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ABSTRACT 

Resource partitioning can lead to species coexistence.  In a field study, temporal 

and spatial partitioning were examined by testing the effects of season and habitat on the 

structure of the blow fly community on domestic pig carcasses, Sus scrofa domesticus in 

southwestern Ontario, Canada.  Blow fly communities did not differ between field and 

forest habitats, however there were seasonal differences.  Fall was characterized by 

having more species and higher levels of species evenness, diversity, and niche overlap 

than spring and summer.  

On a finer scale, effects of arrival order were examined in laboratory experiments 

with three blow fly species: Phormia regina, Lucilia sericata, and the introduced species 

Chrysomya rufifacies.  Arrival order of adults was varied in combinations of two species: 

“L. sericata and P. regina” and “L. sericata and C. rufifacies”.  Both positive and 

negative priority effects were recorded, with species having altered colonization patterns 

temporally and spatially in response to presence of another species, even at low density 

(i.e. minimal competition).  Blow flies sometimes selected oviposition sites other than the 

natural orifices predicted by previous studies, such as the neck and cheek regions or 

between legs.  Delays in colonization, particularly for P. regina and C. rufifacies, 

occurred in response to the absence of heterospecifics.  Additional experiments with 

larvae determined that C. rufifacies and P. regina benefitted from the presence of L. 

sericata due to predation (for C. rufifacies) or the presence of compound(s) that may aid 

in the digestion of the resource and increase nutrient availability (for P. regina). 

In summary, adult and larval experiments indicate that species interactions and 

differences in arrival order can affect colonization times, the distribution of eggs over a 
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resource, larval interactions and offspring fitness.  On a larger scale, temporal 

partitioning (i.e. seasonal effects) can promote coexistence in blow flies, however, spatial 

partitioning (i.e. habitat effects) was not evident.  This study demonstrates the importance 

of ADD standardization, emphasizes the need to understand species interactions between 

native and non-native species, and highlights the need for more ecological studies 

regarding habitat and seasonal differences within the carrion community. 
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mortality of P. regina and L. sericata (p<0.05).  There was no significant 

effect of treatment on survival rate or larval mortality of C. rufifacies 

(p>0.05). 
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Figure 4.2.  Mean thorax length (mm) + SE of Phormia regina (PR) adult 

females and males for different arrival orders (together, first, and second with 

L. sericata) and density (400 larvae and 200 larvae per piglet).  Comparisons 

were made within a sex and between treatments.  A mixed linear model was 

used to test for main treatment effects (p < 0.05). Pairwise comparisons tests 

with a Bonferroni correction were used to test for significant differences 

among treatment means while maintaining an overall p value of 0.05.  Means 

with the same letter did not differ. There were no significant differences 

between treatments in male or female tibia or wing length, thus only thorax 

length is presented. a – females. b – males. 

178 

Figure 4.3.  Mean tibia and thorax (mm) + SE of Chrysomya rufifacies (CR) 

adult females and males for different arrival orders (together, first, and 
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second with L. sericata) and density (400 larvae and 200 larvae per piglet).  

Comparisons were made within a sex and between treatments.  A mixed 

linear model was used to test for main treatment effects (p < 0.05). Pairwise 

comparisons tests with a Bonferroni correction were used to test for 

significant differences among treatment means while maintaining an overall 

p-value of 0.05.  Means with the same letter did not differ. Treatment effects 

for tibia, thorax and wing length were similar for males and females, thus 

only female data is presented.  Wing length and tibia length for females were 

similar, thus only tibia length is presented. 

Figure 4.4.  Mean thorax and tibia length (mm) + SE of Lucilia sericata (LS) 

females for different arrival orders (together, first, and second with L. 

sericata) and density (400 larvae and 200 larvae per piglet).  Comparisons 

were made within a sex and between treatments.  A mixed linear model was 

used to test for main treatment effects (p < 0.05). Pairwise comparisons tests 

with a Bonferroni correction were used to test for significant differences 

among treatment means while maintaining an overall p-value of 0.05.  Means 

with the same letter did not differ.  There were no significant differences 

between treatments for male thorax or wing length.  Treatment effects for 

tibia length were similar for males and females, thus only female data is 

presented.  Wing length and thorax length for females were similar, thus only 

thorax length is presented. 
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Figure 4.5.  Effect of L. sericata larval wash on P. regina larval mortality 

and survival (mean % + SE).  A MANOVA was used to test for treatment 

effects and one-tailed Dunnett’s tests (<control) were used to determine 

differences between treatments and controls.  Means with different letters 

denote a significant difference (p<0.05). A – denotes significantly higher.  

Experiments were carried out at 25.0 + 0.5°C and 40 + 1.0% relative 

humidity.   
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Figure 4.6.  a – Effect of L. sericata larval wash on P. regina larvae mean 

minimum ADH + SE to reach developmental stages.  b – Effect of L. 

sericata larval wash on ADH for each larval stage (mean + SE).  Duration in 

each stage was measured from the first individual reaching the stage until the 

last individual leaving the stage. A bootstrapped (k=1000) MANOVA was 

used to test for effects of treatment and bootstrapped pairwise comparison 

tests with a Bonferroni correction were used to test for significant differences 

among treatments while maintaining an overall p value of 0.05.  Means with 

the same letter did not differ. A minimum developmental threshold of 0°C 

was used in ADH calculations. 
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Figure 4.7.  Mean thorax and wing length (mm) + SE of Phormia regina 

adult females and males for treatments with (sterile or unfiltered) or without 

(control or water) Lucilia sericata larval wash.  There was a significant effect 

of sex on size, thus comparisons were made within each sex and between 

treatments.  A mixed linear model was used with a significance level of 

p<0.05 to test for significant effects of treatment and pairwise comparison 

tests with a Bonferroni correction were used to test for significant differences 
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among treatments while maintaining an overall p value of 0.05.  Means with 

the same letter did not differ. Treatment effects for mean tibia length were 

similar to thorax length, therefore, only thorax length (a) and wing length (b) 

are presented. 
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Appendix A - Non-Metric Dimensional Scaling (NMDS) plots for pig and control sites 

for blow fly species composition for each treatment condition.  Each numbered point on 

the plot corresponds to the following treatments.  Stress measures are outlined after each 

plot. 

 

Appendix B - Life history and developmental characteristics for each of the three blow 

fly species used to examine priority effects in this study: Lucilia sericata, Phormia 

regina, and Chrysomya rufifacies. 
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LIST OF ABBREVIATIONS 

ADD – accumulated degree days, incorporates time and temperature over a certain 

developmental threshold to represent insects’ physiological time, values are calculated on 

a per day basis based upon mean daily temperatures (i.e. each degree day), then summed 

over multiple days (i.e. accumulated degree days).  A minimum threshold of O°C was 

used in this study.  

 

ADH – accumulated degree hours, represents the physiological time (i.e. incorporates 

time and temperature) for an insect, values are calculated on a per hour basis (i.e. each 

degree hour), then summed over multiple hours (i.e. accumulated degree hours). A 

minimum threshold of O°C was used in this study. 

 

MTC – minimum time of colonization, used in this study to describe the minimum 

amount to time from the first oviposition event. 

 

PIA – period of insect activity; begins at the onset of insect arrival until the body is 

discovered.  PIA combined with the pre-colonization window determines the PMI. 

 

PMI – also known as the postmortem interval, begins at the onset of death and continues 

until the body is discovered. PMI estimations attempt to determine time of death (PMI = 

PIA + pre-colonization window). 
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CHAPTER 1: GENERAL INTRODUCTION: THE IMPORTANCE OF THE CARRION 

INSECT COMMUNITY IN FORENSIC AND ECOLOGICAL RESEARCH 

 

The Carrion System and Mechanisms for Coexistence 

Ephemeral communities, like carrion, are model systems for investigating the 

processes that are important in determining both micro- and macro-community structure. 

After the death of an organism, a distinct insect community assembles on the resultant 

carrion.  The patterns of assembly in this community change over time and space.  These 

patterns are relatively predictable, as changes in community structure are highly 

correlated with the decomposition of the resource (Megnin 1894, Smith 1986, Morin 

1999, Byrd and Castner 2001) but may be significantly influenced by both abiotic and 

biotic factors (Megnin 1894, Smith 1986, Schoenly and Reid 1987, Catts and Goff 1992, 

Schoenly et al. 2007, Wilson and Wolkovich 2011).  Previous studies examining spatial 

or temporal community dynamics typically involve competitive interactions within a 

particular guild and have predominantly involved plant-based systems (Connell and 

Slatyer 1977) in which later successional species have been absent due to time constraints 

of the studies (Michaud and Moreau 2009).  As an alternative, the carrion system and its 

community members can be easily manipulated through inclusion/exclusion of species to 

evaluate mechanisms and interactions between individuals, populations, species, and 

guilds.  The carrion insect community is highly diverse and species can be easily 

classified into feeding guilds (see Braack 1987) based upon the type of resource 

consumed, such as sarcosaprophagous (muscle/soft tissue); coprophagous (gut or 

digestive material); dermatophagous (skin tissue); keratophagous (keratinous structures); 
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saprophagous (multiple tissue types and other decaying material), predaceous (feeding on 

other insects); parasitic (feeding on insect hosts that they kill during their immature 

development); and omnivorous (feeding at multiple trophic levels).  The carrion system 

can be easily replicated, allowing one to experimentally evaluate the replicability of 

ecological patterns.  These important aspects, in combination with relatively predictable 

patterns of succession, make the carrion system and its insect members an appropriate 

model for studying the ecological mechanisms that structure ecological communities over 

space and time (Schoenly and Reid 1987, Michaud and Moreau 2009, Tomberlin et al. 

2011, 2012, Beasley et al. 2012, Barton et al. 2013).  

Multiple mechanisms -- aggregation, competition, predation, cannibalism, 

parasitism, mutualism, inhibition and facilitation -- have been identified as influential in 

determining carrion insect community structure (Fuller 1934, Beaver 1977, Atkinson and 

Shorrocks 1981, Kneidel 1984, Atkinson 1985, Braack 1987, Hanski 1987, Ives 1991, 

Woodcock et al. 2002, Inouye 2005).  In addition, the distribution, population dynamics 

and coexistence patterns of multiple species within a guild can be influenced by 

adaptations based on species-specific responses to stress (Kamal 1958).  Carrion 

communities commonly have high levels of species diversity despite food limitation and 

intense competition (Kamal 1958).  In several species of carrion flies, coexistence was 

due to differential responses between species to stressful conditions (Kamal 1958).  This 

allowed for individual species to flourish within their optimal conditions and coexist in 

the community (Kamal 1958).  Differential responses to abiotic conditions can alter the 

presence of, absence of, or interactions between community members (Tilman 1982, 

Stone et al. 1996, Chesson 2000, Chase and Leibold 2003) and thermal constraints can 
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influence species interactions and community structure (Cavender-Bares et al. 2009, 

Wittman et al. 2010, Lessard et al. 2011).  

In patchy and ephemeral resources, such as carrion, high levels of species 

diversity and coexistence can occur despite the high levels of intra- and inter-specific 

competition or complete exhaustion of the resource (Atkinson and Shorrocks 1981, 1984, 

Hanski 1983, 1987, Shorrocks 1990, Shorrocks and Bingley 1994, Krijger et al. 2001, 

Von Zuben et al. 2001, Hattori and Shibuno 2013).  Reduced availability of resources can 

lead to intra- and interspecific competition and reduce the fitness of organisms (Fox 

2000, Fox and Czesak 2000).  Although this may lead to the competitive exclusion of 

species with the same resource requirements, there are many other spatially-based 

mechanisms that allow for coexistence on shared resources including disturbance (Sousa 

1979), predation (Dodd 1959, Philips 1974, Holt and Polis 1997), resource partitioning 

(Tilman 1982, Hattori and Shibuno 2013), interference (Schoener 1976), priority effects 

and the fugitive strategy (Hutchinson 1954, Kneidel 1983), the relative effects of 

interspecific to intraspecific competition such as aggregation (Shorrocks et al. 1979) and 

dispersion (Huffaker 1958) and non-equilibrium and variable dynamics (Hutchinson 

1961).  Patchy distributions of resources combined with heterogeneity in environmental 

conditions allows species to find more suitable resources and conditions on a 

microclimatic scale (Simberloff and Wilson 1969, Levins 1979, Chesson and Warner 

1981, Sulkava and Huhta 1998, Barton et al. 2013, Hattori and Shibuno 2013).  In the 

decomposer soil community, an increase in habitat patchiness caused an increase in 

species’ acquisition of resources, which ultimately resulted in an increase in biodiversity 

and decomposition rate (Sulkava and Huhta 1998).  Carrion beetles (Coleoptera: 
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Silphidae) partitioned themselves with respect to season, habitat, and diurnal activity, 

which contributed to high levels of species diversity and coexistence (Kocarek 2001).  

During late fall, when overall beetle numbers were low and competitive interactions were 

infrequent, some species were able to persist in areas they had been previously excluded 

from (Kocarek 2001).  Because the carrion insect community is highly diverse, with 

many families of insects, like silphid beetles, containing multiple species within the same 

trophic guild, the same mechanisms that maintain diversity and coexistence within the 

carrion beetle assemblage may also be present in other carrion insect families.   

Temporal variability, not just in phenology but also in arrival time, may change 

competitive or colonization abilities and resource use, resulting in priority effects that 

mediate coexistence.  Early arriving species can exert a priority effect on later arriving 

species (Beaver 1977, Hanski and Kuusela 1977, Kneidel 1983, Shorrocks and Bingley 

1994, Fukami et al. 2005, Korner et al. 2008, Moore and Franklin 2012, Von Gillhausen 

et al. 2013).  With positive priority effects, later arriving species have an increased ability 

to colonize and gain fitness due to the presence of early arriving species.  For example, in 

two species of saproxylic beetles, Rhagium inquisitor L. exerted a positive priority effect 

on Acanthocinus aedilis L., with A. aedilis producing more offspring when it followed or 

arrived simultaneously with R. inquisitor (Victorsson 2012).  In contrast, in the case of 

negative priority effects, secondary colonizers suffer a decrease in colonization ability 

and/or fitness of the subsequent offspring.  For example, in carrion-breeding dipteran 

communities developing on snail carcasses, the early arrival of Megaselia scalaris 

(Loew) resulted in its increased survival and it had strong negative impacts on other 

species present, specifically another phorid fly, Megaselia aurea (Aldrich), and 
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Drosophila tripunctata (Loew)) (Kneidel 1983).  Megaselia scalaris acted like a fugitive 

species and by arriving earlier, it was able to persist in the community (Kneidel 1983).  

Species coexistence can be enhanced or weakened when priority effects are present. 

Many dipteran families have evolved to utilize patchy, fragmented and ephemeral 

resources such as flowers and decaying fruits (Buck 1997, Shorrocks 1990), mushrooms 

(Atkinson and Shorrocks 1977, Shorrocks 1990, Shorrocks and Bingley 1994), both large 

and small carcasses (Beaver 1977, Buck 1997, Von Zuben et al. 2001), and dung (Buck 

1997).  Within the carrion insect community, blow flies (Diptera: Calliphoridae) are 

typically the first to colonize and assemble and do not require an additional species to be 

present for establishment.  They consequently form the base of the community that 

subsequently develops (Baumgartner and Greenberg 1985, Greenberg 1991, Byrd and 

Castner 2001, Campobasso et al. 2001, Beasley et al. 2012, Barton et al. 2013).  Most 

species within the blow fly family are considered members of the sarcosaprophytic guild, 

the larvae of which feed directly on decomposing animal tissue to complete their 

development (Braack 1987).  Adult flies are anautogenous: they require additional 

feeding during the adult stage to obtain the nutrients required to produce eggs (Wall et al. 

2002, Davies 2006).  Adult flies in the wild have shortened life-spans (approx. 50 degree-

days in Lucilia sericata (Meigen)) compared to longevity in captivity (e.g., 123 degree-

days in L. sericata (Meigen) (Pitts and Wall 2004), and typically live long enough to lay 

a single batch of eggs only once during their lifetime (although some females may 

deposit oviposit 2-3 batches eggs) (Hayes et al. 1999, Davies 2006).  Blow flies are 

important in returning nutrients back into the surrounding ecosystem while providing a 

resource for higher trophic levels (Beasley et al. 2012, Barton et al. 2013).  Due to their 
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early arrival and their importance as an additional base resource in this system, much 

insight can be gained by examining the patterns and processes that govern calliphorid fly 

colonization and utilization of animal carcasses.   

Blow fly species have been known to exhibit habitat and/or seasonal differences. 

Lucilia sericata (Meigen) has been collected more abundantly in open pasture habitats, 

while Calliphora vicina (Robineau-Desvoidy) is more abundant in woodland and 

hedgerow sites (Smith and Wall 1997).  Further examination found asymmetric larval 

competition between these species, with L. sericata having lower abundance levels on 

carcasses where C. vicina was also present suggesting that the uneven distribution of 

adults between habitats was important in structuring the blow fly family (Smith and Wall 

1997).  Baumgartner and Greenberg (1985) also found that coexistence of more than 26 

blow fly species along a transect in a small Andean forest was due to niche partitioning 

along various climatic zones and habitats.  Early studies examining the distribution and 

dispersal of blow flies indicated that different blue bottle flies (Tribe: Calliphorini) have 

higher abundance levels in cooler months and habitats, whereas green bottle flies (Tribe: 

Luciliini) inhabit well-lit warmer habitats (Macleod and Donnelly 1958).  Some species, 

such as the black bottle fly, Protophormia terraenovae (Robineau-Desvoidy) (Tribe: 

Phormiini), showed no significant trends with respect to season or habitat (Macleod and 

Donnelly 1958).  Blow fly populations vary in abundance with habitat or season and, in 

addition, recruitment to a resource can vary with respect to attraction to particular types 

of bait (Baumgartner and Greenberg 1985).  Davies (1999) determined that season, 

habitat, size and type of carcass influenced blow fly populations.  Seasonal conditions 

and specific climatic conditions prevailing in a particular year can affect the arrival 
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pattern of many carrion insects, including blow flies (Archer 2003).  Despite this 

variability, regular seasonal and habitat patterns within a species and differences between 

species suggest that within-guild partitioning does occur in blow flies at multiple spatial 

and temporal scales (Davies 1999, Archer 2003, Archer and Elgar 2003, Hwang and 

Turner 2005, Brundage et al. 2011, Benbow et al. 2013, Fremdt and Amendt 2014).   

Spatial aggregation within and between resource patches can lead to coexistence.  

Although the consequences of aggregation within a resource have been well studied 

(Hanski 1981, Atkinson and Shorrocks 1984, Ives 1989, 1991, Spencer et al. 2002), the 

mechanisms underlying this behaviour, specifically with respect to clutch size, arrival 

order and oviposition decisions, such as where and when a female should deposit eggs, 

are not well understood (Hoffmeister and Rohlfs 2001).  Optimal clutch size reflects a 

trade-off between maximizing female fecundity and offspring fitness (Lack 1947, 

Godfray et al. 1991, Kagata and Ohgushi 2004, Charnov and Morgan Ernest 2006).  

Oviposition decisions can be influenced by species interactions and the consequences of 

these decisions can be measured through offspring traits:  their size, reproductive 

potential and fecundity, mortality and developmental rates (Fox and Czesak 2000, 

Hendry et al. 2001, Kagata and Ohgushi 2004).  By measuring the size of insects, one can 

assess the direct and indirect effects of species interactions during various stages of 

development and understand how these factors affect the fitness of subsequent adults.  

There is a general interrelationship between adult body mass and individual egg mass 

(Rahn et al. 1975, 1985, Hendry et al. 2001, Creighton 2005).  Maternal body size is 

positively correlated with egg size and clutch size and, thus, with fecundity and 

reproductive success (Jann and Ward 1999).  Body size is an important variable 
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commonly used to measure effects of intra- and inter-specific competition in a variety of 

dipteran families, including house flies (Muscidae; Peters and Barbosa 1977), fruit flies 

(Drosophilidae; Atkinson 1979), mosquitoes (Culicidae; Barbosa et al. 1972), and black 

flies (Simuliidae; Malmqvist et al. 2004).  Adult blow fly size is constrained by the 

amount of resources consumed by larvae (Mackerras 1933, Fuller 1934, Ullyett 1950, 

Goodbrood and Goff 1990, Marchenko 2001, Slone and Gruner 2007, Shiao and Yeh 

2008, Reid 2012).  Dipteran pupal size is highly correlated with adult body size (Jann and 

Ward 1999, Allen and Hunt 2001, Fischer et al. 2004).  Honek (1993) determined that for 

oviparous and larviporous insects, there exists a potential 0.95 % increase in fecundity for 

each 1% increase in dry body weight across a wide range of species.  Adult blow flies can 

be easily measured, which provides a viable method to investigate the effects of 

abiotic/biotic factors as well as the consequences of interactions between individuals, 

populations and guilds within the carrion community on estimates of fitness. 

In many insects, immature stages have limited dispersal ability and are highly 

influenced by the oviposition decisions made by the parent female (Von Zuben et al. 

2001, Gripenberg et al. 2010, Liu et al. 2012, Akol et al. 2013).  This is particularly true 

in patchy and ephemeral resources, in which the number of eggs laid and resultant larvae 

produced within a patch is dependent upon competition and factors affecting populations 

and individuals in the previous or parental generation (i.e. immigration rates, dispersal, 

fecundity) (Von Zuben et al. 2001).  Differences in oviposition strategies within and 

between species on patchy resources can lead to long-term coexistence of species 

populations (Atkinson and Shorrocks 1981, Ives 1988).  By selecting more suitable 

oviposition sites that maximize offspring fitness, or by preferentially ovipositing with 
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conspecifics, females indirectly provide refuges for other species to oviposit and coexist 

within the system.  This effect can extend from within a resource to between resource 

patches to encompass multiple spatial scales, and thus can promote local and regional 

coexistence (Inouye 1999).  Dispersal between patches can also promote coexistence 

between predator and prey species (Huffaker 1958) as well as competitors (Inouye 1999).    

Although the adult stage is important in influencing larval distribution patterns at 

the local (within a resource) or regional (between resources) scale, larval interactions and 

the mechanisms that govern them can have profound influences on individuals (i.e. 

reproduction, survival, dispersal), populations (i.e. population dynamics, stability, future 

recruitment), and overall community structure (Fuller 1934, Hassell 1975, Denno and 

Cothran 1975, Peters 1983, Forrest 1987, Allen and Hunt 2001, Boggs and Freeman 

2005, HillesRisLambers et al. 2012, Kvist t al. 2013).  Many different forms of 

interactions can occur between individuals, both intraspecific and interspecific, and with 

their abiotic and biotic environment.  These interactions influence adaptations in insects 

that can differ between life stages or can act directly and/or indirectly to impact a single 

stage (e.g., juvenile or adult) (Kingsolver et al. 2011) to ultimately influence adult size, 

behaviour (Peters 1983) and/or population dynamics (McPeek and Peckarsky 1998).  

Since the strength of species interactions can vary with respect to life stage (Yodzis 1988, 

Paine 1992, McPeek and Peckarsky 1998), there is a need to understand species 

interactions during multiple life stages (Kingsolver et al. 2011, HilleRisLambers et al. 

2012).  It is likely that there are many factors that determine blow fly community 

structure at any particular point in space and time.  Ecological studies are vital to 

understanding these mechanisms at multiple life stages, particularly considering the  
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importance of this insect family in forensic entomology. 

 

Application to Forensic Entomology 

An important application of the principles of carrion decomposition lies within 

the field of forensic entomology.  Forensic entomology is the use of insects in criminal 

investigations, primarily to narrow down the post-mortem interval (PMI) in death 

investigations (Byrd and Castner 2001).  Upon discovery of remains, insect samples are 

taken from a corpse and surrounding area (i.e. soil, leaf litter) and compared to known 

successional timelines.  These timelines are created by compiling a day-to-day catalogue 

of insect species on multiple carcasses for a particular region, season or set of ecological 

and environmental conditions (Schoenly et al. 2007).  Extensive research has shown that 

the carcass of a pig (~25 kg starting mass) is an acceptable model for a dead human body 

(Schoenly et al. 2007), having similar internal cavity dimensions, skin characteristics, fat 

distribution, gut fauna and insect successional patterns (Smith 1986, Catts and Goff 1992, 

Goff 1993, Anderson and VanLaerhoven 1996, Byrd and Castner 2001 Schoenly et al. 

2006, 2007).  These characteristics make the carrion system an appropriate model to test 

whether successional patterns are truly replicable.  The ability of a forensic entomologist 

to estimate PMI is dependent upon the quality of data collected from baseline studies 

used to compare colonization times and successional patterns (Schoenly et al. 2006, 

2007).  Patterns of succession may vary in response to differences in environmental 

conditions such as habitat, size and type of carrion and climate (Anderson and 

VanLaerhoven 1996, VanLaerhoven and Anderson 1999, Woodcock et al. 2002, Archer 

and Elgar 2003, Schoenly et al. 2006).  Understanding how these patterns are influenced  
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by such factors is pivotal for the use of successional studies in a forensic context.  

The field of forensic entomology has progressed over the years and has moved 

from a qualitative to quantitative approach (Tomberlin et al. 2011, 2012).  Though it is 

still important to document patterns of succession in carrion insects, more emphasis has 

been placed on understanding the mechanisms that drive these patterns as well as the 

factors that can alter assembly patterns or species presence/absence in the community.  

There is a need to validate the use of insects in legal investigations, which can only be 

done through the use of scientific experimental designs that incorporate true replicates to 

allow for the assessment of replicability in results (Tomberlin et al. 2012).  The use of lab 

and field based studies focusing on ecological interactions between individuals, species, 

populations and abiotic factors would provide insight into the mechanisms explaining 

why observed patterns are occurring.  Tomberlin et al. (2012) outlined specific criteria to 

consider when carrying out forensic entomological research.  Those criteria arose from a 

report from the National Research Council (NRC), which called to validate the science 

used within the field of forensics.  They include: a proper animal model (e.g., the pig); a 

consistent time of death and method of euthanasia; a consistent storage method and 

duration (none in this study); consistent period of time until carcass placement; sufficient 

number of replicates for statistical analyses; consistent timing (i.e. month) of study; and 

proper sampling to account for time of colonization as well as community progression 

throughout decomposition (Tomberlin et al. 2012).  The studies described in this 

dissertation not only meet the criteria outlined by Tomberlin et al. (2012), but constitute 

the most comprehensive forensic entomological studies conducted to date.  Although 

carrion communities and species interactions may differ between regions, the 
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experimental approaches used in this study can be easily repeated and provide a general 

template for future research examining community processes and species interactions.   

 

Research Objectives 

The first objective in this study was to examine the effects of habitat (i.e., spatial 

partitioning) and season (i.e., temporal partitioning) on the structure of the blow fly 

(Family Calliphoridae) community in southwestern Ontario (see Chapter 2).  With 

respect to spatial and temporal partitioning, I hypothesize that if these mechanisms are 

important in the blow fly community, there will be distinct differences in community 

structure between habitats and/or seasons.  If these processes are not important in 

structuring the community, then there would be no differences in community structure 

between habitats or seasons.  Based upon previous literature, I would expect to see 

differences in species composition and community structure between seasons.  However, 

given that blowflies have good dispersal abilities and are adapted to finding carrion as a 

resource, I would expect to find similar community composition and structure between 

habitats, as it would be equally likely for flies to reach carrion placed in nearby habitats.  

Given the forensic application of the current research, dead domestic pigs, Sus 

scrofa domesticus L., were used, as recommended for forensic investigations (Schoenly 

and Reid 1987, Catts and Goff 1992, Goff 1993, Schoenly et al. 2006, 2007, Tomberlin et 

al. 2011, 2012).  Pig carcasses were placed in forest and field habitats over three seasons 

(spring, summer and fall) in the Windsor-Essex region of Ontario.  In order to standardize 

analyses, temperature data were transformed into accumulated degree-days (ADD), 

which is known to be important for insect behaviour, development, availability, 
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community composition and member interactions.  Four community indices (number of 

species (S), Species Evenness (E), Simpson’s Index of Diversity (1-D) and Levins’ 

Standardized Niche Breadth (Ba)) were examined over four ADD quartiles, for two 

habitats (field and forest) and three seasons (spring, summer and fall), to determine the 

role of spatial and temporal partitioning in blow flies.  Community composition was 

assessed through relative abundance and was examined through the use of Non-Metric 

Dimensional Scaling (NMDS) with Multi-Response Permutation Procedure (MRPP) to 

test if habitat and season were significant grouping factors for blow flies in 

Windsor/Essex County, Ontario. 

The second objective in this study was to determine the role of priority effects in 

species interactions and their importance in mediating coexistence of blow fly species.  

This was investigated by manipulating blow fly species arrival order in two-species 

systems and by examining species’ performance on piglet carcasses.  Three blow fly 

species (Diptera: Calliphoridae), Lucilia sericata (Meigen), Phormia regina (Meigen) 

and Chrysomya rufifacies (Macquart), all species found on carrion in the Great Lakes 

Region, were selected to test the role of priority effects within the carrion insect 

community.  For adult interactions (Chapter 3), the time and location of oviposition 

events were and total number of eggs laid by each species were recorded and compared.  

For larval interactions (Chapter 4), mortality rates, overall survival and several measures 

of adult size were recorded and compared.  If there were no priority effects among blow 

flies, then there would be no effect of arrival order on subsequent populations of blowfly 

species, and no differences between single and dual species communities.  If priority 

effects occur, then colonization by a species and/or larval interactions would be 
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influenced by arrival order (i.e. the presence of an additional species).  These differences 

would be evident in the variables measured in this study.  

This research examines patterns of blow fly community structure and composition 

over a large spatial and temporal scale combined with lab-based manipulative studies to 

examine species interactions of three calliphorid species on a finer spatial and temporal 

scale.  Since blow flies utilize patchy and ephemeral resources, are easily reared and 

manipulated, have short life cycles, and are relatively common, they can be considered a 

model system to study the relative importance of spatial and temporal partitioning, 

species interactions (both intra- and inter-specific) and how these interactions may 

influence adult female oviposition decisions and larval interactions.  The blow fly system 

can also be used to examine how these effects can cascade to influence the potential 

fitness of individuals, populations and community structure.   
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CHAPTER 2: THE EFFECT OF SEASON AND HABITAT ON SUCCESSION AND 

COMMUNITY COMPOSITION OF BLOW FLIES (FAMILY: CALLIPHORIDAE) ON 

PIG CARCASSES 

INTRODUCTION 

Understanding species’ abundance patterns and monitoring spatial and temporal 

changes in community structure is important in understanding the coexistence of multiple 

species that seem to utilize the same resources (Ives 1991, Tokeshi and Schmid 2002, 

Chave 2004, Inouye 2005, Razgour et al. 2011, HillesRisLambers et al. 2012, Barton et 

al. 2013).  Coexistence can occur between species with high levels of niche overlap and 

shared life history characteristics (Barker 1971) provided the community has a high level 

of species evenness, which can lead to species’ persistence and ecosystem stability 

(Collet et al. 2014, Pu et al. 2014).  Resource partitioning over time and space allows for 

species coexistence and persistence in highly speciose communities.   

Aggregation of competing species can be considered a type of niche partitioning 

on a spatial scale (Atkinson and Shorrocks 1984, Inouye 2005, Hattori and Shibuno 

2013).  Aggregation can occur both within a single local resource patch as well as 

between resource patches to promote coexistence on many spatial scales.  High levels of 

larval aggregation, which resulted from adult female flies ovipositing among carcasses, 

provided a mechanism for coexistence by decreasing interspecific competition while 

increasing intraspecific competition (Atkinson and Shorrocks 1981, 1984, Atkinson 1985, 

Ives 1991, Woodcock et al. 2002, Inouye 2005).  Thus, a less competitive species may be 

able to exploit and sustain its population in another resource patch within the ecosystem 

even if it is extirpated within an individual local resource patch (Atkinson and Shorrocks 
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1981, 1984, Atkinson 1985, Ives 1991, Woodcock et al. 2002, Inouye 2005, Hattori and 

Shibuno 2013).  Although a less competitive species may experience local extinction 

events, it is able to persist in the community on a regional level demonstrating the 

importance of examining coexistence and population dynamics at multiple spatial scales 

(i.e. local as well as regional) (Inouye 2005, Hattori and Shibuno 2013).  

Resource partitioning can also occur temporally.  In temperate regions where 

distinct seasonal conditions exist, many species exhibit either preferences for particular 

seasons or may undergo diapause during periods of unfavourable weather conditions such 

as the heat of summer or to avoid freezing in winter (Morin 1999).  Differences between 

species’ establishment probabilities can influence community structure and can allow for 

many species to coexist within a particular space or time period (Hubbell 2001, 

HillesRisLambers et al. 2012).  Temporal partitioning with respect to arrival order, in 

conjunction with differences in competitive/colonization abilities or resource use 

combined may result in priority effects which can also mediate coexistence (Kneidel 

1983, Shorrocks and Bingley 1994, Von Gillhaussen et al. 2014).  At smaller temporal 

scales, there may be diurnal as well as seasonal changes in community composition that 

interact with spatial resource partitioning of similar habitats to facilitate coexistence 

(Neilson 1978, Albrecht and Gotelli 2001).  Resource partitioning (Tilman 1982, Chesson 

2000, Chase and Leibold 2003, Razgour et al. 2011) combined with differential responses 

to abiotic conditions (Indermaur et al. 2009, Razgour et al. 2011) over various temporal 

and spatial can alter the presence, absence or interactions between community members 

and can promote coexistence between species.  
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The carrion insect community, and in particular the community of blow fly 

(Calliphoridae) species, is a model system frequently used to study community assembly 

patterns and mechanisms.  Blow flies are among the first insects to colonize remains 

during the early stages of decomposition (Baumgartner and Greenberg 1985, Greenberg 

1991, Byrd and Castner 2001, Campobasso et al. 2001, Michaud and Moreau 2013).  

They are generally common insects that have strong dispersal abilities.  Multiple blow fly 

species usually utilize the same carrion resource (Kamal 1958, Smith 1986, Greenberg 

1991, Michaud and Moreau 2013), but overall their diversity is moderate (i.e., ~10-20 

species in any particular region (Kamal 1958, Macleod and Donnelly 1958, Denno and 

Cothran 1975).  Individual species may exhibit habitat or seasonal associations (Macleod 

and Donnelly 1958, Denno and Cothran 1975, Hanski and Kuusela 1980, Kneidal 1984, 

Baumgartner and Greenberg 1985, Wells and Greenberg 1994, Smith and Wall 1997, 

Davies 1999, Archer 2003, Archer and Elgar 2003b, Brundage et al. 2011, Benbow et al. 

2013), patterns that contribute to coexistence in blow flies.  For example, Baumgartner 

and Greenberg (1985) determined that some species in Peru are preferentially attracted to 

particular types of bait, while other species vary in abundance with habitat or season.  

However, some species, such as the black bottle fly, Protophormia terraenovae 

(Robineau-Desvoidy) (Tribe: Phormiini), show no significant differences with respect to 

season or habitat (Macleod and Donnelly 1958).  Despite the annual, habitat and resource 

variability that occurs in the carrion community (Archer 2003), distinct seasonal profiles 

of blow fly abundance often develop (Archer 2003, Archer and Elgar 2003b) and may 

contribute to species coexistence (Macleod and Donnelly 1958, Denno and Cothran 1975, 

Hanski and Kuusela 1980, Kneidal 1984, Wells and Greenberg 1994).  
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In this study I investigate temporal and spatial patterns in community structure 

and composition between two habitats (forest and field) and three seasons (spring, 

summer and fall), to determine if partitioning by habitat or season occurs in the blow fly 

community in southwestern Ontario.  If spatial partitioning is not important, then there 

will be no significant difference in community indices or community composition (HO1) 

between forest and field habitats.  Similarly, if temporal partitioning is unimportant in the 

development of blow fly communities, then there will be no significant differences in 

community indices or community composition between spring, summer and fall seasons 

(HO2).  If either of these null hypotheses is rejected, then spatial and/or temporal 

associations of blowflies will result in differential patterns in community composition 

that contribute to persistence of some species in the overall landscape and regional 

species pool.  For community composition analysis (NMDS and MRPP), if habitat proves 

not to be a significant grouping factor (HO3), then there would be no partitioning among 

blow fly species over a large spatial scale.  If season is not a significant grouping factor 

(HO4), then there would be no partitioning among blow fly species over a broad temporal 

scale.  
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METHODS 

Test Site Locations 

Experimental test sites (A-F) were in the Windsor-Essex County region of 

Ontario, Canada.  Site A was located at the Windsor Regional Airport; Site B at Ojibway 

Nature Preserve; Site C in McGregor Township; Site D near Harrow; Site E near Essex; 

and Site F near Amherstburg (see Figure 2.1).  Domestic pig, Sus scrofa domesticus L., 

carcasses (described below) were placed in field and forest habitats at each of the sites, 

thus facilitating direct comparisons of habitat effects on the blow fly community.  The 

field habitats were open sites with no tree cover, maximum light penetration and either 

tall grasses (Site A, B and E) or open agricultural fields (Sites C, D and F).  Forest 

habitats were located more than 25 m from the forest edge and were completely covered 

by the forest canopy to limit edge effects.  All forest habitats were classified as 

Carolinian deciduous forest (i.e. tree species composition of hickory, ash, chestnut, 

walnut, oak) (Site Assessment Report, Site A).  The Windsor-Essex County Region is 

warmer than all other regions of Canada; it typically experiences a minimum of 223 days 

per year with maximum daily temperatures above 10 °C (Windsor-Essex County 

Development Commission 2006).  Although Windsor-Essex County is highly urbanized, 

all test sites were located outside urban centres, in areas with fewer than 1000 people and 

less than 400 people km
-2

 (Statistics Canada 2001, 2011). 

To ensure each pig carcass represented an independent replicate within each site, 

the forest and field carcass locations within each test site were separated by at least 100 

m.  This methodology was based on evidence from Anderson and VanLaerhoven (1996) 

that 50 m is sufficient isolation to eliminate olfactory interference.  Each test site (A 
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through F) was located at least 3.5 km from others to capture a large spatial scale and to 

ensure independent colonization of carcasses by blow flies.  

 

Experimental Design 

Domestic pigs were used as surrogates for humans (Schoenly and Reid 1987, 

Goff 1993, Schoenly et al. 2006).  It has been shown that decomposition processes that 

occur on pig carcasses (23-27 kg starting mass) are similar to those which occurs on 

human bodies (Schoenly et al. 2007), as domestic pigs and humans have similar internal 

cavity dimensions, skin characteristics, fat distribution and gut fauna (Smith 1986, Catts 

and Goff 1992, Goff 1993, Anderson and VanLaerhoven 1996, Schoenly et al. 2006, 

2007).  To maintain consistency across replicates, all pigs were female, 27.0 ± 4.1 kg 

mass at death, and were orientated similarly, with the head of each pig facing north and 

the dorsal side facing east (see Figure 2.2).  

Pig carcasses were placed in both habitats at each test site in spring, summer and 

fall to examine possible seasonal effects on the blow fly community.  Day 0 for each 

experiment was 14 April 2005 (spring), 24 June 2005 (summer) and 3 October 2005 

(fall).  On Day 0 for each trial, 12 domestic pigs were killed on the farm at approximately 

0900 h using a bolt gun pistol fired to the forehead.  Pig carcasses were wrapped in a tarp 

to prevent exposure to insects and installed at test sites within 12 hrs following death in 

the spring season and within six hours from death in the summer and fall.  At each test 

site, pig carcasses were inspected and any insect eggs, if present, were removed and the 

body area was rinsed with water and ethanol.  Pigs were then dressed in t-shirts and 

shorts or underwear, as clothing has been found to influence the colonization and 
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succession of insects (Byrd and Castner 2001).  Because wounds may influence 

successional patterns on animal carcasses (Greenberg 1991, Byrd and Castner 2001, 

Campobasso et al. 2001, Cross and Simmons 2010), a puncture wound was created in the 

lower left side of each pig’s rib cage.  A datalogger (ACR Smartbutton™) was inserted 

into the wound to measure internal carcass temperature at 60-minute intervals.  An 

additional datalogger was placed at each test site, on the back of each malaise trap, 

approximately 1.0 m from the head of the pig and ~0.5m above the ground to record 

ambient temperatures at 60-minute intervals.  To allow for weighing, carcasses were 

placed on a wired mesh platform (12.5 gauge) with a rebar frame.  This allowed constant 

contact between the carcass and soil throughout the decomposition process.  Mesh wiring 

(50 gauge) was placed over each pig and pinned into the ground using metal stakes to 

discourage scavengers.  Malaise and pitfall traps were placed at each test site to collect 

flying and crawling insects, respectively, however, data from these collections were not 

included in blow fly community analyses.  To quantify biomass loss, carcass weights 

were recorded weekly until only bones and adhering tissue remained and individual 

carcass weights did not change over two subsequent weighing events.  This protocol was 

validated by De Jong et al. (2011) to measure temperature and biomass loss without 

causing significant disturbance to the decomposition process or community succession.  

Carcass weights were recorded for ten weeks during spring decomposition and five 

weeks for summer and fall trials.   

Sampling began 24 hours after pig death at all test sites and continued daily until 

dipteran larvae completed feeding and reached the prepupal stage, which is characterized 

by them wandering away from the resource to find pupation sites (Greenberg 1990, 
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1991).  This sampling frequency accounted for the majority of blow fly activity.  

However, though infrequent, a few female blow flies colonized carcasses during the later 

(i.e. advanced) stages of decay.  If eggs and/or larvae were detected at this time, they 

were collected during the sampling of all carrion insects that was carried out every 2-3 

days after prepupal wandering began; when carcasses reached the late advanced stage of 

decomposition they were sampled weekly until they reached the dry-remains stage and 

were no longer attractive to insects (Smith 1986, Greenberg 1991).  At this time carcasses 

were removed and disposed of.  At each sampling event pig carcasses and clothing were 

inspected for the presence of adult flies as well as egg masses and immature larvae.  Non-

colonized areas were not sampled, as there were no insects present in those regions.  In 

areas where insect activity was present, adult flies were sampled by hand and placed 

directly into 70% ethanol, labeled, and later identified.  Large larval masses (>1000 

individuals) were sampled by collecting approximately 100 immature individuals from 

multiple locations.  When small batches of eggs or larvae were located, ~5-10% were 

visually estimated and subsampled from one corner.  This was repeated for each 

colonized region of the pig.  When multiple egg masses or larval groups were present in 

the same region, they were sampled and reared separately as they may have been from 

different species.  This sampling protocol is in agreement to Michaud and Moreau (2013) 

and Michaud et al. (2012), who suggested that hand sampling of ~10% of individuals in 

this way accurately reflects the dipteran community, while keeping the disruption to the 

developing insect community to acceptable levels (Michaud and Moreau 2013).  Other 

than visual estimation of subsample sizes, there is no adequate way to quantify the 

amount of eggs removed without damaging or altering colonization patterns.  However, 
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as proposed by Michaud and Moreau (2013) and Michaud et al. (2012), further studies 

should be done to determine upper threshold levels for sampling intensity.  

After collection, each egg mass or group of larvae was placed in a non-sterile 

specimen container (120 ml) with pork liver and covered with a paper towel secured with 

an elastic rubber band.  Eggs and larval masses remaining on the carcasses were left to 

develop undisturbed unless more eggs were laid in the same location or larvae began to 

converge into larger masses.  Larger larval masses were also sampled by removing ~100 

larvae, with small subsamples being taken throughout the mass at different depths and 

locations.  This sample size and methodology is considered to be effective for sampling 

species within the community without significantly affecting insect succession 

(VanLaerhoven and Anderson 1999).  Once daily sampling of each carcass ended, each 

egg or larval sample was transferred from its specimen container to a 1 L Bernardin
TM

 

Mason jar, the lower third of which was filled with vermiculite as a pupation medium.  

Larvae were fed pork liver ad libitum until the prepupal/wandering stage, at which point 

food was removed.  Larvae pupated and adults emerged within the jars.  After their death, 

adult flies were separated and identified to species.  Specimens were pinned, labeled and 

placed in insect boxes; with large samples, representatives from each species were pinned 

and remaining specimens were counted and stored in scintillation vials.  

During the fall sampling period, a large percentage of pupae entered diapause and 

did not complete development, thereby affecting community analyses.  However, because 

rearing was carried out in jars kept outdoors under ambient conditions, any emergent 

adults reflected true fall populations, whereas dormant pupae would have overwintered 

and be reflective of the subsequent spring blow fly communities. 
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Degree days were calculated for each day by subtracting the lower developmental 

threshold temperature (set at 0ºC; see below) from the daily mean temperature at each 

site.  Values for lower developmental thresholds vary with respect to species, within a 

species, geographic region, life stage and environmental conditions (i.e. photoperiod, 

fluctuating temperatures).  Many of the lower threshold values for blow flies have been 

estimated through regression rather than determined experimentally (Nabity et al. 2006, 

Warren 2006, Anderson and Warren 2011).  The use of theoretical rather than 

experimental values to determine developmental threshold temperatures can lead to errors 

in estimates of accumulated degree days (ADD) or hours (ADH) (Anderson and Warren 

2011).  The use of base threshold temperatures above 0°C can also lead to overestimates 

of the post-mortem interval (VanLaerhoven 2008).  Given these considerations, I 

assigned a minimum base threshold value of 0°C.  When the mean daily temperature was 

below 0ºC, a value of zero was assigned for degree-days on those dates.  Accumulated 

degree days (ADD) were then calculated for each date within the study by adding to the 

ADD value for the previous day the current day’s DD, in order to determine daily ADD 

values on a per site basis (ADDsite= Σ DD1, 2, . . . n; n = total number of experimental days). 

Biomass loss was calculated as the remaining pig weight divided by initial carcass 

weight for each weight event during decomposition.  In weeks when values exceeded the 

initial carcass weights (due to the weight of insects present in addition to the carcass 

weight), biomass loss was considered zero.   
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Community Indices 

Four community indices were used to monitor changes in community structure: 

species richness (S, the number of species present within a sample from a pig at that 

particular ADD quartile), species evenness (E; Pielou 1966), Simpson’s Index of 

Diversity (1-D; Simpson 1949), and Levins’ Standardized Measure of Niche Breadth 

(BA; MacArthur and Levins 1967).  All diversity measures were calculated for each pig 

overall, and also for each ADD quartile: from 0 – 50 ADD, 50 – 100 ADD, 100 – 150 

ADD and 150+ADD.  These four quartiles were chosen to represent biologically 

significant time points during decomposition.  The 1
st
 quartile (0-50 ADD) represented 

early arriving species (i.e. the primary colonizers within the blow fly community) and 

typically corresponded to the first 24 to 48 hrs postmortem.  The 2
nd

 and 3
rd

 quartiles (50-

100 ADD, 100-150 ADD) represented the most active periods of larval activity and were 

characterized by the presence of multiple, large maggot masses and rapid tissue removal.  

The 4
th

 quartile (150+ ADD) represented the remainder of the decomposition period, 

which was primarily characterized by few remaining larvae since the majority of larvae 

had reached the prepupal stage and had dispersed from the carcass.  Although the spring 

decomposition was prolonged, the last degree-day section was still characterized by few 

larvae and occurred after the majority of larvae had dispersed. 

 

Statistical Analyses 

For all statistical tests, a significant effect was designated when p<0.05, or the 

appropriate value following a Bonferroni correction.  

Analyses of temperature and biomass data were conducted using the statistical  
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software program IBM SPSS Version 21 (2012).  Residuals for daily temperature met the 

homogeneity of variance assumption (Levene’s test, p>0.05) (IBM SPSS Manual 21).  

Daily temperature data were analyzed using a general linear model with experimental 

day, test site, habitat and season as main effects (IBM SPSS Manual 21).  All two-way 

and three-way interactions for test site, habitat and season were included in the model.  

Data for ADD were log transformed to improve fit for a generalized linear model with a 

gamma distribution and log link function (McCullagh and Nelder 1989, IBM SPSS 

Manual 21).  “Days of decomposition” was used as a covariate and test site, habitat and 

season as main effects.  Slope parameters were compared and a Bonferroni correction 

applied to p-values in order to examine differences between treatments.   

Biomass loss typically follows an exponential or logarithmic decay pattern 

(Simmons et al. 2010, De Jong et al. 2011) and was analyzed using a generalized linear 

model with a gamma distribution and log link function on percentage of biomass 

remaining (McCullagh and Nelder 1989, IBM SPSS Manual 21), with ADD as a 

covariate and site, habitat and season as main effects.  Slope parameters were compared 

and a Bonferroni correction applied to p-values to determine significant differences in 

biomass loss rates between treatments.    

Statistical analyses on three out of four community indices (# species [S], species 

evenness [E] and Simpson’s Index [1-D]), non-metric multi-dimension scaling (NMDS) 

and multi-response permutation procedure (MRPP) analyses were carried out using the 

statistical software program IBM SPSS Version 21 (2012).  Stata 13 (Statacorp 2013) 

was used to analyze Niche Breadth (Ba) values as results presented from SPSS were not 

based upon bootstrapped estimates.  
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A repeated measures ANOVA was used in order to test for within-pig effects 

across ADD quartiles as well as between pig effects for habitat and season.  Residuals 

were checked for normality using Shapiro-Wilks tests due to smaller sample sizes.  

Residuals were normal (p>0.05) for three out of four community indices (# species [S], 

species evenness [E] and Simpson’s Index [1-D]).  Mauchly’s test was used to determine 

if there were any violations of the sphericity assumption, which was the case in all 3 

indices (p<0.05).  Thus, a Greenhouse-Geisser correction factor was used (Greenhouse 

and Geisser 1959).  Residuals for Levins’ Standardized Niche Breadth were not normal 

(p<0.05) and various transformation methods including the log transformation, log(x+1), 

natural logarithm, inverse transformation and square root transformation did not 

normalize the data.  Therefore, a bootstrapped (k=1000, simple sampling) repeated 

measures ANOVA was used (Efron 1979).  Pairwise comparisons were carried out post-

hoc based on either on estimated means or bootstrapped estimated marginal means (when 

appropriate) in order to examine the differences in measures between ADD quartiles 

within each season as well as the differences between seasons within each ADD quartile.  

All post hoc tests and pairwise comparison p-values were corrected using the Bonferroni 

correction to prevent Type I error.  

Community composition was examined by determining relative abundance for 

each species in each sample was calculated by dividing the number of individuals of a 

species by the total number of individuals in the sample.  Non Metric Multi-Dimensional 

Scaling (NMDS) and Multi-Response Permutation Procedure (MRPP) were based on 

Euclidean distances (Zimmerman et al. 1985, McCune and Grace 2002, Cai 2006) and 

analyses were carried out using the statistical software program IBM SPSS Version 21 
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(2012).  NMDS across a 2-dimensional ordination space was used to visualize differences 

in community composition between blow fly communities in forest and field habitats and 

between seasons (spring, summer and fall) using the relative abundance of blow fly 

species to compare community composition during decomposition.  Each pig carcass was 

represented as a data point.  To compare communities over time, the communities of the 

four decomposition quartiles described above were compared.  MRPP analysis was 

carried out on relative abundance data over forest and field habitats to evaluate the 

efficiency of habitat as a grouping variable, and then again over spring, summer and fall 

seasons to evaluate the efficiency of season as a grouping factor for the blow fly 

community.  This was done for each ADD quartile as well as overall where data for all 

quartiles and each species were combined.  MRPP macro-codes were obtained from 

http://lcai.bol.ucla.edu/mrpp.txt and used as described by Cai (2006). 
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RESULTS 

Analyses of Site Temperature and Rates of ADD Accumulation 

Sites differed in microclimate, as evident in the significant interaction between 

site, habitat and season (F14,15476= 5.167, p < 0.001, R
2
=0.958) (adjusted α=0.0009).  In 

general, field locations were warmer than forest locations, except during the fall season 

and at control sites in the summer when forest and field temperatures were similar.  

During the summer, temperatures were similar in the forest locations but differed in the 

field locations such that Control 1, 2 and Site C were similar to each other but cooler than 

Sites A, B, D, E and F.  Sites B, D and F were cooler than Sites A and E. Site E was 

similar to Site A and both were warmer than all other sites.  During the spring, there were 

site differences in both forest and field habitats.  In the field locations, Control 1, 2 and 

Site C were similar to each other but cooler than Sites A, B, D, E and F (see Figure 2.3a).  

In the forest, Control 2 was warmer than the remaining sites (see Figure 2.3b).  In order 

to account for site specific differences in temperature, further analysis in this chapter is 

based upon accumulated degree days (ADD). 

 Rates of accumulated degree days (ADD) differed between habitat and season 

with a two-way interaction (Χ2
= 6.863, df = 2, p = 0.032) (adjusted α=0.017).  Habitat 

comparisons were made for season, however, when a Bonferroni correction was applied, 

differences between forest and field habitats were no longer statistically discernable.  

Parameter estimates (βi) were compared in both forest and field habitats and there were 

differences between seasons in the rate of ADD accumulation, with coefficients being 

higher in the spring than summer followed by fall (see Figure 2.4). 
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Biomass Loss 

 Biomass loss was similar between test sites and between forest and field habitats, 

however, seasonal differences were present.  There was a significant season*ADD 

interaction effect, with season explaining the variation in the model since no other 

interaction terms or main effects were significant (adjusted α=0.017) (see Table 2.1).  

Parameter estimates (βi) were compared using summer as a reference category.  

Carcasses decomposed similarly in the fall and summer (Χ2
= 2.079, df = 1, p = 0.149), 

with slower decomposition in the spring than summer (Χ2
= 107.71, df = 2, p<0.0001) 

(see Figure 2.5).  During the first few weeks of decomposition, spring carcasses retained 

their weight while summer and fall carcasses lost most of their biomass.  

 

Overall Blow Fly Community Composition  

Mean relative abundance was determined for each blow fly species within each  

season and habitat to illustrate overall community composition (see Table 2.2).  The 

spring blow fly communities in both habitats were dominated by P. regina (>80% in 

forest and >90% in field), while the remaining 10 – 20 % of the community consisted of 

Cynomya cadaverina (Robineau-Desvoidy), Calliphora terraenovae (Macquart) C. 

vicina, Calliphora vomitoria (Linnaeus), L. sericata, C. macellaria and P. terraenovae.  

Lucilia illustris was only collected in forest locations while L. coeruleiviridis was present 

in field locations.  The summer was also dominated by P. regina (>99% in forest and 

>95% in field), while the remaining blow fly community consisted of C. macellaria, P. 

terraenovae, L. sericata and L. illustris in both field and forest locations, however L. 

coeruleiviridis was only present in field locations.  The fall blow fly community showed 



 

 

 

45 

less dominance by P. regina (<50% in forest, <40% in field), along with an increase in 

the abundance of several other blow fly species: C. vomitoria, L. illustris and C. 

macellaria.  A small percentage of the community was comprised of C. vicina, C. 

cadaverina, C. rufifacies, L. sericata and L. coeruleiviridis. 

It is noteworthy that blue bottle flies (C. vicina, C. vomitoria, C. terraenovae and 

C. cadaverina) were only present in the spring and fall seasons; none were collected 

during the summer.  Protophormia terraenovae was not present in the fall, but was 

present in the spring and summer in both habitats, while C. terraenovae was only present 

in the field habitat.  Cochliomyia macellaria was present but rare in the community in 

spring and summer seasons, however comprised a major part of the fall community; it 

was more abundant in forest than in field habitats.   Chrysomya rufifacies was only 

present during the fall. 

 

Community Indices:  Main Effects and Interactions   

For each community index, the effects of season were examined within each 

ADD quartile. The effects of ADD quartile had to be compared within each season due to 

the presence of a significant interaction between ADD quartile*season.  There were no 

significant interactions between ADD quartile*season* habitat, ADD quartile*habitat or 

habitat*season (see Table 2.3).   

 

Effect of Habitat on Community Indices Within ADD Quartiles 

 Habitat did not contribute significantly to the variability within the blow fly 

community: community indices were similar between forest and field habitats.  There 
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was no significant effect of habitat on the number of species, Species Evenness (E), 

Simpson’s Index of Diversity (1-D) or Standardized Niche Breadth (Ba) (see Table 2.3). 

 

Effect of Season on Community Indices Within ADD Quartiles  

  There were seasonal differences in the number of blow fly species present and 

species evenness during decomposition, with more species in fall than summer for all 

four quartiles (adjusted α=0.0056).  This trend also occurred between the fall and spring, 

except for the 3
rd

 quartile when the number of species in the fall and spring communities 

were similar (see Figures 2.6a and 2.6b).  Simpson’s Index values reflected this same 

seasonal pattern, with diversity levels being highest in the fall and lowest in the spring 

and summer, except for the 3
rd

 quartile when spring diversity levels were similar to fall 

values.  There was greater diversity in the summer than spring during the 2
nd

 and 3
rd

 

quartiles, however, levels were similar to summer during the 1
st
 and 4

th
 quartiles (see 

Figure 2.6c).  Niche breadth values varied with respect to season, such that fall 

communities had higher niche breadth values than summer.  Spring communities were 

similar to summer during the 1
st
 and 4

th
 quartiles and similar to the fall during the 2

nd
 and 

3
rd

 quartiles (see Figure 2.6d).   

 

Effect of ADD on Community Indices Within each Season 

Community indices varied over ADD quartiles for each season.  During the fall 

season, there were more species in the 2
nd

 quartile (see Figure 2.6a) and higher levels of 

species evenness and diversity in the 2
nd

 and 3
rd

 quartiles (see Figure 2.6b,c).  There were 

no differences in niche breadth values over any of the four ADD quartiles (see Figure 
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2.6d).  During the spring season, the number of species was highest in the 4
th

 quartile and 

lowest in the 1
st
 quartile (see Figure 2.6a).  Species evenness, diversity and niche breadth 

values were highest in the 2
nd

 and 3
rd

 quartiles (see Figure 2.6b,c,d).  During the summer 

season, there were more species in the 2
nd

 quartile (see Figure 2.6a).  In contrast, there 

were no differences in species evenness, diversity levels or niche breadth values over the 

four quartiles (see Figure 2.6b,c,d). 

 

Season and Habitat Differences in Blow Fly Community Composition  

Similarity in blow fly community composition was examined for each ADD 

quartile and on an overall basis.  It was based on the relative abundance of each blow fly 

species per pig carcass for each season and habitat (see Appendix A).  There were distinct 

seasonal groupings within the blow fly community.  MRPP analyses determined that 

blow fly communities could be differentiated into seasonal groups during the 1
st
 

(δ=0.088, T=-14.231, p<0.001), 2
nd

 (δ=0.086, T=-14.732, p<0.001), 3
rd

 (δ=0.086, T=-

15.534, p<0.001) and 4
th

(δ=0.009, T=-6.745, p<0.001) quartiles (see Figure 2.7).  

Although there was significant differentiation between seasons during the 1
st
 and 4

th
 

quartiles (see Figure 2.7a,d) there was less separation in data points than during the 2
nd

 

and 3
rd

 quartiles.  Spring and fall communities were both characterized by the presence of 

similar sets of species (i.e. P. regina, C. vomitoria).   

 Habitat differences were non-existent, as evidenced by the lack of groupings 

between forest and field habitats for any ADD quartile (1
st
: δ=0.011, T=0.538, p = 0.654, 

2
nd

: δ=0.010, T=-0.563, p = 0.246, 3
rd

: δ=0.010, T=-0.710, p = 0.203 and 4
th

: δ=0.010, 

T=-1.726, p = 0.063) (see Figure 2.8). 
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NMDS analysis that examined pooled relative abundance values over all quartiles 

for each pig demonstrated differentiation between seasons (see Figure 2.9a), which was 

confirmed with MRPP analysis (δ=0.022, T=-13.480, p<0.001).  However, when 

examining the blow fly community on a habitat basis, NMDS and MRPP analysis 

demonstrated that there was no differentiation between blow fly communities in forest 

and field habitats (δ=0.025, T=-0.867, p = 0.167) (see Figure 2.9b). 
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DISCUSSION 

The Effects of Time, Season and Habitat on Blow Fly Community Composition  

There was no evidence of spatial partitioning of the blow fly community between 

forest and field habitats in this study, as the number of blow fly species, diversity, niche 

breadth values, evenness and relative abundance between species did not vary between 

forest and field locations.  Similar to my study, research has shown no significant habitat 

associations for certain blow fly species (Macleod and Donnelly 1957, Goddard and Lago 

1985, Joy et al. 2002, Centeno et al. 2004, Horenstein et al. 2012).  Joy et al. (2002) 

found P. regina in similar proportions on raccoon carcasses in sunlit and shaded areas in 

West Virginia, which is similar to the forest and field communities that developed during 

spring and summer trials in my study. Martinez-Sanchez et al. (2000) collected C. vicina 

equally in open pasture and wooded habitats.  Horenstein et al. (2012) also found similar 

blow fly species in sun and shaded locations, while Matuszewski et al. (2008) found no 

differences in community composition between pine-oak, hornbeam-oak and alder forest 

habitat types in Central Europe; however, because these studies lacked replication, 

inferences that can be drawn from them are limited.  

Previous research has led to conflicting ideas regarding habitat preferences in 

blow flies.  For instance, there are a number of blow fly species that have been classified 

as eusynanthropic, or dependent upon human environments (Gordh and Headrick 2001) 

and urban (Smith 1986, Greenberg 1990, Ferreira and Barbola 1998, Hwang and Turner 

2005, Horenstein et al. 2007).  However, in my study, C. vicina, L. sericata, C. rufifacies, 

all documented as being urban species, were readily collected in multiple rural sites 

where the population density was less than 150 pal/km
2
 (Organization of Economic Co-
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operation and Development, Statistics Canada 2006).  Blow flies that have previously 

been considered as urban or eusynanthropic have been reported to be increasing in 

occurrence in natural, rural regions (Smith and Wall 1997, Schnack et al. 1998, Martinez-

Sanchez et al. 2000, Centeno et al. 2004, Horenstein et al. 2007) or their urban 

association is dissolving (Schnack et al. 1998, Jensen and Miller 2001, Horenstein et al. 

2007, Eberhardt and Elliot 2008).  Alternatively, the purported association of these 

species with urban areas may simply be an artifact of a species’ point of introduction, 

which is commonly associated with human travel, rather than a true habitat preference.   

Other studies have inferred habitat preferences of blow flies on the basis of them 

being collected in either sunny or shaded locations, or in habitats dominated by certain 

plant species.  Horenstein et al. (2007) determined that C. vicina was found primarily 

(>97% of individuals collected) in the shade and showed a negative correlation with 

temperature, with abundance increasing with decreasing temperature.  Smith and Wall 

(1997) found C. vicina was more abundant in woodland and hedgerow sites than in open 

pasture.  However, as mentioned previously, these studies lack replication and 

consequently the habitat preference reported is not supported statistically.  In my study, 

two species did demonstrate habitat preferences: L. illustris was only present in forest 

locations and L. coeruleiviridis was only present in field locations in the spring.  

However, both these species were collected in such low numbers that conclusions about 

their habitat associations are weakly supported.  It is known that differences in species 

presence and abundance between habitats and seasons can contribute to higher diversity 

and species coexistence, as seen within the blow fly community on broad temporal and 

spatial scales (Atkinson and Shorrocks 1981, 1984, Atkinson 1985, Cruickshank and 
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Wall 2002a).  Though I conclude that spatial partitioning between forest and field 

habitats did not occur in the blow fly community I studied, additional habitat types in the 

region (e.g., shores, swamps, marshes) should be examined.   

Temporal partitioning of the blow fly community in the Windsor-Essex region 

was evident both within and between seasons, with distinct differences in number of blow 

fly species, diversity, niche breadth evenness and relative abundance.  In the spring, the 

number of species present increased over time with highest numbers during the later 

ADD quartiles (i.e. 100 – 150 ADD and 150+ ADD), indicating that additional blow fly 

species joined the community throughout the process of decomposition.  Species 

evenness, diversity and niche breadth were highest during the 2
nd

 and 3
rd

 quartiles, which 

indicates that during this time in decomposition (50-150 ADD) blow fly species are able 

to coexist in more even numbers that earlier or later.  Later in decomposition, the spring 

blow fly community became dominated by one or two species, with an associated 

reduction in species evenness despite the increasing number of species present.  In 

contrast, fall communities had a high number of species (i.e., 5-6), evenness and diversity 

through the 1
st
 and 2

nd
 ADD quartiles, after which these measures of diversity steadily 

decreased.  Niche breadth values declined throughout decomposition of the carcasses.  In 

the last ADD quartile, larval blow fly interactions diminish as larvae leave the resource to 

pupate.  This is evident by decreased species evenness, diversity and niche breadth in 

both spring and fall.   

Community structure was dominated by P. regina in the summer and remained 

consistent during decomposition.  This suggests that the summer blow fly community is 

determined early in decomposition and then maintained with low evenness, diversity, and 
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niche breadth values and no change in species number.  Consequently, the summer blow 

fly community becomes the result of a “first-come, first-serve” basis, where the number 

of females available for colonization during those first few hours post-mortem determines 

the resultant community structure (primarily P. regina in this study).  Interestingly, C, 

macellaria also arrived quickly and in large numbers, but the numbers of their offspring 

on the carcasses remained low.  

The blow fly communities in spring and fall were comprised of more species than 

in summer, with higher species evenness in fall than in spring.  This contrasts with results 

from Prado e Castro et al. (2012) who found a higher number of species present during 

summer in Portugal.  Prado e Castro et al. (2012) also recorded fewer blow fly species in 

spring during the active stage of decay, whereas in my study the number of species 

increased during decomposition during the spring season.  However during the fall and 

summer season, I observed the pattern reported by Prado e Castro et al. (2012): the 

number of species increased from the initial stages of decomposition (i.e. from 1
st
 to 3

rd
 

quartiles), peaked in the bloated and active stages (i.e. the 2
nd

 and 3
rd

 quartiles in the fall 

and the 2
nd

 quartile in the summer) and decreased in late decomposition (i.e. 4
th

 quartile).  

The seasonal differences in community indices that I quantified may be due to 

slower decomposition in the spring compared to summer or fall, with spring carcasses 

maintaining most of their biomass during the first few weeks of decomposition.  Cooler 

temperatures lead to longer periods of time during which the resource is attractive and 

available for colonization by blow fly species; prolong larval development (Jensen and 

Miller 2001, Joy et al. 2002); and lower consumption rates, thereby extending resource 

availability.  These effects could result in longer persistence of species and extended 
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colonization of the carcasses by blow fly females, which occurred during spring trials.  

The summer trend of few species, high dominance and low evenness could have resulted 

from higher summer temperatures and faster ADD rates, which drastically decreased the 

time that carrion was available for colonization and subsequent larval development as 

biomass was rapidly lost in this season compared to decomposition in the spring.   

Many of the seasonal differences in species composition can be explained by the 

presence of blue bottle flies (C. vicina, C. vomitoria, C. terraenovae and C. cadaverina) 

only in the spring and fall seasons.  Many studies have reported differences in the 

presence/absence and abundance of blue bottle species and suggest that these differences 

relate to temperature conditions, with increased abundance of Calliphorini species in 

colder seasons (Schroeder et al. 2003, Watson and Carlton 2005, Horenstein et al. 2007, 

Fremdt and Amendt 2014) and a decrease in the abundance during summer seasons (Hall 

and Doisy 1993).  In my study, although I occasionally observed adult blue bottles on 

carcasses early in the morning during the summer, they failed to reproduce, and it has 

been suggested that adults may survive in cooler refugia while larvae or pupae may enter 

diapause at high ambient temperatures until more favourable conditions return (for C. 

livida and C. vicina, Introna et al. 1991; for C. vomitoria, Anton et al. 2011).  Both of 

these responses of blue bottle flies deserve further study.  

Another seasonal difference in species composition was the presence of C. 

rufifacies only during the fall.  This species is not permanently established in Ontario and 

its availability within the regional species pool of blow flies is dependent upon its 

dispersal from the mid to southern U.S. states where populations of this species can 

successfully overwinter (Rosati and VanLaerhoven 2007).  Consequently, its presence 
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only in the fall is not due to species interactions, but rather its regional availability.  Other 

studies have shown that Chrysomya spp. dominate in the majority of seasons and 

carcasses they colonize due to the ability of their larvae to become facultative predators, 

i.e. they consume both the resource and other insect larvae (Baumgartner and Greenberg 

1984, Goodbrood and Goff 1990, Wells and Greenberg 1992, 1994, Baumgartner 1993, 

Watson and Carlton 2005, Rosati and VanLaerhoven 2007).  In my study, C. rufifacies 

did not dominate the blow fly communities in fall; however, this may have been due to 

the low population of this species in Windsor-Essex County at that time.  

There have been many studies demonstrating differences in abundance patterns in 

blow flies that relate to particular habitats or seasons (Deonier 1940, Hall 1948, Ulyett 

1950, Cragg 1955, Denno and Cothran 1975, Smith 1986, Hwang and Turner 2005, 

Watson and Carlton 2005, Brundage et al. 2011, Benbow et al. 2013, Fremdt and Amendt 

2014).  In my study, P. regina consistently dominated blow fly communities during the 

spring and summer.  Similarly, Joy et al. (2002) found P. regina to be dominant on 

raccoon carcasses in sunlit and shaded areas in southwestern West Virginia, similar to 

spring and summer carcasses in both field and forest habitats in my study, and they 

recorded low numbers of L. sericata.  In contrast, in my fall study P. regina did not 

dominate the carcasses, with this species comprising <50% of the blow fly community.  

Cochliomyia macellaria is another species that differs in dominance between different 

locations.  For example, in southern Louisiana, poultry carcasses were dominated by C. 

macellaria, followed by L. sericata (Tessmer et al. 1995).  In the current study, C. 

macellaria was the dominant species on carcasses in the field habitat in fall, but was rare 

in all other treatments despite its presence in spring and summer.  The relative dominance 
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of a species can vary (Macleod and Donnelly 1957, Levot et al. 1979, Smith and Wall 

1997; present study), however at present, there is a lack of knowledge regarding the 

mechanisms driving blow fly community structure.  Additional studies similar to this one, 

to quantify spatial and temporal partitioning within regional blow fly communities, are 

needed.  However, they need to be coupled with experimental studies to understand the 

mechanisms that result in the patterns in blow fly diversity. 

The lack of habitat association that I observed may have been affected by blow fly 

flight and orientation patterns, which may be largely independent of the surrounding 

habitat.  Prior to the detection of a food resource, different blow flies species (see 

Macleod and Donnelly 1957) take flights that vary randomly in direction and distance, 

resulting in them being widely distributed throughout the region.  However, once 

chemical stimuli associated with a carcass such as decomposition byproducts, 

pheromones or kairomones are detected, the flies exhibit positive anemotaxis and positive 

chemotaxis that result in them arriving at the resource (Cruikshank and Wall 2002a,b).  

Some species may appear to have a preference for a certain habitat, whereas in fact they 

are present simply as a result of them remaining longer in environments that fall within 

upper and lower thresholds for light and/or temperature.  

Seasonal differences in blow fly communities, as seen in this study, may be 

partially explained through understanding optimal conditions required by individual 

species for activity or development.  Many studies have demonstrated that particular 

species of blow flies have species-specific minimum thresholds for development with 

respect to temperature and larval nutrition (Deonier 1940, Nielson and Nielson 1946, 

Kamal 1958, Levot et al. 1979, Greenberg and Tantawi 1993, Nabity et al. 2006).  This 
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was also proposed by Cruickshank and Wall (2002a) when they suggested that the degree 

to which Lucilia sp. aggregated their populations over a landscape was driven by stimulus 

response mechanisms that resulted in them existing within environmental limits 

(Cruikshank and Wall 2002b).  As stated previously, blue bottles are also known to 

decrease in abundance or undergo a summer diapause, demonstrating that upper 

thresholds can limit availability or activity of blow fly species.  The interaction between 

thermal constraints and species interactions is recognized in community assembly 

(Cavender-Bares et al. 2009, Wittman et al. 2010, Lessard et al. 2011) and is an important 

aspect to explore within blow flies, especially when examining successional patterns and 

their use in a forensic context. 

 

Relevance to Forensic Entomology and Future Research 

The composition of insect communities is highly dependent upon temperatures, as 

individual species respond to temperatures differentially (Forrest and Thomson 2011, De 

Sassi et al. 2012).  Moreover, the rate of development of immature insects is temperature 

dependent, with development generally increasing linearly as temperatures increase 

above some minimum lower threshold.  This is recognized in the concept of degree days. 

Degree days (DD) and their accumulation over time (ADD) are consequently very 

important to consider when attempting to use the insect community on a carcass to make 

inferences about the time of death and post-mortem interval (Forrest and Thomson 2011).  

I examined temperature and ADD data to determine if these variables differed between 

sites, habitats and seasons.  My analyses of temperature data demonstrated a significant 

site x habitat x season interaction, confirming that microclimatic differences can result in 
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site specific differences in temperature.  Due to the cumulative nature of ADD 

calculations, small daily differences in temperature between sites or habitats become 

enhanced over time.  For this reason, the development of blow fly communities over time 

is more accurate when interpreted with respect to site-specific ADD than simply to 

elapsed time.  Forensic researchers have recently begun to examine decomposition and 

carrion insect communities on the basis of ADD (Michaud and Moreau 2009, 2011, 2012, 

Simmons et al. 2010, Archer 2014).  However, despite that, insect successional data are 

still commonly presented on a calendar basis, a practice that ignores temperatures and 

their effects (Matuszewski et al. 2008, Prado e Castro et al. 2012, 2013, Azmi and Lim 

2013, Pastula and Merritt 2013).  By incorporating the use of ADD into forensic 

entomology studies, the variability in successional patterns that occurs when data are 

presented on a calendar basis can be reduced and standardized.  My study emphasizes the 

importance of ADD standardization due to site-specific differences, which is of 

paramount importance since it is common practice in forensic investigations to simply 

use data from the nearest weather station to estimate PMI, a practice that fails to account 

for site-specific differences in temperatures.   

Though this study detected no habitat differences, there were distinct seasonal 

differences in blow fly community composition and structure.  These findings support the 

concept that examination of seasonal composition patterns may be an important PMI tool 

(as suggested by Hall and Doisy 1993).  Developing regional seasonal profiles for PMI 

determination will be useful in narrowing down the seasonality of activity of an insect 

species (PIA, or period of insect activity), especially in cases where more than one year 

has passed since death and only remnants of the blow fly community remain (i.e. dead 
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adults, empty or unemerged puparia).  Michaud and Moreau (2009) used the occurrence 

and absence data for key species in a carrion community to create a probability of 

occurrence matrix, which they then used to statistically validate the presence of a species 

within the community at a particular time.  My study determined that there are changes in 

community composition due to time and temperature during decomposition (i.e. ADD 

quartile) as well as season.  This conclusion is in agreement to other studies that have 

also demonstrated distinct seasonal differences in carrion assemblages (Centeno et al. 

2002, Archer and Elgar 2003a,b, Tabor et al. 2005, Watson and Carlton 2005, 

Sharanowski et al. 2008, Moretti et al. 2011, Brundage et al. 2011, Horenstein et al. 2012, 

Benbow et al. 2013, Fremdt and Amendt 2014).  However, in order to fully evaluate the 

use of blow fly community composition as a potential for determining the timing 

(seasonality) of colonization, research into how the community is structured in additional 

natural settings must be conducted.  

The information provided within this particular study is an important step in 

quantifying how the blow fly community is structured during different seasons.  While it 

was conducted in southwestern Ontario, it is relevant to a considerably larger region 

around the Great Lakes.  However, it was limited to a single year.  Because annual 

variation has been shown to be an important variable in causing changes in community 

structure (Macleod and Donnelly 1957, Martinez-Sanchez et al. 2000, Archer 2003, 

Archer and Elgar 2003b), it would benefit from replication over multiple years.  Studies 

within the field of forensic entomology should further quantify discrepancies between the 

use of ADD versus calendar date as a measure of elapsed successional time.  I 

recommend that future studies depict data with respect to both calendar dates and ADD, 
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as the arrival and colonization of some species is more dependent on elapsed time, while 

others are more dependent on the state of the resource.  Results from this study 

demonstrate that the blow fly community structure is influenced by season but not 

habitat.  Forensic entomologists are now calling for more stringent experimental designs 

that incorporate ecological principles, to account for the complex interactions that may be 

present in carrion insect communities (Brundage et al. 2011, Tomberlin et al. 2011a,b, 

Michaud et al. 2012, Benbow et al. 2013, Moretti and Godoy 2013, Fremdt and Amendt 

2014).  Similar experiments to that reported here should be conducted over more regions, 

seasons, and habitats, in order to assess the replicability of these patterns under other 

conditions and to account for multiple interacting factors that can influence blow fly 

populations.  
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Figure 2.1.  Test site locations in the Windsor/Essex County Region of south-west Ontario, Canada.  Test sites are labeled A through 

F.  Each site had both field and forest habitats for direct comparisons.  Control sites were located within sites B (a nature reserve with 

high diversity, chosen to capture the regional species pool (Paeiro et al. 2010) and site D (mid-location to the four more southerly 

sites).  Image courtesy of GoogleEarth™ 

6
0
 

 



 

 

 

61 

Malaise Trap 

Dataloggers 

Pitfall Traps 

E 

 

 

 

 

 

 

 

 

 

 

 N  S 

 

 

 

 

 

 

 

 

 

 

 

 

W 

 

Figure 2.2.  Experimental setup and carcass placement for each test site.  Carcasses were all female, killed, dressed and placed with 

head facing north and back facing east.  Pitfall traps were located 2.5m in the north, east, south and west directions.  Malaise traps 

were placed at the head of each carcass.  Dataloggers placed on the back of each malaise trap (ambient temperature) as well as within 

the chest cavity of each carcass (internal carcass temperature) recorded temperatures on an hourly basis.  Control sites consisted of 

malaise and pitfall traps set up in the same manner, however, no carcass was placed within these locations. 
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Figure 2.3.  Daily ambient air temperatures (°C) for test sites in forest and field habitats from the onset of spring trials (April 14, 

2005) until the onset of summer trials (June 24, 2005) located in the Windsor/Essex County Region of southwestern Ontario, Canada.  

There was a significant test site*habitat*season interaction (ANOVA: p<0.001), and pairwise comparison tests with a Bonferroni 

correction were used to determine test site differences in spring forest and field sites.  Site differences also occurred in summer field 

sites (not presented here).  There were no site differences (p>0.05) in summer forest sites or during the fall season for forest or field 

habitats, thus data is not presented. 
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Figure 2.4.  Mean (±1SE) accumulated degree days (ADD) for forest and field habitats from the onset of decomposition.  Spring, 

summer and fall trials lasted 412, 342 and 241 days.  A generalized linear model was used with a gamma distribution, log-link 

function and site, habitat, season as main effects and days of decomposition as a covariate. There was a significant test habitat*season 

interaction (p=0.032).
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Figure 2.5.  Biomass loss during decomposition over spring summer and fall seasons. A 

generalized linear model was used with a gamma distribution, log-link function and ADD 

as a covariate.  Season and ADD were significant predictors (p<0.001).  Each point 

represents remaining biomass mass means and bars represent standard errors of the 

means.  There were no significant differences between test sites (A through F) or habitat 

(field and forest) (p>0.05), thus data were pooled. 
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Figure 2.6.  Community diversity indices (mean±1SE ) for the blow fly community during spring, summer and fall seasons over four 

categories of accumulated degree days (ADD).  a – Number of Species.  b – Species Evenness.  c – Simpson’s Index of Diversity.  d – 

Standardized Niche Breadth.  A repeated measures ANOVA was used on each community index and pairwise comparison tests 

between means were used with a Bonferroni correction to determine differences among seasons or quartile.  Means with the same 

letter do not differ significantly.  Comparisons were made between ADD quartiles for each season and are denoted by capital letters 

while comparisons between seasons for each quartile are denoted by small letters.  Summer comparisons are denoted in italics, Fall in 

bold.  There were no significant effects due to habitat (p>0.05), thus data for forest and field habitats were pooled.
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Figure 2.7.  Non-metric multidimensional scaling of blow fly communities between seasons on a per pig carcass basis for each ADD 

quartile. a – 0 – 50 ADD.  b – 50 – 100 ADD.  c – 100 – 150 ADD.  d – 150+ ADD.   MRPP analysis determined season was a 

significant grouping factor in all four quartiles (p<0.001).
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Figure 2.8.  Non-metric multidimensional scaling of blow fly communities between habitats on a per pig carcass basis for each ADD 

quartile. a – 0 – 50 ADD.  b – 50 – 100 ADD.  c – 100 – 150 ADD.   d – 150+ ADD.  MRPP analysis determined habitat was not a 

significant grouping factor in any of the four quartiles (p>0.05). 
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Figure 2.9.  Non-metric multidimensional scaling of overall blow fly community 

composition between habitats and seasons on a per pig carcass basis. a – pigs are 

classified by season.  b – pigs are classified by habitat.  MRPP analysis determined 

season was a significant grouping factor (p<0.001), however, habitat was not (p>0.05). 
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Table 2.1.  Effect of accumulated degree days (ADD), site, season and habitat on 

biomass loss.  Data were analyzed using a generalized linear model with a gamma 

distribution, log-link function and site, habitat, season as main effects and ADD as a 

covariate.  Significant effects are in bold. 

 

Source Χ2
 df P 

Main Effects    

Site 1.218 5 0.943 

Habitat 0.045 1 0.832 

Season 90.659 

 

2 <0.001 

ADD 695.198 1 <0.001 

Two-Way Interactions    

Site*Habitat 1.020 5 0.961 

Site*Season 1.987 10 0.996 

Site*ADD 0.827 5 0.975 

Habitat*Season 0.367 2 0.832 

Habitat*ADD 0.508 1 0.476 

Season*ADD 104.709 2 <0.001 

Three-Way Interactions    

Site*Habitat*Season 1.788 10 0.998 

Site*Habitat*ADD 3.993 5 0.550 

Site*Season*ADD 1.833 10 0.997 

Habitat*Season*ADD 0.483 2 0.785 

Four-Way Interaction    

Site*Habitat*Season*ADD 6.029 10 0.813 
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Table 2.2.  Mean relative abundance (±1SE) of blow fly species for three seasons (spring, summer and fall) and two habitat types 

(forest, field) in Essex County, Ontario.  Spring, summer and fall trials commenced on April 14, June 14 and October 3, 2005, 

respectively. − - indicates that species was not collected during sampling. 

 
TRIBE CALLIPHORINI 

  

Calliphora terraenovae Calliphora vicina Calliphora vomitoria Cynomya cadaverina 

Season Habitat Mean 

 

SE Mean 

 

SE Mean 

 

SE Mean 

 

SE 

Spring Field 1.907 ± 1.472 0.131 ± 0.248 0.224 ± 0.484 5.602 ± 3.775 

Spring Forest 11.147 ± 8.869 1.598 ± 2.751 0.671 ± 1.174 4.872 ± 6.611 

Summer Field 

 
− 

  
− 

  
− 

  
− 

 Summer Forest 

 
− 

  
− 

  
− 

  
− 

 Fall Field 0.022 ± 0.054 0.078 ± 0.160 5.140 ± 4.636 0.005 ± 0.013 

Fall Forest 

 
− 

 

0.054 ± 0.104 24.590 ± 15.417 0.025 ± 0.041 

TRIBE CHRYSOMYINI 

  

Chrysomya rufifacies Cochliomyia macellaria Phormia regina Protophormia terraenovae 

  

Mean 

 

SE Mean 

 

SE Mean 

 

SE Mean 

 

SE 

Spring Field 

 
− 

    

91.771 ± 4.377 0.105 ± 0.141 

Spring Forest 

 
− 

 

0.017 ± 0.042 81.374 ± 18.276 0.297 ± 0.645 

Summer Field 

 
− 

 

4.129 ± 4.132 94.994 ± 4.573 0.013 ± 0.032 

Summer Forest 

 
− 

 

0.384 ± 0.414 99.280 ± 0.355 0.022 ± 0.035 

Fall Field 0.543 ± 0.900 49.196 ± 8.040 36.437 ± 9.727 

 
− 

 Fall Forest 0.045 ± 0.069 10.162 ± 7.634 50.716 ± 11.830 

 
− 

 TRIBE LUCILIINI 

  

Lucilia coeruleiviridis Lucilia illustris Lucilia sericata 

  

Mean 

 

SE Mean 

 

SE Mean 

 

SE 

Spring Field 0.023 ± 0.027 

 
− 

 

0.238 ± 0.221 

Spring Forest 

 
− 

 

0.002 ± 0.005 0.021 ± 0.026 

Summer Field 0.028 ± 0.068 0.503 ± 0.641 0.334 ± 0.541 

Summer Forest 

 
− 

 

0.255 ± 0.334 0.058 ± 0.125 

Fall Field 0.028 ± 0.057 4.546 ± 3.321 4.005 ± 5.694 

Fall Forest 0.014 ± 0.034 11.987 ± 10.140 2.407 ± 3.567 
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Table 2.3.  Effect of ADD, season and habitat on community indices for the blow fly community.  Analyses were carried out using a 

repeated measures ANOVA with a Greenhouse-Geisser correction factor for Mean Number of Species, Species Evenness (E), and 

Simpson’s Index of Diversity (1-D).  A bootstrapped repeated measures ANOVA (k=1000) was used for Levins’ Standardized Niche 

Breadth (Ba).  Significant effects are in bold. 

 

 

 # Species Species Evenness (E) Simpson’s Index (1-D) Niche Breadth (Ba) 

Source df F P df F P df F P df F P 

ADD 2.2 11.042 < 0.0001 1.9 15.232 <0.000

1 

2.0 17.027 <0.000

1 

3 17.447 <0.0001 

Season 2 46.253 < 0.0001 2 90.383 <0.000

1 

2 85.163 <0.000

1 

2 75.855 <0.0001 

Habitat 1 0.341 0.561 1 1.332 0.258 1 1.389 0.248 1 0.820 0.364 

ADD*Season 4.3 27.519 < 0.0001 3.7 8.016 <0.000

1 

4.0 8.637 <0.000

1 

6 12.645 <0.0001 

ADD*Habitat 2.2 1.194 0.312 1.9 0.211 0.796 2.0 0.190 0.825 3 0.153 0.927 

Season*Habitat 2 0.805 0.457 2 0.843 0.440 2 0.622 0.543 2 0.025 0.975 

ADD*Habitat*Season 4.3 0.422 0.805 3.7 1.092 0.367 4.0 0.812 0.521 6 0.927 0.474 

Error (within subject) 64.5   56.0   59.3   90   

Error (between subject) 30   30   30   30   

7
1
 

 



 

 

 

72 

REFERENCES 

Albrecht, M., Gotelli, N.J. 2001. Spatial and temporal niche partitioning in grassland 

ants. Oecologia 126: 134-141. 

Anderson, G.S., VanLaerhoven, S.L. 1996. Initial studies on insect succession on carrion 

in Southwestern British Columbia. J. Forens.Sci. 41:617-625.  

Anderson, G.S., Warren, J.A. 2011. Establishing lower developmental thresholds for a 

common blowfly: for use in estimating elapsed time since death using 

entomological methods.  Contract Report: Defense Research and Development 

Canada. 

Anton, E., Niederegger, S., Beutel, R.G. 2011. Beetles and flies collected on pig carrion 

in an experimental setting in Thuringia and their forensic implications. Med. Vet. 

Entomol. 25: 353-364. 

Archer, M.S. 2003. Annual variation in arrival and departure times of carrion insects at 

carcasses: implications for succession studies in forensic entomology. Aust. J. 

Zool. 51: 569-576. 

Archer, M. 2014. Comparitive analysis of insect succession data from Victoria 

(Australia) using summary statistics versus preceding mean ambient temperature 

models. J. Forens. Sci. 59: 404-412. 

Archer, M.S., Elgar, M.A. 2003a. Effects of decomposition on carcass attendance in a 

guild of carrion-breeding flies. Med. Vet. Entomol. 17: 263-271. 

Archer, M.S., Elgar, M.A. 2003b. Yearly activity patterns in southern Victoria (Australia) 

of seasonally active carrion insects. Forens. Sci. Intern. 132: 173-176. 



 

 

 

73 

Atkinson, W.D. 1985. Coexistence of Australian rainforest Diptera breeding in fallen 

fruit. J. Anim. Ecol. 54: 507-518. 

Atkinson, W.D., Shorrocks, B. 1981. Competition on a divided and ephemeral resource: a 

simulation model. J. Anim. Ecol. 50: 461-471. 

Atkinson, W.D., Shorrocks, B. 1984. Aggregation of larval Diptera over discrete and 

ephemeral breeding sites: the implications for coexistence. Amer. Nat. 124: 336-

351. 

Azmi, W.A., Lim, S.P. 2013. Comparitive study of dipteran species diversity and their 

succession on rabbit carrion in two different mangrove areas of peninsular 

Malaysia. J. Insects 2013: 1-9. http://dx.doi.org/10.1155/2013/398159 Accessed 

April 03, 2014. 

Barker, J.S.F. 1971. Ecological differences and competitive interaction between 

Drosophila melanogaster and Drosophila simulans in small laboratory 

populations. Oecologia 8: 139-156. 

Barton, P.S., Cunningham S.A., Lindenmayer, D.B., Manning, A.D. 2013. The role of 

carrion in maintaining biodiversity and ecological processes in terrestrial 

ecosystems. Oecologia 171: 761-772. 

Baumgartner, D.L. 1993. Review of Chrysomya rufifacies (Diptera: Calliphoridae). J. 

Med. Entomol. 30: 338-352. 

Baumgartner, D.L., Greenberg, B. 1984. The genus Chrysomya (Diptera: Calliphoridae) 

in the new world. J. Med. Entomol. 21: 105-113. 

Baumgartner, D.L., Greenberg, B. 1985. Distribution and medical ecology of the blow 

flies (Diptera: Calliphoridae) of Peru. Ann. Entomol. Soc. 78: 565-587. 



 

 

 

74 

Benbow, M.E., Lewis, A.J., Tomberlin, J.K., Pechal, J.L. 2013. Seasonal necrophagous 

insect community assembly during vertebrate carrion decomposition. J. Med. 

Entomol. 50: 440-450. 

Brundage, A., Bros, S., Honda, J.Y. 2011. Seasonal and habitat abundance and 

distribution of some forensically important blow flies (Diptera: Calliphoridae) in 

Central California. Forens. Sci. Int. 212: 115-120. 

Byrd, J.H., Castner, J.L (Eds). 2001. Forensic Entomology: the Utility of Arthropods in 

Legal Investigations. CRC Press, Boca Raton, FL. 

Cai, L. 2006. Multi-response permutation procedure as an alternative to the analysis of 

variance: an SPSS implementation. Behav. Res. Meth. 38: 51-59. 

Campobasso, C.P., Di Vella, G., Introna, F. 2001. Factors affecting decomposition and 

Diptera colonization. Forens. Sci. Int. 120: 18-27. 

Catts, E. P., and M. L. Goff. 1992. Forensic entomology in criminal investigations. Annu. 

Rev. Entomol. 37: 253-272. 

Cavender-Bares, J. Kozak, K., Fine, P., Kembel, S. 2009. The merging of community 

ecology and phylogenetic biology. Ecol. Lett. 12: 693–715. 

Centeno, N., Almorza, D,. Arnillas, C. 2004. Diversity of Calliphoridae (Insecta: Diptera) 

in Hudson, Argentina. Neotrop. Entomol. 33: 387-390.  

Centeno, N., Maldonado, M., Oliva, A., 2002. Seasonal patterns of arthropods occurring 

on sheltered and unsheltered pig carcasses in Buenos Aires Province (Argentina). 

Forens. Sci. Int. 126: 63-70. 

Chase, J.M., Liebold, M.A. 2003. Ecological Niches. Chicago University Press, Chicago, 

IL. 



 

 

 

75 

Chave, J. 2004. Neutral theory and community ecology. Ecol. Letters 7: 241-253. 

Chesson, P. 2000. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. 

Syst. 31: 343-366. 

Collet, C., Ningre, F., Barbeito, I., Arnaud, A., Piboule, A. 2014. Response of tree growth 

and species coexistence to density and species evenness in a young forest 

plantation with two competing species. Ann. Bot. 113: 711-719.  

Cragg, J.B. 1955. The natural history of sheep blow flies in Britain. Ann. Appl. Biol. 42: 

197-207. 

Cross, P., Simmons, T. 2010. The influence of penetrative trauma on the rate of 

decomposition. J. Forens. Sci. 55: 295-301. 

Cruickshank, I., Wall, R. 2002a. Aggregation and habitat use by Lucilia blowflies 

(Diptera: Calliphoridae) in pasture. Bull. Entomol. Res. 92: 153-158. 

Cruickshank, I., Wall, R. 2002b. Population dynamics of the sheep blowfly Lucilia 

sericata: seasonal patterns and implications for control. J. Appl. Ecol. 39: 493-

501. 

Davies, L. 1999. Seasonal and spatial changes in blowfly production from small and large 

carcasses at Durham in lowland northeast England. Med. Vet. Entomol. 13: 245-

251. 

De Jong, G.D., Hoback, W.W., Higley, L. 2011. Effect of investigator disturbance in 

experimental forensic entomology: carcass biomass loss and temperature. J. 

Forens. Sci. 56: 143-149. 

Denno, R.F., Cothran, W.R. 1975. Niche relationships of a guild of necrophagous flies. 

Ann. Entomol. Soc. Amer. 68: 741-754. 



 

 

 

76 

Deonier, C.C. 1940. Carcass temperatures and the relation to winter blowfly populations 

and activity in the Southwest. J. Econ. Entomol. 33: 166-170. 

De Sassi, C., Lewis, O. T., Tylianakis, J. M. 2012. Plant-mediated and non-additive 

effects of two global change drivers on an insect herbivore community. Ecology 

93: 1892-1901. 

Eberhardt, T.L., Elliot, D.A. 2008. A preliminary investigation of insect colonization and 

succession on remains in New Zealand. Forens. Sci. Intern. 176: 217-223. 

Efron, B. 1979. Bootstrap methods: another look at the jacknife. Annals Statist. 7: 1-26. 

Ferreira, M.J.M., Barbola, I.F. 1998. Sinantropia de Califorideos (Insecta: Diptera) de 

Curitiba, Parana, Brasil. Rev. Brasil Biol. 58: 203-209. 

Forrest J., Thomson, J.D. 2011. An examination of synchrony between insect emergence 

and flowering in Rocky Mountain meadows. Ecol. Monog. 81: 469-491. 

Fremdt, H., Amendt, J. 2014. Species composition of forensically important blow flies 

(Diptera: Calliphoridae) and flesh flies (Diptera: Sarcophagidae) through space 

and time. Forens. Sci. Int. 236: 1-9. 

Goddard, J., Lago, P.K. 1985. Notes on blow fly (Diptera: Calliphoridae) succession on 

carrion in Northern Mississippi. J. Entomol. 20: 312-317. 

Goff, M.L. 1993. Estimation of the postmortem interval using arthropod development 

and successional patterns. Forens. Sci. Rev. 5: 81-94. 

Goodbrood, J.R., Goff, M.L. 1990. Effects of larval population density on rates of 

development and interactions between two species of Chrysomya (Diptera: 

Calliphoridae) in laboratory culture. J. Med. Entomol. 27: 338-343. 



 

 

 

77 

Gordh, G., Headrick, D.H. 2001. A Dictionary of Entomology. CABI Publishing, New 

York, NY. 

Greenberg, B. 1990. Behavior of postfeeding larvae of some Calliphoridae and a Muscid 

(Diptera). Ann. Entomol. Soc. Amer. 83:1210-1214.  

Greenberg, B. 1991. Flies as forensic indicators. J. Med. Entomol. 28: 565-577. 

Greenberg, B., Tantawi, T. 1993. Different developmental strategies in two boreal blow 

flies (Diptera: Calliphoridae). J. Med. Entomol. 30: 481-484. 

Greenhouse, S.W., Geisser, S. 1959. On methods in the analysis of profile data. 

Psychometrika 24: 95-112. 

Hall, D.G. 1948. The Blowflies of North America. Thomas Say Foundation Vol. IV. 

Entomological Society of America, College Park, MD. 

Hall, R.D., Doisy, K.E. 1993. Length of time after death: effect on attraction and 

oviposition and larviposition of midsummer blow flies (Diptera: Calliphoridae) 

and flesh flies (Diptera: Sarcophagidae) of medicolegal importance in Missouri. 

Ecol. Pop. Biol. 86: 589-593. 

Hanski, I., Kuusela, S. 1980. The structure of the carrion fly communities: differences in 

breeding seasons. Ann. Zool. Fenn. 17: 185-190. 

Hattori, A., Shibuno, T. 2013. Habitat use and coexistence of three territorial herbivorous 

damselfish on different-size patch reefs. J. Mar. Biol. Assoc. U.K. 93: 2265-2272. 

HilleRisLambers, J., Adler, P.B., Harpole, W.S., Levine, J.M., Mayfield, M.M. 2012. 

Rethinking community assembly through the lens of coexistence theory. Annu. 

Rev. Ecol. Evol. Syst. 43: 227-248. 



 

 

 

78 

Horenstein, M.B., Linhares, A., Rosso, B., Garcia, M.D. 2007. Species composition and 

seasonal succession of saprophagous Calliphorids in a rural area of Cordoba, 

Argentina. Biol. Res. 40: 163-171. 

Horenstein, M.B., Linhares, A., Rosso, B., Garcia, M.D. 2012. Seasonal structure and 

dyanmics of Sarcosaprophagous fauna on pig carrion in an area of Cordoba 

(Argentina): their importance in forensic science. Forens. Sci. Int. 146-156. 

Hubbell, S.P. 2001. The Unified Theory of Biodiversity and Biogeography. Princeton 

University Press, Princeton, NJ. 

Hutchinson, G.E. 1961. The paradox of the plankton. Amer. Nat. 95: 137-145. 

Hwang, C., Tuner, B.D. 2005. Spatial and temporal variability of necrophagous Diptera 

from urban to rural areas. Med. Vet. Entomol. 19: 379-391. 

IBM Corp. Released 2012. IBM SPSS Statistics for Mac, Version 21.0. Armonk, NY: 

IBM Corp. 

Indermaur,L., Winzeler, T., Schmidt, B.R., Tockner, K., Schaub, M. 2009. Differential 

resource selection within shared habitat types across spatial scales in sympatric 

toads. Ecology 90: 3430-3444. 

Inouye, B.D. 2005. Scaling up from local competition to regional coexistence across two 

scales of spatial heterogeneity: insect larvae in the fruits of Apeiba membranacea. 

Oecologia 145: 188-196. 

Introna, F., T.W. Suman and J.E. Smialek. 1991. Sarcosaprophagous fly activity in 

Maryland (USA). J. of Forens. Sci. 36: 238-243.  

Ives, A.R. 1991. Aggregation and coexistence in a carrion fly community. Ecol. Mono. 

61: 75-94. 



 

 

 

79 

Jensen, L.M., Miller, R.H. 2001. Estimating filth fly (Diptera: Calliphoridae) 

development in carrion in Guam. Micronesica 34: 11-25. 

Joy, J.E., Herrell, M.L., Rogers, P.C. 2002. Larval fly activity on sunlit versus shaded 

raccoon carrion in Southwestern Virginia with special reference to the black blow 

fly (Diptera: Calliphoridae). J. Med. Entomol. 39: 392-397. 

Kamal, A.S. 1958. Comparitive study of thirteen species of sarcosaprophagous 

Calliphoridae and Sarcophagidae (Diptera). I. Binomics. Ann. Entomol. Soc. 

Amer. 51: 261-271. 

Kneidel, K.A. 1983. Fugitive species and priority during colonization in carrion-breeding 

Diptera communities. Ecol. Entomol. 8: 163-169. 

Kneidel, K.A. 1984. Competition and disturbance in communities of carrion-breeding 

Diptera. J. Anim. Ecol. 53: 849-865. 

Lessard, J.P., Sackett, T.E., Reynolds, W.N., Fowler, D.A. 2011. Determinants of the 

detrital arthropod community structure: the effects of temperature and resources 

along an environmental gradient. Oikos 320: 333-343. 

Levot, G.W., Brown, K.R., Shipp, E. 1979. Larval growth of some calliphorid and 

sarcophagid Diptera. Bull. Ent. Res. 69: 469-475. 

MacArthur, R.H., Levins, R. 1967. The limiting similarity, convergence, and divergence 

of coexisting species. Amer. Natur. 101: 377-385. 

MacLeod, J., Donnelly, J. 1957. Some ecological relationships of natural populations of 

Calliphorine blowflies. J. Anim. Ecol. 26: 135-170. 

MacLeod, J., Donnelly, J. 1958. Local distribution and dispersal paths of blowflies in hill 

country. J. Anim. Ecol. 27: 349-374. 



 

 

 

80 

Martinez-Sanchez, A., Rojo, S., Marcos-Garcia, M.A. 2000. Annual and spatial activity 

of dung flies and carrion in a Mediterranean holm-oak pasture ecosystem. Med. 

Vet. Entomol. 14: 56-63. 

Matuszewski, S., Bajerlein, D., Konwerski, S., Szpila, K. 2008. An initial study of insect 

succession and carrion decomposition in various forest habitats of Central Europe. 

Forens. Sci. Int. 180: 61-69. 

McCullagh, P., Nelder, J.A. 1989. Generalized linear models, 2
nd

 ed. Chapman & Hall, 

London, U.K. 

McCune, B., Grace, J.B. 2002. Analysis of ecological communities. MjM Software 

Design, Gleneden Beach, OR. 

Michaud, J.P., Moreau, G. 2013. Effect of variable rates of daily sampling of fly larvae 

on decomposition and carrion insect community assembly: implications for 

forensic entomology field study protocols. J. Med. Entomol. 50: 890-897. 

Michaud, J.P., Moreau, G. 2011. A statistical approach based on accumulated degree-

days to predict decomposition-related processes in forensic studies. J. Forens. Sci. 

56: 229-32.  

Michaud, J.P., Moreau, G. 2009. Predicting the visitation of carcasses by carrion related 

insects under different rates of degree day accumulation. Forens. Sci. Inter. 185: 

78-83. 

Michaud, J.P., Schoenly, K.G., Moreau, G. 2012. Sampling flies or sampling flaws? 

Experimental design and inference strength in forensic entomology. J. Med. 

Entomol. 49: 1-10.  



 

 

 

81 

Moretti, T.D.C., Godoy W.A.C. 2013. Spatio-temporal dynamics and preference for type 

of bait in necrophagous insects, particularly native and introduced blow flies 

(Diptera: Calliphoridae). J. Med. Entomol. 50: 415-424. 

Moretti, T.C., Bonato, V., Godoy, W.A.C. 2011. Determining season of death from the 

family composition infesting carrion. Eur. J. Entomol. 108: 211-218. 

Morin, P.J. 1999. Community Ecology. Blackwell Science Inc, Boston, MA. 

Nabity P.D., Higley L.G., Heng-Moss T.M. 2006. Effects of temperature on development 

of Phormia regina (Diptera: Calliphoridae) and use of developmental data in 

determining time intervals in forensic entomology. J. Med. Entomol. 43: 1276-86. 

Nielsen, B.O. 1978. Food resource partition in the beech leaf-feeding guild. Ecol. 

Entomol. 3: 193-201. 

Nielsen, B.O., Nielson, S.A. 1946. Schmeissfliegen (Calliphoridae) und 

vakuumverpackter Schinken. Anzeiger fur Schadlingskunde. Pflanzen-und 

Umweltschutz 49: 113-115. 

Paeiro, S.M., Marshall, S.A., Pratt, P.D., Buck, M. 2010. Insects of Ojibway Prairie, a 

southern Ontario tallgrass prairie in Arthropods of Canadian Grasslands (Volume 

1): Ecology and Interactions in Grassland Habitats. Shorthouse, J.D. and Floate, 

K.D. (Eds.). Biological Survey of Canada, Ottawa, ON. 

Pastula, E.C., Merritt, R.W. 2013. Insect arrival pattern and succession on buried carrion 

in Michigan. J. Forens. Sci. 50: 432-439. 

Pielou, E.C. 1966. The measurement of diversity in different types of biological 

collections. J. Theor. Biol. 13: 131-144. 



 

 

 

82 

Prado e Castro, C., Garcia, M.D., Martins Da Silva, P., Faria e Silva, I., Serrano A. 2013. 

Coleoptera of forensic interest: a study of seasonal community composition and 

succession in Lisbon, Portugal. Forens. Sci. Inter. 232: 73-83. 

Prado e Castro, C., Serrano, A. Martins Da Silva, P., Garcia, M.D. 2012. Carrion flies of 

forensic interest: a study of seasonal community composition and succession in 

Lisbon, Portugal. Med. Vet. Entomol. 26: 417-431. 

Pu, Z., Daya, P., Tan, J., Jiang, L. 2014. Phylogenetic diversity stabilizes community 

biomass. J. Plant Ecol. 7: 176-187. 

Razgour, O., Korine, C., Saltz, D. 2011. Does interspecific competition drive patterns of 

habitat use in desert bat communities. Oecologia 167: 493-502. 

Rosati, J.Y., VanLaerhoven, S.L. 2007. New record of Chrysomya rufifacies (Diptera: 

Calliphoridae) in Canada: predicted range expansion and potential effects on 

native species. Can Entomol. 139: 670-677. 

Schnack, J.A., Mariluis, J.C., Spinelli, G.R., Muzon, J. 1998. Ecological aspects on urban 

blowflies in Midwest Argentinean Patagonia (Diptera: Calliphoridae). Rev. Soc. 

Entomol. Argent. 57: 127-130. 

Schoenly K.G., Haskell, N.H., Mills, D.K., Bieme-Noi, C., Larsen, K., Lee, Y. 2006. 

Recreating death’s acre in the school yard: using pig carcasses as model corpses 

to teach concepts of forensic entomology and ecological succession. Amer. Biol. 

Teach. 68: 402-410. 

Schoenly, K.G., Haskell, N.H., Hall, R.D., Gbur, J.R. 2007. Comparative performance 

and complementarity of four sampling methods and arthropod preference tests 



 

 

 

83 

from human and porcine remains at the Forensic Anthropology Center in 

Knoxville, Tennessee. J. Med. Entomol. 44: 881-894. 

Schoenly, K., Reid, W. 1987. Dynamics of heterotrophic succession in carrion arthropod 

assemblages: discrete seres or a continuum of change? Oecologia 73: 192-202. 

Schroeder, H., Klotzbach, H., Puschel, K. 2003. Insects’ colonization of human corpses 

in warm and cold season. Leg. Med. 5: S372-S374. 

Shannon, C. E. 1948. A mathematical theory of communication. The Bell Sys Tech 

Journal 27: 379-423 and 623-656. 

Sharanowski, B.J., Walker, E.G., Anderson, G.S. 2008. Insect succession and 

decomposition patterns on shaded and sunlit carrion in Saskatchewan in three 

different seasons. Forens. Sci. Intern. 179:219-240. 

Shorrocks, B., Bingley, M. 1994. Priority effects and species coexistence: experiements 

with fungal-breeding Diptera. J. Anim. Ecol. 799-806. 

Simmons, T., Adlam, R.E., Moffatt, C. 2010. Debugging decomposition data – 

comparative taphonomic studies and the influence of insects and carcass size on 

decomposition rate. J. Forens. Sci. 55: 8-13. 

Simpson, E. H. 1949. Measurement of diversity. Nature 163: 688. 

Site Assessment Report, Test Site A. 2004. Prepared by Riverside Care for Windsor 

Airport. 

Smith, K.E., Wall, R. 1997. Asymmetric competition between larvae of the blowflies 

Calliphora vicina and Lucilia sericata in carrion. Ecol. Entomol. 22: 468-474. 

Smith, K.G.V. 1986. A Manual of Forensic Entomology. British Museum of Natural 

History. Cornell University Press, Ithaca, NY. 



 

 

 

84 

SPSS macro code: MRPP. Retrieved February 20, 2014 from 

http://lcai.bol.ucla.edu/mrpp.txt 

SPSS Manual V21. Released 2012. IBM SPSS Statistics for Mac, Version 21.0. Armonk, 

NY: IBM Corp. 

StataCorp. 2013. Stata statistical software: release 13. College Station, TX: StataCorp LP. 

Statistics Canada. 2001. Rural and small town Canada: analysis bulletin. 3: 1-17. 

Catalogue no. 21-006-XIE.  Retrieved March 10, 2014, from 

http://www.communityaccounts.ca/communityaccounts/ca_google_maps/PDF_Li

nks/Stats_Canada_Definition_of_Rural_2006.pdf 

Statistics Canada. 2006. Organization of Economic Co-operation and Development Rural 

and Small Town Canada Analysis Bulletin 8.  Pub. 21-006-X. 

Statistics Canada. 2011. From urban areas to population centres. Retrieved October 18, 

2012, from http://www.statcan.gc.ca/subjects-sujets/standard-norme/sgc-

cgt/notice-avis/sgc-cgt-06-eng.htm 

Tessmer, J.W., Meek, C.L., Wright, V.L. 1995. Circadian patterns of oviposition by 

necrophilous flies (Diptera: Calliphoridae) in Southern Louisiana. Southwest. 

Entomol. 20: 439-445. 

Tilman, D. 1982. Resource Competition and Community Structure. Princeton University 

Press, Princeton, NJ. 

Tokeshi, M., Schmid, P.E. 2002. Niche division and abundance: an evolutionary 

perspective. Popul. Ecol. 44: 189-200. 

Tomberlin, J.K., Benbow, M.E., Tarone, A.M., Mohr, R.M. 2011a. Basic research in 

evolution and ecology enhances forensics. Trends Ecol. Evol. 26: 53-55. 



 

 

 

85 

Tomberlin, J.K., Mohr, R., Benbow, M.E., Tarone, A.M., VanLaerhoven, S. 2011b. A 

roadmap for bridging basic and applied research in forensic entomology. Annu. 

Rev. Entomol. 56: 401-421. 

Tomberlin, J.K., Byrd, J.H., Wallace, J.R., Benbow, M.E. 2012. Assessment of 

decomposition studies indicated need to standardized and repeatable research 

methods in forensic entomology. J. Forens. Res. 3:147-157. 

Ullyett, G.C. 1950. Competition for food and allied phenomena in sheep-blowfly 

populations. Phil. Trans. Roy. Soc. Lond. B234: 77-174. 

VanLaerhoven, S.L. 2008. Blind validation of postmortem interval estimates using 

developmental rates of blow flies. Forens. Sci. Inter. 180: 76-80. 

VanLaerhoven, S.L., Anderson, G.S. 1999. Insect Succession on buried carrion in two 

biogeoclimatic zones of British Columbia. J. Forens. Sci. 44: 32-43.  

Von Gillhausen, P. Rascher, U., Jablonowshi, N.D., Pluckers, C. Beierkuhnlein, C., 

Temperton, V.M. 2014. Priority effects of time of arrival of plant functional 

groups override sowing interval or density effects: a grassland experiment. PLoS 

ONE 9: e86906. doi:10.1371/journal.pone.0086906 Accessed April 19, 2014. 

Warren, J. A. 2006. The development of Protophormia terraenovae (Robineau-Desvoidy) 

(Diptera:Calliphoridae) at constant and fluctuating temperatures. Thesis submitted 

as part of the requirement for MA in the School of Criminology. Simon Fraser 

University. Burnaby, B.C.  

Watson, E.J., Carlton, C.E. 2005. Insect succession and decomposition of wildlife 

carcasses during fall and winter in Louisiana. J. Med. Entomol. 42: 193-203. 



 

 

 

86 

Wells, J.D., Greenberg, B. 1992. Interaction between Chrysomya rufifacies (Macquart) 

on Cochliomyia macellaria (Fabr.) (Diptera: Calliphoridae): the possible 

consequences of an invasion. Bull. Entomol. Res. 82: 133-137. 

Wells, J.D., Greenberg, B. 1994. Resource use by an introduced and native carrion flies. 

Oecologia 99: 181-187. 

Windsor-Essex County Development Commission. 2006. WindsorEssex. 

http://www.choosewindsoressex.com.  

Wittman, S.E., Sanders, N.J., Ellison, A.M., Jules, E.S., Ratchford, J.S., Gotelli, N.J. 

2010. Species interactions and thermal constraints on ant community structure. 

Oikos 119: 551-559. 

Woodcock, B.A., Watt, A.D., Leather, S.R. 2002. Aggregation, habitat quality and 

coexistence: a case study on carrion fly communities in slug cadavers. J. Anim. 

Ecol. 71: 131-140. 

Zimmerman, G.M., Goetz, H. Mielke, P.W. 1985. Use of an improved statistical method 

for group comparisons to study effects of prairie fire. Ecology 66: 606-611. 

 

 

 

 

 

 



 

 

 

87 

CHAPTER 3: PRIORITY EFFECTS:  THE POTENTIAL FOR COEXISTENCE DUE 

TO SPATIAL AND TEMPORAL CHANGES IN THE OVIPOSITION BEHAVIOUR 

OF ADULT BLOW FLIES (FAMILY: CALLIPHORIDAE) 

INTRODUCTION  

Spatial aggregation of offspring within a single resource, influenced by the 

choices of where a female should reproduce and how many offspring she should have, is 

a form of spatial resource utilization that promotes coexistence.  In the case of insects, by 

preferentially ovipositing with conspecifics and on particular colonization sites within a 

resource, the resulting offspring may experience higher levels of intraspecific 

competition than interspecific competition (Ives 1991).  This aggregated oviposition 

leaves unoccupied sites available for less competitive species to colonize, allowing them 

to coexist over the spatial scale of the single resource.  By varying the levels of offspring 

density at different locations, and consequently the influence of intra- and interspecific 

competition within resource patches, long-term stability of highly competitive 

populations can occur (Atkinson and Shorrocks 1981, Ives 1988), despite multiple 

species exhibiting similar life history characteristics (Green 1986).  High levels of 

diversity can be maintained when multiple interacting species have moderate competitive 

abilities or when dominance patterns differ spatially or temporally (MacArthur and 

Wilson 1967, Atkinson and Shorrocks 1981, Shorrocks and Bingley 1994).  Competition 

can be a major factor in interactions between species, particularly in ephemeral resources 

(Atkinson and Shorrocks 1981, Ives 1988, Shorrocks and Bingley 1994). 

Another form of competition, inhibition, can decrease the realized niche of one or 

more species within a wide diversity of taxa (Connell and Slatyer 1977).  For example, 
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early arrival and establishment of native plant species can inhibit the invasibility of non-

native plants by reducing the amount of space and resources available for the invasives 

(D’Antonio et al. 2001, Lulow 2006, Wainwright et al. 2012).  Strong inhibitory effects 

created by large single-species patches of two highly competitive herbaceous plant 

species (Setaria faberii Herrm and Erigeron annuss L.) inhabiting old-field plant 

communities were reduced by heterogeneity in patch size, which decreased interspecific 

competition and mediated their coexistence (Facelli and Facelli 1993).  In bacterial 

communities, inhibition between competitors led to coexistence due to local aggregations 

of populations combined with localized temporal extirpation (Blanchard et al. 2014).  

However, not all species interactions are negative.  Facilitation can promote coexistence; 

it is the process in which the presence of one species enhances another by expanding the 

available niche of some individuals to allow for a greater ability to establish and persist 

within a community (Connell and Slatyer 1977).  An example comes from two competing 

species of saproxylic beetles.  The early or simultaneous arrival of Rhagium inquisitor L. 

increases the number of offspring in Acanthocinus aedilis L. compared to when this 

species is alone.  The facilitation effected by the presence of R. inquisitor may increase 

the oviposition of A. aedilis or may enhance the quality of the larval food resource 

(Victorsson 2012).  Due to the complexity of community assembly, it is important to 

consider the potential for both facilitory and inhibitory mechanisms when examining 

coexistence within a system.   

Differences in arrival order of individuals within a community can result in both 

positive and negative interactions as well as affect the resultant community structure; 

these effects are referred to as priority effects (Beaver 1977, Hanski and Kuusela 1977, 
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Kneidel 1983, Shorrocks and Bingley 1994, Fukami et al. 2005, Korner et al. 2008, 

Moore and Franklin 2012).  A species can inhibit further invasion of a resource patch if it 

successfully arrives and colonizes that patch first (Levin 1974, Sale 1977, 1980, Kneidel 

1983, Shorrocks and Bingley 1994) because early colonizers may outcompete later 

arriving species through their use and depletion of the resource (Hanski and Kuusela 

1977).  In the case of Drosophila spp. (Diptera: Drosophilidae) on decaying mushrooms, 

species that arrived later experienced increased mortality, smaller offspring size and 

slower development and competitive interactions between species were drastically altered 

(Shorrocks and Bingley 1994).  On the other hand, fugitive species can take advantage of 

their early arrival, allowing them to persist despite being less competitive (Hutchinson 

1951, Levin 1974, Hanski 1983, Kneidel 1983, Shorrocks and Bingley 1994).  Von 

Gillhaussen et al. (2014) determined that in greenhouses, early arrival of legumes into the 

system exerted an initial inhibitory effect on other legumes, while simultaneously 

facilitating the establishment of later arriving non-leguminous plants.   

Given a patchy and ephemeral resource upon which typically only one or very 

few generations of insects can develop, selective pressure is exerted on gravid females to 

maximize their reproductive output and offspring fitness (Beaver 1977, Von Zuben et al. 

2001, Creighton 2005), which can have consequences on population densities and 

community structure (Spencer et al. 2002, Kagata and Ohgushi 2004, Creighton 2005).  

Females can preferentially chose oviposition mediums that enhance offspring fitness 

(Scheirs et al. 2000, Scheirs and De Bruyn 2002, Roder et al. 2008, Woodcock et al. 

2013).  For example, dermestid beetle females preferred to oviposit on carrion tissue 

types that maximized their offspring fitness (Woodcock et al. 2013).  Female mosquitoes, 
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Culiseta longiareolata (Macquart) (Diptera: Culicidae) had increased survival and larger 

populations due to a predator avoidance strategy, as demonstrated by females ovipositing 

in pools where the predator Notonecta maculata (Fabricius) (Hemiptera: Heteroptera) 

was absent (Spencer et al. 2002).  Females may also aggregate their eggs due to the 

facilitory effects experienced by gregarious larvae that can acquire more resources when 

feeding in clumps.  This is believed to be a result of either an Allee effect or a refuge-

dependent Allee effect, where aggregated larvae have an advantage at finding refuges 

that exclude natural enemies such as predators and parasitoids (Hoffmeister and Rohlfs 

2001). Females arriving at a patch already inhabited by a competitor may lay fewer eggs 

than in uninhabited patches (Parker and Courtney 1984, Yanagi et al. 2013) in order to 

diminish potential for negative competitive their larvae may experience (Ives 1989).  

Conversely, some females may lay more eggs in already inhabited patches if the 

previously established species is a weak competitor (Ives 1989, Visser 1996).  Moreover, 

research has demonstrated that blow fly larvae may be facilitated by the presence of 

bacteria or by distinct changes in the bacterial community composition that are driven by 

the presence of blow fly species or other carrion insect species (Hobson 1931, Hollis et 

al. 1985, Esser 1990, Mumcuoglu et al. 2001).  Female differences in oviposition 

behaviour can alter patterns of larval aggregation and competition, and in some systems 

stabilize and even promote species coexistence (Ives 1989, Heard and Remer 1997).  

Females can respond to changes in resource abundance by selectively altering the 

distribution of eggs laid on resources, thereby allowing for species coexistence when 

resources are scarce and patchily distributed (Heard and Remer 1997).  Despite 

conflicting views on whether oviposition preferences directly lead to increased offspring 
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fitness (Thompson 1988, Fox and Czesak 2000), there is agreement that individual 

recruitment into a community is a crucial process as it establishes the initial population 

size of a species and, thus, has a great potential to affect subsequent community patterns 

and processes (Ives 1989, Encalada and Peckarsky 2006).   

Within the carrion insect community, three blow fly species (Diptera: 

Calliphoridae), Lucilia sericata (Meigen), Phormia regina (Meigen) and Chrysomya 

rufifacies (Macquart), were selected to test the effects of arrival order of the species on 

the oviposition behaviour of female blow flies on dead piglets.  Arrival order in two-

species combinations (L. sericata and P.regina, L. sericata and C. rufifacies) was varied, 

with either one or the other species introduced before the other species, or both species 

introduced at the same time.  Priority effects were measured on a temporal scale by the 

time taken for colonization as measured by female oviposition on the resource, and on a 

spatial scale by the number of eggs laid in each location on the resource.  High 

colonization potential/ability would be evident in a large amount of eggs laid, the laying 

of eggs in highly desirable locations or a short amount of time taken to colonize.  Within 

this study, a priority effect is deemed important if it is detected in at least one variable. 

If priority effects do not influence the assembly of these species, then arrival order 

will have no effect on colonization potential (Hnull).  If there is a positive priority effect 

(H1a,b), then the presence of one species will increase the colonization potential of the 

second species.  Alternatively, a negative priority effect (H2a,b) will be inferred if the 

presence of one species decreases the colonization potential of the other species. 

 As mentioned previously, priority effects can also be measured through changes 

in egg distribution.  If colonization is unaffected by arrival order of two species on the 
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pig carcass, then site selection of female blow flies should be consistent regardless of 

arrival order and should follow one of two patterns: random or exponential.  A random 

colonization pattern would indicate no preference in oviposition locations while an 

exponential pattern would indicate that females are laying eggs according to recognized 

oviposition preferences, with primary colonization sites being located in the natural 

orifices of the body, such as the eye, nose, ear, mouth, followed in preference by less 

desirable secondary locations, such as the anus or body crevices (Mann et al. 1990, 

Greenberg 1991, Campobasso et al. 2001, Mahon et al. 2004, Gruner et al. 2007, Cross 

and Simmons 2010).  If these expected patterns fail to occur, this indicates an alternative 

preference which will be determined by further examination of egg-laying patterns. 

 Since colonization behaviour involves oviposition of females beyond the initial 

oviposition event, the role of priority effects on the total number of eggs laid and the 

distribution pattern of these eggs was also examined.  If priority effects are not 

influencing the overall colonization of the resource, then there will be no differences 

between treatments.  If a positive priority effect exists, more eggs would be laid or the 

benefiting species would shift its egg distribution from locations with moderate/low 

desirability to highly desirable locations when alone or first to arrive.  The opposite trend 

would occur if a negative priority effect exists.  
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METHODS 

Study Species 

All three species, Lucilia sericata, Phormia regina and Chrysomya rufifacies, are 

effective dispersers (Illingworth 1927, Hall 1948, Greenberg 1991) and are present in the 

Great lakes Region.  All three species are similar with respect to birth, death and 

dispersal rates (Subramanian and Mohan 1980, Greenberg 1991, Wall et al. 1992, 

Baumgartner 1993, Pitts and Wall 2004) and their larvae are sarcosaprophytic, feeding 

directly upon muscle and soft tissue.  Although C. rufifacies can become a facultative 

predator during later instars, during the adult stage, the stage responsible for oviposition 

choices examined in this study, it is ecologically equivalent to L. sericata and P. regina.  

Details regarding individual species characteristics are provided in Appendix B.   

 

Experimental Design 

Laboratory blow fly colonies were maintained in cages (45 cm x 45 cm x 45 cm; 

described below) under a 16L:8D diel cycle, a temperature of 21°C and 50% humidity.  

Adult flies were fed ad libitum with granulated sugar, skimmed milk powder, and water 

in an Erlenmeyer flask plugged with a dental wick to prevent drowning.  Experiments 

utilized the same conditions.  Colonies of P. regina and L. sericata, maintained since 

2005, were augmented annually with wild-type females collected from the Windsor area 

using King Wasp traps (www.kinghg.on.ca) baited with pork liver.  Chrysomya rufifacies 

colonies were established from pupae collected from carcasses placed outdoors at the 

FLIES Facility at Texas A&M University in College Station, TX.  

Fresh pork liver (35 g) was placed in each colony cage as an oviposition medium  
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for a period of 24 hrs or until sufficient eggs (approximately 10,000) were collected to set 

up the experiments.  Eggs were divided and placed into multiple rearing jars containing 

approximately 200 larvae per jar.  Each rearing jar consisted of a 1 L Mason jar filled 1/3 

with wood shavings (NEPCO Beta Chip) as a pupation medium, pork liver as a food 

source, and a landscape tarp lid (Weed Barrier WPB 4006) to allow adequate ventilation.  

Rearing jars were then placed at room temperature or within a growth chamber (Powers 

Scientific Inc. Model DROS33SD Level 2) where temperature was manipulated from 15-

28°C to ensure simultaneous adult emergence.  During larval development, jars were 

checked daily and provided pork liver ad libitum until more than 70% of larvae pupated, 

at which time excess food was removed.  Upon emergence, adult flies were sexed and 

placed into a mesh treatment cage.  Since adult size of several species is positively 

correlated with fecundity (Calliphoridae: Fuller 1934, Wall et al. 2002; Scathophagidae: 

Jann and Ward 1999; Piophilidae: Bondurainsky and Brooks 1999), larvae were fed ad 

libitum to ensure adequate nutrition during larval development and upon emergence; only 

full sized and fully formed adults were selected for use in the experiments. 

  Silva et al. (2003) reported that Lucilia sp. may exhibit density dependent effects, 

with adult mortality increasing and female fecundity decreasing at high density.  Moe et 

al. (2002) determined that maximum survival and reproductive rates occurred with an 

approximate density of 50 females per 24 cm
3
.  Based on these findings, my personal 

experience and my preliminary studies, 100 females and 50 males (see Table 3.2) were 

determined to be an appropriate population size within the confines of a rearing cage (45 

cm x 45 cm x 45 cm
3
) since it allowed for adequate access to the oviposition medium, yet 

minimized the influence of density dependent effects in order to ensure that each female 
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had an opportunity to lay a full complement of eggs.  

 Adults were provided with granulated sugar cubes and water ad libitum.  To 

ensure that the minimum protein threshold for egg maturation was exceeded (see Wall et 

al. 2002), pork liver was placed within the cages using the following protocol: on Day 1 

and Day 2, each cage was provided with 35 g of fresh liver for a 24 hr period to ensure 

maximum protein uptake for ovarian development; on Days 3-5, 35 g of liver was 

provided for only 3 hrs per day in order to maintain a high level of protein uptake by 

females while restricting the availability of the oviposition medium.  By restricting access 

to liver on Days 3-5, female flies that were gravid beginning as early as Day 3 were 

largely prevented from laying eggs.  To account for adult mortality during this pre-

oviposition feeding period, dead adults were replaced on Day 4 with the same number of 

males and females that had been maintained under identical conditions.  On Day 6, with 

most females (approximately 90%) gravid, piglets were placed in each treatment cage.   

Each morning during the experiment (On Day 6 to Day 8 after emergence of the 

experimental flies) at approximately 9 am, newborn piglets (Sus scrofa domesticus L.) 

that had been dead for only one to two hours were collected from Robert Rivest Farms, 

Ltd. in Staples, ON.  Because the profile of volatiles released from an entire carcass can 

change during decomposition (Vass et al. 1992), only very fresh carcasses were used.  

Piglets were weighed (range: 705-1208 g), rinsed with tap water and placental coverings 

removed prior to placement into the treatment cages.  Setting up each experiment took 

approximately three hours, resulting in piglets being placed in treatment cages (with 100 

or 50 females, depending on treatment condition) around 12 noon.  They were checked 

hourly to record the timing and location of oviposition events.  
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During the night cycle (onset of scotophase: 2200 h), after approximately 12-17 

hrs from introduction of the piglets into the treatment cages (from 0000 – 0500 hrs), each 

piglet was removed from the treatment cage to quantify colonization events.  Pictures of 

each egg mass were taken using a NIKON D70 camera directed perpendicular to the 

piglet surface, with a 15 mm plastic ruler for scale.  Depth measurements were taken at 

various points within each egg mass.  Once all egg masses were documented and 

photographed, piglets were immediately placed back into their respective treatment cage.  

This procedure enabled documentation of egg masses prior to hatching while minimizing 

the disturbance to colonization behavior, since blow flies have low activity and seldom 

oviposit at night (Tessmer et al. 1995, Singh and Barti 2001, Amendt et al. 2008). 

After 24 hrs postmortem, at approximately 0900 h and ~21 hrs from initial 

exposure, piglets were removed from the cages and any new eggs masses laid in the 

beginning of the second light cycle were recorded.  Egg masses were documented with 

respect to location, parent species, size and changes in depth, except in the “species 

together” treatments in which parent species could not be differentiated.  Once the data 

were recorded, piglets were either disposed of, (in the case of “species only” and “species 

together” treatments) or placed in a subsequent treatment cage, or Cage 2 of “species vs. 

species” (with 50 females) for the 24-48 hr postmortem interval, also with a 21 hr 

exposure window.  All treatments described in Table 3.2 were replicated ten times.  

 

Behavioural Observations 

 General observations and notable behaviours were recorded hourly. Female 

distribution on the carcass was recorded as the number of individuals on each region of 
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the body, as well as the number and location of any ovipositing females.  No statistical 

analyses were carried out on these qualitative data; general patterns and notable 

behaviours (i.e. nocturnal oviposition, intra- or inter-specific interactions) are presented. 

 

Time to First Colonization 

A “colonization event” was defined as an egg was deposited by a female either 

directly on the resource or in the immediate surrounding area.  For example, P. regina 

would commonly lay eggs on the paper underneath the carcass as well as on the body 

itself.  Both instances were recorded as colonization events.  Time elapsed until the first 

colonization event was recorded for each treatment and each species.  

 

Location and Frequency of First Colonization 

Egg mass locations were categorized using the criteria outlined in Table 3.3, 

based on published blow fly oviposition patterns (see Mann et al. 1990, Greenberg 1991, 

Campobasso et al. 2001, Mahon et al. 2004, Gruner et al. 2007, Cross and Simmons 

2010) and my personal observations.  As a general pattern, blow flies predominately lay 

eggs within natural orifices presumably because those locations offer protection for the 

eggs against predation and desiccation (Greenberg 1991, Campobasso et al. 2001, Cross 

and Simmons 2010).  These locations were ranked as the most desirable sites (category 

1), with other sites ranked down to the site with the lowest desirability or expected 

oviposition preference (category 8).  Locations were further grouped into 3 desirability 

categories: high, moderate and low (see Table 3.3).  Locations of low desirability are 

characterized by a lack of protection from desiccation, the need to travel to reach a more 
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humid location, or where skin in the mucous membranes is difficult to penetrate.  With 

respect to surface area available for egg deposition, each site within high desirability 

locations has less surface area compared with moderate, with low desirability locations 

collectively having the greatest surface area.  Thus, if the majority of eggs are laid in high 

desirability locations (as expected from the literature), this indicates a site preference 

rather than a reflection of the area available for colonization.  The frequency of first 

colonization in each priority site/category was the number of piglets on which eggs were 

first laid in that particular site or desirability location. 

 

Egg Measurements 

Egg masses were documented with respect to location, parent species, size and 

changes in depth, except in the “species together” treatments where parent species could 

not be differentiated.  The scale in the photographs allowed for calibration of images.  

Digital Image Analysis using Image J™ Software was carried out to estimate surface area 

for each mass or region.  Egg mass volume (mm
3
) was estimated by incorporating depth 

measurements and surface area according to the protocol outlined in Rosati et al. 

(unpublished data).  The number of eggs laid was estimated using the regression 

equations developed by Rosati et al. (unpublished data).   

# of eggs = (egg volume + 3.210) 

              0.269 

The overall distribution of eggs was examined on a per pig basis.  Egg masses 

were grouped according to species and arrival order and oviposition site desirability.  
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Statistical Analyses 

For all statistical tests, a significant effect was designated when p<0.05, or the 

appropriate adjusted p-value following a Bonferroni correction. 

The effect of density of females per cage on the mean time to oviposition and 

percentage of eggs laid in each desirability level was examined using Independent sample 

t-tests for each species by comparing “species only” (n = 100 females) and “species first” 

(n=50 females) treatments.  The effect of density on the percentage of eggs laid in 

locations differing in desirability and in 8 different body sites for each species was tested 

using an ANOVA with desirability level or body site and treatment as main effects.  The 

effect of density on the frequency of first oviposition location was examined using a 

Fisher’s exact test due to small cell counts (<5) and fixed column totals (Fisher 1922, 

SPSS Manual V21).  For P. regina and C. rufifacies, desirability levels 1 and 2 were 

pooled and for L. sericata desirability levels 2 and 3 were pooled to eliminate zero cell 

counts and to create 2x2 tables for analyses.  The effect of species combination and 

arrival order on the mean time to colonization of L. sericata was examined using an 

ANOVA. Data were pooled if there were no differences (p>0.05) between “with P. 

regina” and “with C. rufifacies”, or between “species only” and “species first” 

treatments.  

For all species, residuals for mean time to colonization were not normal (Shapiro-

Wilks test, p < 0.001) and transformation methods including the log, ln, inverse, square 

root, or e
x
 did not improve normality.  Time to first colonization event was analyzed 

using a bootstrapped (k=1000) linear mixed model ANOVA (Efron 1979, SPSS Manual 

V21), with time to colonization as a dependent variable and arrival order and species as 



 

 

 

100 

fixed main effects.  Bootstrapped pairwise comparisons were used to determine 

differences between species (within each arrival order) and between arrival orders (within 

each species) with a Bonferroni correction for p-values to correct for multiple hypothesis 

testing (SPSS Manual v21).  

Location of first oviposition was analyzed using a log-linear model to test for 

interactions between species, arrival order, and desirability of egg locations.  Planned 

comparisons were carried out testing the distribution of high, moderate or low desirability 

levels against two expected distributions: equal (i.e. no preference for locations) or 

exponential (i.e. expected pattern according to previous literature) (Mann et al. 1990, 

Greenberg 1991, Byrd and Caster 2001, Campobasso et al. 2001, Mahon et al. 2004, 

Gruner et al. 2007, Cross and Simmons 2010).  Expected values consisted of 33% of eggs 

laid in each priority location for an equal distribution, or 90% high, 7% moderate and 3% 

low to simulate an exponential distribution.  Binomial tests were carried out within each 

species and arrival order and used post hoc to examine preferences in location desirability 

for each pairwise comparison (i.e. high vs. moderate, high vs. low, moderate vs. low).  

The percentage of eggs laid in each desirability location and body site was 

calculated in order to standardize data on a per pig basis.  “Species only” and “species 

first” treatment data were pooled as there were no differences between these treatments 

on percentage of eggs laid in each desirability location or body site (P > 0.05) (i.e. P. 

regina only and P. regina first values were combined).  Data for mean total number of 

eggs laid were not pooled for first and only treatments because the number of females 

flies in these treatments differed.  Data and residuals for percentage of eggs and mean 

number of eggs laid were not normal (Shapiro-Wilks test p<0.05) and log, ln, inverse, 



 

 

 

101 

square root, e
x
 transformation methods did not improve normality of the residuals.  

Consequently, bootstrapped (k = 1000) ANOVA (Efron 1979, SPSS Manual V21) was 

used to test for effects of treatment and location desirability or body site on percentage of 

eggs laid in each location and for the effects of treatment on mean number of eggs laid.  

Pairwise comparisons were carried out based on bootstrapped estimated marginal means 

in order to examine the differences in percentage of eggs laid between different regions 

desirability and site) of the carcasses within each treatment.  A Bonferroni correction was 

used to correct for multiple hypothesis testing on the same data set (SPSS Manual V21).  

A one-way ANOVA was used to test the effect of treatment on mean total number of 

eggs, with a Games-Howell post-hoc test (Games and Howell 1976) to test for 

differences between means due to heterogeneity of variances and unequal sample sizes.  
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RESULTS 

Effects of Density and Species Combination 

Density of females (100 vs 50 females) did not affect mean time to first 

colonization; the percentage of eggs laid in high, moderate and low locations; or the 

percentage of eggs laid in each body site for any species (p>0.05) (see Table.3.4).  Nor 

did density of females affect frequency of first oviposition locations for P. regina (p = 

0.141), C. rufifacies (p = 0.628) and L. sericata (p = 0.162), thus, all data for “species 

only” treatments and “species first” treatments were pooled.  For L. sericata, there was no 

significant interaction between treatment combination and arrival order (F2, 68 = 0.034, P 

= 0.966) and no differences between species combination on mean time to colonization 

(see Table 3.4).  Therefore, data were pooled for L. sericata second “with P. regina” or 

“with C. rufifacies” and for L. sericata together “with P. regina” or “with C. rufifacies”. 

 

Time of Primary Colonization 

There was a significant interaction between species and arrival order (F4,153 = 

5.684, p < 0.001), therefore, interspecific comparisons were made between species within 

each arrival order and intraspecific comparisons were made between arrival orders within 

each species (adjusted α=0.006) (see Table 3.5).  Whenever species were introduced 

simultaneously or when another species had previously colonized the resource, all species 

laid their eggs within three hours of exposure.  However, interspecific differences in 

colonization times occurred when a species was introduced first, with P. regina and C. 

rufifacies exhibiting delayed colonization.  Only C. rufifacies first had an intermediate 

time to first oviposition, compared to quicker oviposition when arriving with L. sericata 
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or delayed oviposition when arriving before L. sericata.  In contrast, L. sericata did not 

demonstrate intraspecific differences due to arrival order and consistently laid eggs 

within the first two hours of exposure, regardless of treatment conditions.  Chrysomya 

rufifacies also took more time to oviposit when introduced to the piglets before L. 

sericata, less time when introduced simultaneously, and intermediate when second.  

 

Location of Primary Colonization 

There was a significant interaction of species and desirability (X
2
= 90.879, df = 6, 

p < 0.0001).  The three-way interaction term between species, arrival order and 

desirability was not significant (X
2
= 19.677, df = 12, p = 0.074); however, this 

probability was considered sufficiently high to warrant examination of desirability 

differences for each species and arrival order.  The distribution of first oviposition 

locations was compared against two expected distributions: equal (random) and 

exponential (see above).  Frequency of first oviposition locations followed an equal 

distribution (p > 0.05) when P. regina was together with L. sericata, when C. rufifacies 

followed L. sericata, and when L. sericata colonized after P. regina.  No other treatments 

yielded an equal distribution pattern.  Only L. sericata followed the exponential 

distribution (p > 0.05), but not when females colonized after P. regina (see Figure 3.1).   

Preferences for primary colonization sites existed, however, the effect of arrival 

order varied for each species.  Arrival order only mattered when P. regina was first, such 

that the primary colonization sites were in moderate and low locations with no eggs laid 

in highly desirable sites (see Figure 3.1a).  When C. rufifacies was first or together with 

L. sericata, more eggs were laid in moderate than high desirability locations (first: X
2
= 
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7.143, df = 1, p = 0.008; together: X
2
= 4.500, df = 1, p = 0.034), with no differences 

between locations when they followed L. sericata (p > 0.05) (see Figure 3.1b).  When L. 

sericata was first or together with P. regina, more females oviposited in high desirability 

locations (first: high vs moderate: X
2
= 19.174, df = 1, p < 0.001; high vs low: X

2
= 

19.174, df = 1, p < 0.001; together: high vs moderate: X
2
= 6.400, df = 1, p = 0.011; none 

in low), however, when L. sericata was second, this preference was not present (p > 0.05) 

(see Figure 3.1c).  When L. sericata was first with C. rufifacies, females only laid eggs in 

high desirability locations; however, when it was second or together, there were no 

differences in high and moderate locations (p > 0.05) (see Figure 3.1d).  

 Examination of eight different body sites demonstrated that when first, P. regina 

laid in locations of low or moderate preference such as the head, umbilical regions and 

between the legs; however, when second or together with L. sericata, while continuing to 

predominantly oviposit in moderate and low preference locations, a few females 

oviposited in high desirability locations such as the eyes, mouth, nostrils and ears (see 

Figure 3.2a).  This trend was also noted in C. rufifacies, with the exception of a few 

females laying eggs in piglet mouths when first (alone) (see Figure 3.2b).  Lucilia 

sericata females laid their first eggs in the mouth, eyes and nostrils, regardless of arrival 

order, however, some females oviposited in the head, umbilical and leg regions when 

second (after P. regina) (see Figure 3.2c,d). 

 

Total Number of Eggs 

There were differences between treatments in the overall number of eggs laid 

(F8,85= 2.206, p = 0.038) (see Figure 3.3), with P. regina females laying the least amount 
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of eggs when they colonized the resource alone.  The highest number of eggs laid 

occurred in the L. sericata vs. P. regina (i.e. L. sericata first), P. regina vs. L. sericata, 

and C. rufifacies vs. L. sericata treatments.  The rest of the treatments were intermediate 

in their effects.   

 

Distribution of Colonization Sites Based on Total Oviposition 

Although the total number of eggs laid was consistent across treatments, the 

distribution of the eggs over the resource differed, as evident in the interaction between 

arrival order and species selection of oviposition sites (F16, 375= 8.658, p < 0.001) 

(adjusted α=0.017) (see Table 3.6).  With respect to desirability levels, arrival order did 

not influence P regina and C. rufifacies, with both species preferring to lay eggs in 

moderate and low desirability locations.  Lucilia sericata, on the other hand, altered its 

egg laying behaviour depending on arrival order.  When L. sericata was first (alone) or 

when it was second with C. rufifacies, females laid more eggs in high desirability 

locations.  There was a preference shift when L. sericata was second or together with P. 

regina, with females laying more eggs in moderate than in highly desirable locations.   

With respect to the percentage of eggs laid on various sites on each pig, 

preferences varied due to species, arrival order and site location (F56,1000= 4.097, p < 

0.001).  Comparisons were made intra-specifically between treatments to determine if 

there were preferences within each species in body sites (adjusted α=0.002) (see Table 

3.7).  Phormia regina females laid the majority of their eggs evenly over most of the 

body (sites 3 to 8) and very few eggs in the mouth, eyes, and nostrils (site 1).  When 

second, P. regina females shifted their preferences to the head region (site 3, near sites 
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already colonized by L. sericata) and along the body (site 8).  Similarly, C. rufifacies 

females laid very few eggs in the ear, anus, and natural orifices (sites 1, 2 and 5) with the 

majority of eggs distributed over the body (sites 3,4, 6-8).  When C. rufifacies were 

exposed to the resource after colonization by L. sericata, they laid most of their eggs near 

regions heavily colonized by L. sericata, such as between the legs and, near the head and 

umbilical regions.  When L. sericata was introduced first or after C. rufifacies, females 

laid most of their eggs in the mouth.  However, when L. sericata followed P. regina, 

females shifted their behaviour to oviposit evenly over the body, rather than laying most 

of their eggs in the natural orifices.  

When two species colonized together (i.e. simultaneously: L. sericata and P. 

regina; L. sericata and C. rufifacies), there was a similar distribution of eggs over all 

oviposition sites, except for the higher amount of eggs located over the body (site 8) and 

fewer eggs in the ear canals in the L. sericata and C. rufifacies treatment.  Though the 

anus is commonly thought to be a secondary site regularly colonized after the 

mouth/ear/nostrils are occupied (Mann et al. 1990, Greenberg 1991, Campobasso et al. 

2001, Mahon et al. 2004, Gruner et al. 2007, Cross and Simmons 2010), this region was 

not colonized by C. rufifacies/L. sericata when they were together. 

 

Behavioural Observations on Blow Fly Colonization  

 Oviposition behaviour was consistent and rapid for L. sericata regardless of 

arrival order.  The majority (> 80%) of gravid females approached the piglet within 

minutes of it being placed within the treatment cages, with females laying eggs within the 

first 30 minutes of resource exposure.  Oviposition continued by additional females over 
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the next few hours and then abruptly diminished, with the majority of them leaving the 

resource to groom or feed on sugar after approximately 3 hrs of exposure.  During the 

rest of the photophase, very few females visited (< 20%) or oviposited on (< 10%) the 

resource.  After the 8 hrs of scotophase, a large proportion (40 to 60%) of L. sericata 

females revisited the resource for a second wave of oviposition, however, these 

colonization sites were typically in moderate and low desirability locations, while the 

first wave of colonization occurred in high desirability locations.  

The colonization behaviour of P. regina differed from that of L. sericata, and was 

dependent on arrival order.  When P. regina was by itself (i.e. alone or introduced first) 

with the pig carcass, very few females (< 15%) visited the resource immediately.  The 

majority of females remained on the sides of the cages and exhibited “bubble-blowing” 

behaviour, during which they extended their proboscis along with a liquid droplet (see 

Figure 3.4), followed shortly thereafter by extension of the ovipositor. They held this 

position for approximately 10 sec before repeating this behavioural cycle approximately 

8-12 times. They then rested, groomed, repositioned themselves and began “bubble-

blowing” again. Over successive bouts of this behavioural sequence, the females’ 

abdomens swelled remarkably (see Figure 3.5).  Most females carried out bubble-

blowing  behaviour for approximately 3-4 hrs prior to visiting the resource, while only a 

few visited the resource repeatedly and probed one or more locations with their 

proboscis.  These locations corresponded to the site of the first oviposition event, which 

usually consisted of one female leaving a droplet of fluid from its ovipositor following 

which it (or another female) deposited a single egg.  After this first oviposition event, 

additional females would probe around the area with their probosces and leave additional 
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droplets from their ovipositors, until eventually another (or the same) female laid an 

additional egg.  This continued until either the number of eggs laid or the number of 

females that had deposited a droplet at the site seemed to reach a threshold, at which 

point multiple females began depositing clusters of eggs.  Group oviposition usually 

occurred within 6-9 hrs after exposure to the piglet and lasted for the next 4-5 hrs. 

Secondary waves of mass oviposition events were not frequent with P. regina and 

colonization was much slower overall than for L. sericata, with the delay in oviposition 

corresponding to bubble-blowing and ovipositor-droplet marking behaviours.  In contrast 

to L. sericata, P. regina usually laid their eggs in moderate to low priority locations. 

When P. regina females were in the presence of L. sericata or presented with the 

resource already colonized by L. sericata, females immediately visited and inspected the 

resource, and oviposition usually occurred within the first 3 hrs, similar to the oviposition 

behaviour exhibited by L. sericata.  Typically, P. regina females oviposited on or near 

locations where L. sericata eggs were present.  After the initial wave of oviposition, 

females then retreated to the sides of the cages, underwent bubble-blowing behaviour and 

typically (in approximately 50% of cages) participated in a secondary wave of 

colonization after the scotophase.   

Chrysomya rufifacies behaved in much the same manner as P. regina, exhibiting 

bubble-blowing and droplet marking behaviours.  However, C. rufifacies females 

repeatedly laid eggs directly on top of L. sericata eggs. 

 Nocturnal oviposition was an unexpected behaviour.  Cages were checked every 2 

hrs during the scotophase with the use of a night-vision camera, at which times female 

distribution over the carcass was recorded.  Actively ovipositing females and new eggs 
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were recorded; if they were observed, these were re-checked hourly until ovipositing 

ceased.  Fly behaviour and movement was considerably slower during the scotophase and 

females typically remained in one position for long periods of time (1-2 hrs).  Though 

infrequent (in 14 out of 128 cages and only one to five females per cage), all three blow 

fly species exhibited nocturnal oviposition.  Most females that exhibited this behaviour 

had begun ovipositing during photophase or had recently oviposited and were still at the 

site of the eggs.  Infrequently a few females (one to three) crawled onto the resource and 

oviposited in independent locations.  However, the majority of the females (~95%) were 

motionless during the dark cycle, exhibiting very little activity.  No females actively flew 

towards the resource in the dark. 
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DISCUSSION 

Time to Oviposition and Arrival Order 

Priority effects played a role in the colonization behaviour of P. regina and C. 

rufifacies in this study.  Both species were facilitated by the presence of L. sericata, as 

evidenced by the decrease in the amount of time required to colonize the resource when 

females either followed or were in the presence of L. sericata.  Lucilia sericata was 

relatively unaffected by the presence of other species, with females consistently 

colonizing a resource within the first few hours of exposure.  The time required for blow 

flies to find and successfully colonize a carcass underlies their use in the determination of 

the minimum time of colonization (MTC) and the estimation of the post-mortem interval 

(PMI) (Rodriguez and Bass 1983, Greenberg 1991, Campobasso et al. 2001, Mahon et al. 

2004, Tomberlin et al. 2011).  Phormia regina and C. rufifacies did not exhibit typical 

blow fly behaviour and delayed their colonization when alone or first on the piglet 

carcasses.  However, this delay was not seen in treatments where C. rufifacies or P. 

regina followed or arrived at the same time as L. sericata.  In these treatments, both 

species behaved like L. sericata, with females colonizing the resource quickly and 

exhibiting rapid group oviposition within the first few hours after exposure. 

It has been debatable whether or not certain blow fly species exhibit a 

delay in colonization upon arrival at a resource, yet the presence or absence of a delay 

can have profound implications for calculating the MTC.  It is critical to understand the 

factors influencing the pre-colonization interval (i.e. the interval between death and 

arthropod colonization) (Tomberlin et al. 2011).  Lucilia sericata typically colonizes 

remains within the first few hours postmortem (Fuller 1934, Hall and Doisy 1993, 
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Watson and Carlton 2005, Michaud and Moreau 2009); however, in the United Kingdom, 

it has been documented to exhibit a delay as well as a preference for aged carrion (Fisher 

et al. 1998, Eberhardt and Elliot 2008).  Though my study emphasizes the role of L. 

sericata as an immediate colonizer of carrion, inhibitory species may exist that would 

exert a negative priority effect on L. sericata to potentially cause a delay in colonization. 

Chrysomya rufifacies coexists with many other blow fly species in its native range 

(Baumgartner 1993, Eberhardt and Elliot 2008) and is known to colonize a resource after 

prior establishment by another species (Watson and Carlton 2005, Yang and Shiao 2012).  

In contrast, in North America it becomes a dominant species within the community that 

can extirpate native species (Wells and Greenberg 1992, Baumgartner 1993, Rosati and 

VanLaerhoven 2007), and its colonization is sometimes but not always delayed (Byrd 

and Butler 1997, Byrd and Castner 2001, Lang et al. 2006, Gruner et al. 2007, Eberhardt 

and Elliot 2008, Yang and Shiao 2012).  Phormia regina has also been noted to have a 

delay in colonization (Illingworth 1927, Gruner et al. 2007, Watson and Carlton 2005, 

Michaud and Moreau 2009), however, it can also be a primary colonizer (Greenberg 

1991, personal observations).  My results demonstrate that P. regina and C. rufifacies 

can exhibit delayed or immediate colonization depending upon interactions with another 

species.   

Since individual species can exhibit both delays in colonization and immediate 

colonization, both in field and laboratory investigations, extreme caution must be 

exercised when incorporating a species’ colonization delay into PMI estimates.  

Colonization behaviour is just one of many behaviours that can differ and influence the 

ecology of blow fly species in different regions.  Further caution should be exercised 
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when extending conclusions based upon blow fly behaviour from one region to another.  

Additionally, while laboratory studies such as mine enable detailed understanding of two- 

or three-species interactions, inferences made from them are somewhat restricted because 

of the many environmental factors, more diverse blow fly communities and complex 

species interactions present in natural environments that cannot be accounted for within a 

laboratory setting.  Field validation of the results from my lab experiments would help to 

determine if these results are also applicable in natural settings.  Additional experimental 

conducted both in field and lab settings are warranted to fully understand the ecology of 

blow flies and how it affects their interactions.  This is especially true in light of the 

importance of these species in forensic investigations.  

 

Location of Oviposition Events and Arrival Order 

Arrival time affected oviposition site selection of the blow flies used in this study.  

In the absence of other species, only L. sericata demonstrated the expected preference for 

moist protected sites such as the natural orifices of the face.  However, it shifted its 

oviposition site selection to less desirable locations when colonizing after P. regina, a 

priority effect that would be predicted by competition theory as it relates to an ephemeral 

resource such as carrion (Lotka 1925, Diamond 1975, Beaver 1977, Tilman 1982, 

Woodcock et al. 2002).  Phormia regina and C. rufifacies both shifted their oviposition 

locations from low desirability locations when they were the only species present to 

moderate or high desirability locations when second or in the presence of L. sericata, 

often ovipositing directly next to or on those sites already colonized by L. sericata.  It is 

unknown why these two species would choose less desirable sites when highly desirable 
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sites are unoccupied, but this demonstrates that the assumption within the forensic 

entomology literature that all fly species prefer the moist protected sites of the orifices 

(Mann et al. 1990, Greenberg 1991, Campobasso et al. 2001, Mahon et al. 2004, Gruner 

et al. 2007, Cross and Simmons 2010) is not supported by experimental evidence.  

 Previous research has indicated that gravid female C. rufifacies and P. regina 

prefer to oviposit on previously colonized areas (Wilton 1954, Watson and Carlton 2005, 

Yang and Shiao 2012).  This contradicts the assumption that competition is the driving 

mechanism behind oviposition site selection by P. regina and C. rufifacies.  Recent 

research conducted by Reid (2012) determined that both P. regina and C. rufifacies 

larvae perform better in the presence of additional species, specifically L. sericata, than 

when each species completes its larval development alone.  Chrysomya rufifacies 

becomes a facultative predator during later larval stages (Wells and Greenberg 1992, 

Baumgartner 1993) and therefore gains the advantage of having an additional food source 

if females oviposit near egg masses of other species.   

I observed that Phormia regina and C. rufifacies spent more time evaluating the 

suitability of the resource, which was evident in the time spent bubble-blowing and 

marking with ovipositor droplets prior to laying eggs.  Although bubble-blowing 

behaviour has been observed in both male and female Phormia regina (Stoffolano et al. 

2008), I observed it in all three blow fly species I studied.  Bubbling has also been 

observed in other higher order Dipterans such as horseflies (Tabanidae) (Hewitt 1912), 

Rhagoletis pomonella (Walsh) (Tephritidae) (Hendrichs et al. 1992) and flesh flies 

(Sarcophagidae) (Dacks et al. 2003).  Bubbling P. regina flies have larger crop volumes 

than non-bubbling individuals (Stoffolano et al. 2008).  Bubbling may enable flies to 
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concentrate crop solute and eliminate excess water, suggesting a primary digestive 

function for this behaviour (Hendrichs et al. 1992, Stoffolano et al. 1995, 2008, 

Stoffolano and Haselton 2013).  This behaviour may have that function in L. sericata, as I 

observed it primarily after oviposition.  However, in C. rufifacies and P. regina, when 

they were the only species present, bubbling occurred during the delay phase prior to 

oviposition which is suggestive of an alternative function.  In other dipterans there is a 

link between regurgitation of crop contents and the dissemination of Esherichia coli 

bacteria (Sasaki et al. 2000), various pathogens (Greenberg 1971, Maldonado and 

Centeno 2003) and pheromones (Headrick and Goeden 1994, Walse et al. 2008).  

Density-dependent constraints for colonization have been demonstrated in Chrysomya 

bezziana (Villeneuve), in which oviposition rates declined exponentially with increasing 

numbers of females present (i.e. female catch rates) (Mahon et al. 2004).  Similarly, Lam 

et al. (2007) demonstrated that bacteria that originated within adult female Musca 

domestica (Linnaeus) proliferated on the surface of deposited eggs and inhibited further 

oviposition once a bacterial density threshold was reached.  Flies exhibited immediate 

induction of oviposition stimulated by pheromones from gravid females, followed by 

delayed inhibition in late arriving females that is mediated by bacterially derived cues on 

eggs, which in turn reduced larval competition and ensured conditions conducive to 

offspring development (Lam et al. 2007).  The mechanisms underlying induction and 

inhibition of oviposition in other species remain largely unstudied.  Recent research 

suggesting the occurrence of a conspecific contact signal and/or pheromone that induces 

aggregation in blow fly larvae (Boulay et al. 2013) makes it reasonable that such signals 

could affect the behaviour of adult blow flies as well.   
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Bubble-blowing behaviour was followed by grooming that may transfer bacteria 

or pheromones to the ovipositor and subsequently to the resource in droplets of fluid prior 

to oviposition.  Additional visits to droplet deposition sites by subsequent females could 

assist them in reaching a bacterial or chemical “threshold” that must be met before other 

females deem a site suitable for oviposition.  I hypothesize that bubble-blowing 

behaviour is involved in (a) the evaluation of the resource for oviposition suitability; (b) 

transfer of bacteria to the resource that make it a more suitable environment for the eggs 

and/or larvae; (c) a marking pheromone applied to the resource that increases in 

concentration through additional fluids deposited by conspecifics until a threshold for 

oviposition is surpassed.  Given the digestive function that has been documented 

previously, I would also extend this concept and hypothesize that this behaviour may 

affect eggs.  For example, it may affect the water content of eggs or the chemistry of the 

egg chorion, resulting in more resistant eggs with improved abilities to withstand 

desiccation.  Other fly species may affect these relationships.  For example, bacteria they 

deposit and/or alterations to oviposition sites that they induce could influence offspring 

survival.  Specifically, in my research, C. rufifacies and P. regina females oviposited 

immediately and more rapidly when heterospecifics were present, suggesting that such 

effects by heterospecifics on blow fly colonization are possible.  To better understand the 

function of bubbling behaviour in blow flies and other dipterans, further investigation are 

warranted of (a) the chemical and bacterial composition of the bubbles, (b) the potential 

for transfer of bacteria, chemical cues or pheromones between the proboscis and 

ovipositor, (c) behaviours of flies in act of bubbling, and (c) microscopic examination of 

egg characteristics. 
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The distribution of eggs can play an important role in the coexistence of multiple  

species on a resource (Atkinson and Shorrocks 1981, Ives 1988, 1989, 1991, Chesson 

1991, Hoffmeister and Rohlfs 2001).  The extent to which eggs are aggregated or 

dispersed is influenced by olfactory cues from a variety of sources (Eddy et al. 1975, 

Adams et al. 1979, Hammack 1984, Esser 1990), attraction cues such as volatiles or 

bacterial communities present during decomposition of the carcass (Ashworth and Wall 

1994, Vogt and Woodburn 1994, Mahon et al. 2004, Tomberlin 2012), and visual 

recognition of larvae (Yang and Shiao 2012).  Before and during oviposition, gravid 

females may be induced to aggregate or commence oviposition in a site by chemical 

stimuli (Barton-Browne et al. (1969), such as a cuticular lipid (Emmens 1981), chemicals 

emitted from ovipositing females (Esser 1990), or a marking pheromone (Prokopy 1972).  

This suggests that the aggregated response of blow fly females and egg distributions 

noted in this study could result from semiochemicals that may be important to induce and 

regulate blow fly oviposition behaviour.   

Blow flies are short-lived and oviposit on ephemeral resources, traits that exert 

strong selective pressures on life history characteristics and egg laying strategies 

(Cruickshank and Wall 2002a,b, Davies 2006).  Blow flies quickly orient to dead animals 

in large numbers and typically exhibit aggregated oviposition (Barton-Browne et al. 

1969, Ashworth and Wall 1994, Tomberlin et al. 2011).  However there were many 

instances observed in this study, especially in P. regina and C. rufifacies when by 

themselves, when individual females would lay a single egg in a particular location, often 

in locations of moderate or low desirability.  This strategy appears to be suboptimal since 

those sites are not protected from predators or desiccation.  This highlights our 
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incomplete understanding of the many factors during the pre-colonization window that 

may affect oviposition decisions by individual females (Hoffmeister and Rohlfs 2001).   

 

Unexpected Observations 

Forensic entomologists generally assume that blow flies do not oviposit at night.  

In fact, this plays an important role in the calculation of the MTC (Erzinçlioğlue 1966, 

Nuorteva 1977).  In numerous research investigations, nocturnal oviposition did not 

occur (Nuorteva 1977, Tessmer et al. 1995, Haskell et al. 2002, Spencer 2003).  In 

contrast, although it occurred infrequently, I recorded nocturnal oviposition under 

complete darkness for all three species.  Other studies have also demonstrated that 

oviposition can occur at night (Green 1951, Greenberg 1990, Singh and Bharti 2001, 

Amendt et al. 2008), in low-light conditions (Baldridge et al. 2006) or under 

circumstances with unusually high night temperatures, previous presence of gravid 

females, and after females have surpassed stimulus thresholds (Wooldridge et al. 2007, 

Amendt et al. 2008, Zurawski et al. 2009, Berg and Benbow 2013, George et al. 2013).  

My observations that females did not actively fly but crawled towards the resource 

supports the findings of Wooldridge et al. (2007), that the flight activity of C. vicina and 

L. sericata decreased with decreasing light intensity.  They determined that random 

flight, rather than directed flight, can occur in low/no light conditions and that the 

probability of oriented flight leading to oviposition on a corpse was low.  This was also 

demonstrated by Zurawaski et al. (2009) who determined that adult flies had no flight 

capabilities under complete darkness.  
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Conclusions and Future Directions 

 This study demonstrated that priority effects differ depending on the spatial or 

temporal scale examined as well as the species studied and their order of arrival.  This 

supports previous research that priority effects are important in structuring carrion insect 

communities (Beaver 1977, Hanski and Kuusela 1977, Shorrocks and Bingley 1994, 

Morin 1999, Bruno et al. 2003).  Chrysomya rufifacies and P. regina experienced 

positive priority effects spatially and temporally from the presence of L. sericata, while 

L. sericata experienced negative priority effects spatially but temporally were unaffected 

by arrival order.  Some of the blow fly species I studied followed neither a random nor 

expected pattern of oviposition.  Instead, P. regina and C. rufifacies exhibited preferences 

for less desirable oviposition locations, and often preferred to lay eggs on or near eggs of 

a previously established species.  Given this finding, it would be important to extend this 

study to examine the fitness consequences of oviposition decisions.  This would confirm 

whether or not adult blow flies behave optimally to maximize offspring fitness.  It would 

also be important to distinguish the eggs of each species in order to more precisely assess 

priority effects in blow flies, which could not be done in the experimental treatments with 

two species. 

 The oviposition strategy of L. sericata, to arrive and colonize early in the most 

desirable locations when alone, and then to shift to less desirable locations following 

colonization by P. regina, suggests that L. sericata may act as a fugitive species.  

Through these behaviours female L. sericata increase their offspring survival and fitness 

by monopolizing the resource early in decomposition.  Other fugitive species have been 

observed within the carrion community and this strategy can be a mechanism for species 
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coexistence (Hanski and Kuusela 1977, Kneidel 1983, Shorrocks and Bingley 1994).  

However, further studies examining offspring fitness of L. sericata in association with 

other blow fly species and under different regimes of time alone and together could 

provide insight into whether or not L. sericata acts as a fugitive species within the carrion 

insect community.   

 On a community level, my studies were simplified and controlled.  Clearly, as 

additional community members within and between guilds are added, as spatial and 

temporal scales are varied, and as abiotic conditions are altered to reflect more natural 

and more variable conditions, the complexity of the mechanisms that govern community 

assemblages will drastically increase.  Results from this study provide a base for 

understanding a number of simple patterns of assembly which can be examined further to 

understand larger patterns of assembly within the carrion community.  Small-scale 

manipulative studies, such as the manipulation of arrival order in my study, that 

incorporate multiple study parameters, such as the spatial aggregation and effects of 

arrival order examined in this study, can provide unique insight into understanding the 

factors that structure ecological communities (Gilbert and Owen 1990, Drake 1991, 

Farrell 1991, Levin et al. 2001, Alonso et al. 2006, HilleRisLambers et al. 2012).  

Incorporating multiple variables and study scales, both temporal and spatial, is a 

necessary step to continue to expand our understanding of processes that govern complex 

species and community interactions and how these processes change over time and space, 

which is particularly important given the forensic importance of the carrion insect 

community. 
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Figure 3.1. Effect of species and arrival order on location of first oviposition site for three blow fly species: Phormia regina (Meigen) 

(P), Chrysomya rufifacies (Macquart) (C) and Lucilia sericata (Meigen) (L).  Data were grouped according to oviposition desirability 

(high, moderate, low).  Frequency of first oviposition location + 95% confidence intervals was determined for each treatment 

condition.  Binomial tests were used to determine if there were any preferences in site locations.  E – denotes distribution follows an 

exponential pattern and a preference for high desirability sites.  = – denotes distribution follows an equal pattern and no site 

preferences. .  * - denotes more females selected sites in that desirability level for the first oviposition event.
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Figure 3.2.  Location of first oviposition site for three blow fly species: Phormia regina (P), Chrysomya rufifacies (C) and Lucilia 

sericata (L).  Data were grouped according to oviposition score.  Frequency of first oviposition location + 95% confidence intervals 

were determined for each treatment condition. a - P. regina, b -  C. rufifacies, c - L. sericata (with P. regina) and d - L. sericata (with 

C. rufifacies. 
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Figure 3.3.  Effect of species and arrival order on mean number of eggs laid for Chrysomya rufifacies, Phormia regina, and Lucilia 

sericata. A one-way ANOVA was used to determine effect of treatment on the mean number of eggs laid.  A Games-Howell post-hoc 

test was used determined differences among treatments.  Means with the same letter do not differ significantly (p>0.05).   
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Figure 3.4.  Bubble blowing behaviour exhibited in three blow fly species, Chrysomya 

rufifacies (Macquart), Lucilia sericata (Meigen) and Phormia regina (Meigen).  A – P. 

regina with droplet extending from proboscis.   B – P. regina extending ovipositor 

following proboscis extension.  C – P. regina dragging ovipositor prior to ovipositioning 

on head of piglet carcass Sus scrofa (Linnaeus).  D – L. sericata with droplet extending 

from proboscis. E – C. rufifacies with droplet extending from proboscis. F – P. regina 

(P) and L. sericata (L) interacting immediately after bubble blowing by P. regina.  

Photos taken by J. Rosati. 
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Figure 3.5.  Bubble blowing behaviour in Chrysomya rufifacies (Macquart).  Female 

shown here is approximately six hours after introduction of piglet carcass Sus scrofa L. 

into cage.  During the six-hour window of exposure, the female has undergone multiple 

bubble blowing sessions.   A – female beginning another session, abdomen slightly 

distended.   B – female post-session, abdomen more distended. Photos taken by J. Rosati.
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Table 3.1. Hypotheses and predicted outcomes for experiments testing the effect of arrival order on colonization potential of Lucilia 

sericata (Meigen) and Phormia regina (Meigen).  H1 represents positive priority effects, H2 represents negative priority effects which 

were tested against the null hypothesis (Hnull).  Outcomes are described as high, moderate, or low or increased/decreased with respect 

to colonization potential (measure by time, location and amount of eggs deposited).  Treatment conditions consist of each species 

being allowed to colonize independently (L. sericata only, P. regina only), both species colonizing simultaneously (L. sericata and P. 

regina) or one species colonizing first, followed by the second species (L. sericata first followed by P. regina in the L. sericata vs. P. 

regina treatment, and vice versa for the P. regina vs. L. sericata treatment).  LS – Lucilia sericata, PR – Phormia regina.  (Note – 

predicted outcomes for L. sericata and C. rufifacies experiments would follow this outline). 

 

Hypotheses L. sericata only P. regina only L. sericata vs. P. regina P. regina vs. L. sericata L. sericata and P. regina 

Hnull: Neutral high high 

LS – high 

PR – high 

LS – high 

PR – high 

LS – high 

PR – high 

H1a:+ve priority effect 

(LS on PR) 
high low/moderate 

LS – high 

PR – increased 

LS – high 

PR – low/moderate 

LS – high   

PR – increased 

H1b: +ve priority effect 

(PR on LS) 
low/moderate high 

LS – low/moderate 

PR – high 

LS – increased 

PR – high 

LS – increased 

PR – high 

H2a: -ve priority effect 

(LS on PR) 
high high 

LS – high 

PR – decreased 

LS – high 

PR – high 

LS – high 

PR – decreased 

H2b: -ve priority effect 

(PR on LS) 
high high 

LS – high 

PR – high 

LS – decreased 

PR – high 

LS – decreased 

PR – high 

 

 

1
2
5
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Table 3.2. Density of male and female blow flies (Diptera: Calliphoridae) of Lucilia sericata (Meigen), Phormia regina (Meigen) and 

Chrysomya rufifacies (Macquart) within each treatment at each time interval (10 replicates per treatment). The two time intervals for 

colonization in the “vs” treatments were 0-24 and 24-48 hrs post-mortem, with post-mortem referring to the time since death of the 

piglets, Sus scrofa domesticus (L.).  Treatment density was maintained at 100 females, 50 males in the following species 

compositions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 0-24hr Post-mortem exposure 24-48hr Post-mortem exposure 

Treatment # Female # Male # Female # Male 

L. sericata only 100L 50L n/a n/a 

P. regina only 100P 50P n/a n/a 

C. rufifacies only 100C 50C n/a n/a 

L. sericata and P. regina 50L, 50P 25L, 25P n/a n/a 

L. sericata and C. rufifacies 50L, 50C 25L, 25C n/a n/a 

L. sericata vs. P. regina 50L 25L 50P 25P 

P. regina vs. L. sericata 50P 25P 50L 25L 

L. sericata vs. C. rufifacies 50L 25L 50C 25C 

C. rufifacies vs. L. sericata 50C 25C 50L 25L 

 

1
2
6
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Table 3.3. Scoring system used to classify blow fly egg masses with respect to body site, 

in which a score of 1 corresponds to a most desirable location and a score of 8 

corresponds to a least desirable location.  Scores were also classified according to 

oviposition location desirability (high, moderate, low). 

 

 

SCORE BODY SITE DESIRABILITY LEVEL 

1 mouth/eye/nostril high 

2 ear high 

3 head moderate 

4 belly/umbilical moderate 

5 anus moderate 

6 neck moderate 

7 between legs low 

8 rest of body low 
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Table 3.4. The effect of density on mean time to oviposition and percentage of eggs laid in each site and each desirability level for 

each species and the effect of species combination on L. sericata.  An Independent samples t-test was used for mean time to 

colonization with equal variances assumed for P. regina and L. sericata and unequal variances for C. rufifacies.  An ANOVA was 

used with treatment as a main factor for percentage of eggs laid in each desirability location or oviposition site or species combination 

and arrival order for mean time to colonization of L. sericata.  There were no significant differences (p>0.05) between species alone 

and first treatments, therefore data were pooled for subsequent analyses. 

 

 

 Effect of Species Combination Effect of Density 

 Mean Time to Colonization Mean Time to Colonization % in Desirability Location % in Each Site Location 

Species df 

(source,error) 

F P df 

 

t P df 

(source,error) 

F P df 

(source,error) 

F P 

Phormia regina  n/a n/a n/a 18 0.268 0.611 2,54 1.553 0.221 7, 144 1.664 0.122 

Chrysomya rufifacies n/a n/a n/a 18 0.996 0.335 2,54 0.716 0.493 7, 144 0.369 0.919 

Lucilia sericata 1,68 1.453 0.235 32 0.924 0.363 2,96 0.071 0.931 7, 257 0.522 0.808 

1
2
8
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Table 3.5. Effect of arrival order and species on mean time to colonization (hrs) for three blow fly species: Phormia regina (Meigen), 

Chrysomya rufifacies (Macquart) and Lucilia sericata (Meigen).  Mean time to colonization + SE was measured from the beginning of 

exposure of gravid females to piglets as a resource (time=0 hrs) to the first oviposition event (hrs) for each arrival order within each 

treatment condition.  “Species only” treatments were pooled with “species first” treatments.  For L. sericata, treatments were pooled 

for arrival order (over both species combinations).  A bootstrapped (k=1000) ANOVA was used and pairwise comparison tests based 

on bootstrapped means were used with a Bonferroni correction to determine differences among treatments.  Means with the same 

letter do not differ significantly.  Capital letters denote comparisons between species and small letters denote comparisons within 

species.  

 

  

Time to Colonization (hrs)   

Species Arrival Order Mean± SE 

 

Minimum Maximum σ
2
 σ 

Phormia regina Together 1.90±0.31 
AB,b

 1 3 0.99 0.99 

 
First 5.65±1.23 

A,a
 1 19 30.35 5.51 

 
Second 1.50±0.27 

A,b
 1 3 0.72 0.85 

Chyrsomya rufifacies Together 1.70±0.21 
A,b

 1 3 0.46 0.68 

 
First 10.70±1.80 

A,a
 2 30 65.06 8.07 

 
Second 3.70±1.48 

A,ab
 1 16 22.01 4.69 

Lucilia sericata Together 1.05±0.05 
B,a

 1 2 0.05 0.22 

 
First 1.09±0.05 

B,a
 1 2 0.08 0.29 

 
Second 1.25±0.14 

A,a
 1 3 0.41 0.64 

1
2
9
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Table 3.6.  Effect of species and arrival order on mean percentage of eggs (%) laid by Phormia regina, Chrysomya rufifacies and 

Lucilia sericata across high, moderate and low desirability oviposition locations.  Mean percentage of eggs laid (%)  + SE was 

measured on a per pig basis.  A bootstrapped (k=1000) ANOVA was used and pairwise comparison tests based on bootstrapped means 

were used with a Bonferroni correction to determine differences among treatments.  Means with the same letter do not differ 

significantly (p>0.05).  Letters a through c were used to denote comparisons within each treatment with a-denoting a higher value (i.e. 

comparisons were made between desirability levels).  

 

 

 Desirability Level 

Treatment % High % Moderate % Low 

Phormia regina first 7.10+4.47
b
 51.49+7.24

a
 41.41+7.15

a
 

Phormia regina second 6.87+4.29
b
 56.06+9.49

a
 37.07+10.07

a
 

Chrysomya rufifacies first 3.59+2.76
b
 46.60+8.01

a
 49.82+7.40

a
 

Chrysomya rufifacies second 11.92+7.21
b
 40.08+9.95

a
 48.00+9.29

a
 

Lucilia sericata first 50.16+4.86
a
 31.35+3.87

b
 18.49+2.74

c
 

Lucilia sericata second (with P. regina) 12.07+5.54
c
 56.78+6.54

a
 31.15+6.73

b
 

Lucilia sericata second (with C. rufifacies) 53.98+8.44
a
 25.52+6.97

b
 20.51+6.03

b
 

L. sericata and P.regina 31.05+8.04
a
 46.78+7.54

a
 22.16+5.30

b
 

L. sericata and C. rufifacies 18.01+4.11
b
 33.41+9.25

b
 48.58+9.44

a
 

1
3
0
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Table 3.7. Effect of species and arrival order on mean percentage of eggs (%) laid by Phormia regina, Chrysomya rufifacies and 

Lucilia sericata across individual oviposition locations (see Methods; Table 3.3).  Mean percentage of eggs laid (%)  + SE was 

measured on a per pig basis.  A bootstrapped (k=1000) ANOVA was used and pairwise comparison tests based on bootstrapped means 

were used with a Bonferroni correction to determine differences among treatments.  Means with the same letter do not differ 

significantly (p>0.05).  Letters a through d were used to denote comparisons within each treatment with a-denoting a higher value (i.e. 

comparisons were made between desirability levels). 

 

 

 HIGH DESIRABILITY MODERATE DESIRABILITY LOW DESIRABILITY 

Species % Score 1 % Score 2 % Score 3 % Score 4 % Score 5 % Score 6 % Score 7 % Score 

8 
Phormia regina first 1.94+1.13d 5.16+4.23cd 18.48+6.13ab 11.89+4.53abc 8.32+3.17bc 12.80+4.82abc 15.74+4.94abc 25.67+5.72a 

Phormia regina second 1.25+1.24b 5.62+4.29b 38.84+8.78a 5.05+2.60b 2.64+2.10b 9.53+4.55b 2.79+1.68b 34.28+9.61a 

Chrysomya rufifacies first 2.73+2.68cd 0.85+0.83d 21.74+7.91ab 11.98+4.31bc 0.00+0.00d 12.88+5.81abc 20.92+5.41ab 28.89+6.54a 

Chrysomya rufifacies second 11.22+7.31abc

d 

0.70+0.47cd 17.61+8.96ab 6.93+2.74b 0.00+0.00d 15.54+10.06ab

c 

27.85+11.06a 20.14+7.62a

b 
Lucilia sericata first 42.98+5.54a 7.18+1.85b 11.93+2.80b 9.80+2.09b 1.06+0.57c 8.56+3.23b 7.80+2.09b 10.69+1.99

b 
Lucilia sericata second (with P. regina) 11.61+5.60a 0.46+0.37b 20.89+4.78a 12.73+3.82a 7.50+5.65ab 15.66+9.16a 13.04+4.75a 18.11+5.51a 

Lucilia sericata second (with C. rufifacies) 53.69+8.29a 0.28+0.28c 6.23+5.25bcd 19.16+5.29b 0.00+0.00d 0.12+0.12d 14.82+6.45bc 5.69+2.77c 

L. sericata and P.regina 14.08+4.90a 16.97+6.72a 18.43+8.91a 11.00+3.93b 6.31+2.63a 11.04+4.05a 6.31+3.60a 15.85+4.96a 

L. sericata and C. rufifacies 16.84+4.26ab 1.17+0.81cd 7.27+5.91bc 16.64+5.90ab 0.00+0.00d 9.50+8.15abc 18.19+6.84ab 30.39+9.01a 

1
3
1
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CHAPTER 4: PRIORITY EFFECTS:  THEIR EFFECTS ON COEXISTENCE OF 

LARVAL BLOW FLIES (FAMILY: CALLIPHORIDAE) 

INTRODUCTION 

Communities are complex assemblages of diverse species that coexist through 

various mechanisms.  While considerable effort has focused on differences in competitive 

abilities as the primary factor that enables coexistence (Hutchinson 1951, Levin 1974, 

Kneidel 1984), it has long been recognized that competition through exclusion can also 

reduce diversity (Gause 1934).  Coexistence can also be affected if dominance differs 

over spatial or temporal scales.  Temporal partitioning in species’ arrival times is one 

factor that can mediate dominance (MacArthur and Wilson 1967, Atkinson and 

Shorrocks 1981, Shorrocks and Bingley 1994).  For example, by colonizing a resource 

patch first, a species can resist subsequent invasion of the patch by other species (Levin 

1974, Sale 1977, Kneidel 1983, Shorrocks and Bingley 1994, Wainwright et al. 2012). 

Alternatively, an early arriving species may alter its environment in ways that enhance 

the performance of late arriving species (Connell and Slatyer 1977, Victorsson 2012).  

Priority effects occur when an early arriving species exerts an effect on a later arriving 

species or vice versa (Beaver 1977, Connell and Slatyer 1977, Shorrocks and Bingley 

1994, Fukami et al. 2005, Wainwright et al. 2012).  Priority effects can be negative, as in 

the first situation described above, or positive (second situation described).  

Within the carrion insect community, positive priority effects occur when the 

presence of early arrivers such as blow flies increase recruitment of later arriving species 

by exposing previously restricted food sources, such as bone, ligaments and internal 

organs, or by altering the bacterial community in ways that make the resource more 
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attractive or suitable to later arriving species (Hobson 1931, Hollis et al. 1985, Esser 

1990, Mumcuoglu et al. 2001, Beasley et al. 2012, Tomberlin et al. 2012, Barton et al. 

2013).  Early arrival can also act to mediate subsequent interactions in the carrion 

community.  For example, differences in arrival times of Drosophila spp. (Diptera: 

Drosophilidae) altered competitive interactions in decaying mushrooms, with increased 

mortality, smaller offspring size and longer developmental times in later arriving species 

(Shorrocks and Bingley 1994).  Despite having low competitive abilities, by arriving 

quickly at resources, fugitive species can survive and sometimes dominate their 

community (Hutchinson 1951, Levin 1974, Hanski 1983, Kneidel 1983, Shorrocks and 

Bingley 1994).  Early colonizers can gain a competitive advantage over later species 

when maturing larvae completely consume the resource (Hanski and Kuusela 1977) or 

prey upon competitors (Wells 1991, Wells and Greenberg 1992).  To add to the 

complexity of these interactions, in the simplest two-species community the effects of 

each species on the other can be positive, negative, or neutral, and those outcomes may 

vary depending on the amount of time separating the arrival of the two species on the 

resource. 

Within the carrion insect community, blow flies are among the most abundant 

taxa.  Most blow fly species fall within the sarcosaprophytic guild, which includes those 

species that feed directly on decomposing carrion tissue (Braack 1987).  Developing 

larvae generally experience high competition for food, given that multiple females often 

lay more eggs than can be supported fully by the resource (Ullyett 1950, Kneidel 1984).  

Additionally, there are a few blow fly species that exhibit alternative feeding strategies, 

such as non-native invasive Chrysomya species that have facultatively predaceous larvae 
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that feed on both the carrion and potentially competing larvae (Wells 1991, Wells and 

Greenberg 1992).  Such intraguild predation can lead to exclusion, coexistence or 

alternative stable states within a community (Polis et al. 1989, Polis and Holt 1992).  The 

intraguild prey larvae may respond in ways that enhance their persistence in the food web 

(Ingram et al. 2012), such as larval aggregation or dispersal on the carcass (Watson and 

Carlton 2005, Rosa et al. 2006).   

The evolutionary consequences of intraguild predation are still unknown (Ingram 

et al. 2012).  The success of many invasive species, such as Chrysomya spp., may be due 

to their wide diet breadth and their high reproductive, dispersal, and competitive abilities.  

Invasive species may also benefit more from an earlier arrival time than native species by 

being more apt to dominate their resource (Dickson et al. 2012, Wainwright et al. 2012).  

The continued range expansion and establishment of Chrysomya species could have a 

significant negative impact on many native insects that feed on carrion, ultimately 

disturbing native community structures and even endangering some populations (Rosati 

and Vanlaerhoven 2007).  Much research has gone into studying various Chrysomya 

species, including Chrysomya rufifacies (Macquart), C. albiceps (Wiedemann), C. 

megacephala (Fabricius), C. chloropyga (Wied.) and C. putatoria (Wied.), with the 

presence of one or more of these species leading to a decline in numbers of ecologically 

similar species, including Cochliomyia macellaria (Fabr.) (Baumgartner and Greenberg 

1984, Wells 1991, Wells and Greenberg 1992, Faria et al. 2004), Lucilia eximia (Wied.) 

(Baumgartner 1993), Lucilia cuprina (Wied.) (Tillyard and Seddon 1933), Lucilia 

sericata (Illingworth 1923) and Calliphora stygia (Fabr.) (McQuilland et al. 1983) 

(Rosati and VanLaerhoven 2007).  By examining interactions between invasive and 
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native blow fly species, we can further identify the mechanisms that contribute to the 

stability of their coexistence. 

Within communities on patchy and ephemeral resources such as carrion, complex 

interactions exist that can differ in strength between larval and adult stages (Kingsolver et 

al. 2011, McPeek and Peckarsky 1998, Paine 1992, Yodizis 1988).  In most insects, 

immature stages have limited dispersal ability, and are strongly influenced by oviposition 

decisions of the parent female (Liu et al. 2012, Gripenberg et al. 2010, Von Zuben et al. 

2001).  Yet it is the larvae that must acquire all the nutrients required for development to 

the adult stage (Kvist et al. 2013).  Direct and indirect larval interactions may influence 

adult size, reproduction, dispersal, behaviour, population dynamics and community 

structure (Kvist et al. 2013, Liu et al 2012, Boggs and Freeman 2005, Allen and Hunt 

2001, McPeek and Peckarsky 1998, Peters 1983, Denno and Cothran 1975, Hassell 1975, 

Fuller 1934).  Studies that elucidate both positive and negative interactions between 

species, particularly during the larval stages of their development, are necessary to 

understand the mechanisms that govern community structure.  Priority effects resulting 

from the interactions between larvae of two or more species are important to identify as 

they facilitate our understanding how species successfully invade and establish within a 

community. 

Three blow fly species were selected for study: Lucilia sericata (Meigen), 

Phormia regina (Meigen) and Chrysomya rufifacies (Macquart) (see Appendix B for 

species information).  The first objective of this study is to quantify priority effects by 

introducing blow fly larvae onto piglet carcasses (Sus scrofa domesticus L.) either alone 

or first, second, or at the same time as another species.  Larval performance is measured 
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through larval mortality rate; overall survival rate from first instar to adult; and adult size 

as a measure for fitness.  If priority effects are not present, there would be no differences 

amongst treatments when a species is first, second, or together with another species (H0).  

A positive priority effect (H1a,b) would be confirmed if when one species is placed on the 

carrion at the same time or following another species, either experiences enhanced larval 

performance compared to treatments in which it is placed first or alone on the carrion 

resource.  Conversely, a negative priority (H2a,b) would be present in either of two species 

if arrival order causes a decrease in larval performance.  Refer to Table 4.1 for 

predictions.  

The second objective of this study is to investigate factors influencing 

coexistence. With C. rufifacies whose larvae are known to be a facultatively predaceous, 

if C. rufifacies does prey upon L. sericata, then L. sericata will have low larval 

performance in the presence of C. rufifacies, while C. rufifacies will have enhanced larval 

performance when L. sericata is present.  In the case of the two native species studied, in 

which P. regina experiences positive facilitation when in the presence of L. sericata (see 

Chapter 3), P. regina larvae were provided with “washes” from actively feeding L. 

sericata larvae to investigate possible mechanisms underlying the positive facilitation 

effect.  If facilitation of P. regina by L. sericata is present, then one or more wash 

treatments will result in higher survival and adult fitness for P. regina. 
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METHODS 

Laboratory colonies of all three blow fly species were maintained under a 16L:8D 

diel cycle at an approximate temperature of 21°C and 50% relative humidity.  Larval 

wash experiments were carried out in growth chambers set to the same conditions.   

Priority effect experiments were conducted from April 10, 2008 to April 24, 2010, in 

large aquaria placed in a greenhouse, that experienced ambient light cycles; the 

photophase varyied seasonally from 9 to 15 hrs (Time and Date AS 1995-2014: 

http://www.timeanddate.com/worldclock/) and mean temperature of 20.6 ± 8.05°C. 

Every trial included each treatment condition between each species combination (i.e. L. 

sericata and P. regina, and L. sericata and C. rufifacies) to ensure differences between 

treatments were not due to variability in greenhouse conditions (i.e. light levels, 

temperature, humidity, day length).   

Colonies of P. regina and L. sericata, maintained since 2005, were supplemented 

annually with wild-type females collected from the Windsor area using King Wasp traps 

(www.kinghg.on.ca) baited with pork liver.  Laboratory colonies of C. rufifacies were 

established from pupae collected from carcasses placed outdoors at the FLIES Facility at 

Texas A&M University, College Station, TX and imported to Canada.  Adult flies in all 

source colonies were fed ad libitum granulated sugar, skimmed milk powder, and water 

in an Erlenmeyer flask closed with absorbent dental wicks.  Fresh pork liver (50 g) was 

placed in each colony cage for egg collection and was replaced as required to obtain an 

adequate number of eggs (>5,000) over a period of three hours.  Individual L. sericata 

larvae must consume ~0.5 g of liver to reach their optimal size (Reid 2012).  When food 

is limited, blow fly larvae have lower mass and both pupae and adults are smaller 
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(Simkiss et al. 1993).  Most trials in this study involved 400 larvae of one species or two 

species combined.  The exception was the low density treatment that utilized only 200 

larvae of one species.  Based upon Reid’s (2012) estimate for food requirements, a 

minimum mass of 200 g of resource should be provided for 400 larvae to ensure adequate 

larval nutrition.  To ensure that experimental effects were due to priority effects and not 

competition or resource limitation, excess resource was provided through the use of 

whole piglet carcasses (>700 g). 

 

Arrival Order and Larval Interactions 

Frozen piglets from Robert Rivest Farms, Ltd. in Ruscom Station, ON, were 

removed from the freezer approximately 24 hrs prior to use, thawed and warmed to room 

temperature.  Upon hatching, first instars were transferred to the left cheek region of 

piglets (Sus scrofa domesticus L.) using a fine-tipped paintbrush (0.5 mm) according to 

the treatments outlined in Table 4.1.  The left cheek region was used based on its 

commonality as an oviposition location for all three species (see Chapter 3); the 

elimination of variability that would have been introduced if larvae were placed in 

various sites on the piglet’s body; and the choice it provided larvae of nearby alternative 

feeding sites, including moist natural orifices (eyes, nose, ears, mouth) that larvae could 

reach quickly prior to desiccation.   

For the two species (“versus”) treatments, 200 larvae of one species were 

transferred and allowed to feed for 24 hrs, followed by the addition of 200 larvae of 

species 2.   For the single species (“species only”) treatments, 400 larvae of a single 

species were transferred to a piglet.  Low density treatments involving only 200 larvae of 
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a species per piglet were included to detect density effects (in “species only” treatments) 

and temporal effects (in two species treatments).  Once larvae had been transferred, each 

piglet was placed in a greenhouse within a large glass aquarium filled with approximately 

5cm of rearing medium (NEPCO Beta Chip wood shavings) and covered with a 

landscape tarp lid (Weed Barrier WPB 4006) that was sealed into place with a silicon 

based sealant (Project 1 6800 Series-aquarium sealant).  Piglets were weighed at the 

beginning and end of each experiment, with the end of the experiment designated when 

adult flies had fully eclosed and died due to lack of water.  Temperature was recorded 

hourly through the experiment using a datalogger (SmartButton, ACR Systems Inc.) 

placed in the center of the greenhouse.  Pupal mortality (number of pupae from which 

adults failed to eclose) and emergence mortality (partially emerged or improperly formed 

adults) were recorded.  Larval mortality was estimated by taking the number of larvae 

introduced in the treatment and subtracting the number of fully-formed adults, pupal 

mortality, and emergence mortality from the total number of larvae introduced, and then 

dividing by the total number of larvae introduced.  Survival rate was determined by 

counting adults that emerged successfully and dividing by the total number of larvae 

placed on a piglet, yielding a value that represents the total larvae introduced – [larval 

death + pupal death + emergent death].  Treatments were replicated 10 times, except for 

the  “L. sericata only” treatment and low-density treatments where 20 and 19 reps were 

carried out, respectively since these treatments were performed under the same 

experimental conditions for each species combination.  
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Mechanism of Facilitation of L. sericata on P. regina 

This experiment was carried out to determine if the facilitation experienced by P. 

regina larvae in the presence of L. sericata larvae documented in this study is due to (i) 

bacteria or (ii) chemical exudates from bacteria, or actively feeding L. sericata larvae.  

Sterile and non-sterile washes were prepared from actively feeding L. sericata larvae and 

administered to feeding P. regina larvae.  Two controls were used: untreated P. regina 

larvae as a true control and P. regina larvae administered water as a sham treatment to 

control for possible effects due to greater moisture content or rehydration of the food 

resource resulting from application of the experimental treatments. 

Aqueous “washes” of L. sericata larvae were prepared as follows. Eggs of L. 

sericata were collected from adult colony cages as described previously.  Upon hatching, 

400 larvae were placed within each of eight 1 L Mason jars filled 1/3 with wood shavings 

(NEPCO Beta Chip) as a pupation medium and containing 100 g of pork liver as a food 

source placed on aluminum foil.  Holes were punched into the foil to allow fluids to 

drain, thereby preventing larval drowning.  Each jar was covered with a landscape tarp lid 

(Weed Barrier WPB 4006) for ventilation and placed within a growth chamber (Conviron 

Adaptis A1000IN) with a temperature of 25.0 ± 0.1°C and a relative humidity of 40 ± 

1%.  A diel cycle of 16L:8D was maintained.  Three washes were prepared at three 

different points in L. sericata development:  Wash 1 – when larvae moulted to the second 

instar; Wash 2 – when larvae moulted to the third instar; and Wash 3 – the mid-point 

during the third instar.  A “wash” was prepared by pouring 50 ml of sterile, deionized 

water over each group of 400 feeding larvae and collecting the liquid in a 1000 ml 

beaker.  Washes from all the L. sericata rearing jars were pooled, then centrifuged at 
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21°C and 14000 rpm for 15 minutes to separate out debris (i.e. blood cells, liver tissue, 

etc.). The resulting supernatent was divided in two portions, with half reserved for the 

sterile (ultrafiltered) wash treatment and the other half for the non-sterile wash treatment.  

The sterile wash was prepared by filtering it through a sterile vacuum filtration system 

with a 0.10 µm pore size polyethersulfone membrane (Nalgene* Rapid-Flow* Sterile 

Disposable Filter Units with PES Membrane, 250ml, 75mm diameter membrane: 

http://www.thermoscientific.com) to remove bacteria.  The sterile wash could have 

contained chemicals produced by the L. sericata larvae and/or from bacteria associated 

with the liver and larvae.  

Eggs of P. regina were collected on two dates, October 7 and November 3
,
 2011, 

by placing 35 g of pork liver in three colony cages.  Liver was replaced every 3 hrs until a 

suitable amount of eggs (>3000) were collected over a short period of time in order to 

ensure uniformity in hatch times.  Upon hatching, 50 larvae were placed within each 

rearing jar with 50 g of pork liver to provide excess food resources to eliminate 

competition (as stated previously, mean consumption is approximately 0.5 g/larva; Reid 

2012).  Ten jars were prepared for each of 4 treatments for a total of 40 jars on each start 

date.  Treatments (10 mL per application; sterilized larval wash, unsterilized larval wash, 

water sham, and control) were applied to larvae three times, on Day 1 (1-day-old first 

instars); Day 3 (second instars; and Day 5 (third instars).  The sham treatment consisted 

of P. regina larvae feeding with 10 mls of deionized water periodically added.  Jars 

within each treatment were then divided equally between two growth chambers 

(Conviron Adaptis A1000IN) with a temperature of 25.0 ± 0.1°C, relative humidity of 40 

± 1% and diel cycle of 16L:8D.  The developmental stage of the larvae was recorded 
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every 12 hrs until larvae entered the pre-pupal (wandering) stage.  At this time the liver 

was removed and the larvae were checked every 6 hrs to for accurate recording of 

pupation time (in P. regina, wandering is reduced and pupation occurs quickly; 

Greenberg 1990, Nabity et al. 2006, Reid 2012, personal observations).  Pupae from 

individual rearing jars were removed daily, placed into 100 ml Petri dishes and returned 

to the growth chamber until adult emergence.  Temperature was recorded hourly for each 

chamber using a datalogger (SmartButton, ACR Systems Inc.).  Larval, pupal and 

emergence mortality and survival rate were recorded (as described above).   

The durations of several developmental “milesones” were recorded on a per jar 

basis: (a) egg hatching to first individual moulting to 2
nd

 instar (i.e. minimum duration of 

1
st
 instar stage); (b) first individual moulting to 2

nd
 instar to first individual moulting to 

3
rd

 instar (i.e. duration of 2
nd

 instar stage); (c) first larva moulting to 3
rd

 instar to first 

larva observed wandering away from food (duration of 3
rd

 instar stage); (d) first larva 

observed wandering to first pupation event (i.e. duration of wandering stage); (e) first to 

last pupation event (i.e. period of pupation events); (f) first pupation event to first adult 

emergence (i.e. duration of pupation); and (g) first adult emergence to last adult 

emergence (i.e. period of emergence events).  Twenty replications were conducted for 

each treatment.  

Data related to development were converted to degree hours, determined each 

hour by subtracting the lower developmental threshold temperature (0ºC) from the 

temperature recorded by the datalogger.  These values were summed over the number of 

hours reflected in each of the developmental variables to yield a corresponding value of 

accumulated degree hours (ADH).  The lower developmental threshold values were set to 
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0ºC because they are known to vary with species, populations, geographic region, life 

stage and environmental conditions (i.e. photoperiod, fluctuating temperatures) (Warren 

2006, VanLaerhoven 2008, Anderson and Warren 2011).  Additionally, the lower 

threshold values for the populations of the blow fly species I studied have never been 

determined experimentally.  Consequently, the conservative value of 0ºC is preferred. 

 

Fitness Measurements  

Reid (2012) determined that tibia length, thorax length and wing length were all  

correlated with adult fitness (R
2
>0.90 for all three variables), which was measured by the 

number of chorionated and immature eggs present in female L. sericata.  Consequently, I 

measured all three variables as proxies for fitness for both sexes when possible.  Hind 

tibia length was measured from the point of attachment to the femur to the attachment of 

the basitarsus; thorax length was measured along the midline from the anterior end near 

the head to the posterior end of the scutellum; and wing length was measured from the 

distal margin of the basicosta to the apex of the wing.  Flies were placed under a 

compound microscope at 10X magnification and measured with an ocular scale 

calibrated with a stage micrometer.  For arrival order experiments (i.e. using piglet 

carcasses), 15 male and 15 female offspring reared from each pigs were randomly 

selected and thorax, wing and tibia lengths of each fly were measured.  For the larval 

wash experiment (e.g. P. regina larvae treated with washes from feeding L. sericata 

larvae), when possible, 10 males and 10 females were randomly selected per jar and the 

same body parts were measured. 
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Statistical Analyses 

For all statistical tests, a significant effect was designated when p<0.05, unless a 

Bonferroni correction was necessary.  Piglet carcass weights were examined for arrival 

order experiments using a bootstrapped (k=1000) univariate ANOVA due to non-

normality of the data and residuals (Efron 1979, SPSS Manual V21).  Residuals were 

normal for survival rate (Shapiro-Wilks test, p > 0.05) but non-normal (Shapiro-Wilks 

test, p < 0.001) for larval mortality, thus a square root transformation was applied to 

larval mortality to improve normality and homogeneity of variance (SPSS Manual V21).  

A MANOVA was used to test the effect of treatment (arrival order, high and low density) 

on survival rate and square root larval mortality for each species (SPSS Manual V21).  

The homogeneity of variances assumption was not violated, however, there were unequal 

sample sizes, thus Tukey-Kramer tests (Tukey 1953, Kramer 1956, SPSS Manual V21) 

were used post hoc to differentiate between treatments. 

For larval wash experiments, larval mortality and survival rates were normal 

Shapiro-Wilks test, p > 0.05), thus a one-way MANOVA was used to test for growth 

chamber effects.  There was no significant effect of rearing chambers (p>0.05), thus data 

from different chambers were pooled.   A one-way MANOVA was used to test for wash 

treatment effects on larval mortality and survival rates.  Residuals were normal and 

variances were equal, therefore a one tailed Dunnett’s post hoc test (Dunnett 1955, SPSS 

Manual V21) was used to test for differences between control and treatment conditions 

for larval mortality.  

With respect to fitness estimates, a linear mixed model analysis was used, with 

each pig considered as a replicate (SPSS Manual V21).  Analyses were carried out within 
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each species and sex to determine if there were differences in body size due to any of the 

treatments.  Treatments included either arrival order and density in experiments regarding 

arrival order, or wash treatment in experiments regarding coexistence mechanisms 

between L. sericata and P. regina.  Estimated marginal means were compared using 

mean pairwise comparisons tests within each species and within each sex to differentiate 

between treatment effects, and a Bonferroni correction was applied to adjust for multiple 

hypotheses tested with a single data set (SPSS Manual V21). 

For the wash experiment, treatment effects on the minimum time to moult into 

each developmental stage and the duration of each stage were analyzed using 

bootstrapped (k=1000) MANOVAs due to non-normality of the response variables and 

their residuals (Efron 1979, SPSS Manual V21).  Growth chamber effects on 

development were tested in the same manner and there were no significant differences 

between rearing chambers (p>0.05), thus data were pooled.  Estimated marginal means 

were compared using mean pairwise comparison tests within each species and within 

each sex to differentiate between treatment effects; a Bonferroni correction was applied. 
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RESULTS 

The Effect of Arrival Order on Larval Interactions  

Pig carcass weights did not differ between treatments (F1,125=1.738, p = 0.072).  

Larval mortality and survivorship to adult varied with respect to treatment for P. regina 

and L. sericata, yet remained consistent for C. rufifacies (P. regina: Wilk’s λ = 0.425, F8, 

84= 5.598, p < 0.0001; L. sericata: Wilk’s λ = 0.776, F14, 174= 3.530, p < 0.0001 and C. 

rufifacies: Wilk’s λ = 0.607, F8, 86= 1.454, p = 0.186).  The presence of L. sericata altered 

Phormia regina larval mortality and adult survival (F4, 47= 12.254, p < 0.0001 and F4,47= 

8.148, p < 0.0001) (see Figure 4.1a).  Phormia regina had lower larval mortality and 

higher survivorship to adult in the presence of L. sericata, both after and simultaneously 

with L. sericata, which was evident in the lower mortality and higher survival than when 

P. regina was alone.  There were no differences between P. regina only (400 larvae) and 

low density treatments (200 larvae), thus, density at the levels used in this experiment did 

not affect P. regina survival or larval mortality.  

For Chrysomya rufifacies, rates for larval mortality and survival to adult were 

consistent over all treatments.  Changes in arrival order or density did not result in any 

differences in larval mortality (F4, 48=1.058, p = 0.389) or survival (F4,48= 1.494, p = 

0.221) (see Figure 4.1b). 

Mortality for L. sericata varied due to treatment (F7,95=6.323, p < 0.001), with 

larvae having higher mortality when they preceded or followed C. rufifacies than when 

they preceded or were introduced simultaneously with P. regina.  There were no 

differences between remaining treatments (see Figure 4.1c).  Arrival order changed 

survival to adult (F7,95=4.486, p < 0.001) with larvae having lower survival when they 
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preceded or followed the arrival of C. rufifacies and highest survival when they preceded 

P. regina.  Lucilia sericata experienced lower mortality when larvae followed P. regina 

and higher survival when they preceded P. regina.  There were no significant differences 

among any other treatment pairs.  The presence of the predator C. rufifacies lowered the 

survival of L. sericata, however, simultaneous colonization with C. rufifacies resulted in 

higher survival to adult of L. sericata than when it preceded or followed C. rufifacies.  

There were no differences between low-density treatments, indicating that density at the 

levels used in this experiment did not influence larval L. sericata (see Figure 4.1c). 

The effect of different species combinations and larval densities on fitness 

measures (wing, thorax and tibia) was studied within each sex.  For Phormia regina, 

treatments did not affect wing length and tibial length in females (wing: F4,42.3= 0.691, p 

= 0.602; tibia: F4,42.8= 2.378, p = 0.067) or males (wing: F4,42.0= 0.843, p = 0.506; tibia: 

F4,42.2= 1.808, p = 0.145), however, thorax length was affected (females: F4,42.9=2.662, p 

= 0.045; males: F4,42.2=3.630, p = 0.012) (see Figure 4.2).  Females and males had smaller 

thoraces when reared alone and females had larger thoraces when preceded by L. 

sericata, demonstrating a positive priority effect due to L. sericata.  Males were larger in 

low density treatments, suggesting density has some effect on fitness measures. 

Chrysomya rufifacies was affected by treatment in all three fitness measures (see 

Figure 4.3).  Adult females were larger in treatments when L. sericata was present (wing: 

F4,41.0= 5.316, p = 0.002; thorax: F4,39.7= 8.198, p<0.001 and tibia: F4,36.2= 11.436, p < 

0.001).  Males were also larger, however, they had largest wings and thoraces when 

second and together, intermediate when first and in low density conditions, and smallest 

when alone (wing: F4,43.7= 4.286, p = 0.005; thorax: F4,42.2= 5.703, p <0 .001).  Males had 
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largest tibiae when L. sericata was present (F4,43.8= 10.162, p < 0.001).  In summary, 

Chrysomya rufifacies males and females had higher fitness when L. sericata was present, 

regardless of arrival order.  There were no differences between C. rufifacies when alone 

(higher density) and low-density treatments, indicating that density did not affect body 

size in this species (see Figure 4.3). 

 Effects of arrival order were present in L. sericata females for all three fitness 

measures, while males were only affected in tibial length (see Figure 4.4).  Females had 

larger wings when alone, smaller when introduced after P. regina, and no differences 

amongst remaining treatments.  Females had longer thoraces when alone or in low 

density conditions and smallest when together with P. regina, with no differences 

between remaining treatments.  The presence of C. rufifacies had positive effects on L. 

sericata, resulting in increased tibia length in both sexes.  Priority effects were evident 

between L. sericata and P. regina, with males and females having smaller tibiae when L. 

sericata followed or was introduced simultaneously with P. regina.  There were no 

density effects in L. sericata, with females and males being larger when alone. 

Phormia regina exerted a negative effect on L. sericata, with L. sericata being 

smaller when reared in the presence of P. regina.  However, this negative effect was 

lessened if L. sericata was first in arrival order, demonstrating that priority effects are 

present for L. sericata.  Lucilia sericata, in turn, had a positive effect on P. regina, with 

P. regina adults being larger when reared in the presence of L. sericata.  Although this 

benefit was present whenever L. sericata was present, these benefits were greater when 

P. regina was introduced simultaneously or after introduction of L. sericata; this also 

demonstrates a priority effect for P. regina.  When examining interactions between L. 
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sericata and C. rufifacies, there was a positive effect on surviving adult size with L. 

sericata having larger tibiae when in the presence of C. rufifacies, regardless of arrival 

order.  Chrysomya rufifacies was larger in all treatments where an additional species was 

present, and was smaller when it was alone, regardless of initial population densities.  

This indicates priority effects do not exist with respect to adult size between these two 

species. 

 

Lucilia sericata Larval Wash Experiment  

Data between growth chambers were pooled, due to lack of differences between 

chambers with respect to larval mortality or survival rates (Wilk’s λ = 0.972, F2,75= 

1.099, p = 0.339) or development (minimum ADH: Wilk’s λ = 0.928, F5, 74= 1.151, p = 

0.341; duration of stages: Wilk’s λ = 0.890, F6,73= 1.510, p = 0.187).  

For P. regina, survival to adult was the same over all treatments (F3,79= 1.568, p = 

0.204) (see Figure 4.5).  Larval mortality differed, (F3,79= 2.966, p = 0.037), with lower 

mortality rates when the wash was administered (see Figure 4.5).   

The administration of larval washes from L. sericata (sterile and non-sterile) 

affected P. regina larval development (Wilk’s λ = 0.609, F15,199= 2.608, p = 0.001).  The 

presence of the wash enhanced larval development of P. regina as evidenced by lowered 

minimum ADH required to reach the 2
nd

 instar (F3,79= 4.039, p = 0.010), 3
rd

 instar (F3,79= 

8.178, p<0.0001), prepupal (F3,79=5.527, p = 0.002) and pupal stages (F3,79=6.368, p = 

0.001).  There were no differences between water and filtered wash treatments in the 

minimum ADH for pupal duration.  These effects were transient, with no differences in 

the minimum ADH required for emergence for any of the treatment conditions (F3,79= 
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1.286, p = 0.285) (see Figure 4.6).  The administration of water did not affect larval 

development relative to the controls (p>0.05). 

The application of the larval washes affected the duration of P. regina larval 

development (Wilk’s λ = 0.635, F18,201= 1.948, p = 0.014), particularly during the early 

stages (first instar: F3,79= 3.898, p = 0.012; second instar: F3,79= 9.136, p < 0.001).  First 

instar P. regina larvae developed faster in the unfiltered and sterile wash treatments than 

the control treatments, however, the water treatment was similar to the filtered wash (see 

Figure 4.6).  Larvae also had faster development during the second instar stage in the 

wash treatments (sterile and non-sterile) than both water and control conditions.  These 

effects were not evident in the later developmental stages (third instar: F3,79=1.631, p = 

0.189; wandering: F3,79=1.811, p = 0.152; pupation: F3,79=0.782, p = 0.508 and 

emergence: F3,79=0.482, p = 0.695). 

Administration of the larval wash led to an increase in size of adults of both sexes 

of P. regina (see Figure 4.7).  Treatments comparisons were made within each sex.  For 

both sexes, tibiae were significantly longer in the sterile and unfiltered washes than the 

control and water treatments (males: F3,39.4= 7.582, p<0.001; females: F3,38.8= 6.538, p = 

0.001).  Similar responses were observed for thorax length (males: F3,37.3= 21.143, 

p<0.001; females: F3,38.0= 16.079, p<0.001, with both sexes having longer thoraces in the 

sterile and non-sterile washes.  Wing length also differed between treatments (males: 

F3,39.4= 7.582, p<0.001; females: F3,38.8= 6.538, p = 0.001); females and males both had 

longer wings in the treatment receiving the sterile wash, smaller wings in the water 

(females) and control (males) treatments with adults from the unfiltered wash having 

intermediate sized wings. 
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Behavioural Observations  

In control and water sham jars, when P. regina larvae reached the second instar, 

the majority of larvae (~ 90%) migrated away from the food source into the surrounding 

medium, residing under or adjacent to the resource for 1-2 days, after which they would 

return to the resource and continue feeding.  When sterile or unfiltered washes, were 

administered the larvae did not exhibit this behaviour.  Rather, they continued to feed on 

the resource and only left when they no longer required food and wandered away in 

search of a pupation site.  Also, larvae in the jars that received sterile and unfiltered 

washes produced a foam-like substance during feeding.  This was first observed during 

the second instar and continued into the third instar.  This “foaming”, if present in the 

control and water treatments, was not observed until the mid-to-late third instar.  
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DISCUSSION 

Effect of Density  

In my study, there were no differences between low density treatments (200 

individuals per piglet carcass) compared to when species were alone (400 individuals per 

piglet) in either Chrysomya rufifacies or Lucilia sericata.  A slight density effect was 

detected in Phormia regina, but only in male size, with males being larger in low density 

treatments.  Density had no effect on male survival or larval mortality, or female size, 

survival or larval mortality.  Density is frequently an important factor to consider in blow 

fly studies (Mackerras 1933, Goodbrood and Goff 1990, Simkiss et al. 1993, Marchenko 

2001, Slone and Gruner 2007, Shiao and Yeh 2008, Reid 2012).  In C. rufifacies, high 

densities during the larval stage can decrease development time (if > 600 larvae per 60 g 

of resource), decrease adult size (if > 320 larvae per 60 g resource) and increase mortality 

(if > 160 larvae per 60 g of resource) (Shaio and Yeh 2008).  Since the densities used in 

this experiment were low (maximum 400 larvae) relative to resource amount (piglet 

carcass weights > 700 g), competitive effects were largely eliminated.  

 

Larval Interactions Between Native Species – L. sericata and P. regina 

This study identified both positive and negative interactions between these two 

native species.  Previous studies between the native species L. sericata and P. regina 

determined that larvae that consumed the same resource did not coexist due to high levels 

of interspecific competition that led to the elimination of P. regina and the dominance of 

L. sericata (Hutton and Wasti 1980).  My study contradicts those results:  P. regina 

benefitted from the presence of L. sericata, with higher larval survival and larger adults. 
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However, given the large amount of resources in excess of larval requirements, my 

results indicate that the decrease in adult size was due to inhibitory effects exerted by P. 

regina rather than direct competition.  Other research has demonstrated that L. sericata 

experiences negative effects of competition within highly diverse communities, with 

smaller adults emerging from these situations (Fuller 1934, Smith and Wall 1997, Lang et 

al. 2006).  Therefore, positive and negative influences have both been identified between 

these two native species and further study is needed to determine the true nature of 

coexistence between these species.  Coexistence between species may be due to spatially 

and temporally divergent strategies in resource exploitation (Denno and Cothran 1975).   

Differences in arrival order can alter these positive and negative interactions 

within a community.  My experiments determined that when L. sericata arrived early, the 

development of the larvae and size of the adults was enhanced relative to when they were 

reared simultaneously or after the arrival of a second species.  This strategy of rapid 

detection and orientation to resources has been recognized as an important mechanism 

structuring carrion communities (Hutchinson 1965, Beaver 1977, Kneidel 1983).  A 

species can inhibit further invasion of a patchy resource through early arrival and 

colonization (Levin 1974, Sale 1977, Kneidel 1983, Shorrocks and Bingley 1994). 

Alternatively, it may exert a competitive advantage over later-arriving species through 

the consumption and depletion of the resource (Hanski and Kuusela 1977).  Differences 

in arrival order can determine community patterns, with priority effects in some cases 

allowing a species to persist within a community even it follows a suboptimal arrival 

order (Shorrocks and Bingley 1994).  The presence of L. sericata led to increased 

survival and adult fitness for P. regina, especially when L. sericata larvae established on 
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the resource prior to P. regina, leading to the conclusion that L. sericata exerted a 

positive priority effect on P. regina.  Lucilia sericata had reduced survival and adult size 

in the presence of P. regina, a negative priority effect of P. regina on L. sericata; 

however, these effects were minimized when L. sericata larvae were placed on the 

carcass a day before the P. regina larvae were added. 

A potential mechanism for the facilitory effects of L. sericata on P. regina was 

demonstrated with P. regina larvae having lower mortality, shorter development time 

during the early instar stages and higher adult fitness when administered washes from 

actively feeding L. sericata larvae.  The larval wash experiments confirmed that one or 

more compounds, possibly proteins, produced by feeding L. sericata larvae confer 

benefits on co-occurring P. regina larvae.  These benefits include more rapid 

development of second instars, an overall increase in adult size (fitness), and more 

continuous contact time with the resource.  During the first and early second instar stages, 

blow fly larvae can only take in liquefied food, as their mouthparts are not adapted for 

mastication (Guyenot 1907, Hobson 1931).  It has been suggested that the liquefaction of 

tissue by maggots is due to presence of pepsin-based enzymes (Hobson 1931), however 

this has not been proven experimentally.  My results are consistent with that hypothesis, 

indicating that L. sericata larvae secrete compounds that break down the resource and 

make feeding by P. regina more efficient. 

Alternatively, it has been proposed that this facilitation may be bacterial in nature 

(Hobson 1931).  The sterile wash used in this experiment helps to differentiate between 

these two mechanisms.  When bacteria were removed by filtration (the sterilized wash), 

P. regina larvae had greater fitness than in the unfiltered wash, indicating that the 
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presence of bacteria diminished the benefits to P. regina (compared to the non-sterile 

wash).  This reduction in benefits may result from resource competition between the 

bacterial community (on the carcass or associated with L. sericata larvae) and P. regina 

larvae.  Lucilia sericata along with other blow fly species are known to produce 

antibacterial compounds that may reduce bacterial populations and decrease competition 

between bacteria residing on and consuming the resource, thereby allowing the resource 

to be available to fly larvae for a longer period of time (Mumcuoglu et al. 2001).  

I conclude from this experiment that a facilitory compound(s) caused an increase 

in Phormia fly size (fitness) and more rapid
 
second instar development.  The 

compound(s) could be antimicrobial in nature and, when present, may act to reduce 

resource competition between P. regina and bacterial communities.  Bacterial cues play 

important but still poorly understood roles within the blow fly community (Esser 1990, 

Ashworth and Wall 1994, Vogt and Woodburn 1994, Mumcuoglu et al. 2001, Mahon et 

al. 2004, Ahmad et al. 2006, Tomberlin et al. 2012, Davis et al. 2013) and other carrion 

insects (Hollis et al. 1985, Burkepile et al. 2006, Lam et al. 2007, Rozen et al. 2008). 

However, experimental results are conflicting depending on the insect species studied and 

the variables quantified.  Isolation of the facilitory compound(s) associated with L. 

sericata washes would help to clarify the role that bacteria, facilitory compounds and/or 

anti-microbial compounds have in this carrion systems and may contribute to the broader 

understanding of coexistence in blow flies.   

Phormia regina and L. sericata are broadly sympatric species (Chapter 2) with a 

long history of interactions.  The results from my experiments on adult priority effects 

support the idea they have evolved mechanisms that promote their coexistence.  For 
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example, blow flies have minimum nutritional and developmental thresholds that need to 

be met in order to successfully develop and reproduce (Levot et al. 1979, Tarone et al. 

2011).  By evolving the ability to utilize a compound(s) produced by L. sericata, as 

discussed in the previous paragraph, P. regina larvae could more quickly meet their 

minimum nutritional requirements and complete development, thus contributing to its 

persistence within the blow fly community.  Conversely, L. sericata appears to gain an 

advantage over P. regina by colonizing food resources more quickly.  Added to these 

interactions, many insects are known to respond to larval hardships by having smaller 

adult size (Honek 1993, D’Amico et al. 2001, Chown and Gaston 2010). Ullyett (1950) 

examined competition in blow fly populations and demonstrated that L. sericata larvae 

persisted within the community due to their ability to persist despite a strong reduction in 

adult size.  There is a large amount of behavioural and genetic plasticity within L. 

sericata populations (Gallagher et al. 2010, Picard and Wells 2010, Tarone et al. 2011), 

which also may play an important role in its ability to persist within the carrion insect 

community under harsh and very competitive circumstances.  

 

Larval Interactions Between Non-Native Species – L. sericata and C. rufifacies 

My experiments on the interactions between L. sericata and C. rufifacies 

demonstrated that C. rufifacies benefited from the presence of L. sericata, regardless of 

arrival order.  The consistently greater size and lower mortality of C. rufifacies regardless 

of the presence of L. sericata indicate that priority effects in this two-species system are 

unimportant for larvae of C. rufifacies.  Lucilia sericata did experience a priority effect 

with C. rufifacies.  Although L. sericata was negatively affected by the presence of C. 
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rufifacies through higher larval mortality and decreased survival, these effects were 

minimized when L. sericata was introduced simultaneously with C. rufifacies, in which 

case adult size was not negatively affected.  

Chrysomya rufifacies has the ability to become a facultative predator during the 

second and third larval instars, feeding upon other insect larvae in the system as well as 

on the resource itself.  When L. sericata colonizes after C. rufifacies, it completes its 

entire development while C. rufifacies is in its predatory stages (second and third instar) 

and consequently is under strong selection to evolve adaptations that enhance its survival. 

Despite a decrease in the survival of L. sericata when C. rufifacies is present, these 

negative effects are reduced when it establishes simultaneously with C. rufifacies.  Reid 

(2012) examined developmental rates in communities consisting of L. sericata and C. 

rufifacies and determined that although L. sericata spent more time in the wandering 

stage and had slower overall development, it spent less time than C. rufifacies in the first, 

second and third instar stages.  Intraguild predation, as seen in C. rufifacies, may lead to 

evolutionary responses in prey species (Palkovachs and Post 2009, Post and Palkovachs 

2009, Schoener 2011, Ingram et al. 2012).  The rapid larval development of L. sericata, 

its extended wandering stage (Greenberg 1990, Tarone et al. 2011, Reid 2012, personal 

observations), and its ability to successfully complete development at much reduced size 

(Fuller 1934, Lang et al. 2006, Tarone et al. 2011) are all pre-adaptations that enhance 

their ability to escape predation and achieve a moderate overall fitness when larvae 

become established simultaneously with C. rufifacies.  The selection pressures exerted by 

Chrysomya may result in further refinements of these and other adaptations that enhance 

coexistence.  
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As stated previously, my results support the idea that the sympatric species, P. 

regina and L. sericata, have evolved mechanisms that promote their coexistence.  

However, C. rufifacies, an Australasian species, does not share this history.  Chrysomya 

rufifacies is known to induce early wandering in multiple blow fly species in North 

America (Watson and Carlton 2005, Shiao and Yeh 2008, Swiger et al. 2014), a 

behaviour that involves trade-offs between survival, risk of predation and offspring size.  

This species is also an aggressive, facultative predator (Wells 1991, Wells and Greenberg 

1992, Baumgartner 1993, Wells and Kurahashi 1997, Flores 2013), and larval 

populations develop faster and emergent adults do better in the presence of prey species 

(Ulyett 1950, Shiao and Yeh 2008, Reid 2012, Flores 2013).  Because blow flies have 

minimum nutritional and developmental thresholds (Levot et al. 1979, Tarone et al. 

2011), omnivory may provide C. rufifacies with higher nutrient quality through their 

prey.  This could result in decreased developmental duration by meeting the minimum 

nutritional threshold for pupation earlier or larger larvae when the maximum 

developmental threshold for pupation is reached.  Determining the factors that contribute 

to these thresholds, the details of how species interactions influence them, and their 

fitness consequences of these interactions is important in the application of blow fly 

development to estimation of periods of insect activity in forensic entomology. 

Chrysomya rufifacies is one of many exotic Chrysomya species that have invaded 

North America over the past 30 years.  Within their native range, Chrysomya exist within 

a diverse community of other calliphorid species (Baumgartner 1993, Shiao and Yeh 

2008).  This is not presently what is observed with North American blow flies 

(Illingworth 1923, Tillyard and Seddon 1933, McQuilland et al. 1983, Wells 1991, Wells 
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and Greenberg 1992, Baumgartner 1993, Wells and Kurahashi 1997, Flores 2013, Swiger 

et al. 2014).  The presence of one or more exotic Chrysomya species can alter the 

mechanism(s) responsible for coexistence between native blow flies (Ullyett 1950, Faria 

et al. 2004, Rosa et al. 2006) and has been associated with a decline in populations of 

ecologically similar species (Rosati and VanLaerhoven 2007, Swiger et al. 2014).  Given 

that C. rufifacies produces unisexual progeny within a clutch, it should be a poor 

colonizer (Wells 1991); however, its aggressive larval interactions, predatory behaviour 

and repeated introduction to North America through anthropogenic forces have 

influenced the establishment and continued range expansion of this and other invasive 

species (Wells 1991, Baumgartner 1993).  Native species within a guild have some 

potential to resist and even inhibit invasion by introduced species in the same guild 

(Fargione et al. 2003).  In the case of C. rufifacies, its facultative predation on larvae of 

other blow fly species may enhance its ability to overcome the resistance to invasion 

provided by L. sericata and other members within sarcosaprophytic guild.  Compensatory 

mechanisms within prey species have been documented in another native species: later 

arrival in Cochliomyia macellaria led to increased survival of its larvae in the presence of 

C. rufifacies larvae (Flores 2013).  Consumptive effects (through direct interactions) and 

non-consumptive effects (through indirect interactions) caused by generalist and invasive 

predators can alter patterns of coexistence, invasion resistance, distribution within the 

landscape and population interactions (Orrock et al. 2008).  This topic should be 

examined further through the study of multiple blow fly species at various densities on 

limited resources (animal carcasses) to determine the mechanisms that exist within the 

sarcosaprophytic guild that increase resistance to invasions.  
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Conclusion and Future Directions 

The experiments outlined in this chapter examined larval interactions of three 

calliphorid species feeding on carrion, specifically piglet carcasses.  There were species-

specific differences in arrival order on larval interactions, mortality and survival as well 

as fitness effects on adults.  Positive and negative priority effects were present over 

different spatial and temporal scales, allowing me to conclude that priority effects are 

important in the assembly of blow flies.  Due to the inconsistency of effects over spatial 

and temporal scales, and given that both facilitatory and inhibitory mechanisms are 

present in blow flies, research needs to be directed towards further understanding priority 

effects within the carrion community, particularly when species interactions and priority 

effects could lead to changes in larval behaviour and development.  Factors that influence 

larval development need to be identified and evaluated, and their effects determined as 

they could directly influence the interpretation of data collected by forensic scientists to 

calculate periods of insect activity (Tomberlin et al. 2011).  Further studies examining the 

direct and indirect effects of various species combinations and arrival orders will provide 

much needed support and validation for the use of blow flies in estimating the period of 

insect activity in forensic investigations.  

In my experiment, when L. sericata was the only species present, larvae 

aggregated in protected regions of the carcass such as the head or internal body cavities. 

However, when C. rufifacies was present, L. sericata larvae experienced high levels of 

predation from C. rufifacies.  In this situation the larvae did not aggregate to the same 

degree, were located away from sites on the head commonly occupied by C. rufifacies, 

were present in smaller patches and dispersed over multiple locations over the carcass, 
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and began to wander earlier.  My use of full piglet carcasses provided larvae with a large 

total surface area and volume, thus allowing for peripheral pockets to which some L. 

sericata could move, aggregate and avoid predation.  Bartholo de Andrade et al. (2002) 

documented similar behavioural response of C. macellaria larvae in the presence of 

predatory Chrysomya albiceps.  The increased adult size of L. sericata in the presence of 

C. rufifacies probably reflects lower levels of intraspecific competition in the sites on the 

carcass to which they moved.  Given that localized aggregation can promote coexistence, 

the disruption of aggregation may have consequences that cascade through subsequent 

trophic levels (Finke and Denno 2006).  Detailed studies on spatial aggregation of the 

species interacting on carrion are lacking, though it is recognized important to consider in  

carrion and other ephemerally based resources (Atkinson and Shorrocks 1981, 1984, 

Atkinson 1985, Ives 1988 1991, Kouki and Hanski 1995, Barton et al. 2013, Fiene et al. 

2014).  Research measuring the distribution of predator and prey populations within the 

resource and extending this to examine patterns between resources could provide insight 

into how aggregation and species interactions effect changes within blow fly and carrion 

communities. 
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Figure 4.1.  Mean larval mortality and survival rates (% + SE) for three blow fly species, 

Phormia regina (Meigen) (PR, fig. a), Chrysomya rufifacies (Macquart) (CR, fig. b) and 

Lucilia sericata (Meigen) (LS, fig. c) for various arrival orders (first, second, together) 

and species compositions (L. sericata and P. regina, L. sericata and C. rufifacies, with 

two larval densities).   Larvae were placed and reared on piglet carcasses (Sus scrofa 

domesticus Linnaeus).  A MANOVA was used to test for effects of treatment on larval 

mortality and survival and rates were compared across treatments within each species 

using a Tukey-Kramer test for unequal sample sizes with an overall p<0.05 significance 

level.  Means with different letters indicate significant differences between treatments. 

There was an effect of treatment on larval mortality of P. regina and L. sericata (p<0.05).  

There was no significant effect of treatment on survival rate or larval mortality of C. 

rufifacies (p>0.05).  
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Figure 4.2.  Mean thorax length (mm) + SE of Phormia regina (PR) adult females and 

males for different arrival orders (together, first, and second with L. sericata) and density 

(400 larvae and 200 larvae per piglet).  Comparisons were made within a sex and 

between treatments.  A mixed linear model was used to test for main treatment effects (p 

< 0.05). Pairwise comparisons tests with a Bonferroni correction were used to test for 

significant differences among treatment means while maintaining an overall p-value of 

0.05.  Means with the same letter did not differ. There were no significant differences 

between treatments in male or female tibia or wing length, thus only thorax length is 

presented. a – females. b – males. 
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Figure 4.3.  Mean tibia and thorax (mm) + SE of Chrysomya rufifacies (CR) adult 

females for different arrival orders (together, first, and second with L. sericata) and 

density (400 larvae and 200 larvae per piglet).  Comparisons were made within a sex and 

between treatments.  A mixed linear model was used to test for main treatment effects (p 

< 0.05). Pairwise comparisons tests with a Bonferroni correction were used to test for 

significant differences among treatment means while maintaining an overall p-value of 

0.05.  Means with the same letter did not differ. Treatment effects for tibia, thorax and 

wing length were similar for males and females, thus only female data is presented.  

Wing length and tibia length for females were similar, thus only tibia length is presented. 
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Figure 4.4.  Mean thorax and tibia length (mm) + SE of Lucilia sericata (LS) females for 

different arrival orders (together, first, and second with L. sericata) and density (400 

larvae and 200 larvae per piglet).  Comparisons were made within a sex and between 

treatments.  A mixed linear model was used to test for main treatment effects (p < 0.05). 

Pairwise comparisons tests with a Bonferroni correction were used to test for significant 

differences among treatment means while maintaining an overall p-value of 0.05.  Means 

with the same letter did not differ.  There were no significant differences between 

treatments for male thorax or wing length.  Treatment effects for tibia length were similar 

for males and females, thus only female data is presented.  Wing length and thorax length 

for females were similar, thus only thorax length is presented. 

 

 

T
ib

ia
 L

en
g
th

 (
m

m
) 

T
h

o
ra

x
 L

en
g
th

 (
m

m
) 

LS together 

(with PR) 
LS first 

(with PR) 

LS second 

(with PR) 

LS together 

(with CR) 

LS first 

(with CR) 

LS second 

(with CR) 

LS only LS  low-

density 

Treatment 

    A  A    A     A  AB 

 B 

  AB 

  B   

 AB 
 AB 

     A 
     A 

  AB 

   AB 

AB 

  B  



 

 

 

181 

0 

10 

20 

30 

40 

50 

60 

70 

80 

Larval Mortality Rate Survival Rate 

Control 

Water 

Sterile Wash 

Non-sterile Wash 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5.   Effect of L. sericata larval wash on P. regina larval mortality and survival 

(mean % + SE).  A MANOVA was used to test for treatment effects and one-tailed 

Dunnett’s tests (<control) were used to determine differences between treatments and 

controls.  Means with different letters denote a significant difference (p<0.05). A – 

denotes significantly higher.  Experiments were carried out at 25.0 + 0.5°C and 40 + 

1.0% relative humidity.   
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Figure 4.6.  a – Effect of L. sericata larval wash on P. regina larvae mean minimum 

ADH + SE to reach developmental stages.  b – Effect of L. sericata larval wash on ADH 

for each larval stage (mean + SE).  Duration in each stage was measured from the first 

individual reaching the stage until the last individual leaving the stage. A bootstrapped 

(k=1000) MANOVA was used to test for effects of treatment and bootstrapped pairwise 

comparison tests with a Bonferroni correction were used to test for significant differences 

among treatments while maintaining an overall p value of 0.05.  Means with the same 

letter did not differ. A minimum developmental threshold of 0°C was used in ADH 

calculations. 
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Figure 4.7.  Mean thorax and wing length (mm) + SE of Phormia regina adult females 

and males for treatments with (sterile or unfiltered) or without (control or water) Lucilia 

sericata larval wash.  There was a significant effect of sex on size, thus comparisons 

were made within each sex and between treatments.  A mixed linear model was used with 

a significance level of p<0.05 to test for significant effects of treatment and pairwise 

comparison tests with a Bonferroni correction were used to test for significant differences 

among treatments while maintaining an overall p value of 0.05.  Means with the same 

letter did not differ. Treatment effects for mean tibia length were similar to thorax length, 

therefore, only thorax length (a) and wing length (b) are presented. 
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Table 4.1: Hypotheses and predicted outcomes for experiments testing the effect of arrival order on larval development of Lucilia 

sericata (Meigen) and Phormia regina (Meigen).  H1 represents positive priority effects, H2 represents negative priority effects that 

were tested against the null hypothesis (Hnull).  Treatment conditions consist of larvae developing alone (L. sericata only, P. regina 

only), one species developing first, followed by the second species (L. sericata first followed by P. regina in the L. sericata vs. P. 

regina treatment, and vice versa for the P. regina vs. L. sericata treatment) or larvae developing simultaneously (L. sericata and P. 

regina).  Outcomes are described as high, low or increased/decreased with respect to larval performance (measured by larval 

mortality, survival and adult size).  Outcomes for one species treatments are described in order to illustrate potential outcomes should 

priority effects be evident. LS – Lucilia sericata, PR – Phormia regina.  (Note – predicted outcomes for L. sericata and C. rufifacies 

experiments would follow a similar outline.  

 

Hypotheses L. sericata only P. regina only L. sericata vs. P. regina P. regina vs. L. sericata L. sericata and P. regina 

Hnull: Neutral high high 
LS – high 

PR – high 

LS – high 

PR – high 

LS – high 

PR – high 

H1a:+ve priority effect  

(LS on PR) high low/moderate 
LS – high 

PR – increased 

LS – high 

PR – low/moderate 

LS – high   

PR – increased 

H1b: +ve priority effect 

(PR on LS) 
low/moderate high 

LS – low/moderate 

PR – high 

LS – increased 

PR – high 

LS – increased 

PR – high 

H2a: -ve priority effect  

(LS on PR) 
high high 

LS – high 

PR – decreased 

LS – high 

PR – high 

LS – high 

PR – decreased 

H2b: -ve priority effect  

(PR on LS) 
high high 

LS – high 

PR – high 

LS – decreased 

PR – high 

LS – decreased 

PR – high 

1
8
4
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CHAPTER 5: THESIS SUMMARY: THE ROLE OF SPATIAL AND TEMPORAL 

PARTITIONING, PRIORITY EFFECTS AND MECHANISMS OF COEXISTENCE IN 

THE BLOW FLY COMMUNITY 

There is a common goal in ecology: to understand the basis for community 

assembly patterns; to understand patterns and causes of coexistence within a resource or 

landscape; and to be able to predict these patterns within a given community or region 

(HilleRisLambers et al. 2012).  Many model systems have been used to investigate 

mechanisms of coexistence and community assembly, ranging from plant communities 

(Clements 1916, Connell and Slatyer 1977, Tilman 1982, Drake 1991, Ejrnaes et al. 

2006) to intertidal communities (Farrell 1991, Morin 1999) and coral reef assemblages 

(Sale 1980, Chesson and Warner 1981).  However, there has been very little focus on 

carrion as a model system despite its longstanding recognition in the field of ecology as a 

valid tool for investigating ecological principles (Megnin 1894, Elton 1927, Whittaker 

1953, Atkinson and Shorrocks 1981, Schoenly and Reid 1987, Michaud and Moreau 

2009, Tomberlin et al. 2011a,b, Beasley et al. 2012, Barton et al. 2013).  Communities 

that take years to develop, like those commonly studied in community assembly research, 

are limited in that important events or assembly steps that already occurred and may 

influence subsequent patterns can no longer be observed, despite the integral role they 

play in the resultant community structure (Drake 1991).  Studying succession stages over 

a short period of time will fail to detect those priority effects.  The carrion system, on the 

other hand, is easily replicated and manipulated, ephemeral in nature and exhibits rapid 

dynamics (Schoenly and Reid 1987).  It can provide valuable insight into the many 

processes and mechanisms that underlie community assemblages (Tomberlin et al. 
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2011a,b, Beasley et al. 2012, Barton et al. 2013).  There is a need for studies that 

manipulate and evaluate biotic and abiotic factors involved in coexistence and the 

assembly of ecological communities (HilleRisLambers et al. 2012), and successional and 

other ecological studies on ephemeral resources, such as carrion, can be used to 

investigate these processes.  Carrion systems are valuable due to the many ecological 

interactions that are present, such as competition, priority effects, facilitation, etc., which 

can influence multiple levels of the community at local and regional scales. 

The Calliphoridae family of flies, which comprises a large part of the 

sarcosaprophytic guild, was examined over three seasons (spring, summer and fall) and 

over two habitat types (open field and deciduous forest) to determine their effects on 

spatial and temporal partitioning in blow flies.  Furthermore, a finer scale lab-based 

manipulative approach was used to examine interactions between three blow fly species, 

Phormia regina (Meigen), Lucilia sericata (Meigen) and Chrysomya rufifacies 

(Macquart). Interactions between two native blow fly species, L. sericata and P. regina, 

were examined as well as interactions between the native L. sericata and an invasive 

blow fly species, C. rufifacies.  Experiments were conducted at the adult and larval 

stages, to fully evaluate species interactions at multiple life stages.   

My field research focused on the role of seasonal and temporal partitioning during 

decomposition and how these factors affect blow fly community structure.  Blow fly 

community indices were examined for the effects of season, habitat and carcass age.  

These included total number of species (S), species evenness (E), Simpson’s Index of 

Diversity (1-D) and Standardized Niche Breadth (Ba).  These indices were examined 

over time, which was represented by four quartiles of accumulated degree days (0-



 

 

 

200 

50ADD, 50-100ADD, 100-150ADD and 150+ ADD).  I uncovered distinct seasonal 

differences in the blow fly community (Chapter 2; see Figure 2.6, 2.9a), which supports 

previous research that has demonstrated that seasonal partitioning exists within the 

carrion community (Macleod and Donnelly 1958, Denno and Cothran 1975, Hanski and 

Kuusela 1980, Kneidal 1984, Wells and Greenberg 1994, Archer 2003, Archer and Elgar 

2003, Brundage et al. 2011, Moretti et al. 2011, Horenstein et al. 2012, Benbow et al. 

2013, Moretti and Godoy 2013).  The fall season was characterized by having more 

species and higher levels of species evenness, diversity, and niche breadth than spring 

and summer.  The summer blow fly community was characterized by having few species, 

low evenness, low diversity, and high levels of dominance, particularly by P. regina.  

Community indices did not change over time during the summer, indicating summer 

communities reflect a “first-come, first-served” scenario, where the number of female 

flies available for colonization during the first few hours post-mortem largely determines 

the resultant community structure.  Community indices changed over time in spring, with 

the number of species increasing and the highest ɑ-diversity occurring during the 3
rd

 and 

4
th

 quartiles.  However, this was accompanied by periods of species dominance, and 

lower evenness and diversity.  Collectively this suggests that when the blow fly 

community is developing (i.e. 1
st
 quartile), there may be adult and larval interactions in 

addition to dispersal that are important in determining community structure (Beaver 

1977, De Jong 1979, Kuusela and Hanski 1982, Atkinson and Shorrocks 1984).  As the 

community develops and larval interactions diminish as larvae leave the resource in 

search for a suitable pupation site, the blow fly community begins to lose its structure, 

which is evident in a decrease in species evenness, diversity and niche breadth.   
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Heterogeneity in environmental conditions allows variability in microclimatic 

conditions and differential resource availability, which can influence community 

dynamics and biodiversity (Simberloff and Wilson 1969, Levins 1979, Sulkava and 

Huhta 1998).  Previous research regarding habitat associations of blow flies is 

conflicting, with some studies concluding that habitat preferences exist (Smith 1986, 

Greenberg 1991, Smith and Wall 1997, Ferreira and Barbola 1998, Horenstein et al. 

2007, Eberhardt and Elliot 2008, Brundage et al. 2011, Moretti et al. 2011), while other 

studies have found little or no habitat associations (Macleod and Donnelly 1957, Smeeton 

et al. 1984, Goddard and Lago 1985, Martinez-Sanchez et al. 2000, Joy et al. 2002, 

Centeno et al. 2004, Brundage et al. 2011).  My study determined that forest and field 

blow fly communities were similar in community structure: habitat had no effect on 

species number, evenness, diversity levels or niche breadths.  Although habitat 

associations may be important in structuring other communities (Simberloff and Wilson 

1969, Levins 1979, Sulkava and Huhta 1998), it was not a distinguishing factor in blow 

flies (Chapter 2; see Figure 2.9b), confirming that in southwestern Ontario, association 

with forests or field habitats is not a driving factor in the coexistence of blow fly species. 

Since blow flies are known to travel long distances to reach a resource (Macleod 

and Donnelly 1957, 1963).  Differences in distribution that at first appear to be a result of 

active habitat choice may, in fact, result from differential dispersal from source 

populations, coupled with chemotaxis towards the carrion, and culminating in tactile and 

klinotactic responses that exceed minimum stimulus thresholds suitable for oviposition.  

This can explain the situation in which fly species that were once considered to be urban 

residents have eventually been found in rural settings (Smith and Wall 1997, Schnack et 
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al. 1998, Martinez-Sanchez et al. 2000, Grassberger and Frank 2004, Centeno et al. 2004, 

Horenstein et al. 2007).  More research needs to be conducted regarding minimum and 

maximum stimulus thresholds of different species of blowflies for the various 

components of their host search, host acceptance, and oviposition behaviours.  Based on 

my results, distinct habitat preferences that were inferred in previous studies should be 

treated with caution.  In addition, appropriate experimental designs should be employed 

with stringent controls, independent replications, and proper carcass size, age, and 

placement between specific habitat types in order to fully evaluate the habitat (or 

seasonal) influences on blow fly species or any other insects associated with carrion.   

This study demonstrated that microclimatic differences existed between test sites.  

Due to the cumulative nature of ADD calculations, it is imperative that site-specific 

differences in temperature be accounted for.  The common practice of using the nearest 

weather station data for PMI estimations is insufficient to account for site-specific ADD.  

This study supports the recent view in the field of forensic entomology that calls for the 

examination of decomposition and successional data based on ADD (Michaud and 

Moreau 2009, 2011, 2013, Simmons et al. 2010, Tomberlin et al. 2011a,b, 2012, Archer 

2014).  The use of ADD provides standardization that reduces variability in successional 

patterns that is extensive when data are presented on a daily basis, particularly when 

comparing data from different regions where daily temperatures differ considerably.  

This study used manipulative, lab-based experimentation that demonstrated 

important priority effects in blow flies.  These effects varied based on which species of 

flies were present.  Moreover, the occurrence of both positive and negative priority 

effects can further add to the complexity of species interactions.  I conclude that 
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facilitation occurs between blow flies, specifically that P. regina and C. rufifacies are 

positively facilitated in the adult and larval stages by the presence of L. sericata.  In adult 

interactions, arrival order influenced colonization behaviour to various degrees.  Lucilia 

sericata colonized piglets (Sus scrofa domesticus L.) in the expected manner: adult 

females laid egg masses immediately after death in the mouth, ears, and nose regardless 

of whether another species was present.  However, L. sericata, acted as a facilitator 

species for P. regina and C. rufifacies, the females of which exhibited delayed 

colonization and laid eggs in less desirable locations in the absence of other species.  

However, when presented a carcass with L. sericata adults or larvae present, P. regina 

and C. rufifacies females laid eggs within three hours of resource exposure in the highly 

desirable locations of the mouth, ear, nose and often on or near L. sericata eggs.     

With respect to larval interactions, P.regina and C. rufifacies larvae that 

developed in the presence of L. sericata were larger, had better survival and had higher 

adult fitness, with higher fecundity suggested by larger size (e.g., tibia, thorax and wing 

sizes).  These effects were pronounced when P. regina was second in arrival order 

following L. sericata.  Conversely, L. sericata suffered negative priority effects from the 

presence of P. regina by being smaller and consequently having lower adult fitness, and 

having a higher mortality rate.  Higher mortality also occurred in the presence of C. 

rufifacies, however, the negative effects exerted on L. sericata by C. rufifacies could be 

overcome if the two species colonized simultaneously.  In these treatments, although 

larvae experienced a higher mortality rate, any surviving individuals exhibited higher 

adult fitness, indicating that predation effects are limited and larvae may benefit from a 

reduction in intra-specific competition.  Chrysomya rufifacies was not affected by arrival 
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order, with larval and pupal mortality rates remaining low and adult fitness levels being 

high in all treatments when L. sericata was present.  However, when C. rufifacies was 

alone it experienced high levels of mortality and a reduction in adult fitness, indicating 

again that it benefits from the presence of an additional species.  Chrysomya rufifacies is 

known to become a facultative predator during the second and third instar stages of larval 

development (Wells 1991, Wells and Greenberg 1992, Baumgartner 1993, Shiao and Yeh 

2008, Flores 2013), during which it can feed on the resource itself (i.e. carcass tissue) as 

well as on other dipteran larvae.  The presence of L. sericata provided developing C. 

rufifacies larvae with an additional nutritious food source, which presumably resulted in 

the positive effects seen in this study.   

However, P. regina experienced positive effects due to facilitation, which was 

confirmed through further experimentation.  Wash experiments determined that P. regina 

larvae that were exposed to sterile and non-sterile aqueous washes from actively feeding 

L. sericata larvae exhibited the same trends seen in the assembly experiments when in 

presence of L. sericata.  These larvae had lower larval mortality rates and higher adult 

fitness and spent more time feeding upon the resource, with larvae not leaving the 

resource during the 2
nd

 instar stage.  Since this trend was observed with both sterile and 

non-sterile washes and not in the control or water sham treatments, it is likely that a 

protein or other compound(s) from L. sericata larvae must have facilitated the feeding 

and breakdown of the resource.  Though this chemical influence may be bacterial in 

nature, these effects do not result from changes in the bacterial fauna that is associated 

with L. sericata as the sterile wash treatments yielded the greatest increase in fly fitness.  

It would be interesting to determine if this chemical effect is derived from L. sericata 
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larvae directly or from bacteria associated with L. sericata. Phormia regina had higher 

adult fitness in sterile wash treatments, indicating that the presence of bacteria may lead 

to resource competition between bacteria and larvae, which has been demonstrated in 

other carrion insects (Rozen et al. 2008, Ahmad et al. 2006, Burkepile et al. 2006, 

Mumcuoglu et al. 2001).  This hypothesis would also hold true if the compound isolated 

from L. sericata wash was, in fact, antimicrobial, and acted to reduce or eliminate 

bacterial competition with P. regina.  Further analysis of this compound would provide 

insight into the true mechanism that underlies this facilitory effect. 

The facilitation between the native species examined in this study could also 

explain the high level of dominance of P. regina in the blow fly community, especially 

during spring and summer trials (see Chapter 2).  This would also support the conclusion 

that other non-competition mechanisms are important, with the success of P. regina in 

the community relying on exploitation of other species within the sarcosaprophytic guild.  

This facilitory effect could be more or less pronounced in the presence of additional 

species, which would extend beyond the specific interactions with L. sericata that were 

quantified in this study.  If these additional interactions were also positive, then I 

hypothesize that the presence of multiple facilitory species would lead to a further 

increase in larval survival of P. regina, while other species would experience negative 

priority effects such as higher larval mortality and a resultant decrease in abundance 

levels within the community dependent upon arrival order.  Conversely, there could be 

additional inhibitory species present within the blow fly community, however negative 

interactions were not identified with the three species used in my study. 

 Priority effects have been demonstrated in carrion communities previously  
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(Beaver 1977, Hanski and Kuusela 1977, Shorrocks and Bingley 1994, Bruno et al. 

2003).  The priority effects detected in my study suggested that the mechanisms 

governing these interactions could differ between species, as seen with P. regina and C. 

rufifacies, and also within a species, as seen in C. rufifacies adult and larval interactions.  

Differences in arrival order can lead to differences in the timing and location of 

oviposition events, mortality and survival during larval development and adult fitness.  

Larval interactions and the mechanisms that govern them can have profound influences 

on individuals (i.e. survival, dispersal, reproduction), populations (i.e. population 

dynamics, stability, future recruitment), and overall community structure (Fuller 1934, 

Denno and Cothran 1975, Hassell 1975, Allen and Hunt 2001, Boggs and Freeman 

2005).  Thus, larval interactions cannot be ignored when seeking to understand the 

ecology of communities.  Moreover, priority effects can trickle down through the 

community to cause widespread changes in community patterns and in the coexistence of 

species over large temporal or spatial scales (Connell and Slatyer 1977, Hanski and 

Kuusela 1977, Atkinson and Shorrocks 1981, Bruno et al. 2003).  Therefore, it is 

important to examine a community at multiple levels, both spatially and temporally, and 

to extend studies within and between guilds in the carrion insect community in order to 

determine mechanisms of assembly within the community as a whole. 

 As summarized above, my studies allowed me to evaluate the relative importance 

of spatial and temporal partitioning in structuring the blow fly community.  Season 

played a dominant role in determining community structure (i.e., there was temporal 

partitioning among species), while habitat played little or no role in the blow fly 

community (i.e., spatial partitioning was not detected).  The examination of adult and 
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larval interactions between three blow fly species was important in elucidating the 

substantial role of priority effects within the blow fly community.  Examination of the 

carrion community over a large (Chapter 2) and fine (Chapters 3 and 4) spatial and 

temporal scales was important in demonstrating the complexity of interactions between 

species at various life stages and between blow fly populations.  

Further work should incorporate additional species and extend the temporal scale 

used, specifically to address pre- and post- larval developmental effects.  Results from 

adult experiments (Chapter 3) indicated that blow flies may alter their colonization 

behaviour in response to the presence of an additional species, and that these changes in 

behaviour differ between native and non-native species.  These findings combined with 

results from larval experiments (Chapter 4) indicate that these changes may be the result 

of blow fly females maximizing offspring fitness, particularly in the interactions between 

native species.  In non-native interactions, L. sericata did not alter adult colonization 

behaviour due to the presence of C. rufifacies, however, L. sericata larvae could increase 

their chances of persistence within communities with non-native species by having an 

increased adult size despite high levels of larval predation.  Also, L. sericata experienced 

less predation when it colonized at the same time as C. rufifacies.  Given prolonged 

exposure to C. rufifacies, will co-evolution result in changes in adult egg-laying strategy 

of native species that will reduce the negative impacts exerted by this, and other, invasive 

species?  The blow fly system provides an opportunity to compare the diverse array of 

positive and negative interactions, to study the consequences of priority effects present 

between blow flies, and to study the interactions and mechanisms for coexistence  

between native and non-native species. 
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A common view in the field of ecology is that community assemblages result 

from a hierarchy of interacting factors that change in importance over temporal as well as 

spatial scales (HilleRisLambers et al 2012).  There is a fundamental belief among some 

authors that mechanisms operating at the individual level, or small spatial/temporal scale, 

can have profound effects on mechanisms that operate on the community level, or over a 

large spatial/temporal scale (Connor and Simberloff 1979, Drake 1991, Levin et al. 2001, 

HilleRisLambers et al. 2012).  Due to the complexity in community assemblages, 

ecologists have begun to turn to small scale, manipulative experimental approaches to 

disentangle the factors that contribute to community assembly (Gilbert and Owen 1990, 

Drake 1991, Farrell 1991, Levin et al. 2001, HilleRisLambers et al. 2012).  This series of 

studies has highlighted the complexity of the carrion insect community, as well as its 

consistency in assemblages, specifically over different habitats and over a large regional 

spatial scale.  However, interactions between individual species can strongly influence 

the assembly of species within the carrion community.  Mechanisms in addition to 

competition, such as facilitation and inhibition, should be incorporated into theoretical 

and empirical approaches (McCook 1994, Bruno et al. 2003, Alonso et al. 2006, McGill 

et al. 2006, Thompson and Townsend 2006, HilleRisLambers et al. 2012).  The carrion 

insect community has long been recommended as an important tool for investigating 

many ecological processes that extend well beyond its applications in forensic 

entomology.  It is becoming a model ecosystem for the field of ecology as a whole.  
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Appendix A 

Non-Metric Dimensional Scaling (NMDS) plots for pig sites for blow fly species 

composition for each treatment condition.  Each numbered point on the plot corresponds 

to the following treatments.  Stress measures are outlined after each plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TEST SITE SEASON HABITAT PIG 

A fall forest 1 

B fall forest 2 

C fall forest 3 

D fall forest 4 

E fall forest 5 

F fall forest 6 

A fall field 7 

B fall field 8 

C fall field 9 

D fall field 10 

E fall field 11 

F fall field 12 

A spring forest 13 

B spring forest 14 

C spring forest 15 

D spring forest 16 

E spring forest 17 

F spring forest 18 

A spring field 19 

B spring field 20 

C spring field 21 

D spring field 22 

E spring field 23 

F spring field 24 

A summer forest 25 

B summer forest 26 

C summer forest 27 

D summer forest 28 

E summer forest 29 

F summer forest 30 

A summer field 31 

B summer field 32 

C summer field 33 

D summer field 34 

E summer field 35 

F summer field 36 
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 Blow Fly Community Composition 0-50 ADD       Measures 

 

  

 

  

 

 

 

 

 

 

 

Stress and Fit Measures 

Normalized Raw Stress 0.01875 

Stress-I .13692a 

Stress-II .26368a 

S-Stress .02797b 

Dispersion Accounted For 

(D.A.F.) 0.98125 

Tucker's Coefficient of 

Congruence 0.99058 

PROXSCAL minimizes Normalized Raw 

Stress. 

a Optimal scaling factor = 1.019. 

b Optimal scaling factor = 1.001. 
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Blow Fly Community Composition 50-100 ADD       Measures 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

Stress and Fit Measures 

Normalized Raw Stress 0.01073 

Stress-I .10357a 

Stress-II .19833a 

S-Stress .01398b 

Dispersion Accounted For 

(D.A.F.) 0.98927 

Tucker's Coefficient of 

Congruence 0.99462 

PROXSCAL minimizes Normalized Raw 

Stress. 

a Optimal scaling factor = 1.011. 

b Optimal scaling factor = 1.002. 
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Blow Fly Community Composition 100-150 ADD       Measures 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

Stress and Fit Measures 

Normalized Raw Stress 0.00931 

Stress-I .09648a 

Stress-II .18224a 

S-Stress .01448b 

Dispersion Accounted For 

(D.A.F.) 0.99069 

Tucker's Coefficient of 

Congruence 0.99533 

PROXSCAL minimizes Normalized Raw 

Stress. 

a Optimal scaling factor = 1.019. 

b Optimal scaling factor = 1.000. 
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Blow Fly Community Composition 150+ ADD       Measures 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

Stress and Fit Measures 

Normalized Raw Stress 0.00037 

Stress-I .01911a 

Stress-II .02255a 

S-Stress .00025b 

Dispersion Accounted For 

(D.A.F.) 0.99963 

Tucker's Coefficient of 

Congruence 0.99982 

PROXSCAL minimizes Normalized Raw 

Stress. 

a Optimal scaling factor = 1.000. 

b Optimal scaling factor = 1.000. 
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Overall Blow Fly Community Composition      Measures 

 

  

 

  

 

 

 

 

 

 

 

Stress and Fit Measures 

Normalized Raw Stress 0.01204 

Stress-I .10972a 

Stress-II .23546a 

S-Stress .01730b 

Dispersion Accounted For 

(D.A.F.) 0.98796 

Tucker's Coefficient of 

Congruence 0.99396 

PROXSCAL minimizes Normalized Raw 

Stress. 

a Optimal scaling factor = 1.012. 

b Optimal scaling factor = 1.001. 
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Appendix B 

Life history and developmental characteristics for each of the three blow fly species used 

to examine priority effects in this study: Lucilia sericata, Phormia regina, and 

Chrysomya rufifacies. 

 

Lucilia sericata (Meigen) (Diptera: Calliphoridae) 

Lucilia sericata is a green bottle fly that is cosmopolitan in its distribution (Hall 1948, 

Wall et al. 2002).  Adult females generally oviposit four to six days post-emergence 

(Mackerras 1933, Wall et al. 2002, Pitts and Wall 2004).  At each oviposition event, a 

gravid female lays an average of 225 eggs (Mackerras 1933, Wall 1993, Hayes et al. 

1999, Cruickshank and Wall 2002a, Pitts and Wall 2004).  Wild adult flies typically have 

one oviposition event in their lifetime, depositing their full egg load at once, usually in a 

single egg mass (Greenberg 1991, Pitts and Wall 2004), although wild caged adults have 

been shown to have multiple oviposition events over one lifetime (Davies 2006).  Adults 

are present during the spring, summer and fall (see Chapter 2), and individuals can 

overwinter in both the larval and pupal stages (Davies 1929, Mackerras 1933, Green 

1951).  It is typically found ovipositing within the first 24 hrs of decomposition on 

freshly killed animals (Fuller 1934, Hall and Doisy 1993, Watson and Carlton 2005, 

Michaud and Moreau 2009), however, there are some reports of delayed colonization 

occurring after the first 24 hrs of decomposition (Eberhardt and Elliot 2008).  The lower 

developmental threshold is 9°C for larvae and 11°C for eggs in females (Wall et al. 

1992).  At 22°C, L. sericata requires a mean of 23 ± 1.61 hrs for egg hatching, 179 ± 47.4 

hrs for the larval stage, and143 ± 58.63 hrs for the pupal stage with a minimum of 4140 

accumulated degree hours (ADH) above 9°C to successfully complete development to the 

adult stage (Greenberg 1991). 
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Phormia regina (Meigen) (Diptera: Calliphoridae) 

Phormia regina is a black bottle fly that is Holarctic in its distribution (Hall 1948, 

Byrd and Castner 2001).  Adult females generally oviposit six to seven days post 

emergence (Crystal 1983).  Adults are present during spring, summer and fall (see 

Chapter 2), and individuals can overwinter in the adult and pupal stages (Byrd and 

Castner 2001).  Females colonize fresh carrion within the first 24 hrs postmortem 

(Greenberg 1991), however, other studies oviposition is delayed until after the first 24 hrs 

(Illingworth 1927, Watson and Carlton 2005, Gruner et al. 2007, Michaud and Moreau 

2009).  The lower developmental threshold was determined to be 4.2°C by Greenberg 

(1991) in Chicago populations. At 22°C, P. regina takes a mean of 20 ± 1.2 hrs for egg 

hatching, 200 ±  51.5 hrs for the larval development, and 116.5 ± 40.8 hrs for the pupal 

stage, with a minimum of 4038 accumulated degree hours (ADH) to fully complete 

development to the adult stage (Greenberg 1991). 

 

Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae) 

Chrysomya rufifacies is a screwworm fly.  It originates from Australia and Asia, 

however, because of its general association with humans and urban areas, it is presumed 

to have been introduced into Central America with humans or through transportation of 

goods (Baumgartner 1993).  Since that time, it has increased its geographic range 

throughout the US and into Southern Ontario (Rosati and VanLaerhoven 2007).  

Chrysomya rufifacies cannot overwinter in more northern climates; however, by 

dispersing northwards during the growing season it does play a prominent role in the 

carrion community around the Great Lakes (Rosati and VanLaerhoven 2007).  It can 
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overwinter in the pupal stage during mild winters in warmer climates (Mackerras 1933), 

enabling populations to become established early in the spring in the southern U.S.  An 

adult female lays between 187-368 eggs, with a mean of 200-210 eggs per batch, with 

unisexual progeny within each batch (Mackerras 1933, Wilton 1954, Ullerich 1984, 

Baumgartner 1993).  The lower developmental thresholds are 9°C for successful egg 

hatching, 15°C for larval and pupal development (Wilton 1954, O’Flynn 1983, Byrd and 

Butler 1997) and 13°C for adult flight (Baumgartner 1993).  The upper developmental 

threshold is 40°C (Waterhouse 1947).  This species is considered to be dependent upon 

previous colonization by an additional species (Fuller 1934, O’Flynn and Moorehouse 

1979, Palmer 1980, Goff 2000, Watson and Carlton 2005).  It is debatable whether this 

species has a delay in colonization (Byrd and Butler 1997, Byrd and Castner 2001, Lang 

et al. 2006, Gruner et al. 2007, Eberhardt and Elliot 2008, Yang and Shiao 2012).  At 

21°C, Byrd and Butler (1997) determined that C. rufifacies takes a minimum of 20 hrs for 

egg hatching, 148 hrs for the larval stage, and 128 hrs for the pupal stage, while 

Greenberg (1991) determined C. rufifacies required a mean of 4428 ADH (above 10°C) 

to successfully develop to adult.   
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