generated for CSArandom. It

executes those prefixes in the same order as CSArandom. The total number of CSAcontrolled

is executed 1000 for one tcas and 400 for wbs.

The combining ofN/2 of DSE andN/2 CSA analyses are done differently for CSArandom

and CSAcontrolled. The combining of PPCdse/2 and the random CSAcsa/2 is not interactive.

The corresponding BDD stores of two analyses that were recorded half way through are

combined resulting in PPCdse/2+csa/2.

CSAcontrolled combines its data in an interactive way. First, the BDD store is initialized

by PPCdse/2. Next CSAcontrolled queries that BDD store for the unexplored prefixes. How-

ever, this time it runs only half of the initial runs, i.e., 500 for one tcas and 200 for wbs.

The same PPCdse/2 is used for both random and controlled analyses.

As discussed previously, shorter satisfiable paths in the BDD store correspond to larger

subtree coverage in the program’s execution tree. Comparing the distribution of prefix sizes

is suitable when PPC of two analyses are combined into one and that result is compared to

93

PPC of one of the two initial analyses. This is because the subsumption relation between

the cumulative and separate results is apparent. However, comparing PPC of two analyses

with an unknown subsumption relation among paths cannot be done based on the prefix

size distribution. A prefix of a smaller size of one analysis may contain prefixes of larger

size of another analysis. For example l1, l7 prefix contains l1, l2, l7 and l1, l3, l7 prefixes, but

without such knowledge one prefix of size two and two prefixes of size 3 are incomparable.

In the case when a subsumption relation is unknown, the comparison between PPC1

and PPC2 is done based on the number of unique prefixes of each PPC. A unique prefix of

PPC1 is not contained in any prefixes of PPC2 and vice versa. A prefix of PPC1 is unique

if by adding that prefix to the BDD store of PPC2 the number of prefixes, i.e., satisfying

assignments, in the BDD store of PPC2 changes. If the number of prefixes in the BDD

store of PPC2 does not change then the prefixes have been subsumed by one of the prefixes

in that BDD store. PPC with the larger number of unique shorter prefixes corresponds to

higher subtree coverage than PPC with the smaller number of unique prefixes, or longer

prefixes

Thus the comparison of any of two combined analysis with DSE or CSA is done by

identifying the number of unique prefixes for each pair, i.e., combined versus DSE and

combined versus CSA.

6.4.2 Results and Analyses

The results are presented on Figures 6.1 and 6.4 for SAzero and SAsign domains respec-

tively. The y-axis is the length of the prefix and x-axis represent the number of prefixes

of particular length. Each graph shows the distribution of unique prefixes. The solid line

“DSE vs. Combined” describes the unique prefixes of DSE analysis compared to the com-

bined analysis. The dotted line “CSA vs. combined” shows the unique prefixes of CSA

94

analysis compared to the combined analysis. The dashed line “Combined vs. DSE” repre-

sents the number of unique prefixes of the combined analysis compared to the prefixes of

DSE. The dot-dashed line “Combined vs. CSA” describes the number of unique prefixes

of combined analysis compared to the CSA prefixes.

Each graph is identified by the type of program, i.e., TC for one tcas and WBS for

wbs, the type of analysis CSAzero or CSAsign, and by how θ was generated for the analysis,

i.e., random or controlled. Thus Figure 6.1[a] shows the result for one tcas program

executed by CSAzero analysis in random mode. To compare the combined analysis, which

is in this case half CSAzero with randomly generated θ and half DSE runs, consider the

solid and the dashed lines. The comparison between solid and dashed of Figure 6.1[a]

indicates that there were fewer unique prefixes in PPCdse comparing to PPCdse/2+csa/2 and

there were many unique prefixes in PPCdse/2+csa/2 of the combined analysis compared to

the PPCdse of DSE. This trend appears on all graphs and especially emphasized when CSA

is run in the controlled mode. This implies that effort spent on running combined analysis

produces higher PPC than effort spent on running single DSE analysis.

To compare the combined analysis with CSA consider the dotted line and the dot-

dashed line. One the same Figure 6.1[a] the dotted line indicates that there were fewer

unique prefixes in CSAzero comparing to the prefixes of the combined analysis. The dot-

dashed line depicts larger number of unique prefixes of shorter length. However, the dif-

ference is not as dramatic as in the case of DSE and the combined analysis. The rest of

the graphs exhibit the same trend that running the combined analysis result in more unique

short prefixes than the prefixes of CSA. Again, this difference is more apparent when CSA

is run in the controlled mode.

The inclination of the combined analysis to have larger number of unique prefixes than

DSE or CSA does not depend on the strength of CSA, which points to the benefits of the

95

technique. Thus, combining the result of any other analyses should also result in a better

PPC coverage as compared to a single analysis running for the same amount of time.

The combining of analysis is beneficial even when the analyses are run independently

of each other, i.e., in the absence of control. As the data indicate, running analyses where

CSA is controlled provides even larger differences in PPC. One can expect even better PPC

coverage when the control for DSE is implemented. Then different interaction schedules

can be explored, e.g., one DSE run is followed by one CSA run.

6.5 Summary and Limitations of Results

The first experiment has shown that DSE requires more effort than CSA to obtain the same

PPC as CSA. This result can be generalized only to PPC produced by CSA. However, this

result cannot be extended to an arbitrary PPC because CSA may not be powerful enough to

obtain that PPC, while given enough time DSE might achieve such coverage. For programs

with loops DSE might never achieve the given PPC if it describes paths that contain loops.

The second experiment has indicated that CSA can become more precise when it con-

siders smaller numbers of paths. However, the increase in the precision does not manifest

for any subset of paths. This result can only be generalized to paths with common prefixes,

however additional study should be run to determine the results for other Π ⊂ Π′ relations.

Moreover, it is unknown if the results are applicable to programs with loops.

The third experiment has shown that allocating the effort between two different analyses

increases the number of unique BDD prefixes compared to the number of unique prefixes

produced by a single analysis utilizing the same amount of effort. The main threat to

validity of this experiment is that the characterization of the result in just terms of unique

prefixes might not be descriptive enough. For example, two prefixes of the same length

might correspond to different number of paths in CFG. Thus the unique prefixes of the

96

same length might carry different weight for a tester. Future studies should consider other

attributes of the unique prefixes beside its length that can better quantify PPC.

97

[a]

[b]

Figure 6.1: RQ3 results for CSAzero and one tcas

98

[a]

[b]

Figure 6.2: RQ3 results for CSAzero and wbs

99

[a]

[b]

Figure 6.3: RQ3 results for CSAsign and one tcas

100

[a]

[b]

Figure 6.4: RQ3 results for CSAsign and wbs

101

Chapter 7

Conclusion

102

The benefits of combining different analyses have been known for a long time and are

widely used in the state of the art program analyses tools. From the theoretical work of

Patrick and Radhia Cousot [14] on combining static analyses to the resent implementations

of the SPIN model checker [39], DSD-crasher [15], the Yogi project [6, 25, 34], where

static and dynamic analyses work in cooperation to decide whether P |= φ, research has

shown the positive results of different analyses working together. In those implementations

there is usually one main analysis, e.g., a model checker, and several auxiliary analyses,

e.g., a liveness analysis, that help the main analysis to produce its final result.

This dissertation considers the undertaking of combining analysis in a different context.

Instead of combining intermediate results of analyses, their final results, which analyses

may have computed under some condition, are combined. Hence, the dissertation work is

more in line with work on conditional soundness [13] and conditional analysis [8] where

the results of analyses are correct only under some conditions. The dissertation extends

the notion of conditional analysis by applying it to the data-flow analysis framework where

conditions are described by a set of paths on which an analysis can decide P |= φ. The

stronger the condition the fewer program paths it represents. Thus, in the context of condi-

tional analyses, combining analyses reduces to combining their conditions.

Conceptually, a single analysis, e.g., a dynamic analysis, can analyze all program paths

by considering a single path at a time. Conditional static analysis can do the same. The

main question that the dissertation explores is whether several analyses can analyze paths

more efficiently than each analyses running in isolation.

To answer this question the dissertation conducts a series of evaluations. The first

experiment shows that it takes much longer for a dynamic analysis to analyze the same

set of paths as compared to a conditional static analysis. The second experiment shows

that unlike dynamic analysis, conditional static analysis cannot produce even partial result

for each set of paths. These two evaluations highlights the disadvantages of one analysis

103

in comparison to another. Ultimately the third evaluation shows that running two different

analyses results in a greater number of analyzed paths than each analysis can achieve for

the same amount of effort.

In order to answer the research questions that support the thesis statement the disserta-

tion has developed the unification framework which incorporates different analyses. Also,

the dissertation explains how dynamic and conditional static analyses can be extended for

integration into the unification framework. In addition, the dissertation introduced the lan-

guage for describing program paths. Using this path language, program paths can be iden-

tified without enumerating them. In order to efficiently manipulate program paths, e.g.,

to combine them, the dissertation proposes a BDD based encoding for a program’s path

language. Such an encoding can be queried for a set of paths that have and have not been

analyzed. This information is used by the unification framework for its reporting and con-

trolling capabilities.

7.1 Future Work

The future work will augment the unification framework with additional analyses and test

its scalability on a richer set of programs. The generality of the unification framework can

be examined by adding controlling and reporting capabilities to such analyses as model

checking and symbolic execution.

One direction of the future work is to further develop the subtree adequacy criterion. In

testing, the path adequacy criterion is less used than any other structural adequacy criteria.

One of the main drawbacks of using path coverage is the unknown number of feasible paths

in the program. This prevents a meaningful reporting of the degree to which a test suite is

path adequate. Moreover, visualizing a set of paths that have been covered or uncovered is

more challenging than other structural criteria as statements. Thus, developing further the

104

notion of subtree coverage and projection of covered subtrees on the CFG would provide a

tester with intuitive information on program path coverage. A tester might decide to have

some part of the CFG be path adequately tested while other parts of CFG to be tested using

a weaker adequacy criteria. The subtree coverage criteria and its visualization can provide

mechanisms for achieving that task.

Another direction of the future work is extending the framework to handle multiple

properties. A program might have several properties to which it should conform. However,

the current unification framework is designed to handle a single property. Using the unifica-

tion framework to verify each property separately can lead to repetitive work when analyses

consider the same set of paths several times. Thus, extending the unification framework to

handle multiple properties may be beneficial. In addition to verifying simultaneously sev-

eral properties the unification framework can use additional information like the relation

between properties for more efficient verification of new properties.

A final direction of future work is combining conditional static analyses in its tradi-

tional sense, i.e., by the means of intermediate results. The combining of two analyses

will produce more precise results only if the intermediate results of each analyses are not

informative. Since the values of the intermediate results computed by a conditional static

analysis are more precise than the values of calculated by traditional static analyses then

combining conditional static analyses may result in more powerful analyses. For example,

if a conditional analysis cannot verify φ for some set of paths then it produces some partial

result, but if the intermediate results of that conditional analysis are to be combined with

the intermediate result of another conditional analysis over the same set of paths, then they

might decide the property φ for that set of paths.

105

Bibliography

[1] Frances E. Allen. Control flow analysis. In Proceedings of a symposium on Compiler

optimization, pages 1–19, New York, NY, USA, 1970. ACM.

[2] Saswat Anand, Corina Păsăreanu, and Willem Visser. Symbolic execution with ab-

straction. International Journal on Software Tools for Technology Transfer (STTT),

11:53–67, 2009. 10.1007/s10009-008-0090-1.

[3] Andrew W. Appel and Jens Palsberg. Modern Compiler Implementation in Java.

Cambridge University Press, New York, NY, USA, 2nd edition, 2003.

[4] Shay Artzi, Adam Kieżun, Jaime Quinonez, and Michael D. Ernst. Parameter ref-

erence immutability: formal definition, inference tool, and comparison. Automated

Software Engg., 16(1):145–192, March 2009.

[5] Thomas Ball and James R. Larus. Efficient path profiling. In Proceedings of the 29th

annual ACM/IEEE international symposium on Microarchitecture, MICRO 29, pages

46–57, Washington, DC, USA, 1996. IEEE Computer Society.

[6] Nels E. Beckman, Aditya V. Nori, Sriram K. Rajamani, and Robert J. Simmons.

Proofs from tests. In Proceedings of the 2008 international symposium on Software

testing and analysis, ISSTA ’08, pages 3–14, New York, NY, USA, 2008. ACM.

106

[7] Boris Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold Co., New

York, NY, USA, 1990.

[8] Dirk Beyer, Thomas A. Henzinger, M. Erkan Keremoglu, and Philipp Wendler. Con-

ditional model checking. CoRR, abs/1109.6926, 2011.

[9] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Trans. Comput., 35:677–691, August 1986.

[10] Choco. http://choco-solver.net.

[11] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement for symbolic model checking. J.

ACM, 50:752–794, September 2003.

[12] Cliff Click and Keith D. Cooper. Combining analyses, combining optimizations. ACM

Trans. Program. Lang. Syst., 17:181–196, March 1995.

[13] Christopher L. Conway, Dennis Dams, Kedar S. Namjoshi, and Clark Barrett. Pointer

analysis, conditional soundness, and proving the absence of errors. In Proceedings of

the 15th international symposium on Static Analysis, SAS ’08, pages 62–77, Berlin,

Heidelberg, 2008. Springer-Verlag.

[14] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-

works. In Proc. Symp. on Princ. of Prog. Lang., pages 269–282, 1979.

[15] Christoph Csallner, Yannis Smaragdakis, and Tao Xie. Dsd-crasher: A hybrid analysis

tool for bug finding. ACM Trans. Softw. Eng. Methodol., 17:8:1–8:37, May 2008.

[16] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. Dysy: dynamic sym-

bolic execution for invariant inference. In Proceedings of the 30th international con-

107

ference on Software engineering, ICSE ’08, pages 281–290, New York, NY, USA,

2008. ACM.

[17] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting controlled ex-

perimentation with testing techniques: An infrastructure and its potential impact. Em-

pirical Softw. Engg., 10:405–435, October 2005.

[18] Mark Doliner. Cobertura. http://cobertura.sourceforge.net, 2005.

[19] Jeffrey Fischer, Ranjit Jhala, and Rupak Majumdar. Joining dataflow with predicates.

SIGSOFT Softw. Eng. Notes, 30(5):227–236, September 2005.

[20] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software verification.

SIGPLAN Not., 37(1):191–202, January 2002.

[21] P. G. Frankl and E. J. Weyuker. An applicable family of data flow testing criteria.

IEEE Trans. Softw. Eng., 14(10):1483–1498, October 1988.

[22] gnu.org. gcov. http://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/Gcov.html, 2012.

[23] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated random

testing. SIGPLAN Not., 40(6):213–223, June 2005.

[24] Susanne Graf and Hassen Saı̈di. Construction of abstract state graphs with pvs. In

Proceedings of the 9th International Conference on Computer Aided Verification,

CAV ’97, pages 72–83, London, UK, UK, 1997. Springer-Verlag.

[25] Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kannan, Aditya V. Nori, and Sri-

ram K. Rajamani. Synergy: a new algorithm for property checking. In Proceedings

of the 14th ACM SIGSOFT international symposium on Foundations of software en-

gineering, SIGSOFT ’06/FSE-14, pages 117–127, New York, NY, USA, 2006. ACM.

108

[26] Sumit Gulwani and Ashish Tiwari. Combining abstract interpreters. SIGPLAN Not.,

41(6):376–386, June 2006.

[27] John Hatcliff, Matthew B. Dwyer, and Hongjun Zheng. Slicing software for model

construction. Higher-Order and Symbolic Computation, 13:315–353, 2000.

[28] W.C. Hetzel and B. Hetzel. The Complete Guide to Software Testing. John Wiley &

Sons, 1988.

[29] JDD. http://javaddlib.sourceforge.net/jdd.

[30] JPF. http://babelfish.arc.nasa.gov/trac/jpf.

[31] James C. King. Symbolic execution and program testing. Communications of the

ACM, 19(7):385–394, 1976.

[32] Mayur Naik and Alex Aiken. Conditional must not aliasing for static race detection.

In Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, POPL ’07, pages 327–338, New York, NY, USA, 2007.

ACM.

[33] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program

Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[34] Aditya V. Nori and Sriram K. Rajamani. An empirical study of optimizations in

yogi. In Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering - Volume 1, ICSE ’10, pages 355–364, New York, NY, USA, 2010. ACM.

[35] N. Parrington and M. Roper. Understanding software testing. Computers and their

applications. E. Horwood, 1989.

109

[36] Corina S. Păsăreanu and Neha Rungta. Symbolic pathfinder: symbolic execution of

java bytecode. In Proc. of Intl. Conf. on ASE, pages 179–180, 2010.

[37] Vlad Roubtsov. Emma. http://emma.sourceforge.net/index.html, 2006.

[38] Joseph R. Ruthruff, John Penix, J. David Morgenthaler, Sebastian Elbaum, and Gregg

Rothermel. Predicting accurate and actionable static analysis warnings: an experi-

mental approach. In Proc. of ICSE, pages 341–350, 2008.

[39] Joel P. Self and Eric G. Mercer. On-the-fly dynamic dead variable analysis. In

Proceedings of the 14th international SPIN conference on Model checking software,

pages 113–130, Berlin, Heidelberg, 2007. Springer-Verlag.

[40] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine for

c. In Proc. ESEC/FSE, pages 263–272, 2005.

[41] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung Kang,

Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena. Bitblaze:

A new approach to computer security via binary analysis. In Proceedings of the 4th

International Conference on Information Systems Security, ICISS ’08, pages 1–25,

Berlin, Heidelberg, 2008. Springer-Verlag.

[42] Nikolai Tillmann and Jonathan De Halleux. Pex: white box test generation for .net. In

Proceedings of the 2nd international conference on Tests and proofs, TAP’08, pages

134–153, Berlin, Heidelberg, 2008. Springer-Verlag.

[43] Ashish Tiwari and Sumit Gulwani. Logical interpretation: Static program analysis

using theorem proving. In Proceedings of the 21st international conference on Auto-

mated Deduction: Automated Deduction, CADE-21, pages 147–166, Berlin, Heidel-

berg, 2007. Springer-Verlag.

110

[44] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay

Sundaresan. Soot - a java bytecode optimization framework. In Proc. of CASCON,

pages 13–. IBM Press, 1999.

[45] E. J. Weyuker. The evaluation of program-based software test data adequacy criteria.

Commun. ACM, 31(6):668–675, June 1988.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Fall 12-2012

	A Unifying Approach to Behavioral Coverage
	Elena Sherman

	tmp.1354117314.pdf.wmMWA

