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The understanding of motion is an important problem in computer vision with

applications including crowd-flow analysis, video surveillance, and estimating three-

dimensional structure. A less-explored problem is the visual characterization and

quantification of motion complexity. An important motion class that is prevalent in

living beings is articulated motion (segments connected by joints). At present, no

known standardized measure for quantifying the complexity of articulated motion

exists. Such a measure could facilitate advanced motion analysis with applications

including video indexing, motion comparison, and advanced biological study of visual

signals in organisms.

This dissertation presents an in-depth study of the development of several complex-

ity measures for visual articulated motion. Optical flow is the basis of many motion

estimation approaches and our first measure utilizes this as the starting point. Using

optical flow, we develop a set of features to characterize different aspects of the motion

and combine them to estimate the complexity of the movement.

The second measure also utilizes optical flow, but uses higher-order features as

motion descriptors. Specifically, features that encode the periodic nature of movements,

synchrony, and movement clusters are developed and used toward the design of a

new and improved complexity measure. To validate the measure, a human study was

conducted. Subjects were asked to (a) give motion complexity scores to a set of videos



and (b) rank features based on their importance to complexity. Using this study, we

developed prediction models to estimate the motion complexity and also classification

models to classify the videos.

We use an alternative approach for our third measure based on interesting motion

points in the combined space-time domain. These spatial-temporal interest points

integrate hidden complexity information in the movement sequence. High level

features are proposed to capture different dimensions of movement complexity from

these interest points and then combined to estimate the overall complexity of the

movement.

All three approaches have been evaluated using two datasets: human movements

and wolf spider movements. Extensive evaluation of the measures show the accuracy

of estimating the complexity of articulated motion, and demonstrate the efficacy of

their use toward classifying motion based on complexity.
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Chapter 1

Introduction

This first chapter introduces the problem of characterizing and quantifying the com-

plexity of visual articulated motion in video, in addition to listing the motivations

toward pursuing further study in this domain. The approaches taken to address this

problem that are detailed throughout the rest of this dissertation are briefly stated,

along with the contributions and overall structure of this document. Related work and

background material needed for a full understanding of the work presented throughout

this dissertation are left for Chapter 2.

1.1 Overview

Motion is an important and powerful indicator used in many computer vision algorithms

and applications, and can be estimated with remarkable accuracy by computationally

examining a series of sequential images. Motion estimation is one of the oldest problems

in the computer vision domain, and continues to receive a considerable amount of

attention due to the abundant number of applications that rely on it. Some of

these applications of motion estimation include foreground/background segmentation,
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camera stabilization, crowd-flow analysis, health and rehabilitation, visual anomaly

detection, and estimating three-dimensional structure. Motion estimation is also

important in areas such as robotics, where robots can utilize it to navigate a complex

environment.

A less-explored domain of motion estimation is its use as a description of how

visually complex a given movement or series of movements appear over a given period

of time in a video. One important motion class that is prevalent regarding living

beings is articulated motion, where the observed movements involve a set of segments

connected by flexible joints. This can also be thought of as limb-based movement

(arms, legs, etc.) observed in various living beings. To the best of our knowledge,

the current literature suggests that there is no existing standardized measure for

quantitatively describing visual articulated motion complexity, and little work has

been done toward the construction or the understanding of one. However, having such

a measure available could greatly benefit a variety of research communities and allow

for a more advanced analysis and understanding of motion. A few uses of having

such a complexity measure available include video indexing (such as searching for

videos of springboard dives more difficult to perform than some specified springboard

dive), motion comparison (such as comparing and contrasting one dance routine from

another), motion classification (such as identifying one species from another based on

the complexity of observed motions), and advanced biological study of visual signals

in organisms (such as the changes in visual communication of a spider that has been

fed a large nutrient intake versus one that has been fed a low nutrient intake).

This dissertation presents an in-depth study of visual articulated motion complexity

using algorithms from the computer vision domain. Throughout this work, we follow

three assumptions about the observed video: (1) the camera is stationary, (2) there is

only a single subject in the video, and (3) the observed motion is articulated (limb-
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based). We begin with an approach that utilizes a popular optical-flow technique for

estimating frame-by-frame motion, then use the computed estimation to extract various

statistical flow-based features and propose a general complexity measure for motion.

Second, we examine how to build upon these flow features for computing higher-order

statistical features toward the design of a new, improved complexity measure. This

includes using techniques such as Fourier analysis for determining repeating movement

patterns and their relationship to complexity. The potential of using the measure for

classification and predicting new complexity scores is demonstrated in conjunction with

a user study of motion complexity, allowing for a comparison of pattern-recognition-

based approaches against approaches based on human opinion. Finally, we abandon

optical flow by proposing a third type of complexity measure based on the extraction

of spatial-temporal features typically used in the action/activity recognition domain.

The goal is to discover any complexity information in the space-time domain that

may have otherwise been hidden by only examining the spatial or temporal domains

separately. While classification and prediction abilities of the measures are observed

throughout the dissertation, the goal of this study is to identify the motion signatures

that contribute the most toward quantifying complexity, ultimately providing a better

understanding of motion compelxity.

1.2 Motivation

In this dissertation, we aim to address the problem of how to quantitatively describe

the complexity of visual articulated motion in video, while identifying the individual

components that contribute the most toward complexity. Our efforts are specifically

focused in two motion domains: (1) the motion displayed during the courtship routine

of a pair of Schizocosa wolf spider species, and (2) the motion displayed by humans



4

performing basic actions (such as walking and waving a hand). The approaches

utilized, however, are generalized in such a way that they could be applied to any

general visual articulated motion using a stationary camera and a single subject.

While much of the research in automated motion analysis has focused on human

subjects due to the abundance of useful applications and readily accessible video

data [1, 10, 18, 22, 24, 31, 37, 45, 51, 56, 61], an analysis of spider movements presents

unique challenges both in their visual and auditory signals. For example, spiders have

a vastly smaller size, a mostly uniform appearance among different specimens, and a

differing variety of movements as compared to humans. Their movements tend to be

very quick, enough so that they are difficult to fully understand by direct observation of

the naked eye. In contrast, humans have a larger size, a variable appearance (different

hair styles and colors, different clothing, etc.), and more complex movements that lead

to diverse activities (such as brushing their teeth or playing tennis). With regards

to sound, humans have different vocal sounds and speaking styles that make each

person unique, while spiders rely on vibratory sounds, tapping, and scraping. These

differences are summarized in Table 1.1.

To the best of our knowledge, he current literature suggests that there is no existing

standardized measure for quantifying the complexity of visual articulated motion.

Such a measure, however, could greatly benefit a variety of communities and allow

for more advanced analysis of motion. It would also allow for advancing the study

of biological species (such as the analysis of signals displayed during various types of

communication). For example, the biology community has shown much interest in

performing advanced analysis of the visual and auditory signals from various living

organisms, such as Peters and Evans [50] with Jacky dragons, How et al. [27] with

various species of fiddler crab, and Elias et al. [19] and Chiarle and Isaia [12] with

spiders. The availability of a complexity measure would help bring unification to these



5

Feature Human Spider

Stillness slight perfectly
movement stationary

Articulators 2 arms, 8 legs,
2 legs, 2 pedapalps,
head, cephalothorax,
torso abdomen

Overall size large small
Appearance variable mostly

(clothing/hair/etc.) uniform
Movements more less

variety variety
Movement speed slower more

rapid
Audible output mostly mostly

voice vibration

Table 1.1: A comparison of the visual and auditory traits of humans and spiders.

types of studies.

This work is also motivated by a desire to understand the differences between the

human belief of complexity elements versus those identified by algorithms. There

is no standard definition for what makes visual articulated motion complex, and

one person may disagree from another as to whether one motion is more or less

complex than another. The work in this dissertation provides sound evidence of the

individual contributors toward complexity, and the degree to which they contribute.

These identified domains and corresponding features are detailed in Section 3.2,

Section 4.2, and Section 5.2 of this dissertation. Toward gaining insight into the

human understanding of complexity, two user studies are presented in this dissertation

for polling humans on their complexity beliefs. These studies allow for the identification

of what humans agree versus disagree on regarding complexity. The first study (utilized

in Chapter 3) provides insight into the understanding of a group of researchers that

have experience studying spiders and their movements, providing an expert-based
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opinion on the important contributing features. The second study (utilized in both

Chapter 4 and Chapter 5) expands the complexity study to a general audience,

providing a non-expert-based view of complexity beliefs. These user opinions are

also used as ground truth information, as complexity has no standardized definition

available to utilize for determining correctness.

1.3 Approaches

This dissertation details several novel approaches toward the creation of a complexity

measure for visual articulated motion. Each one is based on algorithms for estimating

motion in video, which in turn are used to generate higher-order sets of motion

complexity features. These approaches are divided throughout this dissertation into

three separate bodies of work as follows:

Approach 1 - The first approach focuses on computing the optical flow motion esti-

mation of a series of video samples displaying wolf spider movements recorded

with a high-frame-rate camera (250 FPS). From the estimated flow, a set of

statistical-based features are computed for describing various identified complex-

ity domains that are believed to have influence on the overall complexity values.

A weighted-sum measure is constructed from the flow features that utilizes the

opinion of a panel of experts (spider researchers) for determining the weights

of each feature. The final computed complexity values are demonstrated in a

classification experiment on the spider samples.

Approach 2 - The second approach expands on the optical flow technique of the first

approach by creating a new set of features from the computed flow estimation

that takes into account six identified motion-complexity domains believed to
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address the various contributing aspects of complexity. Two new domains

unexplored in the first approach include motion repetition (using techniques

from Fourier analysis to extract the primary frequencies) and motion synchrony

(measuring the degree that multiple areas of movement in a video are moving at

the same time). The efficacy of using the new features for measuring complexity

is demonstrated using a weighted-sum measure (as in the first approach), as

well as trained linear-discriminant classifiers for distinguishing motion classes

and predicting complexity scores for new motion samples. A sequential feature

selection algorithm is utilized to identify the complexity features that contribute

the most toward correctly predicting complexity scores and accurately classifying

motion classes. In addition, a user study on motion complexity is presented for

demonstrating participant belief of complexity domains and for use in training

the classifiers as ground truth information.

Approach 3 - The third and final approach abandons the optical flow technique of

the first two approaches for spatial-temporal features as the basis for motion

complexity features. While the previous two approaches compute features based

on local information (between two frames), spatial-temporal features integrate

both space and time to determine where interesting and significant motion

is happening within the video volume. Unlike the first two approaches, this

approach completely disregards directional information in favor of only using

the locations and characteristics of the space-time interest points in the space-

time volume. The efficacy of using the new features for measuring complexity

is demonstrated using trained linear-discriminant classifiers for distinguishing

motion classes and predicting complexity scores for new motion samples. A

sequential feature selection algorithm is utilized to identify the complexity
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features that contribute the most toward correctly predicting complexity scores

and accurately classifying motions. In addition, the user study on motion

complexity from the second approach is also applied here for use in training the

classifiers as ground truth information.

1.4 Contributions

This research presents a number of novel and interesting ideas, as well as identifies sets

of motion complexity features. These contributions are aimed at providing not only a

concrete understanding of what makes motion complex, but also a usable measure for

more advanced understanding of organisms in other research domains. The overall

contributions of this dissertation are as follows:

1. Identifies novel sets of motion complexity features based on both optical flow

for encoding the various aspects of articulated motion complexity, as well as

space-time interest points for integrating hidden complexity information

2. Defines a measure for quantifying general motion complexity by integrating the

motion features as a weighted sum based on feature contribution

3. Demonstrates the performance of a pattern-recognition (linear discriminant

analysis) model based on optical flow for predicting motion complexity scores

and distinguishing motion classes

4. Conducts and presents the results of two user studies on visual motion complexity:

(1) an expert poll on statistical feature importance for complexity, and (2) a user

study where participants rate a dataset of videos for further analysis toward

what a typical person believes contributes to complexity
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5. Demonstrates the accuracy of a spatial-temporal feature approach for predicting

motion complexity scores and distinguishing motion classes

6. Identifies the key contributing factors toward the quantification of visual motion

complexity

7. Demonstrates the efficacy of the defined complexity measures in a real-world

problem domain (the biological study of visual signals from spider movement)

8. Contributes a significant body of work toward several fields of study (planned

for publication in [13–15])

1.5 Document Structure

Here, we provide a detailed outline of the entire dissertation by giving a brief summary

of each chapter. The introductory chapters include Chapter 1 and Chapter 2, while

the main body of work is found in Chapter 3, Chapter 4, and Chapter 5. Specifically,

this dissertation is structured as follows:

Chapter 1 introduces the problem of visual motion complexity analysis for general

articulated motion along with motivations, approaches, and contributions, as

well as this detailed outline of the dissertation.

Chapter 2 continues the introduction by presenting the background material needed

for a fuller understanding of the remaining chapters in this dissertation, as well

as a literature review of several previous studies and works regarding visual

motion measures and the visual analysis of motion displayed in both human and

non-human species.
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Chapter 3 introduces the first approach: a weighted-sum motion complexity measure

based on statistical features computed from optical flow. Its performance is

demonstrated on a dataset of Schizocosa wolf spider movements displayed during

their courtship routine, and the most important features are noted as identified

by a feature selection process. This process includes a polling of experts in spider

research, utilized to weight the features based on expert opinion.

Chapter 4 expands on the ideas of Chapter 3 by introducing a new set of optical

flow-based features using higher order information such as frequency domain

analysis for detecting repeating patterns of motion, and motion synchrony for

measuring the degree to which multiple areas of movement are occurring. Motion

classification and complexity prediction performance are demonstrated on two

datasets: 1) a set of wolf spider movements and 2) a set of basic human actions.

In addition, a user study on motion complexity is presented for identifying the

features that are most important based on human belief. The user study also

provides ground truth information for measuring prediction and classification

accuracy.

Chapter 5 expands on the ideas of Chapter 3 and Chapter 4 by transitioning from

features in the spatial domain (computed from the optical flow values between

two image frames) to features in the space-time domain (space-time interest

points). The aim is to reveal hidden complexity information not otherwise

observed using a strictly optical flow-based technique. Motion classification and

complexity prediction performance are demonstrated on the same two datasets

from Chapter 4, and the same user study is utilized for ground-truth information

during training and testing of the models toward complexity prediction and

classification.
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Chapter 6 concludes this dissertation with a discussion of the overall results along

with some final closing remarks. Suggestions and ideas for further work in the

domain of visual complexity analysis of articulated motion are also provided.

In addition to the previously mentioned chapters, several appendices have been

included at the end of this dissertation for supplemental information and other results.

These additional chapters are structured as follows:

Appendix A summarizes and details the expert-poll study that is presented and

discussed in Chapter 3. The expert poll was performed to gain an understanding

of the beliefs of complexity from a group a spider motion researchers (experts),

which in turn is used to weight the features for the complexity measure.

Appendix B provides further information regarding the complexity rating study

presented in Chapter 4. This in-depth study was performed to gain an under-

standing of what a typical (non-expert) person believes contributes toward the

measuring of visual complexity. This information is utilized in both Chapter 4

and Chapter 5 as ground truth information for training and testing the prediction

and classification models.

Appendix C details the two video datasets used throughout this work: 1) a dataset

of wolf spider movements displayed during their courtship routine, and 2) a

dataset of basic human actions (walking, waving, etc.).

1.6 Summary

This chapter introduced the problem of characterizing and quantifying the complexity

of visual articulated motion in video, in addition to listing the motivations toward
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pursuing further study in this domain. The approaches taken to address this problem

that are detailed throughout the rest of this dissertation were briefly stated, along

with the contributions and overall structure of this document. In the next chapter, we

present the related work and background material needed for a full understanding of

the topics and concepts presented throughout the rest of the dissertation.
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Chapter 2

Background & Related Work

In this chapter, we begin with a discussion of the general concept behind optical flow,

a detailed description of the optical flow algorithm that is utilized in both Chapter

3 and Chapter 4, and an overview of some of the strengths and weaknesses of using

such a technique. Next, space-time interest points are mathematically defined and

discussed, which are utilized for the visual motion complexity features in Chapter 5.

Finally, a literature review is presented regarding the previous work toward visual

motion measures as well as the visual motion analysis of the observed motion displayed

by both human and non-human species.

2.1 Optical Flow

This section reviews the concept of optical flow for motion estimation, utilized in both

Chapter 3 and Chapter 4 for computing the signatures for visual articulated motion

complexity. A general overview is presented, along with the strengths, weaknesses,

and alternative methods for motion estimation.
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2.1.1 Overview

Optical flow (the apparent observed motion) is one of the oldest and most researched

domains in computer vision, and continues to receive a considerable amount of

attention. One of the main reasons for this continued interest is due to its use in a

wide array of useful applications including three-dimensional reconstruction, object

detecting/tracking, foreground/background segmentation, robotic navigation, and

traffic analysis. A few examples of these application domains are examined in the

work by O’Donovan [47].

While many optical flow algorithms exist, they all aim to solve the same problem:

Where does each pixel in frame I t move to in frame I t+1? That is, optical flow is a

motion-estimation algorithm for computing the displacement of the pixels between

two sequential frames of a video. The goal at a higher level is to determine where

the edges, corners, and other objects in a video frame move to in the next frame.

The majority of the optical flow algorithms rely on any given moving pixel retaining

the same intensity value in its displaced location from one frame to the next. This

constraint is called the brightness constancy constraint. The output of any one of

these optical-flow algorithms provides two key pieces of information about a pixel: (1)

the distance the pixel moved (strength/speed of motion) and (2) the direction that

the motion occurred. The set of all displacements of the pixels between two video

frames is a set of two-dimensional vectors called the motion field. A recent survey of

optical flow can be found by Fortun et al. [21], which organizes current approaches

and practices.

In general, optical flow provides a way to estimate the raw motion of video.

Alternative methods for motion estimation include block matching [5,48] (matching

neighborhoods of pixels to better correspond to the motion of real image artifacts)
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and phase correlation [2, 57] (which utilizes a Fourier transform to determine the

translation of an image). While optical flow shows remarkable accuracy at estimating

motion in video, several weaknesses do exist. For example, if an object (such as a

square) contains the same intensity value at every pixel, the best optical flow can

do is estimate the edge motion. While this may be acceptable for some domains,

others may rely on the movement of every single pixel to be accurate. Due to the

assumption of moving pixels retaining their intensity values between frames, errors in

the estimation arise with fluctuating lighting and prevalent shadows. One of the most

cited issues with optical flow is the barber pole problem (which itself is an instance of

the optical flow aperture problem. That is, assume you have a barber pole spinning on

its cylindrical axis with a single stripe that wraps around from top to bottom. As the

pole rotates, the stripe rotates horizontally with it. Even though the stripe rotates

horizontally around the cylindrical axis, it visually appears as if the stripe is moving

vertically upward or downward (depending on the direction of rotation). Optical flow

will estimate the motion as moving vertically, while the actual motion field is moving

horizontally. For many applications, however, these issues can be safely ignored.

2.1.2 Horn-Schunck Algorithm

Two of the most popular optical flow algorithms are the Horn-Schunck algorithm [26]

and the Lucas-Kanade algorithm [42], with a comparison of the two given in [6]. In

this dissertation, we specifically apply the Horn-Schunck algorithm, categorized in [21]

as a regularization model that utilizes a spatial flow gradient constraint. As the

general optical flow problem is under-constrained (an equation with two unknowns),

optical flow algorithms need to utilize at least one more constraint toward the goal of

motion estimation. With Horn-Schunck, this additional requirement is the constraint



16

of motion smoothness. That is, the algorithm chooses solutions in which the motion is

smoothest (the rate of the change in velocity is nearest to zero). While any optical flow

technique could be used to compute the features, the more traditional Horn-Schunck

approach was chosen because (1) computation speed is not a concern to us at this

time, (2) the majority of the species-analysis literature utilizes the algorithm and we

desire to use an algorithm already understood by that community, (3) the flow of the

interior parts of similar objects can be determined from the motion boundaries, and

(4) empirical experimentation revealed sufficient accuracy for the utilized datasets in

this work.

The algorithm computes a series of optical flow images O = [O1, O2, . . . , Ot−1] in

which Oi is the optical-flow image between video frames F i and F i+1, Oi
x,y = [uix,y, v

i
x,y]

is the set of optical flow vectors at time t, (x, y) is the spatial location of a pixel,

and [u, v] is a flow displacement vector (where u is the horizontal displacement and

v is the vertical displacement). The brightness constancy constraint states that

F i
x,y = F i+1

x+u,y+v. The optical flow problem using Horn-Schunck is an estimation of

partial derivatives followed by a minimization of the sum of the errors generated by an

iterative process. It ultimately favors smooth motion over non-smooth motion. The

approach is defined as the minimization of a global energy functional

E =

∫ ∫
[(Ixu+ Iyv + It)

2 + α2(|| 5 u||2 + || 5 v||2)]dxdy (2.1)

where α is a regularization constant for motion smoothness, 5 is the gradient operator,

and Ix, Iy, and It are the image intensity derivatives along the spatial (x, y) and

temporal (t) dimensions. An iterative approach is used to minimize this functional
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and solve for the displacement vector as follows:

uk+1 = u− Ix(Ixu
k + Iyv

k + It)

α2 + I2
x + I2

y

(2.2)

vk+1 = v − Iy(Ixu
k + Iyv

k + It)

α2 + I2
x + I2

y

(2.3)

where k represents the iteration number (k + 1 denotes the next iteration) and u

and v are a weighted average of u and v, respectively. The computation stops when

the values of [u, v] converge, or after a specified number of iterations. Thus, u is

the estimated horizontal displacement of motion, while v is the estimated vertical

displacement of motion.

2.2 Space-Time Interest Points

This section reviews several spatial-temporal feature detectors and descriptors, specif-

ically emphasizing selective space-time interest points (S-STIPS). These concepts

are utilized in Chapter 5 for computing the signatures of visual articulated motion

complexity. A general overview is presented, along with the strengths, weaknesses,

and alternative methods for motion estimation.

2.2.1 Overview

The last decade has seen a surge in interest toward the field of visual activity recognition

[46,52,58]. Due to the wide array of applications (such as health and security) and

readily available datasets, the majority of the work toward action recognition has

focused on human applications. Several types of strategies have been proposed toward

modeling human actions such as those based on human models, trajectories, holistic
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models, and local descriptors. As action recognition has evolved, more difficult

challenges needed to be addressed. One such challenge is the complexity of scenes

(moving cameras, noisy backgrounds, illumination changes, etc.). We next address a

few of these STIP detectors.

Space-Time Interest Points To help overcome these challenges, a new concept

called space-time interest points (STIPs) were introduced. STIPs were first proposed

by Laptev and Lindeberg [35] for the purposes of action recognition by extending

the popular Harris corner detector [25] from 2D to 3D. Regions having high intensity

variation in both space and time are detected as spatial-temporal corners to indicate

“interesting” movement in the spatial-temporal volume. A visualization of these STIP

points can be seen in Figure 2.1.

Figure 2.1: The detection of space-time interest points (image taken directly from [34]).
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Space-Time Cuboids Many improvements to the initial STIP detector have been

implemented in several works. Dollr et al. [17] apply temporal Gabor filters while

selecting regions of high responses and applying a cuboid-based descriptor of the

points. These cuboids encapsulate the motion happening around the interest points

as histograms of optical flow directions and magnitudes, as well as the intensity values

of the individual pixels. A visualization of cuboids is shown in Figure 2.2.

Figure 2.2: The detection of space-time cuboids (image taken directly from [17]).

Space-Time Velocity Histories Messing et al. [44] perform an alternative ap-

proach by tracking the detected STIPs over time to recognize actions using the velocity

histories of the tracked points. Instead of only utilizing the information (such as

magnitude, direction, and response) around each STIP point, the idea is that more

useful information may be detected in the paths that the STIP points take over time.

A visualization of velocity histories (displaying the tracked paths of the points) is

shown in Figure 2.3.
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Figure 2.3: The detection of velocity histories (image taken directly from [44]).

Discussion Many other STIP-based approaches exist, and the activity recognition

domain utilizing STIP points continues to receive considerable work. Wong and

Cipolla [60] introduce an approach based on global information and select STIPs based

on their probability of belonging to a relevant group of motion, while Willems et al. [59]

propose dense STIPs that are an extension of the Hessian saliency measure. While

not specifically used in our work, it is also worth mentioning space-time descriptors.

While all of these STIP-point approaches exist to detect interesting locations in space

and time, space-time descriptors exist as a way to describe the detected STIP points

for training activity-recognition systems. The information included in a descriptor is

generated from the shape or motion around the STIP point. A few works detailing

some of the more popular descriptors for STIPs can be found in [17,32,33,35,36,54,59].

The descriptors are then used to form vocabularies of visual words, typically for use

in a bag-of-video words video model for action recognition [9, 17,38,39,62].

2.2.2 Selective Space-Time Interest Points

All of these approaches, however, tend to be vulnerable to moving cameras and noisy

backgrounds. A recent technique by Chakraborty et al. [9] shows promise of overcoming

the challenges encountered by other STIP-based techniques. Their approach detects a
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set of spacial interest points (SIPs), suppresses unwanted background points, then

imposes local and temporal constraints to obtain a more robust set of selective STIPs.

In this chapter, we utilize the selective-STIP approach to build a set of visual motion

complexity features in Chapter 5.

The selective-STIP approach is divided into several steps. Here, we describe the

process in detail, as outlined in [9].

Detecting Spatial Interest Points The initial set of SIP points are first detected

using a basic Harris corner detector [25]. The corner detector is initialized using

corner strength Cσ, where σ is the spatial scale of the points. This initial set typically

contains a large number of uninteresting “background” points, which are filtered in

the remaining steps.

Suppressing Background Interest Points To suppress background points, a

surround suppression mask (SSM) is used for every interest point, with the current

point under consideration as the mask center. The influence of all surrounding points

of the mask on the central point is estimated, and a suppression decision is made on

whether the point is a background point or not. The idea behind SIP suppression

is that the majority of corner points detected in the background follow a particular

geometric pattern, while those that are on objects of interest are not.

Surround suppression is accomplished by computing an inhibition term for each

point of Cσ. A gradient weighting factor is introduced and defined as:

∆θ,σ(x, y, x− u, y − v) = | cos(Θσ(x, y)−Θσ(x− u, y − v))| (2.4)

where Θσ(x, y) and Θσ(x−u, y−v) are the gradients at point (x, y) and (x−u, y−v),

respectively, and u and v define the horizontal and vertical range of the SSM mask.
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For each point Cσ(x, y), a suppression term tσ(x, y) is defined as the weighted sum of

gradient weights in the suppression surround of the point:

tσ(x, y) =

∫ ∫
Ω

Cσ(x− u, y − v)×∆Θ,σ(x, y, x− u, y − u)dudv (2.5)

where Ω is the image coordinate domain. An operator Cα,σ(x, y) is defined as

follows:

Cα,σ(x, y) = H(Cσ(x, y)− αtσ(x, y)) (2.6)

where H(z) = z when z ≥ 0, H(z) = 0 for z < 0, and α controls the surround

suppression strength. The operator response will retain the original corner magnitude.

If a larger number of interest points are detected in the background, the interest point

will be suppressed.

Imposing Local Constraints A subset of the initial set of points is selected by

applying non-maxima suppression as follows: for every position (x, y), the responses

Cα,σ(x′, y′) and Cα,σ(x′′, y′′) in adjacent positions (x’, y’) and (x”, y”) are computed

by linear interpolation. A point is kept only if the response Cα,σ(x, y) is greater than

that of the two adjacent points, and discarded otherwise.

Scale Adaptive SIPs A multi-scale approach is used for scale selection. Suppressed

SIPs are computed at five different scales Sσ = {σ
4
, σ

2
, σ, 2σ, 4σ}, where the best set of

SIPs for each scale are kept based on the maximization of a normalized differential

invariant.

Imposing Temporal Constraints To suppress the SIPs that might remain due

to being static, temporal constraints are imposed. By considering two consecutive
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frames at a time, the common interest points are removed as static points do not

contribute any motion information. An interest point matching algorithm is used

to adjust for camera motion. The entire selective-STIP process is divided into five

algorithms, and are presented as Algorithm 1, Algorithm 2, Algorithm 3, Algorithm 4,

and Algorithm 5 (which are adapted from [9]).

input : An image stack (h× w × t): iS

Array containing spatial scales: sA;

Alpha: α;

Mask: m;

output : Detected STIPs: stip

sip = {}; stip = {} ;

t = size(iS, 3) ;

for i = 1→ t do

for j = 1→ size(sA) do

sip← sip ∪ {SCD(iS(:, :, i), sA(j), α,m), sA(j)} ;

end

stip← stip ∪ blobDetector(iS(:, :, i), sip) ;

end

stip = temporalConstraint(iS, stip) ;

Return(stip) ;

Algorithm 1: STIP detection (algorithm adapted from [9]).
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input : An image (h× w): image;

Spatial scale: σ;

Alpha: α;

Mask: mask;

output : Detected selective spatial interest points: sip

cp = harrisCorner(image, σ) ;

cornerPoints = find(cp > 0) ;

cp = cp(cornerPoints) ;

Θ = gradient(image) ;

sip = {} ;

for Each point (x, y, σ) ∈ cornerPoints do

∆Θmask
= | cos(Θmask −Θmask(x,y))| ;

t(x, y) = cpmask ⊗∆Θmask
;

cp(x, y) = H(cp(x,y) − αt(x,y)) ;

(x′, y′) = round(line(x, x+ 1, y,Θ(x, y))) ;

(x′′, y′′) = round(line(x, x− 1, y,Θ(x, y))) ;

if (cp(x, y) > cp(x′, y′)) ∧ (cp(x, y) > cp(x′′, y′′)) then

sip← sip ∪ (x, y, σ) ;

end

end

Return(sip) ;

Algorithm 2: SCD: Selective STIP Detection (algorithm from [9]).
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input : An image (h× w): im;

Corner points: corners;

output : Detected selective spatial interest points based on Gaussian blob

strength: cornerPoints

cornerPoints = {} ;

for Each point (X, Y, σ) ∈ corners do

bS = σ1.75 ∗ Ly,im(X, Y ) ∗ Lxx,im(X, Y ) ;

if (bS > τ) then

cornerPoints← cornerPoints ∪ (X, Y, σ) ;

end

end

Return(cornerPoints) ;

Algorithm 3: blobDetector: Corner strength detection using Gaussian blob

(algorithm from [9]).
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input : An image stack (h× w × t): iS;

Spatial corner points: cp;

output : Detected STIPs: stip

for i = 1→ h do

for j = 1→ w do

gabor(i, j, :) = gaborF ilter1D(iS(i, j, :)) ;

end

end

for i = t→ 2 do

f1 = iS(:, :, i) ;

f2 = iS(:, :, i− 1) ;

g1 = gabor(:, :, i) ;

g2 = gabor(:, :, i− 1) ;

im1 = iS(:, :, i) ;

im2 = iS(:, :, i− 1) ;

cpf1 ← cpf1 \ pointMatch(cpf1 , cpf2 , g1, g2, im1, im2) ;

end

Return(cp) ;

Algorithm 4: temporalConstraint: Imposed temporal constraint on the selected

spatial corner points (algorithm from [9]).
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input : Image frames: im1, im2;

Corner strengths: cp1, cp2;

Gabor strengths: g1, g2;

output : Detected matching STIPs: mS

mP = {} ;

cornerPoints1 = find(cp1 > 0) ;

cornerPoints2 = find(cp2 > 0) ;

for Each point (x1, y1, σ1) ∈ cornerPoints1 do

h = σ1 ;

for Each point (x2, y2, σ2) ∈ cornerPoints2 do

similarity = min(cp1(x1,y1),cp2(x2,y2))
min(cp1(x1,y1),cp2(x2,y2))

;

w = σ2 ;

if similarity > τsim then

a1 = cropRect(im1, x1, y1, h, w) ;

a2 = cropRect(im2, x2, y2, h, w) ;

sC = crossCorrelation(a1, a2) ;

if (sC > τcorr) ∧ (g1(x1, y1) > τgabor) then

mP ← mP ∪ (x1, y1, σ1) ;

end

end

end

end

Return(mS) ;

Algorithm 5: pointMatch: Detect the set of matching corner points in two

consecutive frames (algorithm from [9]).
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2.3 Visual Motion Measures

Here, we present a literature review of visual motion measures for quantitatively

describing motion. This section is used to illustrate the novelty and usefulness of the

work presented in this dissertation. Specifically, it can be noted that the techniques

here do not focus on visual articulated motion complexity.

The perceived motion energy spectrum (PMES) shot content representation pro-

posed by Ma et al. [43] is based on angle distributions obtained by temporal energy

and global motion filters. These filters are used to extract motion vectors from the

MPEG stream. Specifically, a temporal energy filter is used to disregard object motion

in a scene, and a global motion filter to shield object motions from camera motions.

Their metric is tuned to closely match human perception of motion for the purposes

of content-based video retrieval.

Liu et al. [40] propose a triangle model of perceived motion energy (PME) to

model motion patterns for the purposes of extracting key frames from video sequences.

PME is a combined metric of motion intensity and motion characteristics with more

emphasis on dominant motion. It uses the percentage of dominant motion direction

in an entire frame as an estimation of motion intensity. The goal is to identify the

acceleration and deceleration points of motion over time, which can be used as a set

of key frames where the most salient motion is occurring.

Chen et al. [11] develop entropy motion value (EMV), a motion entropy metric to

segment frames with high motion intensity from frames with low motion intensity in

sports videos. Incorporating entropy into the metric allowed it to handle camera motion

better than the PME metric. They introduce a time series change point detection

algorithm that minimizes the homoscedastic error to approximate the motion entropy

curve with a piece-wise linear model. The accumulated value is used to decide which
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segment is a significant sport event.

Peker et al. [49] create a framework for the automatic measurement of motion

activity in video sequences using the MPEG-7 motion activity descriptor [30]. They

establish that the intensity of motion activity of a video is a direct indication of its

ability to be summarized, and suggest the variance of the motion vector magnitudes

is promising as a representative measure of visual motion. The framework is used to

determine the highlights of sports videos. The work in [30] details how the MPEG-7

motion standard captures the unique aspects of motion. The goal is to provide

descriptors that are easy to extract and match, where both motion activity and motion

trajectory meet this objective.

Claypool [16] provides novel metrics for motion and scene complexity in video

games, which are percentage of forward/backward or intracoded macroblocks (PFIM)

for motion complexity and average of intra-coded block size (IBS) for scene complexity.

The intuition behind the PFIM metric is that a video with visual changes from frame

to frame will have these changes encoded while video without visual changes can skip

much of the encoding.

Ali [3] quantifies the complexity of visual flows based on optical flow particle

trajectories that measure the amount of interaction among objects. This approach is

aimed at the application of crowd-flow analysis. Due to the interaction of individual

particles in a flow, the two-dimensional trajectories become space-time braids. It is

shown that the proposed approach is able to quantify the complexity of the flow, and

at the same time provides useful insights about the sources of the flow complexity.

The majority of these proposed methods rely on motion magnitudes and/or

directions. These previous works do not take into account a large number of motion

features with the possibility of several of them contributing important information to

the overall complexity from unrelated complexity domains. In addition, they do not
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focus on articulated motion. To the best of our knowledge, little work has been done

on finding a general complexity measure for visual articulated motion, and no known

standardized measure currently exists. The work that does exist tends to generate

various statistics from the optical flow vector directions and magnitudes (as seen in

the cited literature). While the approaches presented in Chapter 3 and Chapter 4

rely as well on flow magnitudes and directions computed from optical flow, Chapter

5 utilizes space-time interest points while mostly ignoring direction and magnitude

information.

2.4 Motion Analysis of Humans

Here, we provide a brief literature review of some of the interesting works in the

domain of visual human motion analysis. While the work in Section 2.3 discussed

measures for describing any general motion, this section reviews the work that has

specifically been done regarding human movements.

Aggarwal & Cai [1] provide a review of the literature of human motion analysis.

Their work is divided into three parts: (1) motion analysis involving human body

parts, (2) tracking a moving human from a single view or multiple camera views,

and (3) recognizing human activities from image sequences. Poppe [51] also provides

a broad overview of human motion analysis, dividing the analysis into a modeling

and an estimation phase. Sminchisescu [56] specifically gives an overview of the

problem of reconstructing 3D human motion using sequences of images acquired

with a single video camera. A more recent literature review can be found from

Metaxas & Zhang [45], where they summarize motion analysis methods for nonverbal

communication of humans. They summarize and group the methods based on face

tracking, facial expression recognition, full body reconstruction, pose estimation, and
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activity recognition.

The area of visual surveillance and security has received considerable work in recent

years due to the vast number of useful applications for ensuring a safer environment, as

well as to help address the issue of rising crime rates. Gowsikhaa et al. [24] provide a

survey of methods in automated human behavior analysis with a focus on surveillance

systems. They provide an overview of the state-of-the-art algorithms and techniques

for abnormal human behavior detection. In addition, Gedikli & Ekinci [18,22] present

several works on human motion detection and analysis system focused on visual

surveillance.

Yoo & Nixon [61] present a method for an automated markerless system for

describing, analyzing, and classifying the motion observed in human gait. Their

system consists of three parts: 1) the detection and extraction of the moving human

body and its contour, 2) the extraction of gait figures by joint angles and body points,

and 3) the analysis of motion parameters and feature extraction for classifying human

gait. Chang & Huang [10] use Hidden Markov Models to describe the observed motion

of human gait.

Kahol & Vankipuram [31] focus on the analysis of hand motion by predicting the

expertise level of a user wearing a sensor glove and performing surgical movements.

They present a novel algorithm that utilizes a dynamic hierarchical layered structure

to represent the human anatomy, with low-level parameters to characterize the motion

in the layers of this hierarchy (corresponding to different segments of the human body).

Their approach achieved a near perfect recognition rate.

Lin & Kulic [37] focus on another key area of human motion detection that

has received a considerable amount of attention: health and rehabilitation. They

propose an approach for the automated segmentation and identification of movement

segments from continuous human-movement time series data that is collected through
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ambulatory sensors. Their approach uses a two stage identification and recognition

process, based on velocity and stochastic modeling of each motion to be identified.

Due to the abundant applications and readily available datasets, the work in this

dissertation utilizes a human collection of videos as one of two datasets. We specifically

focus on quantifying the visual articulated motion complexity of humans, as well as

identify the various components that make up the complexity. While not a focus of the

chapter, the classification abilities of the complexity components toward distinguishing

human motions are examined throughout this dissertation as well.

2.5 Motion Analysis of Non-Human Species

While the work in Section 2.3 discussed measures for describing any general motion,

this section reviews the work that has been done regarding the visual analysis of

communication in non-human organisms. Specifically, there has been previous work

in the biological domain on understanding the visual and auditory signals of various

species other than humans. Because of the strong interest in the field of biology toward

having a measure for the advanced study of organisms, one of the utilized datasets

in this dissertation is a dataset of wolf spider movements showing the visual signals

displayed during their courtship routine.

Peters and Evans [50] examine the visual and auditory signals in Jacky dragons

using optical flow for the purposes of classifying basic actions. They specifically use

optical flow to generate velocity signatures, which are scatter plots representing the

direction and speed of movement for each display component. The main idea is that

quantitative analyses of movement-based signals can provide insights into the sensory

processes of organisms, leading to a more detailed understanding of the species.

How et al. [27] analyze the dynamic visual signals of the claw-waving display of
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various species of fiddler crab. They quantitatively measure features of seven species

of fiddler crabs such as the claw path, the elevation of the claw over time, and motion

intensity and direction. They find that the structure and timing of the features is

species-specific, providing evidence of using motion features for species classification.

Riskin et al. [53] provide a kinematic study quantifying the complexity of bat

wings. They assign importances to kinematic variables to address whether dimensional

complexity of motion changes with speed, which body markers are optimal for capturing

dimensional complexity, and which variables should a simplified reconstruction of bat

flight include in order to maximally reconstruct actual dimensional complexity.

Work has also been done specifically on understanding dynamic signals in various

species of spiders. Elias et al. [19] use optical flow to create features for investigating

the courtship behaviors in jumping spiders. They use speed waveform, speed surface,

and speed waterfall plots to demonstrate the ability to computationally differentiate

various types of spiders, while pointing out that their technique could be used with

any organism displaying dynamic visual signals (such as birds, insects, or mammals).

Chiarle and Isaia [12] use optical flow to analyze various courtship elements in two

species of wolf spiders aimed at understanding the evolution of the courtship and its

role in species delimitation and speciation processes.

The work in this dissertation also commits a great deal of attention toward

visual spider signal analysis, because the visual differences between human and spider

movements pose interesting challenges. While the previous works in species analysis

focus on optical flow features for classification, this work focuses on quantitatively

measuring visual cues to describe complexity. There is, however, multiple experiments

presented in this dissertation that apply the identified motion complexity features to

classification-related tasks. Overall, the goal of our work is to identify the various

motion signatures that contribute to complexity, the degree that each one contributes,



34

and the combination of those signatures to predict complexity values.

2.6 Summary

In this chapter, we presented the general concept behind optical flow, a detailed

description of the optical flow algorithm that is utilized in both Chapter 3 and Chapter

4, and an overview of some of the strengths and weaknesses of using such a technique.

Next, space-time interest points were formally defined and discussed, which are utilized

for the visual motion complexity features in Chapter 5. Finally, an in-depth literature

review was presented regarding the previous work toward visual motion measures as

well as the visual motion analysis of the observed motion displayed by both human

and non-human species. In the next chapter, we propose a first approach toward

quantifying visual articulated motion complexity that utilizes optical flow and a

feature-weighting technique.
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Chapter 3

An Optical Flow Statistical-Based

Metric for Motion Complexity

In this chapter, we introduce a statistical-based complexity measure for quantitatively

describing visual motion in video. Its usefulness can be applied to tasks such as

classification and video indexing, but is demonstrated here as a case study on a database

of wolf spider movements displayed during their courtship routine. Objectively

assessing the complexity of these action movements may inform a more thorough

and detailed understanding of these species, as well as demonstrate the potential for

using the measure for describing articulated motion in a general sense. An optical

flow-based approach is used to derive interesting visual motion complexity features

and demonstrate their utility in understanding motion complexity. The features

are combined using a data fusion (weighted sum) approach as the measure. We

compare and contrast the motion features of two different species of Schizocosa wolf

spider, demonstrating the measure on a database of high frame rate (250 FPS) videos.

It is shown that these features capture several unique movement traits of these

spiders during courtship. This demonstrates the feasibility of our approach to use
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motion signatures for representing the complexity of elements observed during spider

courtship routines, the complexity of non-courtship spider movements, and ultimately

the complexity of general articulated motion. Species classification, while not the aim

of this work, is demonstrated on the dataset. A feature selection process is detailed

for selecting the most relevant features from the initially large set. A user study

from a team of spider motion researchers is also presented to demonstrate human

belief of complexity versus that which the computer identifies as important complexity

components. The work in this chapter is planned for publication in [14].

3.1 Introduction

Understanding motion is an important task in many application domains. In visual

surveillance applications, for example, normal motion patterns can be learned in order

to alert users when abnormal motion patterns are detected, possibly indicating a

security threat in progress. However, motion can be characterized in several different

ways. For example, there are short motion patterns (such as a person kicking their

leg) as well as longer “tracked” motion patterns (such as the path a person walks in a

surveillance video). Similarly, different motion patterns can have different levels of

complexity. For example, the motion of a person waving a hand is less complex than

a person performing a sophisticated dance routine. An important question in this

context is: Is it possible to characterize the complexity of motion using a numerical

metric? Such a measure could be useful in a number of applications such as video

indexing (such as searching for videos of springboard dives based on difficulty), motion

comparison (such as comparing and contrasting one dance routine from another),

motion classification (such as identifying one species from another based on the

complexity of observed motions), and advanced biological study of visual signals in
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organisms (such as the changes in movement of a spider that has been fed a large diet

versus one that has been fed a low diet).

In this chapter, we address the problem of quantifying motion complexity. Our

efforts are focused in a single motion domain: a case study that includes an analysis of

the motion displayed during the courtship routine of a pair of Schizocosa wolf spider

species. Our approach, however, can be applied to any general articulated motion with

a stationary camera. While much of the research in automated motion analysis has

focused on human subjects due to the abundance of useful applications and readily

accessible video data [1, 18, 22, 24, 31, 37, 45, 61], analysis of spider movements presents

unique challenges both in their visual and auditory signals [12,19]. For example, spiders

have a vastly smaller size, a mostly uniform appearance among different specimens, and

a differing variety of movements as compared to humans. Their movements tend to be

very quick, enough so that they are difficult to fully understand by direct observation of

the naked eye. In contrast, humans have a larger size, a variable appearance (different

hair styles and colors, different clothing, etc.), and more complex movements that lead

to diverse activities (such as brushing their teeth or playing tennis). With regards to

sound, humans have different vocal sounds and speaking styles that make each person

unique, while spiders rely on vibratory sounds and tapping. Table 3.1 summarizes

these key differences between the movements shown during human activities versus

those shown during spider courtship routines. We specifically focus on two species of

Schizocosa wolf spider: S. bilineata and S. crassipalpata.

3.1.1 Problem Definition

The problem addressed in this chapter is the creation of a measure for quantifying

visual motion complexity with a focus on wolf spiders. We formally define the problem
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Feature Human Spider

Stillness slight perfectly
movement stationary

Articulators 2 arms, 8 legs,
2 legs, 2 pedapalps,
head, cephalothorax,
torso abdomen

Overall size large small
Appearance variable mostly

(clothing/hair/etc.) uniform
Movements more less

variety variety
Movement speed slower more

rapid
Audible output mostly mostly

voice vibration

Table 3.1: A comparison of human and spider traits.

of finding a complexity measure as follows: Given a video V = [F 1, F 2, . . . , F n] where

F i is a video frame and n is the total number of frames in the video, the goal is to

define a complexity function C : V → [0, 1], where [0, 1] is the set of real numbers

between 0 and 1, inclusive. Here, F i
x,y indicates the pixel in the xth row and yth column

of the ith image frame of the video. Thus, we aim to find a function C that takes a

motion sequence of images (video) as input and generates a value between 0 (lowest

possible complexity) and 1 (highest possible complexity).

3.1.2 Approach

An optical flow-based approach is used to estimate the basic elements of visual motion.

A discussion and overview of the optical flow technique used in this chapter is detailed

in Chapter 2.1. Specifically, we utilize the Horn-Schunck algorithm [26] for the optical

flow computation using the default parameters as specified in MATLAB 2015a1. While

1www.mathworks.com
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any optical flow technique could be used to compute the features, the Horn-Schunck

approach was chosen because 1) the speed of computation is not a concern to us,

and 2) the majority of the species-analysis literature utilizes that algorithm and we

desire to use an algorithm already understood by that community. These optical flow

motion elements are used to derive vectors of local temporality features (one value

per feature per frame), which are then further refined into global temporality features

(one value per feature per video). These global temporality features are reduced to

a more manageable and useful quantity using a feature selection process, then used

as building blocks for the final measure of complexity. This feature selection process

includes computing correlation to detect similar (and redundant) features, as well as

utilizing the results of a user study on a group of experts in the spider-motion domain.

An overview of this approach is shown in Figure 3.1.

Figure 3.1: Our approach for computing the complexity measure.

The optical flow is computed using the displacement of fixed points between two

successive frames of video. We define a number of optical-flow-based features (or

motion complexity features) which describe different aspects of the observed motion,

then present a measure for the complexity of the motion that utilizes these features

by integrating them together with a data-fusion approach (weighted sum). The

feature weights signify the degree to which each feature contributes to the final

complexity value. The efficacy of using these motion complexity features for detecting

the important motion signatures is demonstrated using a dataset of spider actions
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recorded during the courtship routines of two species of wolf spider, but is applicable

to any scenario involving a stationary camera and a single subject remaining mostly

still except for articulator-based movements. While previous attempts have typically

focused on using few features to determine a measurement of complexity, our approach

takes into account a multitude of various features based on optical flow with the goal

of integrating several important factors into the overall complexity measure.

3.1.3 Contributions

This chapter makes a number of useful contributions toward a variety of domains

including motion understanding, optical-flow-based analysis, motion complexity, and

the biological understanding of spider movements. These contributions are listed as

follows:

1. Identifies a novel set of motion complexity features based on optical flow that

encodes the various aspects of articulated motion complexity

2. Defines a measure for quantifying general motion complexity by integrating the

motion features as a weighted sum based on feature contribution

3. Presents the results of a user study: an expert polling on statistical feature

importance for visual motion complexity in spiders

4. Demonstrates the efficacy of the defined complexity measures in a real-world

problem domain (the biological study of spider movement)
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3.2 Temporality Features

In this section, we define the local (per frame) and global (per video) temporality

features for articulated motion complexity (shown as step 2 and step 3 in Figure 3.1).

The conversion of the local temporality features to global temporality features is

also addressed. All of the local features and global features were chosen in order to

address what we believe to be the foundational building blocks of complexity. These

complexity building blocks (complexity domains) are listed in Table 3.2, along with the

utilized corresponding complexity scale that states our belief in how the domain affects

the final complexity value. For example, we believe that quicker movements, more

areas of movement, more changes in direction, and periodic (repeating) movements

are more complex than slower movements, fewer areas of movement, fewer changes in

direction, and non-periodic movement. It is important to note that these measures

are not provided as fact, but are what our beliefs and opinions indicate are important.

The same applies to what constitutes more complexity versus less complexity for each

measure.

Complexity Domain Corresponding Scale

Movement coverage More movement = more complex
Movement speed Quicker movement = more complex

Movement coverage clusters More clusters = more complex
Movement periodicity Periodic movements = more complex

Movement entropy More random = more complex
Directional smoothness Sharper transitions = more complex

Directional changes More changes in direction = more complex
Directional change frequency Quicker changes = more complex

Table 3.2: Building blocks for defining motion complexity.

As described in formal detail in Chapter 2.1, an optical-flow algorithm is used to

compute a series of flow images O = [O1, O2, . . . , Ot−1] in which Oi
x,y = [uix,y, v

i
x,y] is

the set of optical flow vectors, Oi is the motion flow image between video frames F i
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and F i+1, (x, y) is the spatial location of a pixel, and [u, v] is a flow displacement

vector (where u is the horizontal displacement and v is the vertical displacement).

Two key components can be computed from each optical flow vector [u, v]: the flow

direction and the flow magnitude. That is, the computed displacement vectors indicate

both the direction of motion at each point of a frame of video in addition to the

strength of motion (speed) in that direction. All features proposed in this chapter

are computed from the magnitude-based and direction-based images derived from the

optical flow values.

3.2.1 Local Temporality Features

We first discuss the local temporality (per frame) features built from the optical flow

directions and magnitudes. For a given video, this set of features aims to capture

the unique motion signatures for use in quantitatively describing the complexity of

motion. As these features are measured as one value per feature per video, each

local temporality feature is represented as one vector for each video. We distinguish

the local temporality features as either being based on optical flow magnitudes or

directions. The features are based on statistical measures that aim to numerically

quantify each motion complexity domain listed in Table 3.2.

Magnitude-Based Features Motion strength, or magnitude, is a useful measure

for determining the intensity of motion over time. It also allows for an estimation of

motion speed, where larger magnitude values indicate faster motion. The set of flow

magnitude images M = {M1,M2, . . . ,M t−1}, where M i
x,y represents the magnitude

at spatial location (x, y) between video frames F i and F i+1, is computed on the set of

optical flow vectors O using the Euclidean distance formula:
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M i
x,y =

√
(uix,y)

2 + (vix,y)
2 (3.1)

where [uix,y, v
i
x,y] is the motion displacement vector at Oi

x,y. We will use the

notation mi to represent the set of magnitudes in flow magnitude frame M i as a

flattened (one-dimensional) vector with length l. This set of magnitude values mi at

a given point in time is used to compute several statistical features based on motion

strength/speed. These statistical features are summarized as follows (providing a total

of 48 magnitude-based local temporality features):

• Overall motion strength/speed in a single frame i:

Mean – The average speed of motion: mean(mi)

Median – The median speed of motion: median(mi)

Max – The maximum speed of motion: max(mi)

Min – The minimum speed of motion: min(mi)

• Motion strength/speed variability in a single frame i;

Range – The range of motion speed: max(mi) - min(mi)

Variance – The degree of motion speed variance: variance(mi)

Skewness – The degree of motion speed skewness: skewness(mi)

Kurtosis – The degree of motion speed kurtosis: kurtosis(mi)

Entropy – A measure of randomness in motion speed: −
∑l

x=1 P (mi
x)logP (mi

x)

Each of these features was computed five times: once for all motion vectors, and

once only for motion in the leftward, rightward, upward, and downward directions. If

a vector was pointing both up and to the right, it was included in both the collection
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of upward vectors and the collection of rightward vectors. The features were computed

for each direction out of our belief in motion complexity information being hidden

among a subset of the magnitude values. For example, it is possible for the average

magnitude of all motion vectors in a frame to be small, while at the same time having

the average magnitude of only the upward motion vectors measuring at a strong

magnitude. In addition to these features, three other local temporality features were

defined and computed to provide greater coverage for the various complexity domains

listed in Table 3.2. These features are listed as follows:

Cluster Count – The number of areas showing movement in a frame

Cluster Size – The average size of the areas of movement in a frame

Movement Percentage – The percentage of a frame showing movement

For the two cluster-based features, a flow magnitude frame M i is converted to

binary frame Bi, where Bi
x,y = 1 if M i

x,y > α, and 0 otherwise. Here, α is a threshold

value, where anything below the threshold is considered to be noise or non-movement.

For our experiments, α = 0.02. By increasing α, only the strongest motions are kept

(possibly missing out on important smaller movements). By decreasing α, noisy and

nonmoving areas are taken into consideration for the feature computations, giving

inaccurate results. The binary frame Bi is then input into a connected-components

labeling algorithm, where any pixels in Bi that have been assigned a ’1’ and border

another pixel that has been assigned a ’1’ are given the same label. Each group of

pixels with the same label is considered to be its own cluster. Thus, Cluster Count

summarizes the number of areas showing movement in a given frame, while Cluster

Size sums up the size (number of pixels) of each cluster in a frame, and divides by the
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number of clusters. Movement Percentage is considered to be the number of ‘1’ pixels

in a binary frame Bi divided by the total number of pixels in Bi.

Directional Features In addition to magnitude, direction is also a useful feature

that can indicate the orientation in which the most motion is made. Similar to

magnitude, direction can be obtained from an optical flow vector [u, v]. A set of

flow direction images D = {D1, D2, . . . , Dt−1}, where Di
x,y represents the direction at

spatial location (x, y) between video frames F i and F i+1, is computed on the set of

optical flow vectors O using the following equation:

Di
x,y = tan−1(

vix,y
uix,y

) (3.2)

where Di
x,y is expressed in radians. We will use the notation di to represent the

set of directions in flow direction frame Di as a flattened (one-dimensional) vector

with length l. Simply using the radian values for computing statistics gives misleading

results, since the directional values loop around in a circle from positive to negative.

Because of this, all features obtained from the directional values are computed using

techniques from circular statistics by representing the directional values as vectors.

These techniques are described in mathematical detail in [8]. A more in-depth coverage

can be found in Jammalamadaka & Sengupta [29].

We propose, in addition to the set of magnitude-based local temporality features, a

corresponding set of direction-based local temporality features to quantify complexity

information hidden in the directional values. The aim of this set of features is to again

address the needed descriptors for the complexity domains listed in Table 3.2. These

features are summarized as follows (for a total of 60 local temporality features when

combined with the previously defined 48 features):
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• Overall motion direction in a single frame i:

Mean – The average direction of motion: mean(di)

RVL – The resultant vector length of average direction: magnitude(mean(di))

Up Movement – The total percentage of upward movement

Down Movement – The total percentage of downward movement

Left Movement – The total percentage of leftward movement

Right Movement – The total percentage of rightward movement

• Motion direction variability in a single frame i:

Variance – The motion direction variance

Skewness – The motion direction skewness (the degree of motion being pulled

toward a single direction)

Kurtosis – The motion direction kurtosis (the degree of motion not being

pulled equally in all directions)

• Motion direction distribution tests in a single frame i:

Rayleigh Test Score – A test of how large the resultant vector length (RVL)

must be to indicate a non-uniform distribution [20]

Omnibus Test Score – An alternative to the Rayleigh test that works well

for unimodal, bimodal and multimodal distributions [63]

Rao Test Score – A spacing test for circular uniformity [7]

By utilizing a statistical description of the directional values, we aim to capture the

motion signatures that contribute directly to the overall complexity of the observed

motion. As with the magnitude-based features, these statistics are only computed on
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the directional values that are not considered noise or non-movement (using threshold

value α = 0.02). The majority of these features specifically capture information about

the distribution of the directional values. It is possible that several of these statistics

(in addition to the magnitude-based measures) are quantifying similar information,

and thus are redundant. During this stage, however, we focus only on proposing a

large list of statistical-based features, while delaying the feature selection process (step

4 in Figure 3.1).

3.2.2 Global Temporality Features

We now turn to the generation of the global temporality features (step 3 in Figure 3.1).

As we ultimately want to have each vector of local temporality features transformed

into a single global value for use as a descriptor in the final measure, the local

temporality features are converted to global temporality features by computing the

means of each vector. This provides a general quantified measure of how each feature

performed on an entire video clip. As we previously defined 60 local temporality

features, this direct transformation also computes 60 global temporality features. In

addition to this newly generated feature set, an additional three features are defined in

order to provide additional statistical descriptions of the video as a whole and address

more of the complexity domains in Table 3.2 not yet covered by other features for

a stronger measure. The three additional global temporality features are defined as

follows:

Run Count – The number of periods of movement

Run Average – The average length of the periods of movement
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Directional Changes – The number of significant changes in direction over the

duration of the video sequence

These new global features specifically quantify information regarding the periodicity

and directional change domains in Table 3.2. Run Count is computed by taking the

Average Magnitude local temporality feature vector, performing a one-dimensional

connected component operation, and counting the number of connected components.

This provides a measure of the number of movement “bursts”. Run Average is also

computed using the connected components, except the average number of frames

involved in the bursts (cluster size) is used. Directional Changes is computed by

taking the average direction vector v for each frame (the Mean Motion Direction local

temporality vector), and counting the number of times vx for frame Fx is greater than

a 90 degree change from both vx−1 and vx−2 (the two frames appearing sequentially

before it).

3.3 Feature Selection

In this section, we address the issue of feature selection (step 4 in Figure 3.1).

Computing all 63 global temporality features based on magnitude and direction

results in a high-dimensional feature space. As several features may be redundant

by quantifying and contributing similar information, we utilize a multi-step feature

selection process to identify any redundant features, as well as features that may not

actually be useful toward quantifying articulated motion complexity. The steps taken

in our feature selection process are as follows:

• Principal feature analysis

• Statistical t-test
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• Correlation

• User study utilizing expert opinion

The first step utilizes principal feature analysis (PFA) [41] as a tool to reduce

the large feature space to a smaller one. PFA is based on principal component

analysis (PCA) [55], a dimensionality reduction technique that computes a new set

of features (components) that are linear combinations of the original features. PFA

expands on this idea by exploiting the structure of the principal components to choose

the original features that retain most of the information. These principal features

both contain maximum variability of the features and minimize the reconstruction

error.

Several other techniques are used in conjunction with PFA to find the most

important and non-redundant features. A statistical t-test is applied to reveal which of

the original features are able to be used to determine if two datasets are significantly

different from each other based on their means. This provides a measure of the

classification abilities for each feature, a topic that is explored later in this chapter.

Additionally, the statistical correlations of the features are computed to determine

which features may be contributing similar information, allowing for the removal of

any redundant features.

Finally, a panel of experts are polled to determine what they feel to be the most

important contributors to complexity, as well as provide the confidence of their answers.

The expert panel is important in that they have domain knowledge of what they feel

contributes to movement complexity, thus allowing us to observe how their responses

match up with what the previously described feature selection techniques reveal.

Performing all four feature-selection steps computes a new, smaller set of more useful

global temporality features.
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3.4 Complexity Metric

With the final selected subset of global temporality features, we now turn to the

creation of a measure for articulated motion complexity (the final step in Figure 3.1).

To the best of our knowledge, there exists no standardized motion complexity measure

for measuring articulated motion complexity, so a new measure is presented. We

use the complexity domains listed and summarized in Table 3.2 as a foundation

for defining complexity, where each measure contributes to the overall complexity

measure. We specifically utilize a data fusion (weighted sum) approach. After the most

important and non-redundant features have been selected, a weighted combination of

the features is used as basis for the complexity measure. The weights for each feature

are determined by the mean response of the expert panel during feature selection, but

can be adjusted as desired depending on the application domain. In a case where a

group of similar features exist (such as both the leftward movement percentage and

rightward movement percentage), a single weight can be used for the group as a whole

and divided equally among them.

The weighted sum allows for integrating all of the individual selected global

temporality features into a single measure, while giving more weight to features that

are believed to contribute more to motion complexity and less weight to those that

may not have as large of a degree of influence. In order to adjust the complexity

measure output to fall on a 0− 1 scale, the final weighted sum is divided by the total

sum of the weights, and each feature is divided by the maximum value of the feature.

On this scale, a ‘0’ indicates the lowest possible complexity while a ‘1’ indicates the

highest possible complexity. Therefore, the final motion complexity measure is defined

as
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∑n
i=1weighti ×

featurei
maxi∑n

j=1weightj
(3.3)

where n is the total number of selected features, i is the current feature, weighti is

the weight value assigned to feature i, featurei is the value of feature i, and maxi is

the maximum value of feature i observed over all of the videos (used to scale between

0− 1).

3.5 Implementation & Results

This section discusses the details of the dataset that was used in this work, as well

as the implementation details of the proposed method in Figure 3.1. The results of

using the proposed measure on the dataset for both predicting complexity values and

classifying the video class are also observed. While we summarize the utilized dataset

here, a more detailed description and overview of the spider dataset is provided in

Appendix C.1.

3.5.1 Dataset

Our work utilizes a dataset of high frame rate videos containing samples of two species

of Schizocosa wolf spider: S. bilineata and S. crassipalpata. There are 52 total grayscale

videos in the dataset, where each video is roughly six seconds in length. The dataset

is divided into two halves (one half for each species), while each of those halves is

further divided into two (high diet and low diet). The separation of high diet from

low diet comes from the biological expectation that nutrient intake could influence the

degree to which spiders can engage in complex courtship displays. Thus, by varying

the diet of individuals, we can assess whether there is a link between nutrient intake
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and courtship complexity.

Each video has a temporal resolution of 250 FPS for capturing the extremely quick

movements of the spiders, and a varying spatial resolution due to cropping out the

areas of interest in each clip. When computing optical flow vectors for each frame,

any vector with a very small magnitude (α < 0.02) is discarded before computing

the local statistical features to eliminate noise and ignore areas with no movement.

Adjusting this threshold could cause significant changes in the final results, and should

be selected carefully depending on the application domain.

Using an optical-flow coloring technique [4], a color can be assigned to each optical

flow vector corresponding to the magnitude and direction. The color mapping chart

for accomplishing this technique is shown in Figure 3.2. A sample frame from both

species of spider along with corresponding colored movement frame using the technique

from [4] is shown in Figure 3.3 and Figure 3.4. More detailed examples of the types of

movements being displayed by these spiders can be seen in Appendix C.1 in Table C.2.

Figure 3.2: Mapping chart for colorizing optical flow vectors (image taken directly
from [4]).

3.5.2 Feature Selection

After computing the 63 global temporality features (as discussed in Section 3.2), we

perform feature selection on the spider dataset. Due to the completely different nature
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Figure 3.3: A sample of S. bilineata from the spider dataset (left) with corresponding
colored optical flow (right) using the coloring technique described in [4].

Figure 3.4: A sample of S. crassipalpata from the spider dataset (left) with corre-
sponding colored optical flow (right) using the coloring technique described in [4].

of magnitude and direction, PFA was computed on the two sets of features separately.

As PFA utilizes k-means clustering as part of the algorithm, the clustering can result

in different clusterings based on its random initialization. To remedy this, PFA was

computed 1000 times on each set to minimize the impact of different chosen features

as a result of the random seeding of k-means.

Running PCA on the entire set of global directional features revealed that the data

can be represented with over 99% accuracy using only 5 out of the 12 components.

For this reason, the PFA algorithm was set to choose the 5 best features from the

original 12 features (and thus k-means clustering was set to 5 clusters by the PFA

algorithm). The 5 selected directional features were 1) mean, 2) RVL, 3) skewness, 4)

Rayleigh test score, and 5) right movement percentage. To adjust for spiders facing

opposite directions (symmetry), the left movement percentage was kept as well to give
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the best 6 features.

Similarly, running PCA on the entire set of global magnitude-based features

revealed that the data can be represented with over 99% accuracy using only 4 out of

the 45 components. For this reason, the PFA algorithm was set to choose the 4 best

features from the original set (and thus k-means clustering was set to 4 clusters by the

PFA algorithm). The 4 selected magnitude-based features were 1) kurtosis of rightward

movement, 2) kurtosis of leftward movement, 3) kurtosis of upward movement, and

4) maximum. Note that kurtosis of downward movement was not included with the

other three directions, but increasing the desired number of magnitude-based features

to 5 then selects this feature as well. By including this feature, this gives the best

10 selected features from the original 63, and reveals the importance of kurtosis as a

descriptor.

From these features selected using PFA (in addition to a few other features we

still hold belief in them contributing significantly to complexity), a panel of spider

researchers were asked to provide a rating on how important they believed each of

the features to be toward contributing to complexity (0=No effect, 1=Small effect,

2=Medium effect, 3=Large effect). They were also asked to provide for each feature

whether they were confident of their response or not (0=Not confident, 1=Confident).

If they indicated a high confidence value that a feature was important, we included

the feature. Likewise, if they indicated a high confidence value that a feature was not

important, we disregarded the feature. In addition, a t-test was performed on each of

the features to test data set separability for three cases: a) species 1 vs. species 2, b)

species 1 (high diet) vs. species 1 (low diet), and c) species 2 (high diet) vs. species 2

(low diet) where ‘0’ indicated not significant and ‘1’ indicated significant. A detailed

summary of this expert complexity study is provided in Appendix A.

Finally, a correlation test between the features was observed to see if any selected
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features were highly correlated (indicating that several features might be redundant).

After performing PFA, polling spider researchers with domain knowledge, and observing

the results of the t-test and correlations, the final set of selected features were chosen.

These are presented in Table 3.3 along with the results of the expert polling and t-test

experiments. A value of N/A indicates that the expert panel was not polled about

that feature, as they were only polled on features chosen by the PFA algorithm. It is

observed that skewness, kurtosis, and entropy are all useful measures for complexity.

Human expert understanding stated that directional changes, number of clusters,

movement runs, and Rayleigh test are expected to contribute greatly to the final

measure, although their confidence was low for both movement runs and Rayleigh

test. If a feature was shown to have a t-test value of ‘1’ for at least two of the three

scenarios (species 1 versus species 2, species 1 high diet versus species 1 low diet, and

species 2 high diet versus species 2 low diet), then it was kept in the final feature set.

3.5.3 Complexity Metric

After the final subset of global temporality features were selected, a data fusion

(weighted combination) of the features was used as the complexity measure function

as described in Section 3.4. The weights for each feature were determined by the mean

response of the expert panel, and rounded to an integer in the set {1, 2, 3}. In a case

where a group of similar features existed (such as kurtosis of the magnitude values in

each of the four directions), a single weight was given to the group and divided equally

among them. Thus, instead of assigning a 1 to each of the directional kurtosis values,

0.25 was assigned. This prevented a large group of similar features from overshadowing

the weights of non-grouped, individual features in the final calculation. A weighted

sum approach allows for the contribution of a large set of features, while weighting
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Table 3.3: The final selected features with the t-test results and the expert panel’s
belief.

specific ones higher or lower in terms of its contribution to the final complexity value.

3.5.4 Complexity Results

After determining the feature values and weights, the complexity measure was used to

compute a complexity value for each spider video (as shown in Figure 3.1). For each

video, a motion complexity value between ‘0’ (not complex) and ‘1’ (complex) was

computed. We observed how the complexity values compared between the two species

as a whole, as well as between the high and low diets of the two species separately.

Figure 3.5 shows the computed complexity values plotted for each of the four cases,

split over four lines for easier visualization. Note that classifying the species using the

measure is not the goal of this chapter, but is ultimately a desired effect of having
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the measure. It can be seen in Figure 3.5 that S. bilineata (high diet) forms a tight

cluster, with the exception of a few outliers. S. bilineata (low diet) follows a similar

pattern. These outliers in the dataset do correspond to spiders that were more visually

active, while the videos with the tightly clustered complexity values were mostly still

except for an occasional leg movement. Thus, for these cases where outliers do occur,

the spiders were indeed displaying more complex movements in the corresponding

videos (such as displaying multiple movements while walking forward) that caused

the complexity to spike. Therefore, this demonstrates that the measure is producing

accurate values.

Figure 3.5: The final complexity values for the dataset (each data point corresponds
to a single video in the dataset).

As outliers and overlapping values can make the data difficult to interpret in

Figure 3.5, Figure 3.6 displays the same data points as normal distributions for the

three comparative cases. As can be seen in each case, and as confirmed by a statistical t-

test, the complexity values are not significantly different (that is, significantly separable

by their means for classification purposes), which is mostly due to the outliers of

S. bilineata. As a human observer, it is also not obvious that visual differences exist

between the motion of high diet samples and low diet samples within a species. We

do believe, however, that the complexity values accurately correspond to what is
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displayed in each video from the dataset, providing an accurate measure.

Figure 3.6: The normal distributions of the complexity values for a) S. bilineata
vs. S. crassipalpata, b) S. bilineata (High diet) vs. S. bilineata (Low diet), and c)
S. crassipalpata (High diet) vs. S. crassipalpata (Low diet).

Some interesting observations revealed in Figure 3.6 are 1) S. bilineata complexities

deviate more greatly from the mean than S. crassipalpata, and 2) the high diets in each

case have (on average) greater complexities than the low diets. A significantly larger

dataset may give a better image of the separability (classification) abilities of the

measure, but is again not the focus of this chapter. In addition, it is not completely

understood if spider motion can be accurately differentiated by an automated numerical

measure, and more work needs to be done in this area. In Chapter 4 and Chapter 5, we

present two alternative approaches toward quantifying articulated motion complexity,

and demonstrate the abilities of both in terms of both prediction of complexity scores

and classification.
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3.6 Summary

In this chapter, we have shown that optical flow-based features can form the basis of a

measure for quantifying the complexity of visual articulated motion. The potential of

these features was shown using a case study on Schizocosa wolf spider movement during

courtship, and demonstrated that the measure can be used for describing general

articulated motion. The computed complexity values not only provide a descriptive

measure of motion, but demonstrate some capability for being used in the classification

of species by their movement complexity. These results can further contribute to a

better understanding of the behavior and communication of wolf spiders during their

courtship routine, as well as other non-spider species. In addition, a user study on

spider researchers was presented to obtain expert belief of which features contribute to

motion complexity, and to what degree do the features contribute. Most importantly,

this work provides the foundation for a general motion complexity measure that can

benefit the community.

In Chapter 4, we improve on this optical flow technique by creating a new set of

features from the computed flow estimation that take into account six identified motion-

complexity domains believed to cover the various aspects of complexity. Two new

domains that are explored include motion repetition (using techniques from Fourier

analysis to extract the primary frequencies) and motion synchrony (measuring multiple

areas of movement in a video frame that are moving at the same time). The efficacy

of using the new features for measuring complexity is again demonstrated using a

weighted-sum measure, but also trained linear-discriminant classifiers for distinguishing

motion classes (classification) and predicting complexity scores for new motion samples.

A sequential feature selection algorithm is utilized to identify the complexity features

that contribute the most toward correctly predicting complexity scores and accurately



60

classifying motions. In addition, a user study on motion complexity is presented for

demonstrating participant belief of complexity domains and for use in training the

classifiers.

In Chapter 5, we abandon optical flow for spatial-temporal measures as the basis

for motion complexity features. Spatial-temporal features integrate both space and

time to determine where interesting and significant motion is happening within the

video volume. The efficacy of using the new features for measuring complexity is

demonstrated using trained linear-discriminant classifiers for distinguishing motion

classes and predicting complexity scores for new motion samples. A sequential feature

selection algorithm is utilized to identify the complexity features that contribute the

most toward correctly predicting complexity scores and accurately classifying motions.
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Chapter 4

Prediction and Classification Using

an Optical Flow-Based Complexity

Metric

In this chapter, we present two scenarios for analyzing visual articulated motion

complexity: motion complexity score prediction and motion classification. The problem

of predicting motion complexity scores is addressed using a data-fusion (weighted-sum)

approach based on both human belief and empirical evaluation, as well as using a

pattern-recognition (linear discriminant analysis) approach. The problem of classifying

motion classes is addressed using a pattern-recognition (linear discriminant analysis)

approach. Other than prediction and classification, uses for such a complexity measure

include video indexing, motion comparison, and the biological study of species. A user

study of motion complexity is presented, as well as a novel set of motion complexity

features that are computed from optical flow vectors and used in the training of the

complexity models. The accuracy of these models is demonstrated on both a dataset

of human actions and a dataset of high-frame-rate wolf spider movements. We show
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that this proposed set of motion complexity features is useful toward the creation

of a complexity measure for general articulated motion in video, and has significant

classification abilities. The work in this chapter is planned for publication in [15].

4.1 Introduction

Motion analysis is an important component of many computer vision systems and

application domains. In medical systems, motion signatures can be used to track

rehabilitation progress in order to assist with a quicker recovery. In visual surveillance

systems, motion patterns can be learned in order to signal when abnormal motion

signatures are detected, possibly indicating a current or upcoming security threat.

Motion, however, can be characterized in several different ways. For example, there are

shorter motion patterns (such as kicking or waving) as well as longer “tracked” motion

patterns (such as following a person through a crowd in a surveillance video). Similarly,

different motion patterns can have different levels of complexity. For example, the

motion of a person walking is less complex than a person performing a challenging

juggling routine. There has been, however, little work done on finding a general measure

for quantifying the complexity of visual motion. Having an established measure would

be useful for many tasks such as motion classification, motion comparison, video

indexing based off of complexity values, and advanced biological study of the visual

communication of species.

The goal of this chapter is to present a detailed study on the quantification of

visual motion complexity. Specifically, we propose a novel set of motion complexity

features that are used for both predicting complexity scores for videos and classifying

the motion from a video. While classification is not the goal of having a complexity

measure, it is a desired effect. One possible issue with using a complexity measure for
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classification is that two separate motions could have the same complexity value, thus

making the process of distinguishing between them in this way impossible. However,

as explored in this chapter, classification abilities are desired for instances such as the

biological study of spider species. For example, we explore the potential of using the

complexity features for the classification of spiders within a species with high nutrient

intake versus those with low nutrient intake.

The problem of predicting motion complexity scores is addressed using both a data-

fusion (weighted-sum) approach and a pattern-recognition approach based on linear

discriminant analysis. The problem of predicting motion classes is addressed using

a pattern-recognition (linear discriminant analysis) approach. Both the prediction

model and the classification model are trained by utilizing a user study on visual

motion complexity. The results of the user study are presented in this chapter, and in

further detail in Appendix B.

We specifically focus our efforts on articulated movement from a still camera and

a single subject. Our belief is that features should be chosen from several different

complexity domains that each contribute to the overall concept of visual motion

complexity instead of a single domain (such as motion intensity). These domains are

summarized in Table 4.1.

Motion Domain Description

Movement amount Spatial coverage of movement
Movement speed Speed of movement

Movement periodicity Repetition of movement
Movement synchronization Multiple parts moving simultaneously

Directional changes Degree of changes in direction
Number of moving parts Number of moving areas

Table 4.1: Set of motion complexity domains.

Several concepts from Chapter 3 are used again in this chapter. The same
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Horn-Schunck algorithm is used with no change in parameters. In addition, some

of the features remain similar (statistical measures of the optical flow). The main

differences in the features are the addition of statistical measures of both the horizontal

displacements and vertical displacements of the optical flow separately, and the addition

of higher-order features (motion synchrony, motion frequency analysis, and additional

clustering statistics). In addition, the motion complexity domains have been adjusted

to reflect the lessons learned from Chapter 3.

4.1.1 Problem Definitions

This work presents an analysis of visual motion complexity by exploring the prediction

of motion complexity scores, as well as distinguishing motion classes (classification).

Here we provide formal definitions for each of these problems scenarios.

Complexity Score Prediction The problem of predicting motion complexity

scores is defined as follows: Given a set of videos V where each video V = [F 1, F 2, . . . , F t],

F i
x,y is the pixel in the xth row and yth column of the ith image frame, and t is the total

number of frames in the video, our goal is to create a complexity model C that takes

a motion sequence of images (video) as input and generates a value between 1 (lowest

possible complexity) and 10 (highest possible complexity) as output. Thus, we aim to

find or train a function C : V → [1, 10], where [1, 10] is the set of integers between 1

and 10, inclusive. The scale was changed from the [0, 1] scale used in Chapter 3 to

compensate for the user study presented in Section 4.3. The values, however, can be

scaled to any other range of values depending on the application domain.

Motion Class Classification The problem of classifying the motion class of a

video is defined as follows: Given a set of videos V defined as above, our goal is to
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train a classification model C using feature set M and assigned motion classes taken

from the set L for the purposes of classifying unknown motion instances. Formally,

we aim to train a function C : V → {L1, L2, . . . , Ln} using a set of motion complexity

features and videos from a dataset that, given a new video as input, predicts a motion

class from L. Here, n is the number of motion classes that could be assigned.

4.1.2 Approaches

The proposed set of motion complexity features is computed from optical flow. A

recent survey of optical flow can be found in [21], which organizes current approaches

and practices. Two of the most popular optical flow algorithms are the Horn-Schunck

algorithm [26] and the Lucas-Kanade algorithm [42], with a comparison of the two

given in [6]. We specifically apply the Horn-Schunck algorithm, categorized in [21] as a

regularization model that utilizes a spatial flow gradient constraint. While any optical

flow technique could be used to compute the features, the Horn-Schunck approach

was chosen because 1) the speed of computation is not a concern to us, and 2) the

majority of the species-analysis literature utilizes that algorithm and we desire to use

an algorithm already understood by that community. Thus, the same optical flow

algorithm applied in Chapter 3 is used here with no changes.

As visual motion complexity has no standard definition, our approach relies on

a user study where the complexity values for videos are obtained from a group of

participants based on human opinion. This user study on visual motion complexity

is introduced in Section 4.3 and detailed further in Appendix C. A set of motion

complexity features are then computed for each video, which are defined in Section 4.2.

We utilize a sequential feature-selection algorithm to choose the subset of features

that give the best accuracy in terms of prediction and classification, and compare
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a scenario using the best features against a scenario using all of the features. The

selected motion complexity features are 1) integrated using a data fusion technique

to create a weighted-sum complexity prediction model, 2) combined with the user

supplied complexity ratings to train a discriminant analysis classifier for prediction,

and 3) combined with the motion classes to train a discriminant analysis classifier for

classification. A visual overview of our approach is shown in Figure 4.1.

Figure 4.1: Overview of the three approaches.

Complexity Score Prediction (Data Fusion) We propose an approach for mo-

tion complexity prediction that utilizes a fusion of the motion complexity features.

Specifically, we create a weighted-combination model C defined as

C =

∑n
i=1weighti ×

Fi

maxi∑n
j=1weightj

(4.1)

where n is the total number of selected features, i is the current feature, weighti

is the weight value assigned to feature i, Fi is the value of feature i, and maxi is the

maximum value of feature i observed over all of the videos (used to scale between 0-1).

The set of weight values are generated for each feature in F based on human belief from

a user study on motion complexity. The performance of this model is compared against

the same model where the weights are determined by a computer. The accuracy is

determined by comparing the model against human-assigned complexity scores for
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each video in V. We also investigate an alternate scenario where the weights are

assigned by a computer algorithm that attempts to find a set of weights maximizing

the accuracy. The accuracy of this empirical-based model is compared against the

human-belief model.

Complexity Score Prediction (Linear Discriminant Analysis) We propose

an alternative approach for motion complexity prediction that utilizes a pattern-

recognition-based technique. We train a classification model using the human-assigned

complexity scores from the user study. Specifically, we use linear discriminant analysis

as the learning algorithm for the classifier. This technique was chosen using empirical

testing among several classification algorithms including decision trees, clustering

techniques, and support vector machines (SVMs). This trained classifier attempts to

correctly predict the complexity score of an unseen motion class.

It is worth noting that the prediction problem is being treated as a classification

problem. That is, instead of training a regression-based function, the prediction values

are rounded to the nearest integer and used in a trained classification model. While

the ultimate goal that this work progresses toward is a specific, real-number-based

score, many application domains only require a higher-level categorization of the

complexity scores. For example, many applications may only require the knowledge of

whether the computed score is low complexity, medium complexity, or high complexity.

Other domains may only need the complexity score on a scale of one to ten. This

work presents the categorized version of the problem that can ultimately lead to a

regression-based analysis in future work.

Motion Class Classification (Linear Discriminant Analysis) Instead of pre-

dicting complexity scores, our third approach toward visual motion analysis attempts
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to correctly classify the motion class of the video. For example, it will attempt to

distinguish between a walking motion video and a running motion video. Similar

to our approach for complexity score prediction using a pattern-recognition-based

approach, we use the same approach here. That is, we train a linear discriminant

classifier using the motion complexity features and the motion classes. The classifier

attempts to correctly determine the motion class of an unseen video.

4.1.3 Contributions

The goal of this work is to investigate both a data-fusion and a pattern-recognition

approach towards the creation of a model for predicting the complexity scores of

articulated motion in video as well as classifying the motion class using a novel set of

motion complexity features. Such a model could be useful as a measure in a number

of applications such as providing a numerical value that can be integrated in the

understanding of various species (such as wolf spiders), indexing motion/activity

videos, or classifying a wide range of movements (such as one dance routine from

another). The overall contributions of this chapter are as follows:

1. Summarizes the results of a user study on visual motion complexity

2. Presents a novel set of motion complexity features based on optical flow for use

in analyzing complexity in general articulated motion

3. Demonstrates the performance of a data-fusion (weighted sum) model for pre-

dicting motion complexity scores

4. Demonstrates the performance of a pattern-recognition (linear discriminant anal-

ysis) model for predicting articulated motion complexity scores and classifying

video motion classes
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4.2 Motion Complexity Features

In this section, the motion complexity features are defined that are the foundation of

the methods used in the rest of the chapter. These features are computed directly

from the optical flow output, where only the moving pixels (with sufficient magnitude)

in each frame are considered in the computation. Optical flow computes a flow frame

Oi between every two pairs of sequential video frames Fi and Fi+1. Each pixel in a

flow frame is a vector [u v] where u is the horizontal displacement and v is the vertical

displacement of the pixel under consideration.

We specifically compute the motion complexity features using the flow magnitudes

and the flow directions. Motion strength, or magnitude, is a useful measure for

determining the intensity of motion over time. It also allows for an estimation of

motion speed, where larger magnitude values indicate faster motion. The set of flow

magnitude images M = {M1,M2, . . . ,M t−1}, where M i
x,y represents the magnitude

at spatial location (x, y) between video frames F i and F i+1, is computed on the set of

optical flow vectors O using the Euclidean distance formula:

M i
x,y =

√
(uix,y)

2 + (vix,y)
2 (4.2)

where [uix,y, v
i
x,y] is the motion displacement vector at Oi

x,y. We will use the notation

mi to represent the set of magnitudes in flow magnitude frame M i as a flattened

(one-dimensional) vector with length l. Direction indicates the orientation in which the

most motion is made. Similar to magnitude, direction can be obtained from an optical

flow vector [u, v]. A set of flow direction images D = {D1, D2, . . . , Dt−1}, where Di
x,y

represents the direction at spatial location (x, y) between video frames F i and F i+1,

is computed on the set of optical flow vectors O using the following equation:
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Di
x,y = tan−1(

vix,y
uix,y

) (4.3)

where Di
x,y is expressed in radians. We will use the notation di to represent the

set of directions in flow direction frame Di as a flattened (one-dimensional) vector

with length l. For features that are computed as one value per video frame, these

were averaged over all frames. Only optical flow vectors over a given threshold were

used in the calculations, while the rest were disregarded as areas of non-movement.

The motion complexity features are defined as follows for a given frame i:

AverageMagnitude – Average flow magnitude per frame: mean(mi)

AverageU – Average horizontal flow magnitude per frame: mean(ui)

AverageV – Average vertical flow magnitude per frame: mean(vi)

MaximumMagnitude – Maximum flow magnitude per frame: max(mi)

MaximumU – Maximum horizontal flow magnitude per frame: max(ui)

MaximumV – Maximum vertical flow magnitude per frame: max(vi)

MedianMagnitude – Median flow magnitude per frame: median(mi)

MedianU – Median horizontal flow magnitude per frame: median(ui)

MedianV – Median vertical flow magnitude per frame: median(vi)

EntropyMagnitude – A measure of randomness in motion speed: −
∑l

x=1 P (mi
x)logP (mi

x)

EntropyU – A measure of randomness in motion speed: −
∑l

x=1 P (uix)logP (uix)

EntropyV – A measure of randomness in motion speed: −
∑l

x=1 P (vix)logP (vix)
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KurtosisMagnitude – A measure of the peakedness of the magnitude distribution:

kurtosis(mi)

KurtosisU – A measure of the peakedness of the magnitude distribution: kurtosis(ui)

KurtosisV – A measure of the peakedness of the magnitude distribution: kurtosis(vi)

NumberOfClusters – Number of areas of movement (connected component clusters)

in a frame

DirectionalChanges – Number of times the average direction of the moving pixels

(mean(di) in a frame significantly changes (more than 45 degrees) from one

frame to the next over the course of the video, normalized by frame count t

DominantFrequency – Dominant frequency (in hertz) of the average magnitudes

(AverageMagnitude) for an entire video, computed by taking the discrete Fourier

transform and selecting the largest frequency response

DominantFrequencyStrength – The response value of DominantFrequency

MovementSynchrony – Number of frames with more than one area of movement

divided by the number of frames with at least one area of movement, where the

areas of movement are considered to be connected component clusters

AverageClusterSize – Average size of the movement areas (connected component

clusters) per frame (in pixels)

The features are chosen to represent all six motion complexity domains, as presented

in Table 4.1. Each feature is mapped into exactly one of the six motion complexity

domains. This helps to identify which features work together to determine what

makes a motion complex. In addition, a weight is assigned to each motion complexity
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domain, determined during the user complexity study (as summarized in Section 4.3)

by summing the rating scores in each domain, and normalizing by dividing by the

total rating sum. The weights for individual features are assigned by dividing the

associated domain weight equally among them. The mappings and assigned weights

are shown in Table 4.2.

Motion Domain Weight Included Features Weight

Movement amount 0.19 AverageClusterSize 0.19

Movement speed 0.15

AverageMagnitude 0.01
AverageU 0.01
AverageV 0.01
MaximumMagnitude 0.01
MaximumU 0.01
MaximumV 0.01
MedianMagnitude 0.01
MedianU 0.01
MedianV 0.01
EntropyMagnitude 0.01
EntropyU 0.01
EntropyV 0.01
KurtosisMagnitude 0.01
KurtosisU 0.01
KurtosisV 0.01

Movement periodicity 0.15
DominantFrequency 0.075
DominantFrequencyStrength 0.075

Movement synchronization 0.16 MovementSynchrony 0.16
Directional changes 0.21 DirectionalChanges 0.21

Number of moving parts 0.14 NumberOfClusters 0.14

Table 4.2: Motion complexity features mapped into their respective domains with
associated weights.

4.3 User Study On Complexity

In this section, a user study on motion complexity is presented to determine what

makes a motion complex in terms of human belief. This study is further detailed
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in Appendix B. In addition, the datasets that the user study utilizes are detailed,

which are also used in the rest of this chapter. The datasets are further described in

Appendix C.

4.3.1 Datasets

Basic human actions The human action dataset used in this chapter is the Weiz-

mann dataset [23], a widely used collection of basic human motions for comparing

action classification systems. It contains 81 low-resolution (180 × 144) video sequences,

recorded at 25 FPS, displaying nine different people performing nine basic actions.

The displayed action classes are “running (run)”, “walking (walk)”, “jumping jack

(jack)”, “jumping forward on one leg (skip)”, “jumping in place on two legs (jump)”,

“galloping sideways (side)”, “waving one hand (1wave)”, “waving two hands (2wave)”,

and “bending (bend)”. An example of the “jumping jack” action can be be seen in

Figure 4.2 with significant motion colorized according to the technique used by Baker

et al. [4].

Figure 4.2: Example of a jumping-jack action in the human database, with optical
flow field colorized [4] to indicate motion.
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Spider courtship movements The second dataset contains high frame rate videos

of samples of two species of Schizocosa wolf spider: S. bilineata and S. crassipalpata.

There are 52 total grayscale videos in the dataset, where each video is roughly six

seconds in length. The dataset is divided into two halves (one half for each species),

while each of those halves is further divided into two (high diet and low diet). The

separation of high diet from low diet comes from the expectation that nutrient intake

could influence the degree to which spiders can engage in complex courtship displays.

Thus, by varying the diet of individuals, we can assess whether there is a link between

nutrient intake and courtship complexity. Each video has a temporal resolution of

250 FPS for capturing the quick movements of the spiders, and a varying spatial

resolution due to cropping out the areas of interest in each clip. When computing

optical flow vectors for each frame, any vector with a very small magnitude (< 0.02)

is discarded before computing the motion complexity features to eliminate noise and

areas of non-movement. Adjusting this threshold could cause significant changes in

the final results, and should be carefully selected depending on the application domain.

An example of S. crassipalpata (high diet) can be be seen in Figure 4.3 with significant

motion colorized according to the technique used by Baker et al. [4].

Figure 4.3: Example of S. Crassipalpata in the spider database, with optical flow field
colorized [4] to indicate motion.
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4.3.2 User Study On Complexity

A user study was conducted on 24 participants from varying backgrounds to investigate

what (based on user belief) makes a motion complex. For each participant, a series of

videos was shown from the datasets described in Section 4.3.1. Each clip was played

repeatedly while waiting for the user to rate the displayed motion on a scale of one

(low complexity) to ten (high complexity). 25% of the displayed videos were randomly

chosen to be shown twice to measure a rater’s consistency. A one-way ANOVA model

was used to determine which raters were being sufficiently consistent, which lead to

one user being thrown out from use in future computations. A range test was also

performed to ensure that the range of ratings a user gave were larger than four. One

user gave all ratings between one and three, and was also thrown out from future

computations. A summary of the ratings given to humans for the nine motion classes

is shown in Figure 4.4, while the summary of the ratings given to spiders for the four

cases is shown in Figure 4.5. It is interesting to note that while the spider scores were

nearly identical for each of the two species, the low diet samples received a few more

votes towards being more complex than the high diet samples.

In addition, each user was asked to rate on a scale of one (not important) to five

(important) the degree of influence they believed each of the six motion complexity

domains presented in Table 4.1 to have in terms of contributing to the overall complexity

value. These ratings are used as the basis for determining the feature weights in

the weighted-sum prediction model. A summary of the ratings given to the six

motion complexity domains is shown in Figure 4.6. It is shown that users strongly

believe that the number of moving parts and the amount of movement were the

most important contributors to complexity, while the least important were repeating

movement (periodicity) and synchronized movement. The complexity domain with
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Figure 4.4: Overview of user ratings for the nine human motions.
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Figure 4.5: Overview of user ratings for the spider movements of S. bilineata (B) and
S. crassipalpata (C).
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the most disagreement among the users was the directional changes domain, while the

domain with the most agreement was revealed to be the number of moving parts.

Domain
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Figure 4.6: Overview of user scores for complexity domain influence.

4.4 Implementation & Results

Here we present the implementation of the three problem scenarios, along with

performance accuracy results. All three approaches rely on the motion complexity

features defined in Section 4.2, as well as the ratings and beliefs from the user study

in Section 4.3.

4.4.1 Data Fusion Approach

Using the assigned feature weights in Table 4.2 (obtained from the user ratings of the

complexity domains), a data-fusion technique was used to determine the accuracy of
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a model based on human belief of complexity importance. The motion complexity

features were computed for both the human and spider datasets, then used with the

associated weights as a weighted-sum model. The predicted scores were then computed

using the weighted model, and compared to the average ratings that the user-study

participants assigned to each video. The “allowed range” was varied to demonstrate

the difference between only allowing an exact complexity prediction (range 0), allowing

the complexity score to be off by one in either direciton (range 1), etc. The results

(accuracy and correlation of the predicted scores against the user provided scores) of

this experiment are presented in Table 4.3.

To compare against the “participant belief” weighting approach, a computer

program was executed to continually randomly generate (over a period of ten minutes)

a set of weights that summed to one, where the set of weights with the best accuracy

was used. That is, the program locates the best possible set of weights in the allotted

amount of time. This is reported in Table 4.3 as “empirical weighting”. To compare

against the participant belief weighting set of {0.19, 0.15, 0.15, 0.16, 0.21, 0.14} from

Table 4.3 used for both humans and spiders, the randomization technique recorded the

best combination of human weights as {0.47, 0.02, 0.18, 0.09, 0.18, 0.07} and spider

weights as {0.24, 0.21, 0.05, 0.12, 0.33, 0.04}. The top three domains for influencing

complexity in humans are movement amount, movement periodicity, and directional

changes, while the top three for spiders are movement amount, movement speed, and

directional changes. Thus, human belief matches the randomization technique on

movement amount and directional changes when choosing the top three, but misses

on the importance of movement synchronization.

As shown in Table 4.3, the empirical-based weighting scheme chose feature weights

that performed significantly better, indicating that human belief may not be as reliable

in terms of weighting the complexity domains and, correspondingly, the features.
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Dataset Weighting Allowed Range Correlation Accuracy

Human

Participants

0 0.06 3%
1 0.34 28%
2 0.34 67%
3 0.59 83%

Empirical
0 0.21 47%
1 0.63 89%
2 1.00 100%

Spider

Participants

0 0.46 38%
1 0.57 80%
2 0.85 96%
3 1.00 100%

Empirical
0 0.39 52%
1 0.77 92%
2 1.00 100%

Table 4.3: Accuracy of the data fusion approach.

Allowing the complexity prediction to be off by one (allowed range = 1), which may

be acceptable depending on the application domain, showed accuracy improvements

by up to 42%. Setting the allowed range to two again revealed a significant increase

in accuracy, with the empirical-based weights showing 100% accuracy.

4.4.2 Pattern Recognition Approach (Predicting

Complexity Scores)

Instead of relying on human belief to determine which areas of complexity are most

important, a pattern recognition approach was used to learn the important features

for each dataset. Specifically, a linear discriminant classifier was trained on the motion

complexity features using the average human complexity scores (rounded to the nearest

integer) as the training labels. The training/testing split used was 2
3
/1

3
. To compensate

for the random selection of the training and testing sets, each classifier was trained and

tested 1000 times, with the average classification score used for the classifier accuracy.
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Several tests were performed to observe how the accuracy changes. For both the

human and the spider datasets, the training score was first set to be the average human

complexity score for each individual video. The second case set the training score to be

average human complexity score for the given video class. For example, if the average

“bend” action for the human videos was a score of 0.3, then every “bend” video was

assigned a 0.3. The number of features used was also varied from using all of the features

to only using the “best” (top) features determined by a sequential feature selection

algorithm. The top features for the human dataset were MaximumU, EntropyU,

KurtosisMagnitude, NumberOfClusters, MovementSynchrony, and MeanClusterSize,

while the best features for the spider dataset were EntropyMagnitude, EntropyU,

KurtosisMagnitude, KurtosisU, NumberOfClusters, and DominantFrequency. Thus,

NumberOfClusters matches the belief of the user study participants as being important

for contributing to complexity. These results are shown in Table 4.4. As can be seen,

using only the top features increases the accuracy in most cases. Increasing the allowed

range to 1 or 2, which can be acceptable in some domains, reveals significantly greater

prediction accuracy. In addition, using the mean class scores instead of the individual

video scores yielded significantly better accuracy.

4.4.3 Pattern Recognition Approach (Classifying Motion

Classes)

The previous classifier-based approach was used to predict complexity scores. Here,

another classifier using linear discriminant analysis is trained, but instead used to learn

and classify video motion classes. That is, instead of learning and predicting scores

for a bend video using motion complexity features, it attempts to learn and classify a

video motion as “bend”. We reiterate that classification is not a goal of the metric, but
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Dataset Training Score Features Allowed Range Accuracy

Human

Video Score

All
0 30%
1 62%
2 86%

Top
0 46%
1 77%
2 97%

Mean Class Score

All
0 70%
1 80%
2 93%

Top
0 66%
1 81%
2 91%

Spider

Video Score

All
0 30%
1 76%
2 93%

Top
0 43%
1 88%
2 99%

Mean Class Score

All
0 66%
1 87%
2 92%

Top
0 73%
1 93%
2 96%

Table 4.4: Accuracy of the discriminant analysis approach for predicting complexity
scores.

a desired effect. Here, the classifier is trained for five different scenarios: 1) classifying

human actions, 2) classifying spiders into the original four classes, 3) classifying as

either spider species one or species two, 4) classifying between high diet and low diet

for species one, and 5) classifying between high diet and low diet for species two. Using

sequential feature selection, the top features for each of the five scenarios, respectively,

are 1) KurtosisV, NumberOfClusters, DominantFrequencyStrength, and MeanClus-

terSize, 2) EntropyU, KurtosisV, NumberOfClusters, and DominantFrequency, 3)

EntropyMagnitude and NumberOfClusters, 4) MedianV, DirectionalChanges, and
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MovementSynchrony, and 5) AverageMagnitude, KurtosisMagnitude, and Dominant-

Frequency. This reveals that important motion complexity features for classification

includes NumberOfClusters, as well those regarding the dominant frequency. The

results are shown in Table 4.5. For classification, it can be seen that using only the

top features produces mixed results, and actually causes a significant drop in accuracy

for several cases. While the classifier does well at classifying one spider species from

another, it struggles to correctly classify between high diet and low diet. This matches

the human complexity belief between high and low diet (that is, humans cannot

distinguish between the two cases), which is shown in Table 4.5.

Dataset Label Domain Features Accuracy

Human Nine human actions
All 66%
Top 61%

Spider {BH , BL, CH , CL}
All 44%
Top 42%

Spider {B, C} All 87%
Top 92%

Spider {BH , BL}
All 61%
Top 42%

Spider {CH , CL}
All 47%
Top 50%

Table 4.5: Accuracy of the discriminant analysis approach for classifying motion
classes.

4.5 Summary

We have presented an in-depth study of visual motion complexity by proposing a novel

set of motion complexity features for both prediction and classification. Based on a

user study of visual motion complexity, these features were used toward the creation

of a weighted-sum model of complexity scores for a dataset of human actions and

a dataset of spider movements. In addition, linear discriminant analysis was used
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to train classifiers for the purpose of both predicting complexity scores as well as

classifying motion classes. The complexity features were shown to be effective in many

cases for correctly classifying motion classes as well as predicting complexity scores,

notably when increasing the allowed error range to 1 or 2. It was also shown that

using a set of “best” features leads to increased accuracy for predicting complexity

scores, but produces mixed results for classification. Even greater accuracy gains were

made when using the mean class score instead of the individual video scores.

This chapter also revealed interesting results about specific motion complexity

features that contribute the most to the overall complexity value. Specifically, it was

observed that features involving the number of areas of movement, the kurtosis of

motion strength, and the dominant frequency were identified to be the most useful

features both by human participant belief and the feature selection algorithm. These

features, we believe, hold the most useful information about the motion signatures of

visual complexity.

In Chapter 5, we abandon optical flow for spatial-temporal measures as the basis

for motion complexity features. Spatial-temporal features integrate both space and

time to determine where interesting and significant motion is happening within the

video volume. It is our hope that interesting motion complexity information is hidden

in the space-time domain, and that the utilization of space-time interest points will

identify those hidden signatures. The efficacy of using the new features for measuring

complexity is demonstrated again using trained linear-discriminant classifiers for

distinguishing motion classes and predicting complexity scores for new motion samples.

A sequential feature selection algorithm is utilized to identify the complexity features

that contribute the most toward correctly predicting complexity scores and accurately

classifying motions.
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Chapter 5

A Motion Complexity Metric

Using Spatial-Temporal Features

In this chapter, we investigate the creation of a measure for quantifying the observed

articulated motion complexity of a single subject in video. Uses for having such

a measure include video indexing, motion classification, motion comparison, and

advanced biological study of visual communication. In addition, to the best of our

knowledge, no current standardized measure for visual articulated motion exists.

While the majority of previous attempts have utilized optical flow for capturing

the unique signatures of motion, our approach utilizes a novel set of motion com-

plexity features generated from a set of space-time interest points. By incorporating

information from both the spatial and temporal domains, we demonstrate the efficacy

of this set of features towards capturing the various signatures of articulated motion

complexity. The accuracy is shown on a set of human and spider videos through

the creation of a set of classifiers aimed at predicting both the complexity score of

an observed motion as well as classifying the motion class. As ground truth data is

nonexistent, a user study on motion complexity is conducted for obtaining ground
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truth information for the complexity values of the dataset videos. The work in this

chapter is planned for publication in [13].

5.1 Introduction

The analysis of motion is a critical component of many computer vision systems.

Motion estimation has made it possible to estimate three-dimensional structure,

recognize visual patterns for classification, and even recognize security threats or other

emergency situations that may be in progress or imminent. However, a component

of this analysis that has received little attention is the visual analysis of motion

complexity. That is, the vast majority of previous work has focused on how to

estimate motion and use the motion estimation for real-world problems instead of

analyzing the complexity of the motion itself. An important motion class that is

exemplified by the movement of many living beings is articulated motion. In such

cases, the object is composed of a set of segments connected by joints. The existence

of a measure that could quantify the visual complexity of articulated motion has many

potential uses in a variety of real-world domains. For example, an articulated motion

measure could allow for comparing one dance routine to another, indexing videos in a

search database based on the motion complexity, or studying the subtle differences

of the visual communication patterns of one species from another based only their

movements.

In this chapter, we investigate the creation of a complexity measure for articulated

motion complexity. The aim is to be able to accurately quantify the complexity of the

observed motion of any general articulated movement of a single subject recorded with

a non-moving camera. Throughout the process, we also aim to identify which aspects

of motion contribute toward the overall measure, as well as to what degree. There is no
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agreed upon definition of what it means to be visually complex with regards to motion.

Thus, we aim to not only identify a complexity value for a given set of motions, but

also the complexity domains that contribute to the idea of being “complex”. For

example, we investigate if larger/smaller, shorter/faster, or periodic/non-periodic

motions indicate more or less complexity. In order to do so, we generate a set of

motion complexity features that together cover all areas of the complexity domains.

Our approach relies on a new set of features that are generated from a set of space-

time interest points (STIPs). STIPs have long been used in the activity recognition

domain for learning a set of movements that accurately describe a motion. While a

large percentage of previous work has focused on using optical flow for estimating

motion, the approach presented in this chapter utilizes STIPs to locate the points in the

space-time volume of video data that are significantly “interesting”. By incorporating

both space and time in the feature set, the goal is to create a measure that can capture

both the spatial and temporal signatures of the displayed motion complexity. We

specifically investigate two uses of such a measure for demonstrating its usefulness:

1) predicting the complexity scores for a set of videos, and 2) classifying videos into

their respective motion classes. The accuracy is obtained by utilizing a user study on

motion complexity for obtaining the ground truth information. We also investigate

each motion complexity feature separately to observe its usefulness as a stand-alone

feature in terms of accuracy.

The vast majority of work in motion analysis has revolved around humans sub-

jects. Human subjects already have a large and readily available collection of videos

demonstrating a wide variety of movements. In addition, a prioritized desire exists

to study humans due to real-world applications in the security, entertainment, and

health domains. Other interesting domains exist, however, such as the analysis of

spider movements. A desire exists in the biological domain for more advanced ways to
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study the differences between a variety of species, and spiders provide a challenging

and exciting domain of exploration. One way to provide this more advanced analysis

of species is through the creation of a complexity measure, and this chapter explores

the creation and application of a complexity measure to both human subjects and wolf

spider subjects. By exploring two vastly different subjects, we can identify complexity

features that vary in importance depending on the domain. That is, a feature that

contributes greatly toward the complexity of a spider may have little contribution

toward the complexity of a human.

5.1.1 Problem Definitions

This work presents an analysis of visual motion complexity by utilizing space-time

interest points toward the prediction of motion complexity scores, as well as the

classification of motion classes (classification). Here we provide formal definitions for

each of these problems scenarios.

Complexity Score Prediction The problem of predicting motion complexity

scores is defined as follows: Given a set of videos V where each video V = [F 1, F 2, . . . , F t],

F i
x,y is the pixel in the xth row and yth column of the ith image frame, and t is the

total number of frames in the video, our goal is to create a complexity model C that

takes a motion sequence of images (video) as input and generates a value between 1

(lowest possible complexity) and 10 (highest possible complexity) as output. Thus,

we aim to find or train a function C : V → [1, 10], where [1, 10] is the set of integers

between 1 and 10, inclusive.

Motion Class Classification The problem of classifying the motion class of a

video is defined as follows: Given a set of videos V defined as above, our goal is to
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train a classification model C using feature set M and assigned motion classes taken

from the set L for the purposes of classifying unknown motion instances. Formally,

we aim to train a function C : V → {L1, L2, . . . , Ln} using a set of motion complexity

features and videos from a dataset that, given a new video as input, predicts a motion

class from L. Here, n is the number of motion classes that could be assigned.

5.1.2 Approaches

The proposed set of motion complexity features is computed based on the detection

of selective space-time interest points (S-STIPs) [9]. We utilize these S-STIPs to

investigate their efficacy toward describing motion complexity signatures. Our goal is

to detect hidden complexity information from the spatial-temporal domain that might

be otherwise hidden using only the spatial domain.

As visual motion complexity has no standard definition, our approach relies on a

user study (Appendix B) where the complexity values for videos are obtained from

a group of participants based on human opinion. This user study on visual motion

complexity is introduced in Section 4.3 and detailed further in Appendix C. A set

of motion complexity features are then computed for each video, which are defined

in Section 4.2. We utilize a sequential feature-selection algorithm to choose the

subset of features that give the best accuracy in terms of prediction and classification,

and compare a scenario using the best features against a scenario using all of the

features. The selected motion complexity features are 1) combined with the user

supplied complexity ratings to train a discriminant analysis classifier for prediction,

and 2) combined with the motion classes to train a discriminant analysis classifier for

classification. A visual overview of our approach is shown in Figure 5.1.
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Figure 5.1: Overview of the three approaches.

Complexity Score Prediction (Linear Discriminant Analysis) We propose

an alternative approach for motion complexity prediction that utilizes a pattern-

recognition-based technique. We train a classification model using the human-assigned

complexity scores from the user study. Specifically, we use linear discriminant analysis

as the learning algorithm for the classifier. This technique was chosen using empirical

testing among several classification algorithms including decision trees, clustering

techniques, and support vector machines (SVMs). This trained classifier attempts to

correctly predict the complexity score of an unseen motion class.

It is worth noting that the prediction problem is being treated as a classification

problem. That is, instead of training a regression-based function, the prediction values

are rounded to the nearest integer and used in a trained classification model. While

the ultimate goal that this work progresses toward is a specific, real-number-based

score, many application domains only require a higher-level categorization of the

complexity scores. For example, many applications may only require the knowledge of

whether the computed score is low complexity, medium complexity, or high complexity.

Other domains may only need the complexity score on a scale of one to ten. This

work presents the categorized version of the problem that can ultimately lead to a

regression-based analysis in future work.

Motion Class Classification (Linear Discriminant Analysis) Instead of pre-

dicting complexity scores, our second approach toward visual motion analysis attempts
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to correctly classify the motion class of the video. For example, it will attempt to

distinguish between a walking motion video and a running motion video. Similar

to our approach for complexity score prediction using a pattern-recognition-based

approach, we use the same approach here. That is, we train a linear discriminant

classifier using the motion complexity features and the motion classes. The classifier

attempts to correctly determine the motion class of an unseen video.

5.1.3 Contributions

The goal of this work is to investigate two pattern-recognition-based approaches towards

the creation of a model for both predicting the complexity scores of articulated motion

in video as well as classifying the motion class using a novel set of motion complexity

features. Such a model could be useful as a measure in a number of applications

such as providing a numerical value that can be integrated in the understanding of

various species (such humans, mice, or wolf spiders), indexing motion/activity videos,

or classifying a wide range of movements (such as one dance routine from another).

The overall contributions of this chapter are as follows:

1. Presents a novel set of motion complexity features based for use in analyzing

complexity in general articulated motion based on features from the space-time

domain (selective space-time interest points)

2. Provides a comparison of the accuracy power of each individual feature over

several scenarios, revealing the interesting features that contribute the most

toward a complexity measure

3. Demonstrates the performance of a pattern-recognition (linear discriminant

analysis) model for predicting articulated motion complexity scores
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4. Demonstrates the performance of a pattern-recognition (linear discriminant

analysis) model for classifying video motion classes

5.1.4 Datasets

We again use the two datasets from the previous chapter: a dataset of human actions

and a dataset of spider motions demonstrated during their courtship routine. We

briefly review them here for completeness. A detailed description is provided in

Appendix C.

Basic human actions The human action dataset used in this work is the Weizmann

dataset [23], a widely used collection of basic human motions for comparing action

classification systems. It contains 81 low-resolution (180 × 144) video sequences,

recorded at 25 FPS, displaying nine different people performing nine basic actions.

The displayed action classes are “running (run)”, “walking (walk)”, “jumping jack

(jack)”, “jumping forward on one leg (skip)”, “jumping in place on two legs (jump)”,

“galloping sideways (side)”, “waving one hand (1wave)”, “waving two hands (2wave)”,

and “bending (bend)”.

Spider courtship movements The second dataset contains high frame rate videos

of samples of two species of Schizocosa wolf spider: S. bilineata and S. crassipalpata.

There are 52 total grayscale videos in the dataset, where each video is roughly six

seconds in length. The dataset is divided into two halves (one half for each species),

while each of those halves is further divided into two (high diet and low diet). The

separation of high diet from low diet comes from the expectation that nutrient intake

could influence the degree to which spiders can engage in complex courtship displays.

Thus, by varying the diet of individuals, we can assess whether there is a link between
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nutrient intake and courtship complexity. Each video has a temporal resolution of 250

FPS for capturing the quick movements of the spiders, and a varying spatial resolution

due to cropping out the areas of interest in each clip. When computing optical flow

vectors for each frame, any vector with a very small magnitude (< 0.02) is discarded

before computing the motion complexity features to eliminate noise. Adjusting this

threshold could cause significant changes in the final results, and should be carefully

selected depending on the application domain.

5.2 Motion Complexity Features

In this section, we present and detail a novel set of motion complexity features based

on a computed set of selective-STIP points (S-STIPs). We specifically aim to create a

set of features that cover a set of motion complexity domains we believe contribute

significantly to visual motion complexity. This set of motion complexity domains

is shown in Table 5.1. Every feature we propose can be mapped into one of these

complexity domains.

Motion Domain Description

Movement amount Degree of spatial-temporal motion
Movement stability Stability of the motion intensity

Movement periodicity Repetition of motion
Movement synchrony Multiple motion units moving simultaneously

Movement parts Number of moving areas

Table 5.1: Spatial-temporal motion complexity domains.

The majority of these features are based on a set of motion units, which are

themselves computed from the S-STIPS. We define a motion unit as a connected

component of the space-time volume of S-STIPs. Specifically, we assume we have a

set of S-STIPS S (each element a set of (x, y, t) coordinates) computed on a video
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volume V of dimensions x× y × t. We then compute a corresponding binarized copy

B from V where a ‘1’ is assigned if an S-STIP exists at the corresponding (x, y, t)

location, or a ‘0’ otherwise. We then input B into a three-dimensional connected-

component-labeling algorithm to detect spatial-temporal clusters of points. These

three-dimensional clusters of points are the units of motion (motion units) M over

both space and time used to compute the motion complexity features. We now define

the set of motion complexity features as follows (where t is used to represent any given

frame, T is the number of video frames, PCt is the number of S-STIPS is video frame

t):

Point Count (Mean) – The average number of S-STIPS over all frames, providing

a measure of the overall interesting motion in a video:

1

T

T∑
t=1

PCt (5.1)

Point Count (STD) – The standard deviation of the number of S-STIPS over all

frames, providing a global measure of motion stability over time:

√√√√ 1

T

T∑
t=1

(PCt − PCM)2 (5.2)

where PCM is the Point Count (Mean) feature for the video.

Large Scale Percentage – The percentage of points that are large scale (> 3), where

a point detected at a large scale has greater spatial and temporal response:

length(Slarge)

length(S)
(5.3)
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where Slarge is the subset of S where the spatial scale of the points is greater

than three.

Motion Unit Count – The number of motion units (three-dimensional space-time

clusters) over the length of the video, normalized by the frame count:

length(M)

T
(5.4)

Motion Unit Synchrony – The number of frames containing more than one motion

unit (Bt
≥2) divided by the number of frames with at least one motion unit (Bt

≥1):

Bt
≥2

Bt
≥1

(5.5)

Burst Count – The number of movement bursts, normalized by frame count, where

a burst is defined as the number of S-STIP frame sums that are larger than one

standard deviation from the mean:

∑T
t=1(PCt > std(PC))

T
(5.6)

Primary Frequency – The frequency (in hertz) of the largest frequency response

from the mean-subtracted and unit normalized PC vector, as computed by a

short-time discrete Fourier analysis algorithm [28]. As the algorithm reveals

frequency strengths at different windowing scales, we average all of the frequency

responses together, then record the largest frequency.

Primary Frequency Strength – The frequency response value of the primary fre-

quency.
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Frequency Peak Count – We compute the number of frequency responses (of any

strength) by taking the vector of averaged frequencies from a short-time discrete

Fourier analysis algorithm, and count the number of peaks (values that are larger

than both values sequentially to the left and right. This provides a measure of

how many frequencies had a response of any size.

Point Count Peak Width (Mean) – The average distance between every succes-

sive pair of peaks in PC in the temporal direction (peak width), providing a

measure of temporal motion stability.

Point Count Peak Width (STD) – The standard deviating distance between ev-

ery successive pair of peaks in PC in the temporal direction (peak width),

providing a measure of temporal motion stability.

Point Count Peak Height (Mean) – The average distance between every succes-

sive pair of peaks in PC in the spatial direction (peak height), providing a

measure of motion intensity stability.

Point Count Peak Height (STD) – The standard deviating distance between ev-

ery successive pair of peaks in PC in the spatial direction (peak height), providing

a measure of motion intensity stability.

Motion Unit Size (Mean) – The average spatial-temporal size (in pixels) of the

motion units for a video:

1

length(M)

length(M)∑
m=1

pixelCount(M t) (5.7)

Motion Unit Size (Max) – The maximum spatial-temporal size (in pixels) of the
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motion units for a video:

max(pixelCount(M)) (5.8)

Motion Unit Lifespan (Mean) – The average temporal length of all motion units

for a video.

Motion Unit Lifespan (STD) – The standard deviation of the temporal lengths

of all motion units for a video.

Motion Unit Trajectory (Mean) – The average amount of distance travelled (in

pixel) of all the motion units, determined by computing the centroid (of the

binarized connected component) movement distance of each time slice of a

motion unit. That is, we follow the centroid of a motion unit over time, and

compute how far it travelled in pixels.

Motion Unit Polynomial Fit (Mean) – For a motion unit, we compute the cen-

troid of each time slice of the unit, and store the centroid ‘x’ locations (can

alternatively be done for the ‘y’ locations instead). By plotting the centroid

‘x’ locations as they change over time, we attempt to fit a set of polynomials

(from a first-order polynomial up to an ninth-order polynomial) to the points,

keeping the lowest possible polynomial that fits the points sufficiently (when

the r-square value is ≥ 0.99). For example, a motion cluster that moves in the

same direction over time will have a first-order polynomial fit sufficiently. The

average polynomial order (from the integer set 1, 2, . . . , 9 of polynomial orders)

is computed from all motion units for a video. An example visualization of this

technique is shown in Figure 5.2.
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(a) Sample frame from a jumping jack
video.

(b) A selected space-time cluster (motion unit) plot-
ted spatially by ignoring the temporal domain.

(c) S-STIPS visualized over space and time.

Figure 5.2: The first three polynomial orders fitted to the centroid ‘x’ location over
time.
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Each feature from this proposed set is mapped into one of the domains listed in

Table 5.1. The goal is to have several features included in each motion complexity

domain, as we believe these domains to be the most important measures toward

quantifying complexity. The mappings of the features to the domains is presented in

Table 5.2.

Motion Domain Description

Movement amount

Point Count (Mean)
Large Scale Percentage
Motion Unit Size (Mean)
Motion Unit Size (Max)
Motion Unit Lifespan (Mean)
Motion Unit Trajectory (Mean)

Movement stability

Point Count (STD)
Burst Count
Point Count Peak Width (Mean)
Point Count Peak Width (STD)
Point Count Peak Height (Mean)
Point Count Peak Height (STD)
Motion Unit Lifespan (STD)
Motion Unit Polynomial Fir (Mean)

Movement periodicity
Primary Frequency
Primary Frequency Strength
Frequency Peak Count

Movement parts
Motion Unit Count
Motion Unit Synchrony

Table 5.2: Spatial-temporal motion complexity features mapped into their respective
motion complexity domains.

5.3 User Study On Motion Complexity

In this section, we briefly review the user complexity study presented in Chapter 4

(detailed further in Appendix B) for completeness, as the approaches listed in this

chapter utilize the ratings provided by the users for training and testing (ground truth).
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A user study was conducted on 24 participants from varying backgrounds to investigate

what (based on user opinion) makes a motion complex. For each participant, a series

of videos was shown from the two datasets described in Appendix C. Each clip was

played repeatedly while waiting for the user to rate the displayed motion on a scale

of one (low complexity) to ten (high complexity). 25% of the displayed videos were

randomly chosen to be shown twice to measure a rater’s accuracy. A summary of the

ratings given to humans for the nine motion classes is shown in Figure 5.3, while the

summary of the ratings given to spiders for the four cases is shown in Figure 5.4.

Class
1wave 2wave walk bend jump run side jack skip

C
om

pl
ex

ity
 S

co
re

1

2

3

4

5

6

7

8

9

10

Figure 5.3: Overview of user ratings for the nine human motions.

5.4 Implementation & Results

Here, we demonstrate the potential of using S-STIPs for quantifying motion complexity.

We first look at the S-STIP detection process to gain a better understanding of what

the interest points are representing. We also present a visualization of the S-STIPs

over time, where important motion signatures can be observed. We then present the
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B. (high diet) B. (low diet) C. (high diet) C. (low diet)
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Figure 5.4: Overview of user ratings for the spider movements of S. Bilineata (B) and
S. Crassipalpata (C).

results for the two problem scenarios: 1) predicting motion complexity scores and 2)

predicting motion classes. Accuracies are reported for several sub-scenarios, and the

prediction and classification power of the individual features is shown.

5.4.1 S-STIP Detection

We first visualize the detected S-STIPs on samples from the two datasets of humans

and spiders. The S-STIP detection process is detailed in Chapter 2.2. We provide

example visualizations of two human samples (walking from left to right and jumping

jack), as well as two spider samples. For each sample, we show (a) a sample frame

with the S-STIPs superimposed on the image frame, (b) the S-STIPS for the entire

video collapsed into the spatial domain by ignoring the temporal domain to show any

location with interesting movement, and (c) the entire set of S-STIPS plotted over

both space and time. These visualizations are shown in Figure 5.5 (a walking pattern

can be seen as a linear plane of S-STIPs), Figure 5.6 (the repetition pattern of the
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jumping jack movement is visible), Figure 5.7 (the path of the spider leg and pedipalp

vibration is visible), and Figure 5.8 (showing two significant periods of motion over

time).

5.4.2 Predicting Complexity Classes

A pattern recognition approach was used to learn the important features for each

dataset. Specifically, a linear discriminant classifier was trained on the motion com-

plexity features using the average human complexity scores (rounded to the nearest

integer) as the training labels. The training/testing split used was 2
3
/1

3
. To compensate

for the random selection of the training and testing sets, each classifier was trained and

tested 1000 times, with the average classification score used for the classifier accuracy.

Several tests were performed to observe how the accuracy changes. For both the

human and the spider datasets, the training score was first set to be the average

human complexity score for each individual video. The second case set the training

score to be average human complexity score for the given video class. For example,

if the average “jumping jack” action for the human videos was a score of 0.4, then

every “bend” video was assigned a 0.4. The number of features used was also varied

from using all of the features to only using the “best” (top) features determined by a

sequential feature selection algorithm. The top features for the human dataset were

Point Count (STD), Motion Unit Synchrony, Primary Frequency, and Motion Unit

Lifespan (Mean), while the best features for the spider dataset were Point Count

(Mean), Primary Frequency Strength, Point Count Peak Width (STD), Motion Unit

Size (Mean), Motion Unit Size (STD), and Motion Unit Lifespan (Mean). Between

the two, standard deviation proves useful as a measure of stability for both datasets.

In addition, primary frequency is revealed to be a strong signature for predicting
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(a) Detected S-STIPs (in red) from a single
frame.

(b) S-STIPs visualized spatially for all frames by ignor-
ing the temporal domain.

(c) S-STIPS visualized over space and time.

Figure 5.5: S-STIP detection of a human walking.
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(a) Detected S-STIPs (in red) from a single
frame.

(b) S-STIPs visualized spatially for all frames by ignor-
ing the temporal domain.

(c) S-STIPS visualized over space and time.

Figure 5.6: S-STIP detection of a human performing jumping jacks.
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(a) Detected S-STIPs (in red) from a single frame.

(b) S-STIPs visualized spatially for all frames by ignoring the
temporal domain.

(c) S-STIPS visualized over space and time.

Figure 5.7: S-STIP detection of a spider moving both a leg and its pedipalps.
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(a) Detected S-STIPs (in red) from a single frame.

(b) S-STIPs visualized spatially for all frames by ignoring the temporal
domain.

(c) S-STIPS visualized over space and time.

Figure 5.8: S-STIP detection of a spider showing several areas of significant movement
over time.
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Figure 5.9: Individual feature prediction accuracy for both spider and human com-
plexity scores.

motion complexity scores. The strength (accuracy) of the features used individually

for predicting complexity scores is shown in Figure 5.9 for both humans and spiders

separately. The results of motion complexity prediction are presented in Table 5.3.

As the results show, using only the top features increases the accuracy only slightly in

every case. Using the mean average rating for the videos instead of individual video

scores showed significantly greater prediction accuracy. In addition, increasing the

allowed range to 1 or 2, which can be acceptable in some domains, reveals significantly

greater prediction accuracy as well.
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Dataset Training Label Features Allowed Range Accuracy

Human

Video Score

All
0 24%
1 60%
2 81%

Top
0 38%
1 82%
2 99%

Mean Class Score

All
0 63%
1 83%
2 97%

Top
0 63%
1 87%
2 98%

Spider

Video Score

All
0 38%
1 84%
2 92%

Top
0 40%
1 90%
2 96%

Mean Class Score

All
0 78%
1 96%
2 96%

Top
0 86%
1 97%
2 97%

Table 5.3: Accuracy of the discriminant analysis approach for predicting motion
complexity scores.

5.4.3 Classifying Motion Classes

The previous classifier-based approach was used to predict complexity scores. Here,

another classifier using linear discriminant analysis is trained, but instead used to

learn and classify motion classes. That is, instead of learning and predicting scores

for a ‘walk’ video using motion complexity features, it attempts to learn and classify

a video motion as ‘walk’. Here, the classifier is trained for five different scenarios:

1) classifying human actions, 2) classifying spiders into the four classes (two species,

with each species having low diet and high diet samples), 3) classifying as either
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spider species one or species two, 4) classifying between high diet and low diet for

species one, and 5) classifying between high diet and low diet for species two. Using

sequential feature selection, the top features for each of the five scenarios, respectively,

are 1) Point Count (Mean), Point Count (STD), Motion Unit Count, and Motion Unit

Synchrony, 2) Point Count (Mean), Point Count (STD), Motion Unit Count, Motion

Unit Synchrony, and Point Count Peak Height (Mean), 3) Point Count (Mean), Point

Count (STD), Large Scale Percentage, Motion Unit Count, Motion Unit Synchrony,

Point Count Peak Width (Mean), Point Count Peak Height (Mean), Motion Unit

Size (Max), and Motion Unit Lifespan (STD), 4) Motion Unit Synchrony, Frequency

Peak Count, Point Count (Mean), Point Count (STD), and Point Count Peak Height

(Mean), and 5) Primary Frequency Strength, Point Count (Mean), Point Count (STD),

Burst Count, and Point Count Peak Height (Mean). These results are visualized in

detail in Figure 5.10 and Figure 5.11. Overall, this identifies Motion Synchrony as

very important feature for general articulated motion, as well as Point Count (Mean)

and Point Count (STD).

The motion classification results are shown in Table 5.4. For classification, it can

be seen that using only the top features produces mixed results, causing only minor

accuracy improvements for the spider cases and causing a significant drop in accuracy

for human motions. While the classifier does well at classifying one spider species

from another, it struggles to correctly classify between high diet and low diet. Visual

observation by humans also identifies this to be a difficult problem. However, we again

note that classification is only a desired effect of the measure, while complexity score

prediction is our main goal.



109

Figure 5.10: Individual feature classification accuracy for both spider and human
motion classes.

Dataset Label Domain Features Accuracy

Human Nine human actions
All 61%
Top 58%

Spider {BH , BL, CH , CL}
All 50%
Top 50%

Spider {B, C} All 95%
Top 95%

Spider {BH , BL}
All 47%
Top 54%

Spider {CH , CL}
All 56%
Top 61%

Table 5.4: Accuracy of the discriminant analysis approach for classifying complexity
classes.

5.5 Summary

We have presented an in-depth study of visual motion complexity by proposing a novel

set of motion complexity features based on a spatial-temporal feature technique for
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Figure 5.11: Individual feature classification accuracy for three alternative spider
scenarios (species vs. species, species 1 high vs. low diet, and species 2 high diet vs.
low diet).

both prediction of complexity scores and motion classification. Based on a user study

of visual motion complexity, these features were learned using linear discriminant

analysis to train classifiers for the purpose of both predicting complexity scores as

well as classifying motion classes on a dataset of human actions and a dataset of

spider motions. The complexity features were shown to be effective in many cases for

correctly classifying motion classes as well as predicting complexity scores, notably

when increasing the allowed error range to 1 or 2. It was also shown that using a set

of “best” features leads to increased accuracy for predicting complexity scores, but

produces slightly mixed results for classification. Even greater accuracy gains were

made when using the mean class score instead of the individual video scores.
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This chapter also revealed interesting results about specific motion complexity

features that contribute the most to the overall complexity value. Specifically, it was

observed that features involving motion synchrony, frequency analysis, and point-

count statistics were identified to be the most useful features by the feature selection

algorithm and individual feature classification. These features, we believe, hold the

most useful information about the motion signatures of visual complexity in the

spatial-temporal domain.
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Chapter 6

Conclusion

In this chapter, a concise review of the work presented in this dissertation is provided.

In addition, some closing remarks are given regarding the contributions of this work

and the interesting results. Finally, a few possible interesting directions for continuing

this research are mentioned.

6.1 Summary & Closing Remarks

This dissertation presented an in-depth study of visual articulated motion complexity

by proposing a set of measures for quantifying the observed complexity. The foundation

for a general articulated motion measure for complexity is provided that can benefit

communities ranging from computer vision researchers to biologists by providing a

deeper understanding of complexity. This research was divided into three main bodies

of work, together providing the following contributions:

1. Identified a novel set of motion complexity features based on optical flow that

encodes the various aspects of articulated motion complexity
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2. Defined a measure for quantifying general motion complexity by integrating the

motion features as a weighted sum based on feature contribution

3. Demonstrated the performance of a pattern-recognition (linear discriminant

analysis) model based on optical flow for predicting motion complexity scores

and distinguishing motion classes

4. Summarized the results of two user studies on visual motion complexity: 1) an

expert poll on statistical feature importance for complexity, and 2) a user study

where participants rate a dataset of videos for further analysis of what a typical

person believes contributes to complexity

5. Presented a novel set of motion complexity features that utilize spatial-temporal

features for integrating hidden complexity information not visible using a strictly

optical flow-based strategy

6. Demonstrated the accuracy of a spatial-temporal feature approach for predicting

motion complexity scores and distinguishing motion classes

7. Demonstrated the efficacy of the defined complexity measures in a real-world

problem domain (the biological study of visual signals from spider movement)

In Chapter 3, an optical flow-based measure was proposed that relied on statistical

values computed from the motion estimation. This measure demonstrated a weighted-

sum approach, where a set of features was computed and weighted based on the

belief of a group of domain experts. While the measure showed little potential for use

in classifying a set of wolf spider movements, the computed complexity values were

believed to be representative of the corresponding observed motion in the dataset

videos. A feature-selection process provided insight toward which of these features

was most critical toward contributing to the visual complexity.
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In Chapter 4, a new set of optical flow-based measures were proposed with the

goal of both predicting motion complexity scores as well as classifying motions based

on their motion class. Higher-order features were defined to identify hidden aspects

of motion complexity, such as repeating patterns of motion by incorporating Fourier

analysis, motion cluster analysis, and motion synchrony. The efficacy of these features

was demonstrated on both human and spider datasets, revealing the potential for

using motion complexity signatures for classification. In addition, a user study on

visual motion complexity was summarized for the purposes of providing ground truth

information and revealing the beliefs humans have toward complex versus simple

motions.

In Chapter 5, an optical flow-based approach was abandoned in favor of an approach

based on space-time interest points. While optical flow provides an estimation of the

speed and direction of motion for every pixel of a video frame, space-time interest

points reveal the locations in the space-time volume where significant and interesting

motion is taking place. This alternative approach provided many new and interesting

insights into motion complexity by analyzing the clusters of space-time interest points

(motion units) and how they change over time. The same user study from Chapter 4

was used to provide human-belief ground-truth information. Classifier-based measures

were created for the purpose of both predicting visual complexity scores as well as

classifying observed motions into motion classes.

Many useful results have been provided in this work that lead to a deeper under-

standing of visual motion complexity. We have identified several specific complexity

features that contribute more greatly toward the complexity value than others. Specif-

ically, the most useful features were shown to be statistical entropy, statistical kurtosis,

primary frequencies and their strength, motion synchrony, point count mean and

standard deviation, point count peak width, and motion unit lifespan. We also con-
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clude that directional information may not be as critical as we initially predicted to

the complexity measure as the non-directional-based features, although alternative

directional-based features not proposed here may still hold potential.

We also demonstrated a deeper understanding of human belief regarding complexity.

The expert poll in Appendix A revealed the belief in directional changes, statistical

entropy, number of movement runs, number of motion clusters, directional distribution

test (Rayleigh test), and statistical kurtosis as being the important contributors to

complexity. The user study on motion complexity presented in Appendix B revealed

the belief in amount of movement and number of moving parts contributing the most

to complexity, with movement periodicity and motion synchrony contributing the

least.

6.2 Comparison of Results

In general, the results in Chapter 4 showed more accuracy than those in Chapter 3,

while the results in Chapter 5 showed more accuracy than those in Chapter 4. While

the weighted-sum approaches showed early promise in accurately predicting complexity,

the trained models displayed significantly better prediction capabilities. While the

optical flow approaches were useful toward predicting complexity, the spatial-temporal

approach showed a significant improvement over both of them. It may, however, be

possible that a better approach would be a hybrid of spatial-temporal interest points

and optical flow. That is, it may be possible to utilize the directional information

around the space-time interest points to achieve increases in accuracy. A prediction

comparison of the human-provided scores against the computed scores for the spider

dataset using the approach from Chapter 4 versus the approach from Chapter 5 is

shown in Figure 6.1 with the human dataset results in Figure 6.2.
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Figure 6.1: Comparison of the human-provided scores against the computed scores for
the spider dataset using the approach from Chapter 4 (top) versus the approach from
Chapter 5 (bottom).

6.3 Directions for Further Research

Here we note several possible directions in which this research could be extended.

While the Horn-Schunck optical flow approach was used in Chapter 3 and Chapter

4, it is one of the first methods used to estimate optical flow. There have been

several advances in optical flow in both speed and accuracy [21] that could be used

to extend the measures into the real-time domain and improve motion-estimation

accuracy. It may also be of interest to use alternative motion-estimation algorithms

instead of optical flow. Alternative methods include block matching [5, 48] and phase
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Figure 6.2: Comparison of the human-provided scores against the computed scores
for the human dataset using the approach from Chapter 4 (top) versus the approach
from Chapter 5 (bottom).

correlation [2, 57].

An interesting direction to pursue that is quite different from the work presented

here would be to incorporate action recognition into the complexity measure. By

utilizing the ability to learn and recognize specific actions (such as “person raised arm”

or “spider quickly tapped leg”), a higher level of complexity understanding could be

obtained. In addition, it would interesting to observe not only the actions that are

recognized, but also the amount of times that they occur and the order in which they

happen. A motion sequence could be then described as a string of characters, where
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each character represents the specific action that was happening at that point in time.

While the directional-based features we presented in this dissertation did not show

as much promise as the non-directional-based features, we still believe that direction

plays an important role in the final complexity measure. An interesting route to take

would be to utilize a space-time interest point approach to detect the interest points

of movement in time, but extend it to focus on the directional values of motion at

those points in time. This could essentially be a hybrid of space-time interest points

and optical flow, similar to the idea of cuboids in Dollár et al. [17].

A weakness of the approaches described in this work is the limitation of fixed-

size video segments. That is, it is assumed that the samples in a video dataset are

approximately contain the same number of frames. While the approaches and motion

complexity domains presented here would still be applicable, significant redesign of

the motion complexity features would be needed to allow for variable-length video

samples. This would be a logical extension of this work, and greatly expand the useful

applications for the complexity measures.

The work presented in this dissertation was focused on videos from two datasets.

Specifically, we focused on computing all of the features from a video image stack that

was loaded ahead of time. Another interesting research path would be the application

of these features to real-time complexity prediction and classification. While optical

flow can be computed in real time, space-time interest points typically need the entire

video volume to be present ahead of time. It may be of interest to pursue near-real-

time computation of complexity using either optical flow or a modified version of

a spatial-temporal-feature approach for providing a ”current” complexity score for

live video, or for providing a ”current” guess as to which class the displayed motion

complexity belongs.
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Appendix A

Expert Poll Questionnaire

This chapter details the expert-polling study presented in Chapter 3 for weighting

features based on expert belief. A questionnaire was presented to a group of 11

spider researchers (referred to as “the experts”). This study was completed in order

to gain an understanding of which features a group of researchers, who have prior

knowledge of working with spiders, believe influences complexity the most and which

influence the least. The form displayed in Figure A.1 was presented to each expert.

By not discussing their thoughts with other experts, each expert was asked to rate

the importance that he/she believes that each motion feature contributes to motion

complexity in wolf spiders on a scale of zero (no influence) to three (heavy influence).

For each rating provided, each expert was also asked to provide their confidence in

the answer they provided with a zero (not confident) or one (confident). The average

responses from the 11 experts for both the influence score and response confidence are

summarized in Table A.1.
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Figure A.1: The form presented to each participant in the expert-polling study.
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Feature
Mean Influence Mean Confidence

(0-3) (%)

Total Movement
1.73 82%

Percentage
Right Movement

1.00 64%
Percentage

Left Movement
1.00 64%

Percentage
Right Movement

1.73 27%
Kurtosis

Left Movement
1.73 27%

Kurtosis
Up Movement

2.00 45%
Kurtosis

Down Movement
2.00 45%

Kurtosis
Maximum

1.90 55%
Movement
Movement

2.91 82%
Cluster Count

Movement
1.36 64%

Cluster Size
Movement

2.18 45%
Run Count
Movement

1.36 40%
Run Size

Magnitude
2.64 64%

Entropy
Directional

2.45 82%
Change Count

Directional
0.64 45%

Average
Directional

1.45 18%
RVL

Directional
1.18 45%

Skewness
Directional

2.27 64%
Rayleigh Test

Table A.1: Summary of the expert poll results.
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Appendix B

Complexity Rating Experiment

This chapter details the user study on visual motion complexity presented in Chapter

4 for weighting features based on expert belief and providing labels to videos when

training classifiers. A group of 22 people participated in the study. A MATLAB

program was written to guide each participant through a set of videos randomly selected

from a dataset of spider movements and a dataset of human actions (both described

in detail in Appendix C). 25% of the videos were duplicated to assist in measuring

participant rating consistency. A detailed set of instructions was initially displayed

to the participant, as shown in Figure B.1. The time taken by each participant was

about 25 minutes. Inputting the ratings through a one-way ANOVA model revealed

which users were not rating duplicate videos accurately. Only one user was indicative

of inaccurate rating, and was thus discarded.

Each participant was shown every video from the datasets, then asked to rate the

motion shown for each one on a scale of one (low complexity) to ten (high complexity)

based on their personal opinion. The video would play through one time initially

without allowing the participant to submit a rating, then would play repeatedly until

the participant submitted a rating. The participant was also shown the number of
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Figure B.1: The initial instruction message presented to each participant to detail the
process.

remaining videos. This graphical user interface presented to each participant is shown

in Figure B.2. After rating all videos, each participant was shown a final questionnaire

asking for beliefs in six identified motion complexity domains. Responses were given

on a scale of one (not important) to five (very important). A response was required

for all six domains. The graphical user interface displayed for the final questionnaire

is shown in Figure B.3.

Figure B.2: The complexity rater GUI interface shown to each participant.
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Figure B.3: The questionnaire presented to each participant for obtaining complexity
belief of the six motion complexity domains.
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Appendix C

Datasets

In this chapter, the two datasets utilized throughout the research are detailed and

visualized. The first dataset is a set of videos displaying movements of wolf spiders,

while the second dataset displays basic actions of human beings.

C.1 Spider Dataset

This dissertation utilizes a dataset of high frame rate videos containing samples of two

species of Schizocosa wolf spider: S. bilineata and S. crassipalpata. There are 52 total

grayscale videos in the dataset, where each video is roughly six seconds in length. The

dataset is divided into two halves (one half for each species), while each of those halves

is further divided into two (high diet and low diet). The separation of high diet from

low diet comes from the expectation that nutrient intake could influence the degree to

which spiders can engage in complex courtship displays. Thus, by varying the diet of

individuals, we can assess whether there is a link between nutrient intake and courtship

complexity. Each video has a temporal resolution of 250 FPS for capturing the quick

movements of the spiders, and a varying spatial resolution due to cropping out the
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areas of interest in each clip. This dataset is summarized in Table C.1. Samples of

videos from the dataset are shown in Table C.2.

Class # of Samples Frame Rate

S. bilineata (high diet) 14

250 FPS
S. bilineata (low diet) 15

S. crassipalpata (high diet) 10
S. crassipalpata (low diet 13

Total 52

Table C.1: Summary of the spider dataset.

S. bilineata (high diet)

S. bilineata (low diet)

S. crassipalpata (high diet)

S. crassipalpata (low diet)

Table C.2: Spider dataset samples.

C.2 Human Dataset

This dissertation also utilizes a dataset of standard frame rate videos containing

samples of basic human motions. The human action dataset used in this work is the

Weizmann dataset [23], a widely used collection of basic human motions for comparing
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action classification systems. The videos were recorded with a fixed (non moving)

camera. It contains 81 low-resolution (180 × 144) video sequences, recorded at 25

FPS, displaying nine different people performing nine basic actions. The displayed

action classes are “running (run)”, “walking (walk)”, “jumping jack (jack)”, “jumping

forward on one leg (skip)”, “jumping in place on two legs (jump)”, “galloping sideways

(side)”, “waving one hand (1-wave)”, “waving two hands (2-wave)”, and “bending

(bend)”. This dataset is summarized in Table C.3. Samples of videos from the dataset

are shown in Table C.4.

Motion Class # of Samples Frame Rate

Bend 9

25 FPS

Jack 9
Jump 9

1-wave 9
Run 9
Side 9
Skip 9

2-wave 9
Walk 9

Total 81

Table C.3: Summary of the human dataset.
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bend

jack

jump

onewave

run

side

skip

twowave

walk

Table C.4: Human dataset samples.
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