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ABSTRACT 

Advances in next generation sequencing technologies have allowed short reads to be 

generated at an increasing rate, shifting the bottleneck of the sequencing process to the 

short read mapping computations. High costs and extended processing times drive 

researchers to pursue more efficient solutions with an overall goal of a short read 

mapping architecture capable of processing short reads as they are generated. Digital 

signal processors have shown high performance capabilities while maintaining low power 

consumption in a wide field of applications. This thesis explores the use of a DSP 

accelerated exact match short read mapping algorithm, focusing on a performance metric 

to increase the number of mapped bases per watt-second. The design is implemented and 

tested for CPU and alternate coprocessor implementation comparisons to analyze the 

potential benefit of accelerating a memory bound application. 
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CHAPTER 1 

INTRODUCTION 

 Deoxyribonucleic acid is the name of the chemical compound necessary for all 

life. Understanding the interactions of chemical combinations that make up DNA has led 

to the development of the field of genomics. The ability to view DNA at the most basic 

level has allowed for advancement in a multitude of applications from Microbiology to 

Pharmacology. To make viewing individual strands of DNA possible, current 

technological limitations to read each short sequence results in specialized equipment 

breaking the genome into small fragments. These short reads are then mapped using a 

reference genome to determine the original location of the read, allowing the reads to be 

assembled into a fully sequenced whole genome. Presently the most challenging and 

computationally intensive portion of the process is short read mapping. 

 As improvements are made in the next generation of sequencing equipment, faster 

and more reliable short reads are being generated at an increasing rate. Illumina, one of 

the most widely used and accepted manufacturer of next generation sequencers, is 

capable of producing 1.2 billion reads consuming 120 Gb of data in a 27 hour timespan 

for a whole genome and 6 billion reads consuming 600 Gb of data over an 11 day 

timespan in a high output mode for multiple genomes [1]. With such a high throughput, 

advances are needed in the short read mapping methods in order to handle the large 

volumes of data being produced. 
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 Coprocessors have been widely used to increase performance in CPU based 

computations for various applications. There has been a mainstream push for FPGAs and 

now GPUs to be used in heterogeneous computing, but both are difficult to operate, 

complex to design, and are power hungry. They provide benefits only for specific 

application’s kernels.  

 This thesis presents an alternative to traditionally-used coprocessors to examine 

how well a data intensive application of short read mapping maps to a DSP coprocessor 

technology. The basis for short read mapping is built upon the Burrows-Wheeler 

Transform (BWT) [2]. Originally designed for data compression, the BWT reorganizes a 

block of text placing similar characters together. While optimized for data compression, it 

was additionally determined to be an effective solution for searching strings as well. The 

Bowtie project [3] developed a short read mapping algorithm based upon the BWT to 

increase performance in searching for short reads in a large reference genome. Analyzing 

the repetitive computations performed in Bowtie, an algorithm was developed for a GPU 

implementation improving the exact match short read mapping by the use of table based 

searches [4]. 

 The goal of this work is to examine a DSP implementation of the exact match 

tabling search using the human chromosome 22 as a reference with the focus of 

improving the mapped bases per watt-second, maximizing both throughput and power 

consumption. A DSP implementation will be developed and tested with a CPU software 

implementation focusing on improvements through calculation reduction in the 

algorithm, parallelism for data distribution, and specialized enhancements for the DSP 

architecture for increased hardware acceleration performance. A power analyzer will 
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measure the power consumption for the performance metric calculations. Other 

coprocessor comparisons will be possible through other studies’ listed hardware to 

extrapolate their power consumption compared to the performances given for an 

equivalent to the performance metric developed in this thesis. 

 To introduce this thesis, the next chapter explains the motivation for this work. 

Next the general background information is presented explaining information on 

understanding DNA, the big data problem, the Burrows Wheeler Transform, Bowtie, 

tabling improvements on the exact match search and the use of DSPs as coprocessors. 

Subsequently this thesis will present related works for coprocessor implementations, the 

hardware used for testing, the DSP and CPU designs, test cases, the performance metric 

developed, the results obtained, and a conclusion of the data and performance. 
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CHAPTER 2 

MOTIVATION  

 The motivation for accelerating short read mapping comes from improvements in 

the NGS technology allowing for more accurate and a larger number of short reads being 

produced in less time. These improvements have shifted the bottleneck from sequencing 

to the mapping algorithm. More adequate solutions are needed for short read mapping to 

handle the increasing amount of data produced. This chapter discusses the reasoning for 

choosing this particular area of research and the importance the topic plays in numerous 

fields of study. 

 The completion of the Human Genome Project (HGP) in 2003 led to the first 

informational database created that held the 3 billion chemical base pairs which form the 

human genome [5]. With the conclusion of the HGP came the possibility to use short read 

mapping for DNA sequences to map to a human genome reference. Since then, there has 

been a drive for improvements in the technology used to sequence DNA as well as the 

computations for processing the enormous amounts of data produced by sequencing. 

Various methods have been introduced including de novo and reference based 

sequencing. 

 De novo assemblies build genomes with no aid from a reference. They take a 

considerably greater amount of time to execute when compared to reference based 

assemblies. This method provides a key step in the initial sequencing of a new genome, 

but is less beneficial for subsequent sequencing of other genomes in the same species. 



 

5 

The most common method of reference based sequencing, short read mapping, has been 

used due to the availability of human genome references publicly available. 

 An exact short read mapping algorithm was selected because of the inherent 

pipeline design that exists in the NGS workflow. Recent studies have shown that short 

read mapping has better performance by further splitting the mapping process into an 

exact matching stage followed by an approximate matching algorithm due to a majority 

(70 to 80%) of reads mapping exactly to the reference genome [6] [7]. The amount of 

data generated is memory bound, dependent upon cache performance with data 

dependencies from aborted reads in cases where a read is determined to be a mismatch. 

 Current methods for processing short reads involve a variety of central processing 

unit (CPU) and coprocessor based technologies with field programmable gate arrays 

(FPGAs) and graphical processing units (GPUs). Software implementations with CPUs, 

such as with Bowtie [3] and WHAM [8] have been the standard but face long runtimes 

and heavy power consumption. While the use of FPGAs [7] [9] [10] and GPUs [11] [4] 

[12] as coprocessors for short read mapping has shown speed improvements, these 

technologies still suffer from individualized limitations that hinder their adoption. 

 With the increase in popularity of coprocessors for high performance computing, 

digital signal processors have expanded into high performance applications currently in 

fields of medical imaging, mission critical applications, testing, and automation [13]. 

DSPs are, by design, power efficient while maintaining strong computational 

performance. One of the leading manufacturers of DSPs, Texas Instrument, provides an 8 

core DSP package that achieves 1.25 GHz, 320 GMACs, and 160 GFLOPs for each core, 

while consuming only 10.5 watts [13]. DSP architecture offers more on chip memory for 
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higher throughput and more localized RAM for improved access times and better 

performance with memory bound applications, which would offer improved performance 

per watt over the same time frame when compared to CPU and other coprocessor 

implementations. Through the same parallel processing techniques used for high 

performance computing of CPUs, FPGAs and GPUs, examining the use of DSPs may 

lead to significant performance results at a fraction of the power consumption of other 

processing technologies. 

 DSPs were chosen because of their inherent low power use coupled with a 

powerful processing capability. With a specific memory bound algorithm for short read 

mapping, this thesis examines DSP’s ability to enhance a pipeline that is capable of 

analyzing data from NGS equipment at the same rate the data is being produced. This 

thesis does not focus on overall completion time as many other studies have done, but 

instead focuses on a comparison of the number of bases read with respect to the number 

of watt-seconds consumed. 
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CHAPTER 3 

BACKGROUND 

3.1 UNDERSTANDING DNA 

 DNA is the building block that provides a set of instructions for all living 

organisms to function. DNA is made up of four chemical bases called nucleotides: 

Adenine, Cytosine, Guanine and Thymine. Bases combine in a specific order, pairing 

Adenine with Thymine and Cytosine with Guanine. Organisms within the same species 

will have a majority of the DNA identical to one another while differing species’ DNA 

can differ drastically. Knowing which nucleotides match to form a base pair allows for 

only one base of the pair to be considered when dealing with computational genomics. 

Grouping base pairs into a double helix strand form individual genes. Thousands of these 

genes are linked in sequence to form a single chromosome. The human genome consists 

of twenty three chromosomes. Figure 3.1 shows a visual example of the double helix 

DNA strand and the structures that are formed. 

 In order to view these strands, sequencing technology was developed which uses 

certain chemical components to break apart an organism’s DNA into small fragments. 

The smaller fragments can then be closely examined to generate the exact ordering of the 

bases into short reads. These short reads frequently contain variances which increase the 

complexity of mapping based on the occurrences of gaps, insertions, deletions and 

mutations. 
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Figure 3.1 Composition of DNA. (A) Four chemical nucleotides combined as base pairs. 
(B) Base pairs in a double helix strand. (C) DNA strands forming genes which form 
chromosomes. (D) The human genome consists of 23 chromosomes [14]. 

 Gaps are missing bases that have not been read. It is the region between the end of 

one short read and the beginning of another that no other short read covers. Gaps occur 

because of deficiencies of the NGS technology and are found during alignment after 

reads have been mapped. The only way to fill these gaps are to re-sequence, generating 

more short reads that will cover the missing regions and provide a more complete 

genome sequence. Insertions and deletions occur when a base is inserted or deleted in a 

sequence. Insertions and deletions can occur naturally in the organism or as a result of the 

NGS technology. Mutations also occur naturally or as a result of NGS technology. 

Mutations occur when a base is changed from one nucleotide to another. Naturally 

occurring variances in DNA can be caused during cell’s replication of DNA or variances 

that exist between two organisms of the same species that define hair color, eye color, or 

predisposition to a particular ailment. 
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 Knowledge of the organization and function of different genes allows scientists to 

understand the basic functionality of humans and the reasoning behind health defects and 

medical problems, among others. This drives the medical community and is a strong 

support for increased funding and effort spent furthering the field of genomics. 

3.2 THE BIG DATA PROBLEM 

 Big data has been a concept that has been around as long as computational 

algorithms. Technological improvements are the cause for the rapid data expansion that 

must be planned and accounted for in future developments. The Big Data Problem (BDP) 

encompasses the issues associated with the technological bounds to compute large 

volumes of data, the limits of data storage, and the capability to transport data between 

systems. These three issues deal with the need to efficiently handle the increasing 

amounts of data generated as well as the data already available. 

 Recognizing the importance of big data, funding is readily available for research 

and development. The US DOD, DOE and DARPA announced in March of 2012 an 

initiative to invest more than $200 million leading to advances with the big data problem 

[15]. For genomics, the BDP is primarily that of a computationally limited system. There 

is far more data being produced than is effectively processed with current algorithms and 

technology. An example given indicates that for a 1000 petabyte chunk of data, 100 

instructions to process one block on a 5 GHz processor would take 635 years to complete 

[15]. This push is a motivating factor for the amount of research being done to find 

effective solutions in the field of genomics, which is generating more data at a faster rate 

with improvements in NGS technology continuously being made.  
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3.3 BURROWS WHEELER TRANSFORM 

 The Burrows Wheeler Transform was first developed as an algorithm to be used 

in conjunction with a compression algorithm. The BWT reorganizes a block of text to 

make it easier for the compression algorithms to compress the information more 

effectively by placing similar characters together. The BWT is accomplished with three 

basic steps. Refer to figure 3.2 for an example of the transformation of string 

S=“ACACGTATTA” of size N=10 for the following steps.  

 First, an input string S of size N is selected and copied N times forming rows in a 

matrix. Second, as each row is copied, it is shifted cyclically. Each shift removes the first 

character of the block of text and places the character at the end. This results in N copies 

of the string S generated in a matrix grid of size N x N as shown after the first arrow in 

figure 3.1 (A). The third step of the transform sorts the matrix rows lexicographically 

where A < B < … < Y < Z as shown after the second arrow in figure 3.2 (A). The 

transform is taken from the last column of the resulting matrix [2]. 

 The matrix that is generated during the shift and copy steps is known as a last-first 

mapping. This mapping property allows for the occurrences of a character in the last 

column to be referenced to the same order of the occurrences of that character in the first 

column. This principle is the technique that allows the BWT to be used as an efficient 

searching algorithm, which has been used in multiple bioinformatics applications. Figure 

3.2 (B) shows an example of the BWT and a last-first mapping example used to identify 

the range of rows. 

 The example searches for the query “CGTA” in the original reference string 

“ACACGTATTA” using the first and last columns of the transformation matrix taken  
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Figure 3.2 Burrows-Wheeler Transform. (A) The Burrows-Wheeler matrix and 
transformation of ‘ACACGTATTA’. (B) Steps taken to narrow the range of rows for an 
exact match of the query ‘CGTA’ in the reference string ‘ACACGTATTA’. 

from figure 3.2 (A). The first column contains the character currently being searched and 

the last column contains the next character for comparison. In a last-first mapping, the 

first character is the end character of the query, iterating from right to left. The search 

begins with the last character, ‘A’, of the query “CGTA”. The initial range of rows is 

selected from the first column containing the character ‘A’, which are rows 0 to 3 in the 

example, giving a range of 4 possible matches. The last column within the given range is 

compared to the next character from the query, ‘T’. Within the same row range, the last 

column contains the first and second occurrences of ‘T’ from the transform out of three 

possibilities, reducing the possible matches to 2. The next step moves the range in the 

first column to the first and second ‘T’ in the list as shown in the second step of figure 3.2 

(B). These steps are repeated for the remaining characters from the query ‘G’ and ‘C’ as 



 

12 

indicated in the remaining steps of figure 3.2 (B). Once all of the characters of the query 

have been iterated through, an exact match exists if the range is greater than 0. For the 

example listed only 1 match exists. The range indicates the total number of exact matches 

if the range is greater than 1. As BWT was primarily designed for data compression, the 

location of the query to the original reference is not considered in the BWT example and 

will be described later in this thesis. 

 The BWT takes advantage of the repetitive nature of the English language by 

grouping similar characters. The same principle can be used toward genomic applications 

due to the repetitive nature of DNA and the simplistic selection of only four possibilities 

of nucleotides. The use of BWT has become the basis for numerous short read mapping 

and alignment algorithms, most notably the Bowtie project [3]. 

3.4 BOWTIE 

 The Bowtie project was one of the first short read mapping and alignment 

algorithms capable of a notable speedup over previous hash table algorithms. Bowtie 

introduces the BWT to index the reference genome and searches the index to map the 

short reads achieving speedups of 60x for Maq [16] and 350x for SOAP [17].  

 Several improvements were made over the previous leading algorithms. The use 

of the BWT greatly reduced search time and memory footprint to allow for the process to 

run on a standard desktop computer platform. To aid in calculating the original positions 

of the transform matrix, a ‘$’ character is appended to the string prior to the shift and 

copy steps. While this addition slightly increases the size of the transform, the index is 

able to be calculated after the transformation allowing for faster index building. The size 

difference for the transform was only an additional character while the matrix increased 
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trivially to 2N+1 for a reference string S of size N. Additionally Bowtie includes 

approximate matching with backtracking to attempt to increase the number of reads 

mapped by iterating 2 levels back when no exact match is found. Parallelism is 

introduced as the increase in processing threads allows for a distribution of concurrent 

searches. The steps employed are a two-phase process. The first phase builds the 

reference index while the second phase matches short reads to the reference. Once built, 

the reference index does not have to be rebuilt unless a new reference sequence is needed. 

Figure 3.3 demonstrates the modifications to the original BWT. 

 In the first phase, the reference index is built by first appending a $ to the 

reference string as shown in the first step of figure 3.3 (A). The string is then shifted and 

copied before sorting lexicographically where $ < A < C < G < T, as is done on the 

BWT. The shift index is built based on the location of the ‘$’ in each row of the 

transformation matrix. The shift index indicates the number of positions each row was 

shifted to the left and references the location in the original reference string. In the 

example shown in the last step of figure 3.3 (A), the original sequence row will have an 

index value of 0, while the row beginning with ‘$’ will have an index value of 10.  

 In the second phase, only the first and last column of the transformation is needed. 

The exact match search reductions are the same as those performed in the BWT, but only 

using “A”, “C”, “G”, “T”, and “$” instead of a full alphabet. Once the search is 

completed in figure 3.3 (B) as was done in the BWT examples, a resulting match was 

located. The shift index position associated with the row from the query match in the last 

step in figure 3.3 (B) shows an index of 3, which indicates that the query can be located 

at the 3rd character in the original reference string, beginning with 0. The query is located 
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Figure 3.3 Bowtie algorithm of the Burrows-Wheeler Transform. (A) Indexing phase 
generates a first column, last column and a reference index. (B) Searching phase iteration 
reductions for the search query ‘CGTA’ of reference sequence ‘ACACGTATTA’. 

in the original reference by the arrow from the last step (B) to the reference string (A) in 

figure 3.3. 

 To increase the percentage of short reads mapped, Bowtie uses an approximate 

matching backtracking strategy when a read is determined to be a mismatch. A mismatch 

occurs in the exact matching stage as each base of a short read is compared to the 

reference. Once a base does not match the base expected from the reference comparison, 

the read is identified as a mismatch. The mismatched reads are passed to the next stage 

for approximate matching. Bases found to be mismatched are replaced with matching 

bases to allow the algorithm to continue searching. If replacing one base does not find a 

match, then additional bases are replaced. This process of backtracking drastically 

increases the runtime for each number of mismatches allowed. If the number of 

mismatches in a short read is larger than what is allowed by the algorithm, the short read 
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is identified by the approximate matching stage as a mismatch. Short reads not mapped in 

either the exact match or approximate match are considered mismatches and lead to the 

overall percentage of reads not mapped by the algorithm. The standard backtracking level 

of Bowtie is 2 or 3 levels, which allows for 2 or 3 mismatches per short read. Bowtie is 

capable of running higher levels of backtracking, but causes exponential increases in 

runtime. 

 The algorithm developed led to performance mapping of 29.8 million 35 base 

reads per CPU hour run on a standard desktop workstation with 2.4 GHz Intel core 2 

processor with 2GB ram and 33.8 million 35 base reads per CPU hour on a server with a 

4 core 2.4 Ghz AMD Opteron processor with 32GB ram [3]. These performance results 

led to Bowtie being used as a mainstream benchmark for short read mapping for 

comparisons with later CPU based technologies as well as heterogeneous processing 

alternatives. The limitations of Bowtie are the computationally intensive reoccurring 

calculations necessary to search the reference index. Finding alternative methods to 

reduce the computational load are necessary for future improvements in processing time. 

3.5 EXACT MATCHING HIGH THROUGHPUT SEQUENCING 

 As Bowtie grew in popularity for short read mapping, there has been an increase 

in the amount of research done to further increase the performance of the algorithm and 

find alternative architectures more suitable to the high throughput needs of the memory 

bound sort read mapping. Su Chen and Hai Jiang of Arkansas State University developed 

improvements based on Bowtie and the BWT with the focus of increasing performance to 

handle the increase demand and generation of short reads from NGS technology by the 

use of tables to reduce computational complexity, a more efficient exact matching block 
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sort improvement of Bowtie’s algorithm and investigation in the use of a GPU 

coprocessor to further improvements over the standardized CPU technology [4].  

 An analysis of the Bowtie algorithm revealed three improvements to reduce the 

complexity of the computation to an O(lg(n)) table based search. The first step proposed 

locates the top and bottom positions for the first column of the Bowtie-BWT matrix for 

each base. Second is to count the occurrences of each ‘A’, ‘C’, ‘G’ and ‘T’ above the 

current row for the last column of the matrix. Finally a sum of the occurrences of each 

‘A’, ‘C’, ‘G’ and ‘T’ is calculated from the last column of the matrix. Figure 3.4 

demonstrates the optimization tables generated from the steps listed above.  

 The calculations performed by the algorithm reduce to 6 memory stores, 5 

memory lookups, 4 addition/subtractions, and 1 if comparison for a total of 16 operations 

for each character in a short read. Decreasing the number of calculations to simplified 

table lookups from the index tables converts the Bowtie-BWT algorithm from a 

computationally bound kernel to that of a memory bound kernel. Figure 3.5 gives the 

exact matching table based search algorithm. 

 The performance increases obtained with the modifications on a GPU base 

coprocessor achieve a 40x speedup over that of a CPU based solution. The NVIDIA 

Tesla C2050 GPU used for performance testing is one of the leading GPUs offered for 

high performance general purpose GPUs available. While the GPU offers 448 processing 

cores, a significant amount more than standard CPUs, the GPU is designed as a 

computationally powerful coprocessor achieving high performance with regard to double 

precision floating point operations capable of 515 Gflops using 247 watts of power for a 

single GPU in addition to the power requirements of the CPU needed for the remaining 
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Figure 3.4 Bowtie-BWT Optimization Steps. (1) Find the top and bottom positions for 
‘A’, ‘C’, ‘G’, and ‘T’ in the first column. (2) Count the occurrences of ‘A’, ‘C’, ‘G’, and 
‘T’ above the indicated row in the last column. (3) Sum the occurrences of ‘A’, ‘C’, ‘G’, 
and ‘T’ in the last column [4]. 

 

Figure 3.5 Exact Matching Table Based Search Algorithm with complexity O(lg(n)) [4]. 

operations [18]. The GPU is a powerful coprocessor for its application specific functions, 

but is not as robust in terms of memory access compared to data calculations, particularly 
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when considering the power consumption performance benefit of a memory bound 

application. 

3.6 DSPS AS COPROCESSORS 

 Over the last several years research has expanded into various types of 

coprocessors for heterogeneous computing acceleration. Select coprocessors provide 

performance increases for a specific range of applications. Depending on the specific 

purpose for the acceleration, a coprocessor may be more or less suited for the need. 

Previous cell processors and FPGAs provided generous speedups for special purpose 

processing applications. Cell processors have now become outdated and FPGAs require 

knowledge of hardware design and are difficult to use. The most recent advance in 

coprocessing technology has been the use of general purpose GPUs for accelerating 

computationally intense applications with high levels of parallelism. While these 

processors provide a strong alternative to CPUs, they generally excel only in 

computationally bound kernels and consume considerable amount of power to the point 

of being a significant issue that must be addressed with their use. The average 

supercomputer consumes more than 3.2 megawatts, which translates to a multimillion 

dollar electric bill and a serious consideration for high performance computing [19]. 

 Digital signal processors are an alternative coprocessor technology not widely 

explored. One of the world leaders in DSP manufacturing, Texas Instruments, offers 

numerous packages and has developed processors from ultra-low power DSPs capable of 

fixed point computation and FFT acceleration to their multicore DSP line that offers a 

range of processing capability up to 16 GHz in a single multicore package capable of 32 

bit fixed and floating point acceleration [13]. With the initial design of the DPS, even the 
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highest performance processors use a fraction of the power of any other coprocessor 

technology while maintaining competitive high performance computing ability. The 

multicore high performance DSPs from Texas Instrument offer multiple DSP core 

packages with up to 8MB of on chip memory with enhanced memory architecture for 

faster on and off chip memory access to the available DDR memory bank integrated in 

the package. A TeraNet switch fabric allows components on the package to communicate 

through 2 terabits of bandwidth and independently operating high bandwidth peripheral 

input/output interfaces for simultaneous communication and memory transfer. The 

simultaneous and high bandwidth communication eliminates memory access bottlenecks 

for off package needs and allows for real time processing capabilities [13]. 
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CHAPTER 4 

RELATED WORK 

 In order to effectively examine the use of DSPs to accelerate short read mapping, 

it is important to look at related work done to accelerate sort read mapping through other 

coprocessors and technologies. With a more rounded view of alternative approaches, a 

better evaluation of the DSP coprocessor can be made for a potentially higher 

performance increase and lower power consumption of the previously explained metric, 

mapped bases per watt-second. Related work covered in this section will explore short 

read mapping applications with cloud computing, FPGA and GPU coprocessor 

acceleration and the results obtained from studies done on each. 

4.1 CLOUD BASED SHORT READ MAPPING 

 Cloud based computing has been made recently available since the advent of 

cloud services. While the capabilities of cloud computing are almost limitless in 

computational capacity, there is a price associated with the performance gains, as it is a 

service rendered. The higher the parallelism and performance, the cost of maintenance, 

power consumption and technology drive up the cost of the service.  

 A cloud based short read mapping study was completed in 2012 to review the 

possibility of using these services specifically for accelerating short read mapping. The 

study introduces a concept of maintaining historical data on the cloud. This allows for 

mapping to begin the moment short reads start to upload since the reference genome and 

other needed information already exists on the server. The study ran performance tests 
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with a 9 server network running Xeon dual core 2.53 Ghz CPUs and 6 GB of memory 

with 36 base short read lengths [20]. While there were no specific results given, 

generalities that a single read was able to be done in less than a second on a non-

congested system and congested systems were able to send a response in a several 

seconds indicates that the performance would not be able to provide results from a NGS 

machine as fast as the reads were generated. In addition a problem was discovered with 

latency issues with uploading and downloading data from the cloud. The time necessary 

for a genome’s short reads to be uploaded is not listed, but would add additional 

difficulties which prove to be a substantial setback for this type of technology. Until 

further improvements are made, cloud based short read mapping would not be 

competitive with current mapping technologies. 

4.2 FPGA COPROCESSOR ACCELERATION 

 Field Programmable Gate Arrays have been used for high performance computing 

with a great success at large performance speedups. The processors are capable of being 

reconfigured with a new design to meet multiple needs and are efficient at parallel tasks 

within the limitations of the hardware blocks available on a FPGA processor. Generally 

FPGAs are more complex to use, as a specific design must be mapped first before being 

used as a coprocessor. Often times this can be a daunting task that is quite difficult. Any 

modifications may cause the entire design to have to be modified. With these limitations, 

they are still capable of huge performance gains within a certain scope of applications. 

Several studies were done to explore their use within short read mapping applications. 

 A study published in 2010 performed hardware and software comparisons of 

various read sizes and was able to achieve a performance speedup between 2x and 4x 
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using a naive FPGA mapping method. A naive approach was chosen based on the 

limitations of FGPAs to handle large data structures. The resulting improvements listed 

indicate that as the size of the reads increases, the performance gain slows to match that 

of a CPU implementation. Test results were given with 16, 24 and 36 base read lengths 

and the speedup dropped approximately 1x speedup with each read size increase on an 

exact match design. The conclusion listed supports that exploring alternative coprocessor 

technologies is vital at the long term evolution of short read mapping in order to surpass 

the performance of CPU implementations to meet the processing needs of NGS 

technology. The FPGA implementations seem to be limited as larger read sizes require 

less parallelism because more processing blocks are consumed to process less reads [10]. 

 Related studies over a two year period both evaluated the performance of short 

read mapping implementations using a majority of registers and lookup tables in their 

designs with comparisons based on the performance of a CPU implementation of Bowtie. 

A focus was also made as to the accuracy and percentage of reads mapped. Both studies 

claim that 100% mapping of reads can be done within the tolerance of the number of 

mismatches, as they both implement mismatch algorithms. The results obtained indicated 

that the time to completion of 100,000 and 500,000 reads was 3 minutes 44 seconds and 3 

minutes 33 seconds, respectfully. Bowie’s performance came in at 3 minutes 45 seconds 

and 3 minutes 26 seconds, but was only able to map a fraction of the short reads of the 

FPGA implementations. Results from both are clear. There were no performance time 

improvements in comparison to Bowtie. A general timing performance increase was 

obtained with the FPGA design, either through a better design or newer technology. The 
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FPGA implementation was also able to map a higher percentage with a mapping 

guarantee [21] [22]. 

 Most recently in 2013 an implementation for FPGAs was developed to split the 

exact and approximate matching steps into a pipeline approach using a naive mapping 

compared to popular software tools. The study takes a new approach and performs three 

comparisons. The first comparison is based on a static FPGA design for an exact string 

matcher and a software design for the remaining reads with an approximate string 

matcher. The second uses a static FPGA design for both the exact and approximate string 

matchers. Finally a comparison is done using a reconfigurable approach in which a first 

run is completed with the FPGA for an exact string matcher, then the FPGA is 

reconfigured as an approximate string matcher and run on the remaining data still stored. 

Performance increases were achieved in the order presented of 2x, 150x and 516x when 

compared to a software Bowtie implementation [7]. 

 Until recently the FPGA implementation has not been viewed to be a benefit for 

short read mapping applications. While limited to a specific range of capabilities, the 

FPGA has been capable of providing quite significant speedups, depending upon the 

application. The idea of splitting the exact matcher and approximate matcher, as 

presented in the last of the listed FPGA studies was a portion of the motivation for this 

thesis. With the significant performance gains, an indication that the speedup 

improvements were so high based on a reconfigured FPGA method brings to question 

whether the improvement was based on keeping the memory local to the FPGA. With 

that in mind, exploring the benefits of DSPs ability to handle memory bound applications 

may provide promising results. 
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4.3 GPU COPROCESSOR ACCELERATION 

 The most recent push for coprocessor technology to shift to the GPU for 

mainstream use caused many GPU implementations to be developed for short read 

mapping acceleration. A wide variety of designs for use with short read mapping were 

created, but many did not achieve performance gains and others only minor speedups less 

than 3x [11] [12] [23]. GPUs have extremely high power demands that limit their overall 

benefit, but the high level of parallelism has shown that speedups can be achieved. 

 An acceleration of the RMAP software implementation for short read mapping 

achieved speedups from 9x to 14x after developing a pipeline system to eliminate race 

conditions from simultaneous map updates from GPU threads. The comparison was 

based on a software version of RMAP with the GPU version of the same algorithm. One 

limiting factor was placing a limit on the size of the short reads to not exceed 64. While 

many of the current NGS technologies offer short reads of smaller sizes, this limitation 

will lead to a decrease in performance as read sizes increase. The limitation stated does 

not prohibit the GPU implementation from calculating the maps, but decreases the 

performance gains [24]. 

 A large contributor to the motivation for this thesis comes from the next paper 

based on an exact matching approach with the use of the BWT on GPUs. Improvements 

of the exact matching method on a GPU compared to a CPU version achieved 

improvements of 40x to 45x speedups. A linear relationship between the numbers of 

short reads compared to the performance gain for an improvement of 1x speedup for 

every 4.3 million target sequences. An upper limit to the performance gain was not 

calculated, but shows that such gains are a motivating factor. Higher performance 
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achievements were claimed to have been limited when compared to a CPU 

implementation with respect to increased memory access. Because CPUs performance is 

higher with memory bound applications than GPUs, a DSP coprocessor implementation 

may be capable of even higher performance gains on a memory bound kernel, provided 

similar improvements can be made with the remaining portions of the exact matching 

approach [4]. 
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CHAPTER 5 

DSP DESIGN 

 Exploring the use of DSP base coprocessors for short read mapping offers the 

opportunity for significant performance gains. The goal of this thesis is to develop a DSP 

implementation of the exact match short read mapping algorithm to further improvements 

for the next stage of the genetic sequencing system. This goal will allow for further 

improvements with remaining stages to ultimately develop a system that is capable of 

sequencing a genome on demand. This chapter explains the hardware selected, the DSP 

and CPU implementation development, test cases used for results and the performance 

metric selected for comparisons. 

5.1 ADVANTECH DSPC-8681 BOARD 

 A multi-core DSP board was selected to maximize the potential for both 

performance gains on a single DSP as well as parallelism performance enhancements that 

can only be gained by the use of multiple DSP chips. The Advantech DSPC-8681 board 

contains 4 Texas Instruments TMS320C6678 DSPs running at 1GHz per DSP. Each of 

the DSPs provides 8 processing cores, giving a total of 32 available cores. The board 

receives power through a PCI Express connection and consumes a maximum of 54 watts. 

For control of the DSP framework, a JTAG emulator is used for communication to the 

device for both programming and debugging [25]. 

 Software development of the binary loaded to the DSP system was compiled on 

Code Composer Studio 5.1 developed by Texas Instruments on an Eclipse development 
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studio framework. This software package allows for code to be developed in a simulation 

environment before being applied directly to the hardware. Once the binary file has been 

compiled from C code, the targeted cores from the DSP system are then connected and 

the binary file loaded. For any memory needs, such as loading the index data and short 

reads into memory, a memory browser is used to load directly to the memory 

architectures available. The selected cores may then be executed to run the loaded binary 

instructions. In a production environment, the short reads would be able to be transferred 

through one of the DSP’s many high throughput communication modules available. This 

system of streaming short reads from the NGS frees up additional memory from the DSP. 

 Unlike alternate coprocessors, the design of the DSP allows for an 

implementation to entirely run on a self-contained board. The Advantech board used in 

this thesis requires that power be supplied over a PCI Express connection provided by a 

computer, but no other functionality is used from that connection. Ideally, testing would 

be completed with an alternate power source and the board would operate outside of a 

computer environment, but precise power measurements are still able to be obtained for 

testing purposes of this thesis. 

5.2 DSP DEVELOPMENT 

 The algorithm developed for the DSP design is based upon the exact match table 

based search of the GPU implementation previously described [4]. Several aspects were 

investigated in order to develop further improvements over the algorithm’s performance 

including caching DDR memory into level 1 and level 2 on-chip cache, exploring the 

result of larger short read lengths, varying sizes of the reference index, and compiler 

optimizations for parallel processing of 8-way VLIW instructions and SIMD instructions. 
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 With the C6678 DSP containing 32KB of L1 cache and 512 KB of L2 cache, 

investigating the performance of enabling caching to both levels of on-chip memory 

provided a significant benefit to overall performance. Enabling caching resulted in 

between 2x and 2.5x speedup in the amount of time necessary to process a block of short 

reads. Caching the data for reduced off-chip memory access outweighed the cost of cache 

misses for index lookups. Significantly increasing performance, caching was enabled for 

use with the algorithm on the DSP system and used when calculating the overall results. 

 Short read lengths of 35 bases were chosen as a more widely used standard of 

comparison between other algorithms. Even as short read sizes are expanding with 

improving technology, a more accurate comparison can be made by keeping the 

similarity of the same sized reads for the purposes of algorithm and processing 

comparisons. More accurate reads are still being computed from current NGS through the 

use of shorter reads, because longer read lengths often cause the bases farther from the 

focus of the NGS to be less accurate. To better understand the performance of the 

algorithm explored by this thesis, the effect of longer short reads was investigated to 

provide an overall view of the performance in relation to other algorithms, but not used in 

the result calculations.  

 A linear relationship was discovered between the size of the short read and the 

time necessary to process the data. Increasing the short read to 70 bases would require 2x 

the time to process when compared to a 35 base short read. No modification of the design 

was needed for this preliminary test. The design of the algorithm for both CPU and DSP 

implementations accepts any number of short reads and does not require reprogramming 

or redesign to change the expected read size. 
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 The size differences of varying indices used does not have the same relationship 

to process time as the length of short reads. The search function in the algorithm is only 

dependent on the length of the short read and not the size of the index. While a trivially 

sized index has the potential to reduce the processing time of short reads, this is simply 

because a very small index could cause a greater amount of short reads to return no 

remaining matches after reduction iterations occur. With an appropriately sized index, the 

size only affects the number of remaining matches reduced each iteration. The total 

processing time is still entirely dependent on the number of short reads and the frequency 

in which mismatches occur. 

 Additional improvements to the algorithm were investigated through the use of 

varying compiler optimizations. The compiler’s ability to control the use of the 8-way 

VLIW and SIMD instructions of the DSP architecture for better parallel performance 

exceeded attempts to control the functionality for manual performance increases. The 

compiler was effective in taking advantage of the core’s ability of parallelism and the 

compiler settings chosen by the Code Composer Studio were used for the calculated 

results. 

5.3 SOFTWARE DEVELOPMENT 

 In developing a CPU implementation, considerations were taken to assure that an 

equal comparison to the DSP could be made. The same algorithm was used to develop a 

CPU implementation to illustrate the acceleration improvements of the DSP. The 

implementation was written in C and compiled with the standardized “gcc” compiler. No 

compiler optimizations were used to build the binary. The implementation was 

maintained as closely to the DSP implementation as possible, keeping the searching 
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portion of the code identical to that of the DSP. The platform used to run the CPU 

implementation was a Dell Optiplex 980 Enterprise-level Minitower with 3GB of DDR3 

memory and an Intel Core I5-650 processor running Ubuntu 12.04. 

5.4 TEST CASES 

 Data used for testing and calculating the results were based on the human genome 

chromosome 22. The chromosome database, hs_ref_GRCh37.p10, was obtained from the 

National Center for Biotechnology Information repository and contains 34.9 million 

bases [26]. The index was calculated from a C program developed to perform the BWT 

and to generate the improvement tables. The tables were written to 2 sets of files. The 

CPU implementation used a binary format that stored the tabling information containing 

the index, while the DSP implementation used a separate format developed by Texas 

Instruments to allow for blocks of data to be loaded directly into memory of the DSPs.  

 Short reads were generated from the chromosome 22 database to ensure that 

matches were possible and mismatches would be at a controlled rate. Files were 

generated for short reads with length of 35 bases. The number of reads for the files are as 

follows: 10K, 100K, 1M, 2M, 2.5M, 3M, 4M, 5M, 10M, 100M, and 1B. For each 

grouping of numbers of reads, a percentage of mismatches were introduced to better 

understand the relationship between mismatched search terminations and processing 

time. Each category was also generated to have 0%, 25%, 50%, 75%, and 100% of the 

reads that are mismatches in order to confirm that there were no unexpected performance 

results or data generated. Table 5.1 shows the number of matched and mismatched reads 

for each category. 
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Table 5.1 Generated Matched and Mismatched Short Read Data 

 

 Mismatched short reads were generated randomly based on a percentage basis. 

With randomization, the mismatches are not an exact number based on the percentage. 

The total number of mismatched reads and matched reads will still result in the expected 

number of reads to process. In addition to a percentage based random number of 

mismatches, each read has a random number of mutated bases between 1 and 3. The 

randomization helps to ensure that an outside pattern does not form, which would have an 

influence over the performance results. Terminating reads at random points also aids in a 

realistic performance result. 

Match Mismatch Match Mismatch
0 10000 0 0 4000000 0
25 7507 2493 25 3000692 999308
50 4977 5023 50 2002077 1997923
75 2445 7555 75 1001015 2998985
100 0 10000 100 0 4000000
0 100000 0 0 5000000 0
25 75148 24852 25 3750030 1249970
50 50234 49766 50 2500790 2499210
75 24991 75009 75 1250030 3749970
100 0 100000 100 0 5000000
0 1000000 0 0 10000000 0
25 750605 249395 25 7499756 2500244
50 501785 498215 50 4999306 5000694
75 250897 749103 75 2499454 7500546
100 0 1000000 100 0 10000000
0 2000000 0 0 100000000 0
25 1500292 499708 25 74997560 25002440
50 999913 1000087 50 49993060 50006940
75 498887 1501113 75 24994540 75005460
100 0 2000000 100 0 100000000
0 2500000 0 0 1000000000 0
25 1874394 625606 25 749975600 250024400
50 1249759 1250241 50 499930600 500069400
75 623712 1876288 75 249945400 750054600
100 0 2500000 100 0 1000000000
0 3000000 0
25 2250311 749689
50 1500743 1499257
75 750086 2249914
100 0 3000000

Num of Reads % Mismatch Expected

10,000,000

Num of Reads % Mismatch Expected

10,000

2,500,000

3,000,000

4,000,000

5,000,000

100,000,000

1,000,000,000

2,000,000

1,000,000

100,000
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 The generated short reads for the 25% mismatch categories are the focus of the 

performance results for this thesis. Having 70% to 80% of short reads matching exactly 

to a human reference genome, as was previously explained, coordinates directly with the 

25% mismatch category having 75% of the short reads matching and gives a more 

realistic result. The remaining categories are used for calculations to ensure that the 

results are as expected, eliminating the possibility of erroneous outliers corrupting 

performance statistics. 

5.5 PERFORMANCE METRIC 

 The most widely used comparison for short read mapping is the amount of time 

taken to process a number of reads. Investigating the implementations of this thesis has 

led to the development of a model to derive the performance bounds of a DSP 

implementation to examine whether the use of a DSP provides a benefit and the 

significance of any benefits determined. 

 The same model was used in the comparison of the DSP’s performance to the 

CPU implementation and indicates the number of mapped bases per watt-second. Adding 

the concept of power consumption allows varying architectures to be compared in a 

competitive method, while the addition of read length in the metric eliminates improper 

comparisons of algorithms that handle differing sized short reads. This performance 

metric allows for more accurate analysis when a comparison is done, especially as 

technologies lead to more power aware applications. 
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CHAPTER 6 

RESULTS 

 Evaluation of an architecture’s ability to outperform another must be calculated in 

a way to reduce the possibility of bias with an oversight of an unfair comparison between 

varying technologies. This thesis strives to achieve this goal with the indicated 

performance metric based on the results calculated as will be described by this chapter. 

 The timing measurements calculated with both CPU and DSP implementations 

were conducted measuring the time difference only between the start and end of the 

search function for each of the categorized numbers of short reads generated. Power 

measurements were taken using a Yokogawa WT500 power analyzer sampling at 0.1 

second intervals. In cases where the timing of the search function completed in less than 

0.1 seconds, an average of the data collected from the power analyzer for the few samples 

before and after that interval were also collected and averaged to reduce the effects of 

momentary power spikes from voltage variances as well as subroutines and background 

processes that may have had a minute effect on the power usage of the computer. All 

nonessential peripherals were disconnected from the system during CPU power 

measurements and the DSP card was removed. Due to the DSP board’s PCI express 

power connection, the same computer system used for the CPU calculations was 

measured over a 5 minute timeframe prior to the calculations to generate an idle power 

consumption baseline. The baseline was subtracted from the power measurements taken 

during the DSP testing. 
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 The performance gains of the DSP when compared to the CPU implementation 

indicate a significant speedup. The system of measuring performance purely based on the 

number of mapped reads per second is indicated in table 6.1 along with the reflected 

speedup relative to CPU performance. Tests were conducted with the CPU, 1 core of a 

single DSP, 8 cores utilizing all of a DSP’s logic, and all 4 DSPs of the board with a total 

of 32 cores. The smallest improvement comes from a single processing core of the DSP 

when compared to the CPU using 1 Intel I5-650 core, ranging from speedups between 

1.13x to 1.39x with an average speedup over the differing number of short reads being 

1.18x. The performance increases as more cores are introduced. The 8 core averaged a 

9.18x speedup while the 32 core averaged a 36.58x speedup. 

 Consideration was taken to compare the memory management system of the CPU 

and the direct memory access of the DSP. In order to ensure a proper comparison, the 

page faults were calculated on the CPU implementation to investigate if hard drive access 

time was a factor in the performance measurements taken. For all tests, there were no 

major faults causing a disk access to occur. There were a total of 6 minor page faults for 

each test, which did not change with index size or the number of short reads. These minor 

page faults occur when a new page is allocated in memory and can be attributed to the 

function variables initialized in the mapping algorithm. As these faults are not hard drive 

accesses, they would not affect the performance or alter the results shown. 

 As page faults are not an affecting factor to the performance gains of the DSP, the 

effective bandwidth of both the CPU and the DSP implementation was calculated to 

better understand the capability of the memory systems. The average effective bandwidth 

was calculated by counting the number of memory accesses during each run. While the 
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Table 6.1 DSP and Software Mapped Reads per Second. DSP core speedup comparisons 
are relative to the 1 core CPU implementation performance. 

 

listed maximum bandwidth of the Intel Core I5-650 is 21 GBytes per second, the CPU 

was calculated to have only achieved 96.15 Mbytes per second. One possibility of the 

greatly reduced throughput may be a limitation of a single core on the processor, which 

was used for a better comparison to the DSP. While still less than the maximum stated 16 

GBytes per second, the DSP was able to achieve 3.46 GBytes per second throughput. 

Table 6.2 shows the calculated effective bandwidth for the CPU and DSP. 

 Introducing the developed performance metric indicates an even stronger gain 

between the DSP implementation and the CPU. With the power consumption of the CPU 

ranging from 131 watts to 140 watts and the DSP using between 45 and 51 watts, the 

gains can clearly be seen as illustrated in table 6.3. The single core performance was able 

to provide an average improvement of 3.59x. Subsequently the 8 core and 32 core 

implementations show an average performance increase of 25.94x and 102.76x, 

respectively. Figures 6.1 and 6.2 illustrate a graphic representation of the mapped reads 

32 8 1 Software 32 8 1 CPU
10K 4298145.99 1094382.38 138640.45 100000.00 42.98 10.94 1.39 1.00
100K 4390926.27 1096580.71 138565.56 119047.62 36.88 9.21 1.161.00
1M 4317765.86 1081169.33 138702.50 118764.85 36.36 9.10 1.171.00
2M 4289152.57 1074429.33 138760.75 122699.39 34.96 8.76 1.131.00

2.5M 4275801.23 1070609.09 138797.10 122970.98 34.77 8.71 1.131.00

3M 4272912.23 1069581.50 138769.88 118811.88 35.96 9.00 1.171.00
4M 4267621.43 1069119.06 138762.25 117785.63 36.23 9.08 1.181.00
5M 4266514.04 1068309.72 138774.21 117702.45 36.25 9.08 1.181.00
10M 4256039.73 1065363.81 138772.08 118231.26 36.00 9.01 1.171.00
100M 4246645.04 1063742.14 138757.24 117910.63 36.02 9.02 1.181.00

1B 4245745.84 1063203.36 138643.64 117909.79 36.01 9.02 1.181.00

Average 4284297.29 1074226.40 138722.33 117439.50 36.58 9.18 1.18 1.00

Number of 
Reads

Mapped Reads per Second
Cores

Speedup over CPU
Cores
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Table 6.2 Effective bandwidth of the CPU and DSP. 

 

Table 6.3 DSP and Software Mapped Bases per Watt-Second. DSP core speedup 
comparisons are relative to the 1 core CPU implementation performance. 

 

32 8 1 CPU
10K 3,515,549,352.48 893,687,536.76 113,215,677.78 81,661,360.00
100K 3,524,246,053.64 882,471,830.82 113,211,726.80 97,264,533.33
1M 3,499,641,341.06 882,471,830.82 113,211,726.80 100,113,918.78
2M 3,499,641,341.06 876,657,388.22 113,218,833.38 100,113,918.78

2.5M 3,488,008,473.56 873,355,280.00 113,224,502.59 100,314,255.39
3M 3,486,538,153.00 872,738,896.29 113,231,086.40 96,946,095.52
4M 3,482,355,704.29 872,395,291.28 113,229,238.37 96,112,431.57
5M 3,481,092,035.53 871,644,724.25 113,227,282.31 96,034,620.06
10M 3,472,501,145.32 869,229,915.12 113,224,089.25 96,464,836.74

100M 3,149,850,928.55 789,006,178.03 102,919,979.61 96,203,234.46
1B 3,429,804,325.06 858,878,422.82 111,999,299.03 96,389,495.97

Average 3,457,202,623.05 867,503,390.40 112,173,949.30 96,147,154.60

Number of 
Reads

Bytes per Second
Cores

32 8 1 Software 32 8 1 CPU
10K 3247735.53 821432.20 104218.55 24957.22 130.13 32.91 4.181.00

100K 3285216.32 809540.71 101672.84 31382.59 104.68 25.80 3.241.00
1M 3140519.64 777819.66 107449.92 31362.38 100.14 24.80 3.431.00
2M 3151140.64 789855.63 110907.20 32433.19 97.16 24.35 3.42 1.00

2.5M 3194983.84 784411.10 111470.83 32534.46 98.20 24.11 3.43 1.00
3M 3252543.02 805581.07 114442.65 31353.51 103.74 25.69 3.651.00
4M 3107275.85 780704.51 113819.52 31188.51 99.63 25.03 3.65 1.00
5M 3072592.42 776065.59 111811.63 31194.80 98.50 24.88 3.58 1.00

10M 3045622.38 809546.97 112849.05 31076.10 98.01 26.05 3.63 1.00
100M 3224133.97 805690.87 113895.48 31001.14 104.00 25.99 3.671.00

1B 2989360.38 801294.52 113244.51 31090.85 96.15 25.77 3.64 1.00

Average 3155556.73 796540.26 110525.65 30870.43 102.76 25.94 3.59 1.00

Number of 
Reads

Mapped Bases per Watt-Second Efficiency over CPU
Cores Cores



 

Figure 6.1 DSP and CPU Mapped Reads per Second

Figure 6.2 DSP and CPU Mapped Bases per Watt
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DSP and CPU Mapped Reads per Second 

DSP and CPU Mapped Bases per Watt-Second 
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per second and mapped bases per watt-second, respectfully. The improvements for both 

metrics are shown in the performance comparison of the DSP, GPU, CPU, and FPGA 

represented by figure 6.3. 

 The study that was used as a basis for the development of this thesis provided 

results of the performance for the GPU implementation compared to a CPU. That study 

achieved a significant improvement using a GPU and results were given for a comparison 

of 7 million reads processed in 0.432 seconds, which achieves 16.2 million reads per 

second performance [4]. While this method of performance measurements indicate a 

3.78x improvement of the DSP implementation described in this thesis, it fails to account 

for the difference in architectures used. The hardware described in that study used 2 

NVidia Tesla C2050 GPUs, which each contain 448 cores and consume a maximum of 

247 watts. NVidia lists the running power consumption of a single GPU at 238 watts 

[18]. Accounting for the 2 GPUs used, the mapped bases per watt-second of the GPU 

implementation is 676,742.83. Compared to the DSP, which achieves 3,155,556.73 

mapped bases per watt-second, there is a 4.66x improvement over the GPU. The power 

consumption for the performance metric for the GPU must be estimated instead of 

measured, only the running power for the GPUs was used in the calculations. More 

power would be consumed with the controlling CPU needed to operate the GPU, which 

would decrease the performance of the GPU a small degree more than indicated. 

 Additionally, a comparison with an FPGA was investigated. A study previously 

discussed in this thesis implemented the RMAP algorithm on an FPGA [10]. While this 

algorithm is different from those listed above, it still gives an indication of the exact 

match algorithm performance. That study indicated that for 1 million reads, the FPGA 



 

Figure 6.3 DSP, GPU, CPU and FPGA Performance Comparison

took 7,230 seconds to process the data. The resulting mapped reads per second for the 

FPGA is 138.31. Using the Xilinx estimated 36

LX330 FPGA, the calculated mapped 

was a 2.36x improvement of the FPGA over the CPU

lower performance when compared to the GPU and even more when compared with the 

DSP. The DSP in this instance achieves a 

102.22x over the CPU, shown in comparison with the DSP, GPU and CPU in figure 6.3.
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DSP, GPU, CPU and FPGA Performance Comparison 

230 seconds to process the data. The resulting mapped reads per second for the 

Using the Xilinx estimated 36 watts of running power for the Virtex 5 

FPGA, the calculated mapped bases per watt-second is 134.47 [27]

improvement of the FPGA over the CPU in the study, there is a drastically 

lower performance when compared to the GPU and even more when compared with the 

in this instance achieves a 23,467x improvement over the FPGA 

, shown in comparison with the DSP, GPU and CPU in figure 6.3.

 

230 seconds to process the data. The resulting mapped reads per second for the 

watts of running power for the Virtex 5 

[27]. While there 

, there is a drastically 

lower performance when compared to the GPU and even more when compared with the 

over the FPGA and 

, shown in comparison with the DSP, GPU and CPU in figure 6.3. 
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CHAPTER 7 

CONCLUSION 

 Overall performance comparisons can be viewed in many ways. The performance 

metric that was developed in this thesis shows a valuable indication of the processing 

ability while still maintaining an aspect of the architecture’s power. Without this 

significant change, attempting to view the results from comparisons between 2 different 

architectures does not give the view needed to understand their relationship. The result of 

a supercomputer’s processing ability when compared to a laptop computer would show 

dramatically better performance when considering only the processing power. When you 

take into account the power consumed by the supercomputer, the results are leveled out 

to understand that the laptop’s performance may not be insignificant. 

 The same can be said with any other architecture, particularly as power aware 

computing becomes more important. The results given in the previous chapter show that 

the DSP implementation was on average 102x better than the performance of the CPU 

and 4.66x better than the GPU. While the GPU’s performance without respect to power 

was 3.78x faster than the DSP, this can be explained by the processing difference 

between the two technologies and the availability of 28x more processing cores in the 

GPU tests. Using a DSP board with more available cores, such as the Advantech DSPA-

8901 with 20 DSP’s totaling 160 cores would easily make up for the difference. This 

reasoning also confirms the use of the performance metric to bring the results of both into 

the same scope, showing the strong performance potential of the DSP. 
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 With the stated goal of being able to process short reads as they are generated 

from NGS, the current 4 DSP board’s ability to handle 4.1 million reads per second 

would be more than adequate to handle any of today’s generating needs. The Illumina 

HiSeq 2500, previously mentioned, having the capability to process a whole human 

genome of 1.2 billion reads in a 27 hour timespan equates to approximately 333,000 

reads per second, which would easily be handled by the DSP [1]. Being able to process 

the reads as they are generated eliminates the need to have available data storage for large 

volumes of short reads and allows more storage for reference indices. This further allows 

for multiple smaller chromosomes’ indices to be stored and searched by a single DSP, 

needing less DSPs to process the reads for all chromosomes of the human genome. 

 The work done in this thesis was successful in demonstrating the DSP to be a 

powerful alternative processor for exact matching short read mapping. The use and 

implementation of the DSP will provide an important first step in accelerating the exact 

match stage of the sequencing pipeline with the potential for improving the remaining 

stages that will form the next bottleneck and need for processing improvements.
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