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ABSTRACT 

 

Two local blow fly species, Lucilia sericata Meigen and Phormia regina Meigen 

(Diptera: Calliphoridae) were used to investigate the effects of burnt carrion on the 

oviposition behaviour of females and the survival and performance of larvae feeding on 

these remains.  Burnt carrion may be encountered after homicides and forest fires.  

Increased levels of flame impingement leads to the presence of cracks in the skin and 

these sites may be suitable for blow fly oviposition.  Both species demonstrated a 

preference for the cracks as oviposition sites.  Phormia regina laid more eggs at the 

cracks, but L. sericata deposited more eggs on the head.  Larval survivorship increased 

with increased flame impingement, despite a significant loss of consumable resource.  

The performance of the larvae was not affected by the severity of flame impingement, 

however, both species responded positively to interspecific interactions on burnt remains, 

resulting in larger adult blow flies.  
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CHAPTER 1: 

BRIDGING THE GAP BETWEEN FORENSIC ENTOMOLOGY, INSECT ECOLOGY 

AND BURNT CARRION 

 
FORENSIC ENTOMOLOGY AND FIRE 
 

Forensic entomology is the study of insects utilized in legal investigations.  

Although there are other sub categories of this field, the focus of this thesis is medicolegal 

entomology, which deals with cases in which arthropod fauna are found on or near 

victims of violent crimes or other unattended deaths (VanLaerhoven and Anderson, 

2013).  Forensic entomologists are most often asked to provide an estimate of the 

minimum postmortem interval (PMI), or a minimum time between death and discovery of 

the deceased (Cragg, 1955; Smith, 1986; Thomas and Mangan, 1989; Greenberg, 1991; 

Hall and Doisy, 1993; Smith and Wall, 1997b; Gião and Godoy, 1997; Byrd and Allen, 

2001; Bourel et al., 2003; Anderson, 2004; Arnaldos et al., 2005; Byrd and Castner, 

2010; Higley and Haskell, 2010; Wells and Lamotte, 2010).  There are two accepted 

methods for estimating the PMI using insect evidence.  The first utilizes the successional 

pattern of insects arriving at a body and relies upon the predictability of arrival of specific 

species at specific stages of decomposition (Orfila, 1848 [cited in Greenberg 1991]; 

Bergeret, 1855 [cited in Greenberg, 1991]; Bornemissaza, 1957; Payne, 1965; Catts and 

Goff, 1990).  The second and more widely used method for calculating a PMI uses the 

development time, in accumulated degree hours (ADH), of the first arriving carrion 

insects to the body, which are usually blow flies (Diptera: Calliphoridae) (Catts and Goff, 

1990; Anderson, 2004).   

There are over 1000 species of known blow flies; all are characterized by their 

metallic appearance, with common colours including green, blue and black (Smith, 1986; 

Smith and Wall, 1997b; Byrd and Castner, 2010).  Like all other Diptera, a blow fly has a 

single pair of wings used for flying and modified hindwings, the halteres, used to remain 

balanced while inflight (Byrd and Caster, 2010).  Blow flies have excellent dispersal 

capabilities as demonstrated by their ability to travel upwards of 20 km daily (Greenberg, 

1991).  Due to their dispersal capabilities and quick arrival at carrion for oviposition, this 
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family of flies is considered the most beneficial to forensic entomologists when 

estimating a PMI (Cragg, 1955; Smith, 1986; Thomas and Mangan, 1989; Greenberg, 

1991; Hall and Doisy, 1993; Smith and Wall, 1997b; Gião and Godoy, 1997; Byrd and 

Allen, 2001; Bourel et al., 2003; Anderson, 2004; Arnaldos et al., 2005; Byrd and 

Castner, 2010).  The predictable rate of immature development of blow flies is one of the 

more critical types of evidence used by forensic entomologists.  The blow fly lifecycle 

has six distinct stages that have been described in depth elsewhere (McGavin, 2001; 

Whitfield and Purcell III, 2013), and therefore, are summarized briefly.  Female blow 

flies lay eggs, and the larvae that hatch, called maggots in the order Diptera, develop 

through three feeding instars, moulting their exoskeletion between each stage.  As is the 

case with most immature insects, the larval stages are similar in appearance.  The three 

feeding instars can be differentiated morphologically based on the number of posterior 

spiracle openings.  Once the maggot has finished feeding in its third instar, it will wander 

away from the food source in search of a dry place to pupate.  Post pupation, the adult fly 

emerges and the lifecycle starts again.   

Insects such as blow flies are poikilotherms, and therefore, they are unable to 

control their own body temperature.  Thus, the total time required for the development of 

a blow fly, from the egg state to adult emergence, is dependent on ambient temperature in 

the blow fly’s habitat (Baskerville and Emin, 1969; Adams and Hall, 2003; Bourel et al., 

2003; Higley and Haskell, 2010).  In general, as ambient temperatures increase the rate of 

insect development also increases, with the opposite also being true.  The relationship 

between temperature and insect development can be visualized using a curvilinear and 

linear model (Higley and Haskell, 2010).  As temperatures approach the upper and lower 

developmental thresholds insect development follows a curvilinear model, with a linear 

model predicting development between the temperature thresholds (Higley and Haskell, 

2010).  Beyond the temperature thresholds an insect does not experience further 

development; it either engages in diapause or dies.  At the scene of an investigation, the 

insect evidence collected by a forensic entomologist should include specimens of the 

oldest stages of the blow fly present.  These specimens result from the earliest blow fly 

colonization events, and therefore, accurately estimate the minimum PMI (Catts and Goff, 

1990; Adams and Hall, 2003).  Although temperature is the primary abiotic factor that 
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determines the rate of development of insects, other factors such as the presence of drugs, 

wrapping or burying of the remains, the temperature of the maggot masses and burning of 

remains (Goff, 1992; Anderson, 2010; Wells and Lamotte, 2010) can all impact the 

arrival time and development of blow flies. 

 The incidence of homicide by fire has increased in Canada since 2008, with the 

exception of 2012 (Statistics Canada, 2013).  Homicide by fire, which is described by 

Statistics Canada (2013) as the result of either suffocation or direct burns, represents 

3.1% of the 543 homicides in Canada during 2012, however, these statistics do not 

account for bodies burnt postmortem.  In Ontario, there were 70 fire fatalities in 2012 

(excluding fatalities resulting from fiery motor vehicle accidents), or 5.2 deaths for every 

one million residents, which were homicidal or suicidal in nature, or resulted from arson, 

among other causes (OFMEM, 2013).  Studies have shown that burning human remains is 

most commonly used to eliminate trace evidence such as hair, bodily fluids or blood 

(Fanton et al., 2006; Ubelaker, 2008; Gruenthal et al., 2012).  A study conducted in Lyon, 

France analyzed all autopsy records of bodies with signs of flame impingement over a 

period of ten years (Fanton et al., 2006).  Of 40 recorded cases, accidental death by fire 

occurred over 50% of the time, whereas criminal burnings were second most prevalent, 

accounting for 31% of the cases (Fanton et al., 2006).  Fanton et al. (2006) noted that soot 

found in the oesophagus and stomach can indicate that burning was conducted 

perimortem, or before death, as this would indicate the victim was still alive and 

breathing at the time of the fire.  However, they deduced that the majority of criminal 

burnings are done postmortem, with victims rarely burnt alive (Fanton et al., 2006). 

 Fire as a means of eliminating evidence is popular, but extreme measures must be 

taken to successfully eradicate evidence from a body.  Even with temperatures reaching 

as high as 1500°C, modern crematoriums still aren’t completely successful in eliminating 

all identifiable traces of human remains (Kennedy, 1996), as traces of bones and teeth 

remain (Murray and Jerome, 1993; Kennedy, 1996).  Temperatures as high as 1200°C can 

destroy mitochondrial DNA found within bones, but can still leave histological features 

that can be used to identify a victim (Cattaneo et al., 1999).  To present a family with the 

finely powered cremains that we are accustomed to seeing, a crematorium will pulverize, 

or blend, the remains after the cremation is complete (Kennedy, 1996).  It is not until after 
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this step is complete that the remains will be rid of any identifiable pieces (Kennedy, 

1996).  It would be extremely difficult for a perpetrator who did not have access to a 

crematorium to sustain the extremely high temperatures required to completely destroy all 

traces of a human body (Anderson, 2010).      

 The transformational changes that a body undergoes during exposure to flames are 

well documented and understood (Kennedy, 1996; Bohnert et al., 1998; Ubelaker, 2009).  

To help standardize the characterization of burnt remains, Glassman and Crow developed 

a scale referred to as the Crow-Glassman Scale (CGS) (Glassman and Crow, 1996).  Prior 

to the publication of the CGS, a scale was used to describe the degree of burns to 

survivors (Glassman and Crow, 1996).  This scale reflected the depth of the burn, the 

percentage of burns to the body and overall extent of burn damage to the victim 

(Glassman and Crow, 1996).  However, this scale could not be easily applied to deceased 

victims of fires.  The CGS (Table 1.1) has five distinct levels that outline the severity of 

burns to victims who have died due to the injuries sustained as a result of flame 

impingement. Level 1 is the least severe, synonymous with someone who has died via 

smoke inhalation, and Level 5 is the most severe and is synonymous with someone who 

has been cremated (Glassman and Crow, 1996).   

 There have been a number of studies that have investigated insect 

attraction to burnt remains and their utility in calculating an accurate PMI on these 

bodies (Avila and Goff, 1998; Introna et al., 1998; Pai et al., 2007; Chin et al., 

2008; Vanin et al., 2013).  Introna et al. (1998) documented two cases in which 

three burnt bodies were found inside cars.  In each case the bodies were burnt 

postmortem to conceal the cause of death; in the first case the deceased individual 

was shot twice in the neck and in the second case the deceased persons were 

severely beaten and shot (Introna et al., 1998).  Although not specifically stated, 

all three of the bodies were burnt to Level 3 on the CGS as there was heavy 

charring, visible internal structures and dismembered limbs; each body contained 

large numbers of actively feeding larvae (Introna et al., 1998).  When calculated, 

the PMI estimates from both case studies were validated through eyewitness 

testimony (Introna et al., 1998).  Similar to these case studies, Pai et al. (2007) 

were also able to successfully validate a PMI estimate using flesh fly (Diptera: 
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Sarcophagidae) maggots collected from a female victim burnt postmortem to 

conceal the means of death.  These three cases illustrate that insects can colonize 

and develop successfully on badly burnt bodies and that an accurate PMI can be 

estimated from insect evidence collected from flame-impinged bodies.  However, 

if blow fly larvae are present on remains prior to and during flame impingement, 

the intense heats have been found to disturb the development of blow fly larvae 

resulting in inaccurate PMI estimates (Pacheco and VanLaerhoven, submitted)  

 Similarly, the recoverability of insect evidence after arson has been 

investigated (Anderson, 2005; Pacheco and VanLaerhoven, submitted).  It is 

common for a perpetrator to return to the scene of a crime and dispose of any 

remaining evidence (Anderson, 2005).  Arson is the most prevalent method of 

evidence elimination under those circumstances (Anderson, 2005).  In arson 

scenarios, insect evidence is routinely overlooked (Anderson, 2005).  To 

investigate such scenarios, Anderson (2005) placed four pig (Sus scrofa Linnaeus) 

carcasses outside.  Acquiring human remains to conduct forensic entomology 

experiments in Canada can be extremely difficult, whereas domestic pig carcasses 

are easily obtainable, affordable and do not upset public opinion (Catts and Goff, 

1992).  Most importantly for a human analogue, pigs decompose in a manner that 

closely resembles human decomposition due to pigs and humans having similar 

skin composition, fat bodies at equivalent locations, omnivorous diets, similar 

internal structures/organs and similar chest cavities (Schoenly et al., 2007).  The 

pig carcasses decomposed under natural conditions and attracted insect colonizers, 

in order to represent a generalized situation in which a body might be dumped for 

disposal (Anderson, 2005).  Each of the pigs was allowed to decompose until they 

reached the active decay stage, characterized by initial liquefaction of the body 

and the loss of flesh (Payne, 1965; Anderson, 2005).  The pigs and their 

associated colonized insects were placed in a suburban house and four different 

arson scenarios were simulated, including dousing the pigs in gasoline to act as an 

accelerant and covering them with furniture (Anderson, 2005).  Forensically 

useable insect evidence was collectable following all four arson situations, in 

which the temperatures ranged between 600°C and 1000°C (Anderson, 2005).  
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Although dead, the insect evidence collected in this study suggests that extreme 

temperatures are not enough to completely eliminate pre-colonized insects or deter 

the colonization of new individuals, as flies were attracted to the burnt remains 

after the flames were extinguished (Anderson, 2005).  Additionally, the process of 

wrapping remains in blankets, for the purpose of concealment and easier 

transportation, has been found to protect pre-colonized insect evidence during 

periods of flame impingement that would result in CGS Level 2 burns (Pacheco 

and VanLaerhoven, submitted).  

Although there have been no in-depth studies that try to explain how burnt 

remains affect blow fly oviposition behaviour or the consequent survivorship and 

fitness of blow fly offspring, the few studies available have both comparable and 

conflicting results.  A study conducted at two different sites on the Hawaiian 

Island of Oahu showed that similar fauna colonize both burnt and un-burnt 

remains (Avila and Goff, 1998).  Four pig carcasses, two of which were doused in 

gasoline and burnt to a Level 2 on the CGS, were left exposed outdoors to attract 

naturally colonizing fauna (Avila and Goff, 1998).  At both study sites, it was 

observed that fauna were the same on the burnt and un-burnt pigs (Avila and Goff, 

1998).  For example, the blow fly Lucilia sericata Meigen (Diptera: 

Calliphoridae) was present on burnt carcasses at both study sites (Avila and Goff, 

1998).  Blow fly colonization occurred a day earlier on burnt remains when 

compared to un-burnt remains, with blow fly activity observed while remains 

were still on fire (Avila and Goff, 1998).  The egg masses on the un-burnt remains 

were, on average, smaller than those on the burnt remains, with the majority of the 

egg masses on the burnt remains found in the mouth, front legs and abdomen 

(Avila and Goff, 1998).  The authors believed that bodily fluids seeping through 

the cracks in the skin caused by the fire increased the attractiveness of the carcass 

to gravid females (Avila and Goff, 1998).  These cracks not only acted as wounds, 

but also provided additional suitable oviposition locations to those described 

above (Avila and Goff, 1998). 

Although the colonizing fauna was the same on burnt, using gasoline as an 

accelerant, and un-burnt pig carcasses, Chin et al. (2008) observed that there were 
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more adult flies on un-burnt carcasses with eggs being laid within the first hour; 

oviposition on the burnt remains only began during the second day of exposure, in 

direct contrast to Avila and Goff (1998).  Interestingly, Chin et al. (2008) reported 

that there were larger egg and larval masses on the burnt remains, as was observed 

by Avila and Goff (1998), leading to increased surface and internal temperatures 

due to the activity of larger maggot masses which generate heat.  These increased 

temperatures led to increased rates of larval development and carcass 

decomposition (Chin et al., 2008).  

Vanin et al. (2013) showed that carcasses burnt in between a Level 2 and 

Level 3 on the CGS, using wood without accelerant, were colonized by similar 

fauna when compared to carcasses that remained un-burnt, but in contrast to Avila 

and Goff (1998), flies arrived at burnt and control carcasses at approximately the 

same time.  Additionally, it was observed that two blow fly species, Phormia 

regina Meigen (Diptera: Calliphoridae) and L. sericata, were able to colonize 

burnt remains (Vanin et al., 2013).  Vanin et al. (2013) also noticed cracks in the 

outer layers of skin that revealed internal structures, potentially increasing the 

number of suitable oviposition sites, as reported by Avila and Goff (1998).  The 

authors also stated that as a carcass begins to burn, the composition of volatile 

molecules within the body start to change, altering the odour and attracting more 

insects (Vanin et al., 2013).   

 

INSECT ECOLOGY AND FIRE 
 

In natural habitats, fires occur on a regular basis as a result of natural and 

anthropogenic causes. In Ontario there has been an annual average of 1098 forest fires in 

the past decade, accounting for just under 111 000 ha of land annually (Aviation, Forest 

Fire and Emergency Services, 2014).  Despite the associated destruction, forest fires are a 

natural part of ecosystem regeneration and restoration (McCullough et al., 1998; Nasi et 

al., 2002).  Forest fires are responsible for changes in species composition, altering 

biomass levels and changes in nutrient cycling; all of these factors combined contribute to 

overall ecosystem health in areas affected by fire (McCullough et al., 1998; Nasi et al., 
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2002). 

 In the aftermath of a forest fire, many organisms within the affected area will 

either be killed or displaced.  The eventual return of displaced individuals, or replacement 

of deceased individuals via immigration into the affected habitat is important for both the 

growth and sustainability of the habitat.  Studies have demonstrated that insect population 

levels are at their lowest both immediately after a fire and in the months that follow 

(Swengel, 2001).  An insect’s ability to survive a forest fire is largely dependent on its 

developmental stage, as immature insects are wingless and unable to escape the flames 

(Swengel, 2001).  Insects with wings and those that are skilled fliers are believed to be the 

most successful at repopulating an area after a fire (Lamotte, 1975; Pippin and Nichols, 

1996; Moretti et al., 2004).  Opinions differ, however, regarding how long it takes for 

insect populations to be at their highest levels following a fire.  Orgeas and Andersen 

(2001) have stated that overall beetle numbers, species diversity and species richness are 

highest five years after a forest fire.  Others, such as Force (1981), believe that insect 

species richness and population numbers are at their highest after the first year following 

a fire, when compared to both the second and third years.  Force (1981) attributes this to 

an influx of both invader and generalist species.  One positive effect of repeated burns in 

a single habitat is that populations of endangered species may increase, due to decreased 

competition with more dominant species (Moretti et al., 2004).       

 Some insects, however, are the most successful immediately following a forest 

fire due to greater susceptibility or availability of their food source.  For example, fires 

leave trees vulnerable to attacks by insects (McCullough et al., 1998).  Pyrophilous 

insects are attracted to fire (Klocke et al., 2011).  These insects rely on forest fires for 

food, reproduction and oviposition; and as such, they are known to be among the first 

arthropod colonizers after a fire-related disturbance (Wikars, 2002; Klocke et al., 2011).  

One common fire-loving insect family is the Buprestidae, or jewel beetles (Coleoptera).  

Buprestidae have been observed to travel up to 50 miles (approximately 80.5 km) to find 

burnt wood as they prefer to reproduce on and oviposit in this medium (Linsley, 1943; 

Schmitz et al., 1997; Schütz et al., 1999; Klocke et al., 2011).  These beetles have been 

seen on logs that are still burning (Linsley, 1943; Klocke et al., 2011), similar to blow 

flies observed near or on pig carcasses that are still burning (Avila and Goff, 1998).  
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Physiological studies have shown that Buprestidae possess both infrared receptors in their 

thoracic organs that detect heat and olfactory receptors in their antennae that detect smoke 

(Schmitz el al., 1997; Schütz et al., 1999; Klocke et al., 2011). 

 There are a few published works on the response of Diptera to forest fires, 

however, none on the responses of blow files specifically.  Studies have yielded a wide 

range of results relating to the recovery rates, species diversity and species richness of 

Dipteran families, demonstrating that depending on the time of year a fire occurs and how 

frequent sampling occurs afterward, there are no noticeable differences in fly population 

numbers (Rice, 1932; Bulan and Barrett, 1971).  However, conflicting results have also 

been found that indicate flies respond better post fire (Hurst, 1971; Nagel, 1973; Van 

Amburg et al., 1981; Winter, 1984; Moretti et al., 2004; Durska et al., 2010).  It is 

believed that blow flies should respond well post-fire due to increased availability of 

carrion (Shvidenko and Goldammer, 2001; United States National Park Service, 2014), 

fast oviposition times (Bourel et al., 2003; Anderson, 2004; Byrd and Castner, 2010) and 

their ability to land on remains that are still on fire (Avila and Goff, 1998). 

 Blow flies use a well established two-step method to locate carrion both efficiently 

and effectively (Byrd and Castner, 2010). The first step involves scent detection using 

chemical receptors in their antennae, followed by the second step of visual detection 

(Byrd and Castner, 2010).  Using taste receptors in their legs, feet and body, a blow fly 

will traverse carrion to determine if the resource is suitable for oviposition of its offspring 

(Kamal, 1958; Byrd and Castner, 2010).  Oviposition is accomplished by a female fly 

extending her ovipositor, from her abdomen, onto a substrate where her eggs will be 

deposited (Byrd and Castner, 2010).  Where possible, blow flies prefer to oviposit their 

clutches in or near the natural orifices of a body such as the nostrils, ear canals, mouth, 

anus and vagina. (Smith, 1986; Bourel et al., 2003; Byrd and Castner, 2010).  Attracted 

by the blood, female blow flies will oviposit in wounds such as scratches or cuts, which 

provides both sugar and protein and acts as a food source (Cragg, 1955; Thomas and 

Mangan, 1989; Hall and Doisy, 1993; Avila and Goff, 1998; Byrd and Allen, 2001; 

Bourel et al., 2003; Byrd and Castner, 2010).  Blow flies are also known to successfully 

oviposit on burnt remains (Avila and Goff, 1998; Introna et al., 1998; Pai et al., 2007; 

Chin et al., 2008; Vanin et al., 2013).  It has been suggested that the preference of blow 
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flies for burnt remains is a result of bodily fluids seeping out of the body through the 

cracks created via flame impingement (Avila and Goff, 1998; Vanin et al., 2013).  That 

cracks in the skin are suitable for oviposition, and preferred sites for oviposition has yet to 

be rigorously tested. 

 One way to validate the assumption that cracks are a preferred oviposition site is to 

use experiments to test optimal oviposition theory (Jaenike, 1978).  Blow flies do not 

practice parental care; once her clutch has been deposited, a female blow fly will not 

return to ensure her eggs are well protected and well taken care of.  Optimal oviposition 

theory states that female insects will deposit their clutches in locations in which they 

believe their offspring will have the best chance of survival (Jaenike, 1978).  Cracks may 

provide the greatest benefit for developing offspring by reducing the distance a first instar 

maggot would need to travel to find food, thereby conserving energy, which should 

increase larval survival.  This, together with easy access to nutrient rich resources during 

the larval stages, should increase the fitness of the resulting adults.   

 Theoretically, a female needs to possess the ability to selectively choose oviposition 

locations that will benefit the development, survivorship and fitness of her offspring 

(Jaenike, 1978), but larval density within the oviposition location also impacts fitness.  

Blow flies participate in scramble competition, a form of exploitative competition (Park, 

1962), as all larvae present share the carrion resource (Nicholson, 1954 in Prinkkilä and 

Hanski, 1995).  Larval density has both beneficial and detrimental effects in blow flies 

such that there is likely an optimal density for different species.  Increased larval 

densities, in the form of maggot masses, can be beneficial to developing larvae.  Maggot 

masses keep temperatures elevated on carrion, which in turn help to decrease 

development times of feeding larvae, including the earlier instars that are more 

susceptible to temperature related fatalities (Baxter and Morrison, 1983; Catts, 1992; 

Catts and Goff, 1992; Turner and Howard, 1992; Ireland and Turner, 2006; Kheirallah et 

al., 2007; Anderson, 2010).  Additionally, increased larval densities can aid in an 

increased concentration of proteolytic enzymes, which help break down carrion tissues 

faster (Baxter and Morrison, 1983; S. dos Reis et al., 1999; Ireland and Tuner, 2006; 

Kheirallah et al., 2007).  However, past an optimum level, as larval density continues to 

increase, overall development time increases, yet fitness (i.e., blow fly size) and 
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survivorship decreases (Hutton and Wasti, 1980; Goodbrod and Goff, 1990; So and 

Dudgeon, 1990; Prinkkilä and Hanski, 1995; Saunders and Bee, 1995; Smith and Wall, 

1997a; Ireland and Turner, 2006; Kheirallah et al., 2007), likely due to competition for 

nutritional resources (VanLaerhoven, in press). 

 Carrion is both an ephemeral and heterogeneous environment within which female 

flies choose an oviposition site, and the choice of where and how many eggs to deposit 

can have a significant impact on the overall population density and distribution of 

population density on the resource.  In a study conducted with eastern tree-hole 

mosquitoes, Ochlerotatus triseriatus Say (Diptera: Culicidae), Ellis (2008) noted that 

larval density and fitness levels were proportional to one another, such that as larval 

density increased, fitness decreased with a corresponding increase in development time 

and a decrease in overall survivorship.  When given a choice, the female mosquitos 

avoided the most dense patches and oviposited in less dense patches (Ellis, 2008).  The 

oviposition preference-offspring performance hypothesis is an extension of optimal 

oviposition theory and states that offspring fitness will be highest when females select 

optimal oviposition sites (Thompson, 1988; Ellis, 2008).  In the case of the mosquitoes 

studied by Ellis (2008), optimal oviposition sites were those with low density, as 

important aspects of mosquito development were negatively correlated with increased 

larval density.  A positive preference-performance relationship is noted when a female 

insect can ‘determine’ the larval density on a particular resource, with the opposite also 

being true (Ellis, 2008).  Based on the predictions of the oviposition preference-offspring 

performance hypothesis, and the results of the mosquito study (Ellis, 2008), female blow 

flies should oviposit at sites where the larval density will be within an optimal range for 

fitness avoiding the highest density or lowest density sites.  As it relates to burnt remains, 

cracks should receive more eggs, due to their aforementioned perceived benefits to larval 

offspring.  If this is the case less intraspecific competition should be observed at the more 

traditional oviposition sites on burnt carcasses due to decreased larval density at those 

sites.  

 In blow flies it appears as though outcomes of species interactions are affected not 

just by larval density, but also by adult density.  On carrion, there is the potential for two 

different types of competition: (1) competition for oviposition sites and (2) competition 
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for larval resources.  Two species cannot utilize the same limited resource in the same 

manner at exactly the same time without competitive exclusion driving one species to 

extinction (Gause, 1934).  The spatial and temporal aggregation of species on carrion is 

speculated to be two of the main mechanisms that regulate, both interspecific and 

intraspecific, competitive interactions (Fiene et al., 2014; VanLaerhoven, in press).  The 

lottery effect (Chesson and Warner, 1981) provides a means of temporal resource 

partitioning, whereby the females of a particular blow fly species who first encounter a 

carrion resource when it becomes available should be able to establish a dominant 

population (VanLaerhoven, in press).  Burnt remains provide a unique carrion landscape 

in that they possess different oviposition sites from un-burnt remains that can be utilized 

depending on the severity of flame impingement, thus also providing a different spatial 

resource partitioning from un-burnt remains.  Carrion colonizing insects, such as blow 

flies, who adapt and utilize these unique resource patches, such as cracks that develop in 

the skin, thereby changing the spatial resource partitioning, have the potential to be 

successful on altered resources.  There have been conflicting reports of outcomes of 

competition or competitive exclusion of blow flies on carrion (Hanski, 1987) and these 

differences in resource partitioning, together with initial population density, may provide 

an explanation (VanLaerhoven, in press).  Known as founder control (Mittelbach, 2012), 

the species with the greatest initial population density stands to benefit the most from a 

carrion resource and outcompete those with lower densities (VanLaerhoven, in press).   

 One factor that will determine the extent of competition, and therefore, the 

competitive exclusion of the weaker species, is the initial amount of carrion resource 

available (VanLaerhoven, in press).  Consumer-resource theory (Tilman, 1982) predicts 

that on an essential limiting resource, such as carrion, two competing blow fly species of 

the same population density cannot both persist without one driving the other to 

extinction (VanLaerhoven, in press).  The competitor that can maintain its population 

density, while using less of the resource, will stand the greatest chance of outcompeting 

the other (Tilman, 1982).  In the case of burnt remains, as burn severity increases (i.e., 

higher levels on the CGS), the amount of consumable resource for developing blow flies 

decreases, potentially increasing competitive effects.  Female blow flies should change 

how many eggs they oviposit in the presence of heterospecific females, depending on the 
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amount of resource present and the species’ optimum larval density, in order to increase 

the chances of their offspring successfully developing to adult. 

 

STUDY SYSTEM 
 
 
 Two species of blow fly were used to conduct the research described by this thesis, 

L. sericata and P. regina.  Although both species are within the same family 

(Calliphoridae), these flies are classified into two different subfamilies and further into 

two different tribes (Hall, 1948; Hall and Townsend Jr., 1977).  Lucilia sericata is 

classified in the subfamily Calliphorinae in the tribe Luciliini, whereas P. regina is 

classified in the subfamily Chrysomyinae in the tribe Phormiini (Hall, 1948; Hall and 

Townsend Jr., 1977).  Lucilia sericata, the sheep blow fly or green bottle fly, has a 

metallic green appearance, which changes slowly with age to a dark copper (Smith, 

1986).  Contrary to its common name, the black blow fly, P. regina, is usually dark green 

to olive green in colour (Smith, 1986).  Both species are native to southern Canada 

(Smith, 1986; Byrd and Castner, 2010) and have been observed colonizing a single 

carrion resource simultaneously, including burnt remains (Anderson and VanLaerhoven, 

1996; VanLaerhoven and Anderson, 1999; Sharanowski et al., 2008; Vanin et al., 2013).  

Unfortunately, detailed information on their species interaction is lacking.  Increased egg, 

and therefore larval densities, on altered carrion, such as burnt remains, could either 

magnify or reduce positive or negative species interactions.     

 Female L. sericata may lay up to 3000 eggs in their lifetime, and deposit roughly 

300 eggs in a single clutch (Smith, 1986).  For both species, oviposition may begin as 

early as five days post adult emergence (Smith, 1986; VanLaerhoven and Anderson, 

2001).  Female flies require foods rich in energy, including sugars and proteins; protein is 

essential for the successful development of a female’s eggs (Vogt et al., 1985; 

Erzinçlioğlu, 1996).  Carrion not only represent a suitable oviposition medium, they also 

act as a sugar and protein source, as indicated by both non-gravid and gravid females 

visiting these resources (Brodie et al., 2014).  Females of both species have been 

observed ovipositing on surfaces completely covered with eggs, regardless of available 
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space (Kamal, 1958).  Lucilia sericata eggs can mature and hatch anywhere between 10 

and 52 hours after oviposition, depending on temperature (Smith, 1986).  For L. sericata, 

development through the three instars requires between three and 11 days, while the pupal 

stage has been recorded to last from four to 24 days (Smith, 1986).  The egg eclosion time 

for P. regina can range between eight and-a-half to 24 hours, while the complete lifecycle 

can take from eight to 25 days (James, 1947; Kamal, 1958; Byrd and Allen, 2001).   

 Lucilia sericata can survive higher temperatures and are more prevalent during the 

warmer summer months (Smith, 1986).  In saying that, L. sericata prefer ovipositing on 

carrion located within open fields where presumably temperatures are hotter as the eggs 

hatch earlier and then develop and emerge as adults faster in these conditions when 

compared to those in shaded areas (Cragg, 1995; Smith and Wall, 1997a; Smith and Wall, 

1997b), yet prefer protected areas on carrion for egg oviposition (Byrd and Castner, 

2010).  Female L. sericata prefer ovipositing in the mouth, eyes and nostrils regardless of 

whether they colonize before or at the same time as P. regina, however when they were 

second to colonize after P. regina, they showed a preference for additional locations on 

the body including the head, abdomen and between the legs of carrion (Rosati, 2014).  

Additionally, wounds represent a wet environment where L. sericata prefer to oviposit 

(Kamal, 1958; Grassberger and Reiter, 2001).  Cracks caused via flame impingement 

should be wetter and therefore may be a stronger attractant to L. sericata females. 

 Phormia regina prefer cooler temperatures and as a result, their populations often 

decline during the summer months in the southern United States (James, 1947; Byrd and 

Allen, 2001), yet remain dominant during the summer months in southern Ontario 

(Rosati, 2014).  Female P. regina tend to perform a specific spatial routine before 

ovipositing: a female circles her desired oviposition location before moving in backwards 

and fluttering her wings, which is followed by the extension of the ovipositor (Kamal, 

1958).  Following the spatial routine, eggs are oviposited in clumps, which likely 

contributes to the greater variation in development time of P. regina eggs compared to L. 

sericata eggs (Kamal, 1958; Smith, 1986; Byrd and Castner, 2010).  In contrast to L. 

sericata, P. regina show no preference for colonizing carrion located in shaded or open 

locations (Joy et al., 2002).  Recent studies, however, have shown that when P. regina 

colonize a carrion resource first they oviposit between the legs, on the abdomen and on 
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the head, while avoiding the mouth, ears and nostrils (Rosati, 2014).  When P. regina 

arrives after or at the same time as L. sericata they switch their oviposition preference to 

inside the head (i.e., mouth, ears, nostrils) (Rosati, 2014).    

 In the literature, there are more documented cases of interspecific interaction effects 

on L. sericata than on P. regina.  Overall, L. sericata is negatively affected by both 

intraspecific and interspecific competition (Cragg, 1995; Smith and Wall, 1997a; Smith 

and Wall, 1997b; Rosati, 2014), with decreased fitness and adult/larval survival (Ullyett, 

1950; Hutton and Wasti, 1980; Prinkkilä and Hanski, 1995; Smith and Wall, 1997a; 

Kheirallah et al., 2007).  Regardless of their ability to survive under harsher conditions 

(Cragg, 1955), the presence of other blow flies species on carrion has been shown to 

reduce the size of emerging adults (Smith and Wall, 1997a).  Increased interspecific 

larval density of L. sericata with other Lucilia and blow fly species can decrease the 

survival rates of larvae, and therefore, can have negative impacts on the size of flies, 

lifespan and fecundity of female flies (Prinkkilä and Hanski, 1995; Smith and Wall, 

1997a; Kheirallah et al., 2007).  In general, female Dipteran species are smaller than 

males, however female L. sericata are known to have greater size plasticity (Prinkkilä and 

Hanski, 1995; Smith and Wall, 1997a).  However, interspecific interactions between L. 

sericata and P. regina have not resulted in detrimental effects to survival and fitness to L. 

sericata at some larval densities tested (Hutton and Wasti, 1980; Rosati, 2014).  Larval 

densities ranged from 10 to 210 larvae present on 25 g of resource (Hutton and Wasti, 

1980) or between 200 and 400 larvae on fetal pig carcasses weighing more than 700 g 

(Rosati, 2014).  Negative responses, such as decreased fitness and adult/larval survival as 

described above, have also been observed under circumstances where intraspecific 

interactions occur (Ullyett, 1950; Hutton and Wasti, 1980; Prinkkilä and Hanski, 1995; 

Smith and Wall, 1997a; Kheirallah et al., 2007).  Given these studies, L. sericata are 

likely to have a lower optimum larval density, but their developmental plasticity to 

successfully mature smaller adults in the presence of competition may allow them to 

persist in a wider range of larval densities.   

 Unlike L. sericata, female P. regina are smaller than males (Rosati, 2014).  

Phormia regina is slow to oviposit when in a single species dominated setting, whereas 

they oviposit much more rapidly in the presence of L. sericata, which might indicate P. 
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regina is facilitated by other blow fly species (Rosati, 2014).  Larval survivorship rates 

and adult fitness levels of P. regina increase when in the presence of L. sericata, with no 

effect of density at the levels tested in the study (Rosati, 2014).  Other research, however, 

has demonstrated adverse effects to P. regina when L. sericata are present, as entire 

larval populations have been observed to be eliminated (Hutton and Wasti, 1980).  Larger 

conspecific larval densities have also resulted in lower adult emergence (Hutton and 

Wasti, 1980), however based on these studies, it is likely that the optimum larval density 

of P. regina is higher than that of L. sericata.  Different from L. sericata, P. regina does 

not exhibit a great degree of developmental plasticity to successfully produce small 

adults.  Therefore, although P. regina may have a higher optimum larval density, it likely 

has a narrower range of densities that it can successfully develop to adult. 

 

RESEARCH OBJECTIVES 
 

The need for research as it relates to the overall effect that burnt remains have on 

forensically important blow flies is evident. Homicide rates due to flame impingement 

have been increasing, and regularly occurring forest fires are a natural part of ecosystem 

regeneration.  This thesis aims to demonstrate that burnt carrion affects both the potential 

colonization and consequently the survival and fitness of two local blow fly species.  

Using simulated human remains, the oviposition behaviours of L. sericata and P. regina 

were observed to test the prediction that flame impingement affects the number of eggs 

and oviposition location of forensically important blow flies.  These choices should result 

in differing survival and fitness of the offspring that develop on burnt remains.    

Increased flame impingement, and therefore, middle levels on the CGS, should 

result in the presence of cracks in the skin.  Based on the optimal oviposition theory these 

cracks, and associated bodily fluids, should represent an ideal location for the 

development of both species of blow fly larvae when colonizing on their own.  This 

should be observed as a shift in oviposition preference measured as an increased number 

of oviposition events at the cracks in these areas when compared to these areas of the 

body without cracks, with an associated reduction in the oviposition events in other areas 

of the body in the presence of cracks.  Given the differential oviposition location 
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preferences of L. sericata and P. regina as reported in the literature, L. sericata will likely 

oviposit directly in the cracks, whereas P. regina will likely oviposit on bodies with 

cracks (middle of the CGS), but not directly in the cracks themselves.  Along with this 

shift in oviposition preference, based on optimal oviposition theory, there should be an 

overall increase in survival and fitness of resulting adults that developed on bodies with 

cracks when compared to adults that have resulted from maggots developing on bodies 

without cracks or with fewer cracks (lower on the CGS).   

However, based on the density-dependent aspects of the oviposition preference-

offspring performance hypothesis, although the cracks might represent an ideal location, 

L. sericata will likely oviposit in cracks more often as previously predicted, but deposit 

fewer eggs due to its lower optimum larval density.  In addition, due to the predicted 

reduction in carrion resource biomass associated with increased flame impingement 

(increasing in CGS), L. sericata will likely oviposit fewer offspring as carrion increase in 

CGS level.  In contrast, P. regina will oviposit both more often and deposit more eggs on 

bodies with cracks and as bodies increase in CGS level due to its higher optimum larval 

density. 

Based on the oviposition preference-offspring performance hypothesis, it is 

predicted that when both species colonize carrion simultaneously L. sericata will deposit 

fewer eggs overall, with cracks utilized when present, whereas P. regina will oviposit 

more eggs, with more oviposition events and with a greater degree of overlap with L. 

sericata oviposition location choices than when P. regina colonizes alone.  As CGS level 

increases, P. regina survival and fitness will increase with CGS level due to its higher 

optimum larval density and facilitation by heterospecifics, whereas L. sericata fitness will 

decrease due to its lower optimum larval density and competition with heterospecifics but 

survival will remain unchanged due to its wider developmental plasticity. 

The conclusion of this research should help bring the interactions between blow 

flies and burnt carrion to the forefront for both forensic entomologists and community 

ecologists. 
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Table 1.1: The five levels of the Crow-Glassman Scale (CGS) with a description 

of the degree of damage to a body represented by each level of the scale (adapted 

from Glassman and Crow, 1996). 

 

CGS Level  Description of Remains 

Level 1 
Skin is blistered, hair singed, death results 

from smoke inhalation and the body is 
easily recoverable and identifiable 

Level 2 

The body remains recognizable and begins 
to char.  Disarticulation can become a 

factor, with identification performed with 
the help of other forensic professionals  

Level 3 

Limbs start to separate from the torso, but 
due to the severity of the burn the head is 
unrecognizable making identification by 

sight almost impossible.  A forensic 
anthropologist should be called in to help 
search for detached limbs.  Identification 

made via dental records 

Level 4 

The body is highly charred and the head is 
no longer associated with the body, with 
severe cracking of the skull.  A forensic 
anthropologist is needed to perform a 

meticulous search for fragmented pieces of 
the body, with identification coming 

through dental records 

Level 5 

This level can be synonymous with 
cremation.  The body is unrecognizable as 
human and therefore unidentifiable.  All 

bones are fragmented and fragile.  Forensic 
professionals need to be on scene to process 

remains and to help in the identification 
process.   
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CHAPTER 2: 

THE OVIPOSITION BEHAVIOUR OF LUCILIA SERICATA MEIGEN AND 

PHORMIA REGINA MEIGEN (DIPTERA: CALLIPHORIDAE) ON BURNT 

CARRION 
 

INTRODUCTION 
 

Blow flies (Diptera: Calliphoridae) are one of the first insect species to arrive on 

carrion and are, therefore, important to forensic entomologists when estimating a 

postmortem interval (PMI), or the minimum time between death and discovery of a 

decedent based on insect behaviour and development (Cragg, 1955; Smith, 1986; Thomas 

and Mangan, 1989; Hall and Doisy, 1993; Smith and Wall, 1997a; Smith and Wall, 

1997b; Gião and Godoy, 1997; Byrd and Allen, 2001; Bourel et al., 2003; Arnaldos et al., 

2005; Nabity et al., 2006; Byrd and Castner, 2010; Higley and Haskell, 2010; Wells and 

Lamotte, 2010).  There are a number of abiotic and anthropogenic factors that can alter 

the quality of carrion resources and potentially result in changes to the oviposition 

behaviour of female blow flies and therefore the colonization by blow flies.  One 

important example is flame impingement, as the flames physically alter the carrion 

resource.  These alterations can result in a delay in oviposition due to competition stress 

or resource quality.  This has the potential to impact the precolonization interval of blow 

flies, which is usually presumed to be extremely short (Anderson and VanLaerhoven, 

1996). 

A few studies have been conducted to determine the effects of flame impingement 

on blow flies.  For example, studies have shown that blow flies can successfully colonize 

and develop on burnt remains and are recoverable as evidence after arson scenarios 

(Avila and Goff, 1998; Anderson, 2005; Introna et al., 2005; Pai et al., 2007; Chin et al., 

2008; Vanin et al., 2013; Pacheco and VanLaerhoven, submitted).  Burnt remains have 

been found to attract similar fauna as remains that are unaffected by flame impingement 

(Avila and Goff, 1998; Introna et al., 2005; Pai et al., 2007; Chin et al., 2008; Vanin et 

al., 2013).  In rare cases, blow flies have been attracted to remains that are still on fire 

(Avila and Goff, 1998). Given their ability to colonize burnt remains, blow flies collected 
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from these remains have been successfully used to provide accurate minimum PMI 

estimates as verified by witness testimony (Pai et al., 2007; Introna et al., 2008; Vanin et 

al., 2013). 

Burning is seldom the primary cause of death for homicide victims and is usually 

performed postmortem as a means to eliminate physical evidence or the original cause of 

death (Fanton et al., 2006; Introna et al., 2008; Ubelaker, 2008; Gruenthal et al., 2012).  

Modern crematoriums are capable of reaching temperatures as high as 1500 °C, but can 

still leave remains that can be used to make a positive identification (Murray and Jerome, 

1993; Kennedy, 1996).  There are thorough reports of the processes a body undergoes 

when being burnt (Bohnert et al., 1998).  To standardize the appearance of a victim 

following the discovery of burnt remains, Glassman and Crow (1996) developed the 

Crow-Glassman Scale (CGS) that is now a common point of reference in forensic and 

criminal investigations.  The CGS includes five levels, which detail the physical 

appearance of burnt remains (Glassman and Crow, 1996).  An increase in CGS level is 

indicative of increased destruction to a burn victim due to flame impingement (Glassman 

and Crow, 1996).  Level 1 is synonymous with someone who has succumbed to smoke 

inhalation with noticeable blistering of the skin and singed hair (Glassman and Crow, 

1996).  A body with noticeable charring and damage to limbs is representative of a burn 

victim classified as a Level 2 (Glassman and Crow, 1996).  A burnt body classified as a 

Level 3 on the CGS, is indicative of limbs starting to disarticulate and more severe 

charring throughout, however, it is important to note that the head is still attached to the 

body at this level (Glassman and Crow, 1996).  The higher the CGS level, the harder the 

identification process becomes (Glassman and Crow, 1996).  Without access to 

commercial crematoriums, maintaining high temperatures and direct contact with fire for 

an extended amount of time would be incredibly difficult, and as a result, the use of flame 

impingement as a forensic countermeasure is not necessarily sufficient to destroy all of 

the evidence connected to the body, including insect evidence (Anderson, 2010).   

The location of eggs, and of the consequent blow fly larvae, is also important to 

forensic entomologists as it allows them to recreate the context of a scenario, given the 

behaviour of the blow flies.  Under normal circumstances, blow flies prefer to colonize 

and oviposit their eggs in the body’s natural orifices (Smith, 1986; Bourel et al., 2003; 
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Byrd and Castner, 2010).  Wounds are known to attract ovipositing females (Cragg, 1955; 

Thomas and Mangan, 1989; Hall and Doisy, 1993; Byrd and Allen, 2001).  Wounds 

expose blood and other tissues to blow flies, which act as a sugar and protein source 

(Avila and Goff, 1998; Byrd and Castner, 2010).  Similar to wounds, cracks are believed 

to be attractive to blow flies as they expose bodily fluids and internal structures, making 

these sites optimal for instar maggots (Avila and Goff, 1998; Vanin et al., 2007).  It has 

been predicted that cracks in the skin, which are induced by high temperatures associated 

with flame impingement, should facilitate colonization and oviposition on burnt carrion 

resources (Avila and Goff, 1998; Vanin et al., 2007).  Oviposition events in atypical 

locations, such as cracks on burnt carrion, requires forensic entomologists to consider 

why the blow flies are straying from their normal oviposition locations when interpreting 

the insect evidence within the context of an investigation.  Although it has been stated 

that cracks in burnt remains could be responsible for changes in oviposition behaviour 

(Avila and Goff, 1998; Vanin et al., 2007), it has not been specifically investigated as of 

yet.  

Ovipositing in cracks should reduce the amount of energy that developing blow 

fly larvae need to expend when feeding on carrion.  When feeding, larvae use their mouth 

parts to penetrate the outer layer of skin, however, if the ovipositing female deposits her 

clutch in a crack, the tougher outer layer of their food source has already been pierced, 

reducing the energy required to access the nutritional resources.  Optimal oviposition 

theory predicts that female insects deposit eggs where her offspring will have the greatest 

chance at survival (Jaenike, 1978).  Following this prediction, and the predictions of 

Avila and Goff (1998) and Vanin et al. (2007), the cracks that result from flame 

impingement should provide female blow flies with a favourable oviposition site that will 

maximize their offspring’s nutritional intake with less energy required.  If female blow 

flies follow the predictions of optimal oviposition theory (Jaenike, 1978), there should be 

a noticeable shift in oviposition preference away from traditional oviposition sites, 

resulting in more oviposition events at the cracks.  This should indicate a female 

preference for the cracks.  Additionally, as burn severity increases (i.e., higher levels on 

the CGS), the number of cracks on the resource affected by flame impingement should 

increase, further increasing the oviposition events at the cracks at the expense of the 
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traditional oviposition sites.  

The physical characteristics of oviposition sites, such as natural orifices or cracks 

in the skin, are not the only factors that might influence the oviposition decisions of 

female blow flies.  Offspring fitness is also related to factors such as the presence and 

density of both heterospecific and conspecific larvae at the oviposition site.  The effect of 

larval competition on the subsequent fitness of those individuals is probably species 

specific, in that some larvae might be better competitors than others.  For example, Ellis 

(2008) conducted a series of studies to determine the effects of oviposition site quality 

and intraspecific competition on the selection of oviposition sites by female eastern tree-

hole mosquitoes, Ochlerotatus triseriatus Say (Diptera: Culicidae).  Ellis (2008) found 

that increased larval density of mosquitoes was correlated with a decrease in larval 

survivorship.  Therefore, although resource rich sites were preferable as oviposition sites, 

if the larval density at those sites was also high, the subsequent fitness of the larvae was 

lower than the fitness of mosquito larvae at poor quality sites where larval density was 

low (Ellis, 2008).  The oviposition preference-offspring performance hypothesis (Jaenike, 

1978; Thompson, 1988) extends upon optimal oviposition theory to explain how 

oviposition site selection is related to offspring performance.  Different measures of 

offspring fitness are better correlated to oviposition preference than others (Thompson, 

1988), which is why it is important to consider other factors, such as density effects when 

assessing the oviposition decisions by female insects. 

Similar to the eastern tree-hole mosquitoes, effects of density on offspring 

performance have been observed for blow flies (Hutton and Wasti, 1980; Goodbrod and 

Goff, 1990; So and Dudgeon, 1990; Prinkkilä and Hanski, 1995; Saunders and Bee, 1995; 

Smith and Wall, 1997a; Ireland and Turner, 2006; Kheirallah et al., 2007).  Contrary to 

mosquitoes, however, increased larval density in blow flies is known to play a positive 

role in their development such as with the increased temperatures in larval aggregations, 

or maggot masses, and the build-up of digestive enzymes that help in the digestion of 

carrion tissues that result when maggot density is high (Baxter and Morrison, 1983; Catts, 

1992; Catts and Goff, 1992; Turner and Howard, 1992; S. dos Reis et al., 1999 Ireland 

and Turner, 2006; Kheirallah et al., 2007; Anderson, 2010).  Therefore, it will be 

important to consider how female blow flies react to perceived larval densities at both 
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traditional oviposition sites and at the cracks on burnt remains when making oviposition 

decisions.    

Lucilia sericata Meigen and Phormia regina Meigen are two common blow fly 

species in Southern Ontario, Canada. These two blow fly species have been reported to 

colonize the same carrion (Anderson and VanLaerhoven, 1996; VanLaerhoven and 

Anderson, 1999; Sharanowski et al., 2008), which includes burnt carrion (Vanin et al., 

2013).  These two species have demonstrated different preferences for oviposition 

locations on carrion (Rosati, 2014).  Lucilia sericata prefers ovipositing in the mouth, on 

the eyes and in the nostrils of carrion (Rosati, 2014), indicating a preference for 

ovipositing in wetter locations (Grassberger and Reiter, 2001).  However, if they colonize 

a resource after P. regina, their preferences change, and in addition to the above 

locations, they include additional parts of the head, abdomen and between the legs 

(Rosati, 2014).  The opposite has been observed for P. regina as they prefer depositing 

their eggs on the head, but not inside the mouth, nostrils, or in the eyes, and they prefer 

the abdomen and between the legs when they are the first colonizer (Rosati, 2014).  This 

indicates a preference for ovipositing in areas with less fluid.  When they colonize after L. 

sericata, P. regina chooses to oviposit closer to L. sericata egg clutches, such as inside 

the head in areas like the ear canal and inside the mouth and nostrils (Rosati, 2014).   

After oviposition, these two species have different strategies when faced with 

conspecific and heterospecific larvae.  Increased interspecific and intraspecific larval 

densities are known to result in decreased larval survival and reduced size of L. sericata 

adults (Ullyett, 1950; Hutton and Wasti, 1980; Prinkkilä and Hanski, 1995; Smith and 

Wall, 1997a; Kheirallah et al., 2007).  However, in the presence of varying densities of P. 

regina larvae, there have been no detrimental effects to either larval survival or adult 

fitness of L. sericata (Hutton and Wasti, 1980; Rosati, 2014).  The effects of interspecific 

competition on P. regina recorded in the literature are not consistent. For example, 

studies have shown an increase in larval survival in the presence of L. sericata (Rosati, 

2014), whereas other studies have demonstrated absolute larval death (Hutton and Wasti, 

1980).  In interactions with conspecifics at higher larval densities, P. regina has been 

known to experience an increase in larval death (Hutton and Wasti, 1980).   

The objective of this research was to investigate the effects that burnt remains 
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have on the oviposition behaviour of L. sericata and P. regina.  Overall, the results of this 

research will elucidate the effects that different levels of burn severity to carrion, and the 

cracks that result, have on female blow fly oviposition preferences.  To test this, burnt 

simulated human remains were exposed to both blow fly species in the presence of both 

conspecifics and heterospecifics, in order to determine if females exhibited an oviposition 

preference for the cracks that result from burning a body. 

In general, based on optimal oviposition theory, it is predicted that between CGS 

levels there will be a shift in oviposition preferences as CGS level increases, due to 

females compensating for the formation (i.e., cracks in the skin), and in certain cases, the 

destruction of oviposition locations.  Within CGS levels, it is predicted that there will be a 

shift in oviposition preference away from traditional oviposition sites towards the cracks.   

 More specifically, due to the previously described oviposition preferences seen in 

the literature and the development of cracks associated with an increase on the CGS, it is 

predicted that there will be an overall increase in the number of oviposition events on the 

cracks by L. sericata.  This shift in oviposition preference away from the traditional sites, 

as described by optimal oviposition theory, will represent an ideal location for developing 

larvae.  An increase in the number of oviposition events may not necessarily equate to an 

increase in the number of eggs oviposited by female L. sericata at the cracks due the 

perceived decreased optimum larval density, as predicted by the oviposition preference-

offspring performance hypothesis.  With an increase in burn severity, as indicated by an 

increased CGS level, there should be a decrease in overall biomass available for 

consumption by developing larvae, which should result in fewer eggs being deposited by 

female L. sericata at the cracks.       

Due to the previously described oviposition preferences and opposite to L. 

sericata, P. regina will demonstrate a preference for ovipositing on burnt remains, but 

will likely avoid laying eggs directly in the cracks, opting for sites close to the cracks 

instead.  Female P. regina that deposit eggs close to the cracks would be making 

decisions to optimize offspring survival, as predicted by optimal oviposition theory.  With 

fewer oviposition events at the cracks, P. regina should deposit a greater number of eggs 

on these locations due to a perceived increased optimum larval density, as predicted by 

the oviposition preference-offspring performance hypothesis.  
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 Finally, when in the presence of heterospecifics, L. sericata should try to make 

use of all available cracks, but oviposit fewer eggs, whereas P. regina will oviposit more 

often resulting in a larger egg total.  The oviposition sites selected by female P. regina, 

will resemble those of L. sericata, when compared to when P. regina is in the presence of 

conspecifics. 

 

METHODS 
 

I) Colony Maintenance  

Colonies of both L. sericata and P. regina are maintained at the University of 

Windsor, Windsor, Ontario, Canada.  The colonies were established in 2005 by trapping 

wild type flies in wasp traps (King Home and Garden Inc., Item ID: 56789) using pork 

liver as an attractant.  On a yearly basis, new wild type flies are caught and added to the 

colonies to prevent the effects of inbreeding depression.  The colonies are kept under 

controlled conditions following a 12 L: 12 D diel cycle with a mean temperature (±S.E.) 

of 25 ± 1 °C and 60 ± 5 % relative humidity.  Adult blow flies are provided with sugar 

cubes and a paste made from instant milk powder to act as a carbohydrate and protein 

source, respectively (Anderson, 2000; Byrd and Allen, 2001; Nabity et al., 2006).  Water 

is provided in Erlenmeyer flasks containing cotton dental wicks.  Colony cages are 

constructed of aluminium framing and aluminium mesh screening and measure 46 cm3 

(BioQuip Products, Item ID: 1450C).   

To maintain the colonies, eggs are obtained by providing pork liver (ca. 20-30 g) 

as a suitable oviposition medium for gravid females (Byrd and Allen, 2001).  Once egg 

masses of at least 100 eggs are observed, the liver and eggs are removed and placed into a 

1 L glass Mason jar lined with pine sawdust to absorb excess fluids and provide a dry 

pupation medium (Hutton and Wasti, 1980).  The Mason rearing jars are sealed with 

gardening canvas (Quest Brands Inc., Item ID: WBS 50) and a ring lid to ensure that the 

developing maggots are contained within the jar, while still allowing gas exchange.  Liver 

is added as needed to ensure that developing maggots have enough to eat (Anderson, 

2000).  Once adults begin emerging, they are released from the jar into the appropriate 

colony cage.  Colony cages and rearing jars are checked daily.   
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II) Experimental Cage Treatments  

Five days prior to scheduled burns, experimental colony cages were assembled as 

described below.  Rearing jars containing adult blow flies, less than 24 h post emergence, 

were chilled in a refrigerator for approximately 15 minutes to decrease their activity, 

making sexual identification and transferring to cages easier (Ricker et al., 1986).  Flies 

were removed individually from the jars and sexed based on eye morphology: the 

compound eyes of a male blow fly appear to touch, while those of a female blow fly have 

a distinct spacing (Erzinçlioğlu, 1996).  Three different species treatment cages were 

prepared containing 100 females and 50 males in the following combinations: single 

species treatments of (1) L. sericata only and (2) P. regina only and (3) a mixed species 

treatment with 50 females and 25 males of both species.  In the mixed species cages, 50 

females and 25 males of each species were used to maintain the population density across 

all species treatments.  Within each species treatment, there were four levels of burn 

treatment (one cage each), which included a control (Level 0), Level 1, Level 2, and 

Level 3 of the CGS.  As a result of the number of cages being limited, and because it was 

difficult to ensure that there were enough adult blow flies of the same age available to use 

at the same time, only one or two replicates of the species treatments could be conducted 

at a time.  Therefore, species treatments were conducted when adult blow flies were 

available and were completed over a one year period (Table 2.1).  In a pilot study, no 

oviposition events occurred on Level 4 and Level 5 of the CGS, therefore, those two 

levels were excluded from this experiment. 

 Flies in all cages had constant access to sugar cubes and water.  During the five 

days prior to the scheduled burn, adult blow flies within the cages were allowed to feed 

on pork liver for 1 h per day.  Protein meals are necessary to ensure maturation of the 

reproductive system, especially of female flies (Erzinçlioǧlu, 1996); this procedure 

ensured females were gravid on the day of the burn (VanLaerhoven and Anderson, 2001).  

On the fourth and fifth days of protein feeding, the cages were shaken every five minutes 

to prevent gravid females from ovipositing on the liver. 

III) Burning  

The day prior to scheduled burn dates, four deceased and pre-weighed (639 to 

2247 g) fetal pigs (Sus scrofa domesticus L., Artiodactyla: Suidae) were removed from 
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laboratory freezers and allowed to thaw overnight.  The fetal pigs used in this experiment 

were obtained from a local farmer and had died from natural causes.  On the day that the 

pig carcasses were burnt, three pigs were transported to Amherstburg, Ontario where the 

burns occurred in a steel fire pit measuring 89 x 55 cm.  The fourth pig carcass remained 

at the University of Windsor as it was not burnt and acted as the control (Level 0).  The 

fires used to burn the pigs were started with untreated scrap wood and newspaper and 

were ignited with a barbeque lighter.  The fire was fed with scrap wood as needed. 

 Of the three pigs transported to the burn site, each was burnt to a different level on 

the CGS (Level 1, Level 2 and Level 3).  Pigs were burnt in descending order of the CGS, 

starting with Level 3, to try to ensure that the time between the end of flame impingement 

and departure back to the University of Windsor was minimal.  Generally, the greater the 

CGS level, the longer the duration of flame impingement.  The fire was continuously 

scanned using an Omega OS423HT-LS non-contact infrared thermometer while each pig 

was exposed to flame impingement and the maximum temperature of the fire was 

recorded.  Post-burn, each pig was weighed using a digital scale (Starfrit, Model #: 

70200) to account for total biomass lost due to burning.  Each pig was inspected for 

cracks caused by flame impingement and the position, length and width of any observable 

cracks was measured by hand and recorded.  The pigs were placed in a plastic storage 

container and transported back to the University of Windsor.  Five burns were completed 

for each species treatment across all CGS levels, for a total of 20 fetal pigs burnt per 

species treatment (Table 2.1). 

IV) Surface Area (mm2) Estimation for Experimental Pig Carcasses 

Another factor that could influence oviposition site selection is the available 

surface area for egg laying.  For example the Senita moth, Upiga virescens Hulst 

(Lepidoptera: Pyralidae), has shown an affinity for ovipositing on the smaller internal 

structures (e.g., corolla tubes and anthers) of Senita cactus (Lophocereus schottii) flowers, 

when compared to the larger external structures such as the petals (Holland et al., 2004).  

Mediums with larger surface areas have also been found to attract ovipositing insects, as 

larger cowpea seeds can facilitate more oviposition by the seed beetle (Callosobruchus 

maculatus Fabricius, Coleoptera: Bruchidae) (Cope and Fox, 2003).  Therefore the role of 

surface area in determining blow fly oviposition site preference was tested.  It was 
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assumed that if only surface area influenced blow fly preference for oviposition sites, the 

frequency of oviposition events would be directly proportional to the surface area.  For 

example, if the head accounted for 50% of the total surface area, then 50% of the 

oviposition events should have occurred on the head.  To test this prediction for each 

CGS Level, the surface area of each oviposition site on each pig carcass used in this study 

was estimated.  

Estimates of surface area were made using regression equations, that were 

established by Pacheco et al. (submitted), which could be used to predict the surface area 

of an oviposition site on a pig, using the pig’s weight.  The locations of interest were 

identified during data collection based on a numerical scale (adapted from Rosati, 2014).  

These locations included the (1) head, (2) the legs or between the legs, (3) the abdomen, 

and (4) the cracks.  Oviposition locations 1, 2 and 3 will be referred to as traditional 

oviposition sites for the remainder of this study.  The methods used by Pacheco et al. 

(submitted) are given in brief below.  The weights of 13 pigs were recorded (ranging from 

454 g to 2177 g).  Surface area estimates were made by photographing the oviposition 

sites using a Nikon D70 camera with an AF Micro-Nikkor 60 mm f/2.8D lens, 

perpendicular to the surface of the pig (at a 90º angle) (Pacheco et al., submitted).  A 15 

cm ruler was used in each picture for scale.  If necessary, larger surfaces of the carcasses 

were photographed in sections.  The pictures were uploaded to a computer and processed 

using ImageJ™ (http://imagej.nih.gov/ij/index.html).  A 10 mm line was drawn over the 

plastic ruler in each picture using the STRAIGHT line tool and calibrated used the 

ANALYZE > SET SCALE function.  The oviposition sites were outlined using the 

POLYGON SELECTION tool and the corresponding surface area (mm2) of the selected 

region was calculated using the ANALYZE > MEASURE function.  Measurements were 

also made in ImageJ™ to estimate the internal surfaces of the head, such as the mouth 

and inner ear canal (e.g., the volume of a right circular cone).  After all locations of 

interest had been measured, the relationship between surface area and body weight was 

determined using regression analysis (SAS Institute, 2011).   

The regression equations (head: y = 13.68x + 3304.10; legs: y = 7.67x + 6532.30; 

abdomen: y = 4.23x + 3081.30) (see Pacheco et al., submitted) were then used to estimate 

the surface area of each oviposition location, based upon the post-burn weight of the pig 
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carcass.  Due to a lack of photographs, each crack was assumed to be a rectangle and 

surface area was calculated by multiplying the length (mm) of the crack by the width 

(mm) of the crack.  The total area of the carcass available for oviposition was determined 

by adding the surface area of all four locations together.  The proportion of the surface 

area available for oviposition that each location accounted for was calculated (e.g. Pig 5, 

CGS Level 3, L. sericata: Head = 45.11%, Legs = 35.34%, Abdomen = 18.38%, Cracks = 

1.17%).  The mean proportion of the carcass that each location accounted for was 

calculated using n = 5 pigs that were burnt for that CGS level and species treatment. 

V) Oviposition Observations and Calculations of Oviposition Events 

After transportation back to the University of Windsor, all four pigs, including the 

control (Level 0), were randomly assigned to and placed into one of the experimental 

cages, containing reproductively mature adult blow flies.  The pigs remained in the cages 

for a period of 24 h. Hourly checks were performed during daylight hours, according to 

the diel cycle in the rearing room (Table 2.1).  Temperatures were recorded hourly using 

a SmartButton Temperature recorder (ACR Systems Inc., Item ID #: 01-0180).  The mean 

temperatures in the rearing room during the 24 h oviposition period are provided in Table 

2.1.  During the hourly observations, the remains were checked for the presence of new 

eggs masses, which indicated successful oviposition events and the positions of the egg 

masses on the carcass were recorded using the four position location scale as described 

above.       

 Oviposition preferences of female blow flies was evaluated by asking several 

questions.  First, did the site on the body affect oviposition preference within a CGS 

level?  To answer this question, the proportion of oviposition events that occurred at each 

of the four sites (described above) was calculated by dividing the number of events at 

each site by the total number of events recorded on that pig.  The proportions calculated 

for each pig (n = 5) were used to calculate the mean proportion of oviposition events at 

each site for each CGS level for each species treatment.   

 Second, did the presence of cracks at a specific site between CGS levels, alter the 

preference of female blow flies for that site?  Using the abdomen as an example, this 

question asked if the presence of cracks on the abdomen made it more attractive than an 

abdomen without cracks.  To answer this question, the oviposition events at a particular 
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oviposition site were totalled across a replicate, for the CGS levels being compared; 

oviposition events that occurred in the cracks were further separated based on where the 

cracks were located on the body, such as on the face, between the legs or on the abdomen.  

The proportion of oviposition events was then calculated by dividing the number of 

events that occurred either within the cracks or on the traditional oviposition site by the 

total number of oviposition events (as described above).  The proportions calculated for 

each (n = 5) were used to calculate the mean proportion of oviposition events for each 

traditional oviposition site when it was compared to the mean oviposition proportion that 

occurred in cracks on the same location at a higher CGS level.  Oviposition events were 

compared between CGS Level 1 and Level 2 and between CGS Level 1 and Level 3.  For 

example, the total number of oviposition events on the abdomen for carcasses burnt to 

CGS Level 1 was compared to oviposition events that occurred in cracks found on the 

abdomen on CGS Level 2 carcasses.  A comparison between CGS Levels 2 and 3 was not 

made, as both of these levels contained cracks and, therefore, this comparison would not 

help to answer whether or not the presence of cracks was a factor in the change in 

oviposition preferences of female blow flies.  CGS Level 0 was also not included in these 

comparisons, as these carcasses were not exposed to flame impingement unlike the other 

three CGS levels and, therefore, did not have the same opportunity to develop cracks.  

This was repeated for each species treatment.     

VI) Egg Numbers 

The number of eggs on each experimental carcass was calculated following 

methods outlined by Rosati et al. (in review), which are described briefly below.  After 

the 24 h oviposition observation period, the pigs were removed from their cages and each 

egg mass was photographed at a 90º angle, using a Nikon D70 camera with an AF Micro-

Nikkor 60 mm f/2.8D lens.  A 15 cm ruler was in each picture for scale.  Depth 

measurements (mm) were taken at different points within each photographed egg mass 

and recorded.  The photographs were uploaded to a computer and imported to ImageJ™.  

A 10 mm line was traced over the plastic ruler using the STRAIGHT line tool.  The 

straight line was calibrated using the ANALYZE > SET SCALE function.  Using the 

previously recorded depths, the corresponding area on each egg mass was outlined using 

the POLYGON SELECTION tool.  The surface area of the outlined area was calculated 
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using the ANALYZE > MEASURE function.  The depth of the outlined section of the 

egg mass was multiplied by the observed surface area (mm2) value, resulting in the 

volume of the outlined egg mass section.  The volumes of each section on an egg mass 

were added together to provide the overall volume of the egg mass.  The total number of 

eggs in a blow fly egg mass was calculated using species-specific regression equations (L. 

sericata: y = 4.11x + 12.40; P. regina: y = 4.71x + 3.40) developed by Rosati et al. (in 

review) to use the volume (mm3) of an egg mass to predict the number of eggs.  To 

produce a regression equation for the mixed species treatment (mixed: y = 4.57x + 0.10), 

the data sets of each individual species (Rosati et al., in review) were combined and a 

regression was performed using the PROC REG function in SAS (SAS Institute, 2011). 

VII) Statistical Analysis  

In the mixed species treatment, it was difficult to determine which species was 

responsible for each oviposition event, and consequently resulting egg numbers.  To 

compensate for this, the mixed species data (i.e., oviposition events and egg numbers) 

was compared to data for L. sericata alone, and for P. regina alone in separate analyses. 

 

Oviposition Observation Temperatures: 

 Replicates (i.e., burns) within each species treatment were not completed at the 

same time.  Instead they were carried out over a period of one year.  To determine if there 

was a difference between the temperatures experienced by ovipositing females during the 

24 h period in which they were exposed to the fetal pig carcasses throughout the fifteen 

different burn dates (Table 2.1), an ANOVA was performed using the PROC GLM 

function in SAS (SAS Institute, 2011).  If a difference was noted between the 

temperatures experienced across the three species treatments, means comparison tests 

were performed using the LSMEANS function in SAS to determine which species 

treatments experienced statistically different temperatures (SAS Institute, 2011). 

 

Burning – Mean Biomass Loss:  

 All mean biomass loss (± S.E.) data was square root transformed to meet the 

assumptions of normality and homogeneity of variance (normality: Shapiro-Wilk’s test: p 

> 0.05, homogeneity of variance: Bartlett’s Test: p > 0.05; SAS Institute, 2011).  To 
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determine if CGS level had an effect on the amount of biomass lost after a burn, a two-

factor analysis of variance (ANOVA) was performed using the PROC GLM function in 

SAS (SAS Institute, 2011).  All figures and means reported use back-transformed data. 

 

Surface Area and Oviposition Site Selection: 

 A chi-squared analysis was performed using PROC FREQ in SAS (SAS Institute, 

2011) to compare the frequency of observed oviposition events at each site to the 

proportion of the total surface area that each location accounted for.  This analysis was 

used to determine if the surface area of site affected oviposition preference by female 

blow flies.  For this analysis, if the proportion of oviposition events at a specific site was 

equal to the proportion of surface area represented by that site, it would be concluded that 

surface area did affect oviposition preference.   Each of the four oviposition sites needed 

to have proportions that were positive, non-zero integers (SAS Institute, 2011).  To ensure 

that observed oviposition frequencies with no oviposition events observed met this 

requirement, all data was coded by adding a single oviposition event to each site (Zar, 

2010).  Additionally, to ensure that the expected oviposition frequencies were positive, 

the data was coded by adding 0.1% to both observed and expected oviposition 

frequencies (Zar, 2010).  All oviposition frequencies reported in Table 2.3 are the non-

coded, original values. 

 Using the PROC REG function in SAS (SAS Institute, 2011), a linear regression 

was performed to determine if there was a relationship between the surface area of each 

oviposition site and the number of eggs oviposited.   

As surface area had no influence on oviposition site selection (see Results), chi-

square tests were used to compare the number of oviposition events that occurred on each 

site within each CGS level for each species treatment.  Analyses were performed using 

PROC FREQ in SAS (SAS Institute 2011).  For this analysis, oviposition sites with no 

oviposition events were excluded.  For analyses with oviposition at all four sites, the 

expected frequency of oviposition for all sites was 25%; if sites were excluded due to lack 

of oviposition, the frequencies were adjusted as needed, based on the number of sites 

included in the analysis (for example, if oviposition occurred at three sites, the expected 

frequency for all sites was 33.3%).  Significant chi-square tests were followed by ‘means 
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separation tests’ for chi-square, or subdividing, following the procedure described by Zar 

(2010).   

 Again, if it was determined that surface had no influence on oviposition site 

selection, a separate chi-square analyses was also performed using PROC FREQ in SAS 

(SAS Institute, 2011), to compare the number of oviposition events, between CGS levels, 

that occurred on sites with no cracks to those same sites with cracks.  For this analyses, as 

only two sites were compared between CGS levels, it was expected that the oviposition 

events at each site would be 50%.  Traditional oviposition sites that did not contain 

cracks, and therefore had no oviposition events, were excluded from the comparisons.  

Including them in comparisons would require coding the data to include non-zero, 

positive integers, however this would result in a false positive result that would indicate 

cracks influenced shifts in oviposition preferences, when in fact there were no cracks 

(SAS Institute, 2011). 

 

Egg Numbers: 

 The effect of oviposition site, CGS level, and species treatment on the number of 

eggs was determined using a three factor ANOVA using the GLM procedure in SAS 

(SAS Institute, 2011).  This was performed separately for communities with L. sericata 

and communities with P. regina.  Before proceeding with the ANOVA, surface area of 

the oviposition locations was investigated as a potential covariate.  First, the PROC REG 

function in SAS (SAS Institute, 2011) was used to determine if there was a relationship 

between the surface area of each oviposition site and the number of eggs oviposited.  

Following significant regression results, surface area was included in the three-factor 

ANOVA model as a covariate.  If surface area was a significant factor in the PROC GLM 

analysis, surface area was included as a covariate for all analyses.  Otherwise, surface 

area was removed from the model and the three-factor ANOVA was conducted with no 

covariate.  The data was square root transformed to meet the assumptions of normality 

and homogeneity of variance (normality: Shapiro-Wilk’s test, p > 0.05; homogeneity of 

variance: Bartlett’s test, p > 0.05) (SAS Institute, 2011).  All figures and means presented 

are for the back-transformed data. 
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RESULTS  
 

I) Oviposition Observation Temperatures 

The temperatures experienced by the ovipositing females across all species 

treatments ranged from 21.3 and 23.7°C, and were not statistically different from one 

another (F2, 372 = 0.80, p = 0.4493) (Table 2.1).  The mean temperatures (± S.E.) 

experienced by ovipositing L. sericata, P. regina and flies in the mixed species treatment 

were 22.3 ± 0.1 ºC, 22.5 ± 0.2 ºC and 22.3 ± 0.1 ºC, respectively. 

II) Burning – Surface Area and Oviposition Site Selection 

The mean fire temperature (± S.E.) of fetal pig carcasses burnt to Level 1, Level 2, 

and Level 3 on the CGS were 648.3 ± 16.8 ºC, 696.3 ± 14.6 ºC and 702.3 ± 19.4 ºC, 

respectively.  The amount of biomass lost increased as CGS level increased (F1, 42 = 

68.95, p < 0.0001, R2 = 0.61; Figure 2.1).  The mean biomass lost for fetal pig carcasses 

burnt to CGS Level 1, Level 2 and Level 3 were 51.7 ± 12.9 g, 97.0 ± 14.9 g and 391.8 ± 

45.1 g, respectively (Figure 2.1).  The overall ANOVA revealed that there were 

differences between the amounts of biomass lost between CGS levels (F2, 42 = 38.58, p < 

0.0001).  There was no difference in the mean biomass loss between pigs burnt to CGS 

Level 1 and Level 2 (p = 0.6755), however pigs burnt to CGS Level 3 lost more biomass 

than those burnt to Level 1 and Level 2 (p < 0.0001; Figure 2.1). 

 The mean total surface area (± S.E.) available for oviposition across the five pigs 

used per burn level within each species treatment ranged from a mean of 44034.5 ± 

2216.0 mm2 to 56769.4 ± 1453.7 mm2 (Table 2.2).  The head comprised the greatest 

proportion of the surface area available for oviposition, followed by the legs, and finally 

the abdomen (Table 2.3).  Cracks were only consistently present on CGS Level 2 and 

Level 3 carcasses, although some were present at Level 1 for pigs used in the mixed 

species treatments (Table 2.3).  The number of cracks increased with CGS level starting 

at Level 1 such that pigs burnt to a Level 1, Level 2 and Level 3 on the CGS had a mean 

(± S.E.) of 0.1 ± 0.1, 1.8 ± 0.3 and 3.8 ± 0.1 cracks per carcass, respectively.  The 

majority of the cracks appeared in the crease where the legs meet the abdomen.  

Surface area was not the primary determinant of oviposition site selection as the 

frequency of oviposition events at each site differed from the expected frequency of 
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oviposition events if selection had been based entirely on the surface area occupied of 

each site (Table 2.3).  This was true for all species treatments across all burn levels.  As 

surface area was not a primary factor influencing the oviposition site selection of female 

blow flies, the effect of oviposition site and CGS level on oviposition events was 

analysed.  Blow flies exhibited an unequal preference for the different oviposition sites, 

regardless of CGS level and species treatment (Table 2.4).  When pig carcasses were 

burnt to CGS Level 3, there was a shift in preference within CGS this particular level, of 

female blow flies (L. sericata alone, P. regina alone, and mixed species) to include 

oviposition in the cracks created via flame impingement, with a corresponding reduction 

in oviposition frequency at other locations (Table 2.4).  On the control carcasses (Level 0) 

and those burnt to CGS Levels 1 and 2, L. sericata preferred to oviposit on the head 

(Table 2.4).  However, the presence of cracks starting at CGS Level 2 resulted in a shift in 

oviposition frequency preference for L. sericata to include these cracks and at CGS Level 

3, the majority of oviposition events occurred in the cracks (Table 2.4). 

In contrast to L. sericata, despite the presence of cracks on carcasses burnt to CGS 

Level 2, P. regina did not shift to ovipositing in the cracks within a CGS level until the 

carcasses were burnt to CGS Level 3 (Table 2.4), with twice as many cracks present.  

With carcasses burnt to CGS Level 3, P. regina oviposited predominately on the cracks 

followed by the abdomen and lastly on the head (Table 2.4). 

Despite the presence of cracks on some carcasses burnt to CGS Level 1 for the 

mixed species treatment, neither blow fly species shifted their behaviour to oviposit on 

the cracks.  When more cracks were present on CGS Level 3 carcasses, the highest 

frequency of oviposition was observed on the cracks (Table 2.4).  As observed in the 

single species treatments, the predominant oviposition location was the head when 

carcasses were burnt to low levels of the CGS.   

 There was a difference in the number of oviposition events by L. sericata between 

CGS levels on the legs of burnt carcasses when cracks were present and absent (Table 2.5 

and Table 2.6).  Specifically, on CGS Level 2 carcasses, L. sericata preferred to oviposit 

on the legs, but did not prefer to oviposit on the legs of CGS Level 1 carcasses (Table 

2.5).  The only difference between the carcasses at these two CGS levels was the presence 

of cracks on the legs of CGS Level 2 carcasses. 
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III) Egg Numbers 

Regression analysis revealed a positive and significant relationship between egg 

number and surface area (L. sericata: F1, 156 = 36.70, p < 0.0001; P. regina: F1, 155 = 23.82, 

p < 0.0001).  This relationship accounted for less than 20% of the variation in the data (L. 

sericata: R2 = 0.19; P. regina: R2 = 0.13).  As expected, as the surface area of an 

oviposition site increased, total egg number also increased.  Surface area was initially 

included in the three-factor ANOVA as a covariate, but had no significant effect (L. 

sericata: p = 0.9863; P. regina: p = 0.8785).  Therefore, surface area was excluded from 

the model for the remainder of the analyses. 

 Species composition, CGS level and oviposition site had an effect on the number of 

L. sericata eggs deposited on pig carcasses exposed to L. sericata and L. sericata + P. 

regina (F31, 126 = 2.97, p < 0.0001) (Table 2.7).  Specifically, the number of eggs 

deposited by L. sericata was influenced by an interaction of CGS level and oviposition 

site (Table 2.7; Figure 2.2).  On carcasses burnt to CGS Level 3, where cracks were the 

most prominent, there were less eggs on the cracks, despite their being more oviposition 

events at the cracks (Table 2.4; Figure 2.2).  Overall, there were more eggs oviposited on 

the head for all CGS levels (Figure 2.3), with an increase in eggs laid in the cracks for 

CGS Level 2 (Figure 2.2).  There was no effect of species composition on the number of 

eggs laid by L. sericata.  

 Similarly, species composition, CGS level and oviposition site had an effect on the 

number of P. regina eggs deposited by P. regina and P. regina + L. sericata (F31, 125 = 

3.20, p < 0.0001) (Table 2.7). CGS level, oviposition site and species composition 

interacted to influence the number of eggs oviposited by P. regina as indicated by the 

significant three-way interaction (Table 2.7, Figure 2.4).  When exposed to carcasses 

burnt to CGS Level 3, P. regina deposited the highest number of eggs, while ovipositing 

them in the cracks (Figure 2.4D).  In single species treatments, the mean number of eggs 

oviposited in the cracks on carcasses burnt to CGS Level 3 by P. regina was 61 times 

more than the three remaining locations combined.  Even with cracks present on CGS 

Level 2 carcasses, there were no eggs oviposited at these locations (Figure 2.4C).  With 

the exception of CGS Level 0 (Figure 2.4A), all remaining CGS levels had the most eggs 

oviposited on the head (Figure 2.3, Figure 2.4B, Figure 2.4C).   
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 Phormia regina was the only species to have the number of eggs oviposited 

influenced by the presence of heterospecifics.  There were noticeable shifts in the number 

of eggs oviposited at the four different oviposition sites by P. regina when in the presence 

of L. sericata; this was true for all CGS levels (Figure 2.4).  On CGS Level 3 carcasses, 

P. regina went from ovipositing all of their eggs on the cracks when alone, to depositing 

almost no eggs at this location when in the presence of L. sericata (Figure 2.4D).  Based 

on the number of eggs present when faced with heterospecifics, the oviposition location 

preferences for P. regina shifted to match those of L. sericata (Figure 2.2, Figure 2.4). 

 

DISCUSSION  
 

Previous studies have demonstrated that the surface area of possible oviposition 

sites affects the oviposition behaviour of some insects (Cope and Fox, 2003; Holland et 

al., 2004).  However, in this particular study, surface area was not a primary factor 

affecting oviposition site selection by female blow flies.  Rather, other factors, such as the 

suitability of each oviposition site are probably driving the oviposition behaviour of L. 

sericata and P. regina.  For example, other authors including Avila and Goff (1998) and 

Vanin et al. (2007) have suggested that cracks in the skin that result from burning help to 

facilitate blow fly oviposition and might act as suitable oviposition sites. 

 It was initially predicted that L. sericata would prefer to oviposit in the cracks, 

due to their preference for wet oviposition locations (Grassberger and Reiter, 2001).  As 

expected, in the presence of conspecifics the cracks were the preferred oviposition 

locations of L. sericata, but only when carcasses were burnt to a CGS Level 3, as 

indicated by a higher oviposition frequency (i.e., more oviposition events) at this CGS 

level relative to the other levels of the CGS.  There were also cracks present on carcasses 

burnt to CGS Level 2, but these cracks were not selected as oviposition sites.  Rather, L. 

sericata showed a preference for ovipositing on the head, contrary to initial predictions.  

Cracks present on CGS Level 2 carcasses were not as severe, and therefore, were not as 

wet as those on CGS Level 3 carcasses, which could result in female L. sericata rejecting 

the cracks in favour of the head where natural orifices are generally wet.  On carcasses 

where cracks did not affect preference, L. sericata females preferred to oviposit on the 
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head, which is similar to the results of previous research (Rosati, 2014).  Similar to L. 

sericata, in the presence of conspecifics P. regina females demonstrated a preference for 

ovipositing on the cracks when carcasses were burnt to CGS Level 3, instead of simply 

near the cracks as predicted. Although cracks were also present on CGS Level 2 

carcasses, they were avoided by P. regina.  For all other CGS levels tested, P. regina 

preferred ovipositing on the head, followed by sites between the legs and on the abdomen, 

which supports initial predictions and previous research (Rosati, 2014).  

 As it was difficult in mixed species treatments to determine which oviposition 

events belonged to which species, only broad conclusions can be made.  It is known that 

both species successfully oviposited in the mixed species treatments because adult flies of 

both species emerged and were collected at the end of the experiment.  The conclusions 

that follow were made by comparing the oviposition frequencies in mixed treatments to 

those of the two single species treatments; mixed species oviposition patterns were more 

similar to those of L. sericata alone.  Overall, female flies in mixed species treatment only 

oviposited on the cracks when presented with carcasses burnt to CGS Level 3.  At all 

other CGS levels, they preferred to oviposit on the head.  If the oviposition events 

belonged to L. sericata, these results match initial predictions for CGS Level 3, but not 

for CGS Level 2.  When carcasses were un-burnt (control) or burnt to CGS Level 1, the 

results support those of previous observations (Rosati, 2014).  If the oviposition events 

were a result of P. regina females, then the observations presented here match the initial 

prediction and support previous research that indicated P. regina would change their 

oviposition behaviours to match those of L. sericata (Rosati, 2014).  

 Cracks created due to flame impingement can occur at any location on the carcass, 

therefore, it was expected that a change in frequency of oviposition events on the same 

location of the carcass between CGS levels with and without cracks would also be an 

indication of a shift in female preference from traditional sites to the cracks.  A shift of 

this nature was observed for L. sericata, in which case there were fewer oviposition 

events observed at the traditional sites in favour of the cracks when cracks were present 

between or on the legs.  This only occurred, however, when comparing CGS Level 1 

carcasses to CGS Level 2 carcasses.  It is speculated that this was due to size of the cracks 

that formed on the legs.  These cracks were generally smaller than those found on the 
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abdomen, which was a traditional oviposition location that did not see a shift towards 

higher oviposition frequencies.  Larger cracks, such as those found on the abdomen, have 

the potential to exude more bodily fluids making them wetter compared to smaller cracks 

which do not exude a higher volume of fluids.  Although L. sericata may prefer wetter 

sites, such as larger cracks found on CGS Level 3 carcasses, this preference can be 

balanced with the risks of egg and larval drowning.  Overall, the influence of cracks on 

female site selection for oviposition, between CGS levels was species and site specific.  

  The choice of where to oviposit is only one aspect of oviposition behaviour as 

females can also choose how many eggs to deposit at each site.  Therefore, in addition to 

the number of oviposition events at each site, the number of eggs deposited at each site 

was also used to evaluate how suitable female blow flies perceived the four different 

oviposition sites to be for their offspring.  It was initially predicted that cracks would be 

the most suitable oviposition sites for L. sericata, resulting in more oviposition events at 

the cracks.  However, across all CGS levels, including Level 3 where cracks were the 

preferred oviposition site in terms of oviposition events, more eggs were deposited on the 

head.  This result was unexpected and contrary to initial predictions.  This was also 

surprising given cracks are similar to wounds, which are known to be preferred by blow 

fly species, particularly L. sericata (Cragg, 1955; Thomas and Mangan, 1989; Hall and 

Doisy, 1993; Byrd and Allen, 2001; Grassberger and Reiter, 2001).  More eggs being 

deposited on the head was also seen when the effects of CGS level were excluded.  At the 

cracks, this result may indicate that the optimum larval density of L. sericata is lower, 

which is in agreement with initial predictions.  As predicted, the amount of biomass on 

carcasses decreased as CGS level increased, however CGS level alone did not influence 

the amount of eggs deposited by female L. sericata.  This did not agree with initial 

predictions.  Also contrary to initial predictions, the amount of eggs oviposited by L. 

sericata was not influenced by interactions with herteospecifics.  Phormia regina 

displayed more complex oviposition patterns compared to L. sericata, as their egg laying 

behaviour was influenced by a number of factors, including both the presence of 

heterospecifics and conspecifics.  The only instance in which P. regina deposited more 

eggs in the cracks, compared to any other oviposition site, was in the presence of 

conspecifics and on carrion burnt to CGS Level 3, indicating a higher optimal larval 
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density of this species, which agrees with the initial predictions.  Avila and Goff (1998) 

also reported seeing larger eggs masses, and therefore, more eggs in the mouth, on the 

abdomen and on the legs of burnt remains.  This trend was also observed in this study, 

except for when P. regina was alone on carcasses burnt to CGS Level 3.    

Looking at the combination of oviposition frequency and egg numbers, the results 

of this study indicate the suitability of the cracks as oviposition locations is species and 

CGS level specific.  Optimal oviposition states that females will choose oviposition 

locations to benefit the survival of their offspring (Jaenike, 1978).  Although L. sericata 

oviposited more frequently in the cracks on CGS Level 3 carcasses, they are not laying 

more eggs in these locations.  The increased number of eggs at traditional oviposition 

locations, rather than cracks, suggests that cracks may not be beneficial for offspring, 

perhaps due to increased risks of drowning.  That there were more oviposition events at 

the cracks suggests that females are visiting the crack more often, however, this may be to 

feed.  This makes sense, as cracks provide easy access to both a protein and sugar source, 

which are both vital to blow fly survival and reproductive development (Erzinçlioǧlu, 

1996; Avila and Goff, 1998; Byrd and Castner, 2010).  Other blow fly species, such as the 

screwworm fly, (Cochliomyia hominivorax Coquerel) have been observed visiting 

wounds more frequently to feed, rather than to oviposit (Guillot et al., 1977; Thomas and 

Mangan, 1989).  Lucilia sericata may prefer lower densities as predicted, and in 

conjunction with their increased developmental plasticity, can survive better when 

conditions are poorer, such as in the conditions found in cracks.   

One possible explanation for the disparity in oviposition preference and deposited 

egg numbers observed in this study is skip oviposition (Mogi and Mokry, 1980).  This 

particular oviposition behaviour has been observed in certain species of mosquitoes in 

which a female will deposit her batch of eggs across numerous suitable locations, rather 

than depositing them all in one location (Mogi and Mokry, 1980).  Even if cracks were an 

optimal location for L. sericata oviposition, the benefits of egg aggregation previously 

discussed could lead to increased egg numbers at less optimal locations such as the legs 

or abdomen.  Opposite to L. sericata, the cracks appear to be an optimal oviposition 

location for P. regina, but only on CGS Level 3 carcasses as there was an increase in both 

oviposition event frequency and egg numbers at the cracks for carcasses exposed to such 
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severe flame impingement.  It was predicted that P. regina larvae prefer higher larval 

densities for the greatest chance at success.  It appears that these conditions might be met 

by ovipositing on the cracks.  

In theory, cracks should represent an optimal spot for oviposition.  It is difficult 

for the larvae of certain forensically important flies, such as flesh flies (Diptera: 

Sarcophagidae), to pierce the skin of humans (Haufe and Nelson, 1957).  Cracks created 

via flame impingement eliminate the need for immature larvae, especially first instar 

larvae, to pierce the skin.  By skipping this step larvae should expend less energy, and 

thus decrease the amount of energy that developing larvae need to use when feeding.  

Although this may be the case, high larval mortality associated with the cracks was also 

observed, usually via drowning (V.A. Pacheco, personal observation).  Therefore, seeping 

wounds, such as cracks, may also represent a potential hazard that can be detrimental to 

larval survivorship.  Blow fly eggs stand a greater chance of survival in cracks than 

larvae, due to physiological characteristics that make them more resistant to wet 

conditions.  Specifically, each egg possesses a central breathing groove made of a porous 

material that traps air and repels water in wet conditions (Erzinçlioǧlu, 1996).  However, 

studies have also shown that eggs containing un-hatched Dipteran larvae, including L. 

sericata, can still breathe and can inhale surrounding liquids, leading to death (Sikes and 

Wigglesworth, 1931; Kalis, 1938).  Female blow flies might be aware of the potential 

dangers associated with bloody cracks, and therefore, make the decision to oviposit 

elsewhere if the cracks are too wet, providing their offspring with the greatest chance of 

survival as predicted by optimal oviposition theory (Jaenike, 1978).   

Determining whether or not blow flies prefer ovipositing in cracks, rather than 

traditional locations was possible for carcasses burnt to CGS Levels 2 and 3.  At these 

levels, particularly Level 3, cracks are prominent, however, cracking has been reported in 

studies where carrion was burnt to Level 2 (Avila and Goff, 1998; Vanin et al., 2007).  

Some cracks were observed on carcasses burnt to CGS Level 1; however, these occurred 

when the carcasses were handled and no oviposition events were observed on these 

cracks.  Although burning a carcass can lead to more oviposition sites due to the 

appearance of cracks, burning can also destroy other potential oviposition sites.  

Locations on the head, such as the ears, become badly burnt as the CGS level increases 



!

51!
!

and can lead to scenarios where oviposition is no longer possible at those sites.  

 This study attempted to verify the assumption that cracks on carrion, created as a 

result of flame impingement, provided suitable and alternative oviposition sites for 

ovipositing female blow flies.  It has been experimentally shown, however, that the 

oviposition behaviour of L. sericata and P. regina is species and CGS level specific.  

Each blow fly species has a different strategy when dealing with burnt carrion.  Cracks 

that result from flame impingement are not an optimal oviposition location for L. 

sericata, whereas cracks on CGS Level 3 carcasses are suitable for P. regina.  However, 

the potential for offspring death via drowning in bodily fluids resulting from severe flame 

impingement might be a deterrent keeping female blow flies from depositing larger 

numbers of eggs on cracks.  In the future, it would be helpful to test this assumption by 

manipulating fluid levels at the cracks and observing female preference for ‘wet’ and 

‘dry’ cracks on equivalent locations of the carcass.  Future work should also incorporate 

field validation tests, as the results obtained under controlled conditions might differ from 

those experienced under natural conditions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



!

52!
!

Table 2.1: The dates of each burn for each species treatment and the time the carcasses 

were placed into the experimental cages (n = 5 burn events for each species treatment).  

Pig carcasses were removed from the experimental cages 24 h later, following the 

oviposition observation period.  Daylight hours in the rearing room occur between 7am 

and 7pm.  The mean temperature (± S.E.) in the rearing room and experienced by 

ovipositing female blow flies during the 24 h oviposition observation period are provided. 

Replicate Date Time Temperature (°C) 

Lucilia sericata 

Burn 1 May 16-17, 2013 12 pm 22.2 ± 0.2 

Burn 2 June 5-6, 2013 11 am 22.4 ± 0.2 

Burn 3 Aug. 21-22, 2013 11 am 23.1 ± 0.2 

Burn 4 Sept. 3-4, 2013 11 am 21.5 ± 0.0 

Burn 5 Feb. 3-4, 2014 11 am 22.1 ± 0.3  

Phormia regina 

Burn 1 Aug. 5-6, 2013 12 pm 21.3 ± 0.1 

Burn 2 Aug. 5-6, 2013 12 pm 21.3 ± 0.1 

Burn 3 Sept. 15-16, 2013 12 pm 22.4 ± 0.2 

Burn 4 Feb. 26-27, 2014 10 am 23.7 ± 0.2 

Burn 5 Feb. 26-27, 2014 10 am 23.7 ± 0.2 

Mixed – Lucilia sericata and Phormia regina 

Burn 1 May 31 – June 1, 2013 11 am 22.4 ± 0.1 

Burn 2 Sept. 15-16, 2013 12 pm 22.4 ± 0.2 

Burn 3 Feb. 3-4, 2014 11 am 22.1 ± 0.3 

Burn 4 March 24-25, 2014 10 am 22.0 ± 0.2 

Burn 5 April 18-19, 2014 10 am 22.6 ± 0.1 
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Table 2.2: The mean surface area (mm2) (± S.E.), estimated using ImageJ™, for each of 
the four oviposition sites and the total surface area available on a fetal pig carcass for 
each CGS level and a control (n = 5 for each burn level and each species treatment).  The 
percentage that each oviposition site accounted for on each fetal pig is the second number 
provided in each cell of the table.   

 Oviposition Sites 

CGS 
Level Total Head Legs Abdomen Cracks 

Lucilia sericata 

Level 0 
46860.8 ± 6265.4 

 
100% 

21451.9 ± 3349.8 
 

45.7% 

16711.6 ± 1878.9 
 

35.7% 

8697.3 ± 1036.6 
 

18.6% 
-- 

Level 1 
46952.0 ± 2380.0 

 
100% 

21501.2 ± 1272.5 
 

45.8% 

16739.3 ± 713.8 
 

35.7% 

8712.5 ± 393.8 
 

18.6% 
-- 

Level 2 
46403.5 ± 2015.7 

 
100% 

21112.6 ± 1072.7 
 

45.5% 

16557.7 ± 572.7 
 

35.7% 

8592.3 ± 332.0 
 

18.5% 

141.0 ± 47.6 
 

0.3% 

Level 3 
44034.5 ± 2216.0 

 
100% 

19769.0 ± 1188.4 
 

44.9% 

15767.7 ± 666.6 
 

35.8% 

8176.5 ± 367.8 
 

18.6% 

321.3 ± 93.4 
 

0.7% 

Phormia regina 

Level 0 
56769.4 ± 1453.7 

 
100% 

26749.6 ± 777.2 
 

47.1% 

19683.2 ± 8802.6 
 

34.7% 

10336.7 ± 240.5 
 

18.2% 
-- 

Level 1 
46528.1 ± 3779.8 

 
100% 

21274.0 ± 2020.9 
 

45.7% 

16611.9 ± 7429.0 
 

35.7% 

8642.2 ± 625.4 
 

18.6% 
-- 

Level 2 
48286.2 ± 4081.3 

 
100% 

22177.1 ± 2178.8 
 

45.9% 

17118.4 ± 7655.6 
 

35.5% 

8921.7 ± 674.3 
 

18.5% 

69.1 ± 15.7 
 

0.1% 

Level 3 
49645.4 ± 3612.2 

 
100% 

22707.9 ± 1916.8 
 

45.7% 

17416.1 ± 7788.7 
 

35.1% 

9086.0 ± 593.2 
 

18.3% 

435.4 ± 67.0 
 

0.9% 

Mixed – Lucilia sericata and Phormia regina 

Level 0 
51206.1± 6753.8 

 
100% 

23775.1 ± 3610.9 
 

46.4% 

18014.7 ± 2025.4 
 

35.1% 

9416.2 ± 1117.4 
 

18.4% 
-- 

Level 1 
48585.5 ± 2824.0 

 
100% 

22344.0 ± 1506.6 
 

46.0% 

17212.0 ± 845.1 
 

35.4% 

8973.3 ± 466.2 
 

18.5% 

56.1 ± 39.0 
 

0.1% 

Level 2 
52900.6 ± 2433.3 

 
100% 

24601.5 ± 1313.2 
 

46.5% 

18478.3 ± 736.6 
 

34.9% 

9672.0 ± 406.4 
 

18.3% 

148.8 ± 51.9 
 

0.3% 

Level 3 
47993.5 ± 4519.2 

 
100% 

21897.9 ± 2415.7 
 

45.6% 

16961.8 ± 1355.0 
 

35.3% 

8835.3 ± 747.6 
 

18.4% 

298.4 ± 44.4 
 

0.6% 
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Table 2.3: The mean expected oviposition frequencies (%) (± S.E.), based on the total surface 
area of each fetal pig and the area of the carcass occupied by each oviposition site.  Within each 
cell the observed oviposition frequencies are reported beneath the expected frequencies.  One 
oviposition event was added to all observations, so that sites with no oviposition events could be 
included in the analysis, so d.f. =3 for all analyses; non-coded frequencies are reported.  For all 
CGS levels, α = 0.05.    

 Oviposition Sites    

CGS Level Head Legs Abdomen Cracks Χ2 d.f. p-value 

Lucilia sericata 

Level 0 
45.7 ± 0.9 

 
78.5 ± 7.5 

35.7 ± 0.7 
 

13.7 ± 6.5  

18.6 ± 0.2 
 

7.8 ± 3.7 

0 
 

0 
695.9741 3 < 0.0001 

Level 1 
45.8 ± 0.4 

 
70.5 ± 7.8 

35.7 ± 0.3 
 

7.5 ± 5.0 

18.6 ± 0.1 
 

22.0 ± 9.3 

0 
 

0 
716.2700 3 < 0.0001 

Level 2 
45.5 ± 0.4 

 
60.8 ± 12.2 

35.7 ± 0.3 
 

16.7 ± 10.5 

18.5 ± 0.1 
 

0 

0.3 ± 0.1 
 

22.5 ± 15.0 
1693.3540 3 < 0.0001 

Level 3 
44.9 ± 0.4 

 
33.3 ± 9.1 

35.8 ± 0.3 
 

10.0 ± 10.0 

18.6 ± 0.1 
 

12.2 ± 9.7 

0.7 ± 0.2 
 

44.4 ± 17.3 
1074.0716 3 < 0.0001 

Phormia regina 

Level 0 
47.1 ± 0.2 

 
50.8 ± 20.1 

34.7 ± 0.1 
 

38.6 ± 15.9 

18.2 ± 0 
 

10.5 ± 5.4 

0 
 

0 
1060.3225 3 < 0.0001 

Level 1 
45.7 ± 0.8 

 
64.0 ± 12.3 

35.7 ± 0.6 
 

20.1 ± 6.3 

18.6 ± 0.2 
 

15.8 ± 8.2 

0 
 

0 
742.2973 3 < 0.0001 

Level 2 
45.9 ± 0.6 

 
51.4 ± 13.5 

35.5 ± 0.5 
 

34.7 ± 12.8 

18.5 ± 0.2 
 

13.9 ± 7.0 

0.1 ± 0 
 

0 
413.0074 3 < 0.0001 

Level 3 
45.7 ± 0.5 

 
14.0 ± 6.4 

35.1 ± 0.3 
 

0 

18.3 ± 0.1 
 

29.3 ± 18.1 

0.9 ± 0.1 
 

56.7 ± 23.3 
1751.6439 3 < 0.0001 

Mixed – Lucilia sericata and Phormia regina 

Level 0 
46.4 ± 1.3 

 
72.3 ± 9.0 

35.1 ± 0.9 
 

21.8 ± 0.1 

18.4 ± 0.3 
 

5.9 ± 3.8 

0 
 

0 
1274.5941 3 < 0.0001 

Level 1 
46.0 ± 0.5 

 
74.9 ± 11.3 

35.4 ± 0.4 
 

13.0 ± 8.2 

18.5 ± 0.1 
 

12.1 ± 5.2 

0.1 ± 0.1 
 

0 
370.4798 3 < 0.0001 

Level 2 
46.5 ± 0.4 

 
55.6 ± 16.0 

34.9 ± 0.2 
 

13.7 ± 5.7 

18.3 ± 0.1 
 

10.1 ± 4.6 

0.3 ± 0.1 
 

20.6 ± 12.9 
1300.9476 3 < 0.0001 

Level 3 
45.6 ± 0.7 

 
41.6 ± 14.4 

35.3 ± 0.5 
 

0 

18.4 ± 0.2 
 

6.5 ± 4.0 

0.6 ± 0.1 
 

51.9 ± 15.7 
1822.2180 3 < 0.0001 
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Table 2.4: The mean oviposition frequencies (%)  (± S.E.) observed within each CGS 

level for each species treatment.  For analysis, the expected oviposition frequency was 

adjusted depending on how many sites had oviposition events.  In each row of the table, 

oviposition frequencies with different letters were statistically different.  For all CGS 

levels, α = 0.05. 

 Oviposition Sites    

CGS 
Level Head Legs Abdomen Cracks Χ2 d.f. p-value 

Lucilia sericata 

Level 0 78.5 ± 7.5 a 13.7 ± 6.5 b 7.8 ± 3.7 c 0 92.4267 2 < 0.0001 

Level 1 70.5 ± 7.8 a  7.5 ± 5.0 c 22.0 ± 9.3 b 0 65.4388 2 < 0.0001 

Level 2 60.8 ± 12.2 a 16.7 ± 10.5 c 0 22.5 ± 15.0 b 34.5675 2 < 0.0001 

Level 3 33.3 ± 9.1 b 10.0 ± 10.0 d 12.2 ± 9.7 c 44.4 ± 17.3 a 33.4286 3 < 0.0001 

Phormia regina 

Level 0 50.8 ± 20.1 a 38.6 ± 15.9 b 10.6 ± 5.4 c 0 25.5392 2 < 0.0001 

Level 1 64.1 ± 12.3 a 20.1 ± 6.3 b 15.8 ± 8.2 c 0 42.7796 2 < 0.0001 

Level 2 51.4 ± 13.5 a 34.7 ± 12.8 b 13.9 ± 7.0 c 0 21.1091 2 < 0.0001 

Level 3 14.0  ± 6.4 c 0 29.3 ± 18.1 b 56.7 ± 23.3 a 28.0603 2 < 0.0001 

Mixed – Lucilia sericata and Phormia regina 

Level 0 72.3 ± 9.0 a 21.8 ± 10.1 b 5.9 ± 3.8 c 0 72.2914 2 < 0.0001 

Level 1 74.9 ± 11.3 a 13.0 ± 8.2 b 12.1 ± 5.2 c 0 77.8217 2 < 0.0001 

Level 2 55.6 ± 16.0 a 13.7 ± 5.7 c 10.1 ± 4.6 d 20.6 ± 12.9 b 52.1476 3 < 0.0001 

Level 3 41.6 ± 14.4 b 0 6.5 ± 4.0 c 51.9 ± 15.7 a 34.0339 2 < 0.0001 
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Table 2.5: The mean (± S.E.) oviposition frequencies (%) and chi-square results to 

determine the effect of cracks at each of the traditional oviposition sites between CGS 

Level 1 and Level 2 for each species treatment.  All P. regina comparisons were omitted 

due to the absence of oviposition events on cracks.  For all oviposition sites, α = 0.05. 

 

Oviposition Site Oviposition Frequency Χ2 d.f. p-value 

Lucilia sericata 

Legs 

Cracks on legs 

37.5 ± 20.0 

66.7 ± 22.4 
5.0000 1 0.0253 

Abdomen 

Cracks on abdomen 

53.3 ± 16.2 

26.7 ± 11.3 
8.8844 1 0.0029 

Mixed – Lucilia sericata and Phormia regina 

Legs 

Cracks on legs 

31.1 ± 20.3 

8.9 ± 8.9 
12.3432 1 0.0004 

Abdomen 

Cracks on abdomen 

58.3 ± 18.7 

41.7 ± 15.8 
1.6667 1 0.1967 
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Table 2.6: The mean (± S.E.) oviposition frequencies (%) and chi-square results to 

determine the effect of cracks at each of the traditional oviposition sites between CGS 

Level 1 and Level 3 for each species treatment.  For all oviposition sites, α = 0.05. 

 

Oviposition Site Oviposition Frequency Χ2 d.f. p-value 

Lucilia sericata 

Legs 

Cracks on legs 

33.3 ± 12.1 

46.7 ± 22.6 
2.2244 1 0.1358 

Abdomen 

Cracks on abdomen 

55.0 ± 17.4 

45.0 ± 17.4 
1.0000 1 0.3173 

Phormia regina 

Head 

Cracks on head 

97.8 ± 2.2 

2.2 ± 2.2 
91.3171 1 < 0.0001 

Legs 

Cracks on legs 

36.6 ± 17.2 

43.4 ± 18.2 
0.5882 1 0.4431 

Abdomen 

Cracks on abdomen 

48.6 ± 22.4 

31.4 ± 20.4 
3.6722 1 0.0553 

Mixed – Lucilia sericata and Phormia regina 

Legs 

Cracks on legs 

34.3 ± 21.5 

45.7 ± 22.8 
1.6302 1 0.2017 

Abdomen 

Cracks on abdomen 

33.3 ± 16.0 

26.7 ± 13.8 
0.7393 1 0.3899 
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Table 2.7: Effect of species composition, CGS level and oviposition site on the number 

of eggs L. sericata and P. regina oviposited.  Statistically significant effects are given in 

bold font.  For all effects, α = 0.05. 
 

Effect d.f. F – value p – value 

Lucilia sericata 

Species composition 1 0.56 0.4569 

CGS level 3 0.60 0.6141 

Oviposition site 3 20.35 < 0.0001 

Species composition * 
CGS level 3 0.19 0.9042 

Species composition * 
Oviposition site 3 0.51 0.6788 

CGS level * 
Oviposition site 3 2.34 0.0178 

Species composition * 
CGS level * Oviposition 
site 

9 0.60 0.7940 

Phormia regina 

Species composition 1 0.06 0.8132 

CGS level 3 0.94 0.4240 

Oviposition site 3 11.33 < 0.0001 

Species composition * 
CGS level 3 0.14 0.9352 

Species composition * 
Oviposition site 3 1.98 0.1206 

CGS level * 
Oviposition site 3 3.90 0.0002 

Species composition * 
CGS level * 
Oviposition site 

9 2.18 0.0275 
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Figure 2.1: The total biomass lost for pig carcasses burnt to each CGS level used in this 

experiment.  There was a significant, linear relationship between an increase in CGS level 

and the total biomass lost (F1, 42 = 68.95, p < 0.0001, R2 = 0.61). 

 
 

 

 

 

 

y = 170.03x - 159.89 

0 

150 

300 

450 

600 

750 

900 

1 2 3 

B
io

m
as

s L
os

s (
g)

 

CGS Level 



!

60!
!

 

 

 

 

 

 
 

Figure 2.2: The effect of the two-way interaction between CGS level and oviposition site 

on the mean number of eggs oviposited by female L. sericata (F9,126 = 2.34, p = 0.0178).  

Note that differences in the number of eggs deposited at each oviposition site are much 

lower at CGS Level 2 than at the other CGS levels. 
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Figure 2.3: The mean number of eggs (± S.E.) on each oviposition site across all CGS 

levels, for L. sericata and P. regina.  There was a significant effect of oviposition site and 

the number of eggs oviposited for L. sericata (F3, 126 = 20.35, p < 0.0001) and P. regina 

(F3, 125 = 11.33, p < 0.0001). 
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CHAPTER 3: 

SPECIES INTERACTIONS AND BURNT RESOURCES IMPACT SURVIVAL 

RATES AND OFFSPRING PERFORMANCE OF LUCILIA SERICATA MEIGEN AND 

PHORMIA REGINA MEIGEN (DIPTERA: CALLIPHORIDAE)  
 

INTRODUCTION 
 

Species interactions and natural disasters, such as forest fires, can act as stressors 

that may result in changes to animal fitness and survivorship.  Although destructive, 

forest fires are beneficial ecosystem processes that induce ecosystem regeneration, 

increase biomass levels, and alter species composition and nutrient cycles (McCullough et 

al., 1998; Nasi et al., 2002).  Over the past decade in Ontario, there have been an average 

of 1094 fires per year, which accounts for just under 110 000 ha of land affected 

(Aviation, Forest Fire and Emergency Services, 2014). 

Although forest fires are perceived to have negative consequences, some animals 

have adaptations that allow them to benefit from fire.  For example, certain insect 

families, such as jewel beetles (Coleoptera: Buprestidae), are defined as pyrophilous as 

they are attracted to fires (Linsley, 1943; Schmitz et al., 1997; Schütz et al., 1999; Klocke 

et al., 2011).  These beetles are attracted to fires as they rely on freshly burnt wood for 

food, mating opportunities, and oviposition sites (Wikars, 2002; Klocke et al., 2011).  

Jewel beetles are known to travel up to 50 miles (80.5 km) to find burnt wood (Linsley, 

1943; Schmitz et al., 1997; Schütz et al., 1999; Klocke et al., 2011) and have been 

observed on logs that are still burning (Linsley, 1943; Klocke et al., 2011).  Similarly, 

blow flies (Diptera: Calliphoridae) have been observed on carrion that was still on fire 

(Avila and Goff, 1998).  Aside from jewel beetles, there have been conflicting reports 

with regard to the effects of forest fires on insect populations (Swengel, 2001).  

 Researchers have investigated the responses of Dipterans to forest fires.  

Depending on both the season and sampling time, there have been no noticeable 

differences in fly populations observed after a forest fire (Rice, 1932; Bulan and Barrett, 

1971; Hurst, 1971; Winter, 1984), however, other reports have shown that fly populations 

rebound faster after a fire (Hurst, 1971; Nagel, 1973; Van Amburg et al., 1981; Winter, 
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1984; Moretti et al., 2004; Durska et al, 2010).  For example, quick succession of plants 

after a fire increases the rate at which anthomyiid flies (Diptera: Anthomyiidae) and 

hover flies (Diptera: Syrphidae) re-establish their population numbers, as they rely on 

plants as a food source (Van Amburg et al., 1981). 

 In 1988, devastating forest fires swept through Yellowstone National Park 

destroying 793 000 acres, or 36% of the area of the Park (United States National Park 

Service, 2014).  These fires were directly responsible for the deaths of 345 elk, 36 deer, 

12 moose, six black bears and nine bison (United States National Park Service, 2014).  

Similarly, forest fires in Russia have contributed to the death of 70 - 80% of squirrel 

populations, 15 - 25% of boar populations and 90% of mouse and rodent populations 

(Shvidenko and Goldammer, 2001).  This increase in the carrion populations, as a result 

of fire in an area, can be highly attractive to carrion colonizing insects such as blow flies, 

which are capable of utilizing burnt remains as oviposition sites (Avila and Goff, 1998; 

Introna et al., 1998; Pai et al., 2007; Chin et al., 2008; Vanin et al., 2013; Chapter 2).  

Although blow flies are able to colonize burnt carrion (Chapter 2), their survival might be 

limited.  Compared to un-burnt carrion, burnt carrion does not have the same biomass, 

and therefore, there is less consumable material for developing blow fly larvae.  Although 

burnt carrion is attractive to female blow flies (Chapter 2), it might also have negative 

impacts on larval development and survival due to the magnification of interspecific and 

intraspecific competition associated with more limited resources.  It is believed that until 

this study, there have been no publications that experimentally examine the survivorship 

rates and fitness levels of blow flies that have colonized burnt remains 

 Due to the scarcity of carrion resources and its ephemeral and patchy nature, egg 

aggregation is often observed in blow fly species (Ireland and Turner, 2006).  The 

aggregation of eggs by female blow flies can benefit developing larvae as larger larval 

masses (maggot masses) can protect the maggots via thermal regulation by increasing the 

rate of development, as maggot masses have increased temperatures (Baxter and 

Morrison, 1983; Catts, 1992; Catts and Goff, 1992; Turner and Howard, 1992; Ireland 

and Turner, 2006; Kheirallah et al., 2007; Anderson, 2010).  This is important when 

ambient temperatures pose a risk to continued development.  Essentially, maggot masses 

can rely on the heat they generate to ensure continued growth (Catts, 1992; Catts and 
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Goff, 1992; Anderson, 2010).  Vulnerable stages, such as first instar larvae, also develop 

more quickly in maggot masses than when alone; this increased rate of development may 

help ensure their survival (Catts, 1992).  Maggot masses and decreased developmental 

times of maggots have been observed on burnt carrion (Chin et al., 2008).  Larval 

aggregation also contributes to the faster breakdown of carrion resources as many 

maggots feeding in the same area increases the local concentration of proteolytic 

enzymes, which help in the pre-digestion process (Baxter and Morrison, 1983; S. dos Reis 

et al., 1999; Ireland and Tuner, 2006; Kheirallah et al., 2007). 

 Although there are clear benefits to larval aggregation, it is a risk for females to 

deposit large egg masses as large numbers of larvae can also have detrimental effects on 

blow fly offspring as a result of overcrowding and competition for limited resources 

(Ireland and Turner, 2006).  Optimal oviposition theory (Jaenike, 1978) predicts that by 

depositing their clutches in locations that provide their offspring with the best chance at 

survival, female insects can increase their fitness.  The selection of the oviposition site is 

important because like most insects, female blow flies do not play an active role in the 

development of their offspring as they do not practice parental care (Jaenike, 1978; 

Tallamy, 1999).  The oviposition preference-offspring performance hypothesis is an 

extension of optimal oviposition theory and aims to determine if there are correlations 

between offspring performance (development, survivorship, fecundity, etc) and site 

selection by the female parent (Jaenike, 1978; Thompson, 1988; Ellis, 2008).  

Unfortunately, not all metrics of offspring performance correlate well with female fitness 

preference (Thompson, 1988; Jaenike, 1990; Mayhew, 1997).  One important factor that 

can affect the correlation of female preference and offspring performance is larval 

density.  Increased larval density has been observed to lead to a decrease in survival 

(Ellis, 2008).  Therefore, while female insects might exhibit a preference for specific 

oviposition sites, those sites might not always be the best for the offspring.  This might be 

particularly true for Diptera, including blow flies, as studies have shown density 

dependent effects on the survival and consequently the fitness of different larvae in 

habitats of varying quality (Hutton and Wasti, 1980; So and Dudgeon, 1990; Prinkkilä 

and Hanski, 1995; Saunders and Bee, 1995; Smith and Wall, 1997a; Ireland and Turner, 

2006; Kheirallah et al., 2007; Ellis, 2008).  
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 The blow flies Lucilia sericata Meigen and Phormia regina Meigen colonize the 

same carrion, including burnt remains (Anderson and VanLaerhoven, 1996; 

VanLaerhoven and Anderson, 1999; Sharanowski et al., 2008; Vanin et al., 2013). 

Previously published reports have suggested that L. sericata is negatively affected by 

both interspecific and intraspecific competition (Ullyett, 1950; Hutton and Wasti, 1980; 

Cragg, 1995; Prinkkilä and Hanski, 1995; Kheirallah et al., 2007; Smith and Wall, 

1997a).  Lucilia sericata have been shown to be inferior competitors when faced with 

interspecific competition from other blow fly species (Prinkkilä and Hanski, 1995; Smith 

and Wall, 1997a).  In larger egg and larval densities with heterospecifics, L. sericata had 

a decrease in larval survival and adult fitness (Prinkkilä and Hanski, 1995; Smith and 

Wall, 1997a; Kheirallah et al., 2007).  Instances in which L. sericata have responded 

positively to, or have benefited from interspecific competition have occurred when they 

compete with P. regina (Hutton and Wasti, 1980; Rosati, 2014), with development and 

survival remaining unaffected.  When competing with conspecifics (intraspecific 

competition), L. sericata larval survival and adult size has also been shown to decrease as 

larval and egg densities increase (Hutton and Wasti, 1980; Prinkkilä and Hanski, 1995; 

Smith and Wall, 1997a; Kheirallah et al., 2007).  It is common for female Dipterans to be 

smaller than their male counterparts, however, L. sericata females are known to be larger 

than males (Prinkkilä and Hanski, 1995; Smith and Wall, 1997a). 

 Phormia regina has also demonstrated mixed responses to larval density (Hutton 

and Wasti, 1980; Rosati, 2014).  In the presence of heterospecifics, more specifically L. 

sericata, Hutton and Wasti (1980) observed complete elimination of P. regina larvae, 

regardless of density levels.  However, the opposite was noted in recently completed 

studies by Rosati (2014), that demonstrated P. regina larvae survival and adult fitness 

were increased in the presence of L. sericata.  In instances of higher conspecific larval 

density, P. regina has demonstrated negative effects in the form of lower adult emergence 

(Hutton and Wasti, 1980).  Adult males were found to be larger in the lower larval 

densities, whereas female larval mortality, adult survival and fitness were not affected by 

intraspecific competition (Rosati, 2014).  

 Taken together, these previous studies suggest that the optimum larval density for L. 

sericata should be lower than that of P. regina.  However, because of their ability to 
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successfully develop to adult and produce smaller adults in the presence of limited 

resources, higher larval density should impact fitness but not survival.  In contrast, these 

previous studies suggest P. regina is less able to successfully develop to adult in the 

presence of higher competition for resources but may have a higher optimum larval 

density.      

 It has been shown that body size is directly related to numerous life history benefits, 

such as dispersal capabilities, mating success and egg load and development (Vogt et al., 

1985; Ellers et al., 1998; Stoffolano Jr. et al., 2000; Wardhaugh, 2001).  For example, the 

female parasitic wasp Asobara tabida Nees (Hymenoptera: Braconidae) has been shown 

to disperse further as body size increases, while facilitating an increased egg capacity 

(Ellers et al., 1998).  There have also been reports of blow flies, specifically P. regina, 

benefiting from increased body size, as a larger head width has been correlated to greater 

mating success due to increased aedeagus size (Stoffolano Jr. et al., 2000).  Female body 

size has a positive relationship to egg maturation and number of developing oocytes, and 

therefore, egg load in Lucilia species (Vogt et al., 1985; Wardhaugh, 2001). 

 The objective of this research was to investigate the effects that burnt remains have 

on both blow fly survival and fitness, while in the presence of both heterospecifics and 

conspecifics.  It is predicted that as burn severity increases, as described by the Crow-

Glassman Scale (CGS) (Glassman and Crow, 1996), the amount of consumable biomass 

will decrease.  This, in turn, may increase competition for available resources.  As 

previous studies have demonstrated, an increase in egg density, through egg aggregation 

by ovipositing females, may enhance these competitive effects.   

 Optimal oviposition theory leads to the prediction that L. sericata will oviposit on 

burnt carcasses, and when available, will oviposit directly in the cracks that result from 

severe flame impingement (Chapter 2).  In the presence of conspecifics, this should lead 

to an increase in both larval survival and emerged adult fitness on carcasses with cracks 

(higher on the CGS), compared to those without cracks (lower on the CGS).  The same 

trend is expected to be observed for P. regina when in the presence of conspecifics.   

 Finally, the oviposition preference-offspring performance leads to the prediction 

that the combination of increased flame impingement, heterospecific competition and an 

estimated lower optimum larval density will result in the decreased fitness of L. sericata, 
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whereas larval survival will remain unaffected as a result of increased developmental 

plasticity. In contrast, due to the facilitation from heterospecifics in the form of L. 

sericata, and a higher optimum larval density, P.regina will experience both increased 

larval survival and adult fitness when carcasses experience greater levels of flame 

impingement (higher levels on the CGS). 

 

METHODS 
 

I) Colony Maintenance 
Lucilia sericata and P. regina colonies are maintained throughout the year at the 

University of Windsor, Windsor, Ontario, Canada.  Blow flies are reared as described in 

Chapter 2.  The colony cages are held under controlled laboratory conditions with a 12L: 

12D photoperiod, with mean temperatures (±S.E.) of 25 ± 1 °C, and 60 ± 5 % relative 

humidity.  Adult blow flies are provided with sugar cubes, a paste made from instant milk 

powder and water (Anderson, 2000; Byrd and Allen, 2001; Nabity et al., 2006).  Adult 

flies for the experiments described below were all obtained from these source colonies by 

collecting eggs deposited by female flies on pork liver (ca. 20-30g) (Byrd and Allen, 

2001). 

II) Experimental Cage Treatments 

Experimental cages were constructed five days prior to scheduled burn dates as 

thoroughly detailed previously (Chapter 2), and as briefly described herein.  Newly 

emerged adult blow flies from the source colonies in rearing jars were placed in a 

refrigerator for 15 minutes to decrease their movement (Ricker et al., 1986).  Chilling 

streamlines the processes of physical manipulation and sexual identification (Ricker et 

al., 1986).  Males can be differentiated from females by the morphology of their 

compound eyes; the eyes of a male fly touch, while the eyes of a female fly do not 

(Erzinçlioğlu, 1996).  Three species treatments were utilized for this study: (1) L. sericata 

only, (2) P. regina only and (3) L. sericata plus P. regina.  For single species treatments, 

100 females and 50 males were removed from rearing jars and added to the appropriate 

cage.  To ensure population densities were consistent, mixed species treatments were 

composed of 50 females and 25 males of each species.  Each replicate contained four 
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experimental cages; one cage each for the three carcasses burnt to CGS Levels 1, 2, and 3 

and for a control carcass (Level 0) that was not exposed to flame impingement.  Flies 

within each experimental cage were fed sugar and water ad libitum.  Each experimental 

cage was protein fed by supplying pork liver (ca. 20-30g) for 1 h each day, for five days 

prior to burns; this was necessary to ensure females were gravid on the day the carcasses 

were burnt (VanLaerhoven and Anderson, 2001).  As a result of adult blow fly 

availability and cage constraints, replicates were completed over a period of one year 

(Table 3.1). 

III) Burning  

Four deceased fetal pigs (Sus scrofa domesticus L.), weighing between 639 and 

2247 g, were thawed one day prior to being burnt, as previously described (Chapter 2).  

All burns were conducted in a steel fire pit, measuring 89 x 55 cm, in Amherstburg, 

Ontario, Canada.  Fires used to burn the pig carcasses were constructed using untreated 

scrap wood and newspaper.  Pigs were burnt in descending order of the CGS, starting 

with Level 3.  After being removed from the fire, a digital scale (Starfrit, Model #: 70200) 

was used to weigh each pig carcass in order to determine the total biomass lost. 

IV) Larval Development and Sorting 
Following the 24 h oviposition observation period (Chapter 2), the fetal pigs and 

their associated egg masses were removed from their cages and transported to the 

greenhouse on top of the Biology Building at the University of Windsor.  Pig carcasses 

were placed inside separate glass aquaria that measured 90 x 32 x 61 cm and were lined 

with 2 to 3 cm of pine wood shavings.  The shavings act as a dry pupation medium for 

wandering larvae (Hutton and Wasti, 1980).  All aquaria were sealed with silicone 

caulking and landscape tarp (Quest Brands Inc., Item: WBS 50), which allowed for air 

exchange while still preventing any natural colonization by insects from outside the 

aquaria.  The carcasses remained in the aquaria until after adult flies had emerged and 

died.  The mean temperatures experienced by the developing blow flies within the 

greenhouse are reported in Table 3.1.  Once all adult flies had emerged and died, the 

contents of the aquaria were collected and the dead adults were sorted by species and 

counted. 
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V) Egg Numbers and Survival Rates 
Survival estimates were made by comparing the number of emerged adult flies to 

the number of eggs deposited by female blow flies using the regression equations 

developed by Rosati et al. (in review).  Prior to being placed into the aquaria, all egg 

masses on each fetal pig were photographed using a Nikon D70 camera with an AF 

Micro-Nikkor 60 mm f/2.8D lens.  Each picture was taken at approximately 90º with a 15 

cm ruler in the photograph as a scale.  Once photographed, each egg mass had depth 

measurements taken following Rosati et al. (in review) and as described in Chapter 2.  

The pictures were uploaded to a computer and surface area measurements were calculated 

using ImageJ™ (http://imagej.nih.gov/ij/index.html) as described by Rosati et al. (in 

review) (Chapter 2).  The volume (mm3) of each egg mass was calculated by multiplying 

the surface area (mm2) by the depth.  To estimate the number of eggs on each carcass the 

volume of each egg mass was substituted into the appropriate regression equations (L. 

sericata: y = 4.11x + 12.40; P. regina: y = 4.71x + 3.40).  A regression equation for the 

combination of L. sericata and P. regina (mixed: y = 4.57x + 0.10) egg masses, as 

experienced in the mixed treatment, was developed using the data set from Rosati et al. 

(in review).  The total number of eggs on a carcass was obtained by summing the number 

of eggs in each egg mass.  This was repeated for each pig (n = 5) for each species 

treatment for each CGS level.  

To calculate the survival rate of adult blow flies on each carcass, the number of 

emerged adult blow flies was compared to the estimated number of eggs as determined by 

the regression equations described previously.  Adult blow flies were defined as 

‘survivors’ for this study as this is the only life stage that can pass on its genetic material 

to future generations. 

VI) Fitness Measurements  
The length of the posterior cross-vein (dm-cu) (Figure 3.1) is a common measure 

of adult size, and therefore, fitness due to increased mating success, dispersal to find 

resources and egg load (Vogt et al., 1985; Smith and Wall, 1997a; Smith and Wall, 

1997b; Ellers et al., 1998; Hayes et al., 1998; Stoffolano Jr. et al., 2000; Wardhaugh 

2001; Clark et al., 2006; Ireland and Turner, 2006).  The posterior cross-vein has been 

used in previous studies involving L. sericata and has become a standard due to its 
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durability when a wing is damaged (Smith and Wall, 1997a; Smith and Wall, 1997b; 

Hayes et al., 1998; Clark et al., 2006; Ireland and Turner, 2006).   

 The posterior cross-vein (dm-cu) was measured for a randomly selected 

subsample of 25 male and 25 female adult blow flies from each species treatment 

for each CGS level.  If 25 blow flies of each sex were not available, due to 

damaged samples or a lack of emerged adults, all available flies were sampled.  

For measurement, the left wing was excised and the posterior cross-vein was 

measured using a Meiji EMZ Zoom Stereo Microscope with an ocular 

micrometer.  Measurements were taken to the nearest hundredth of a mm.  The 

mean wing vein length of each sex and species was calculated for all replicates for 

each species treatment and CGS level. 

VII) Statistical Analysis  

Burning – Mean Biomass Loss: 

A square root transformation was applied to the biomass loss data so that the data 

would meet the assumptions of homogeneity of variance (Bartlett’s Test: p > 0.05; SAS 

Institute 2011) and normality (Shapiro-Wilk’s test: p > 0.05; SAS Institute, 2011).  The 

relationship that CGS level had on biomass loss was determined using linear regression in 

SAS, using the PROC REG function (SAS Institute, 2011).  If there was a significant and 

positive relationship between CGS level and mean biomass loss, the means were 

compared, using the PROC GLM procedure with the LSMEANS and PDIFF statements 

in SAS, to determine which CGS levels were different from one another (SAS Institute, 

2011).  Figures and means are presented using the back-transformed data.    

 

Development Temperatures: 

Due to colony and cage constraints, replicates of each species treatment at each 

burn level could not be conducted simultaneously and ambient temperatures in the 

greenhouse during larval development differed over time (Table 3.1).  To determine if 

temperature differences during larval development were statistically different between 

species treatments, analysis of variance (ANOVA) analyses was conducted using the 

GLM procedure in SAS (SAS Institute, 2011).  If different, means were compared using 

the LSMEANS and PDIFF statements in SAS (SAS Institute, 2011). 
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Survival Rate:  

Some survivorship estimates were greater than 100% (Table 3.2), which is 

theoretically impossible.  To correct for this, the Dixon’s test for statistical outliers 

(Dixon and Massey, 1969) was used to determine if any of the survivorship estimates for 

each species treatment and CGS level greater than 100% represented statistical outliers.  

If datasets contained outliers, the data was Winsorized rather than trimmed, to prevent 

loss of power (Table 3.2) (Barnett and Lewis, 1994).  Rates over 100% that were not 

considered outliers (e.g., Mixed species, CGS Level 2; Table 3.2) could not be 

Winsorized; this was unexpected, but these values were accepted as true data and 

remained in the data set.  In data sets where two survivorship values were statistical 

outliers (e.g. Mixed species, CGS Level 3; Table 3.2), these data could not be 

Winsorized, as in a dataset with n = 5, Winsorizing would result in data sets that 

contained five identical survivorship rates.  

Due to the inability to distinguish the eggs to species, both individual 

species treatment and mixed species treatment survival rates were included in 

each individual species dataset to test survival for each species.  Mean 

survivorship rates for most species treatments and CGS burn levels did not meet 

the assumption of homogeneity of variance (Bartlett’s Test: p < 0.05; SAS 

Institute 2011), but did meet the assumption of normality (Shapiro-Wilk’s test: p > 

0.05; SAS Institute 2011).  As the transformed data still did not meet the 

assumptions of parametric tests, the Kruskal-Wallis non-parametric ANOVA 

equivalent was used to determine if species composition or CGS level had an 

effect on survivorship (NPAR1WAY procedure, SAS Institute 2011).  For 

significant Kruskal-Wallis results (p < α = 0.05), the mean survivorship values 

were evaluated using Wilcoxon’s paired t-test equivalent as a post hoc test.  The 

Wilcoxon’s signed-rank test was used to perform comparisons between CGS level 

survivorship rates within single species treatments using the PROC NPAR1WAY 

procedure (SAS Institute, 2011).  For each species treatment, the mean 

survivorship rates at CGS Level 0 and Level 1, Level 1 and Level 2 and Level 2 

and Level 3 were compared.  For each pair of Wilcoxon’s signed-rank tests, α = 

0.016.          
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To test for the effects of species interactions on survivorship rates, a 

Kruskal-Wallis test was performed using the NPAR1WAY procedure in SAS 

(SAS Institute, 2011).  For this analysis, the data sets for individual species 

treatments (i.e., L. sericata only or P. regina only) were combined with the data 

set from the mixed species treatment.  This was performed due to the difficulty in 

determining which eggs in an egg mass belonged to which species.  The identical 

overall egg total in mixed species treatments was used to determine the 

survivorship rates for both L. sericata and P. regina.  

 Using the PROC REG function in SAS, a linear regression was used to 

determine if there was a relationship between CGS level and mean survival rate 

(SAS Institute, 2011). 

 Since total egg number oviposited on each pig carcass differed with CGS 

level for the different species treatments (Chapter 2), and the previous test 

indicated that survival rate differed with CGS level for each species treatment, a 

relationship between total egg number per CGS level and survival rate per CGS 

level was tested.  Although this was initially tested using a linear regression for 

each species treatment on a per pig basis using the PROC REG function in SAS 

(SAS Institute, 2011), due to the low replication and high variance all results were 

insignificant and uninformative.  Instead, mean values per CGS level were utilized 

in the linear regression to reduce the variability to explore the trends, while 

explicitly recognizing that utilizing the mean values artificially increases the fit of 

the regression to these data (Camacho Mtz-Vara De Rey et al., 2001).   

 

Fitness Measurements: 

 The wing vein data met the assumptions of normality and equality of variance 

(Shapiro-Wilk’s test: p > 0.05, Bartlett’s test p > 0.05) (SAS Institute, 2011).  Mean wing 

vein lengths of both species were compared using a three factor ANOVA using the PROC 

GLM function in SAS (SAS Institute, 2011).  The three factors were CGS level, species 

composition and sex.  To test for the effects of species interactions on fitness levels, the 

data sets for individual species treatments (i.e., L. sericata only or P. regina only) were 

compared to the data set from the mixed species treatment. 
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RESULTS 
 

I) Burning – Mean Biomass Loss 
As CGS level increased so did the mean amount of biomass lost, as there was a 

positive and significant linear relationship between the two (F1, 42 = 68.95, p < 0.0001, R2 

= 0.61) (Figure 3.2).  The amount of biomass lost between CGS levels was statistically 

different (ANOVA: F2, 42 = 38.58, p < 0.0001). The mean amount of biomass lost, post 

flame impingement, of fetal pig carcasses burnt to CGS Level 1, Level 2 and Level 3 

were 51.7 ± 12.9 g, 97.0 ± 14.9 g and 391.8 ± 45.1 g, respectively (Figure 3.2).  Mean 

biomass lost between carcasses burnt to CGS Level 1 and CGS Level 3 was significantly 

different (p < 0.0001; Figure 3.2).  Similarly, the mean biomass lost between CGS Level 

2 was statistically different from that lost at CGS Level 3 (p < 0.0001; Figure 3.2).  The 

biomass loss between carcasses burnt to CGS Level 1 and Level 2 were not statistically 

different (p = 0.6755).  

II) Development Temperatures 

Overall, the temperatures experienced by the developing blow fly larvae in the 

greenhouse, across the three species treatments, varied (F2, 7572 = 125.44, p < 0.0001) and 

ranged between 19.9 and 30.4°C (Table 3.1).  Temperatures experienced by developing L. 

sericata larvae differed from developing P. regina larvae and those in the mixed species 

treatment (p < 0.0001).  However, the temperatures experienced between developing P. 

regina larvae and those in the mixed species treatment did not differ from one another (p 

= 0.4551). 

III) Survival Rates 
An increase in CGS level led to an increase in survivorship rates, with an overall 

significant linear relationship between CGS level and survivorship rate.  This was true for 

both species treatments (L. sericata: F3, 38 = 11.26, p = 0.0018, R2 = 0.21; P. regina: F3, 36 

= 7.73, p = 0.0084, R2 = 0.15) (Figure 3.3).  

A direct effect of CGS level on the mean survivorship rate of L. sericata larvae 

was observed (Kruskal-Wallis test: X2 = 12.419, d.f. = 3, p = 0.0059; Figure 3.3).  

Survivorship was only different between CGS Level 1 and Level 2 (p = 0.0038).  Species 

composition (i.e. the presence of P. regina) did not have a significant effect on the 
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survivorship of L. sericata larvae (Kruskal-Wallis test: X2 = 2.0563, d.f. = 1, p = 0.1516). 

 Similar to L. sericata, CGS level had an effect on the mean survivorship rate of P. 

regina larvae (Kruskal-Wallis test: X 2 = 9.0902, d.f. = 3, p = 0.0281).  Survivorship rates 

increased with CGS level (Figure 3.3).  Similar to L. sericata, survivorship was only 

different between CGS Level 1 and Level 2 (p = 0.0105).  Species composition did not 

have a significant effect (Kruskal-Wallis test: X 2 = 0.1054, d.f. = 1, p = 0.7454) on the 

larval survivorship of P. regina.  

 Due to the low replication and high variability, there was no significant linear 

relationship between the number of eggs oviposited on a carcass and survival rate across 

the CGS levels for each species treatment (L. sericata: F1, 2 = 12.81, p = 0.0700,  

y = -0.01x + 129.34, R2 = 0.86; P. regina: F1, 2 = 4.24, p = 0.1758, y = 0.01x – 34.82, R2 = 

0.68; Mixed: F1, 2 = 0.1824, p = 0.7109; y = -0.004x + 86.89, R2 = 0.08; Figure 3.4).  

Although it is speculative, the trends in these data suggest that the survival rate of L. 

sericata may decline with increasing egg density, whereas the survival rate of P. regina 

may increase with increasing egg density (Figure 3.4).   

IV) Fitness Measurements 
Species composition significantly affected the size of L. sericata, but CGS level 

did not (Table 3.3).  The mean posterior cross vein length (± S.E.) of flies in single 

species treatments measured 1.23 ± 0.01 mm, while those in mixed treatments measured 

1.27 ± 0.01 mm.  The sex of the flies, regardless of species treatment, also had a 

significant effect on the posterior cross vein length for L. sericata (Table 3.3).  The mean 

posterior cross vein length (±S.E.) for males and females was 1.21 ± 0.01 mm and 1.29 ± 

0.01 mm, respectively.   

Similarly, species composition significantly affected the size of P. regina but, 

CGS level did not (Table 3.3).  The mean posterior cross vein length (±S.E.) of flies in 

single species treatments measured 1.32 ± 0.01 mm, while those in mixed treatments 

measured 1.38 ± 0.02 mm.  Regardless of species treatment, the sex of the flies had a 

significant effect on the posterior cross vein length for P. regina (Table 3.3).  The mean 

length of the wing vein (±S.E.) for males and females was 1.38 ± 0.01 mm and 1.32 ± 

0.01 mm, respectively. 
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DISCUSSION 
 

Carrion resources that have been altered from natural disturbances, such as forest 

fires, are expected to have an impact on the survival, and consequently the fitness of 

developing blow flies.  However, there have been no published studies that have 

investigated how burnt tissues impact the survival and fitness of blow flies.  Therefore, 

the purpose of this research was to fill this knowledge gap by exposing burnt carrion to 

gravid female L. sericata and P. regina. 

 As expected, the survival rates of L. sericata increased as CGS level increased.  

There were fewer eggs deposited by females on the higher levels of the CGS (Chapter 2) 

and this decreased egg density was expected to relate to increased survival by decreasing 

competition between conspecific larvae on a more limited resource, however this 

prediction was not supported.  Although there was less consumable resource available as 

CGS level increased it was previously observed that CGS level and species composition 

alone did not influence the number of eggs oviposited by female blow flies of either 

species (Chapter 2).  Therefore, this decrease in egg density may be the only 

characteristic of female oviposition behaviour that is used to compensate for the loss of 

consumable resource available as CGS level increased, as fewer eggs result in less 

competition between conspecific larvae.  Given the variation that is incurred due to the 

small sample size present in this study, although there is support for this speculation, it 

cannot be confirmed that egg density was the major factor to influence survival rates.  

Decreases in larval density may benefit L. sericata, which was observed when comparing 

the mean egg density and survival rates in this particular study.  The response of L. 

sericata to conspecifics, as it relates to larval survivorship, on burnt carrion in this study 

agrees with the work of others (Hutton and Wasti, 1980; Prinkkilä and Hanski, 1995; 

Smith and Wall, 1997a; Kheirallah et al., 2007) and agrees with the initial predictions.  In 

addition, no effects of interspecific competition on L. sericata were observed in this 

study, as the presence of P. regina did not influence survival on either burnt or un-burnt 

remains, which agrees with the predictions.  This result also agrees with the findings of 

Hutton and Wasti (1980) and Rosati (2014).  The increased developmental plasticity of 

this particular species may have contributed to its ability to survive when dealing with 
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competition stress from heterospecifics.  

 Contrary to L. sericata, the survival patterns of P. regina were more complex.  

Similarly, the survival of P. regina increased as CGS level increased.  Again, this agreed 

with initial predictions.  Survivorship rates on carcasses burnt to CGS Level 2 were 

highest, despite the fact that the highest egg density was also observed on these carcasses.  

Additionally, survival and egg density (Chapter 2) at CGS Level 3 was second only to 

Level 2.  Phormia regina can adapt to higher larval densities, as was illustrated by the 

potential trend observed between mean egg number and survival rates.  An increase in 

conspecific larval density has previously been shown to decrease adult emergence 

(Hutton and Wasti, 1980), but on burnt remains the opposite was noted and supported 

initial predictions.  The stress due to increased conspecific larval density, decreased 

consumable carrion resource and burnt remains did not appear to affect the survivorship 

of P. regina.  Similar to L. sericata, the presence of heterospecifics did not influence the 

emergence rates of P. regina, which was unexpected but did agree with results recently 

observed by Rosati (2014), while disagreeing with Hutton and Wasti (1980).  Of the two 

species, P. regina appears to respond better to adverse conditions given their higher 

survival on severely burnt remains and in larger larval densities.  

 As expected, as CGS level increased the mean amount of biomass lost also 

increased.  Overall, survivorship on carcasses burnt to CGS Level 2 and Level 3 was 

greater than those on CGS Level 1 carcasses and on the un-burnt control carcasses that 

experienced no biomass loss, even though less consumable resources were available for 

developing larvae on CGS Level 2 and Level 3 carcasses.  There are a number of 

important physical changes to burnt carrion between CGS Level 1 and Level 2, including 

cracking, that might also contribute to the differences in survivorship observed in this 

study.  Carrion burnt to CGS Level 2 have cracks present (Chapter 2), with even more on 

carcasses burnt to CGS Level 3 (Glassman and Crow, 1996; Chapter 2).  Eggs laid in 

these cracks might have a better chance of survival but this is likely to be balanced by the 

potential for eggs and larvae to drown in the bodily fluids that seep from the cracks.  

There are more bodily fluids as the cracks get larger and more extensive.  Cracks on CGS 

Level 2 are not as deep or severe as those found on CGS Level 3 carcasses and the greater 

cracking of Level 3 carcasses may explain the increased variability in survival.  The 
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differences in temperatures experienced by the developing larvae across species 

treatments could also explain some of the variability in survival rates, given the different 

temperature thresholds of the species in the study.   

 Unlike survivorship and contradictory to initial predictions, L. sericata adult size 

was not affected by CGS level, which suggests that burnt carrion does not affect the 

fitness of this species.  Species composition had a significant effect on the fitness of adult 

L. sericata.  Lucilia sericata adults were significantly smaller in the presence of 

conspecifics in this study.  Previous studies indicated that L. sericata experience stress 

due to intraspecific competition (Ullyett, 1950; Hutton and Wasti, 1980; Prinkkilä and 

Hanski, 1995; Smith and Wall, 1997a; Kheirallah et al., 2007) and the results in this study 

support these observations.  However, when in the presence of heterospecifics across 

different larval densitities, L. sericata larvae have been shown to be larger (i.e., increased 

fitness) (Hutton and Wasti, 1980; Rosati, 2014).  An increase in the adult size of L. 

sericata in the presence of P. regina was observed in this particular study, which supports 

previous findings that have shown that interactions with P. regina can lead to positive 

responses (Hutton and Wasti, 1980; Rosati, 2014).  The adult size ranges of emerged L. 

sericata in this particular study were found to match previously reported adult size ranges 

(0.88-1.40 mm) based on the length of the posterior cross-vein (Smith and Wall, 1997a; 

Smith and Wall, 1997b; Clark et al., 2006).  The mean size of female L. sericata was 

greater than the mean size of males, which agrees with the results of previous work 

(Prinkkilä and Hanski, 1995; Smith and Wall, 1997a).  

 The size of P. regina adults was also unaffected by CGS level, but rather by species 

composition, which is contradictory to initial predictions.  Adults were smaller in the 

presence conspecifics and larger in the presence of heterospecifics, agreeing with initial 

predictions.  The results of this study contradict those of others that have observed that 

entire populations of P. regina were eliminated when in competition with L. sericata 

(Hutton and Wasti, 1980) and confirms the findings that P. regina are more successful in 

development when engaging in species interactions with L. sericata (Rosati, 2014).  The 

mean size of male P. regina was greater than the mean size of females, which agrees with 

previous findings (Rosati, 2014).  Given a lack of published adult size ranges for P. 

regina based on posterior cross-vein length, the flies measured in this study fall within 
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ranges (1.00-1.43 mm) observed in the colony cages maintained at the University of 

Windsor.  Overall, these results indicate that P. regina is positively affected by the 

presence of other blow fly species, such as L. sericata.  

 The positive responses observed for both species in the presence of heterospecifics, 

as seen through increased adult wing vein length and therefore assumed body size, can be 

attributed to either facilitation or competition.  Facilitation can arise due to such 

mechanisms as larval enzyme and protein secretions during resource consumption, which 

has been shown to increase the rate of development in addition to increasing survival 

rates (Rosati, 2014).  Due to the ephemeral nature of carrion, the competitive aspect of 

multiple species utilizing this resource seems problematic, however, one potential 

mechanism for coexistence on carrion is resource partitioning (Denno and Cothran, 1975; 

Ives, 1991).  Perhaps larvae consume more resource in the presence of competitors, 

leading to an increase in body size, and therefore wing vein length.  Seeing as CGS level 

did not affect the size of either blow fly species, it is unlikely that development on burnt 

carrion is a factor that would influence the fitness of either species.  Rather, it is believed 

that egg, and therefore larval densities, had the greatest impact on larval development and 

size, and would have the greatest impact on the fitness of these two blow fly species.    

 It is already known that blow flies can locate and oviposit on carrion quickly 

(Cragg, 1955; Smith, 1986; Thomas and Mangan, 1989; Hall and Doisy, 1993; Smith and 

Wall, 1997b; Gião and Godoy, 1997; Byrd and Allen, 2001; Arnaldos et al., 2005; Byrd 

and Castner, 2010).  The results of this study show that blow flies also have the potential 

to be successful colonizers of an environment following natural disturbances, such as a 

forest fire, given their propensity to successfully develop as larvae and survive to 

adulthood when feeding on burnt remains.  This is important to note, as burnt carrion 

populations are known to increase after disturbances (Shvidenko and Goldammer, 2001; 

United States National Park Service, 2014).  Blow flies have a greater chance of survival 

on burnt carrion when the resource has minimal damage due to flame impingement 

(equivalent to CGS Level 2 and Level 3; Glassman and Crow, 1996).  Additionally, a 

larger presence of blow flies should help attract a wider diversity of other animals to an 

area after a disturbance, especially those that feed upon the larvae, such as birds.  

 This study was conducted in closed arenas under artificial conditions in which the 
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number of blow flies present and the amount of time females were allowed to oviposit 

was limited.  In a natural setting, a larger number of blow flies might utilize the same 

carrion resource and oviposition may also occur over a longer period of time.  When they 

arrive first to carrion, the blow fly, Lucilia coeruleiviridis Macquart (Diptera: 

Calliphoridae) has been known to deposit an overabundance of eggs on a resource 

(Kneidel, 1984).  This allows L. coeruleiviridis to outcompete species that arrive to the 

carrion later (Kneidel, 1984).  Additionally, the size of carrion resource might impact the 

interactions experienced by the individuals present.  Smaller carrion, such as the fetal pig 

carcasses used in this study might represent an environment where stress due to 

competition is higher because there is less resource available, or decreased because there 

are fewer oviposition events (Kneidel, 1984).  Larger carrion resources may also lead to 

higher levels of competition (Kneidel, 1984).  Regardless of the cause, increased 

competition can lead to an overall decrease in species diversity in a habitat (Kneidel, 

1984).   

 Additionally, due to the nature of the closed arenas, this study was a no choice 

oviposition experiment, as females were only allowed to oviposit on the carrion presented 

to them.  In the field, the availability of burnt remains might be higher providing females 

with the opportunity to select from a more diverse variety of burnt remains.  In turn, this 

could change egg and larval densities, as well as species interactions, potentially resulting 

in different fitness levels and survival rates than what was observed in this study.  A final 

drawback to utilizing controlled conditions for this particular experiment was the use of a 

metal tray to hold the carcass inside each experimental cage.  The trays were used to 

make transportation of the carcasses to aquaria easier.  These metal trays facilitated the 

collection of blood and internal contents, resulting in larger than normal drowning risks 

for developing larvae.  If this experiment were repeated in the field, secreted bodily fluids 

would be absorbed into the ground, which would reduce the risk of drowning.  

 Interestingly, survival rates greater than 100% were recorded in this study and the 

effect of these observations on the results of the study were magnified because of the 

small sample size of the study.  Future studies should consider increasing the sample size 

for each species treatment and for each CGS level.  Winsorizing the data represents a 

suitable statistical technique for dealing with outliers (Barnett and Lewis, 1994), but for 
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small datasets, Winsorizing the data may not be a suitable option.  One possible 

explanation for such large survival estimates is that the regression equations developed by 

Rosati et al. (in review) underestimated the number of blow fly eggs present in an egg 

mass, leading to inflated survival rates.  A second, more feasible, explanation for such 

large survival rates is cryptic oviposition.  Specifically, unlike the work by Rosati et al. 

(in review), in which all eggs were laid on liver, and were countable, it is possible that not 

all eggs laid on the pig carcass were countable.  It is difficult to examine all internal 

cavities, such as the inner ear canal, thoroughly and take quality photographs for 

estimation purposes without risking the integrity of deposited egg masses.  It would be 

informative for future work in this area to determine how many eggs are laid inside body 

cavities such as the inner ear canal, in order to determine if cryptic oviposition occurs, 

and to establish a method of estimating the actual number of eggs laid on a more complex 

three-dimensional surface. 

Carcasses burnt to CGS Level 2 and Level 3 provided the greatest chance of 

survival for developing L. sericata and P. regina larvae in this study.  Although carcasses 

at these levels experience the greatest loss of biomass as a result of burning, it is not 

enough to significantly impact the success of developing larvae.  Instead it is believed 

that decreased larval density, in the case of L. sericata, may contribute to the greater 

success of L. sericata larvae.  Larval density did not appear to impact the success of P. 

regina larvae as instances of higher larval densities still resulted in greater survival totals.  

Fitness levels were not affected by CGS level, but were affected by species composition.  

Lucilia sericata and P. regina responded negatively to conspecifics as shown by 

decreased adult size when compared to their larger size in the presence of heterospecifics.  

Overall, the results of this study give us reason to believe that blow flies would respond 

well after a natural disaster, such as a forest fire, by colonizing carrion that have died as a 

result of flame impingement.  In the future, outdoor validation studies should be 

performed to ensure that the results found in controlled conditions described here are 

similar to those observed in the field. 
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Table 3.1: The dates of the developmental period and mean temperatures (± S.E.) 

experienced by ovipositing female blow flies and developing larvae during that time.  The 

carcasses were burnt on the morning of the first day listed in each row.  The mean 

temperatures (± S.E.) experienced by developing L. sericata, P. regina and mixed species 

larvae were 27.5 ± 0.1 °C, 25.4 ± 0.1 °C and 25.2 ± 0.1 °C, respectively.  Overall, 

temperatures experienced by the larvae across each species treatment were different 

(ANOVA: F2, 7572 = 125.44, p < 0.0001).  For each species treatment and CGS level, n = 

5.  Species treatments with different letters indicate a statistical difference (α = 0.05).  

Replicate Date Temperature (°C) 

Lucilia sericata a 

Burn 1 May 16 – June 6, 2013 28.2 ± 0.3 

Burn 2 June 5 – June 26, 2013 29.5 ± 0.2 

Burn 3 Aug. 21 – Sept. 11, 2013 30.4 ± 0.2 

Burn 4 Sept. 3 – Sept. 24, 2013 24.7 ± 0.2 

Burn 5 Feb. 3 – Feb. 24, 2014 24.3 ± 0.1 

Phormia regina b 

Burn 1 Aug. 5 – Aug. 26, 2013 26.4 ± 0.2 

Burn 2 Aug. 5 – Aug. 26, 2013 26.4 ± 0.2 

Burn 3 Sept. 15 – Oct. 6, 2013 24.0 ± 0.2 

Burn 4 Feb. 26 – March 19, 2014 25.1 ± 0.2 

Burn 5 Feb. 26 – March 19, 2014 25.1 ± 0.2 

Mixed – Lucilia sericata and Phormia regina b 

Burn 1 May 31 – June 21, 2013 28.4 ± 0.3 

Burn 2 Sept. 15 – Oct. 6, 2013 24.0 ± 0.2 

Burn 3 Feb. 3 – Feb. 24, 2014 24.3 ± 0.1 

Burn 4 March 24 – April 14, 2014 29.3 ± 0.3 

Burn 5 April 18 – May 9, 2014 19.9 ± 0.2 
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Table 3.2: The original and Winsorized survival rates (%) across the five replicates for 

each species treatment and each CGS level.  Survival rates with an asterisk (*) indicate 

outliers as determined by the Dixon’s test.  CGS levels without a Winsorized dataset 

either contained no statistical outliers or could not be Winsorized due to the sample size 

of the study. 

 

CGS Level Original Survival Rates Winsorized Survival Rates 

Lucilia sericata 

Level 0 19.2, 32.7, 55.3, 55.4, 1117.1* 32.7, 32.7, 55.3, 55.4, 55.4 

Level 1 23.2, 34.2, 44.3, 50.2, 54.8 ——— 

Level 2 44.8, 59.2, 76.9, 80.4, 246.2* 59.2, 59.2, 76.9, 80.4, 80.4 

Level 3 47.1, 53.9, 58.7, 110.7*, 164.9* ——— 

Phormia regina 

Level 0 1.8, 16.2, 45.7, 49.1, 64.1 ——— 

Level 1 15.5, 29.5, 44.7, 45.4, 179.5* 29.5, 29.5, 44.7, 45.4, 45.4 

Level 2 42.0, 44.9, 54.5, 129.9*, 149.0* ——— 

Level 3 31.5, 34.3, 52.8, 88.6, 407.9* 34.3, 34.3, 52.8, 88.6, 88.6 

Mixed – Lucilia sericata and Phormia regina 

Level 0 5.0, 5.3, 38.7, 59.8, 60.5 ——— 

Level 1 25.2, 29.6, 29.7, 41.9, 53.3 ——— 

Level 2 35.6, 53.3, 77.6, 80.9, 109.4 ——— 

Level 3 6.0, 16.0, 47.8, 134.6*, 175.4* ——— 
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Table 3.3: The results of the analysis of variance (ANOVA) to determine the effects of 

species composition, CGS level and gender, and the interactions therein, on the length of 

the posterior cross vein (cm-du) for L. sericata and P. regina.  Statistically significant 

effects are indicated in bold font.  For all effects, α = 0.05. 

 

Effect d.f. F Value p - value 

Lucilia sericata 

Species composition 1 16.69 0.0001 

CGS level 3 0.98 0.4088 

Sex 1 65.00 < 0.0001 

Species composition * 
CGS level 3 1.78 0.1601 

CGS level * Sex 3 0.13 0.9404 

Species composition * 
Sex 1 0.03 0.8668 

Species composition * 
CGS level * Sex 3 0.16 0.9251 

Phormia regina 

Species composition 1 6.30 0.0147 

CGS level 3 1.15 0.3343 

Sex 1 9.08 0.0038 

Species composition * 
CGS level 3 1.20 0.3161 

CGS level * Sex 3 0.04 0.9903 

Species composition * 
Sex 1 0.03 0.8602 

Species composition * 
CGS level * Sex 3 0.06 0.9812 
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Figure 3.1: The posterior cross vein (cm-du), pictured here (circled), was measured to the 

nearest hundredth of a millimetre, as an indicator of adult fly size and used as a proxy of 

fitness for both L. sericata and P. regina. 
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Figure 3.2: The total biomass lost after pig carcases were burnt to Level 1, Level 2 and 

Level 3 on the CGS.  A positive, linear relationship was observed (F1, 42 = 68.95, p < 

0.0001, R2 = 0.61) between CGS level and the amount of biomass lost after flame 

impingement.  
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Figure 3.3: The mean (± S.E.) survival rates for L. sericata (top) and P. regina (bottom) 

larvae on fetal pig carcasses burnt to Levels 1 to 3 on the CGS and for the un-burnt 

controls (Level 0). For both species, survival rates between CGS Level 1 and Level 2 

were significantly different (L. sericata: p = 0.0038; P. regina: p = 0.0105).
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Figure 3.4: The relationship between mean number of eggs oviposited by female blow 
flies and mean (± S.E.) survival rate to the adult stage across CGS level.  Panels A, B and 
C represent L. sericata, P. regina and mixed species treatments, respectively.  None of 
the relationships were statistically significant due to the small sample size (n = 5 for each 
CGS level) and the variation within each CGS level, for each species. 

A 

B 

y = -0.01x + 129.34 

0 
20 
40 
60 
80 

100 
120 

3000 4000 5000 6000 7000 8000 9000 10000 

M
ea

n 
Su

rv
iv

al
 

 R
at

e 
(%

) 

Mean Number of Eggs 

y = 0.01x - 34.82 

0 
20 
40 
60 
80 

100 
120 

3000 4000 5000 6000 7000 8000 9000 10000 

M
ea

n 
Su

rv
iv

al
 

 R
at

e 
(%

) 

Mean Number of Eggs  

y = -0.004x + 86.89 

0 
20 
40 
60 
80 

100 
120 

3000 4000 5000 6000 7000 8000 9000 10000 

M
ea

n 
Su

rv
iv

al
 

 R
at

e 
(%

) 

Mean Number of Eggs 

C 

B 



!

95!
!

REFERENCES 
 

Anderson, G.S.  2000.  Minimum and maximum development rates of some 
forensically important Calliphoridae (Diptera).  Journal of Forensic 
Sciences 45:824-832 

 
Anderson, G.S.  2010.  Factors that influence insect succession on carrion.  In 

Forensic Entomology: The Utility of Arthropods in Legal Investigations, 
eds.  J.H. Byrd and J.L. Castner.  Boca Raton, FL: CRC Press.  201-250.  
2nd ed. 

 
Anderson, G.S., and S.L. VanLaerhoven.  1996.  Initial studies on insect succession on 

carrion in southwestern British Columbia.  Journal of Forensic Sciences 41:617-
625 

 
Arnaldos, M.I., M.D. García, E. Romera, J.J. Presa, and A. Luna.  2005.    

Estimation of postmortem interval in real cases based on experimentally 
obtained entomological evidence.  Forensic Science International 149:57-
65 

 
Aviation, Forest Fire and Emergency Services. 2014.  Forest Fires.  Ministry of 

Natural Resources and Forestry. Government of Ontario.  
<http://www.ontario.ca/law-and-safety/forest-fires> 

 

Avila, F.W., and M.L. Goff.  1998.  Arthropod succession patterns onto burnt 
carrion in two contrasting habitats in the Hawaiian Islands.  Journal of 
Forensic Sciences 43:581-586 

 
Barnett, V., and T. Lewis.  1994.  Outliers in Statistical Data.  Chichester, 

England: John Wiley & Sons Ltd.  3rd ed.  608 pp.   
 
Baxter, J.A., and P.E. Morrison.  1983.  Dynamics of growth modified by larval 

population density in the flesh fly Sarcophaga bullata.  Canadian Journal 
of Zoology 61:512-517 

 
Bulan, C.A., and G.W. Barrett. 1971.  The effects of two acute stresses on the 

arthropod component of an experimental grassland ecosystem.  Ecology 
52:597-605 

 
Byrd, J.H., and J.C. Allen.  2001.  The development of the black blow fly, 

Phormia regina (Meigen).  Forensic Science International 120:79-88 
 
Byrd, J.H., and J.L. Castner.  2010.  Insects of forensic importance.  In Forensic 

Entomology: The Utility of Arthropods in Legal Investigations, eds. J.H. 
Byrd and J.L. Castner.  Boca Raton, FL: CRC Press.  39-126. 2nd ed. 



!

96!
!

Camacho Mtz-Vara De Rey, C., M.P. Galindo Galindo, and M.A. Arias Velarde.  
2001.  Effects of using mean scores in regression models: an example from 
environmental psychology.  Quality and Quantity.  35:191-202 

 
Catts, E.P.  1992.  Problems in estimating the postmortem interval in death 

investigations.  Journal of Agricultural Entomology 9:245-255 
 
Catts, E.P., and M.L. Goff.  1992.  Forensic entomology in criminal 

investigations.  Annual Review of Entomology 37:253-272 
 
Chin, H.C., M.A. Marwi, A.F.M. Salleh, J. Jeffery, H. Kurahashi, and B. Omar.  

2008.  Study of insect succession and rate of decomposition on a partially 
burned pig carcass in an oil palm plantation in Malaysia.  Tropical 
Biomedicine 25:202-208  

 
Clark, K., L. Evans, and R. Wall.  2006.  Growth rates of the blowfly, Lucilia 

sericata, on different body tissues.  Forensic Science International 
156:145-149.  

 
Cragg, J.B.  1955.  The natural history of sheep blowflies in Britain.  Annals of 

Applied Biology 42:197-207 
 
Denno, R.F., and W.R. Cothran.  1975.  Niche relationships of a guild of 

necrophagous flies.  Annals of the Entomological Society of America.  
68:741-754 

 
Dixon, W.J., and F.J. Massey Jr.  1969. Introduction to Statistical Analysis.  New 

York: McGraw-Hill.  2nd ed.  678 pp.  
 
Durska, E., J. Bonert, and B. Viklund.  2010.  The scuttle fly (Diptera: Phoridae) 

assemblages of a wildfire- affected hemiboreal old-growth forest in 
Tyresta (Sweden).  Entomologica Fennica 21:19-32 

 
Ellers, J., J.J.M. van Alphen, and J.G. Sevenster.  1998.  A field study of size-

fitness relationships in the parasitoid Asobara tabida.  Journal of Animal 
Ecology.  67:318-324.  

 
Ellis, A.M.  2008.  Incorporating density dependence into the Oviposition 

Preference–Offspring Performance Hypothesis.  Journal of Animal 
Ecology 77:247-256 

 
Gião, J.Z., and W.A.C. Godoy.  2007.  Ovipositional behavior in predator and 

prey blowflies.  Journal of Insect Behavior 20:77-86 
 
Glassman, D.M., and R.M. Crow.  1996.  Standardization model for describing the 

extent of burn injury to human remains.  Journal of Forensic Sciences 
41:152-154 



!

97!
!

Hall, R.D., and K.E. Doisy.  1993.  Length of time after death: effect on attraction 
and oviposition or larviposition of midsummer blow flies (Diptera: 
Calliphoridae) and flesh flies (Diptera: Sarcophagidae) of medicolegal 
importance in Missouri.  Annals of the Entomological Society of America 
86:589-593 

 
Hayes, E.J., R. Wall, and K.E. Smith.  1998.  Measurement of age and population 

age structure in the blowfly, Lucilia sericata (Meigen) (Diptera: 
Calliphoridae).  Journal of Insect Physiology 44:895-901 

 
Hurst, G.A.  1971.  The effects of controlled burning on arthropod density and 

biomass in relation to bobwhite quail brood habitat on a right-of-way.  
Ecological Animal Control by Habitat Management 2. Proc. of Tall 
Timbers Conference on Ecological Animal Control by Habitat 
Management, Tallahassee, Florida.  173-183   

 
Hutton, G.F., and S.S. Wasti.  1980.  Competitive interactions between larvae of 

the green bottle fly, Phaenicia Sericata (Meig.) and the black blow fly, 
Phormia Regina (Meig.).  Comparative Physiological Ecology 5:1-4 

 
Introna, F., C.P. Campobasso, and A. Di Fazio.  1998.  Three case studies in 

forensic entomology from Southern Italy.  Journal of Forensic Sciences 
43:210-214 

 
Ireland, S., and B. Turner.  2006.  The effects of larval crowding and food type on 

the size and development of the Blowfly, Calliphora vomitoria.  Forensic 
Science International 159:175-181 

 
Ives, A.R.  1991.  Aggregation and coexistence in a carrion fly community.  

Ecological Monographs.  61:75-94 
 
Jaenike, J.  1978.  On optimal oviposition behavior in phytophagous insects.  

Theoretical Population Biology 14:350-355 
 
Jaenike, J.  1990.  Host Specialization In Phytophagous Insects.  Annual Review of 

Ecology and Systematics 21:243-273 
 
Kheirallah, A.M., T.I. Tantawi, A.H. Aly, and Z.A. El-Moaty.  2007.  Competitive 

interaction between larvae of Lucilia sericata (Meigen) and Chrysomya 
albiceps (Weidemann) (Diptera: Calliphoridae).  Pakistan Journal of 
Biological Sciences 10:1001-1010 

 
Klocke, D., A. Schmitz, H. Soltner, H. Bousack, and H. Schmitz.  2011.  Infrared 

receptors in pyrophilous (“fire Loving”) insects as model for new un-
cooled infrared sensors.  Beilstein Journal of Nanotechnology 2:186-197  

 
 



!

98!
!

Kneidel, K.A.  1984.  Competition and disturbance in communities of carrion-
breeding diptera.  The Journal of Animal Ecology 53:849-865  

 
Linsley, E.G.  1943.  Attraction of Melanophila beetles by fire and smoke.  Journal of  
 Economic Entomology 36:341-342  

Mayhew, P.J.  1997.  Adaptive patterns of host-plant selection by phytophagous insects.  
Oikos 79:417-428 

McCullough, D.G., R.A. Werner, and D. Neumann.  1998.  Fire and insects in 
northern and boreal forest ecosystems of North America.  Annual Review 
of Entomology 43:107-127 

 
Moretti, M., M.K. Obrist, and P. Duelli.  2004.  Arthropod biodiversity after forest 

fires: winners and losers in the winter fire regime of the Southern Alps.  
Ecography 27:173-186 

 
Nabity, P.D., L.G. Higley, and T.M. Heng-Moss.  2006.   Effects of temperature 

on development of Phormia regina (Diptera: Calliphoridae) and use of 
developmental data in determining time intervals in forensic entomology.  
Journal of Medical Entomology 43:1276-1286 

 
Nagel, H.G.  1973.  Effect of spring prairie burning on herbivorous and non-

herbivorous arthropod populations.  Journal of the Kansas Entomological 
Society 46:485-496  

 
Nasi, R., R. Dennis, E. Meijaard, G. Applegate, and P. Moore.  2002.  Forest fire 

and biological diversity.  Unasylva 209 53:36-40 
 
Pai, C., M. Jien, L. Li, Y. Cheng, and C. Yang.  2007.  Application of forensic 

entomology to postmortem interval determination of a burned human 
corpse: a homicide case report from Southern Taiwan.  Journal of the 
Formosan Medical Association 106:792-798 

 
Prinkkilä, M., and I. Hanski.  1995.  Complex competitive interactions in four 

species of Lucilia blowflies.  Ecological Entomology 20:261-272   
 
Reis, S.F. dos, C.J. von Zuben, and W.A.C. Godoy.  1999.  Larval aggregation 

and competition for food in experimental populations of Chrysomya 
putoria (Wied.) and Cochliomyia macellaria (F.) (Dipt., Calliphoridae).  
Journal of Applied Entomology 123:485-489 

 
Rice, LA.  1932.  The effect of fire on the prairie animal communities.  Ecology 13:392-

401 

 



!

99!
!

Ricker, J.P., J.N. Brzorad, and J. Hirsch.  1986.  A demonstration of 
discriminative conditioning in the blow fly, Phormia regina.  Bulletin of 
the Psychonomic Society 24:240-243 

 
Rosati, J.Y.  2014.  Spatial and temporal variability in the carrion insect community: 

using blow flies (Family: Calliphoridae) as a model system to study coexistence 
mechanisms at multiple scales. Diss. U of Windsor.   

Rosati, J.Y., V.A. Pacheco, M.A. Vankosky, and S.L. VanLaerhoven.  In review.  
Validating Imaging Software Techniques for Estimating the Number of Eggs in 
Blow Fly (Diptera: Calliphoridae) Egg Masses.  Journal of Medical Entomology.   

 
SAS Institute Inc.  2011.  SAS/STAT® 9.3 User’s Guide.  Cary, NC: SAS Institute, Inc.  

7869 pp. 
 
Saunders, D.S., and A. Bee.  1995.  Effects of larval crowding on size and fecundity of 

the blow fly, Calliphora vicina (Diptera: Calliphoridae).  European Journal of 
Entomology 92:615-622 

 
Schmitz, H., H. Bleckmann, and M. Mürtz.  1997.  Infrared detection in a beetle.   

Nature 386:773-774 

Schütz, S., B. Weissbecker, H.E. Hummel, K. Apel, H. Schmitz, and H. 
Bleckmann.  1999.  Insect antenna as a smoke detector.  Nature 398:298-
299 

 
Sharanowski, B. J., E.G. Walker, and G.S. Anderson.  2008.  Insect succession 

and decomposition patterns on shaded and sunlit carrion in Saskatchewan 
in three different seasons.  Forensic Science International 179:219-240 

 
Shvidenko, A., and J.G. Goldammer.  2001.  Fire situation in the Russian 

Federation.  In Global Forest Fire Assessment 1990-2000, eds. J. G. 
Goldammer and Robert W. Mutch.  Rome: FAO, Forestry Dept. 

 
Smith, K.G.V.  1986.  Diptera.  In A Manual of Forensic Entomology.  Ithaca, 

NY: Cornell University Press.  68-137 
 
Smith, K.E., and R. Wall.  1997a.  Asymmetric competition between larvae of the 

blowflies Calliphora vicina and Lucilia sericata in carrion.  Ecological 
Entomology 22:468-474 

 
Smith, K.E., and R. Wall.  1997b.  The use of carrion as breeding sites by the 

Blowfly Lucilia sericata and other Calliphoridae.  Medical and Veterinary 
Entomology 11:38-44 

 
 
 



!

100!
!

So, P., and D. Dudgeon.  1990.  Interspecific competition among larvae of 
Hemipyrellia ligurriens (Calliphoridae) and Boettcherisca formosensis 
(Sarchophagidae) (Diptera).  Researches on Population Ecology 32:337-
348 

 
Stoffolano Jr, J.G., E.Y. Gonzalez, M. Sanchez, J. Kane, K. Velázquez, A.L. 

Oquendo, G. Sakolsky, P. Schafer, and C.M. Yin.  2000.  Relationship 
between size and mating success in the blow fly Phormia regina (Diptera: 
Calliphoridae).  Annals of the Entomological Society of America.  93:673-
677   

 
Swengel, A.B.  2001.  A literature review of insect responses to fire, compared to 

other conservation managements of open habitat.  Biodiversity and 
Conservation 10:1141-1169 

 
Tallamy, D.W.  1999.  Child care among the insects.  Scientific American 280:72-

77 
 
Thomas, D.B., and R.L. Mangan.  1989.  Oviposition and wound-visiting behavior 

of the screwworm fly, Cochliomyia hominivorax (Diptera: Calliphoridae).  
Annals of the Entomological Society of America 82:526-534 

 
Thompson, J.N.  1988.  Evolutionary ecology of the relationship between 

oviposition preference and performance of offspring in phytophagous 
insects.  Entomologia Experimentalis et Applicata 47:3-14 

 
Turner, B., and T. Howard.  1992.  Metabolic heat generation in Dipteran larval 

aggregations: a consideration for forensic entomology.  Medical and 
Veterinary Entomology 6:179-181 

 
Ullyett, G.C.  1950.  Competition for food and allied phenomena in sheep-blowfly 

populations.  Philosophical Transactions of the Royal Society of London. Series B, 
Biological Sciences 234:77-174 

 
United States National Park Service. 2014. History of Wildland Fire in 

Yellowstone.  National Parks Service and the U.S. Department of the 
Interior.  <http://www.nps.gov/yell/naturescience/wildlandfire.htm> 

 
Van Amburg, G.L., J.A. Swaby, and R.H. Pemble.  1981.  Response of arthropods to a 

spring burn of a tall grass prairie in Northwestern Minnesota.  Ohio Biological 
Survey 15:240-243 

 
Vanin, S., E. Zanotti, D. Gibelli, A. Taborelli, S. Andreola, and C. Cattaneo.  2013.  

Decomposition and entomological colonization of charred bodies – a pilot study.  
Croatian Medical Journal 54:387-393 

 
 



!

101!
!

VanLaerhoven, S.L., and G.S. Anderson.  1999.  Insect succession on buried carrion in 
two biogeoclimatic zones of British Columbia.  Journal of Forensic Sciences 
44:32-43 

 
VanLaerhoven, S.L., and G.S. Anderson.  2001.  Implications of using development rates 

of blow fly (Diptera: Calliphoridae) eggs to determine postmortem interval.  
Journal of the Entomological Society of British Columbia 98:189-194 

 
Vogt, W.G., T.L. Woodburn, and A.C.M. van Gerwen.  1985.  The influence of oocyte 

resorption on ovarian development rates in the Australian sheep blowfly, Lucilia 
cuprina.  Entomologia Experimentalis et Applicata.  39:85-90   

 
Wardhaugh, K.G.  2001.  The biology and ecology of the Australian sheep blowfly, 

Lucilia cuprina (Wiedemann) – an update.  Proceedings of the FLICS Conference.  
Launceston, Australia.  53-70  

 
Wikars, L.  2002.   Dependence on fire in wood-living Insects: an experiment with burned 

and unburned spruce and birch logs.  Journal of Insect Conservation 6:1-12 
 
Winter, B.M.  1984.  Effects of prescribed burning on avian foraging ecology and 

arthropod abundance in sagebrush-grassland.  Iowa State University, Thesis. 

 

!

!

!

!

!

!

!

!

!

!

!

!

!



!

102!
!

CHAPTER 4: 

BLOW FLIES AND BURNT CARRION: WHAT HAVE WE LEARNED AND 

WHERE DO WE GO FROM HERE? 

 
FIRE TRENDS, OVIPOSITION THEORIES AND RESEARCH MODEL 
 

Burnt carrion can result from a number of different scenarios.  For example, fire 

related crimes such as arson and homicide or the use of fire as a forensic countermeasure 

may leave behind burnt remains that can be utilized by carrion insects.  Except for 2012, 

the number of deaths resulting from flame impingement has been increasing in Canada 

(Statistics Canada, 2013).  An increase in fire related homicides might lead to an increase 

in the incidence of burnt carrion that can be colonized by forensically important insects, 

such as blow flies (Diptera: Calliphoridae).  Natural disasters, such as forest fires, may 

also lead to an increase in burnt remains, most commonly in the form of burnt animal 

carcasses, rather than human remains (Shvidenko and Goldammer, 2001; United States 

National Park Service, 2014).  Blow fly oviposition on burnt carrion has been reported in 

the literature (Avila and Goff, 1998; Introna et al., 1998; Pai et al., 2007; Chin et al., 

2008; Vanin et al., 2013).  Due to their predictable life history and early arrival at carrion 

resources, blow fly development and behaviour is heavily utilized by forensic 

entomologists when calculating a minimum postmortem interval estimate (Cragg, 1955; 

Smith, 1986; Thomas and Mangan, 1989; Hall and Doisy, 1993; Smith and Wall, 1997b; 

Gião and Godoy, 1997; Byrd and Allen, 2001; Bourel et al., 2003; Arnaldos et al., 2005; 

Byrd and Castner, 2010).  However, there has been no research conducted to 

experimentally determine if burnt remains alter the oviposition behaviour, and 

consequently larval survival and fitness, of blow flies.  

Characterizing burnt remains has become easier with the introduction of the 

Crow-Glassman Scale (CGS) that is used to classify the severity of fire damage to a burn 

victim based on their appearance (Glassman and Crow, 1996).  As the CGS level of a 

burnt body increases, the physical appearance of the remains also changes (Glassman and 

Crow, 1996).  Among the more noticeable changes are the development of cracks in the 

skin and the dismemberment of limbs (Glassman and Crow, 1996).  Cracks are prominent 
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at CGS Levels 2 and 3 (Avila and Goff, 1998; Chapter 2), and reveal internal structures 

and bodily fluids that contain sugars and proteins that attract blow flies (Avila and Goff, 

1998; Byrd and Castner, 2010).  It has been suggested that the cracks in the skin that 

result from flame impingement might represent optimal oviposition locations on burnt 

remains and as a result, may act to facilitate blow fly oviposition (Avila and Goff, 1998; 

Vanin et al., 2013).  Using optimal oviposition theory, which states that female 

preference for oviposition sites should maximize offspring performance (Jaenike, 1978; 

Thompson, 1988; Ellis, 2008), as a research model, the goal of this research was to 

determine if cracks on burnt carcasses were preferred by female blow flies for oviposition 

and how oviposition on burnt carcasses affected the resultant offspring.  To conduct this 

research, two species of blow fly local to Ontario, Canada were used as a model species: 

Lucilia sericata Meigen and Phormia regina Meigen (Diptera: Calliphoridae). 
 

BLOW FLIES OVIPOSITED ON BURNT CARRION AND THE CRACKS ON BURNT 
CARRION AFFECTED FEMALE PREFERENCE 
 

Oviposition was observed on all pig carcasses included in this study, regardless of 

the degree of flame impingement.  An increase in oviposition events at the cracks was 

observed for L. sericata, P. regina and in mixed species treatments, but only when carrion 

were classified as Level 3 on the CGS (Chapter 2).  At this particular CGS level, there 

was a shift in oviposition preference away from traditional oviposition sites towards the 

cracks created via flame impingement.  According to optimal oviposition theory (Jaenike, 

1978), such a shift in oviposition preference indicates that female blow flies perceive the 

cracks as a beneficial habitat for their offspring.  Cracks were present on carcasses 

classified as Level 2 on the GCS (Chapter 2), but no preference for cracks was observed.  

This might be explained several ways.  For example, CGS Level 3 carcasses sustain more 

damage than Level 2 carcasses, so physical characteristics on the traditional locations 

might be missing or compromised at Level 3, increasing the attractiveness of the cracks.  

The reason for the difference might also be directly connected to the prominence or 

availability of the cracks on CGS Level 3 carcasses compared to Level 2 carcasses.  

For a forensic entomologist, understanding where female blow flies oviposit can 
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help investigators to better understand the series of events connected with the death of a 

decedent.  When forensic entomologists observe abnormal oviposition behaviour such as 

oviposition in an atypical location on the body, it can expand the scope of an 

investigation, as this abnormal behaviour must be explained.  This change in oviposition 

behaviour can be the difference between a suspicious death being ruled either a suicide or 

a homicide. Not only is it beneficial to understand these oviposition behaviours when 

carrion are unaltered, but it is also beneficial when carrion are altered such as those 

exposed to flame impingement.  From an ecological point of view, it is important to 

understand what factors influence the re-colonization behaviours of animals.  Identifying 

that after natural disturbances, such as a forest fire, that altered carrion are not influencing 

the oviposition success of insects is encouraging.  The oviposition success of blow flies 

on burnt carrion in this study provides evidence to suggest that blow flies may be an 

important taxa for the initiation of the re-colonization and succession processes in an 

affected ecosystem.  

Although they would be extremely difficult to setup due to safety concerns and 

logistical problems, the use of field validation studies would help expand on the research 

presented in this thesis.  These field validation studies would be beneficial to both 

forensic entomologists, as suspicious deaths occur year round, and to ecologists, as 

natural disturbances also occur throughout the year.  Field validation studies could be 

organized in two ways.  The first would be the arrangement of a controlled burn in an 

area already scheduled for routine maintenance, such as the tall-grass prairie ecosystem at 

the Ojibway Nature Centre in Windsor, Ontario, Canada.  Within this controlled burn, 

pre-deceased carrion would be randomly placed in the area receiving the treatment and 

observations of insect behaviour would take place once the area was deemed safe.  The 

second method would involve data collection after naturally occurring disturbances.  This 

second method would most accurately represent natural conditions and provide an 

important setting in which to investigate blow fly responses to disturbances.  If possible, 

field validation studies should be conducted in different ecosystems and during different 

seasons as these variables may change the observed results.  By conducting these 

experiments in the field, the nature of the experiments change from a no-choice 

oviposition study, as conducted in the present study, to one in which female blow flies 
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can choose from a variety of carcasses burnt to varying levels on the CGS.  Additionally, 

the present study utilized burnt fetal pig carcasses as the carrion in which the blow flies 

were exposed too.  Future studies should also consider using larger pigs that more closely 

resemble the mean weight of an adult, for forensic entomology based studies, or a fully 

developed animal for ecology based studies.  This would be beneficial, as larger 

individuals burn differently due to musculature and fat content (Nicholson, 1993), 

potentially resulting in different results from what have been shown within this thesis.  

 It is important to note that cracks resulting from flame impingement and wounds, 

such as those resulting from gunshots or cuts, have similar physical characteristics.  

Depending on the severity of physical damage experienced by a carcass that is burnt, it 

may be beneficial to distinguish between wounds that existed before burning to those that 

result from burning in cases where burning is used as a forensic countermeasure.  Blow 

fly preference for wounds on a burnt carcass may also change.  It would be informative to 

conduct further studies in which fetal pig carcasses are wounded before burning to 

determine how flame impingement affects pre-existing wounds and if female preference 

for those sites is affected when cracks form during burning. 
 

PRESENCE OF CONSPECIFICS AND HETEROSPECIFICS AFFECTED FEMALE 
PREFERENCE 

 

Although female blow flies did oviposit at the cracks on burnt carrion, overall, 

they laid fewer eggs at the cracks than at other sites (Chapter 2).  For L. sericata, this 

result suggests that cracks may not be as optimal for oviposition as expected based on the 

number of oviposition events that were observed.  It is predicted that very wet cracks 

might represent a risk to larvae.  Thus, females lay fewer eggs at risky sites, but still 

deposit some eggs at those sites as they might prove to be beneficial rather than risky.  

The difference in egg numbers deposited at the various locations on carrion might also be 

the result of changes in larval densities between locations and female perception of those 

changes.  Specifically, certain sites might be able to support larger larval populations than 

others and female blow flies recognize this when ovipositing.  The results of this study 

suggest that L. sericata prefer sites of lower density when subjected to adverse 

conditions, such as those that might be found in the cracks where the risks of larvae 
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drowning are high.  It is also likely that L. sericata engage in skip oviposition, a process 

in which females spread eggs within their clutch over numerous suitable locations (Mogi 

and Mokry, 1980).  This type of behaviour would result in variability in egg number 

between locations, similar to that observed in this study.  As expected, these results may 

indicate the optimum larval density, at the cracks, for L. sericata is lower.  Contrary to L. 

sericata, P. regina oviposited large numbers of eggs at the cracks when they were the 

only species present and carcasses were burnt to a CGS Level 3 (Chapter 2).  This 

particular species performs better when larval densities are high, so an increase in the 

number of eggs present at the cracks should not have a negative effect on their 

development.   

These results provide forensic entomologists and ecologists with research that 

would suggest the suitability of cracks for oviposition is dependent on the species of blow 

fly present and on the degree of damage to the carcass, as indicated by CGS level.  

Specifically, given different circumstances, different blow fly species use different 

oviposition strategies to ensure their offspring have the best chance of eclosion and 

survival.  It also demonstrates that competitive species interactions do not always play a 

role in the success of certain blow fly species, particularly L. sericata.  As previously 

mentioned, aside from the presence of heterospecifics and conspecifics, the drowning 

potential associated with seeping bodily fluids may prevent oviposition in cracks or 

wounds.  It would be interesting for future studies to investigate if this is truly the case by 

manipulating the volume of fluid present at the cracks on burnt carrion and observing the 

oviposition behaviour of female blow flies in both choice and no-choice experiments. 

 

BURNT CARRION AFFECTED FEMALE FITNESS BUT NOT OFFSPRING 
PERFORMANCE 
 

Larval survival in this study increased as the degree of flame impingement 

increased (Chapter 3).  This result was surprising, as carcasses classified as Level 2 and 

Level 3 on the CGS lost the most biomass (Chapter 2 and 3), reducing the amount of 

resource available for developing maggots.  For L. sericata this may have been influenced 

by the decrease in larval competition due to a decrease in egg density as CGS level 
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increased (Chapter 2).  For P. regina, higher egg density and subsequent larval density 

was observed as CGS level increased, but this did not impact their survival. This could 

potentially be explained by a higher optimal larval density of P. regina, which contradicts 

the results of others (Hutton and Wasti, 1980).  It appears that of the two blow fly species 

used in this thesis, P. regina is more robust given its ability to survive on altered carrion 

even when faced with higher larval densities, and therefore, greater potential larval 

competition.  Overall, these results indicate that the fitness of a female blow fly is not 

compromised if she chooses to oviposit on burnt carrion.   

 The size of the adult blow flies that emerged from the larvae feeding on burnt 

carrion was not affected by the level of flame impingement.  Size, measured using the 

posterior cross-vein as a proxy indicator, is a measure of offspring performance and can 

be used to predict the future fitness of those individuals (Smith and Wall, 1997a; Smith 

and Wall, 1997b; Hayes et al., 1998; Clark et al., 2006; Ireland and Turner, 2006).  The 

results of this study suggest that the performance of larvae feeding on burnt carrion is not 

affected by the degree of damage caused by the flames.  It also suggests that the 

subsequent fitness of the adults emerging from the larvae is unlikely to be affected by 

consuming burnt carrion.  It is important to note that both L. sericata and P. regina larvae 

that developed in the presence of heterospecific larvae were larger as adults than larvae 

that developed among conspecifics.  This would suggest that both species were facilitated 

by heterospecifics. 

These results indicate that blow flies can be successful colonizers after a natural 

disturbance, particularly a forest fire, in which burnt carrion remain.  This is encouraging 

for ecologists as it can help provide a better understanding of succession patterns that 

occur after natural disturbances.  The development of maggots on burnt carrion can lead 

to an influx of other animals to an affected area, particularly those that rely on maggots 

for food.  However, due to the significant amount of time it took to sort and count the 

adult flies that emerged after developing on the burnt carcasses in this study and other 

time constraints, the sample size for this study was low.  An overall benefit to all future 

research would be to increase sample size.  By increasing the number of burns performed 

for each of the species treatments, and therefore, increasing the number of burnt remains, 

the power available for all statistical analyses would increase.  
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In conclusion, the results of these studies provide an important basis for forensic 

investigations that involve burnt carcasses and have important implications to ecological 

research involving patterns of succession following fire related disturbances.  However, 

not all of the results supported the predictions of the study, and new questions have 

arisen.  Further research in this system is needed to answer these questions.  Specifically, 

field validation studies and choice studies would be valuable, as would an assessment of 

female perception of risk at the cracks as moisture levels change.  The results of this 

study will be important in informing the questions asked in improving the experimental 

design.  Altogether, this research, in conjunction with past and future work will benefit 

both forensic entomologists and ecologists. 
 

 

 

 

 

 
 

 
 

 
 

 

 

 

 

 

 
!

!



!

109!
!

REFERENCES 
!

Arnaldos, M.I., M.D. García, E. Romera, J.J. Presa, and A. Luna.  2005.    
Estimation of postmortem interval in real cases based on experimentally 
obtained entomological evidence.  Forensic Science International 149:57-
65 

 
Avila, F.W., and M.L. Goff.  1998.  Arthropod succession patterns onto burnt 

carrion in two contrasting habitats in the Hawaiian Islands.  Journal of 
Forensic Sciences 43:581-586 

 
Bourel, B., B. Callet, V. Hédouin, and D. Gosset.  2003.  Flies eggs: a new 

method for the estimation of short-term post-mortem interval? 
 Forensic Science International 135:27-34 
 
Byrd, J.H., and J.C. Allen.  2001.  The development of the black blow fly, 

Phormia regina (Meigen).  Forensic Science International 120:79-88 
 
Byrd, J.H., and J.L. Castner.  2010.  Insects of forensic importance.  In Forensic 

Entomology: The Utility of Arthropods in Legal Investigations, eds. J.H. 
Byrd and J.L. Castner.  Boca Raton, FL: CRC Press.  39-126. 2nd ed. 

 
Chin, H.C., M.A. Marwi, A.F.M. Salleh, J. Jeffery, H. Kurahashi, and B. Omar.  

2008.  Study of insect succession and rate of decomposition on a partially 
burned pig carcass in an oil palm plantation in Malaysia.  Tropical 
Biomedicine 25:202-208  

 
Clark, K., L. Evans, and R. Wall.  2006.  Growth rates of the blowfly, Lucilia 

sericata, on different body tissues.  Forensic Science International 
156:145-149.  

 
Cragg, J.B.  1955.  The natural history of sheep blowflies in Britain.  Annals of 

Applied Biology 42:197-207 
 
Ellis, A.M.  2008.  Incorporating density dependence into the Oviposition 

Preference–Offspring Performance Hypothesis.  Journal of Animal 
Ecology 77:247-256 

 
Gião, J.Z., and W.A.C. Godoy.  2007.  Ovipositional behavior in predator and 

prey blowflies.  Journal of Insect Behavior 20:77-86 
 
Glassman, D.M., and R.M. Crow.  1996.  Standardization model for describing the 

extent of burn injury to human remains.  Journal of Forensic Sciences 
41:152-154 

 
 



!

110!
!

Hall, R.D., and K.E. Doisy.  1993.  Length of time after death: effect on attraction 
and oviposition or larviposition of midsummer blow flies (Diptera: 
Calliphoridae) and flesh flies (Diptera: Sarcophagidae) of medicolegal 
importance in Missouri.  Annals of the Entomological Society of America 
86:589-593 

 
Hayes, E.J., R. Wall, and K.E. Smith.  1998.  Measurement of age and population 

age structure in the blowfly, Lucilia sericata (Meigen) (Diptera: 
Calliphoridae).  Journal of Insect Physiology 44:895-901 

 
Hutton, G.F., and S.S. Wasti.  1980.  Competitive interactions between larvae of 

the green bottle fly, Phaenicia Sericata (Meig.) and the black blow fly, 
Phormia Regina (Meig.).  Comparative Physiological Ecology 5:1-4  

 
Introna, F., C.P. Campobasso, and A. Di Fazio.  1998.  Three case studies in 

forensic entomology from Southern Italy.  Journal of Forensic Sciences 
43:210-214 

 
Ireland, S., and B. Turner.  2006.  The effects of larval crowding and food type on 

the size and development of the Blowfly, Calliphora vomitoria.  Forensic 
Science International 159:175-181 

 
Jaenike, J.  1978.  On optimal oviposition behavior in phytophagous insects.  

Theoretical Population Biology 14:350-355 
 
Mogi, M., and J. Mokry.  1980.  Distribution of Wyeomyia Smithii (Diptera, 

Culicidae) eggs in pitcher plants in Newfoundland, Canada.  Tropical 
Medicine 22:1-12 

 
Nicholson, R.A.  1993.  A morphological investigation of burnt animal bone and 

an evaluation of its utility in archaeology.  Journal of Archaeological 
Science 20:411-428 

 
Pai, C., M. Jien, L. Li, Y. Cheng, and C. Yang.  2007.  Application of forensic 

entomology to postmortem interval determination of a burned human 
corpse: a homicide case report from Southern Taiwan.  Journal of the 
Formosan Medical Association 106:792-798 

 
Shvidenko, A., and J.G. Goldammer.  2001.  Fire situation in the Russian 

Federation.  In Global Forest Fire Assessment 1990-2000, eds. J. G. 
Goldammer and Robert W. Mutch.  Rome: FAO, Forestry Dept. 

 
Smith, K.G.V.  1986.  Diptera.  In A Manual of Forensic Entomology.  Ithaca, 

NY: Cornell University Press.  68-137 
 
 
 



!

111!
!

Smith, K.E., and R. Wall.  1997a.  Asymmetric competition between larvae of the 
blowflies Calliphora vicina and Lucilia sericata in carrion.  Ecological 
Entomology 22:468-474 

 
Smith, K.E., and R. Wall.  1997b.  The use of carrion as breeding sites by the 

Blowfly Lucilia sericata and other Calliphoridae.  Medical and Veterinary 
Entomology 11:38-44 

 
Statistics Canada.  2013.  Homicides by Method – Table 253-0002.  Government 

of Canada.  <http://www.statcan.gc.ca/tables-tableaux/sum-
som/l01/cst01/legal01-eng.htm> 

 
Thomas, D.B., and R.L. Mangan.  1989.  Oviposition and wound-visiting behavior 

of the screwworm fly, Cochliomyia hominivorax (Diptera: Calliphoridae).  
Annals of the Entomological Society of America 82:526-534 

 
Thompson, J.N.  1988.  Evolutionary ecology of the relationship between 

oviposition preference and performance of offspring in phytophagous 
insects.  Entomologia Experimentalis et Applicata 47:3-14 

 
United States National Park Service. 2014. History of Wildland Fire in 

Yellowstone.  National Parks Service and the U.S. Department of the 
Interior.  <http://www.nps.gov/yell/naturescience/wildlandfire.htm> 

 
Vanin, S., E. Zanotti, D. Gibelli, A. Taborelli, S. Andreola, and C. Cattaneo.  2013.  

Decomposition and entomological colonization of charred bodies – a pilot study.  
Croatian Medical Journal 54:387-393 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



!

112!
!

VITA AUCTORIS  

 
 
NAME:  Vincenzo Antonio Pacheco  
 
PLACE OF BIRTH: 
 

 
Richmond Hill, ON 

YEAR OF BIRTH: 
 

1990 

EDUCATION: 
 
 
 

University of Windsor, B.F.Sc. [Honours] – Molecular Biology 
and Biochemistry, Windsor, ON, 2012 
 
University of Windsor, M.Sc. – Biological Sciences, Windsor, 
ON, 2015 

 
 
 
 
 


	University of Windsor
	Scholarship at UWindsor
	2015

	Served medium rare: the effect of burnt remains on oviposition, survival and fitness of the local blow fly (Diptera: Calliphoridae) community
	Vincenzo Antonio Pacheco
	Recommended Citation


	VPacheco 2015 Masters Thesis - FINAL

