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ABSTRACT 

The round goby (Neogobius melanostomus) is an invasive benthic fish species to 

the Laurentian Great Lakes. Earlier studies have suggested that reproductive male urine 

containing conjugated 3α-hydroxy-5β-androstane-11,17-dione (11-O-ETIO), including 

11-O-ETiO-3-S (a potent odorant to gobies), attracts reproductive females.  However 

attraction to isolated or synthetic 11-O-ETIO-3-S has not been tested. This thesis 

investigates chemical attraction in the laboratory environment by examining the effect 

of (1) providing the female with shelter, (2) fractionated conditioned water containing 

0.1 nM 11-O-ETIO derivatives on females without a shelter and (3) 1 uM synthetic 11-O-

ETIO derivatives in arenas with a shelter. It was found that: shelters are important for 

studying chemoattraction, isolated derivatives of 11-O-ETIO delivered in the 0.1 nM 

range were not attractive to females, and some females were attracted to 1 uM 

synthetic 11-O-ETIO-3-s when a shelter was provided.  Further studies are required to 

establish if the released steroids, including 11-O-ETIO-3-s attract females.  
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CHAPTER I -GENERAL OVERVIEW 

Chemical communication in fishes contributes to how fish react behaviourally and 

physiologically to their environment.  Fish rely on chemical cues for predator avoidance, 

shoaling, homing, and reproduction (Solomon, 1977).  Among these chemical cues are 

pheromones, defined as ‘an odour or mixture of odours released by the sender that evokes in 

the receiver(s) adaptive, specific, and species-typical response(s), the expression of which need 

not require prior learning or previous experience’ (Sorensen and Stacey, 2004).   

This thesis investigated the movement responses of female round gobies (Neogobius 

melanostomus) to two types of olfactory cues, food extract and reproductive pheromones.  

Round gobies are an invasive species to the Laurentian Great Lakes (Jude et al., 1992) and as 

such have encouraged a surge of studies on their life history (reviewed by Kornis et al., 2012).  

Many of the studies have focused on the release and reception of pheromones (reviewed in 

Chapter II), but they have varied greatly in how they test female responses, and some have 

yielded contradictory findings.  Despite the amount of effort and number of studies on this 

subject, there is still much that is not known about reproductive communication in the round 

goby. 

 Chapter II of this thesis reviews 9 studies on female round goby behavioural responses 

to putative reproductive pheromones and other olfactory cues. Chapter II also includes an 

experimental investigation on the effect of providing a shelter on round goby movement 

responses.  I discuss the importance of apparatus type, flow rate, tank enhancements, 

behavioural metrics, and sample size when designing a study to test olfactory-mediated 

behaviours in round goby. Each of these factors can greatly affect not only how the fish receives 

pheromones, but also how they respond to them (Vickers, 2000; Johnson and Li, 2010).  It is 
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likely that the variance in these factors across the 9 studies is (in part) the cause of some of the 

contradictory results.  In this review I attempt to identify optimal methods to use based on 

round goby behaviour in the wild and similar studies in other species, as well as provide 

suggestions for future studies. 

Chapter III is an experimental study of fractionated and synthetic analogs of steroids 

released by reproductive male (RM) round gobies.   The RMs release a 5β-reduced steroid: 3α-

hydroxy-5β-androstane-11,17-dione (11-O-ETIO) as well as four derivatives of this 

compound, 11-O-ETIO-3-s: 3α-hydroxy-5β-androstane-11,17-dione 3-sulfate, 11-O-

ETIO-17-s: 3α-hydroxy-5β-androstane-11,17-dione 17-sulfate, 11-O-ETIO-3-g: 3α-

hydroxy-5β-androstane-11,17-dione 3-glucosiduronate,11-O-ETIO-17-g: 3α-hydroxy-5β-

androstane-11,17-dione 17-glucosiduronate (Arbuckle et al., 2005; Katare et al., 2011).  

The HPLC fractionated RM CW containing the conjugated steroids has been shown to be 

attractive to reproductive females (RF), whereas the unconjugated (‘free’) steroid is 

attractive to non-reproductive females (NF) (Tierney et al., 2013).  11-O-ETIO-3-s is 

physiologically detectable to females (Laframboise & Zielinski, 2011) and makes up a 

large portion of the pheromone released by males (Farwell, unpublished) suggesting 

that it may be important in reproductive signaling.   The goal of Chapter III was to test 

for movement responses to the fractionated derivatives and synthetic analogs of 11-O-

ETIO.  In Experiment 1, changes in female activity in responses to mixtures of HPLC 

fractionated RM CW containing 0.1nM 11-O-ETIO and its derivatives were tested (Fig. 

1.1). In Experiment 2, female responses to 1µM synthetic analogs of these steroids were 

tested, with a focus on the effects of 11-O-ETIO-3-s and the addition of tank 
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enhancements (shelter and gravel) (Fig. 1.1).  In this experiment, I added a PVC shelter 

and gravel substrate to the tanks in an attempt to increase female response rate (see 

Chapter II).  Overall this thesis provides the first review of olfactory-mediated 

behaviours in the round goby and is the first to examine the effects of isolated 

conjugates of 11-O-ETIO from RM CW on female activity levels. 
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Figure 1.1 Flow chart describing each of test solutions delivered in Experiments 1 

and 2 of Chapter III.  Experiment 1 utilized mixtures of HPLC fractionated RM CW 

containing 0.1nM 11-O-ETIO and its derivatives.  Experiment 2 utilized 1µM 

synthetic analogs of these steroids in tanks provided with a shelter and gravel. 
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CHAPTER II- A REVIEW OF EXPERIMENTAL DESIGNS USED TO TEST OLFACTORY-
MEDIATED BEHAVIOURS IN THE ROUND GOBY (NEOGOBIUS MELANOSTOMUS) AND 

AN EMPIRICAL STUDY ON THE USE OF SHELTERS 

1. INTRODUCTION 

1.1 LAB STUDIES OF OLFACORY-MEDIATED BEHAVIOUR IN FISHES 

Many novel approaches to studying olfactory-mediated fish behaviour in a 

laboratory setting have been developed, most of which are species and/or study specific 

(as reviewed by Sorensen, 2013).  When designing an experiment to test for behavioural 

responses to an olfactory stimulus, there are many variables to consider.  These include, 

but are not limited to, apparatus type and size (flumes, y-mazes, glass tanks, large 

arenas), tank enhancements (such as substrate and refuge), flow rate, acclimation 

times, duration of odour delivery, and circadian rhythm.  It is also important to consider 

the effects of species of interest, the type of olfactory cue (alarm, reproductive, or 

food), and whether fish were domestic or wild caught on behavioural responses (as 

reviewed by Johnson & Li, 2010).  These variables must be considered in order to design 

an experiment to best suit the objectives of the specific study.  Unfortunately, even well 

designed laboratory experiments have difficulty replicating behaviours seen in the field 

and often studies performed in a lab yield contradictory results to those tested in the 

field (Johnson & Li, 2010).  Johnson and Li (2010) suggest that environmental, social, and 

physiological context can modulate fish behavioural responses to olfactory cues and 

may lead to these conflicting results.  These contexts can include factors such as physical 

structure of the aquatic environment, hydrodynamics, temporal variation, social 

context, experience, learning, physiological and developmental status, size, hunger, age, 
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and stress. Due to the complexity of an aquatic environment it can be difficult to design 

experiments that replicate what a fish would experience in nature. 

 This chapter includes a review of nine published lab studies examining olfactory-

mediated behaviours (largely pheromone reproductive cues) in the round goby (Table 

2.1); as well as an experiment that examines the effect of providing a shelter on 

movement responses to food extract.  I describe the importance of apparatus type, flow 

rate, enhancements, behavioural metrics, and sample size when designing a laboratory 

experiment investigating movement responses to olfactory cues in the round goby using 

evidence from round gobies and a variety of other fish species.  

1.2 ECOLOGY OF THE ROUND GOBY 

Round gobies are an invasive benthic fish species native to the Black and Caspian 

Seas, and were discovered in the Detroit River in the early 1990s and have since spread 

to each of the Laurentian Great Lakes (Jude et al., 1992; Kornis et al., 2012).  They are 

believed to have entered our freshwater system through the dumping of ballast water 

of Trans-Atlantic cargo ships (Jude et al., 1992).  Since their appearance, the round goby 

has had detrimental effects on local ecology as it displaces native benthic fish species 

such as the mottled sculpin (Cottius bairdi) (Bergstrom and Mensinger, 2009; Dubs and 

Corkum, 1996; Janssen and Jude, 2001) and consumes the eggs of many important 

game and commercial fish species (Jude et al., 1995; Sterinhart et al., 2004).  Because of 

this, many studies have attempted to find a method to control or eliminate this species 
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(reviewed by Kornis et al., 2012).  One method in particular focuses on the use species-

specific odours to lure gobies into traps.  

1.3 ROUND GOBY REPRODUCTIVE BEHAVIOUR 

Male round gobies find and defend nesting sites, then attract females to these 

shelters using a combination of auditory, visual, and olfactory cues (Kornis et al., 2012).  

Once near the nest, it is believed that additional communication occurs, likely to assess 

reproductive status (Meunier et al., 2009).  Females will deposit their eggs on the roof of 

the nest and males will then fertilize the eggs and continue to provide the sole parental 

care through aeration (fanning) of the eggs, removing dead/diseased eggs, and defense 

from nest predators (Meunier et al., 2009; Kornis et al., 2012).  There has been only a 

single detailed documentation of one pair of gobies in a laboratory setting (Meunier et 

al., 2009) and many aspects of round goby reproduction are still poorly understood.  

 The pheromones that reproductive males release and how females respond to 

them have been studied in an attempt to understand round goby reproduction and to 

develop an effective population management strategy (Table 2.1).  It has been 

determined that males release a steroid compound, 3α-hydroxy-5β-androstane-11,17-

dione (11-O-ETIO) as well as four derivatives of this compound, 11-O-ETIO-3-s: 3α-

hydroxy-5β-androstane-11,17-dione 3-sulfate, 11-O-ETIO-17-s: 3α-hydroxy-5β-

androstane-11,17-dione 17-sulfate, 11-O-ETIO-3-g: 3α-hydroxy-5β-androstane-11,17-

dione 3-glucosiduronate,11-O-ETIO-17-g: 3α-hydroxy-5β-androstane-11,17-dione 17-

glucosiduronate (Arbuckle et al. 2005; Jasra et al. 2007; Katare et al., 2011).  Water 
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conditioned by males releasing these steroids, and isolates of this water have been 

shown to elicit attraction in females (Gammon et al., 2005, Tierney et al., 2013). In 

theory, females could be lured into traps baited with synthetic versions of these male 

reproductive pheromones (reviewed by Sorensen & Stacey, 2004). Despite the large 

number of studies on this subject (Table 2.1), we have still not linked the particular 

steroid constituents to round goby mate attraction.  

1.4 OBJECTIVES: 

The goal of this review is to highlight the different strategies used for studying 

round goby behavioural responses to olfactory cues in a laboratory setting and suggest 

methods for future studies.  I also empirically tested the effects of tank enhancements 

(PVC shelter and gravel substrate) on female round goby responses to a food-related 

odour (fish flake conditioned water) as this had yet to be tested.  This is the first 

comprehensive review of round goby behaviour in a lab setting and is fundamental for 

the successful development of a pheromone-based trapping strategy.  In the following 

sections I describe the importance of: apparatus type and flow rate, tank 

enhancements, behavioural metrics, and sample sizes, in an attempt to provide 

suggestions for future studies on round goby behavioural responses to olfactory cues. 

1.5 IMPORTANT CONSIDERATIONS FOR STUDYING ROUND GOBY OLFACTORY-MEDIATED 

BEHAVIOURS 

Tank Type  
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A variety of apparati have been implemented to test round goby behaviour, 

ranging from 5L tanks to 1m long flumes, to y-mazes (Table 2.1).  Most have been used 

in studies that have successfully yielded responses to olfactory cues; suggesting that the 

size and shape of the apparatus is unlikely to inhibit round goby behaviours.  With that 

said, the dimensions and overall shape has varied, and is likely based on the questions 

being asked.  For example, a y-maze style flume can be useful in choice experiments 

(Corkum et al., 2008), whereas small rectangular tanks may be beneficial for testing 

simple, quick responses and are also good for testing multiple odours in a short time 

period (Tierney et al., 2013).  It is important to note that larger arenas such as flumes, 

(where swimming from one end to the other is tested), can be more explicit in showing 

attraction versus a smaller, square tank.  In the flume, the fish must exert more energy, 

and travel greater distances to reach the odour and as such the response is less likely to 

occur by chance.   

 Flow Rate More important than shape/dimensions of the apparatus is the movement of 

water through it (Vickers et al., 2000; Johnson and Li, 2010; Tierney et al., 2011).  

Hydrodynamics can greatly influence olfactory mediated behaviours due to its effects on 

the dispersion of an odour plume within the test arena and over time (reviewed in 

Johnson and Li, 2010).  When placed in a flume under varying flow rates, round gobies 

show positive rheotaxis with a critical swimming speed of 231±0.07L/min (Tierney et al., 

2011) meaning that flow rates should not exceed this value.  When studying round goby 

responses to olfactory based sexual cues, it is important to consider flow rate, as males 

will actively fan their enlarged pectoral fins as a method of pheromone dispersion 
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(Meunier et al., 2009; Wantola et al., 2013).  It has been shown that male fanning can 

produce flow rates between 130 to 220mL/min (Meunier et al., 2009; Wantola, 2013).  

When male conditioned water was delivered at both high and low flow rates (in terms 

of the typical male fanning rates), reproductive females showed a stronger response in 

the low flow conditions (Wantola, 2013).  Previous studies on female round goby 

responses to reproductive odours used flow rates ranging from 0-60mL/min and still 

found responses (attraction) to the olfactory stimuli (see Table 2.1). These results 

suggest that flow rates should be kept below 200mL/min and that lower flow rates are 

more likely to elicit female attractive responses to reproductive odours.   

To date, no studies have examined the typical flow rates that females are 

exposed to in the field during the reproductive season.  Round gobies inhabit a large 

range of habitat types so it is likely that the background flow rates are highly variable 

but further studies are needed to confirm this.  Water flow rate can greatly influence a 

fish’s behaviour in response to an olfactory cue.  For example, the sea lamprey 

(Petromyzon marinus) uses chemically mediated rheotaxis to orient itself within an 

odour plume of a migratory pheromone, and without flow, the response is terminated 

(Bjerselius et al., 2000).  This could explain why gobies in tanks with no flow did not 

exhibit strong behavioural responses (Murphy, 1998).  Alternatively, the common carp 

(Cyprinius carpio) requires still-to slowly flowing water in order to spawn (Sorensen, 

2013).  Exposure to natural stream flow rates can be important for rheotaxis in 

salmonids and assists in the orientation and navigation during migration (Stabell, 1984).  
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Overall, understanding the natural flow regimes fish are exposed to during reproduction 

is fundamental for optimizing behaviours in a laboratory setting. 

Tank Enhancements 

A variety of flumes and tanks have been used to test olfactory-mediated 

behaviours in the round goby (Table 2.1).  One particular area of interest is the use of 

tank enhancements such as shelters and substrate in these experimental arenas.  The 

use of environmental enrichments has been shown to increase the occurrence of 

natural behaviours such as exploration in harbor seals (Phoca vitulina concolor) and gray 

seals (Halichoerus grypus) (Hunter et al., 2002) and reproduction in a variety of taxa 

(reviewed by Carlstead & Shepherdson, 1994). 

In the wild and in a lab setting, round gobies will seek out shelter (pers. 

observation), likely for refuge from predators. It has been demonstrated that tethered 

gobies in sandy open habitats were at a higher predation risk than those in sheltered 

habitats (cobble and boulder) (Belanger & Corkum, 2003) and gobies generally prefer 

rocky substrate over soft substrate (reviewed by Kornis et al., 2012).  Because gobies are 

a benthic fish species, the type of substrate available may not only be important in their 

habitat preference but also in their behaviour.  Substrate type has been shown to be an 

important factor in the facilitation of natural foraging behaviours in goldfish (Carassius 

auratus) (Smith & Gray, 2011)  and may be of particular importance when studying 

benthic fish species as it can affect their comfort levels (Sorensen, 2014).  Shelters may 

also serve as a visual cue that is required to elicit reproductive behaviours in females.  
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Goldfish deposit their eggs on/near underwater flora and as such will only spawn when 

a green visual cue is available (Dr. Norm Stacey, Pers. Comm.).  In fishes that require a 

particular substrate type for reproduction, the availability of substrate in a lab setting 

can have a strong effect on chemically-mediated behaviours (reviewed in Johnson and 

Li, 2010).  Because none of the existing round goby studies directly tests for the effects 

of environmental enrichments such as substrate or shelters, we performed a study using 

two different tank designs (see below). 

Behavioural Metrics 

 Typically studies on round goby behavioural responses to both food related and 

reproductive olfactory cues have measured responses in time spent near the odour 

source or the distance/velocity travelled (see Table 2.1).  These metrics are typically 

expressed as a change based on the time period directly before odour delivery (‘pre-

stimulus’ period or acclimation period).  This method is practical for round goby 

behaviour as it controls for the average or ‘baseline’ activity levels of each fish (which 

can be highly variable).  Stereotyped, reproductive behaviours are typically used to 

assess pheromone-mediated behaviours.  This has been well studied in goldfish 

(Sorensen et al., 1998).   For carps, a variety of metrics are associated with arousal: 

locomotor activity, nudges, pushes, chasing, and feeding activity (aroused fish feed less) 

(Sorensen, 2013).  In male gobies, several behaviours have been described such as 

colour change, barking, and fanning (Tavolga, 1956, Gobius niger; Meunier et al., 2009), 

but unfortunately female round gobies do not appear to exhibit any stereotyped 



13 
 

behaviours when in the presence of a reproductive male or when exposed to male 

pheromones or pre-recorded calls (Murphy et al., 1998; Rollo et al., 2007).  Several 

behaviours have been described by Murphy (1998) including biting, head lifts, hopping, 

fanning, roll overs, and coughing, but none seemed to be associated with reproduction.   

There have been very few well documented cases of round goby mate choice 

and reproduction in the lab or the field and as such it is possible that certain behaviours 

may be associated with reproduction, but more studies are required.   Distance and 

velocity can be informative behavioural metrics as it is known that animals must move 

in order to locate an odour source (Vickers, 2000).  Gobies utilize a burst-and-hold 

method of swimming (Tierney et al., 2011) and as such, typical measurements such as 

velocity and distance travelled can be more difficult to measure.  When observed in the 

lab, gobies typically move about through the use of small ‘hops’ (movements less than 

one body length, both vertical and horizontal) (Murphy, 1998).  Often gobies will hop 

vertically and do not actually displace themselves (distance moved value of 0) (pers. 

observation).  Because of this it may be better to examine changes in activity level via 

hopping rates rather than distance or velocity, especially when using smaller tanks in 

which fish are not required to travel great distances.  In addition, the studies reviewed 

here vary in how they assess time spent near an odour, particularly in the proportion of 

the tank that is marked as the ‘inflow zone.’  In order to quantify attraction, the fish 

should spend more time in the high concentration zone (Vickers, 2000), thus the inflow 

zone should be standardized as the portion of the tank with the highest concentration.  

The actual area of this ‘zone’ should vary with type and volume of the apparatus, 
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concentration delivered and the flow rate used.  In a few of the studies, the direction of 

movement or ‘pathway’ was assessed, but neither showed strong changes when an 

odour was applied.  This is contradictory to typical animal navigation in an odour plume 

(Vickers, 2000).  It is possible that the flow rates used in the round goby studies were 

not high enough to elicit directed movements toward the odour source.   

It is important that future studies determine a suite of reliable behaviours that 

can be used to quantify responses to olfactory cues.  It is also important to note how the 

type of apparatus can affect the behavioural metrics that are being assessed.   In the 

studies that used larger flumes and tanks (up to 1 m long), distance moved and velocity 

were positively correlated with odour delivery ( Gammon et al., 2005; Kasurak et al., 

2012), whereas in smaller tanks (15 cm long), distance and velocity decreased in 

response to odour delivery (Tierney et al., 2013).  This is likely due to restrictions of 

movement in these smaller arenas.  When searching for the odour source, the fish does 

not have to travel very far in 5L tank in comparison to a 1m flume. 

Sample Size  

 Behavioural studies of wild-caught species often have small sampler sample sizes 

(less than 10 individuals) (Bell et al., 2009).  This can be due to time constraints 

(experiments may extend over hours or days) or difficulty obtaining individuals (rare or 

protected species, live in remote areas, and small population sizes).  Natural variation 

between and within individuals can increase the standard error of measurements of 

behavioural metrics and can cause data to be distributed non-normally.  Each of these 
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factors together make it difficult for researchers to detect statistical significance.  This 

lack of statistical significance does not necessarily mean there is no biological 

significance (reviewed by Thomas & Juanes, 1996).  Statistical power (the probability of 

finding a statistically significant result when one exists) can be used to link the ideas of 

statistical and biological significance (Thomas & Juanes, 1996).  Power analysis can 

determine if an experiment will be able to produce a statistically significant result if a 

biologically significant difference actually exists (Thomas & Juanes, 1996).  In an 

extensive review of statistical power in behavioural ecology encompassing 697 studies, 

the average statistical power was much lower than the preferred value of 0.8 (Jennions 

& Møller, 2003).  These authors suggest that the best way to avoid this problem is by 

increasing the sample size.  Many of the round goby studies examined in this review 

show large variation in their data, and typically their studies yield data that is non-

normal in its distribution.  Unfortunately, despite their large densities in the Great Lakes, 

it can often be difficult to obtain a large sample size, especially when fish must be 

chosen based on reproductive status.  This problem is likely do the lack of access to high 

density areas or areas that can be seined (one of the most common collection methods).  

Depending on the variables in question, researchers should assess variance and 

determine proper sample sizes when designing experiments.  Based on previous 

research and findings discussed in this review, a sample size greater than 10 should be 

used in order to reach a statistical power of at least 0.8. 
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2. TESTING EFFECTS OF TANK EHANCEMENTS ON ROUND GOBY RESPONSES TO FOOD 

ODOURS 

In order to further test the effects of some of these factors (particularly 

enhancements and sample size) I applied fish flake conditioned water to female round 

gobies in tanks with either no enhancements (no shelter or gravel) and tanks equipped 

with gravel substrate and a PVC shelter.  I predicted that more females would show 

increased movement and time spent near the odour source when in tanks with 

enhancements. 

2.1 EXPERIMENTAL ANIMALS  

 For these experiments we used female round gobies caught via angling and 

seining from the Detroit River (Windsor, ON) from May to October 2011-2013.  Prior to 

the experiments, fish were held in accordance with University of Windsor animal care 

guidelines, and experimental procedures conformed to the guidelines of the Canadian 

Council of Animal Care.  Fish were housed in 205L, gravel-lined, aerated, flow-through 

tanks held at 18±1°C under a constant photoperiod of 16:8 (L:D).  Fish were fed daily 

with Nutrafin® fish flakes (Tetramin, Inc.). Experiments took place between May to 

September (the typical round goby mating season) (MacInnis & Corkum, 2000).  Fish 

were tested in the afternoon, and under a low-light setting in an attempt to mimic 

shallow water light conditions.  On the day prior to the experiment, females were 

transferred from lab housing tanks and placed into an experimental tank. Test solutions 
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were delivered to the tank through a glass pipette adhered to the far wall of the tank via 

a peristaltic pump.  Fish were deprived of food for 24 hours prior to experimentation. 

2.2 EXPERIMENTAL DESIGN: 

1. Tanks: Experiments were run in glass tanks (8cm X15 cm X15 cm) filled with 4L of 

dechlorinated water.  Four tanks were used simultaneously, each visually isolated by 

wrapping the tanks in black plastic.   

2. Flow-rate: Tanks were under constant flow through (130mL/min) of dechlorinated 

water (18°C ± 2), which has been shown to be attractive to female round gobies 

(Wantola, 2013).  

3. Tank Enhancements: Fish were tested in one of two tank types.  One tank was void of 

any tank enhancements (no shelter or substrate) and the other was equipped with a 

grey PVC tube (2X1.5 inch) and white gravel substrate (Fig. 2.1).  

4. Behavioural Metrics: We compared the effects of tank enhancements through the 

use of the following behavioural metrics: time spent in the PVC shelter, time spent in 

the inflow zone (25% of the tank closest to odour delivery source), and the hopping 

frequency (a movement less than one body length, including both vertical and 

horizontal movements) when exposed to either control water (10mL of background 

water) or food odour (10mL of dechlorinated water conditioned with 100g of Nutrafin® 

fish flakes).  We predicted that fish provided with tank enhancements (shelter and 

gravel) would exhibit stronger responses to a food odour than fish without these 

enhancements.  Based on previous studies, these responses would be seen in a greater 
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amount of time spent in the odour source and a larger hopping frequency (Table 2.1) 

(Kereliuk, 2009).  Paired t-tests were used to test for differences between test solutions 

(background water or fish flake water) within a tank type.  Student’s t-tests were used 

when comparing behaviours across tank types.  Wilcoxon signed rank, and Mann-

Whitney rank sum tests were used (respectively) for non-normally distributed data.   

5. Sample Size:  When comparing the activity levels of round gobies when exposed to 

either control water or food odours in different tank types, I used 7-31 females (per 

treatment, see figures).  Samples sizes varied because data was compiled from previous 

data (unpublished).  The statistical power of all tests performed in this study were above 

0.8. 
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Figure 2.1 Experimental tank set up for tanks with no enhancements (A) and with 

enhancements (B).  The unenhanced tanks were void of a shelter and gravel 

substrate, whereas enhanced tanks were equipped with gravel substrate and a 

PVC shelter.   The shaded box on the left represents the 25% of the tank closest 

to the test solution source.  

 

Shelter 



22 
 

3. RESULTS 

3.1 TIME SPENT IN SHELTER  

In general, when provided with a PVC tube, female round gobies spend most if 

not all of their time within the shelter (applies to approximately80% of females) when 

no olfactory stimulus is present (Fig 2).  When exposed to water conditioned with fish 

flakes (their typical food source in the lab) however, the percentage of fish that stay in 

the shelter drops to 45%, suggesting that when presented with chemical food cues, fish 

become more exploratory.  This trend was not significant however (p=0.06).   

3.2 TIME SPENT IN INFLOW ZONE (25% OF THE TANK) 

I examined the change in percent time individuals spent in the inflow zone when 

exposed to fish flake water in tanks with either no shelter or gravel substrate or in tanks 

provided with a PVC shelter and gravel (Fig. 2.3).  When no shelter or gravel were 

present, fish exhibited almost no change in mean time spent in the inflow zone (±SEM) 

(0.03%±0.07%) (Fig. 2.3A) whereas when the PVC shelter and gravel substrate were 

present, 3 out of the 15 fish showed an increase in time spent in time spent in the inflow 

zone (mean ±SEM, 4.89%±4.01%) (Fig. 2.3B).  Overall fish spent significantly more time 

in the inflow zone in tanks with no shelter or gravel than in those provided with these 

enhancements (p=0.003) (Fig. 2.3C).  This is likely due to the large amount of time fish 

spend in the shelter when one was provided.  Again it can be seen that when a food 

odour is presented, fish presented with fish flake water exhibit a larger increase in time 

spent in the inflow zone when a shelter and gravel are present (Fig 2.3C).   



23 
 

3.3 HOPPING BEHAVIOUR 

I compared the baseline hopping rate of females when exposed to 10ml of 

dechlorinated water (control) across each tank type (without shelter or gravel, or with 

shelter and gravel) (Fig. 2.4).  Data was compiled from the last 5 minutes of the first 

acclimation period for all fish.  I found that individuals that were not provided with 

these enhancements show a wide range of hopping activity from no hopping to over 80 

hops total performed over 5 minutes (Fig. 2.3A).  When a PVC shelter and gravel 

substrate are provided, fish show less variation in hopping rate over the five minutes, 

ranging from no hops to less than 20 hops (Fig. 2.4B).  The average hopping rate differs 

significantly between the two tank types (p=0.036) with tanks with no shelter exhibiting 

higher hopping rates (Fig. 2.5).   It is important to note however that the variation in 

hopping rate when no shelter or gravel are present was quite large (Fig. 2.5B) when 

compared to tanks with shelter and gravel.  This could be an issue when measuring 

statistical differences in hopping rate in experiments using these types of tanks. 

I also examined the hopping frequency across these same treatments and found 

a similar pattern.  In general fish hopped more in tanks with no enhancements than fish 

that were provided with a PVC shelter and gravel.  Again I found that when presented 

with fish flake water, fish provided with a shelter and gravel exhibited a larger change in 

hopping frequency (p=0.07) than those without (p=0.44) (Fig. 2.6).  Due to large 

variation in hopping rates across females, I also calculated the hopping response 

magnitude by dividing the total number of hops performed over the 5 minute fish flake 
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application period by the total number during the 5 minute control period for tanks with 

no shelter or gravel (Fig. 2.7A) and with a shelter and gravel (Fig. 2.7B).  I found no 

significant differences between tank type (p=0.29) likely due to small sample size (Fig. 

2.7C).  Although it does appear as though fish that increase hopping frequency in 

response to fish flake conditioned water exhibited a greater magnitude of change when 

no enhancements were available compared to fish provided with a shelter and gravel 

(Fig. 2.7).  Based on the data presented in this study and in chapter 3, it is difficult to say 

whether or not shelters are beneficial when studying round goby behaviour.  Based on 

personal observation, detection of a ‘positive’ response to an olfactory cue is very clear 

and simple when shelters are present, as the fish will make a straight path from the 

shelter to the inflow zone during the period of high concentration and not during any 

other time.   
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Figure 2.2 Average percent time (per minute) (±SEM) each fish spent in the PVC shelter over 5 

minutes when exposed to 10mL of background water (A) or fish flake water (B) (data sorted 

by y-axis values).  Overall fish tended to spend less time in the PVC shelter when exposed to 

fish flake water (C), although not significant p=0.06. 
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Figure 2.3  Change in percent time spent individuals spent in the inflow zone (25%) of the tank 

when exposed to 10 mL of background water or 10mL fish flake water in tanks with either no 

shelter or gravel substrate (A) or tanks with a PVC shelter and gravel (B) over 5 minutes (data 

sorted by y-axis values).  The average time spent in the inflow zone (±SEM) during delivery of each 

test solution in tanks with no shelter or gravel (black bars) and tanks with shelter and gravel (gray 

bars) is also expressed using a bar graph (C).  There was no significant differences between time 

periods (within a tank type) (p=0.69 for no shelter or gravel and p=0.15 for shelter + gravel).  

When comparing across tanks with no shelter/ gravel and those with shelter and gravel, there was 

a significant difference (p=0.03). 
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Figure 2.4 Number of hops individuals performed over 5 minutes in after addition of 

10 mL of background water in tanks without a shelter or gravel (A) and tanks with a 

PVC shelter and gravel substrate (B)(data sorted by y-axis values).   



28 
 

  

Figure 2.5 Average hopping frequency (±SEM) in tanks with no shelter or gravel (n=31) 

compared to tanks equipped with a PVC shelter and gravel substrate (n=26) when 10mL of 

background water was delivered.  Data expressed in a bar graph (A) to show averages, and a 

box plot (B) to show variance.  Overall fish without shelter or gravel exhibit higher baseline 

hopping frequency than those with a shelter and gravel (p=0.036).  It should be noted 

however that when no shelter or gravel are present, the variation in hopping frequency is 

much larger. 
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Figure 2.6 Average number of hops (±SEM) performed by females over each 5 minute 

time period, an acclimation in which no test solution, only background water was 

delivered, and the stimulus period in which 10mL fish flake water was added to the tank 

under two different tank setups.  The black bars indicate tanks that are absent of shelter 

or gravel, the grey bars indicate tanks with a PVC shelter and gravel substrate.  When no 

shelter or gravel were provided, there was not a significant difference in hopping 

between the test solutions (p=0.44), but when a shelter and gravel were present, there 

was trend toward increased hopping frequency when exposed to fish flake water 

(p=0.07).  Overall fish with no shelter/gravel hopped more than those without (p=0.07). 
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A 

Figure 2.7  Hopping response magnitude of individual fish in tanks without shelter and 

gravel (A) and thanks with a PVC shelter and gravel substrate (B) (data sorted by y-axis 

values) and average (±SEM) response magnitude within each tank type (C).  Response 

magnitude was calculated by dividing the total number of hops over 5 minutes during 

exposure to 10mL of fish flake water by the total number of hops when exposed to 10mL of 

background water.  The change in hopping frequency in response to fish flake water did 

not differ significantly in either tank type (P=0.29). 
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4. DISCUSSION 

4.1 THE USE OF TANK ENHANCEMENTS SUCH AS SHELTERS AND GRAVEL 

From these experiments, testing the effects of tank enhancements, (shelter + 

gravel substrate) it can be seen that overall, female round gobies spend significantly 

more time in a shelter (when provided) than in any other area of the tank.  In addition, 

fish provided with a shelter exhibit lower baseline activity levels (measured in hopping 

frequency).  These results support those seen by Marentette and Corkum (2008) in 

which over 60% of males did not leave the shelter, and spent more than 90% of their 

time immobile.  In the wild, round gobies seek out shelters, perhaps as a method of 

predator avoidance (Belanger et al., 2003).  It is likely that when no shelter is provided, 

fish exhibit higher activity levels due to searching for refuge (Edel, 1975).  Interestingly, 

when presented with fish flake conditioned water (a potential food odour), fish 

provided with a shelter showed a stronger increase in hopping frequency and time 

spent in the inflow zone than those without a shelter or gravel (although neither 

showed a highly significant difference from baseline).  This suggests that fish provided 

with a shelter and gravel are more ‘comfortable’ and able to respond to olfactory cues.  

It is possible that fish without shelters are more concerned with finding refuge from 

predators and thus are less likely to respond to food odours.   

It is also important to note the differences in variation in hopping activity 

between fish in the absence/presence of a shelter (Fig. 2.5).  This trend was most likely 

due to the fact that a large number of fish in the tanks without shelter or gravel move 



32 
 

continuously, throughout the 5 minutes.  These fish typically swam to the surface 

repeatedly along the glass sides of the tank.  Not a single fish provided with a shelter 

and gravel substrate ever hopped continuously, and rarely did they swim to the surface.    

One explanation for this is that when no shelter is present, fish will spend their time 

searching for a shelter, which has been documented in silver eels (Anguilla rostrata) 

(Edel, 1975).  This large variation in activity could also be due to differences in 

‘personality’ types.  There is a lot of evidence supporting the idea of individual 

differences in behavioural phenotypes, typically in terms of boldness (or shyness) 

(reviewed by Sih et al., 2004).  Because different fish may respond to the same cue in 

different (sometimes opposite) ways, it may be beneficial for future studies to 

distinguish fish based on their particular behavioural phenotype (Shamchuk & Tierney, 

2012).  It is possible that gobies that exhibit exploratory behaviours are generally bolder 

than other fish with lower activity levels, and future studies should attempt to 

categorize responses to positive controls.  It should be noted however, that behavioural 

phenotypes can be context specific.  Pumpkinseed sunfish (Lepomis gibbosus), exhibit 

individual differences under different contexts (predator vs. novel food odours) but 

these differences are not conserved (fish that are bold in one scenario are not always 

bold in another) (Coleman & Wilson, 1998).  Therefore, if using a positive control, it 

should be one from the same category as the test solution (foraging, alarm, or 

reproduction).  Hormonal state can contribute to individual differences in behaviours.  

Nest-holding male round gobies do not feed during reproduction (Kornis et al., 2012) 

and are thus unlikely to show behavioural responses to food odours.  It is possible that 
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reproductive females may be less concerned with feeding cues than non-reproductive 

females. 

4.2 LIST OF RECOMMENDATIONSFOR FUTURE STUDIES 

1. Tank type should be chosen based on odours to be tested and experimental 

design 

o Y-maze for choice experiments 

o Small tanks (5L) work well for high throughput experiments 

o Larger tanks (<90L) could be useful in quantifying attraction 

2. The flow rate used in the experiments should be in the order of 100mL/min as 

this is behaviourally relevant (similar to flow rates created by male fanning) 

3. Tank enhancements can reduce variability in behaviour, I suggest that future 

studies provide shelters and gravel substrate although more studies are required 

to determine the effectiveness of each of the enhancements. 

4. The behavioral metrics used should include time spent in the inflow zone and 

hopping (if smaller tank) and distance travelled if a larger flume/tank 

5. The sample size should be determined a priori using a power analysis, but in 

general, a sample size greater than 10 should be used.  In addition, responses 

should be categorized based on a scale of boldness-shyness or by different 

behavioural phenotypes 

5. FUTURE DIRECTIONS & CONCLUSIONS 
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The experimental design for each of the studies reviewed was highly variable, 

and it would be beneficial for future studies to devise a standardized method of 

examining round goby behaviour in response to pheromones.  I have provided a list of 

recommendations in an attempt to increase the success of future studies on round goby 

behavioural responses to olfactory cues. The most important considerations should be 

flow rate, tank enhancements, behavioural metrics and sample size.  In general a 

standardized method of testing round goby olfactory mediated behaviours should be 

designed in order to elucidate the key pheromone components using in reproductive 

signaling.  In order to design future studies, I recommend a thorough examination of 

round goby reproductive behaviour and spawning both in nature and in a laboratory 

setting.  Future designs should attempt to create simplified versions of the round goby’s 

natural spawning environment in order to achieve realistic behavioural responses. 
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CHAPTER III – FEMALE MOVEMENT RESPONSES TO ISOLATED STEROID CONJUGATES 
RELEASED BY MALE ROUND GOBIES (NEOGOBIUS MELANOSTOMUS) AND TO 

SYNTHETIC ANALOGS 

*The work presented in this chapter was joint research with Dr. Eric Clelland and Dr. 
Michelle Farwell (specifically the HPLC protocol and ELISAs used) 

1. INTRODUCTION 

1.1 ROUND GOBY INVASION 

The round goby (Neogobius melanostomus), a small benthic fish, native to the 

Black and Caspian seas, is a recent invader to the Laurentian Great Lakes (Jude et al., 

1992).  It was first discovered in the St. Clair River in early 1990 (Jude et al., 1992) and by 

1997 had spread to each of the five Great Lakes (Charlebois et al., 2001). The round 

goby’s colonization success can be attributed to its broad range of habitat and food 

types as well as its high fecundity and aggressive nature (Charlebois et al., 1997; Corkum 

et al., 1998). The round goby currently poses a threat to a variety of native species. It 

has competitively displaced several species of indigenous benthic fish such as the 

mottled sculpin (Cottus bairdii) (Bergstrom and Mensinger, 2009; Dubs and Corkum, 

1996; Janssen and Jude, 2001) and is an egg predator of important game and 

commercial fish species including small mouth bass (Micropterus dolomieu) (Jude et al., 

1995; Steinhart et al., 2004a). The round gobies may also contribute to the 

biomagnification of contaminants as dreissenids, which make up a large portion of their 

diet (Lederer et al., 2008), are contaminated with PCBs, organochloride pesticides, 

chlorinated benzenes, and dioxins (Richman and Somers, 2005), and gobies have been 
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found to be an increasingly popular food source of piscivorous fish (Steinhart et al., 

2004b; Johnson et al., 2005; Dietrich et al., 2006; Truemper et al., 2006).  It is likely that, 

if left unchecked, the round goby could drive many species locally extinct. 

1.2 ROUND GOBY REPRODUCTION 

 Round gobies reproduce when water temperatures range from 9-26 °C, and 

spawn multiple times per season (MacInnis and Corkum, 2000).  Males find and guard 

nesting territories from which males attract multiple females to deposit their eggs 

(Charlebois et al., 1997).  Males provide the sole parental care by regular inspection and 

ventilation of eggs (Meunier et al., 2009).  Males are thought to attract females through 

the use of visual, auditory and olfactory cues (reviewed by Kornis et al., 2012).  

Reproductive male (RM) round gobies will fan using pectoral and caudal fins before egg 

deposition which could be a mechanism of odour dispersion (Meunier et al., 2009; 

Wantola et al., 2013).  It is evident that males release compounds that are attractive to 

reproductive females (RF), as RFs spend more time near the odour source when 

exposed to RM conditioned water (CW) and RM CW elicits olfactory responses in RFs 

(Belanger et al., 2004; Gammon et al., 2005; Corkum et al., 2006; Kasurak et al., 2012).  

These findings suggest that males release some compound into the environment which 

can be used to attract females to nest sites. 

1.3 POPULATION MANAGEMENT- PHEROMONE TRAPPING 

 Currently there are limited population management strategies in place for the 

round goby, and populations have expanded into each of the Great Lakes and the 
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Mississippi River basin (Kornis et al., 2012).  Current research on the goby mating 

strategy suggests that the exploitation of reproductive pheromones may be effective in 

managing round goby populations.  Manipulation of natural chemical communication in 

an attempt to manage populations includes, population size and distribution 

assessment, mating and migration disruption, promoting success of sterilized fishes, 

repelling (alarm pheromones),and trapping (reviewed by Sorensen and Stacey, 2004). 

Pheromone trapping employs the use of natural or synthetic versions of aggregation 

chemicals used by the species of interest.  This method of population control is species 

specific due to the nature of pheromones.  In addition, because these chemicals are 

naturally being released into the environment already, their use is less likely to have 

negative consequences on the surrounding ecosystem.  They also typically have half-

lives of about a day meaning that they do not persist for long periods of time (Sorensen 

and Stacey, 2004). In species with high densities, pheromone trapping can be used to 

decrease numbers such that recruitment becomes density dependent (Twohey et al., 

2003; Sorensen and Stacey, 2004). Pheromones can be used to facilitate trapping in 

order to remove individuals or to collect animals for sterilization (Sorensen and Stacey, 

2004; Bergstedt and Twohey, 2007). Sex pheromones have the potential to greatly 

increase the success of trapping efforts as they could be used to target and 

remove/sterilize reproductive males or females, directly affecting the reproductive 

success of a population.  Because of this, sex and aggregation pheromones such as bile 

acids and gonadal steroids (Doving and Selset, 1980) are of particular interest in 

population management.  The use of pheromones as bait in traps is commonly seen in 
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insect pest species, particularly in Lepidoptera (reviewed by McNeil, 1991; and Witzgall 

et al., 2010).  Recently, sex pheromone population management strategies have been 

investigated for other invasive fish species such as the sea lamprey (Petromyzon 

marinus) (Johnson et al., 2009) and the common carp (Cyprinus carpio) (Sorensen and 

Stacey, 2004).   

Research on the biosynthesis and response to reproductive pheromones in fishes 

is limited.  Most of the literature available on the subject pertains to sea lamprey, 

salmonids, goldfish (Carrassius auratus), and gobies (as reviewed by Sorensen and 

Stacey, 1999; Stacey and Sorensen, 2002). These species commonly use gonadal steroids 

and prostaglandins as pheromones (Sorensen and Stacey, 1999, Stacey and Sorensen, 

2002).  Often a multitude of hormonal by-products are released into the environment, 

but not all of them are used as reproductive signals. Because of this, fish live within a 

‘soup’ of potential olfactory signals.  In order for individuals to recognize conspecific 

signals, the specific ratio of pheromone constituents can be very important (reviewed by 

Sorensen et al., 1998).  When applying putative pheromones in a lab setting, the 

receiver response can be optimized by presenting pheromones in a similar ratio to that 

released naturally by that species (Löfstedt et al., 1981; Beevor et al., 1999; Martin et 

al., 2013).  This also supports the idea that identification of key pheromone components 

should be not be done through single component tests, but rather by testing different 

combinations in which one of the constituents has been removed(as seen in, Millar et 

al., 1990; Reddy and Guerrero, 2000; De Silva et al., 2013; Levi-Zada et al., 2013).   A 

particular component may be attractive, but only when present in conjunction with 
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another component, thus testing it alone will not elicit a response, leading to a faulty 

conclusion.  

To develop large scale, cost-effective methods of pheromone synthesis for 

trapping, it is important to investigate the basic biological information essential in a 

species’ pheromone system. Thus, any strategy using pheromone manipulation will only 

be as good as our knowledge of the system.  Specifically we need a thorough 

understanding of the biosynthesis, release, and reaction to pheromones.   The overall 

aim of my study is to further our understanding of each of these processes in the round 

goby. 

1.4 PUTATIVE STEROIDAL PHEROMONES OF MALE ROUND GOBIES 

To determine if pheromone trapping is a viable option for round gobies, it had to first be 

determined if pheromones are used to attract females to the nesting sites.  It has been 

well documented that water conditioned by reproductive males is attractive to 

reproductive females (Belanger et al., 2004; Gammon et al., 2005, Corkum et al., 2006).  

The attractive compound(s) can be isolated through the use of octadecylsilane (C18) 

cartridges and these compound(s) elicit olfactory (Belanger et al., 2004) and behavioural 

(Kasurak et al., 2012) responses.  The next step was to characterize the compound(s); 

this was done through the use of high performance liquid chromatography (HPLC) in 

conjunction with mass spectrophotometry and enzyme-linked immunosorbent assays 

(ELISAs) (Katare et al., 2011).  This study revealed that males release a novel steroid: 3α-

hydroxy-5β-androstane-11,17-dione (11-O-ETIO) as well as four derivatives of this 

compound, 11-O-ETIO-3-s: 3α-hydroxy-5β-androstane-11,17-dione 3-sulfate, 11-O-
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ETIO-17-s: 3α-hydroxy-5β-androstane-11,17-dione 17-sulfate, 11-O-ETIO-3-g: 3α-

hydroxy-5β-androstane-11,17-dione 3-glucosiduronate,11-O-ETIO-17-g: 3α-hydroxy-5β-

androstane-11,17-dione 17-glucosiduronate.  These steroids are released in the ratio of 

8:5:1.5:4:1 (when injected with GnRHa) (Fig. 3.1) (Katare et al., 2011; Farwell, in press).  

When synthetic analogs of both sulfated and unconjugated 11-O-ETIO were presented 

to NF during EOG recordings, responses were seen to both the unconjugated and -3 s 

steroids, but not towards 17-s (Laframboise and Zielinski, 2011).  In addition, females 

showed the strongest olfactory responses when these steroids were delivered at a 

concentration of 10nM, and that no response was seen at or below 0.1nM (Laframboise 

and Zielinski, 2011). RFs showed significantly higher EOG responses to fractions that 

corresponded to the elution positions of conjugated rather than free steroids (when 

using HPLC to isolate steroids from CW extracts) (Belanger et al., 2004).  In addition, 

reproductive phase females were shown to be attracted to pooled fractions containing 

the  conjugates of 11-O-ETIO, and avoid fractions containing unconjugated, 11-O-ETIO, 

both delivered at 10nM (Kereliuk, 2009).  The above evidence combined suggests that a 

conjugate of 11-O-ETIO, particularly 11-O-ETIO-3-s (due to high concentration and EOG 

responses), may be a good candidate for initial behavioural testing in an effort to 

develop an effective pheromone trapping protocol. 

1.5 OBJECTIVES 

 In the current study, movement responses of female round gobies to various 

combinations of 11-O-ETIO and its derivatives at both low and high concentrations will 

be tested in an effort to elucidate key pheromone components used in round goby mate 

file:///C:/Users/JSmith/Documents/MASTERS/1.%20THESIS%20STUFF/Sections/INTRO%20131112.docx%23_ENREF_23
file:///C:/Users/JSmith/Documents/MASTERS/1.%20THESIS%20STUFF/Sections/INTRO%20131112.docx%23_ENREF_20


41 
 

attraction.  In order to test this, I performed two experiments (Table 1.1).  The goal of 

the first experiment tested movement responses to fractionated RM CW containing 

separated 5β-androstane constituents and to reconstituted blends of these fractions.  

This was tested using the ‘removal’ technique in which fractions containing four of the 

five steroids were delivered in each test solution.  The goal of the second experiment 

was to expand upon the results of the first experiment by changing i) the concentration 

of test solutions (through the use of synthetic 11-O-ETIO and its conjugates in the 

natural release ratio but at 1µM, and decreased tank volume) ii) the tank setup (through 

the addition of gravel substrate and a PVC shelter) and iii) focus on the role that 11-O-

ETIO-3-s plays in mate attraction (by testing it alone, as well as removed from the 

steroid blend).   Based on a previous EOG study (Laframboise and Zielinski, 2011), and 

studies in insects (Reviewed by Carde et al., 1998), by increasing the concentration I 

expect to see an increase in female response.  In addition to using synthetic steroids, I 

also tested the effects of tank enhancements (gravel substrate and a PVC shelter) on 

female responses as this mimics a more natural environment (for other studies 

employing enhancements, Tavolga, 1956, Gammon et al., 2005; Malavasi et al., 2009, 

see also Chapter II of this thesis).  Overall this study will be the first to test female round 

goby movement responses to both natural and synthetic blends of steroids using the 

component ‘removal’ method.  The results of this study will be crucial for the successful 

development of a pheromone trapping strategy for the round goby.  
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Table 3.1 Details of experiments testing female responses to putative male steroid 

pheromones.  Experiment 1 investigated round goby responses to fractionated 

conditioned water and Experiment 2 investigated responses to synthetic steroids by 

gobies provided with a shelter and gravel substrate. 

  

 
Experiment 1 

 

 
Experiment 2 

 Conducted May-July, 2012 

 No shelter 

 No gravel substrate 

 4L of water in each tank  

 10 nM 11-O-ETIO in CW extract  

 Tested fractionated CW extract containing 0.01 nM 

11-O-ETIO and 11-O-ETIO derivatives 

 Tested for time spent near the inflow and distance 

moved  

 

 Conducted May-July, 2013 

 PVC tube shelter 

 Gravel substrate  

 2L of water in each tank  

 10 nM 11-O-ETIO in CW extract 

 Tested 1 M synthetic 11-O-ETIO and derivatives 

 Tested for time near the inflow, time in shelter, 

number of hops, gill ventilation rate   
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 2. MATERIALS AND METHODS 

2.1 EXPERIMENTAL ANIMALS 

Collection and Housing 

 Round gobies were collected by angling and seining from the Detroit River 

(Windsor, ON) and Lake Erie (Erieau, ON) from May to October, 2011, 2012, and 2013.  

Fish were held in accordance with University of Windsor animal care guidelines, and 

experimental procedures conformed to the guidelines of the Canadian Council of Animal 

Care.  Fish were housed in 205L, gravel-lined, aerated, flow-through tanks held at 

18±1°C under a constant photoperiod of 16:8 (L:D).  Fish were fed daily with Nutrafin 

fish flakes (Tetramin, Inc.). 

Reproductive Status 

 Fish were sexed based on the appearance of their urogenital papilla; males have 

an elongated, triangular papilla, whereas females have a more broad, rounded papilla 

(Corkum et al., 1998).  Reproductive status of males was also determined by the 

presence of secondary sexual characteristics: a dark body, presence of a thick slime 

coat, as well as enlarged cheeks, urogenital papilla, and fins (Corkum et al., 1998).  

Reproductive females were classified as such based on the presence of a distended belly 

and slight orange coloration in the urogenital papilla (Corkum et al., 1998; Kasurak et al., 

2012).  After each experiment, reproductive status was confirmed for each individual 

post-euthanization on the basis of its gonadosomatic index (Ig), defined as gonad weight 

(testes, seminal vesicles, and mesochiral gland  for males, ovaries for females)/total 
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body weight X 100 (Strange, 1996).  Fish were classified as reproductive only if Ig > 1.3 

(males) or > 8.0 (females) (Belanger et al., 2004; Katare et al., 2011). 

2.2 PREPARATION OF TEST SOLUTIONS 

Collection of Conditioned Water from Reproductive Males 

 Conditioned water was collected from reproductive males (36.43g±1.82, mean 

±SEM) using methods similar to those of Katare et al., (2011). Reproductive males were 

given three consecutive injections of salmon gonadotropin-releasing hormone analogue 

(dissolved in 0.7% saline) (sGnRHa Syndell Labs, Vancouver, BC).  The first injection 

volume was calculated as 0.5% body weight and then the male was placed in a one litre 

tank of dechlorinated water.  After eight hours, this one litre of conditioned tank water 

was collected and stored at 4°C, and each male was given a second injection (at a lower 

dosage) of sGnRHa (1µg) and placed in another one litre tank with dechlorinated water.  

After 16 hours, the one litre of conditioned tank water was collected and again stored at 

4°C.  Each male was given a third and final injection of sGnRHa (again of 1µg) and placed 

in a one litre tank with dechlorinated water. After eight hours, the one litre of 

conditioned tank water was collected and stored at 4°C for a maximum of 24 hours.  

Males were then euthanized and reproductive status confirmed by GSI. 

Preparation of Conditioned Water Extract 

 Reproductive male CW contains steroids shown to be attractive to female round 

gobies (Tierney et al., 2012; Gammon et al., 2005).  These steroids can be extracted 

from conditioned water by passing each one litre sample through activated Sep-pak C18 

cartridges (Part #: WAT020515 Waters, Milford, MA), washing the cartridge with water, 
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and eluting with 5 mL of methanol (Fig. 3.2) (as per Katare et al., 2011).  All methanol 

extracts were pooled annually (2011: n=96 L/31 males), 2013: n=21 L/7 males).  Pooled 

samples were dried using a vacuum concentrator (Labconco, Kansas City, MO) and 

resuspended in MeOH at 10 times concentration for storage at -20°C (i.e. if originally 

5mL CW extract, this was dried and resuspended in 500µL for storage) (Fig. 3.2).  For 

Experiment 1 (performed in 2012), ‘CW extract’ test solution was prepared by diluting 

5µl of 10X concentrated stock CW extract (from 2011) into 10mL of dechlorinated 

water.  In doing this, I attempted to replicate the concentrations of steroids found in the 

original 1L of CW (5mL extract from 1L) (Fig. 3.2).  ELISAs were used to verify the 

immunoreactivity of 11-O-ETIO in this CW test solution was at 10nM (same 

concentration used by Tierney et al., 2013)  For Experiment 2 (performed 2013), ‘CW 

extract’ test solution was prepared by diluting 173 µl of 10X concentrated stock CW 

extract (from 2013) into 10mL of dechlorinated water.  An ELISA determined that the 

concentration of 11-O-ETIO in test solutions delivered was ~10nM. 

HPLC Fractionation of 11-O-ETIO Derivatives in Conditioned Water Extract (Experiment 

1)* 

 High performance liquid chromatography (HPLC) was used to separate steroids 

in the conditioned water extract.  A Nova-Pak®HR C18 6µm 60Å prep column (Waters, 

Milford, MA) was used in conjunction with an acetonitrile (ACN) -water gradient 

containing 0.025% trifluoroacetic acid (TFA) as the mobile phase (Waters, Milford, MA).  

A linear gradient was applied from 11% ACN-0.025% TFA:  89% water-0.025% TFA 

(buffer A) to 89% ACN-0.025% TFA: 11% water-0.025% TFA (buffer B) over 50 minutes.  
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A 100µl sample of 10X CW extract was dried and dissolved into 400.5µl buffer A and 

49.5µl buffer B.  This 450µl was then injected into the column and the flow rate was 

1mL min-1. Fractions were collected at 1-min intervals and dried in a vacuum centrifuge 

at 35°C, and the dried residues were later dissolved in 100µl of MeOH in 1 mL glass vials 

and stored at -20°C. ELISAs were employed in conjunction with solvolysis and 

glucosiduronidase application to each 100µl  fraction to determine the elution times and 

amounts of each of the steroids by a RM in 1L of water: 11-O-ETIO-17-s (fractions 17 

and 18, 34401.65 pg/mL), 11-O-ETIO-3-s (fractions 21 and 22, 86032.21 pg/mL), 11-O-

ETIO-17-g (fractions 24,25, and 26, 38571.07pg/mL), 11-O-ETIO-3-g (fractions 27 to 31, 

134846.30 pg/mL) and 11-O-ETIO (85855.70pg/mL) (Fig. 3.1) (Farwell et al., in press).  

For Experiment 1, 27μl of each individual fraction (in MeOH stock) was diluted into 50 

mL of dechlorinated water.  Analysis of the test solutions determined that the immuno-

reactivity of 11-O-ETIO was 0.1nM.  It should be noted that analysis of these test 

solutions was performed post-hoc and it was discovered that these concentrations were 

lower than ideal for olfactory sensory threshold for the round goby (Laframboise and 

Zielinski, 2011) likely due to isolation inefficiencies.  Test solutions for Experiment 1 

were created by pooling each of the fractions of interest (Fig. 3.1) into 10mL of 

dechlorinated water.  Test solutions differed by the exclusion of one of the five steroids.  

This method of subtracting steroids rather than applying individual steroids was used in 

order to factor in the possibility that multiple steroids are required to elicit a response 

(Millar et al., 1990; Reddy and Guerrero, 2000; De Silva et al., 2013; Levi-Zada et al., 



47 
 

2013).  The test solutions used were as follows (see also Fig. 3.1.1, Chapter I of this 

thesis): 

1. Conditioned water extract (CW ex) derived from 2011 RM contained 10 nM 11-

oxo-ETIO. 

2. ‘Minus 17s’: Fractions 19-31 containing steroids in the 0.1 nM range (11-O-ETIO-

3-s, 11-O-ETIO-17-g, 11-O-ETIO-3-g, and 11-O-ETIO) 

3. ‘Minus 3s’: Fractions 16-21 and 24-31 (11-O-ETIO-17-s, 11-O-ETIO-17-g, 11-O-

ETIO-3-g, and 11-O-ETIO)  

4. ‘Minus 17g and 3g’: Fractions 16-24 and 27-31 (11-O-ETIO-17-s, 11-O-ETIO-3-s, 

and 11-O-ETIO) 

5. ‘Minus Free’: Fractions 16-26 (11-O-ETIO-17-s, 11-O-ETIO-3-s, 11-O-ETIO-17-g, 

and 11-O-ETIO-3g) 

6. Vehicle Blank: 10mL dechlorinated water  

Preparation of Synthetic Steroid Solutions (Experiment 2) 

 All synthetic steroids were obtained from Steraloids, Inc. (Newport, RI, USA).  

These included, (note that 11-O-ETIO-17-g is not commercially available):  

 11-O-ETIO (CAS #739-27-5: 5β-ANDROSTAN-3α-OL-11, 17-DIONE) 

 11-O-ETIO-3-s (Catalogue ID A3500-000: 5β-ANDROSTAN-3α-OL-11, 17-DIONE, 

SULPHATE, SODIUM SALT) 

 11-O-ETIO-17-S (Catalogue ID A3232-000: 5\-ANDROSTAN-3|, 17\-DIOL-11-ONE-

17-SULPHATE, SODIUM SALT) 

 11-O-ETIO-3-g (CAS #17181-16-7: 5β-ANDROSTAN-3α-OL-11, 17-DIONE 

GLUCOSIDURONATE) 
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 Each was dissolved in methanol (in 10μg/mL and 1mg/mL MeOH stocks stored at 

-20°C). All test solutions for the behavioural trials were prepared by drying and 

resuspending in 10mL of dechlorinated tap water to desired concentrations (see below). 

Original steroid ratio was maintained such that 11-O-ETIO-3-s was at 1µM (see Katare et 

al., 2011) because the ratio of pheromone constituents can play a large role in response 

rates of receivers (Millar et al., 1990; Reddy and Guerrero, 2000; Poling et al., 2001; De 

Silva et al., 2013; Levi-Zada et al., 2013).  

2.3 BEHAVIOURAL ASSAY AND ANALYSIS 

Experiment Set Up 

 Experiments used four litre tanks (8cm X15 cm X15 cm). Tanks were under 

constant flow through (130mLmin-1) of dechlorinated water (18°C ± 2). Four tanks were 

used simultaneously, each visually isolated from one another by wrapping the tanks in 

black plastic. Each of the tanks was visually divided into 8 sections (‘boxes’) by placing a 

grid under the glass-bottomed tank (Fig. 3.3).  Experiments took place between May to 

September, in the afternoon, and under a low-light setting (one florescent bulb).  In 

addition to inflow of background water, each tank was equipped with a 1mL glass 

pipette through which the test odours and background water were delivered.  On the 

day prior to the experiment, four females were transferred from housing tanks and 

placed individually into each of the four experimental tanks.  A cooler containing 

dechlorinated (background) water provided constant flow through the glass pipette via 

a peristaltic pump.  Test solutions were delivered to the tank by turning a valve, thus 



49 
 

changing the source from the cooler to a 30mL plastic syringe containing the test 

solution (10mL of test solution, flows for approximately 1.5 minutes).  After the solution 

was added, the valve was switched back to continuous flow of dechlorinated water.   

Behaviours were recorded in 30 s time bins (Tierney et al., 2013).  After experiments, 

fish were euthanized and GSI was recorded. 

Flow Analysis  

 Dye and steroid tests were used to verify the change in concentration of test 

solutions over time (Fig. 3.4).  Dye tests used 5% methylene blue to illustrate the time it 

took the test solution to reach the tank, the outflow, and wash out.  Synthetic 11-O-ETIO 

(at 1μM) was used in conjunction with an ELISA to test specific concentration changes.  I 

found that test solutions delivered existed in a concentration gradient from 90-210s 

post-delivery.  The solution became evenly diluted (by two orders of magnitude) by five 

minutes post-delivery.  In Experiment 1, the dye had cleared the tank by 20 minutes 

post-delivery, and 40 minutes for the Experiment 2 (Fig. 3.4B).   

Experiment 1 

 All females (n=30, mean TL±SE 8.10±0.54) were placed in the experimental tanks 

(Fig. 3.3A) in the morning for three hours prior to the administration of the test 

solutions in order to acclimate the fish to the new environment.  Experiments took place 

between 12:00-4:00pm.  Fish were exposed to six consecutive, ten minute treatments 

(in randomized order) each preceded by a fifteen min acclimation period, and followed 

by a ten minute recovery period (dye tests show that the test solutions cleared the tank 
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by ten minutes post-delivery) (Fig. 3.5).  The next treatment began immediately 

following the 10 minute recovery period.  For this experiment, fractions 16-31 were 

used, and depending on the treatment, a particular set of fractions was removed (Fig 1).  

Again, test solutions delivered were as follows: CW ex, ‘Minus 17s,’ ‘Minus 3s,’ ‘Minus 

17g and 3g,’ ‘Minus Free,’ and vehicle blank.  The immunoreactivity of 11-O-ETIO in CW 

extract was 10nM, and in the ‘minus’ test solutions was 0.1nM. 

 Fish behaviour and location in the tank was recorded using CCD cameras (Matco, 

St. Laurent, QE) and analyzed using Ethovision recording software (blind) (EthoVision®XT 

7, Noldus, Leesburg, VA). On occasion, Ethovision failed to correctly track fish leading to 

unequal sample sizes across treatments. For analysis, the last 5 minutes of the fifteen 

minute ‘acclimation period,’ the first 5 minutes of the ‘stimulus period’ and last 5 

minutes of the ‘recovery period’ were used (Fig. 3.5A).  For each fish, percent time in 

the inflow zone and distance moved (measured in ‘number of boxes’) were measured.   

Experiment 2 

 These experiments utilized the same rectangular glass aquaria, but the volume 

was dropped to 2.8L of dechlorinated water in order to decrease the amount of test 

solution required to reach detectable levels (Laframboise and Zielinski, 2011).  These 

tanks remained on continuous flow through of aerated dechlorinated water.  Tanks 

were equipped with half of a secured, white, two and a half inch long piece of PVC 

tubing (2 in length, 1 in diameter) and a layer of white/grey gravel substrate (Fig. 3.3B). 

In pilot studies, as well as in Experiment 1, approximately 50% of fish did not move 

throughout the entire experiment.  In an effort to increase the number of fish 
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responding, these tank enhancements were added in an attempt to increase the 

number of fish responding (see Murphy et al., 2001 for similar design).  Females (n=30, 

mean TL±SE 9.50±0.48), were placed in experimental tanks (one female per tank) at 

4:00pm on the day prior to the experiment to provide longer acclimation times (than 

Experiment 1) again in an effort to increase response rates.  The order of delivery of 

each test solution was randomized on the day of the experiment.  Each test consisted of 

four test solution delivery periods.  Each delivery period was made up of three time 

periods: acclimation, stimulus and recovery (Fig. 3.5B).  During the ten minute 

acclimation period, no solution was added and behaviour was recorded for the last five 

minutes.  The test solution was then added.  The stimulus period (the time in which the 

solution exists in a concentration gradient) occurs between 1 minute- 3minutes post-

delivery (Fig. 3.4B).  The test solution became evenly mixed by five minutes post odour 

delivery (dilutes by two orders of magnitude).   After each test, fish were given a thirty 

minute recovery period.  During this time, the test solution diluted, and was cleared 

from the tank (clearing period is extended from Experiment 1 due to higher 

concentration of test solution) (Fig. 3.4B).  The next trial period began immediately 

following this thirty minute recovery.  In this experiment, females were exposed to 

blends of synthetic steroids delivered in the respective ratio observed in CW with 11-O-

ETIO-3-s at a concentration of 1µM.  Methanol stocks of synthetic steroids were dried 

and resuspended in 10mL of dechlorinated water (per fish).  It should be noted that in 

this experiment, all MeOH was removed from the samples, whereas in the previous 

experiment, the MeOH was not removed.  This should not greatly affect the experiment 
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as the levels of MeOH in the previous experiment were very low (at most 100µL in the 

entire 4L tank).  The reason this change was made was to avoid any possible effects of 

MeOH on female responses as gobies do show olfactory responses to MeOH when using 

EOGs (Dr. Allyson Laframboise, pers. comm.). 

Test solutions included; 

 CW extract: from 2013 RMs (contained 10-8M 11-O-ETIO concentration)  

 3s Alone: 17µl of 1mg/mL synthetic 11-O-ETIO-3-s 

 Minus 3s: Synthetic 11-O-ETIO-17-s (9μl), 11-O-ETIO-3-g (28μl), 11-O-ETIO (50μl) 

at 1mg/mL 

 All Steroids: Synthetic 11-O-ETIO-17-s (9μl), 11-O-ETIO-3-s (17μl), 11-O-ETIO-3-g 

(28μl), 11-O-ETIO (50μl) at 1mg/mL 

It should be noted that I tested the synthetic 11-O-ETIO-3-g even though the 

preparation is a racemic mixture (M. Revington, U Windsor, pers. Comm.).  Both S and 

R-enantiomers exist which could have an effect on olfactory reception (Hobson et al, 

1993).   

Behavioural Analysis: Experiment 2  

 Fish were observed from a side view of the tank, and movements were recorded 

directly using a voice recording device.  In addition, fish activity was recorded from 

above using the same CCD cameras as in 2012.  In order to quantify responses to test 

solutions, fish activity was recorded during the last five minutes of the acclimation 
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period  and for five minutes post odour delivery (0:30s-5:30 minutes post-delivery).  In 

this experiment, trials could only take place one fish at a time (due to directly observing 

behaviours rather than video recording) so in order to complete four trials within the 

time constraints, activity in the recovery period was not recorded.  Fish movements 

were quantified in thirty second time bins.  Activity recorded included: hops 

(movements less than one body length) (see Murphy, 1999), time spent in the inflow 

zone (25% of tank closest to test solution source), time spent in the PVC shelter, and gill 

ventilation rate.  

2.4 DATA ANALYSIS AND STATISTICAL METHODS 

 All statistical analyses were performed using Sigmaplot®11.0 (Systat Software, 

Inc., San Jose, CA).   

Time Spent in the Inflow Zone (Experiment 1 and 2) or in PVC Shelter (Experiment 2) 

 Attraction can be quantified by the amount of time spent near an odour source 

(Gammon, 2005).  In Experiment 1, this was measured using the Ethovision software 

which detects the fish’s location within the tank ten times per second.  If the fish was in 

the inflow zone (25% of the tank closest to the odour source) the software reported a 

value of one, if in any other location it reported a zero.  For Experiment 2, the amount of 

time (in seconds) spent in the inflow zone was recorded directly from watching the 

video recordings.  The percent of time the fish spent in the inflow zone per minute was 

calculated.  The change of time spent in the inflow zone was also compared to GSI using 

a linear regression, in order to further investigate the relationship between reproductive 
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status and attraction to RM CW (this was not done for Experiment 2 due to small sample 

size).  The change in the percent time spent in the inflow zone was calculated by 

subtracting the average percent time (per minute) each fish spent in the inflow zone 

over  the last five minutes of the acclimation period from the average percent time 

during the first five minutes of the stimulus period.  Because round gobies are sessile, 

females that remained in the inflow zone for greater than 60% of the acclimation were 

excluded from the analysis (Tierney et al., 2012). A Friedman repeated measures 

analysis of variance on ranks was used to test for statistical differences across each of 

the time periods (within fish of similar reproductive state and within a test solution).  A 

Mann-Whitney rank sum test was used to test for differences in percent time spent in 

the inflow zone during the stimulus periods between RFs and NFs (within test solutions).  

A Kruskal-Wallis one way analysis of variance on ranks with a Holm-Sidak post hoc test 

was used to test for differences within fish of a reproductive state, across the stimulus 

periods of each of the test solutions (note, RF data was normalized using an arc sin 

transformation).  The change in percent time in the inflow zone between the 

acclimation and following stimulus period was calculated by subtracting the average 

percent time in the inflow zone per minute during acclimation from that of the stimulus 

period.  A Mann-Whitney non-parametric analysis was used to test for differences 

between RFs and NFs, and a Kruskal-Wallis, non-parametric one-way analysis of 

variance was used to test for differences across test solutions.   

 For Experiment 2,Time spent in the PVC shelter was analyzed using a one-way 

repeated measures ANOVA to compare across test solutions (with fish of the same 
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reproductive status) and a Mann-Whitney rank sum test to test for differences between 

RFs and NFs within each test solution. 

Distance Travelled (Experiment 1) 

 Experimental tanks were visually divided into 8 ‘boxes’ (Fig. 3.4A).  For 

Experiment 1, distance travelled was measured using the number of boxes each fish 

travelled over each 30 second time bin (see Tierney et al., 2013).  Change in distance 

travelled was calculated by subtracting the total number of boxes travelled by each fish 

during the last five minutes of the acclimation period from the first five minutes of the 

stimulus period. A linear regression was used to compare the change in distance 

travelled to GSI.  A Mann-Whitney non-parametric analysis was used to compare the 

change in distance travelled between RFs and NFs for each test solution.  A Kruskal-

Wallis non-parametric one-way analysis with Dunn’s difference of ranks was used to 

compare averages across test solutions (within a reproductive state).  Distance travelled 

was not analyzed in Experiment 2 as hopping was used to quantify movement instead. 

Hopping Behaviour (Experiment 2) 

 For this study, a hop was defined as a short forward or vertical movement, less 

than one body length.   Because round gobies typically move about the aquaria using 

this hopping motion, particularly in response to food (pers. obs.), an increase in 

frequency may indicate searching behaviour (Murphy, 1999; Kereliuk, 2009).  The 

number of hops was tallied every 30 seconds.  The number of hops during the 

acclimation period was compared to the number during the stimulus period using a 



56 
 

paired t-test to compare fish of the same reproductive status across test solutions, and a 

Mann-Whitney rank sum test to compare between RFs and NFs within each test 

solution.  A one-way repeated measures ANOVA with a Holm-Sidak post hoc test was 

used to test for statistical differences in the number of hops performed during only the 

stimulus period across test solutions (within fish of the same reproductive status).  

Change in hopping activity was calculated by subtracting the total number of hops 

performed by each fish during the last five minutes of the acclimation periods from the 

first five minutes of the stimulus period.  A Friedman repeated measures analysis of 

variance on ranks was used to test for differences in hopping behaviour across test 

solutions. I also looked at the response magnitude of hopping behaviour.  This was 

calculated by dividing the number of hops performed during the entire five minutes of 

the stimulus period by the entire five minutes of the acclimation period.  Statistical tests 

were not run on this data as it was meant to visually demonstrate the trends in this 

behavioural metric. 

Gill Ventilation (Experiment 2) 

 Gill ventilation rate (number of opercular openings per minute) is commonly 

used as a metric for round goby olfaction (Murphy et al., 2001; Belanger et al., 2004; 

Tierney et al., 2012).  In some benthic fish, ventilation rate is positively correlated with 

water flow through the naris suggesting that gill ventilation is correlated with olfaction 

(Nevitt, 1991).  Average gill ventilation rates were measured directly from video footage 

and during the experiment.  The number of gill ventilations over ten seconds was 
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measured once during each 30 second time bin of the acclimation and stimulus periods.  

The change in gill ventilation rate was calculated by subtracting the average gill 

ventilation rate during the acclimation period from the average gill ventilation rate 

during the stimulus period. Student’s t-tests were used to test for differences between 

RF and NF within each test solution and a one-way repeated measures ANOVA was used 

to test for differences in gill ventilation rates across test solutions.  The gill ventilation 

rate during the last 5 minutes of the acclimation period was compared to the rate 

during the first 5 minutes of the stimulus period using a paired t-test. 
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Figure 1 

Figure 3.1. Concentration of 11-O-ETIO and its conjugates within 1L of 

reproductive male conditioned water.  The y-axis denotes the immunoreactivity 

of 11-O-ETIO (M), the x-axis denotes the HPLC elution times for each of the 

steroids (in minutes).  
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Figure 3.2 Isolation process of steroids released by reproductive males from 1L of 

conditioned water to fractionation via HPLC.  Each 1mL fraction contains the 

amount of steroids released by 1 reproductive male in 1L of water over an 8-

16hour period. 
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Figure 3.3 Experimental tank set up for Experiment 1(A) and Experiment 2 (B).  

Experiment 1 tanks were void of any tank enhancements (no shelter or gravel 

substrate), whereas Experiment 2 tanks were equipped with gravel substrate and 

a PVC shelter.   The shaded box on the left represents the 25% of the tank closest 

to the test solution source.  

 

Shelter 
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Figure 3 

Figure 3.4 Diagram depicting tank ‘box’ grid and solution inflow (A). 10mL of 1μM 11-O-

ETIO was delivered to the tank and samples were taken at specific locations (lower case 

letters) within the tank over time. Concentration analysis via ELISA (B) depicts the 

dilution of 11-O-ETIO within the Experiment 2 test tanks before delivery, at 1:30, 2:30, 5 

and 40 minutes post-delivery (B).  The test solutions exist in a concentration gradient 

from time 1:30-2:30 and are evenly mixed by 5 minutes post-delivery.  The black line 

signifies the olfactory threshold for 11-O-ETIO in round gobies (Laframboise & Zielinski, 

2011). 
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Figure 3.5 Diagram describing the time periods for Experiment 1(A) and 2(B).  Each 

experiment is broken up into an acclimation period (only background water is 

delivered), a stimulus period in which test solution is delivered for 90 seconds (light gray 

box) and exists in a concentration gradient, and a recovery period during the washout of 

test solution.  Experiment 1 tests occurred over a 35 minute period whereas Experiment 

2 tests occurred over a 50 minute period due to longer washout times of high 

concentration test solutions. 
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3. RESULTS 

In order to provide a detailed and thorough examination of the data collected, 

often both the individual responses as well as the means are expressed in the figures.   

3.1 EXPERIMENT 1: ACTIVITY IN UNFRACTIONATED AND FRACTIONATED CONDITIONED 

WATER EXTRACT  

Time Spent in the Inflow Zone 

Unfractionated CW Extract 

When unfractionated CW extract containing 10 nM 11-O-ETIO flowed into the 

tanks, some NF (n=29) and RF (n= 22) did not change time in the inflow zone, some 

decreased time in the inflow zone, and others increased time in the inflow zone.  

Overall, there was no significant difference in time spent in the inflow zone during the 5 

minute stimulus period between RF (n=22) and NF (n=29) (U=317.00, P=0.98, Fig. 3.6A 

and B). When comparing time spent in the inflow zone across the three time periods 

(acclimation, stimulus, and recovery) (5 min each) it was found that neither RF nor NF 

spent significantly more time in the inflow zone during any of the 5 min time periods 

(RF: χ 2=0.70, P=0.70, NF: χ 2=2.14, P=0.34, Fig. 3.6A and B). The change in time spent in 

the inflow zone was compared to GSI using a linear regression (n=51).  The change in 

time spent was not correlated to GSI (r2= 0.01, P=0.54) (Fig. 3.7).  

Fractionated Conditioned Water Extract  

 Time in the inflow zone during the introduction of combined fractions 

containing a subset of the released steroids was investigated.  I expected more time 

spent in the inflow zone during the introduction of fractions that contained attractive 
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pheromones, and no change in the time spent in the inflow zone during the introduction 

of preparations that lacked these pheromones, or that contained pheromone levels 

below the threshold for a behavioural response.  Since the inflow zone occupied 25% of 

the tank area, if a solution was not attractive fish were expected to spend 25% of their 

time in the inflow zone. When the vehicle blank (n=7) was introduced into the tank, 4 

individuals spent more time in the inflow zone (Fig. 3.8). When comparing the time 

spent in the inflow zone in response to the vehicle blank, fish (NFs) moved significantly 

more during both the stimulus period and recovery period (F=14.85, P=0.02) (Fig. 3.9). 

RFs (n=10) and NFs (n=19) were exposed to combined fractions 16 and 19-31, 

containing approximately 0.1 nM 11-O-ETIO, 11-O-ETIO-3-s, 11-O-ETIO-17-g, and 11-O-

ETIO-3-g (but without isolated 11-O-ETIO-17-s in fractions 17 and 18).  When individual 

responses were viewed, all RFs showed increased time in the inflow zone, and most NF 

spent more time in the inflow zone during the delivery of the test solution than prior to 

test delivery (Fig. 3.8). However, there was no significant difference in time spent in the 

inflow zone during the stimulus period between fish of either reproductive status 

(U=93.00, P=0.94, Fig. 3.8).  A comparison of time spent in the inflow zone across time 

periods (acclimation, stimulus, and recovery) did not reveal any significant differences 

for RFs (χ 2=1.83, P=0.57) or NFs (χ 2=0.16, P=0.92) although it does appear as though 

some of the fish did increase their time spent in the inflow zone within the first minute 

of delivery and then this response returned to baseline levels (Fig. 3.10).  

RFs (n=10) and NFs (n=10) were exposed to combined fractions 16-21 and 24-31  

(containing 0.1 nM 11-O-ETIO, 11-O-ETIO-17-s, 11-O-ETIO-17-g, and 11-O-ETIO-3-g, but 
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lacking 11-O-ETIO-3s, fractions 22 and 23).  Neither RFs nor NFs significantly changed 

the percent of time in the inflow zone during this treatment (Fig. 3.8). There was no 

significant difference in time spent in the inflow zone during the first 5 minutes of the 

stimulus period between fish of either reproductive status (U=42.50, P=0.86, Fig. 3.11).  

A comparison of time spent in the inflow zone across each of the 5 min time periods 

(acclimation, stimulus, and recovery) did not reveal any significant differences for RFs (χ 

2=0.72, P=0.81) or NFs (χ 2=1.91, P=0.53) (Fig. 3.11).  

  RFs (n=11) and NFs (n=17) were exposed to combined fractions 16-24 and 27-31 

containing; 0.1 nM 11-O-ETIO, 11-O-ETIO-17-s, and 11-O-ETIO-3-s), but lacking fractions 

25 and 26 (11-O-ETIO-17-g and 11-O-ETIO-3-g).  The majority of NFs and RFs spent more 

time in the inflow zone during this treatment (Fig. 3.8). However, there was no 

significant difference in time spent in the inflow zone during the first 5 minutes of the 

stimulus period between fish of either reproductive status (U=71.50, P=0.29, Fig. 3.12).  

A comparison of time spent in the inflow zone across time periods (acclimation, 

stimulus, and recovery) did not reveal any significant differences for RFs (χ 2=3.71, 

P=0.16) or NFs (χ 2=4.96, P=0.08) (Fig. 3.12).   

RFs (n=11) and NFs (n=10) were exposed to a blend containing fractions 16-26 

(0.1 nM 11-O-ETIO-17-s, 11-O-ETIO-3-s, 11-O-ETIO-17-g, and 11-O-ETIO-3-g), but not to 

free 11-O-ETIO (fractions 27-29).  About half of the NFs spent more time and half spent 

less time in the inflow zone during this treatment (Fig. 3.8).  There was no significant 

difference in time spent in the inflow zone during the stimulus period between fish of 

either reproductive status (U=88.00, P=0.10, Fig. 3.13).  However, a comparison of time 
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spent in the inflow zone during the recovery period revealed that RFs spent significantly 

more time in the inflow zone than during the acclimation and stimulus periods (t=2.62, 

P=0.02), whereas NFs did not spend significantly more time in the inflow zone during 

any of the time periods (F= 0.44 P=0.65) (Fig. 3.12). These findings suggest that RF 

exhibited a delayed attraction to fractions 16-26, which contained 11-O-ETIO 

derivatives, but not the free 11-O-ETIO.  

Summary of Experiment 1a: Time Spent in Inflow Zone.  

I expected to see more fish with increased time at the inflow zone when 

pheromones were introduced into the tank, and fewer fish with more time at the inflow 

zone when pheromones were absent from the test solution.  Overall, the fish did not 

spend more time in the inflow zone when CW extract was introduced.  The majority of 

the test fish increased time at the inflow zone when preparations containing 11-O-ETIO-

3-s and 11-O-ETIO, but missing fractions containing 11-oxo-ETIO-17-s or the 

glucuronated 11-O-ETIO were introduced into the tank. When fractions containing 11-O-

ETIO-3-s (fractions 23 and 24) were left out of the test solution, none of the RFs or NFs 

tested significantly changed their time spent in the inflow zone.  When free 11-O-ETIO 

was removed from the test solution, most RFs and NFs did not change time in the inflow 

zone, however, when looking across test solutions, RFs and NFs did not spend 

significantly more time in the inflow zone during the first 5 min stimulus period when 

exposed to any of the test solutions (H=6.87, P=0.23, and H=7.58, P=0.11 respectively) 

(Fig 10-13).  When a preparation containing 0.1 nM 11-O-ETIO-17-s, 11-O-ETIO-3-s, 11-
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O-ETIO-17-g, and 11-O-ETIO-3-g (but not the free 11-O-ETIO) was introduced, RFs 

showed a delayed attraction to the inflow zone. 

 When comparing the change in the percent of time spent in the inflow zone 

between the last five minutes of the acclimation period and the first five minutes of the 

stimulus period, across test solutions, it was found that neither RFs nor NFs changed 

significantly (RF:  H=7.49, DF=5, P=0.19, NF: H=4.50, DF =5, P=0.48, Fig 8).  The 

differences in the change in percent of time spent in the inflow zone between RFs and 

NFs within each test solution were also not significant (Table 3.2) (Fig. 3.7). 

Change in Distance Travelled 

Change in distance travelled was not correlated to GSI (r2= 0.01, P=0.48) (Fig. 3.7).  

When exposed to the vehicle blank (NF, n=5) 4 fish moved very little, and one decreased 

the distance travelled (Fig. 3.14).  Most RFs and NFs increased distance travelled in 

unfractionated CW extract and in the fraction mixture lacking 11-O-ETIO-3-s (Fig. 3.14).  

Some fish increased movement, some did not change distance travelled and others 

moved less (Fig. 3.14).  Reproductive females significantly decreased the distance 

travelled (boxes moved) during the first 5 minutes of the stimulus period when exposed 

to fractions 16-24 and 27-31 (containing 0.01 nM 11-O-ETIO, 11-O-ETIO-17-s, and 11-O-

ETIO-3-s) (Minus 17-g and 3-g) when compared to the change in distance travelled when 

exposed to CW extract, but not to any other test solutions (H=12.82, DF=4, P=0.01, Fig. 

3.15).  NFs did not significantly differ in the distance travelled between the acclimation 

and stimulus periods when exposed to any of the test solutions (H=3.04, DF=4, P=0.55, 

Fig. 3.9).  When comparing the change in distance travelled (between acclimation and 
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stimulus period) between RFs (n=13) and NFs (n=23) within each test, RFs decreased the 

distance travelled significantly more than NFs (U=92.00, P=0.047) when exposed to a 

steroid blend of 11-O-ETIO, 11-O-ETIO-17-s, and 11-O-ETIO-3-s (Fractions 16-24, and 27-

31 -Minus 17-g and 3-g) (Fig. 3.15).  There was no significant difference in change in 

distance travelled between RFs and NFs in any of the other test solutions (Table 3.3) 

(Fig. 3.15).  It should be noted that the power of the statistical tests used to compare 

RFs and NFs when exposed to both minus 3-s and minus free as well as the change when 

exposed to the vehicle blank were all below 0.8. 

Summary of Experiment 1 Findings 

Overall, the females did not show any strong responses to the test solutions 

when comparing averages, but it may be informative to look at the changes in 

behaviours of individual fish and look for trends.  When doing so, I found several trends 

that support my predictions including: 1) when fraction pools that included 0.01 nM 11-

O-ETIO-3-s were applied, RFs tended to increase the time they spend in the inflow zone 

(Fig. 3.8) and RFs did not change the percent of time spent in the inflow zone when the 

test solution contained all fractions with the exception of 11-O-ETIO-3-s (Fig. 3.8), 2) 

When fraction pools that included 0.01nM 11-O-ETIO-3-s were applied, RFs tended to 

decrease movement (measured in distance) relative to NFs, whereas when 11-O-ETIO-3-

s was removed, RFs did not exhibit a change in distance travelled (Fig. 3.15).  In addition, 

Previous observation that free 11-O-ETIO isolated from RM CW is not an attraction 

pheromone (Tierney et al., 2013) to RFs is supported by our study, showing that RFs 



69 
 

displayed a delayed preference to a fraction mixture containing the 11-O-ETIO 

conjugates (but not free 11-O-ETIO).  

3.2 EXPERIMENT 2: RESPONSES OF ROUND GOBIES IN TANKS WITH SHELTERS TO 

CONDITIONED WATER EXTRACT AND 1 M SYNTHETIC STEROIDS  

Female round gobies in tanks containing shelters (n=11) were exposed to CW 

extract containing 10 nM 11-O-ETIO or to 1 M synthetic steroids (11-O-ETIO, 11-O-

ETIO-3-s, 11-O-ETIO-17-s, and 11-O-ETIO-3-g).  Each fish was exposed to four test 

solutions. The sequence for these tests was randomized for each fish.  (1) CW extract, 

(2) a blend of 1 M 11-O-ETIO, 11-O-ETIO-3-s, 11-O-ETIO-17-s, and 11-O-ETIO-3-g, (3) 

the blend in (2) without 11-O-ETIO-3-s, and (4) 1 M 11-O-ETIO-3-s. 

Change in Percent Time Spent in Shelter 

 RFs (n=5) and NFs (n=6) did not exhibit a significant change in the percent of 

time spent in the shelter when exposed to any of the test solutions (RF: F=0.14, P=0.93, 

NF: F=2.54, P=0.10) (Fig. 3.16 & 17).  Nor was there a significant difference between RFs 

and NFs when exposed to each of the test solutions (Table 3.4) (Fig. 3.16 & 17).  Fish 

generally remained in the tube for the entire duration of the experiments.  

Time Spent in the Inflow Zone 

 Due to the small number of fish that actually entered the inflow zone, the data 

for each individual is expressed rather than as means (Fig. 3.18 & 19).  When comparing 

the percent time spent in the inflow zone between the acclimation and stimulus period, 

no significant difference was found for RFs (n=5) or NFs (n=6) (Table 3.4) (Fig. 3.18 &19) 

(Table 3.5). 
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The amount of time spent in the inflow zone during the stimulus period did not 

differ significantly across each of the test solutions for either RFs (χ 2=3.80, P= 0.284) or 

NFs (χ 2=3.00, P=0.392) (Fig. 3.18 & 19).  A similar result was found when comparing the 

time spent in the inflow zone across reproductive status during the stimulus period for 

each of the test solutions (Fig. 3.18 & 19) (Table 3.6). 

Due to low response rates (1 RF and 1 NF entered the inflow zone) analysis of change in 

time spent in the inflow zone was not conducted 

Hopping Behaviour 

The number of hops over the acclimation and stimulus periods was measured as 

a metric of fish activity. When comparing the number of hops performed across time, it 

was found that NFs (n=6) hopped more during the stimulus period than the acclimation 

period when exposed to a blend of synthetic 1µM 11-O-ETIO, 11-O-ETIO-17-s, and 11-O-

ETIO 3-g (Minus 3-s) (t=-4.00, P=0.01) (Fig 20C).  There was a similar trend in response of 

NFs when exposed to 1 M 11-O-ETIO-3-s (Z=2.00, P=0.06) (Fig. 3.20 D).  There were no 

other significant differences when comparing hopping behaviour between acclimation 

and stimulus periods (Fig. 20 A-D). When exposed to a blend of synthetic 1 M 11-O-

ETIO, 11-O-ETIO-17-s, 11O-ETIO-3s and 11-O-ETIO 3-g (All steroids) RFs displayed a 

higher number of hops during the stimulus period than NFs (Table 3.7) (Fig. 3.20B).  

Reproductive females also performed a significantly higher hopping frequency during 

the stimulus period when exposed to a blend of 1 M 11-O-ETIO, 11-O-ETIO-17-s, 11O-

ETIO-3s and 11-O-ETIO 3-g (all steroids)  compared to the hopping frequency during CW 

extract exposure (F=5.184, P=0.02), NFs did not exhibit significantly different hopping 
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frequencies during the stimulus period when exposed to any of the test solutions 

(F=0.34, P=0.80) (Fig. 3.21& 22). 

Across tests of synthetic steroids, females (n=11) did not significantly differ in 

the change in hopping behaviour (F=1.50, P=0.24, Fig. 3.21 & 22).  Data for reproductive 

and non-reproductive was pooled for this analysis as they demonstrated similar activity 

patterns (Mann-Whitney rank sum test comparing RF (n=43) and NF (n=48) change in 

hops: U=191.50, P=0.38) (Fig 13).   

The response magnitude for hopping was greater than 2.5 for 2 NF (N=6) upon 

the delivery of the CW extract, of 1 M 11-O-ETIO-3S, and of a mixture containing 1 M 

11-O-ETIO-17s, 11-O-ETIO-3-g and 11-O-ETIO (Fig. 3.21).  For 1 RF (N=5), the response 

magnitude exceeded 2.5 in 11-O-ETIO-3-s (Fig. 3.21).  The response magnitude was 

greater than 1 in all 6 NF tested, to a mixture of steroids that did not include 11-O-ETIO-

3-s (but included 11-O-ETIO-17-s, 11-O-ETIO-3-g and 11-O-ETIO), in 4 NF tested with 11-

O-ETIO-3-s, and 2 NF tested with all steroids.  Two RFs showed a response magnitude 

greater than 1 in 11-O-ETIO-3-s; 3 in 11-O-ETIO-17-s, 11-O-ETIO-3-g and 11-O-ETIO, 2 in 

all steroids and 1 in CW extract.  These findings indicate that hopping is greater in NFs 

than RFs, and that an elevated response magnitude was most frequent in the 11-O-

ETIO-3-s treatment.  

Change in Gill Ventilation Rate 

Gill ventilation rate was measured to determine if females could detect the 

presence of the test solution (Murphy et al., 2001, Tierney et al., 2013).  Across test 

solutions (synthetic steroids delivered at 1µM), Neither RFs (n=5) nor NFs (n=6) 
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significantly changed gill ventilation rates (RF: F=1.78, P=0.21, NF: (F=0.26, P=0.86) (Fig 

23).  When comparing the change in gill ventilation across reproductive status, when 

exposed to synthetic 11-O-ETIO-3-s RFs significantly decreased gill ventilation rate in 

comparison to NFs.  Across other test solutions, no significant differences were found 

(Table 3.8) (Fig. 3.23). 

 
I also compared the gill ventilation rate per minute during the last 5 minutes of 

the acclimation period to the first five minutes of the stimulus period using a paired t-

test.  I found no statistical differences between these time periods during application of 

any of the test solutions.  Although there was a slight decrease in RF gill ventilation rate 

(n=5) when exposed to synthetic 11-O-ETIO-3-s (1μM) (t=2.21, P=0.09) (Fig. 3.23).  The 

power of all statistical tests used to examine changes in gill ventilation activity were 

below 0.8. 
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Table 3.2 Statistical data from Experiment 1, investigating the change in percent time in 
the inflow zone in response to various isolates of reproductive male round goby 
conditioned water 
 
 

Test Solution Sample size RF Sample size  NF U value P value 

CW with 10 nM 11-
oxo-ETIO 

22 29 287.99 0.53 

Fractions 19-31 (0.01 
nM 3S, 3g, 17g, free 
(Minus 17-s) 

10 19 70.50 0.25 

Fractions 16-21; 24-
31(Minus 3-s) 

10 10 44.50 0.67 

Fractions 16-24; 27-
41 (Minus 17-g and 
3-g) 

11 18 81.00 0.41 

Fractions 16-26 
(Minus Free) 

11 10 54.50 0.99 
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Table 3.3 Statistical data from Experiment 1, investigating the change in distance 
travelled in response to various isolates of reproductive male round goby conditioned 
water 
 

Test Solution N RF N NF U value P value 

CW 13 23 108.00 0.12 
Minus 17-s 12 23 97.50 0.38 
Minus 3-s 11 13 28.50 0.79 
Minus 17-g and 3-g 13 23 92.00 0.047 
Minus Free 11 11 34.00 0.41 
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Table 3.4 Statistical data from Experiment 2, investigating the time spent in the PVC 
shelter change in response to various synthetic analogs of reproductive male round 
goby conditioned water 
 

Test Solution U value P Value 

CW Extract 22.00 0.18 
All Steroids 12.00 0.66 
Minus 3-s 7.00 0.18 
3-s Alone 14.00 0.93 
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Table 3.5 Statistical data from Experiment 2, investigating the time spent in the inflow 
zone across the acclimation and stimulus periods in response to various synthetic 
analogs of reproductive male round goby conditioned water 
 

Test Solution RF Test Statistic RF P value NF Test Statistic NF P value 

CW Extract Z=1.00 0.99 Z=1.00 0.99 

All Steroids t=1.65 0.20 Z=4.52X10-272 0.99 

Minus 3-s Z=-1.00 0.99 Z=-1.00 0.99 

3-s Alone Z=-2.48X10-72 0.99 Z=-1.00 0.99 
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Table 3.6 Statistical data from Experiment 2, investigating the time spent in the inflow 
zone across the acclimation and stimulus periods between reproductive and non-
reproductive females in response to various synthetic analogs of reproductive male 
round goby conditioned water 
 

Test Solution U value P value 

All Steroids 9.00 0.99 
Minus 3-s 15.00 0.99 

3-s Alone 15.00 0.99 

CW Extract 14.00 0.93 
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Table 3.7 Statistical data from Experiment 2, investigating the change in hopping 
frequency during the acclimation and stimulus periods in response to various synthetic 
analogs of reproductive male round goby conditioned water 
 

 RF (n=5) NF (n=6) RF vs. NF 

Test Solution t value P value t value P value U value P value 
CW extract 1.15 0.31 -0.79 0.47 9.50 0.33 
All Steroids 0.13 0.90 -1.22X10-16 0.99 2.00 0.04 
Minus 3-s -0.67 0.54 -4.00 0.01 8.50 0.25 
3-s Alone -1.26 0.28 2.00* 0.06 13.00 0.79 

*did not pass normality, Wilcoxon signed rank test was used 
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  Table 3.8 Statistical data from Experiment 2, investigating the change in gill ventilation 

rate in response to various synthetic analogs of reproductive male round goby 

conditioned water 

Test Solution t value P value 

All Steroids 0.45 0.66 
Minus 3-s -0.25 0.81 

3-s Alone -2.714 0.024 

CW Extract -1.11 0.30 
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Table 3.9 Statistical data from Experiment 2, investigating the change in gill ventilation 
rate between reproductive and non-reproductive females in response to various 
synthetic analogs of reproductive male round goby conditioned water 

 RF (n=5) NF (n=6) 

Test Solution t value P value t value P value 
All Steroids 0.94 0.40 -0.56 0.60 

Minus 3-s -1.05 0.37 -0.29 0.79 

3-s Alone 0.31 0.77 0.14 0.89 

CW Extract 2.01 0.09 -1.58 0.18 
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Figure 3.6 Experiment 1, average percent time (± SEM) spent in the inflow zone 

per minute after delivery of conditioned water (CW) extract (10nM) of both (A) 

reproductive females (RFs) (closed circles) and (B) non-reproductive females 

(NFs) (open circles).  The x-axis is time in minutes with negative values referring 

to the pre-odour delivery period. The bars along the x-axis represent each of the 

5 minute time periods used for statistical analysis.  No significant difference was 

found across reproductive status or time periods. 
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Figure 3.7 Change in both time spent in inflow quarter (A) and distance 

travelled (B) calculated as: last 5 minutes during acclimation period 

subtracted from first 5 minutes of stimulus period, in relation to GSI when fish 

were exposed to CW extract (10-8M) in experiment 1.  The black bar along the 

x axis denotes reproductive females.  Females with a GSI greater than 8.3 

were considered reproductive (black bar along x-axis) (Gammon et al., 2005).  

There was no correlation found for either metric against GSI. 
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  Figure 3.8 Average change in the percent time spent in the inflow zone (± SEM) 

over five minutes for reproductive females (RFs, closed circles) and non-

reproductive females (NFs, open circles) after test solution delivery of (i) vehicle 

bank, (ii) all fractions except for 17-s, (iii) all fractions except for 3-s, (iv)  all 

fractions except for 17-g and 3-g, (v) all fractions except for free. There were no 

significant differences across treatments or reproductive status. 
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Figure 3.9 Average percent time (± SEM) spent in the inflow zone per minute 

after delivery of vehicle blank. Fish spent significantly more time in the inflow 

zone during the stimulus and recovery periods when compared to the 

acclimation period (P=0.002) 
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Figure 3.10 Average percent time (± SEM) spent in the inflow zone per minute 

by RFs (closed circles) and NFs (open circles) after delivery of all Experiment 1 

fractions except for those containing 11-O-ETIO-17-s. There was no significant 

difference found when comparing across time or reproductive status.  The black 

boxes denote the fractions that were delivered. 
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Figure 3.11 Average percent time (± SEM) spent in the inflow zone per minute 

by RFs (closed circles) and NFs (open circles) after delivery of all fractions except 

for 3s.  There was no significant difference found when comparing across time or 

reproductive status.  The black boxes denote the fractions that were delivered. 
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Figure 3.12 Average percent time (± SEM) spent in the inflow zone per minute 

by RFs (closed circles) and NFs (open circles) after delivery of all fractions except 

for 17g and 3g, There was no significant difference found when comparing 

across time or reproductive status. The black boxes denote the fractions that 

were delivered. 
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Figure 8 

 
 Fig 1 

Figure 3.13 Average percent time (± SEM) spent in the inflow zone per minute 

by RFs (closed circles) and NFs (open circles) after delivery of all fractions except 

for free.  RFs spent more time in the inflow zone during the recovery period than 

the acclimation and stimulus periods (P=0.02). The black boxes denote the 

fractions that were delivered. 
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Figure 3.14  Change in distance travelled (# of boxes ± SEM) of RFs (closed circles) and 

NFs (open circles) over the five minutes after test solution delivery compared to the 

five minutes before test solution delivery of (i) vehicle blank, (ii) all Experiment 1 

fractions except for 17-s, (iii) all fractions except for 3-s, (iv) all fractions except for 17-g 

and 3-g, and (v) all fractions except for free. 
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Figure 3.15  Average change in distance travelled (# of boxes ± SEM) by RFs (black bars) 

and NFs (grey bars) over the five minutes after test solution delivery compared to the 

five minutes before test solution delivery of (i) vehicle blank, (ii) all Experiment 1 

fractions except for 17-s, (iii) all fractions except for 3-s, (iv) all fractions except for 17-g 

and 3-g, and (v) all fractions except for free.  RFs significantly increase their distance 

travelled more than NFs when exposed to all fractions except for 17-g and 3-g. 

(P=0.047). 
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Figure 3.16  Change in the percent time RFs (closed circles) and NFs (open 

circles), spent in the PVC shelter  over five minutes after test solution delivery of 

(i) CW extract (10nM) and synthetic steroids at 1μM (ii) all steroids (11-O-ETIO, 

11-O-ETIO-17-s, 11-O-ETIO-3-s, 11-O-ETIO-3-g) (iii) all steroids except for 3s, and 

(iv) 3s alone.  
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Figure 3.17  Average change in the percent time RFs (black bars) and NFs (white bars), 

spent in the PVC shelter  over five minutes after test solution delivery of (i) CW extract 

(10nM) and synthetic steroids at 1μM (ii) all steroids (11-O-ETIO, 11-O-ETIO-17-s, 11-O-

ETIO-3-s, 11-O-ETIO-3-g), (iii) all steroids except for 3s, and (iv) 3s alone.  There was no 

significant difference across any of the test solutions or reproductive status.  
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Figure 3.18  Experiment 2 (with shelters), average percent time (± SEM) RFs 

(closed circles) and NFs (open circles) spent in the inflow zone per minute across 

treatments of synthetic steroids at 1µM after delivery of (A) CW extract (10-8M), 

(B) all steroids (11-O-ETIO, 11-O-ETIO-17-s, 11-O-ETIO-3-s, 11-O-ETIO-3-g).  The 

x-axis is time in minutes with negative values referring to the pre-odour delivery 

period.  The black bar denotes when the test solution was in the tank. 

 

 

  

A A 
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Figure 3.19  Experiment 2 (shelters), average percent time (± SEM) RFs (closed 

circles) and NFs (open circles) spent in the inflow zone per minute across 

treatments of synthetic steroids at 1μM after delivery of (A) all steroids except 

for 3s, and (B) 3s alone.  The x-axis is time in minutes with negative values 

referring to the pre-odour delivery period.  The x-axis is time in minutes with 

negative values referring to the pre-odour delivery period.  The black bar 

denotes when the test solution was in the tank. 

 

A 

B 
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Figure 3.20 Average number of hops (±SEM) across time RFs (closed circles) and NFs 

(open circles) performed per minute across treatments after delivery of (A) CW extract 

(10nM) and synthetic steroids at 1μM, (B) all steroids, (C) all steroids except for 3s, and 

(D) 3s alone.  NFs significantly increased in number of hops in the inflow zone during 

exposure to steroid blend without 11-O-ETIO-3-s when compared to acclimation period. 
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Figure 3.21 Ratio of response for hopping activity (number of hops five minutes 

after solution delivery divided by the number of hops five minutes before 

delivery, exhibited by RFs (closed circles) and NFs (open circles),  after delivery of 

(i) CW extract (10nM) and synthetic steroids at 1µM (ii) all steroids, (iii) all 

steroids except for 3s, (iv) and 3s alone.  
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Figure 3.22 Average change in hopping activity (number of hops five minutes 

after odour delivery minus number of hops five minutes before delivery, (± 

SEM) exhibited by RFs (black bars) and NFs (grey bars),  after delivery of (i) 

CW extract (10-8M) and synthetic steroids at 10-6M (ii) all steroids, (iii) all 

steroids except for 3s, (iv) and 3s alone.  There were no significant 

differences across test solutions or reproductive status. 
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Figure 3.23 Average gill ventilation rate (ventilations/minute) of RFs and NFs  

during the last five minutes before (acclimation) and first five minutes after 

(stimulus) test solution delivery (±SEM) after the delivery of (i) CW extract (10-

8M) and synthetic steroids at 10-6M, (ii) all steroids, (iii) all steroids except for 

3s and (iv) 3s alone.  There was no significant difference across any of the test 

solutions or reproductive status. 
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4. DISCUSSION 

4.1 GENERAL DISCUSSION 

Overall, female round gobies did not show significant movement responses to 

fractionated 0.1nM 11-O-ETIO isolates from RM CW or to 1μM synthetic analogs of 

these steroids.  In the following sections I discuss some of the behavioural changes 

found in this study as well as describe possible reasons as to why most of the females 

did not respond to the test solutions. 

In Experiment 1, I tested for changes in the movement of female round gobies, 

when pooled fractions containing 0.01 nM 11-O-ETIO derivatives and free 11-O-ETIO 

were applied to fish tanks.  I predicted that RFs would stay near the inflow source and 

decrease distance travelled in tests containing 11-O-ETIO-3-s but overall my data did not 

support these predictions.  One of the most likely reasons is the possibility that the 

steroids delivered were below the females olfactory threshold (Based on an EOG study) 

(Laframboise and Zielinski, 2011).  Although it should be noted that the females used in 

that study were non-reproductive and it possible that olfactory receptor expression is 

higher in reproductive females as seen in African cichlids (Astatotilapia burtoni) (Marusa 

and Fernald, 2010).  If this is the case, RFs may have a lower olfactory threshold for 

reproductive odours than NFs.  It is also possible that the threshold for behavioural 

responses is below the threshold required to elicit an olfactory response in an EOG.  This 

is the case in sea lamprey as females show an EOG response threshold to a male mating 

pheromone (3KPZS) delivered at 10-12M (Siefkes and Li, 2004 ), but  have been shown to 

respond behaviourally to 3KPZS at 10-13M and in some cases 10-14M (Johnson et al., 
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2009). In addition, because of the large number of non-responsive fish, it is possible a 

test solution may have been attractive but the response was not detected through the 

use of means.  It should be noted that I did not directly test the olfactory capabilities of 

the fish used in my study. 

In Experiment 2, gobies were provided shelters and responses to 1M synthetic 

steroids were tested. In all tests, gobies tended to stay in the shelter, and NFs increased 

their time in the shelter when CW extract was delivered, however RFs seem to leave the 

shelter more when the steroids were delivered, especially in the presence of 1µM 11-O-

ETIO-3-s alone (Fig 16).  Hopping frequency was also quantified as an activity metric. 

Most RFs and NFs increased hops in response to 1 M 11-O-ETIO-3-s and in a mixture of 

1 M 11-O-ETIO-17-s, 11-O-ETIO-3-g and free 1 M 11-O-ETIO (Fig. 3.21 and Fig. 3.22).  

Although the largest hop increase was seen in 1 M 11-O-ETIO-3-s, this value was not 

statistically different from baseline (Fig. 3.21).  I found that RFs hopped more in 

response to test solutions containing the synthetic steroids (1µM 11-O-ETIO, 11-O-ETIO-

17-s, 11-O-ETIO-3-s, and 11-O-ETIO-3-g) than NFs. This observation should be 

interpreted cautiously as there was not a significant increase in RF hopping frequency 

between the acclimation and stimulus period.  Reproductive females exhibited a high 

hopping frequency throughout that trial even before the odour was added, suggesting 

that the hopping behaviour was not linked to the test solution.  I also found that NFs 

increased hopping frequency in response to a blend of synthetic 1 μM 11-O-ETIO, 11-O-

ETIO-17-s, 11-O-ETIO-3-s, and 11-O-ETIO-3-g.  Although this is the first study to quantify 

hopping, a previous study has reported increased movement in CW extracted 
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unseparated 11-O-ETIO conjugates (Tierney et al., 2013). From our study it seems 

possible that NFs within the confined testing apparatus can smell but are not necessarily 

attracted to this steroid blend.  Reproductive females did not respond significantly to 

any of the synthetic test solutions.  Again these results should be interpreted cautiously 

as the round gobies did not respond to the positive control, the CW extract.    

This study has expanded upon previous research suggesting that female round 

gobies are attracted to water conditioned by RMs (Gammon et al., 2005), and that 

conjugated 11-O-ETIO specifically, is attractive to RFs (Tierney et al., 2013).  The present 

study used the amount of time spent near the odour source, distance travelled, activity 

(hops) and gill ventilation as behavioural metrics to quantify attraction to particular test 

solutions which have all been commonly used in round goby behaviour (Murphy et al., 

2001; Gammon et al., 2005; Belanger et al., 2006, Tierney et al., 2013).  Our test 

solutions used expanded upon previous research, CW extracts have been shown to 

evoke attraction in female round gobies (Kasurak et al., 2012) and mixes of conjugated 

11-O-ETIO are attractive to RFs, whereas unconjugated 11-O-ETIO is attractive to NFs 

(Tierney et al., 2013).  In terms of CW extract, this was previously tested by Kasurak and 

colleagues (2012) in a larger flume setting.  They found that fish were only responsive 

during the month of July; this differs from Kereliuk’s work which tested females 

throughout the breeding season (June-September) (2009).  It is possible that by 

removing all polar substances from the CW via methanol extraction, priming 

pheromones are removed, or non-polar compounds necessary for eliciting responses in 

females are removed, and only in the height of the breeding season will elicit a 
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response. It is also possible that seasonal variation in environmental factors such as 

temperature, day length, and light intensity may play a role in female responsiveness to 

male pheromones (as reviewed by McNeil, 1991).  In the present study, I did not find a 

trend suggesting that the change in time spent in the CW extract inflow zone increased 

in relation to GSI, although it does appear as though there is a slight increase in time 

spent in the inflow zone as GSI increases. Based on previous work, it may be important 

to use females with a high GSI value (>10) when conducting future test (Marenette & 

Corkum, 2008).  Responses to RM CW are status dependent (black goby, Gobius niger, 

Columbo et al., 1980; round goby, Tierney et al., 2003; Zeyl et al., 2014).  These studies 

suggest status-dependent changes in olfactory sensitivity exist so that males only attract 

females ready to spawn.  

In the following sections I discuss the non-significant results of each method of 

behavioural analysis for both experiments and provide possible explanations and 

solutions: 

4.2 EXPERIMENT 1 (0.1 NM FRACTIONATED 11-O-ETIO CONJUGATES) 

The time periods analyzed were over the five minutes in which the test solution 

existed in a concentration gradient (as per Gammon et al., 2005; Kasurak et al., 2012; 

Tierney et al., 2013).  It is possible that females could be responding within the first 

moments of detection and then become habituated.  When animals navigate in odour 

plumes, they will exit and re-enter the plume in order to maintain sensitivity and 

tracking ability (Vickers, 2000).  I also found that when exposed to minus free and minus 
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17g and 3g, RFs showed a slight delayed response. This is likely due to normal 

fluctuations in base line activity and not a residual response as the test solution after 10 

minutes post-delivery would be below the round gobies detection threshold 

(Laframboise and Zielinski, 2011).  It is important to note that the overall percent time 

spent in the inflow zone in Experiment 1 was approximately 25%, a value expected by 

chance as the inflow zone comprises 25% of the tank.  Overall, the large variation 

between individuals is likely an important factor causing the change in percent time 

data to be non-significant.  The power of many of the performed statistical tests was 

below the desired 0.80 (reviewed by Jennions & Møller, 2003).  This seems to be a 

typical problem not only in round goby research (Gammon et al., 2005, Tierney et al., 

2011) but in animal behavior studies in general (Jennions & Møller, 2003; Sih et al., 

2004). Future studies would need larger sample sizes to overcome this issue.  The 

relatively large proportion of gobies that did not move during the tests greatly affected 

the statistical significance.  A better process to remove non-responders could also be 

implemented, perhaps by first testing fish with a positive control such as L-alanine (food 

odour) which would allow researchers to avoid non-responsive fish.  These differences 

could be due to differences in fish ‘personalities’ where some fish are more bold than 

others and exhibit higher levels of exploration and recover from startling events faster 

(Sih et al., 2004).    

4.3 EXPERIMENT 2 (SHELTER PROVIDED, 1M SYNTHETIC STEROIDS TESTED) 
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Once the PVC shelter was added, fish spent much less than the expected 25% of 

the time in the inflow due to fish spending most of their time in the shelter.  The benefit 

of this is that if the fish does spend any time in the inflow zone it is more likely 

correlated to attraction as it is less likely that they would leave the tube unless 

attractive odour (i.e. for food odours, Chapter 2).  Unfortunately because of this, the 

variation was quite large (all or none response), thus to better look at the data, a true 

positive control should be used in advance of trials to remove non-responders.  

Although not significant, when looking at time spent in the shelter, RFs didn’t seem to 

leave the shelter when exposed to CW, but NFs did spend more time in the shelter when 

exposed to it.  Alternatively RFs did leave the shelter more in response to the synthetic 

test solutions (although not significant), suggesting that the micromolar steroids could 

elicit stronger responses than the 0.1 nanomolar values administered in the fractionated 

CW extract tests.  Gammon and colleagues (2005) also used a shelter, and observed that 

females spent approximately 20-25% of the time in the inflow half during the 

acclimation period, which is less than expected by chance (50% of the time).  This 

supports the idea that when a PVC shelter is available, fish spend more time in it, rather 

than in open areas.  Despite this, when RFs were exposed to RM CW they spent 

significantly more time in the inflow zone than in the acclimation period (81% of the 15 

minute stimulus period) (Gammon et al., 2005).  This supports the idea that females 

leave the tube if they smell an attractive odour.   

Change in Distance Travelled 
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Individual variation in change in distance travelled data was not as extreme (due 

to the fact that data was inherently normalized for each fish).  In the case of distance 

travelled, the lack of significant changes could be a result of the small tank size used as a 

test for movement responses. In order to locate an odour source, fish will often navigate 

within the plume in order to best detect the areas of high concentration (Vickers, 2000).  

It is possible that in these smaller tanks, the fish are not able to perform this behaviour 

as they are essentially always in the high concentration zone.  This was seen in previous 

work using these small tanks (Tierney et al., 2013).  In that study, the authors report a 

decrease in distance travelled in the presence of round goby pheromones, which is 

atypical for these types of studies which typically see an increase in movement in 

response to pheromones (Johnson et al., 2009).  

 Hopping Frequency  

It is possible that distance moved is not the most ideal metric for this study as 

the arena is small relative to the fish and gobies generally do not exhibit typical 

swimming behaviour, rather they tend to travel in short bursts or hops (pers. obs.).  

Thus, hopping may be a more appropriate metric for measuring changes in activity 

levels in response to a stimulus. In Experiment 2, hopping behaviour was used as a 

metric for activity.  However, fish did not change hopping activity in response to any of 

the test solutions.  There was a large variation in the baseline hopping ratio (during 

acclimation period, some fish hop constantly whereas others do not hop at all) I tested 

the hopping response ratio in order to control for individual variation and saw that RFs 
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increased hopping ratio in 1 M 11-O-ETIO 3-s.  I predicted that 11-O-ETIO-3-s conveys 

odor potency based on previous EOG studies (Laframboise and Zielinski, 2012).   Further 

studies are needed as this was not statistically significant, likely due to low sample size.  

Interestingly, NFs showed a large increase in hopping behaviour (2-3 fold increase from 

acclimation) in CW, minus 11-O-ETIO-3-s and 11-O-ETIO-3-s alone but not to all steroids.  

This is unexpected as NFs did not typically respond to CW or conjugated steroids but 

instead preferred free (unconjugated 11-O-ETIO) (Corkum et al., 2008; Tierney et al., 

2013).  Because hopping behaviour is not necessarily linked to attraction, it could 

provide evidence in support of the idea that NF actually avoid RM odours (Gammon et 

al., 2005). 

Gill Ventilation Rate  

Gill ventilation was expected to increase in response to CW and any solutions 

that fish can smell (Belanger et al., 2006; Tierney et al., 2013), however I did not see any 

significant changes in gill ventilation rates across treatments.  Within treatments, RFs 

showed a slight decrease in gill ventilation rate when exposed to 1μM synthetic 11-O-

ETIO-3-s, when comparing to rate before test solution delivery.  For the present study, 

gill ventilation rate was measured over a 10 second time period, every 30 seconds; this 

value was then averaged over the 5 minute time period (acclimation vs. stimulus).  It is 

possible that the 10 second time bins were too short to determine an accurate gill 

ventilation rate and that changes in gill ventilation rate may be short lived and thus, by 

averaging over five minutes, small changes are missed.  A previous study that focused 
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on gill ventilation rate changes in response to round goby pheromones used a similar 

method but calculated values for an entire 1 minute interval every 3 minutes (over a 15 

minute time period) and then averaged these three values (Belanger et al., 2006).  In 

that study, they also expressed changes as a percent increase from baseline (the 

acclimation period prior to the test solution delivery.  From this, it is likely that the 10 

minute time bins were inadequate for determining gill ventilation rate, and future 

studies should aim to use an entire 1 minute interval. 

4.4 SUMMARY OF FINDINGS 

1)  Concentration: In Experiment 1, the steroid concentration in the HPLC fractions was 

below the round goby’s olfactory detection threshold.  The concentration that was 

tested was no higher than 0.1nM for each 11-O-ETIO conjugate. Females showed an 

olfactory threshold (by electro-olfactogram) for 1 nM ETIO and 1 nM 11-O-ETIO-3S 

(Laframboise and Zielinski, 2011).) .  In Tierney and colleagues (2013), the fractions 

contained approximately 10 nM conjugated 11-O-ETIO. 

2)  Positive Control: While I did not see changes in movement when RM CW extract 

(containing 1 nM 11-O-ETIO) was delivered; this test solution was linked to movement 

responses in previous studies (Kasurak et al., 2012; Tierney et al., 2013).   

3)  Synthetic Steroids: It is possible that the mixtures of all steroids did not elicit a 

response because of the use of 11-O-ETIO-3-g as a racemic mixture, or because 11-O-

ETIO-17-g was not included in the test solution (not commercially available).  11-O-ETIO-

3-s did seem to elicit a higher hopping response magnitude in some RFs. 
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4)  The Ratio of Steroids: The ratio of steroids tested could differ from that released by 

the male due to variation in isolation efficiencies of each of the steroids.  The different 

structural groups on the conjugated steroids will affect the compound’s polarity and 

thus its binding affinity in both the C18 column and the HPLC column.  If the ratio varies 

drastically from that released by the male, it may affect the response rates.  This would 

also affect the responses in the synthetic steroids experiment as the ratios used for that 

were based on those determined by HPLC. 

5)  Circadian Rhythm. Tierney and colleagues (2013) (after which the present study is 

modeled) ran experiments in the evenings in the dark.  The experiments reported in the 

present study were performed in the afternoon under a low light setting in order to 

mimic light setting of shallow water.  A study on swimming performance in the round 

goby suggests a slight bias towards nocturnal activity (Tierney at al., 2011).  

Unfortunately most studies reported in published literature do not mention the time of 

day the experiments take place (Murphy et al., 1999, Gammon et al., 2005; Corkum et 

al., 2008; Kasurak et al., 2012) so it is difficult to verify if time of day is important in the 

round goby and further studies are required to elucidate the full effects of time of day 

on behavioural responses to pheromones.  In their review, Johnson and Li (2010) 

suggest that a variety of environmental cues including lighting, time of year, and 

hydrodynamics can play an important role in fish responses to olfactory cues. 

5. Conclusions & Recommendations for Future Studies: 
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Overall, due to small sample sizes and low concentrations of steroids within HPLC 

fractions, as well as the lack of response of females to CW extract (which I expected to elicit a 

response), the data presented in Chapter III should be interpreted with caution.  Despite these 

issues, there does appear to be some consistent evidence across Experiment 1 and 2 that 

suggests that 11-O-ETIO-3-s is important in round goby sexual signaling.  It is unlikely that 11-O-

ETIO-17-s an attractive component, but the importance of the glucuronated 11-O-ETIO 

requires further testing.  Based on our results it is possible that 11-O-ETIO-3-s could be used to 

attract females to traps, but further testing is required.  Suggestions regarding the 

experimental designs to consider for testing round goby movement responses are 

presented in Chapter II of this thesis. Future studies on female movement responses to 

reproductive steroids in the round goby should ensure concentrations delivered are 

within the olfactory detection threshold.  In addition, due to the large variation in 

behaviours, sample sizes greater than that used in this study would strengthen the 

statistical power of the analysis. I also recommend the use of precursor test to eliminate 

non-responsive fish as well as pretesting with a positive control for CW extract and a 

negative control using a vehicle blank in order to provide baseline levels of activity of 

each fish.  
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CHAPTER IV- CONCLUSIONS & RECOMMENDATIONS 

 Overall this thesis provides a review of several options for testing round goby 

movement responses to odors (including putative pheromones), as well as supporting 

preliminary evidence for pheromonal function for 11-O-ETIO-3-s.  In Chapter II, I 

reviewed nine studies that studied round goby behaviours in response to olfactory cues 

in an effort to determine potential causes for inconsistencies in the results of these 

studies.  I focused the review on the 5 most important (and variable) factors across 

these experiments: apparatus type, flow rate, tank enhancements, behavioural metrics, 

and sample size.  I examined each of these factors within the nine studies and provide 

recommendations for future studies based on round goby life history as well as 

evidence from other species.  In addition I presented novel data to further test the 

importance of tank enhancements as this had not been tested previously. 

 I proposed that the apparatus type remain variable as it should be chosen to 

best answer the proposed question.  The flow rate typically used in these experiments is 

lower than what females likely encounter in the wild, and previous studies suggest that 

females prefer flow rates in the order of 100mL/min.  I suggest that future studies aim 

to have a flow rate within the range of those that females encounter in the field.  Tank 

enhancements (a PVC shelter, and gravel substrate) were shown to decrease the activity 

of females, but also made the detection of responses more clear.  I proposed that PVC 

shelters, but not gravel substrate, may enhance female responses and should be 

considered when designing studies such as those reviewed.  The types of behavioural 
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metrics used in the reviewed studies were fairly consistent, but the use of distance 

travelled yielded contradictory results.  Time spent in the inflow zone was one of the 

most informative and appropriate metrics to use in these types of studies, but hopping 

behaviour and time spent in the shelter (if available) could also be used.  Finally, based 

on data in Chapter II and III of this thesis as well as some of the studies reviewed, the 

variance in some of the behaviours tested was quite large, and the sample sizes were 

too small to achieve the recommended statistical power of 0.8.  An apriori test using 

effect sizes from literature to optimize the trade-off between type 1 and 2 statistical 

errors. 

In Chapter III, I examined female responses to 11-O-ETIO and its derivatives in 

tanks without enhancements (no shelter or gravel) (Experiment 1) and in tanks 

equipped with a PVC shelter and gravel substrate (Experiment 2).  Experiment 1 used 

mixtures of 0.1nM HPLC fractionated RM CW extract.  Experiment 2 used similar 

mixtures of 1μM synthetic analogs with a focus on the effects of 11-O-ETIO-3-s.  Despite 

the issues evident in Chapter III, (sample size, contradictory results to previous studies, 

low concentration), the experiments do suggest that 11-O-ETIO-3-s is an essential 

component of reproductive male round goby sexual communication. The goal of this 

study was to determine which steroid component(s) were important in eliciting female 

attraction, with the overall objective that this component(s) may one day be used as 

bait in a traps used to manage invasive round goby populations in the Laurentain Great 

Lakes.  Individually, some of the steroids elicit different responses in females, although 

not all of them have been tested in a consistent manner.  11-O-ETIO (free) is attractive 
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to NFs but not RFs (Tierney et al., 2013), 11-O-ETIO-17-s does not elicit an olfactory 

response in females, but 11-O-ETIO-3-s does (Laframboise & Zielinksi, 2011).  The 

glucuronated steroids do not appear to be attractive based on our study but further 

testing is still required.  Based on release rates and previous studies on behavioural 

responses, 11-O-ETIO-3-s appears to be a good candidate for further testing.  Typically 

receivers require a mix of pheromones applied at a specific ratio in order to achieve a 

response similar to that achieved in nature (Sorensen et al., 1998).  Based on the 

evidence presented in Chapter III, it is possible that 11-O-ETIO-3-s could elicit attraction 

in females when presented alone which would be highly beneficial for trapping as it is 

more cost effective to produce a single steroid.  Further studies are required to 

determine the efficacy of using 11-O-ETIO-3-s alone.  
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APPENDIX A: COMPLETE REVIEW TABLE 
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APPENDIX B: GSI AND TOTAL LENGTH OF FEMALES USED  

2012 

 

2013 

Fish ID GSI (%) 
Total Length 

(cm) 

 

Fish ID GSI (%) 
Total Length 

(cm) 

062712-1 12.30 7.60 

 

060413-1 >8 8.60 

062712-2 10.60 7.60 

 

060413-2 >8 7.60 

062712-4 >1 8.70 

 

060413-3 >8 9.10 

062712-3 14.20 7.20 

 

060413-4 >8 7.20 

070412-1 8.50 7.10 

 

062113-1 15.30 8.50 

070412-2 7.70 8.40 

 

062113-2 11.60 7.20 

070412-3 11.70 9.50 

 

062613-3 14.70 10.10 

070412-4 5.99 7.00 

 

062613-4 10.70 9.40 

070512-1 17.00 7.50 

 

071013-1 17.80 10.00 

070512-2 15.60 8.50 

 

071013-2 >8 9.10 

070512-3 2.50 9.70 

 

071013-3 <8 18.60 

070512-4 >1 7.00 

 

071013-4 <8 18.50 

070612-1 2.37 9.00 

 

071613-1 1.35 10.00 

070612-2 11.70 7.30 

 

071613-2 8.10 10.00 

070612-3 >1 6.50 

 

071913-3 6.24 8.40 

070612-4 >1 7.00 

 

072613-1 >8 8.30 

071012-1 16.00 7.50 

 

072613-2 >8 9.10 

071012-2 2.20 8.60 

 

072613-3 18.00 7.40 

071012-3 >1 8.80 

 

072613-4 13.00 8.50 

071012-4 7.83 8.20 

 

073013-1 13.00 9.00 

071212-1 6.80 10.10 

 

082013-1 0.25 9.60 

071212-2 10.40 9.00 

 

082013-2 1.29 8.30 

071212-3 >1 7.90 

 

082013-3 0.10 7.50 

071212-4 9.70 6.50 

 

082013-4 0.70 7.60 

072812-1 >1 9.20 

 

082313-1 0.70 9.50 

072812-2 8.90 7.80 

 

082313-2 0.30 9.50 

072812-3 5.30 9.50 

 

082313-3 0.10 9.50 

072812-4 >1 8.00 

 

082313-4 1.20 9.90 

080812-1 >1 n/a 

 

083013-1 1.50 9.20 

080812-2 >1 n/a 

 

083013-2 12.93 9.20 

080812-3 >1 n/a 

 

083013-3 0.10 7.80 

080812-4 >1 n/a 

 

083013-4 1.00 9.50 
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