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Satellite-based Global Positioning Systems (GPS) have enabled a variety of location-

based services such as navigation systems, and become increasingly popular and important

in our everyday life. However, GPS does not work well in indoor environments where walls,

floors and other construction objects greatly attenuate satellite signals. In this paper, we

propose an Indoor Positioning System (IPS) based on widely deployed indoor WiFi systems.

Our system uses not only the Received Signal Strength (RSS) values measured at the current

location but also the previous location information to determine the current location of a

mobile user. We have conducted a large number of experiments in the Schorr Center of the

University of Nebraska-Lincoln, and our experiment results show that our proposed system

outperforms all other WiFi-based RSS IPSs in the comparison, and is 5% more accurate on

average than others.
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Chapter 1

Introduction

1.1 Location Based Service

As the development of the communication networks and mobile computing, location based

service (LBS) becomes very popular in recent years. The location-based service refers to the

applications that rely on a user’s location to provide services such as construction real-time

locating, safety and health care [1], indoor navigating guidance, etc. The core of LBS is the

positioning technique. The Global Positioning Systems (GPS) [2] are the earliest widely

used modern systems for civilian positioning service, and can offer an accuracy close to

10 meters. However, GPS cannot provide good accuracy in indoor environments since the

satellite signals are blocked by building obstructions.

An increasing number of indoor positioning systems have been proposed such as Cellular-

network [3], Ultrasound [4], Computer Vision [5], Infrared Ray [6], Radio signal [7],

Bluetooth technique [8], PHY information [9], etc. Most of these systems are able to

provide accurate results, however, they rely on additional hardware or large-scale infrastruc-

tures. Thus, such systems are hard to be widely deployed due to significant cost, energy

consumption and specific environment range limitations.
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The indoor positioning techniques rely on different types of measurements involving

Time-of-arrival (TOA), Time-difference-of-arrival (TDOA), Angle-of-arrival (AOA) [10,

37], Wireless Local Area Network (WLAN) Received Signal Strength (RSS), etc. As the

IEEE 802.11 principle has become the industry standard, the WLAN RSS techniques draw

great attention and enables a new layer of the indoor positioning approaches. Unlike other

measurements that need additional hardware and synchronization schemes in indoor envi-

ronments, the WLAN RSS techniques are economical solutions due to the wide deployment

of wireless network infrastructures [11-13, 36, 39]. In addition, personal laptops, tablet

computers or other mobile devices equipped with WLAN capability such as smart phones

and powerful PADs are easy to be connected to WLAN systems. Hence, the WLAN RSS

positioning systems take advantages on stability, flexibility and mobility.

1.2 WLAN Received Signal Strength Techniques

There are three fundamental methods using WLAN RSS measurement: the Strongest Base

Station, the Propagation Model and Fingerprinting based method. The strongest base station

method is the most simple solution in WLAN RSS techniques. The user’s location is

estimated as the position of the nearest data communication access point (AP), and this

method has no computational issues and is applicable in most networks. However, the

strongest base station method could not achieve good accuracy because of the complexity of

indoor WLAN environments and limitation of the AP coverage.

In the propagation model method, the received signal strength information - signal path

loss is taken into account to estimate the location of a mobile user. The system commonly

uses a theoretically-calculated propagation model to convert the RSS path loss value to the

physical distance from the base station side to the user. The coordinates of a user can be

determined by the propagation model using the geometry techniques such as trilateration
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[31] and triangulation [10, 39]. In the trilateration technique, at least three base stations with

coordinates information are required to draw circles using the distances ri from the user to

base stations, and then we can locate the mobile user by the intersection of the three circles.

In the triangulation technique, there could be fewer or more base stations that measure the

orientation of the signal to estimate a user’s location. The propagation model approach is

relatively simple and efficient when the accuracy requirement is not very high. However,

accurately measuring the distance based on signal attenuation is still difficult due to the

noise of wireless signals and the interference of indoor obstructions such as multi-story

floors, doors and walls [35].

Recently, WLAN RSS Fingerprinting becomes one of the most exploited techniques in

indoor localization [14]. Compared to the strongest base station and the propagation model,

the fingerprinting method is easy to deploy and is tolerant to wireless signal noise, and thus

can achieve the highest accuracy. The fingerprinting systems normally consist of two phases:

the offline training phase and the online determination phase. In the training phase, the goal

is to build an empirical training database for each reference position by sampling the WLAN

signal strength from several wireless access points [15, 16]. Then in the determination phase,

the mobile user with a given RSS sample is estimated as the best matching location record

in the training database. We will present a detailed discussion of WLAN RSS fingerprinting

methods in later chapters.

1.3 Challenges in Fingerprinting Technique

In this paper, we aim at providing an accurate and efficient indoor positioning system based

on IEEE 802.11 wireless technique. The system uses a fingerprinting method which creates

a probability distribution map of the WLAN received signal strength (RSS) collected at

known coordinates to estimate the location of a mobile user.
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There are some challenges in designing an RSS fingerprinting-based indoor positioning

system [17, 18].

Firstly, the IEEE 802.11 WLAN frequency range is in the 2.4 GHz public band which is

also used by mobile phones, microwave ovens and other wireless signal transmitters. In the

determination phase, any other devices in this public band can cause the irregular WLAN

RSS patterns to mobile users as the source of the interference.

Secondly, M. Ghaddar et al. [19] and J. Ryckaert et al. [20] have observed that the

blocking effect of human body on various frequencies and even indoor wireless signal

quality. Thus a human user could weak the WLAN RSS value on the straight line between

the mobile device and an AP.

Furthermore, the accuracy of the fingerprinting method relies on the long term WLAN

RSS sampling. Any changes in the environment such as AP replacing and facilities upgrading

can lead to a poor system performance [37]. Thus, a large amount of sampling work is

required to maintain the training database which brings a heavy burden.

As the WLAN RSS fingerprinting indoor positioning performance is largely limited by

the challenges mentioned above, our purpose is to provide effective solutions to overcome

these challenges.

1.4 Contribution of Thesis

In this thesis, we present an accurate and efficient WLAN RSS fingerprinting indoor posi-

tioning system. We firstly provide a probabilistic framework using K most likely neighbors

(KMLN) to determine the location of a mobile user, and then propose a novel tracking

algorithm employing the shortest path scheme to enhance the estimation accuracy. To reduce

the propagation error, we provide a study on integrating previous (historical) WLAN RSS

observations in the tracking algorithm. We also analyze the human body orientation interfer-
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ence and the long term WLAN signal characteristics in indoor environments, providing the

basis for our proposed positioning system. We conduct our experiments on the first floor of

the Schorr Center which is used by the Department of Computer Science and Engineering.

In our experiment, the proposed system shows very promising results and achieves better

accuracy than other fingerprinting methods.

1.5 Outline of Thesis

This thesis is organized as follows. Chapter 2 presents a brief introduction of the finger-

printing techniques and its related approaches. Chapter 3 describes the methodology and

framework of our proposed indoor positioning system. Chapter 4 describes the experiment

setup and the analysis of WLAN RSS propagation characteristics, and a detailed algorithm

performance comparison is also presented. Chapter 5 provides the conclusion of this thesis

and discusses the possible future work.
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Chapter 2

Related Work

Recently, WLAN Receive Signal Strength (RSS) Fingerprinting has become the most

promising indoor positioning technique because of its easier deployment and lower cost

compare to other methods. In this chapter, we firstly present a background study of the RSS

Fingerprinting techniques, then an overview of the related work on employing fingerprinting

methods is provided.

2.1 The Background Study of WLAN RSS

Fingerprinting

A WLAN RSS fingerprinting system normally consists of two phases: the offline training

phase and the online determination phase. In the training phase, the goal is to build an

empirical training database for each reference location by sampling the WLAN signal

strength from several wireless access points [15, 16]. Then in the determination phase, the

mobile user with a given RSS sample is estimated as the best matching location record in

the training database.

The basic process architecture of a WLAN RSS fingerprinting system is shown in



7

Figure 2.1. In the offline training phase (upper block), the RSS fingerprints are carefully

sampled at each reference position ( RP(i)(x,y) ) as a vector (RSSli1, RSSli2, ..., RSSlin)

from a number of access points (APs) (n is the number of APs and li is the ith Reference

Position ID, and the signal strength range is from 0 dBm to 100 dBm) to build a WLAN

RSS training database. In wireless networks, APs are usually fixed transmitters such

as communication base stations. A reference position is a location in a WLAN indoor

environment, and the signal fingerprints at each reference position are recorded in the

training database. The received signal strength (RSS) is the measure of the signal power

from an AP to a receiver which can be easily sampled in WLAN environments without

additional requirements.

RSS1,RSS2,	  …	  ,	  RSSn	  	  	  

RSS1,RSS2,	  …	  ,	  RSSn	  	  	  

RSS1,RSS2,	  …	  ,	  RSSn	  	  	  

	  Positioning	  
Algorithm	  

Training	  Database	  

RSS1,RSS2,	  …	  ,	  RSSn	  	  	  

Mobile	  User	  	  

Of#line	  training	  phase	  

Online	  determination	  phase	  

-‐	  -‐	  -‐	  

RP(1)
(x	  ,	  y)	  

RP(2)
(x	  ,	  y)	  

RP(3)
(x	  ,	  y)	  

RP(I)
(x	  ,	  y)	  

RSS1,RSS2,	  …	  ,	  RSSn	  	  	  

Mobile	  User	  Location	  

(x	  ,	  y)	  

Figure 2.1: The diagram of the fingerprinting method
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In the online determination phase (bottom block), a mobile user measures a vector of

RSS values at an unknown location, then compares the wireless RSS vector records in the

training database using a positioning algorithm, and finally calculates the most likely location

of a mobile user. There are two basic positioning algorithms in WLAN RSS fingerprinting

approaches [23] - Euclidean distance determination and Bayes rule determination.

The Euclidean distance determination [24] is a simple choice for RSS fingerprinting

that measures the distance between an online RSS value and the offline training database

RSS records. K Nearest Neighbors (KNN) and the weighted K nearest neighbor method

(WKNN) are the basic schemes that are generally used for mobile user indoor positioning

estimation:

EuDis =

√
n

∑
i=1

(RSSi − RSSi′ )
2 2.1

In Equation 2.1, n is the number of APs, RSSi is the ith AP’s signal strength received

in the online phase and RSSi is the average RSS value in the training database. The location

of the mobile user is estimated by averaging the coordinates of the K neighbors with the

minimum Euclidean distance. The value of Kcan influence the result accuracy, and if K = 1

the algorithm calculates the nearest neighbor.

In a complex indoor environment, the variation (Euclidean distance) of the RSS measured

at each reference position could be very large. Therefore, the Bayes rule determination is

proposed to achieve a more accurate estimation [18, 25]. The Bayes rule determination uses

the probabilistic method to find the most possible location li out of the reference positions

set given the observation RSS vector that maximizes the conditional probability p(li/RSS),

Following the Bayes rule, the p(li/RSS) can be calculated as follows:
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p(li/RSS) =
p(RSS/li)p(li)

p(RSS)
2.2

where p(RSS/li) is the conditional probability of obtaining the RSS at the ith location

li, which can be approximated by the number of times that RSS signal strength vector

(RSSli1, RSSli2, ..., RSSlin) appears at location li according to training database records. In

[26], the conditional probability is calculated as the marginal probability: p(RSS/li) =

p(RSS1/li)p(RSS2/li)p(RSS3/li) ... p(RSSn/li).

p(li) is the prior probability of being at position li, and this brings a new way to use

prior position information that enables the mobile user tracking algorithms. In addition,

p(RSS) does not depend on location li and is often regarded as the normalizing constant.

2.2 An Overview of Related Approaches

RADAR [24] is an early approach using WLAN RSS to establish an indoor positioning

system, which combines the empirical fingerprinting method and the theoretical propagation

model to locate and track a mobile user. Since not all of the K nearest neighbors contribute

to the positioning result, RADAR experiments both KNN and weighted KNN (WKNN)

schemes to estimate the location of a mobile user. Kaemarungsi et al. [27] present two

weighing schemes in WKNN: one scheme is based on the number of sampling points and

the other one uses standard deviation of RSS samples as the neighbor weight. The Cluster

Filtered KNN (CFK) approach [34] uses the clustering technique on K nearest neighbors

determination to achieve a better estimation of the user location. Fang et al. [28] uses a

Neural Network based model to determine the position of a mobile user inside a working

area, and the performance of their system is close to WKNN algorithms.

P. Castro et al. [29] estimate the location of a mobile user using Bayes rule. Myllymaki

et al. [30] formulate it as a machine learning problem using a probabilistic framework to
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estimate the indoor mobile user location. Youssef et al. [26, 33] propose the location system

using joint probability distribution and location-clustering method called joint clustering

technique. They firstly take the positioning computational burden into account and achieve

higher accuracy than previous work.

The above algorithms provide a number of solutions in indoor positioning determination

using Euclidean distance and Bayes rule. However, they do not take the historical infor-

mation such as the topology knowledge of a mobile user’s prior positions and the previous

WLAN RSS data information into account.

Altintas et. al [21] present a short term memory scheme using previous (historical)

WLAN RSS observations to smooth the error distance during the online determination

phase. IBM researchers [22] consider the prior probability P(li/L), and they suppose that a

moving user should follow the basic topology rules such as the user has a limited moving

speed. The definition of the priori probability P(li) in their tracking assistant algorithm is

presented as follows:

P(li/LP
k , LP

k−1, ..., LP
1 ) =

1
k× D

k

∑
j=1

(e−(j−1) × dist−1(li, LP
j )) 2.3

LP
k , LP

k−1, ..., LP
1 are the k determined positions prior to the new location li. D is a

constant that normalizes the tracking probability. dist−1(li, LP
j ) is the tracking probability

reversely proportion to the distance between the current position li and the priori location LP
j .

The shorter distance to the priori position set, the higher probability of the current position.

Their tracking assistant algorithm uses the conditional probability by considering the

topology knowledge, however, the system may have low positioning accuracy in some cases.

For instance, a wrong location may get a much higher probability p(RSS/li)(in experiments

it can be 10 times higher) than the actual position, if the actual position’s probability p(li)

is not high enough.
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Chapter 3

Problem Setting and Our Approach

In this chapter we firstly describe the problem, and then present our proposed indoor

positioning system.

3.1 The Indoor Positioning Problem

There are two types of users in an indoor positioning system: stationary users and mobile

users. A stationary user stays at a location forever (or for a very long time period), and a

mobile user moves within a building. It is relatively easier to determine the location of a

stationary user than the location of a mobile user. This is because we can collect the RSS

samples of a stationary user at the same location for as many time as needed to improve the

accuracy, however, very few RSS samples of a mobile user can be collected at one location

because the user is moving. In this thesis, we consider how to determine the location of a

mobile user in a building using the indoor WiFi system.
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3.2 Our Approach

3.2.1 Overview

Our approach follows the diagram of a general fingerprinting method as illustrated in

Figure 2.1, and consists of two phases.

• 1) Offline training phase which collects RSS samples at reference positions and builds

a training database,

• 2) Online determination phase which determines the location of a mobile user by

comparing the measured RSS values with the training database.

Our offline training phase is very similar to the general offline training phase described

in Chapter 2, and more details will be given in Chapter 4. Below, we focus on the online

determination phase.

Our online determination phase uses two algorithms to determine the location of a

mobile user.

• 1) K Most Likely Neighbor (KMLN) Algorithm which determines the K most likely

locations of a mobile user.

• 2) Shortest-Path-Based Tracking Algorithm which determines the location of a mobile

user by using the current and past location information of the user.

3.2.2 K Most Likely Neighbor (KMLN) Algorithm

We propose K Most Likely Neighbor (KMLN) algorithm to determine the K most likely

locations of a user. Among these K locations, we finally select one location using the

shortest-path-based tracking algorithm which is described in the next subsection.
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Recall that Chapter 2 introduces two types of determination algorithms to determine the

location of a stationary user.

• Type 1: Euclidean Distance Determination which selects the K most nearest neighbors

based on the Euclidean distance, and then returns the average of these K locations as

an estimate of the current location of a user.

• Type 2: Bayes Rule Determination which selects the most likely location using Bayes

Rule.

The above two types of algorithms are used to determine the location of a stationary user,

and thus they finally return only one location.

Our proposed KMLN is inspired by and combines the above two types of determination

algorithms. The pseudocode of KMLN is shown in Algorithm 1. Specifically, KMLN selects

the K most likely locations using Bayes Rule. The reason that we use Bayes rule instead

of Euclidean distance is that Bayes rule is more robust and can achieve higher accuracy in

cases of poor WiFi signals with noises which are very common in indoor environments. The

reason that we select the K most likely locations instead of the most likely location is that our

experiments show that sometimes the actual location may not be the most likely location. We

use KMLN only to select the K most likely locations, and then use the shortest-path-based

tracking algorithm to finally select one location.

3.2.3 Shortest-Path-Based Tracking Algorithm

We propose Shortest-Path-Based Tracking algorithm to determine the current location of a

mobile user. The proposed algorithm is based on one important assumption: a mobile user

is walking at a relatively slow speed (i.e., not running at a relatively fast speed) inside a

building. This assumption has the following two implications.
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Algorithm 1 The KMLN algorithm
1: The Tagnumber = the number of the APs n.
2: for each RSS value from APj RSSi do
3: for each AP propagation at Location j Pj(i) do
4: if RSSi > 0 then
5: Pj(i) = the probability of RSSi value in the Histogram Distribution.
6: else
7: Pj(i) = 1.
8: Tagnumber = Tagnumber -1.
9: end

10: end
11: end
12: for each Pj(i) in stack do
13: PKMLN(j) = (Pj(1) ∗ Pj(2) ∗ Pj(3) ∗ ... ∗ Pj(n))(1/Tagnumber)

14: end
15: KMLNStack = Sorting the array PKMLN in the descending order.
16: return KMLNStack(1 : K)

First implication: in a short time period, such as less than one second, a mobile user with

moving locations can be considered as a stationary user with a fixed location. Therefore, the

RSS values continuously measured within a short time period at slightly different locations

can be considered as RSS values measured at the same location, and then are used to

determine the location of the user.

Second implication: within two or three consecutive time periods, the locations of a

mobile user are not too far away from one another. Our proposed shortest-path-based

tracking algorithm is inspired by this implication. Let Li denote the set of K most likely

locations selected by KMLN in time period i. For each location in Li, we calculate the

physical distance between it and each location in sets Li−1 and Li−2. Finally, we select the

location with the shortest distance as an estimate of the user location in time period i. In

cases of ties where multiple locations with the same shortest distance, we use the average of

these locations as an estimate of the user location in time period i. The pseudocode of the

algorithm is shown in Algorithm 2.
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Algorithm 2 The Shortest Path based Tracking Algorithm

1: for each RPj in current step i KMLNStack location Lj
i do

2: for each RPk in previous step i− 1 and step i− 2 KMLNStack location Lk
i−1 and

Lk
i−2do

3: if i ≥ 3 then
4: TrackingA(j, k) = Distance of (Lj

i - Lk
i−1).

5: TrackingB(j, k) = Distance of (Lj
i - Lk

i−2).
6: end
7: end
8: end
9: TrackingAmin = min TrackingA(j, k).

10: TrackingBmin = min TrackingB(j, k).
11: SPA = Find Lj

i in KMLNStack where TrackingA(j, k) equalsTrackingAmin
12: SPB = Find Lj

i in KMLNStack where TrackingB(j, k) equalsTrackingBmin
13: SPStack = SPA ∪ SPB
14: return The average coordinates of the set SPStack

In order to avoid cumulative errors [22] when using the past location information, we

monitor the distance between the locations in two consecutive time periods. If the distance

form the current position to the previous position is longer than a threshold d0, that means

the location estimated by the shortest-path-based tracking algorithm is possibly too far away

from the actual location. In this case, we use the average of the K most likely locations

selected by KMLN (KMLN state in the figure) as the current step estimation. In addition,

if the average of K most likely locations has a shorter distance than shortest-path-based

tracking estimation to the previous position, we also choose the average of KMLM as an

estimate of the location of a mobile user.

3.2.4 Algorithms Using the Median RSS Values

We also study another slightly different algorithm in which KMLN selects the K most likely

locations using the median RSS value of each AP in time periods i, i− 1, and i− 2, instead

of the RSS value of each AP in time period i. The advantage is that we can filter out some
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RSS noises using the median RSS values [21]. The disadvantage is that a mobile user

is more likely at three different locations in these three time periods, and thus this may

sometimes filter out the actual RSS values.

3.2.5 Missing Data Handling

A special study is required for handling the missing values associated with the cases in

which the signal of some access points are not observed at all. In our work, if the signal

fingerprint at location li has sampled any RSS information from a specific APj, the obvious

choice is to set that distribution to p(RSSj/li) = 1. When there is an unknown AP to the

online sampling vector and the training database, we simply ignore the AP RSS value.
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Chapter 4

Experiments and Evaluation

In this chapter, we describe how we evaluate our proposed approach using real-world experi-

ments, and also discuss the human body orientation effect and long-term RSS characteristics.

4.1 Experiment Test Bed Setup and Data Collection

4.1.1 Experiment Setup

We conduct our experiments on the first floor of the Schorr Center at the University of

Nebraska-Lincoln Figure 4.1. This is a two-story building used by the faculty and students

of the Department of Computer Science and Engineering. The first floor of the building is

covered by several wireless APs, and we do not know the physical locations and transmission

ranges of these APs.

As shown in Figure 4.2, We have selected 60 reference positions on the first floor of

the building, including the lobby (area A), hallway (area B), and research lab rooms (area

C). We have also chosen 10 tracking lines (i.e., paths) for evaluating our approach. Each

tracking line has 12 points (2 pre-sampling points for tracking reference and 10 points for

positioning test), thus there are a total of 100 testing points for the evaluation.
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Figure 4.1: The map of the target building

Figure 4.2: The 60 Reference Positions in the building
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Table 4.1: AP MAC address list

AP No MAC Address

AP01 00:17:df:ab:98:f1

AP02 00:17:df:aa:fa:21

AP03 00:17:df:ab:99:51

AP04 00:17:df:aa:fb:11

AP05 00:19:a9:b5:15:e0

AP06 00:1c:0f:82:b7:b0

AP07 1c:aa:07:c7:86:d1

AP08 00:27:0d:0b:4d:41

4.1.2 Data Collection

To capture the RSS data, we use a Sony personal laptop with a normal wireless network

interface card (NIC). We also developed a WiFi RSS sampling application using Matlab

2010 and Windows Network Shell (netsh) command-line scripting utility. The application

retrieves the basic information of each wireless AP detected by the NIC, such as the MAC

address and RSS values of each AP.

We use the RSS sampling application to collect the AP information at the predetermined

60 reference positions. The map of these 60 positions is shown in Figure 4.2. The distance

between two horizontally or vertically adjacent positions is about 1.5 meters (or 5 feet). For

each position, we collect RSS values at different times of a day and at different days of a

week in order to create a more comprehensive AP RSS value database. We have detected a

total of 8 APs, and Table 4.1 shows the the MAC addresses of these 8 APs. Table 4.2 shows

part of the AP RSS value database. Among these 8 APs, we select the top 4 APs (AP1, AP2,

AP3, AP4 in the table)with the strongest RSS values to be used in our experiments.
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Table 4.2: WLAN RSS Sample training database profile

RP Number (1-60) AP 1 AP 2 AP 3 AP 4 AP 5 AP 6 AP 7 AP 8

RP 15 77 0 0 46 0 0 0 0

RP 15 77 99 88 58 0 0 0 0

RP 15 75 99 88 58 0 0 0 0

RP 15 79 99 93 0 0 0 0 0

... ... ... ... ... ... ... ... ...

RP 15 79 98 0 68 23 0 0 0

4.2 Signal Propagation Analysis

4.2.1 Impact of Human Body Orientation

In this subsection, we discuss the impact of human body orientation on the accuracy of

indoor AP localization systems. Zhang et al. [38] shows that the body of a user could be an

obstruction blocking a portion of WiFi signals. Specifically, WiFi signals are strong at the

line of sight (LOS) propagation from an AP to a user, and is weak when the user is at the

opposite orientation and blocks the signal. Based on this fact, they develop an outdoor AP

localization system which determines the location of an AP by rotating the body of a user.

To study the impact of the human body orientation, we select 4 reference positions. At

each of these 4 reference positions, we measure RSS values at different rotational angles

ranging from 0 degree to 315 degree. The results are shown in Table 4.3. From the results,

we can see that the impact of human body orientation in our indoor environment is very

small. Therefore, we will not consider the human body orientation problem in our later

experiments.
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Table 4.3: Human factor in orientation of the RSS value (in dBm)

Rotational Angles 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

Position 1 AP 01 88 88 88 88 88 88 88 88
Position 1 AP 02 99 99 99 99 99 99 99 99
Position 1 AP 03 99 99 99 99 99 99 99 99
Position 1 AP 04 40 66 66 66 66 66 66 66
Position 2 AP 01 88 88 88 88 88 88 88 88
Position 2 AP 02 99 99 99 99 99 99 99 99
Position 2 AP 03 99 99 99 99 99 99 99 99
Position 2 AP 04 40 66 66 66 66 66 66 66
Position 3 AP 01 88 88 88 88 88 88 88 88
Position 3 AP 02 99 99 99 99 99 99 99 99
Position 3 AP 03 99 99 99 99 99 99 99 99
Position 3 AP 04 40 66 66 66 66 66 66 66
Position 4 AP 01 88 88 88 88 88 88 88 88
Position 4 AP 02 99 99 99 99 99 99 99 99
Position 4 AP 03 99 99 99 99 99 99 99 99
Position 4 AP 04 40 66 66 66 66 66 66 66

4.2.2 Long Term Signal Propagation Analysis

In this subsection, we study the long term signal propagation and discuss its impact on

indoor AP localization systems. We randomly pick 10 reference positions, and at each

position we measure 800 − 1000 RSS values from 9 AM to 5 PM for three weeks using the

same laptop.

Figure 4.3 to Figure 4.6 show part of the measurement results of four reference positions.

We have the following observations. 1) The RSS value of some AP at some position changes

frequently. For example, AP2 at position 1, AP1 at position 2, and AP1 at position 4. 2)

The RSS value of some AP at some position is stable in most of the time, but has sharp

changes occasionally. For example, AP3 at position 2. 3) The RSS value of the same AP

has different patterns at different positions. For example, AP1 is relatively stable at position

1 but changes frequently at position 2. Some possible reasons for these observations are
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Figure 4.3: The long term WLAN signal propagation at Position 01
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Figure 4.4: The long term WLAN signal propagation at Position 02
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Figure 4.5: The long term WLAN signal propagation at Position 03
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Figure 4.6: The long term WLAN signal propagation at Position 04
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human activities, microwave oven, door opening and closing, and AP status change (e.g.,

from active to be non-active).

Based on these measurement results, we believe that a simple signal propagation model

(e.g., with a single RSS value for an AP) is not sufficient in a complicated indoor environment.

Therefore, we measure and manage a reasonable number of RSS values for each AP. We also

use a signal-distribution shaping filter mentioned in [22] which enables a relative smaller

number of measurements in training database to construct a long-term characteristics of the

WLAN RSS propagation. The distribution shaping filter well handles the training phase

workload and improves the performance of the positioning system at the same time.

The shaping filter is shown as follows, M is the number of the scanning operations in

training phase, Om
j is the RSS observation of AP j in the mth scanning operation, and s is

the RSS value from 1 dBm to 100 dBm.

Pj
i (s) =

M

∑
m=1

e−(
∣∣∣s−om

j

∣∣∣)/E

where

E =
100

∑
s=0

M

∑
m=1

e−(
∣∣∣s−om

j

∣∣∣)

4.3 Algorithm Evaluation

In this section, we evaluate our proposed algorithms by conducting experiments on the first

floor of Schorr center.

We evaluate the following algorithms.
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• Group 1: Algorithms based only on the RSS values at the current location. This group

of algorithms are proposed to determine the location of a stationary user. We use them

as reference algorithms.

– Algorithm 1: Generic Probabilistic Distribution (GPD) which directly uses

Equation 2.2 described in Chapter 2.

– Algorithm 2: K most likely neighbors (KMLN) which is described in Chapter 3.

We use the average of the K most likely locations as an estimate of the current

location of a mobile user. Note that, GPD is a special case of KMLN with

K = 1.

• Group 2: Algorithms using the previous location information. This group of algo-

rithms use not only the RSS values at the current location but also the previous location

information.

– Algorithm 3: Topology-based Tracking Algorithm which is similar to the algo-

rithm proposed by IBM[34]. The difference is that this topology-based tracking

algorithm uses KMLN instead of the joint probability method.

– Algorithm 4: Our proposed Shortest-Path-based Tracking Algorithm which is

described in Chapter 4. The time period is set to 2 seconds, and the distance

threshold d0 is set to 7 meters.

• Group 3: Algorithms using the median RSS values. This group of algorithms are

very similar to the above four algorithms, and the only difference is that they use the

median values of the RSS values measured at the most recent three locations instead

of the RSS values at the current location.

– Algorithm 5: GPD using Median RSS

– Algorithm 6: KMLN using Median RSS
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Table 4.4: The comparison result

Localization Technique 1.5 m 2 m 2.5 m 3 m 4 m 4.5 m 5 m 6 m
GPD 10% 14% 15% 27% 35% 46% 48% 58%

KMLN 20% 28% 33% 47% 53% 61% 66% 75%
Topology Tracking 20% 25% 36% 43% 52% 61% 63% 73%

Shortest-Path Tracking 24% 29% 37% 52% 57% 65% 69% 78%
GPD (Median) 6% 10% 10% 20% 30% 38% 41% 54%

KMLN (Median) 17% 24% 30% 43% 50% 56% 61% 71%
Topology Tracking (Median) 16% 24% 28% 38% 48% 52% 56% 67%

Shortest-Path Tracking (Median) 18% 23% 30% 40% 49% 55% 61% 72%

– Algorithm 7: Topology-based Tracking Algorithm with Median RSS

– Algorithm 8: Shortest-Path-based Tracking Algorithm with Median RSS
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Figure 4.7: The Shortest-Path-based tracking algorithm performance

Figure 4.7 shows the error distance of shortest-path-based tracking algorithm without and
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with median RSS for one tracking line. The error distance is the distance between the actual

location and the estimated location. Recall that each tracking line has a total of 12 points.

We only show the results for the last 10 points, and this is because that shortest-path-based

algorithm requires the information of the previous two positions. We can see that initially

at point 3 the error distances are very big (about 6 meters or 30 feet). The error distances

become smaller and smaller, finally are around 1 or 2 meters. We also notice that there is

no big difference between shortest-path-based tracking algorithm without and with median

RSS.

Figure 4.8 and Figure 4.9 show the cumulative probability of the error distance of all

eight algorithms. The cumulative probability is calculated by considering the error distance

of a total of 100 points of all 10 tracking lines. Again, for each tracking line, we do not
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Figure 4.9: The algorithm performance using median RSS

consider the first 2 points, and only consider the remaining 10 points. To help you read

the two figures, we also show the same cumulative probability information using Table 4.4,

in which, the top row is the error distance. We can see that for both without and with

median RSS, shortest-path-based tracking algorithm is more accurate than (5% higher) the

other three algorithms: GPD, KMLN, and topology-based tracking algorithm. In addition,

as demonstrated in Figure 4.7 , the average error distance of shortest-path-based tracking

algorithm becomes smaller for longer tracking lines. Thus, we expect that shortest-path-

based tracking algorithm would achieve even better average accuracy in Figures 4.8 and 4.9

if we have longer tracking lines.

We notice that in Figure 4.8 and Figure 4.9, shortest-path-based tracking algorithm

achieves slightly better accuracy than shortest-path-based algorithm with median RSS. To

more clearly show their difference, Figure 4.10 shows the cumulative probability of shortest-
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Figure 4.10: The comparison of Shortest-Path-based tracking algorithm performance with-
out/with the median RSS

path-based algorithm without and with median RSS algorithms only. But we also notice

that for some tracking lines, shortest-path-based algorithm achieves slightly worse accuracy

than shortest-path-based algorithm with median RSS. For example, Figure 4.11 shows the

error distances of one tracking line. We plan to have a more detailed study of the impact of

median RSS in the future.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we first introduced the WLAN indoor location determination problem, and

then propose an RSS fingerprinting indoor positioning system. To enhance the accuracy,

a well-designed K most likely neighbors scheme and a tracking algorithm considering the

previous position geometry are proposed. A discussion on human body interference and

the analysis of the indoor WLAN signal characteristics are briefly demonstrated. In our

evaluation, we setup a test bed in our CSE department building with 60 RPs and 4 APs. We

examined the performances of the Generic Probabilistic Distribution, KMLN Probabilistic

method, Topology-based tracking scheme and our proposed Shortest-Path-based Tracking

algorithm. Our algorithm performs superiorly in both without and with median WLAN RSS

case comparisons.
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5.2 Future Work

There are several tasks can be extended in the future work. Firstly, the KMLN scheme

could be improved by utilizing the clustering method to filter out some of the most likely

neighbors, and such selective preprocessing techniques have been proposed in [32, 34].

In addition, it is worthwhile to explore the big variations in historical RSS information

caused by irregular RSS patterns to enhance the system estimation accuracy. Furthermore,

as the more measurements in RSS sampling the better system performance achieves, we

will continue our study on the tradeoff between the positioning accuracy and the training

phase workload.
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[11] M. Ciurana, F. Barceló-Arroyo, and F. Izquierdo, “A ranging method with IEEE 802.11

data frames for indoor localization,” in Proceedings of IEEE Wireless Communications

and Networking Conference, pp. 2092–2096, Hong Kong, March 2007.

[12] A. Ladd, K. Bekris, G. Marceau, A. Rudys, D. Wallach, and L. Kavraki, “Using

wireless ethernet for localization,” in Proceedings of IEEE International Conference

on Intelligent Robots and Systems, pp. 402–408, EPFL, Switzerland, September 2002.

[13] A. Narzullaev, Y. Park, and H. Jung, “Accurate signal strength prediction based

positioning for indoor WLAN systems,” in Proceedings of IEEE on Position, Location

and Navigation Symposium, pp. 685–688, Monterey, CA, May 2008.



35

[14] X. Luo, W. J. O’Brien, and C. Julien, “Comparative evaluation of received signal-

strength index (RSSI) based indoor localization techniques for construction jobsites,”

Advanced Engineering Informatics, vol. 25, pp. 355–363, April 2011.

[15] Y. Ji, S. Biaz, S. Pandey, and P. Agrawal, “ARIADNE: a dynamic indoor signal map

construction and localization system,” in Proceedings of ACM MobiSys, pp. 151–164,

Uppsala, Sweden, June 2006.

[16] W. Yeung and J. Ng, “An enhanced wireless LAN positioning algorithm based on

the fingerprint approach,” in Proceedings of IEEE TENCON, pp. 1–4, Hong Kong,

November 2006.

[17] A. Dempster, B. Li, and I. Quader, “Errors in determinstic wireless fingerprinting

systems for localisation,” in Proceedings of 3rd International Symposium on Wireless

Pervasive Computing, pp. 111–115, Santorini, Greece, May 2008.
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