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ABSTRACT

Advances in next generation sequencing technoldgge® allowed short reads to be
generated at an increasing rate, shifting the dro#ttk of the sequencing process to the
short read mapping computations. High costs an@neetd processing times drive
researchers to pursue more efficient solutions waith overall goal of a short read
mapping architecture capable of processing shadseas they are generated. Digital
signal processors have shown high performance dajsbwvhile maintaining low power
consumption in a wide field of applications. Thisesis explores the use of a DSP
accelerated exact match short read mapping algoriincusing on a performance metric
to increase the number of mapped bases per wathdethe design is implemented and
tested for CPU and alternate coprocessor implertientgaomparisons to analyze the

potential benefit of accelerating a memory boungliagtion.
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CHAPTER 1
INTRODUCTION

Deoxyribonucleic acid is the name of the chema@hpound necessary for all
life. Understanding the interactions of chemicahbinations that make up DNA has led
to the development of the field of genomics. Thaitglio view DNA at the most basic
level has allowed for advancement in a multitudegblications from Microbiology to
Pharmacology. To make viewing individual strands DNA possible, current
technological limitations to read each short seqaeresults in specialized equipment
breaking the genome into small fragments. Theset shads are then mapped using a
reference genome to determine the original locadiotine read, allowing the reads to be
assembled into a fully sequenced whole genome.eRtlgsthe most challenging and
computationally intensive portion of the processhiert read mapping.

As improvements are made in the next generati@egfiencing equipment, faster
and more reliable short reads are being generatad encreasing rate. Illlumina, one of
the most widely used and accepted manufacturereat generation sequencers, is
capable of producing 1.2 billion reads consuming Gb of data in a 27 hour timespan
for a whole genome and 6 billion reads consumin§ &b of data over an 11 day
timespan in a high output mode for multiple genofdgsWith such a high throughput,
advances are needed in the short read mapping dsethoorder to handle the large

volumes of data being produced.



Coprocessors have been widely used to increadermance in CPU based
computations for various applications. There hanle mainstream push for FPGAs and
now GPUs to be used in heterogeneous computingbdilt are difficult to operate,
complex to design, and are power hungry. They piubenefits only for specific
application’s kernels.

This thesis presents an alternative to traditignaded coprocessors to examine
how well a data intensive application of short reaabping maps to a DSP coprocessor
technology. The basis for short read mapping idt bupon the Burrows-Wheeler
Transform (BWT) [2]. Originally designed for datampression, the BWT reorganizes a
block of text placing similar characters togethWhile optimized for data compression, it
was additionally determined to be an effective sotufor searching strings as well. The
Bowtie project [3] developed a short read mappilgprethm based upon the BWT to
increase performance in searching for short readslarge reference genome. Analyzing
the repetitive computations performed in Bowtie adgorithm was developed for a GPU
implementation improving the exact match short resgbping by the use of table based
searches [4].

The goal of this work is to examine a DSP impletagon of the exact match
tabling search using the human chromosome 22 asfeaence with the focus of
improving the mapped bases per watt-second, maxigizoth throughput and power
consumption. A DSP implementation will be developed tested with a CPU software
implementation focusing on improvements throughcwakion reduction in the
algorithm, parallelism for data distribution, angesialized enhancements for the DSP

architecture for increased hardware acceleratiafopeance. A power analyzer will



measure the power consumption for the performanadrien calculations. Other
coprocessor comparisons will be possible throudterotstudies’ listed hardware to
extrapolate their power consumption compared to pleeformances given for an
equivalent to the performance metric developedthimthesis.

To introduce this thesis, the next chapter expldire motivation for this work.
Next the general background information is preskenéxplaining information on
understanding DNA, the big data problem, the BusdiWheeler Transform, Bowtie,
tabling improvements on the exact match searchtla@dise of DSPs as coprocessors.
Subsequently this thesis will present related wdokscoprocessor implementations, the
hardware used for testing, the DSP and CPU desigsiscases, the performance metric

developed, the results obtained, and a concluditmeadata and performance.



CHAPTER 2
MOTIVATION

The motivation for accelerating short read mapmomes from improvements in
the NGS technology allowing for more accurate atatger number of short reads being
produced in less time. These improvements havéeshihe bottleneck from sequencing
to the mapping algorithm. More adequate solutioesneeded for short read mapping to
handle the increasing amount of data produced. diapter discusses the reasoning for
choosing this particular area of research andrnipoitance the topic plays in numerous
fields of study.

The completion of the Human Genome Project (HGP2003 led to the first
informational database created that held the Bbilthemical base pairs which form the
human genome [5]. With the conclusion of the HGRe#he possibility to use short read
mapping for DNA sequences to map to a human gemefeeence. Since then, there has
been a drive for improvements in the technologydusesequence DNA as well as the
computations for processing the enormous amountdatd produced by sequencing.
Various methods have been introduced including @®onand reference based
sequencing.

De novo assemblies build genomes with no aid feomeference. They take a
considerably greater amount of time to execute wbempared to reference based
assemblies. This method provides a key step innikial sequencing of a new genome,

but is less beneficial for subsequent sequencingtiuér genomes in the same species.



The most common method of reference based sequgrstiort read mapping, has been
used due to the availability of human genome refgges publicly available.

An exact short read mapping algorithm was selettechuse of the inherent
pipeline design that exists in the NGS workflow.cBat studies have shown that short
read mapping has better performance by furthettisiglithe mapping process into an
exact matching stage followed by an approximatechiagy algorithm due to a majority
(70 to 80%) of reads mapping exactly to the refeeegenome [6] [7]. The amount of
data generated is memory bound, dependent upone cpehformance with data
dependencies from aborted reads in cases wheesl asrdetermined to be a mismatch.

Current methods for processing short reads invalvariety of central processing
unit (CPU) and coprocessor based technologies faetd programmable gate arrays
(FPGASs) and graphical processing units (GPUs).v&wé implementations with CPUS,
such as with Bowtie [3] and WHAM [8] have been 8tandard but face long runtimes
and heavy power consumption. While the use of FP{ZA$9] [10] and GPUs [11] [4]
[12] as coprocessors for short read mapping hasvrshepeed improvements, these
technologies still suffer from individualized limations that hinder their adoption.

With the increase in popularity of coprocessorshigh performance computing,
digital signal processors have expanded into higitiopmance applications currently in
fields of medical imaging, mission critical apphlicas, testing, and automation [13].
DSPs are, by design, power efficient while maintegn strong computational
performance. One of the leading manufacturers d$)Sexas Instrument, provides an 8
core DSP package that achieves 1.25 GHz, 320 GMa@k 160 GFLOPs for each core,

while consuming only 10.5 watts [13]. DSP archiieetoffers more on chip memory for



higher throughput and more localized RAM for impedvaccess times and better
performance with memory bound applications, whiculd offer improved performance
per watt over the same time frame when compare€R&) and other coprocessor
implementations. Through the same parallel prongssechniques used for high
performance computing of CPUs, FPGAs and GPUs, exagnthe use of DSPs may
lead to significant performance results at a faactf the power consumption of other
processing technologies.

DSPs were chosen because of their inherent lowepawe coupled with a
powerful processing capability. With a specific negnbound algorithm for short read
mapping, this thesis examines DSP’s ability to eekaa pipeline that is capable of
analyzing data from NGS equipment at the samethetedata is being produced. This
thesis does not focus on overall completion timenasy other studies have done, but
instead focuses on a comparison of the number sdseead with respect to the number

of watt-seconds consumed.



CHAPTER 3
BACKGROUND
3.1 UNDERSTANDINGDNA

DNA is the building block that provides a set oistructions for all living
organisms to function. DNA is made up of four chemhibases called nucleotides:
Adenine, Cytosine, Guanine and Thymine. Bases coenlyi a specific order, pairing
Adenine with Thymine and Cytosine with Guanine. &rigms within the same species
will have a majority of the DNA identical to oneaher while differing species’ DNA
can differ drastically. Knowing which nucleotidestth to form a base pair allows for
only one base of the pair to be considered whetingewith computational genomics.
Grouping base pairs into a double helix strand fordividual genes. Thousands of these
genes are linked in sequence to form a single chsome. The human genome consists
of twenty three chromosomes. Figure 3.1 shows aalVisexample of the double helix
DNA strand and the structures that are formed.

In order to view these strands, sequencing tedgyolvas developed which uses
certain chemical components to break apart an @ges DNA into small fragments.
The smaller fragments can then be closely exantimggnerate the exact ordering of the
bases into short reads. These short reads fregumorttain variances which increase the
complexity of mapping based on the occurrences agsg insertions, deletions and

mutations.
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Figure 3.1 Composition of DNA. (A) Four chemicalcteotides combined as base pairs.
(B) Base pairs in a double helix strand. (C) DNpastls forming genes which form
chromosomes. (D) The human genome consists of 28ndsomes [14].

Gaps are missing bases that have not been raadhé region between the end of
one short read and the beginning of another thaither short read covers. Gaps occur
because of deficiencies of the NGS technology amedfaund during alignment after
reads have been mapped. The only way to fill tlyzges are to re-sequence, generating
more short reads that will cover the missing regi@md provide a more complete
genome sequence. Insertions and deletions occun whmase is inserted or deleted in a
sequence. Insertions and deletions can occur igturdhe organism or as a result of the
NGS technology. Mutations also occur naturally eraresult of NGS technology.
Mutations occur when a base is changed from ondeotite to another. Naturally
occurring variances in DNA can be caused durinfiscedplication of DNA or variances
that exist between two organisms of the same spdaat define hair color, eye color, or

predisposition to a particular ailment.



Knowledge of the organization and function of eliint genes allows scientists to
understand the basic functionality of humans aedd#asoning behind health defects and
medical problems, among others. This drives theicabdommunity and is a strong
support for increased funding and effort spentiening the field of genomics.

3.2 THE BiG DATA PROBLEM

Big data has been a concept that has been arauridng as computational
algorithms. Technological improvements are the edos the rapid data expansion that
must be planned and accounted for in future devedops. The Big Data Problem (BDP)
encompasses the issues associated with the tegimalldounds to compute large
volumes of data, the limits of data storage, areddapability to transport data between
systems. These three issues deal with the needfitber@ly handle the increasing
amounts of data generated as well as the datalgleaailable.

Recognizing the importance of big data, fundingeizdily available for research
and development. The US DOD, DOE and DARPA annadinceMarch of 2012 an
initiative to invest more than $200 million leaditmadvances with the big data problem
[15]. For genomics, the BDP is primarily that of@mputationally limited system. There
is far more data being produced than is effectiypebcessed with current algorithms and
technology. An example given indicates that for (0 petabyte chunk of data, 100
instructions to process one block on a 5 GHz psmesould take 635 years to complete
[15]. This push is a motivating factor for the ambwf research being done to find
effective solutions in the field of genomics, whishgenerating more data at a faster rate

with improvements in NGS technology continuouslinigemade.



3.3 BURROWSWHEELER TRANSFORM

The Burrows Wheeler Transform was first developedan algorithm to be used
in conjunction with a compression algorithm. The BWeorganizes a block of text to
make it easier for the compression algorithms tonm@ss the information more
effectively by placing similar characters togethEne BWT is accomplished with three
basic steps. Refer to figure 3.2 for an examplethd transformation of string
S="ACACGTATTA"of sizeN=10 for the following steps.

First, an input string of sizeN is selected and copidditimes forming rows in a
matrix. Second, as each row is copied, it is sthiftgclically. Each shift removes the first
character of the block of text and places the atarat the end. This resultshhcopies
of the stringS generated in a matrix grid of sidéx Nas shown after the first arrow in
figure 3.1 (A). The third step of the transformtsathe matrix rows lexicographically
whereA < B < ... <Y < Zas shown after the second arrow in figure 3.2 ®)e
transform is taken from the last column of the Itasy matrix [2].

The matrix that is generated during the shift eoply steps is known as a last-first
mapping. This mapping property allows for the ocences of a character in the last
column to be referenced to the same order of taroences of that character in the first
column. This principle is the technique that allothe BWT to be used as an efficient
searching algorithm, which has been used in maltgibinformatics applications. Figure
3.2 (B) shows an example of the BWT and a last-firapping example used to identify
the range of rows.

The example searches for the query “CGTA” in thigional reference string

“ACACGTATTA" using the first and last columns ofdhransformation matrix taken

10



ACACGTATTA AACACGTATT
CACGTATTAA ACACGTATT A
@ ACGTATTAAC ACGTATTAAC
CGTATTAACA ATTAACACGT
GTATTAACAC CACGTATTAA
ACACGTATTA —’ TATTAACACG —’ COTATTAAC A —’ TACTAACTGA
ATTAACACGT GTATTAACAC
TTAACACGTA TAACACGTAT
TAACACGTAT TATTAACACG
AACACGTATT TTAACACGTA
(B)
CGTA CGTA CGTA CGTA
*a T A T A T A T
A A A A A A A A
A C A C A C A C
A T A T A T A T
—*c A C A C A _c A
C A C A c A CGIA A
G c  _,6G c _,GTA C G C
T T TA T T T T T
T G TA G T G T G
T A "7 A T A T A

Figure 3.2 Burrows-Wheeler Transform. (A) The BwseWheeler matrix and
transformation of ‘ACACGTATTA'. (B) Steps taken t@rrow the range of rows for an
exact match of the query ‘CGTA' in the referenaingt‘ACACGTATTA'.

from figure 3.2 (A). The first column contains tblearacter currently being searched and
the last column contains the next character forpmammson. In a last-first mapping, the
first character is the end character of the quigeyating from right to left. The search
begins with the last character, ‘A’, of the que@GTA”. The initial range of rows is
selected from the first column containing the chtma’A’, which are rows 0 to 3 in the
example, giving a range of 4 possible matches.la$tecolumn within the given range is
compared to the next character from the query, Within the same row range, the last
column contains the first and second occurrenceé$’dfom the transform out of three
possibilities, reducing the possible matches td@tie next step moves the range in the
first column to the first and second ‘T’ in thetlegs shown in the second step of figure 3.2

(B). These steps are repeated for the remainingacteas from the query ‘G’ and ‘C’ as

11



indicated in the remaining steps of figure 3.2 Bince all of the characters of the query
have been iterated through, an exact match eXist® irange is greater than 0. For the
example listed only 1 match exists. The range atdi the total number of exact matches
if the range is greater than 1. As BWT was prinyadiésigned for data compression, the
location of the query to the original referenceas considered in the BWT example and
will be described later in this thesis.

The BWT takes advantage of the repetitive natdréhe English language by
grouping similar characters. The same principlelmansed toward genomic applications
due to the repetitive nature of DNA and the sintjgiselection of only four possibilities
of nucleotides. The use of BWT has become the Wasisumerous short read mapping
and alignment algorithms, most notably the Bowtiggxt [3].

3.4 BowTIE

The Bowtie project was one of the first short readpping and alignment
algorithms capable of a notable speedup over pusviash table algorithms. Bowtie
introduces the BWT to index the reference genonte sssarches the index to map the
short reads achieving speedups of 60x for Maq b6l 350x for SOAP [17].

Several improvements were made over the previeading algorithms. The use
of the BWT greatly reduced search time and memaooypirint to allow for the process to
run on a standard desktop computer platform. Tarachlculating the original positions
of the transform matrix, a ‘$’ character is appahde the string prior to the shift and
copy steps. While this addition slightly increasles size of the transform, the index is
able to be calculated after the transformatiorvalig for faster index building. The size

difference for the transform was only an additioclaracter while the matrix increased

12



trivially to 2N+1 for a reference string of size N. Additionally Bowtie includes
approximate matching with backtracking to attemptiricrease the number of reads
mapped by iterating 2 levels back when no exactcmas found. Parallelism is
introduced as the increase in processing thredowsalfor a distribution of concurrent
searches. The steps employed are a two-phase grothe first phase builds the
reference index while the second phase matches igauts to the reference. Once built,
the reference index does not have to be rebuiéissnh new reference sequence is needed.
Figure 3.3 demonstrates the modifications to thgireal BWT.

In the first phase, the reference index is buijt flosst appending a $ to the
reference string as shown in the first step ofrgg8.3 (A). The string is then shifted and
copied before sorting lexicographically whefe<x A < C < G < T, as is done on the
BWT. The shift index is built based on the locatiohthe ‘$ in each row of the
transformation matrix. The shift index indicateg thumber of positions each row was
shifted to the left and references the locatiorthe original reference string. In the
example shown in the last step of figure 3.3 (Ag briginal sequence row will have an
index value of 0, while the row beginning with ®ill have an index value of 10.

In the second phase, only the first and last calofithe transformation is needed.
The exact match search reductions are the sanm®ses performed in the BWT, but only
using “A”, “C”, “G”, “T", and “$" instead of a full alphabet. Once the search is
completed in figure 3.3 (B) as was done in the B@KBmples, a resulting match was
located. The shift index position associated wlid tow from the query match in the last
step in figure 3.3 (B) shows an index of 3, whinHicates that the query can be located

at the & character in the original reference string, beigignvith 0. The query is located

13



ACACGTATTAS SACACGTATTA 5 A -
CACGTATTASA ASACACGTATT T 8
ACGTATTASAC ACACGTATTAS A $ 0
A CGTATTASACA ACGTATTASAC A c
GTATTASACAC ATTASACACGT A T
ACACGTATTAS ——P TATTASACACG ——P» CACGTATTASA —P» ¢
» ATTASACACGT CGTATTASACA ( A
TTASACACGTA GTATTASACAC 0
TASACACGTAT TASACACGTAT 1 I
ASACACGTATT TATTASACACG C
SACACGTATTA TTASACACGTA 7
{B)
CGTA CGTA CGTA CGTA
’S. A 1 A 5 A 5 A -10
A T A T A T A T -0
A s A 3 A 3 A $ -0
£ A C A C A )
A T A T A T A T -6
Pf.' A C A C A *C A -__!
C A C A br‘ A h{(". L A -__;
G e p G C }i-'.'\ C G C -4
T T TA T T T T T -8
T G 3 TA T G T G -5
T A T A T A T A -7

Figure 3.3 Bowtie algorithm of the Burrows-Wheeleiansform. (A) Indexing phase
generates a first column, last column and a reéer@mdex. (B) Searching phase iteration
reductions for the search query ‘CGTA'’ of refereseguence ‘ACACGTATTA'.

in the original reference by the arrow from the ktep (B) to the reference string (A) in
figure 3.3.

To increase the percentage of short reads majjmetie uses an approximate
matching backtracking strategy when a read is odetexd to be a mismatch. A mismatch
occurs in the exact matching stage as each base shiort read is compared to the
reference. Once a base does not match the basetex@m the reference comparison,
the read is identified as a mismatch. The mismalkcbads are passed to the next stage
for approximate matching. Bases found to be misheatcare replaced with matching
bases to allow the algorithm to continue searchiigeplacing one base does not find a
match, then additional bases are replaced. Thisepso of backtracking drastically
If the number of

increases the runtime for each number of mismatchkaved.

mismatches in a short read is larger than whatasvad by the algorithm, the short read

14



is identified by the approximate matching staga assmatch. Short reads not mapped in
either the exact match or approximate match arsidered mismatches and lead to the
overall percentage of reads not mapped by theighgor The standard backtracking level
of Bowtie is 2 or 3 levels, which allows for 2 omdsmatches per short read. Bowtie is
capable of running higher levels of backtrackingt bauses exponential increases in
runtime.

The algorithm developed led to performance map@h@9.8 million 35 base
reads per CPU hour run on a standard desktop vatidstwith 2.4 GHz Intel core 2
processor with 2GB ram and 33.8 million 35 baselsgzer CPU hour on a server with a
4 core 2.4 Ghz AMD Opteron processor with 32GB {8 These performance results
led to Bowtie being used as a mainstream benchrf@arkshort read mapping for
comparisons with later CPU based technologies dk ageheterogeneous processing
alternatives. The limitations of Bowtie are the qutationally intensive reoccurring
calculations necessary to search the referencex.iféieding alternative methods to
reduce the computational load are necessary fardumprovements in processing time.
3.5 EXACT MATCHING HIGH THROUGHPUTSEQUENCING

As Bowtie grew in popularity for short read magpithere has been an increase
in the amount of research done to further increlaseperformance of the algorithm and
find alternative architectures more suitable to liigh throughput needs of the memory
bound sort read mapping. Su Chen and Hai Jiangldmsas State University developed
improvements based on Bowtie and the BWT with doai$ of increasing performance to
handle the increase demand and generation of sfemts from NGS technology by the

use of tables to reduce computational complexityoae efficient exact matching block
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sort improvement of Bowtie’s algorithm and inveatign in the use of a GPU
coprocessor to further improvements over the stalwkd CPU technology [4].

An analysis of the Bowtie algorithm revealed thnegrovements to reduce the
complexity of the computation to &(lg(n)) table based search. The first step proposed
locates the top and bottom positions for the fuidumn of the Bowtie-BWT matrix for
each base. Second is to count the occurrencescbhf‘'dg ‘C’, ‘G’ and ‘T' above the
current row for the last column of the matrix. Hipa sum of the occurrences of each
‘A’, ‘'C’, ‘G’ and ‘T’ is calculated from the last @dumn of the matrix. Figure 3.4
demonstrates the optimization tables generated fnensteps listed above.

The calculations performed by the algorithm redtwe6 memory stores, 5
memory lookups, 4 addition/subtractions, and Jorhparison for a total of 16 operations
for each character in a short read. Decreasingitimeber of calculations to simplified
table lookups from the index tables converts thewt3®BWT algorithm from a
computationally bound kernel to that of a memoryrmb kernel. Figure 3.5 gives the
exact matching table based search algorithm.

The performance increases obtained with the nuadibns on a GPU base
coprocessor achieve a 40x speedup over that of & I&&Red solution. The NVIDIA
Tesla C2050 GPU used for performance testing isadriee leading GPUs offered for
high performance general purpose GPUs availablelewhe GPU offers 448 processing
cores, a significant amount more than standard CRkks GPU is designed as a
computationally powerful coprocessor achieving hpgihformance with regard to double
precision floating point operations capable of &ffops using 247 watts of power for a

single GPU in addition to the power requirementshef CPU needed for the remaining
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Figure 3.4 Bowtie-BWT Optimization Steps. (1) Fitige top and bottom positions for
‘A’, 'C’, 'G’, and ‘T’ in the first column. (2) Count the occurrences of ‘A’, ‘C’, ‘G’, and
‘T’ above the indicated row in the last column. &)m the occurrences of ‘A’, ‘C’, ‘G’,
and ‘T’ in the last column [4].

Constants:

#define  target sequence as tarSeq

#define target sequence length as tarLen

#define  the table contains top positions for ATCG in the first column as ATCG_top
#define the table for bottom positions for ATCG in the last column as ATCG_bottom
#define  the table contains the mmmbers of ATCG above each position in the last column as upper_sum
Variables:

index : index for current character in the target sequence

ch : the character pointed by index in the target sequence

tmp : a temporary buffer saves the number of ATCG between the up and the bottom positions in the last cohumn
Search () {

index =tarLen — 1;
ch = tarSeq[index]
top = get_top(ATCG_top, ch)
bottom = get_bottom(ATCG _bottom, ch)
index = index — 1
while (index>=0) {
ch = target_seq[index]
tmp = get upper_sum(upper_sum, bottom+1, ch) — get upper sum{upper sum, up, ch)
if (tmp==0) {
break;
¥

top = get_top(ATCG_top, ch)

bottom = get_bottom{ATCG_botiom, ch)
bottom = top + tmp — 1

index = index — 1

Figure 3.5 Exact Matching Table Based Search Aflgoriwith complexityO(Ig(n)) [4].

operations [18]. The GPU is a powerful coproce$spits application specific functions,

but is not as robust in terms of memory access eoeapto data calculations, particularly
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when considering the power consumption performaeeefit of a memory bound
application.
3.6 DS ASCOPROCESSORS

Over the last several years research has expamdedvarious types of
coprocessors for heterogeneous computing acceleraBelect coprocessors provide
performance increases for a specific range of egipdins. Depending on the specific
purpose for the acceleration, a coprocessor mayde or less suited for the need.
Previous cell processors and FPGAs provided gesespeedups for special purpose
processing applications. Cell processors have nesore outdated and FPGAS require
knowledge of hardware design and are difficult 8e.uThe most recent advance in
coprocessing technology has been the use of geparpbse GPUs for accelerating
computationally intense applications with high leveof parallelism. While these
processors provide a strong alternative to CPUsy tlyenerally excel only in
computationally bound kernels and consume conditee@mount of power to the point
of being a significant issue that must be addressét their use. The average
supercomputer consumes more than 3.2 megawattshwianslates to a multimillion
dollar electric bill and a serious considerationtiagh performance computing [19].

Digital signal processors are an alternative coggeor technology not widely
explored. One of the world leaders in DSP manufaajy Texas Instruments, offers
numerous packages and has developed processorsiifradow power DSPs capable of
fixed point computation and FFT acceleration tartimeulticore DSP line that offers a
range of processing capability up to 16 GHz inrgylel multicore package capable of 32

bit fixed and floating point acceleration [13]. Withe initial design of the DPS, even the
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highest performance processors use a fraction efpthwer of any other coprocessor
technology while maintaining competitive high penf@ance computing ability. The
multicore high performance DSPs from Texas Instmimeffer multiple DSP core
packages with up to 8MB of on chip memory with emded memory architecture for
faster on and off chip memory access to the aVailBibR memory bank integrated in
the package. A TeraNet switch fabric allows commbsi®n the package to communicate
through 2 terabits of bandwidth and independengigrating high bandwidth peripheral
input/output interfaces for simultaneous commumicatand memory transfer. The
simultaneous and high bandwidth communication elates memory access bottlenecks

for off package needs and allows for real time pssing capabilities [13].
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CHAPTER 4
RELATED WORK

In order to effectively examine the use of DSPadoelerate short read mapping,
it is important to look at related work done to elecate sort read mapping through other
coprocessors and technologies. With a more rounded of alternative approaches, a
better evaluation of the DSP coprocessor can beenfad a potentially higher
performance increase and lower power consumptiaghepreviously explained metric,
mapped bases per watt-second. Related work cowertids section will explore short
read mapping applications with cloud computing, FP@nd GPU coprocessor
acceleration and the results obtained from studti@® on each.

4.1 Q.0UD BASED SHORTREAD MAPPING

Cloud based computing has been made recentlyadlaiksince the advent of
cloud services. While the capabilities of cloud goming are almost limitless in
computational capacity, there is a price associatigdl the performance gains, as it is a
service rendered. The higher the parallelism anmtbpeance, the cost of maintenance,
power consumption and technology drive up the cb#te service.

A cloud based short read mapping study was coexgplet 2012 to review the
possibility of using these services specifically &celerating short read mapping. The
study introduces a concept of maintaining histdrazta on the cloud. This allows for
mapping to begin the moment short reads start koadpsince the reference genome and

other needed information already exists on theesefhe study ran performance tests
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with a 9 server network running Xeon dual core 23% CPUs and 6 GB of memory
with 36 base short read lengths [20]. While thererevno specific results given,
generalities that a single read was able to be dorless than a second on a non-
congested system and congested systems were alslentba response in a several
seconds indicates that the performance would natbibe to provide results from a NGS
machine as fast as the reads were generated. ithoada problem was discovered with
latency issues with uploading and downloading diata the cloud. The time necessary
for a genome’s short reads to be uploaded is rspédj but would add additional
difficulties which prove to be a substantial setb&ar this type of technology. Until
further improvements are made, cloud based shat mmapping would not be
competitive with current mapping technologies.
4.2 FPGACOPROCESSORCCELERATION

Field Programmable Gate Arrays have been uselidbrperformance computing
with a great success at large performance speetibpsprocessors are capable of being
reconfigured with a new design to meet multipledseand are efficient at parallel tasks
within the limitations of the hardware blocks agahie on a FPGA processor. Generally
FPGAs are more complex to use, as a specific desiggt be mapped first before being
used as a coprocessor. Often times this can berdidg task that is quite difficult. Any
modifications may cause the entire design to havgetmodified. With these limitations,
they are still capable of huge performance gairthiwia certain scope of applications.
Several studies were done to explore their usamthort read mapping applications.

A study published in 2010 performed hardware aoftwsre comparisons of

various read sizes and was able to achieve a pmfae speedup between 2x and 4x
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using a naive FPGA mapping method. A naive approaal chosen based on the
limitations of FGPAs to handle large data structufEne resulting improvements listed
indicate that as the size of the reads increaBegpdrformance gain slows to match that
of a CPU implementation. Test results were giveth 6, 24 and 36 base read lengths
and the speedup dropped approximately 1x speedilpeach read size increase on an
exact match design. The conclusion listed suppbédsexploring alternative coprocessor
technologies is vital at the long term evolutionsbbrt read mapping in order to surpass
the performance of CPU implementations to meet phecessing needs of NGS
technology. The FPGA implementations seem to béddnas larger read sizes require
less parallelism because more processing blocksomisimed to process less reads [10].
Related studies over a two year period both ewduthe performance of short
read mapping implementations using a majority gfisters and lookup tables in their
designs with comparisons based on the performanaeC®U implementation of Bowtie.
A focus was also made as to the accuracy and gagef reads mapped. Both studies
claim that 100% mapping of reads can be done withéntolerance of the number of
mismatches, as they both implement mismatch algost The results obtained indicated
that the time to completion of 100,000 and 500,@2@ls was 3 minutes 44 seconds and 3
minutes 33 seconds, respectfully. Bowie’s perforogacame in at 3 minutes 45 seconds
and 3 minutes 26 seconds, but was only able to anfagction of the short reads of the
FPGA implementations. Results from both are cl@d&ere were no performance time
improvements in comparison to Bowtie. A generalingnperformance increase was

obtained with the FPGA design, either through aelbetesign or newer technology. The
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FPGA implementation was also able to map a highencgntage with a mapping
guarantee [21] [22].

Most recently in 2013 an implementation for FPGaas developed to split the
exact and approximate matching steps into a pipaoproach using a naive mapping
compared to popular software tools. The study takaesw approach and performs three
comparisons. The first comparison is based onta St2GA design for an exact string
matcher and a software design for the remaininglseaith an approximate string
matcher. The second uses a static FPGA desigrotartbe exact and approximate string
matchers. Finally a comparison is done using anfegarable approach in which a first
run is completed with the FPGA for an exact strimgtcher, then the FPGA is
reconfigured as an approximate string matcher andn the remaining data still stored.
Performance increases were achieved in the orésepted of 2x, 150x and 516x when
compared to a software Bowtie implementation [7].

Until recently the FPGA implementation has notrbgewed to be a benefit for
short read mapping applications. While limited tepecific range of capabilities, the
FPGA has been capable of providing quite significsmeedups, depending upon the
application. The idea of splitting the exact matclamd approximate matcher, as
presented in the last of the listed FPGA studies av@ortion of the motivation for this
thesis. With the significant performance gains, mdication that the speedup
improvements were so high based on a reconfiguR@Amethod brings to question
whether the improvement was based on keeping thmamelocal to the FPGA. With
that in mind, exploring the benefits of DSPs apitd handle memory bound applications

may provide promising results.
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4.3 GPUCOPROCESSORACCELERATION

The most recent push for coprocessor technologyhift to the GPU for
mainstream use caused many GPU implementationse toebveloped for short read
mapping acceleration. A wide variety of designs dee with short read mapping were
created, but many did not achieve performance gaidsothers only minor speedups less
than 3x [11] [12] [23]. GPUs have extremely highygo demands that limit their overall
benefit, but the high level of parallelism has shdhat speedups can be achieved.

An acceleration of the RMAP software implementatfor short read mapping
achieved speedups from 9x to 14x after developipgpaline system to eliminate race
conditions from simultaneous map updates from GRkgads. The comparison was
based on a software version of RMAP with the GPts$iea of the same algorithm. One
limiting factor was placing a limit on the size thie short reads to not exceed 64. While
many of the current NGS technologies offer shoatdseof smaller sizes, this limitation
will lead to a decrease in performance as read simgease. The limitation stated does
not prohibit the GPU implementation from calculgtithe maps, but decreases the
performance gains [24].

A large contributor to the motivation for this #i® comes from the next paper
based on an exact matching approach with the ufeed8WT on GPUs. Improvements
of the exact matching method on a GPU compared tGP& version achieved
improvements of 40x to 45x speedups. A linear i@hghip between the numbers of
short reads compared to the performance gain famgmovement of 1x speedup for
every 4.3 million target sequences. An upper litoitthe performance gain was not

calculated, but shows that such gains are a motydactor. Higher performance
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achievements were claimed to have been limited wlktempared to a CPU
implementation with respect to increased memorgsscBecause CPUs performance is
higher with memory bound applications than GPUBS® coprocessor implementation
may be capable of even higher performance gaing memory bound kernel, provided
similar improvements can be made with the remaimgagions of the exact matching

approach [4].
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CHAPTER 5
DSPDESIGN

Exploring the use of DSP base coprocessors fort sead mapping offers the
opportunity for significant performance gains. Tgaal of this thesis is to develop a DSP
implementation of the exact match short read mapalgorithm to further improvements
for the next stage of the genetic sequencing systéns goal will allow for further
improvements with remaining stages to ultimatelyadep a system that is capable of
sequencing a genome on demand. This chapter egplanhardware selected, the DSP
and CPU implementation development, test cases fasagsults and the performance
metric selected for comparisons.
5.1 ADVANTECH DSPC-868 BOARD

A multi-core DSP board was selected to maximize potential for both
performance gains on a single DSP as well as pésall performance enhancements that
can only be gained by the use of multiple DSP chijpe Advantech DSPC-8681 board
contains 4 Texas Instruments TMS320C6678 DSPs mgnaii 1GHz per DSP. Each of
the DSPs provides 8 processing cores, giving d t#t82 available cores. The board
receives power through a PCI Express connectiorcandumes a maximum of 54 watts.
For control of the DSP framework, a JTAG emulatused for communication to the
device for both programming and debugging [25].

Software development of the binary loaded to tI&Pystem was compiled on

Code Composer Studio 5.1 developed by Texas Insimisron an Eclipse development
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studio framework. This software package allowscmde to be developed in a simulation
environment before being applied directly to thediasre. Once the binary file has been
compiled from C code, the targeted cores from tis Bystem are then connected and
the binary file loaded. For any memory needs, sagloading the index data and short
reads into memory, a memory browser is used to Idadctly to the memory
architectures available. The selected cores maylikeexecuted to run the loaded binary
instructions. In a production environment, the sheads would be able to be transferred
through one of the DSP’s many high throughput comoation modules available. This
system of streaming short reads from the NGS fupesdditional memory from the DSP.

Unlike alternate coprocessors, the design of th8PDallows for an
implementation to entirely run on a self-contairmxhrd. The Advantech board used in
this thesis requires that power be supplied ovieCaExpress connection provided by a
computer, but no other functionality is used frdmttconnection. ldeally, testing would
be completed with an alternate power source anddaed would operate outside of a
computer environment, but precise power measurevast still able to be obtained for
testing purposes of this thesis.
5.2 DSPDEVELOPMENT

The algorithm developed for the DSP design is ¢thagmn the exact match table
based search of the GPU implementation previoussgibed [4]. Several aspects were
investigated in order to develop further improvetsesver the algorithm’s performance
including caching DDR memory into level 1 and le2ebn-chip cache, exploring the
result of larger short read lengths, varying siaéshe reference index, and compiler

optimizations for parallel processing of 8-way VLIiMé&tructions and SIMD instructions.
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With the C6678 DSP containing 32KB of L1 cache &1@ KB of L2 cache,
investigating the performance of enabling cachiagotth levels of on-chip memory
provided a significant benefit to overall performman Enabling caching resulted in
between 2x and 2.5x speedup in the amount of tiecessary to process a block of short
reads. Caching the data for reduced off-chip memocgss outweighed the cost of cache
misses for index lookups. Significantly increaspegformance, caching was enabled for
use with the algorithm on the DSP system and udezhwalculating the overall results.

Short read lengths of 35 bases were chosen asr@ wwdely used standard of
comparison between other algorithms. Even as stead sizes are expanding with
improving technology, a more accurate comparison ba made by keeping the
similarity of the same sized reads for the purposésalgorithm and processing
comparisons. More accurate reads are still beingpeted from current NGS through the
use of shorter reads, because longer read lenfjhis cause the bases farther from the
focus of the NGS to be less accurate. To betteenstand the performance of the
algorithm explored by this thesis, the effect afiger short reads was investigated to
provide an overall view of the performance in rielato other algorithms, but not used in
the result calculations.

A linear relationship was discovered between ke sf the short read and the
time necessary to process the data. Increasinghibre read to 70 bases would require 2x
the time to process when compared to a 35 baseérglaol. No modification of the design
was needed for this preliminary test. The desigthefalgorithm for both CPU and DSP
implementations accepts any number of short readslaes not require reprogramming

or redesign to change the expected read size.
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The size differences of varying indices used dusshave the same relationship
to process time as the length of short reads. €heck function in the algorithm is only
dependent on the length of the short read andheosize of the index. While a trivially
sized index has the potential to reduce the prawgdsne of short reads, this is simply
because a very small index could cause a greateurd@nof short reads to return no
remaining matches after reduction iterations oc@(ith an appropriately sized index, the
size only affects the number of remaining matchetuced each iteration. The total
processing time is still entirely dependent onritbeber of short reads and the frequency
in which mismatches occur.

Additional improvements to the algorithm were istigated through the use of
varying compiler optimizations. The compiler’s @lyilto control the use of the 8-way
VLIW and SIMD instructions of the DSP architectuimg better parallel performance
exceeded attempts to control the functionality fenual performance increases. The
compiler was effective in taking advantage of tloeets ability of parallelism and the
compiler settings chosen by the Code Composer &twere used for the calculated
results.

5.3 SFTWAREDEVELOPMENT

In developing a CPU implementation, consideratiese taken to assure that an
equal comparison to the DSP could be made. The s#gnathm was used to develop a
CPU implementation to illustrate the accelerationpiovements of the DSP. The
implementation was written in C and compiled witle standardized “gcc” compiler. No
compiler optimizations were used to build the bynailhe implementation was

maintained as closely to the DSP implementatiorp@ssible, keeping the searching
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portion of the code identical to that of the DSPeTplatform used to run the CPU
implementation was a Dell Optiplex 980 Enterpriseel Minitower with 3GB of DDR3
memory and an Intel Core 15-650 processor runnibgritu 12.04.
5.4 TESTCASES

Data used for testing and calculating the resudise based on the human genome
chromosome 22. The chromosome database, hs_ref &R, was obtained from the
National Center for Biotechnology Information repos/ and contains 34.9 million
bases [26]. The index was calculated from a C @mgdeveloped to perform the BWT
and to generate the improvement tables. The tatbes written to 2 sets of files. The
CPU implementation used a binary format that stdhedtabling information containing
the index, while the DSP implementation used a regpdormat developed by Texas
Instruments to allow for blocks of data to be lahde&ectly into memory of the DSPs.

Short reads were generated from the chromosomdafibase to ensure that
matches were possible and mismatches would be ebn&olled rate. Files were
generated for short reads with length of 35 baBes.number of reads for the files are as
follows: 10K, 100K, 1M, 2M, 2.5M, 3M, 4M, 5M, 10M100M, and 1B. For each
grouping of numbers of reads, a percentage of nidma were introduced to better
understand the relationship between mismatchedclse@rminations and processing
time. Each category was also generated to have26%, 50%, 75%, and 100% of the
reads that are mismatches in order to confirmttiere were no unexpected performance
results or data generated. Table 5.1 shows the euaflmatched and mismatched reads

for each category.
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Table 5.1 Generated Matched and Mismatched Shad Rata

. Expected . Expected
Num of Reads| % M ismatch W atchp Vismaich Num of Reads| % M ismatch Viaich P ViSaich
0 10000 0 0 4000000 0
25 7507 2493 25 3000697 999304
10,000 50 4977 5023 4,000,000 50 20020771 1997923
75 2445 7555 75 1001015 299898b
100 0 10000 100 0 400000(
0 100000 0 0 5000000 0
25 75148 24852 25 375003( 1249910
100,000 50 50234 49766 5,000,000 50 250079(¢ 2499210
75 24991 75009 75 125003( 3749970
100 0 100000 100 0 500000
0 100000( 0 0 10000000 0
25 750605 249395 25 7499756 2500244
1,000,000 50 501785 498215 10,000,000 50 4999306 5000694
75 250897 749103 75 2499454 7500546
100 0 1000004 100 0 10000040
0 200000( 0 0 100000000 0
25 1500292 499704 25 74997540 25002440
2,000,000 50 999913 100008} 100,000,000 50 49993040 50006940
75 498887 1501118 75 24994540 75005460
100 0 2000000 100 0 100000090
0 250000( 0 0 1000000000 0
25 1874394 625604 25 7499756p0 250024400
2,500,000 50 1249759 125024].1,000,000,000 50 499930600 500069100
75 623712 1876288 75 2499454p0 750054p00
100 0 2500000 100 0 1000000q00
0 300000( 0
25 2250311 749689
3,000,000 50 1500743 149925y
75 750086 2249914
100 0 300000d

Mismatched short reads were generated randomigdbas a percentage basis.

With randomization, the mismatches are not an eraoiber based on the percentage.

The total number of mismatched reads and matchaes reill still result in the expected

number of reads to process. In addition to a peéagenbased random number of

mismatches, each read has a random number of miutakes between 1 and 3. The

randomization helps to ensure that an outside npadi@es not form, which would have an

influence over the performance results. Terminateags at random points also aids in a

realistic performance result.

31



The generated short reads for the 25% mismataygeaes are the focus of the
performance results for this thesis. Having 7098Q@66 of short reads matching exactly
to a human reference genome, as was previouslaieepl, coordinates directly with the
25% mismatch category having 75% of the short readsching and gives a more
realistic result. The remaining categories are ugedcalculations to ensure that the
results are as expected, eliminating the possibdit erroneous outliers corrupting
performance statistics.

5.5 EERFORMANCEMETRIC

The most widely used comparison for short read pimapis the amount of time
taken to process a number of reads. Investigaliegrmplementations of this thesis has
led to the development of a model to derive thefgoerance bounds of a DSP
implementation to examine whether the use of a [P®#vides a benefit and the
significance of any benefits determined.

The same model was used in the comparison of B’ performance to the
CPU implementation and indicates the number of redfdyases per watt-second. Adding
the concept of power consumption allows varyinghéectures to be compared in a
competitive method, while the addition of read knm the metric eliminates improper
comparisons of algorithms that handle differingedizshort reads. This performance
metric allows for more accurate analysis when a pammson is done, especially as

technologies lead to more power aware applications.
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CHAPTER 6
RESULTS

Evaluation of an architecture’s ability to outperh another must be calculated in
a way to reduce the possibility of bias with anrsight of an unfair comparison between
varying technologies. This thesis strives to aohidghis goal with the indicated
performance metric based on the results calcukdedll be described by this chapter.

The timing measurements calculated with both CRd RSP implementations
were conducted measuring the time difference omgvben the start and end of the
search function for each of the categorized numbérshort reads generated. Power
measurements were taken using a Yokogawa WT500 rpamadyzer sampling at 0.1
second intervals. In cases where the timing ofstech function completed in less than
0.1 seconds, an average of the data collectedttierpower analyzer for the few samples
before and after that interval were also collecded averaged to reduce the effects of
momentary power spikes from voltage variances dsasesubroutines and background
processes that may have had a minute effect opdiver usage of the computer. All
nonessential peripherals were disconnected from sy&tem during CPU power
measurements and the DSP card was removed. Duet®$P board’s PCI express
power connection, the same computer system usedh®srCPU calculations was
measured over a 5 minute timeframe prior to theutations to generate an idle power
consumption baseline. The baseline was subtracted the power measurements taken

during the DSP testing.
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The performance gains of the DSP when comparedetdCPU implementation
indicate a significant speedup. The system of maagperformance purely based on the
number of mapped reads per second is indicatedhle 6.1 along with the reflected
speedup relative to CPU performance. Tests werdumed with the CPU, 1 core of a
single DSP, 8 cores utilizing all of a DSP’s logand all 4 DSPs of the board with a total
of 32 cores. The smallest improvement comes fraamgle processing core of the DSP
when compared to the CPU using 1 Intel 15-650 coarging from speedups between
1.13x to 1.39x with an average speedup over thieraif number of short reads being
1.18x. The performance increases as more coremtaneluced. The 8 core averaged a
9.18x speedup while the 32 core averaged a 36 x&dsip.

Consideration was taken to compare the memory gament system of the CPU
and the direct memory access of the DSP. In om@&nsure a proper comparison, the
page faults were calculated on the CPU implemantdt investigate if hard drive access
time was a factor in the performance measuremahkent For all tests, there were no
major faults causing a disk access to occur. Themre a total of 6 minor page faults for
each test, which did not change with index sizéhemumber of short reads. These minor
page faults occur when a new page is allocatedemony and can be attributed to the
function variables initialized in the mapping alglom. As these faults are not hard drive
accesses, they would not affect the performanedter the results shown.

As page faults are not an affecting factor togagormance gains of the DSP, the
effective bandwidth of both the CPU and the DSPlemgntation was calculated to
better understand the capability of the memoryesyst The average effective bandwidth

was calculated by counting the number of memorgsses during each run. While the
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Table 6.1 DSP and Software Mapped Reads per Seb@fel.core speedup comparisons

are relative to the 1 core CPU implementation perémce.

NUrmber of M apped Reads per Second Speedup over CPU
Reads Cores Cores

32 8 1 Software | 32 8 1 |CPU
10K 4298145.99 1094382.838 13864045 10000P.00 42.98 0.9 1.G(
100K 4390926.2F 1096580.Y1 13856556 119047.62 36.88 |9.21 1.0
1M 4317765.86 1081169.833 13870250 11876§.85 36.36 |9.10 1.0d
2M 4289152.57 1074429.83 13876075 12269P.39 34.96 |8.76 1.0G
2.5M 4275801.28 1070609.09 13879710 12297P.98 34.77 |8.71 1.0G
3M 4272912.28 1069581.50 138769.88 118811.88 35.96 |9.00 1.0G
4M 4267621.48 1069119.06 13876225 11778p.63 36.23 |9.08 1.0
5M 4266514.04 1068309.Y2 13877421 11770p.45 36.25 |9.08 1.0
10M 4256039.78 1065363.81 13877208 11823}1.26 36.00 |9.01 1.0G
100M 4246645.04 1063742.14 13875724 11791p.63 36.02 | 9.02 1.0§
1B 4245745.84 1063203.836 138643.64 11790P.79 36.01 |9.02 1.0§
Average |4284297.29|1074226.40(138722.33| 117439.50] 36.58| 9.18|1.18| 1.00

listed maximum bandwidth of the Intel Core 15-6502i1 GBytes per second, the CPU
was calculated to have only achieved 96.15 Mbyt&sspcond. One possibility of the
greatly reduced throughput may be a limitation afregle core on the processor, which
was used for a better comparison to the DSP. Vhiildess than the maximum stated 16
GBytes per second, the DSP was able to achieve GBMes per second throughput.
Table 6.2 shows the calculated effective bandwhaitithe CPU and DSP.

Introducing the developed performance metric iagis an even stronger gain
between the DSP implementation and the CPU. Wahpttwer consumption of the CPU
ranging from 131 watts to 140 watts and the DShgubetween 45 and 51 watts, the
gains can clearly be seen as illustrated in talleThe single core performance was able
to provide an average improvement of 3.59x. Subetty the 8 core and 32 core
implementations show an average performance inere#s 25.94x and 102.76x,

respectively. Figures 6.1 and 6.2 illustrate a hi@apepresentation of the mapped reads
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Table 6.2 Effective bandwidth of the CPU and DSP.

Number of Bytes per Second
Reads Cores
32 8 1 CPU
10K 3,515,549,352.48 893,687,536,76 113,215,677.78 813661](
100K 3,524,246,053.644 882,471,830,82 113,211,726.80 9A3BA]
M 3,499,641,341.06 882,471,830,82 113,211,726.80 10@183F§
2M 3,499,641,341.06 876,657,388/22 113,218,833.38 10M183§
2.5M 3,488,008,473.96 873,355,280,00 113,224,502.59 1023348
3M 3,486,538,153.J0 872,738,896/29 113,231,086.40 9G)986H2
aM 3,482,355,704.29 872,395,291|28 113,229,238.37 9613157
5M 3,481,092,035.93 871,644,724|25 113,227,282.31 962644
10M 3,472,501,145.32 869,229,915(12 113,224,089.25 9@3644
100M 3,149,850,928.95 789,006,178/03 102,919,979.61 9&30314
1B 3,429,804,325.(J6 858,878,422|82 111,999,299.03 9619BR7
Average | 3,457,202,623.05 867,503,390{40 112,173,949.30 96,24 4(

Table 6.3 DSP and Software Mapped Bases per Watth8e DSP core speedup

comparisons are relative to the 1 core CPU impleatem performance.

Number of M apped Bases per Watt-Second Efficiency over CPU
Reads Cores Cores
32 8 1 Software | 32 8 1 [CPU
10K 3247735.58 821432.20 104218|55 2495f.22 130.13 B2.91 1.04
100K 3285216.32  809540.T1 101672{84 3138p.59 104.68 £5.8(0 B.Qd
1M 3140519.644 777819.66 107449192 3136p.38 1Q0.14 24.8(Q B.44
2M 3151140.644 789855.63 110907{20 3243B.19 97.16 24.35 3.4d
2.5M 3194983.844 784411.10 111470{83 3253§.46 98.20 24.11 3.4d
3M 3252543.02  805581.07 11444265 3135B.51 1Q03.74 P5.69 B.64
4M 3107275.8p 780704.51 113819{52 31188.51 99.63 25.03 3.64
5M 3072592.4p  776065.59 111811163 31194#.80 98.50 24.89 3.64
10M 3045622.38 809546.97 11284905 31076.10 98.01 26.05 3.6d
100M 3224133.9F 805690.87 11389548 3100[.14 1Q04.00 £5.99 B.64
1B 2989360.38 801294.52 113244151 3109p.85 96.15 »5.77 3.64
Average 3155556.73] 796540.26] 110525.65| 30870.43] 102.76(25.94( 3.59| 1.00,
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per second and mapped bases per watt-second, tfaiped@he improvements for both
metrics are shown in the performance comparisoth@fDSP, GPU, CPU, and FPGA
represented by figure 6.3.

The study that was used as a basis for the dawelopof this thesis provided
results of the performance for the GPU implemeatatompared to a CPU. That study
achieved a significant improvement using a GPUrasdlts were given for a comparison
of 7 million reads processed in 0.432 seconds, lwhichieves 16.2 million reads per
second performance [4]. While this method of perfance measurements indicate a
3.78x improvement of the DSP implementation desctiin this thesis, it fails to account
for the difference in architectures used. The haréwdescribed in that study used 2
NVidia Tesla C2050 GPUs, which each contain 44&€@nd consume a maximum of
247 watts. NVidia lists the running power consumptof a single GPU at 238 watts
[18]. Accounting for the 2 GPUs used, the mappeskebaer watt-second of the GPU
implementation is 676,742.83. Compared to the D®Rich achieves 3,155,556.73
mapped bases per watt-second, there is a 4.66ouwament over the GPU. The power
consumption for the performance metric for the GRWUSt be estimated instead of
measured, only the running power for the GPUs wssdun the calculations. More
power would be consumed with the controlling CPlédexl to operate the GPU, which
would decrease the performance of the GPU a sregfie@ more than indicated.

Additionally, a comparison with an FPGA was invgated. A study previously
discussed in this thesis implemented the RMAP dlyoron an FPGA [10]. While this
algorithm is different from those listed abovesiill gives an indication of the exact

match algorithm performance. That study indicatest for 1 million reads, the FPGA
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Figure 6.3DSP, GPU, CPU and FPGA Performance Compa

took 7230 seconds to process the data. The resulting edaggads per second for 1
FPGA is 138.31Using the Xilinx estimated { watts of running power for the Virtex
LX330 FPGA, the calculated mappbases per watt-second is 134[27]. While there
was a 2.36xmprovement of the FPGA over the C in the studythere is a drasticall
lower performance when compared to the GPU and sw@e when compared with tl
DSP. The DSHn this instance achieves 23,467x improvemenbver the FPGAand

102.22x over the CPhown in comparison with the DSP, GPU and CPfigure 6.3

39



CHAPTER 7
CONCLUSION

Overall performance comparisons can be viewedanymways. The performance
metric that was developed in this thesis shows laabée indication of the processing
ability while still maintaining an aspect of thechitecture’'s power. Without this
significant change, attempting to view the restridsn comparisons between 2 different
architectures does not give the view needed torgtatel their relationship. The result of
a supercomputer’s processing ability when compéoeal laptop computer would show
dramatically better performance when considerinly tme processing power. When you
take into account the power consumed by the supgrater, the results are leveled out
to understand that the laptop’s performance mayaansignificant.

The same can be said with any other architecpagjcularly as power aware
computing becomes more important. The results ginghe previous chapter show that
the DSP implementation was on average 102x bdtter the performance of the CPU
and 4.66x better than the GPU. While the GPU’sgrerance without respect to power
was 3.78x faster than the DSP, this can be expmlalme the processing difference
between the two technologies and the availabilit2® more processing cores in the
GPU tests. Using a DSP board with more availabtes;such as the Advantech DSPA-
8901 with 20 DSP’s totaling 160 cores would easilgke up for the difference. This
reasoning also confirms the use of the performameteic to bring the results of both into

the same scope, showing the strong performance ntmdte of the DSP.
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With the stated goal of being able to procesststeads as they are generated
from NGS, the current 4 DSP board’s ability to Hand.1 million reads per second
would be more than adequate to handle any of tedggherating needs. The lllumina
HiSeq 2500, previously mentioned, having the cdpgkio process a whole human
genome of 1.2 billion reads in a 27 hour timespgnaées to approximately 333,000
reads per second, which would easily be handleth&yDSP [1]. Being able to process
the reads as they are generated eliminates thetoéade available data storage for large
volumes of short reads and allows more storageeference indices. This further allows
for multiple smaller chromosomes’ indices to berestoand searched by a single DSP,
needing less DSPs to process the reads for allmsomes of the human genome.

The work done in this thesis was successful inaetating the DSP to be a
powerful alternative processor for exact matchihgrs read mapping. The use and
implementation of the DSP will provide an importdinst step in accelerating the exact
match stage of the sequencing pipeline with them@l for improving the remaining

stages that will form the next bottleneck and nded processing improvements.
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