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Abstract 

Acoustic communication is a critical component of social interactions in birds. There are 

relatively few quantitative studies of the vocal behaviour of tropical bird species, in spite of the 

rich avian biodiversity in the tropics and the extensive variety of vocalizations they produce. This 

lack of information inhibits our ability to understand the behaviour and ecology of tropical birds, 

and impairs our ability to perform comparative analyses from an evolutionary perspective. In 

this dissertation, I study the vocalizations of three species of tropical ground-sparrow: Melozone 

biarcuata (Prevost’s Ground-sparrow), Melozone kieneri (Rusty-crowned Ground-sparrow), and 

Melozone leucotis (White-eared Ground-sparrow). I provide the first description of the 

vocalizations of each species, and demonstrate that all three ground-sparrows produce three 

main categories of vocalizations: calls, solo songs, and duets. I present results of a sound 

transmission experiment where I broadcast and re-recorded solo songs and duets through 

thicket habitats. I found that both vocalizations show similar patterns of degradation and 

attenuation with distance, suggesting that they facilitate communication with receivers at 

similar distances. I evaluate individual distinctiveness in the songs of male White-eared Ground-

sparrows and the persistence of distinctive characteristics over time. I found that male White-

eared Ground-sparrows sing individually distinctive songs. Uniquely, I found the frequency with 

which males sing different song types is also individually distinctive, and this feature varies little 

between recording sessions. I present results of a playback experiment to evaluate whether 

White-eared Ground-sparrows use calls, solo songs, and duets to discriminate conspecific from 

heterospecific competitors. I show that ground-sparrows display more intense responses to 

conspecific vocalizations than congeneric vocalizations, suggesting that they discriminate 

competitors from non-competitor species. Finally, I provide analyses of the morphology, 
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plumage patterns, colour reflectance, male solo songs, and calls of individuals from northern and 

southern subspecies of Melozone biarcuata. My data show that the southern subspecies exhibits 

substantial phenotypic differences, on par with other subspecies complexes where species 

status has been recognized. I argue that M. b. cabanisi should be treated as a species separate 

from M. biarcuata (Prevost’s Ground-Sparrow) and propose that it be called Cabanis’ Ground-

Sparrow (Melozone cabanisi). 
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2 

Introduction 

Evolution shapes animal vocalizations through natural selection, sexual selection, and drift (Arak 

and Enquist 1993). These processes may generate divergent vocal signal characteristics among 

species (Bertelli and Tubaro 2002, Seddon 2005, Tobias and Seddon 2009), or among 

populations of the same species (Dingle et al. 2008), thereby influencing speciation (West-

Eberhard 1983). In addition, these processes may influence the efficiency of information transfer 

from signaler to receiver through the environment (Morton 1975, Hansen 1979). It remains 

unclear which process (natural, sexual selection, or drift) is the principal process that influences 

the divergence of animal vocalizations, or whether these processes share equal importance in 

shaping animal sound (Slabbekoorn and Smith 2002, Seddon 2005, Dingleet al. 2008). The 

effects of natural selection (as it relates to morphological or ecological factors, such as body size 

or habitat-based influences on vocalizations) or drift on vocal divergence are still poorly studied 

(Slabbekoorn and Smith 2002), whereas processes related to sexual selection have received 

more attention (i.e. female mate choice and male-male competition; reviewed in Collins 2004).  

Two important hypotheses have been proposed for analyzing acoustic signal adaptation 

(vocal characteristics that positively influence fitness) in relation to habitat and morphology: the 

Acoustic Adaptation Hypothesis and the Morphological Hypothesis. The Acoustic Adaptation 

Hypothesis (Morton 1975, Hansen 1979) states that environment shapes the evolution of animal 

signals by selecting for signals that effectively transmit information between signalers and 

receivers, so that acoustic characteristics of animal vocalizations are adapted to the habitat 

where they are typically transmitted. As a consequence, natural selection can generate 

convergent signal characteristics between species that inhabit areas with similar vegetation 

characteristics, especially if habitat characteristics influence the design of acoustic signals (Wiley 



 

Chapter 1: General Introduction 

3 

1991, Boncoraglio and Saino 2007, Ey and Fisher 2009). The Morphological Hypothesis states 

that morphology of the syrinx, beak, and other physical structures influences the characteristics 

of animal signals (Nowicki et al 1992). As a consequence, vocal similarity is more probable in 

closely related species (Podos 2001, Bertelli and Tubaro 2002, Seddon 2005, Jiggins et al. 2006), 

because they share similar body features such as body and bill morphology (Qvarnström et al. 

2006, Tobias and Seddon 2009, Seddon and Tobias 2010). Numerous studies have found support 

for both the Acoustic Adaptation Hypothesis (including: Wiley 1991, Tubaro and Segura 1994, 

Patten 2004) and the Morphological Hypothesis (including: Podos 2001, Bertelli and Tubaro 

2002, Seddon 2005). It therefore appears that both hypotheses are important for understanding 

the evolution of animal vocalizations. 

The social behaviour of different animal species may also affect the evolution of their 

vocal signals (Forrest 1994). If receivers are usually far away from signallers, as is common in 

species that live at low densities or have large territories, then signals need to propagate over 

long distances with little degradation (distortion of acoustic characteristics of the vocal signals) 

and attenuation (loss of sound amplitude related to transmission distance). In such cases, vocal 

evolution will be heavily influenced by acoustic adaptation to transmit with maximal efficiency 

through the environment (Brown and Handford 2000). In contrast, when signallers and receivers 

are usually found in close proximity, as is common in animals that live in social groups or have 

small territories, this selective pressure may be relaxed (Dabelsteen 2005). In these cases, signals 

experience less degradation and attenuation, even in spite of living in areas with dense 

vegetation, because signalers and receivers are near to one another. Consequently, the social 

behaviour of animals and the spacing between individuals have a strong influence on the role 

that the habitat plays in shaping animal vocal signals. 
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Although all of these factors can affect vocal signal divergence in different ways, few 

studies have attempted to analyze simultaneously the effects of social, ecological, and 

morphological factors on several vocalization types (e.g., calls, solo songs, and duets). In this 

dissertation, I analyze the influence of vegetation, spatial distribution, and social competition on 

the vocal signals of Mesoamerican ground-sparrows (Melozone sp.). These songbirds are suitable 

models for such an investigation because they live in dense thicket habitats (Stiles and Skutch 

1989, Howell and Webb 2004, Rising 2011, Sandoval and Mennill 2012) where vocal signals are 

very important components of social and sexual interactions (Sandoval and Barrantes 2012). My 

main goal in studying this group of birds is to provide a better understanding of the main forces 

affecting the divergence of different types of vocal signals. By describing vocal signals in the 

ground-sparrow species in chapters 2 and 3, I seek to provide background information for future 

comparative studies between taxa and experimental questions about vocal signal function and 

evolution. By experimentally analyzing the effect of habitat on solo song and duet transmission 

in chapter 4, I seek to provide a better understanding of sound transmission in two different 

vocal signals. By analyzing the individual distinctiveness and the temporal and spatial variability 

among individuals’ repertoires in chapter 5, I seek to understand individual-level variation, and 

variation between populations. By analyzing birds’ responses to conspecific and congeneric vocal 

signals in chapter 6, I seek to provide a better understanding of how animals perceive acoustic 

differences. By analyzing the similarity between subspecies’ vocal signals, morphology, and 

plumage patterns in chapter 7, I seek to provide a better understanding of the taxonomic 

relationships within ground-sparrow species. In this introductory chapter, I introduce each of the 

major topics addressed in this dissertation and I briefly summarize what is known about the 

natural history of my study species. 
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Vocal behaviour in birds 

The complete library of vocal signals produced by a species or an individual is called a vocal 

repertoire (Catchpole and Slater 2008). In Oscine songbirds, the suborder of birds where ground-

sparrows are classified, some vocal signals may be inherited genetically (e.g., calls), while others 

may be learned culturally (e.g., solo songs and possibly duets; Kroodsma 2004, Marler 2004, 

Beecher and Brenowitz 2005). For example, male vocalizations used to attract females may 

diverge at faster rates than vocalizations that indicate food or alarm in response to predators 

(Andersson 1994, Marler 2004). This occurs because the selection process associated with more 

rapid divergence is often female mate choice, driving strong directional selection (Andersson 

1994). Another reason for faster divergence in learned vocalizations is that cultural inherence is 

imperfect; significant changes can occur in every generation as individuals introduce small errors 

while they learn the sounds of adults (Beecher and Brenowitz 2005, Wright et al. 2008). 

Meanwhile, less divergent vocalizations appear to be related to behaviours that experience 

stabilizing selection, including naturally-selected vocalizations that are important in food-finding 

or alarm contexts (Marler 2004). Descriptive vocal studies of vocal repertoires among related 

bird species are critical for helping us to understand the variation in signals between species, 

and to facilitate comparative studies between both song (a sexually-selected signal) and non-

song vocalizations (subject to different types of selection).  
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Sound transmission and bird vocalizations  

Several studies have revealed that animals produce particular types of vocalizations, and engage 

in particular vocal behaviours, that maximize the transmission distance of their vocal signals 

(Krams 2001, Mathevon et al. 2005, Barker and Mennill 2009, Barker et al. 2009). These 

vocalizations are referred to as long-distance signals or public signals (Dabelsteen 2005). Other 

opportunistic receivers can also access the information encoded in the vocalizations, including 

competitors, parasites, and predators (McGregor and Peake 2000). Efficient transmission of 

long-distance signals is important in sexual and social interactions because it allows contact 

between mates and other conspecifics and may help in territory defence (Boncoraglio and Saino 

2007). The influence of local vegetation and ambient noise on sound propagation also depends 

on the distance between the signaller and receiver (Forrest 1994, Barker et al. 2009). If the 

vocalization must travel large distances to reach the potential receiver, it will experience more 

degradation (Wiley 1991).  

By comparing the transmission and degradation characteristics of vocal signals, and by 

including both long-distance signals as well as short-distance signals, we may gain a deeper 

appreciation for the influence of habitat on animal vocal signals. For animals that live in habitats 

where sound propagation is challenging (e.g., close to noisy rivers and roads, or habitats with 

dense vegetation; Slabbekoorn and Smith 2002, Redondo et al 2013), acoustic adaptation can 

lead to vocalizations with structural characteristics that enhance vocal transmission (McGregor 

and Krebs 1984, Wiley 1991). Therefore, transmission studies of vocalizations by bird species 

that live in such habitats (e.g., thickets habitats) may provide significant insight into the 

influence of habitat on animal vocal signals. 
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Geographic similarity and individual distinctiveness 

Geographic variation in vocalizations is well documented across a wide variety of taxa including 

amphibians (Gerhardt 1994), mammals (e.g., Conner 1982, Thomas and Stirling 1983, Davidson 

and Wilkinson 2002), and birds (Kroodsma 2004). Isolation, habitat differences, and drift 

between isolated groups have all been shown to give rise to population-level variation within 

species (reviewed in Catchpole and Slater 2008, Podos and Warren 2007), resulting in more 

similar vocal characteristics among nearby animals (Baker and Cunningham 1985, Salinas-

Melgoza and Wright 2012). Many studies of geographic variation in avian vocalizations have 

found such patterns, with particularly strong divergence of male solo songs in bird species that 

exhibit vocal learning (reviewed in Kroodsma 2004). In vocal learning species, divergence in 

vocalizations does not necessary follow patterns of genetic variation. In White-crowned 

Sparrows (Zonotrichia leucophrys), for example, groups of birds with the same dialect do not 

share genetic similarities (MacDougall‐Shackleton and MacDougall‐Shackleton 2001). In Yellow-

naped Parrots (Amazona auropalliata), the two dialects observed in Costa Rica are not related 

with genetic variation (Wright and Wilkinson 2001). 

Unique features between the songs of different individuals facilitate individual 

recognition (Barnard and Burk 1979, Dale et al. 2001, Tibbetts and Dale 2007), signaling 

individual quality (Christie et al. 2004, Brumm 2009, Byers et al. 2010), and group or geographic 

origin (Sewall 2009, 2011). Signals used for individual recognition vary between species (Ptacek 

2000, Ord and Stamps 2009, Grether 2011, Ord et al. 2011), but individually-distinctive acoustic 

features are known to occur in the vocalizations of amphibians (e.g. Bee et al. 2001, Feng et al. 

2009, Gasser et al. 2009), birds (e.g. Harris and Lemon 1972, Lovell and Lein 2004, Sandoval and 

Escalante 2011), and mammals (e.g. Dallmann and Geissmann 2001, Blumstein and Munos 2005, 
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Vannoni and McElligott 2007). Consistency of these signals over time is a requirement to allow 

receivers to recognize the individual that produced the signal (Ellis 2008). However, similarities 

between acoustic characteristics of individual songs (e.g., temporal characteristics, frequency 

characteristics) and repertoires (number of song types) may change over time due to the 

occurrence of open-ended learning (song learning each year; Vargas-Castro et al. 2012), changes 

in signaller physiology and morphology (Nottebohm et al. 1987, Gil and Gahr 2002), or changes 

in the habitat where the song is transmitted (Forrest 1994, Slabbekoorn et al. 2002). 

Quantification of geographic and temporal variation of the acoustic characteristics and 

repertoire of vocalizations offers insights into the vocalization learning process. 

 

Acoustic signal recognition 

Vocalizations in birds are used for multiple purposes including mate attraction, resource defence 

(defence of breeding partners, territories), and species recognition (Catchpole and Slater 2008). 

Therefore, it is important that these signals are correctly recognized by the receiver. In some 

cases, vocal similarity between species can produce misidentifications (Qvarnström et al. 2006, 

Tobias and Seddon 2009, Seddon and Tobias 2010), resulting in interspecific aggression and 

hybridization (Baker and Boylan 1999, Qvarnström et al. 2006, Tobias and Seddon 2009). 

Understanding the mechanisms that permit conspecific recognition is essential for 

understanding the evolution of vocal signals between species. 

For territorial birds that inhabit sites with dense vegetation, vocal signals may be the 

optimal form of communication for interacting with conspecific individuals because visual signals 

will transmit only short distances. Similarity in vocalizations (e.g., calls, solo songs, and duets) 

between species may result in species misidentification when multiple species are present in the 
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same area and visual cues are limited. For example, studies in Ficedula flycatchers (Qvarnström 

et al. 2006) and Hypocnemis antbirds (Tobias and Seddon 2009, Seddon and Tobias 2010) 

revealed that vocal similarity produced direct interactions between sympatric species. The 

response to similar vocal stimuli, however, could be the result of a learned or innate behaviour. 

Therefore, to understand how similar vocal stimuli are recognized by the animals, it is 

worthwhile to conduct comparisons between experienced and non experienced populations 

with respect to the stimulus of interest. 

 

A multi-trait approach to understanding subspecies relationships 

Given that one of the most common units of conservation is the species, it is important to 

explicitly and clearly define what constitutes a species (Garnet and Christidis 2007). Multiple 

definitions and approaches for identifying species exist (De Queiroz 2005, Cadena and Cuervo 

2010), but many ambiguities remain. For example, the Morphospecies Concept states that a 

species is a group of organisms that share identical morphological characters. The Biological 

Species Concept states that a species is a group of organisms that can interbreed freely (Mayr 

1969). The Phylogentic Species Concept states that a species is a group of organism that share 

the same ancestry (Cracraft 1989). The Evolutionary Species Concept states that a species is a 

group of organisms that share the same evolutionary trajectory (Wiley 1978, Wiley and Mayden 

2000, Peterson 2006, 2007). Problems with these species definitions arise when we compare 

allopatric populations of the same organism or different populations of similar organisms 

showing small variation in one or several traits (De Queiroz 2005, Cadena and Cuervo 2010). 

Another problem with species definitions occurs when two different organisms interbreed to 

produce hybrids (De Queiroz 2005, Cadena and Cuervo 2010).  
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In the tropics, species definitions are more challenging because many species are poorly 

studied and there is a lack of genetic data for many taxa. A multi-trait approach has recently 

been proposed for taxonomic studies when genetic data are lacking (Tobias et al. 2010, Cadena 

and Cuervo 2010). A multi-trait approach involves evaluating morphological, behavioural, and 

ecological traits simultaneously, and if two organisms differ in several uncorrelated traits, it is 

probable that both forms will be recognized as different species (Tobias et al. 2010, Cadena and 

Cuervo 2010). This approach has been used effectively in studies of a brush-finch (the Arremon 

torquatus complex; Cadena and Cuervo 2010) and the Long-tailed Antbird (Drymophila caudata; 

Isler et al. 2012). In the brush-finch, 8 of the 14 recognized subspecies currently classified within 

A. torquatus are sufficiently different in terms of vocalizations, plumage patterns, ecological 

niches, and genetics to be recognized as different species (Cadena and Cuervo 2010). In the 

antbird, vocalizations, niche ecology, and genetic patterns were sufficiently different to separate 

8 subspecies into 4 species (Isler et al. 2012). 

 

The Melozone genus 

Ground-sparrows (genus: Melozone) are small granivorous birds, with body sizes that range from 

15 to 24 cm in length, weighing 24.8 to 61.2 g (Rising 2011). They are found from southwestern 

Oregon to central Costa Rica, primarily in habitats along the Pacific coast, ranging from sea level 

to 2950 m (Stiles and Skutch 1989, Tweit and Fish 1994, Howell and Webb 1995, Johnson and 

Haight 1996, Benedict et al. 2011). Their plumage colours vary from brown to grey, typically with 

whitish breasts and reddish undertail coverts (Rising 2011). 

Historically, the Melozone genus included only three Mesoamerican species, but the 

taxonomy has changed recently as a result of genetic studies (DaCosta el al. 2009, Chesser et al. 
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2010). Four towhee species formerly recognized as part of the Pipilo genus (Tweit and Fish 1994, 

Howell and Webb 1995, Johnson and Haight 1996, Benedict et al. 2011) are now classified as 

Melozone. Consequently, the genus Melozone has now increased from three species to seven 

(Chesser et al. 2010). The four recently added Melozone species — Abert’s Towhee (Melozone 

aberti), California Towhee (M. crissalis), Canyon Towhee (M. fusca), and White-throated Towhee 

(M. albicollis) — are distributed from Pacific and central Mexico to the central and West coast of 

the United States of America (Tweit and Fish 1994, Howell and Webb 1995, Johnson and Haight 

1996, Benedict et al. 2011). All four species have brown plumage and lack conspicuous plumage 

patterns, which sometimes results in visual misidentification. For example, the similarity in 

plumage between California and Canyon Towhees meant that these species were previously 

considered a single species (Benedict et al. 2011). The natural history, behaviour, and ecology of 

three of the four recently-added species is well-studied (see Tweit and Fish 1994, Howell and 

Webb 1995, Johnson and Haight 1996, Benedict et al. 2011, Rising 2011), whereas more 

research is needed on White-throated Towhees (M. albicollis).  

The second group within this genus — the Mesoamerican ground-sparrows (Stiles and 

Skutch 1989, Howell and Webb 1995, AOU 1998, Rising 2011) — are the species studied in this 

dissertation: Prevost’s Ground-sparrows (Melozone biarcuata), Rusty-crowned Ground-sparrows 

(M. kieneri), and White-eared Ground-sparrows (M. leucotis). These three tropical species are 

distributed from western and central Mexico to the centre of Costa Rica (Figure 1.1). All three 

species show conspicuous plumage patterns in the head and breast, including black, white, 

yellow, or orange spots (Figure 1.1; Stiles and Skutch 1989, Howell and Webb 1995). In contrast 

with the more northerly species of Melozone, the natural history, behaviour, and ecology of 
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these three tropical Melozone species is limited to anecdotal descriptions (Stiles and Skutch 

1989, Howell and Webb 1995, Rising 2011). 

 

Behaviour and ecology of Mesoamerican ground-sparrows 

There are few descriptions of the behaviour and ecology of Mesoamerican ground-sparrows. 

Previous descriptions suggest that pairs defend territories year round in young secondary 

vegetation, forest edges, shaded coffee plantations, and thicket vegetation (Stiles and Skutch 

1989, Howell and Webb 1995, AOU 1998). Analyses that I conducted concurrently with this 

dissertation (Sandoval and Mennill 2013) found that the sexes are monochromatic to the human 

eye, but morphologically different for all three species. Analyses of 82 White-eared Ground-

sparrows (M. leucotis) revealed that males are larger than females for only a single 

morphological trait: wing length (Sandoval and Mennill 2013). In contrast, analyses of 56 

Prevost’s Ground-sparrows (M. biarcuata) and 32 Rusty-crowned Ground-sparrows (M. kieneri), 

revealed that males are larger than females for multiple morphological traits including beak size, 

tarsus, tail, and wing length in M. biarcuata; and tarsus, wing, and culmen length in M. kieneri 

(Sandoval and Mennill 2013).  

Anecdotally, vocalizations of ground-sparrows species are classified into three main 

types: calls, male solo songs, and duets (Stiles and Skutch 1989, Howell and Webb 1995, Rising 

2011). Calls are high-pitched vocalizations that appear to be produced in multiple contexts, and 

are thought to vary in rate when birds are foraging or when a predator is close (Marler 2004). 

The male solo song has been suggested to be the most variable vocalization among and within 

species. The general structure of this vocalization has been described as beginning with a high-

pitched call, followed by a trill and/or modulated whistle, and ending with a trill (Stiles and 
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Skutch 1989). Duets have been described as a series of sharp and thin calls (Stiles and Skutch 

1989, Howell and Webb 1995). The vocalizations of all three tropical Melozone species have 

never been described in any quantitative bioacoustic detail. 

 

Dissertation overview 

In this dissertation I describe the vocal repertoire and vocal behaviour of Mesoamerican ground-

sparrow species, I evaluate the effect of habitat on transmission properties of different 

vocalizations, and I describe individual distinctiveness and the effect of geographic distribution 

and temporal variation on song repertoire similarity. I evaluate factors promoting differential 

responses to conspecific and congeneric vocal stimuli using playback, and I provide information 

about the taxonomic status of some of the Mesoamerican ground-sparrows using a multi-trait 

approach using morphological measurements, acoustic recordings, and plumage patterning and 

reflectance. 

In chapters 2 and 3, I provide the first description of the structural and temporal 

characteristics of the vocalizations of two Mesoamerican ground-sparrow species: White-eared 

Ground-sparrows (M. leucotis) and Rusty-crowned Ground-sparrows (M. kieneri). In chapter 2, I 

provide a description of the vocal repertoire and pattern of diel variation in vocal behaviour in 

White-eared Ground-sparrows, including detailed measurements of the acoustic structure of 

vocalizations, an analysis of the syntax of male solo song, and information about context of use 

of vocalizations. In chapter 3, I provide a description of the vocal repertoire and the diel pattern 

of variation in Rusty-crowned Ground-sparrows, including detailed measurements of the 

acoustic structure of vocalizations, an analysis of the syntax of male solo song, information 
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about context of use of vocalizations, and analysis of similarity in solo song repertoires between 

neighbours. 

In chapter 4, I analyze the transmission properties of different types of vocalizations 

within the territories of White-eared Ground-sparrows. I use a sound transmission experiment 

to compare if solo songs and duets produced by this species degrade similarly (at similar 

distances and heights) when transmitting through their territories. This comparison evaluates 

whether both vocalization types facilitate communicate with receivers at similar distances and 

positions.  

 In chapter 5, I evaluate individual distinctiveness in the acoustic characteristics of male 

solo songs and I compare song repertoires between individuals over time in four populations of 

White-eared Ground-sparrows. I also evaluate the similarity between solo song repertoires 

between neighbouring males. This chapter was recently published in the journal Ethology. 

In chapter 6, I evaluate how territorial pairs of White-eared Ground-sparrows 

discriminate between vocal signals – including calls, solo songs, and duets – of conspecific and 

congeneric competitor species. I evaluate the effect of previous experience on the response to 

these vocal signal types, using populations that are allopatric and sympatric with the congeneric 

species. This chapter was recently published in the journal Animal Behaviour.  

In chapter 7, I use a multi-trait approach to evaluate the relationship between Prevost’s 

Ground-sparrow (M. biarcuata) subspecies. Firstly, I compare the morphology between 

subspecies by sex. Secondly, I compare plumage spectral characteristics of ten body regions per 

subspecies, using a visual model to take into account the perception of visual signals by 

receivers. Finally, I compare fine acoustic characteristic of calls, solo songs, and duets between 

subspecies.  
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My dissertation uses an integrative approach, combining observations from animals in 

the field, museum studies, and experiments to describe animal behaviour and ecology, and to 

test hypotheses on the causes of vocal divergence among species. I also evaluate how multiple 

phenotypic traits can help to understand taxonomic relationships between closely related 

organisms. This research will expand our understanding of the influence of vegetation, spatial 

distribution, and social competition on the divergence of different vocal signals within birds, 

while also expanding our understanding of the vocalizations of a poorly-studied group of 

animals, the Mesoamerican ground-sparrows. Finally, in this dissertation I discuss how the 

different vocal characteristics of my study animals could be adaptations, although I do not 

directly test the relationship between vocal characteristics and survival or reproductive success, 

or the inheritance of the characteristics that I describe. 
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Figures 

 

  

 

Figure1.1. Map showing the distribution of the three Mesoamerican Melozone ground-sparrows 
that are the focus of this dissertation. Medium grey: Rusty-crowned Ground-sparrow, Melozone 
kieneri. Pale grey: Prevost’s Ground-sparrow, Melozone biarcuata. Dark grey: White-eared 
Ground-sparrow, Melozone leucotis. Source of distribution map data: Neotropical Birds 
(http://neotropical.birds.cornell.edu/portal/species).
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Chapter 2 

Description of the vocalizations and vocal behaviour of White-eared 

Ground-sparrows (Melozone leucotis) during the breeding season*  

                                                             
*
This chapter is the outcome of joint research with C. Méndez and D. Mennill 
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Chapter summary 

There are few quantitative descriptive studies of the vocalizations and vocal behaviour of 

tropical bird species, in spite of the tropics’ rich avian biodiversity and the extensive variety of 

vocalizations produced by tropical birds. This lack of information limits our understanding of 

tropical animals, including our ability to perform comparative analyses on vocal behaviours from 

an evolutionary perspective. In this study we present the first quantitative description of the 

vocal repertoire and daily vocal activity of White-eared Ground-sparrows (Melozone leucotis), 

using focal and autonomous recordings collected during two consecutive breeding seasons in 

Costa Rica. We classified vocalizations into categories based on their visual appearance on sound 

spectrograms, creating a library of vocalizations for this species. We found that White-eared 

Ground-sparrows produce three main categories of vocalizations: solo songs, calls, and duets. 

Solo songs are produced only by males. Each male has a mean repertoire of 3.5 (± 0.3) solo song 

types, which all share the same general structure with short introductory notes, a frequency-

modulated middle section, and a terminal trill. Both sexes produce calls and coordinated vocal 

duets. We quantified patterns of diel variation in each category of vocalization, and found that 

ground-sparrows produce all three vocalizations at higher output at dawn (between 0500 and 

0600) compared to the rest of the day. This study allowed us to conduct the first comparisons of 

vocalizations between White-eared Ground-sparrows and North American species in the genus 

Melozone, and revealed both similarities and differences between the species groups. Our study 

also shows that vocalizations related to communication within pairs and territory defence (calls 

and duets) exhibited lower levels of individual distinctiveness than vocalizations related to 

female attraction (male solo songs). Our observations suggest that each of the three described 
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vocalizations have multiple functions in this species, revealing diverse communication functions 

with a small vocal repertoire in this tropical songbird.  
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Introduction 

A vocal repertoire is the complete library of vocalizations an individual or species can 

produce (Catchpole and Slater 2008). In the Order Passeriformes (songbirds), members of the 

Oscine suborder generally have larger vocal repertoires than members of the Suboscine 

suborder. Oscines learn their vocalizations culturally, whereas Suboscine appears to inherit their 

vocalizations genetically (Kroodsma 2004; Beecher and Brenowitz 2005). The result of the 

cultural learning process is that each population or individual produces new vocal characters by 

learning, making mistakes, or improvising (Beecher and Brenowitz 2005, Wright et al. 2008), 

thereby increasing the species’ vocal repertoire through the time. Oscines in the tropics also 

have larger vocal repertoires than their counterparts from temperate habitats, because tropical 

birds exhibit several vocal behaviours that are rare or absent in the north temperate zone, 

including female solo songs (Langmore 1998; Beecher and Brenowitz 2005), pair duets (Hall 

2004; 2009), and choruses (e.g., Baker 2004; 2009; Hale 2006). The number of quantitative 

descriptive studies that have been conducted on the vocalizations of tropical bird species is 

limited considering the diversity of tropical bird species. Moreover, with the recent importance 

assigned to vocalizations as a tool for resolving taxonomic issues between closely related taxa 

(Price and Lanyon 2002; Stiles 2009; Cadena and Cuervo 2010; Millsap et al. 2011), studies of this 

type are becoming increasingly recommended. In this study, we present the first quantitative 

description of vocal repertoire and daily vocal activity of White-eared Ground-sparrows 

(Melozone leucotis). This is one of the seven recognized species in the genus Melozone (Chesser 

et al. 2010), and one of four species in the genus where our knowledge of vocal behaviour is 

restricted to brief and anecdotal descriptions (Stiles and Skutch 1989; Howell and Webb 1995; 

Sandoval and Mennill 2012; see Chapter 6 for an exception). White-eared Ground-sparrows are 
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found between 500 and 2000 m a.s.l., from Chiapas-Mexico in the north to Costa Rica’s Central 

Valley in the south (Stiles and Skutch 1989; Howell and Webb 1995). Across their distribution, 

this ground-sparrow inhabits thickets, secondary forest edges, and shade coffee plantations 

(Stiles and Skutch 1989; Howell and Webb 1995; Sandoval and Mennill 2012). White-eared 

Ground-sparrow pairs defend their territories year-round using mainly vocalizations (Sandoval 

and Mennill 2012; Chapter 5).  

To expand our knowledge on the vocal repertoire and its function in White-eared 

Ground-sparrows, we had three objectives in this paper. (1) We sought to quantitatively 

describe the vocal repertoire of White-eared Ground-sparrows. (2) We sought to study the 

behavioural contexts in which the different types of vocalizations are used. (3) We sought to 

describe the pattern of diel variation in vocal output for each of these vocalizations. 

 

Methods 

Recording techniques 

We collected recordings from birds in four populations of colour-banded White-eared Ground-

sparrows in Costa Rica: Monteverde, Puntarenas Province (10°18’N, 84°48’W; altitude 1600 m), 

North Heredia, Heredia Province (10°01’N, 84°05’W; elevation: 1200-1500 m), University of 

Costa Rica campus, San Jose Province (09°56’N, 84°05’W; elevation 1200 m), and Lankester 

Botanical Garden, Cartago Province (09°50’N, 83°53’W; altitude 1400 m). We used two recording 

techniques. First, we directly recorded vocalizations during two consecutive breeding seasons 

(from April to August 2011 and from March to July 2012) by following and continuously 

recording focal birds during a 1 hour period, starting just before sunrise. These recordings were 



 

Chapter 2: Vocal Behaviour of White-eared Ground-sparrows 

28 

 

collected using a shotgun microphone (Sennheiser K6/ME66) and a digital recorder (Marantz 

PMD 661 or PMD 660; recording format: WAVE; sampling rate: 44.1 kHz; 16 bit accuracy). We 

recorded 50 different pairs with this approach:  20 pairs were recorded in 2011 on two occasions 

(n = 14) or three occasions (n = 6), and 45 pairs were recorded in 2012 on one occasion (n = 43) 

or two occasions (n = 2). From the 45 pairs recorded in 2012, 15 were also recorded in 2011. 

Whenever possible, we noted the sex of the singer, although the thick vegetation and secretive 

nature of the birds made sex identification challenging. Therefore, some of the comparisons 

between vocal characteristics where made between pairs and not between individuals.  

To quantify the diel pattern of vocalizations produced by pairs of White-eared Ground-

sparrows, we also recorded birds using autonomous digital recorders (Wildlife Acoustics’ Song 

Meters; Wildlife Acoustics Inc., Concord, MA, USA; recording format: WAVE; sampling rate: 44.1 

kHz; accuracy: 16 bits). Each recorder was positioned in the centre of a pair’s territory, to 

minimize the chance of recording neighbouring birds. Comparison of the autonomous recordings 

to the vocal repertoires collected during focal recordings confirmed that our autonomous 

recordings sampled the intended birds. We collected autonomous recordings from 0450 h (10 

min before sunrise) until 1800 h. Based on preliminary recordings conducted across 24 h 

periods, we never detected vocalizations outside of this period. We recorded three pairs for five 

days, two pairs for three days, and nine pairs for two days during 2011 for the analysis of diel 

variation. 

 

Vocalization measurements 

Vocalizations were classified visually according to their appearance on sound spectrograms in 

Raven Pro 1.4 sound analysis software (Cornell Lab of Ornithology, Ithaca, NY, USA) following an 
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approach similar to that used by Franco and Slabbekoorn (2009). The vocal repertoire we 

recorded fit neatly into distinctions of calls, solo songs, and duets. We defined calls as short-

duration vocalizations (duration ≤ 1 s) produced by both members of the pair (Figure 2.1); solo 

songs as the vocalizations produced solely by males (duration > 1 s) and with 2 or more element 

types (Figure 2.2); and duets as vocalizations produced by both members of the pair (duration > 

1 s) involving the production of several elements that overlapped in time and frequency (Figure 

2.3). Contrary to the majority of duetting species that have been studied in detail (Hall 2004), 

White-eared Ground-sparrows produce duets with vocalizations different from their solo songs 

(Figure 2.3). Occasionally, the vocalization that birds produce during duets was given by a lone 

individual and the partner did not respond; we refer to these vocalizations as “incomplete 

duets”, because our observations suggest that the main function for this vocalization is duet 

production. 

We extracted vocalizations from our recordings and measured the following spectro-

temporal details: duration (s), minimum frequency (Hz), maximum frequency (Hz), and 

frequency of maximum amplitude (Hz). We took these measurements using a combination of 

visualizations of the vocalizations, including the spectrogram, the power spectrum, and the 

waveform screens on Raven Pro 1.4, simultaneously. This approach offers the opportunity for 

obtaining more accurate values of frequency and duration than using the spectrogram alone, 

because power spectra and waveforms are not affected by the settings on the grey-scale (Charif 

et al. 2004). Spectrograms were constructed using a Hann window with 50 % overlap and 256 Hz 

transform size, resulting in a temporal resolution of 5.8 ms and a frequency resolution of 188 Hz. 

We collected these measurements only on vocalizations with high signal-to-noise ratio and 

without overlap by other sounds. 

We annotated the total number of unique song types produced by each male, to 
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estimate each male’s song repertoire. Song types were classified visually according to the 

number of different solo song elements and their appearance on spectrograms. Solo songs that 

showed variation only in the number of elements in the first part or final part of solo songs were 

classified as the same song type. We estimated song repertoire sizes using a curve-fitting 

method by applying the equation proposed by Wildenthal (1965). The estimation was conducted 

in Excel 2007 on individuals with ≥80 recorded songs recorded during the focal and autonomous 

recordings combined. 

We analyzed diel variation in the vocal output by annotating the number of each 

vocalization type recorded from 0450 to 1800 h from the autonomous recorders. Birds typically 

produced their first vocalization of the day around 0500 h, although occasionally just prior to 

0500 h, as early as 0450 h. We grouped the vocalizations from 0450 to 0500 h with the 

vocalizations produced from 0500 to 0600 h for this analysis. All other vocalizations were 

grouped into one-hour intervals from 0600 to 1800 h. 

 

Statistical analyses 

We tested whether calls and duets showed distinctiveness between pairs using a discriminant 

function analysis (DFA). In this analysis we used the four spectro-temporal measurements as 

response variables, and pair identity as the independent variable. The accuracy of classification 

by pair was estimated using a Jackknife cross-validation method. We conducted this analysis 

separately for the two types of calls that we found in our recordings (see Results) and for 

complete duets. We used a binomial test to analyze the probability that the classification 

accuracy of the DFA is higher than the classification expected by chance (one divided by the 

number of pairs included in each DFA).  
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Since the number of elements inside each solo song type showed subtle variation, we 

conducted a Levene’s test to compare the consistency in the number of elements in each male 

solo song type. For this analysis, we divided male solo songs into three components (see Results). 

Given that the number of elements in each solo song component varied according to the song 

type, using the raw data in this analysis would artificially increase the variation between song 

types. To control for this variation, we first estimated the average variance of each song 

component per song type; we then used the average value per song component as our response 

variable in the test, and song type as the independent variable.  

We assessed whether males delivered song types in a predictable or random order using 

a Markov chain analysis as in Lemon and Chatfield (1971). This method allowed us to analyze the 

probability that each song type was sung in a random order (no preferred transition between 

songs types; Leonardo and Konishi 1999). This test reports a single value for each male; however, 

since we were interested in patterns across the population, we conducted two extra tests. First, 

we conducted multiple regression analysis to demonstrate that the results of our Markov chain 

analysis were not influenced by differences in the total number of songs recorded and the 

repertoire size of each male. In this analysis, we included the number of song types recorded 

and the total number of recorded songs as independent variables, and the probability of singing 

in a random order (as calculated for each male with the Markov chain approach) as the response 

variable. Given that some males produce their song types in a predictable order and others in 

random order (see Results), we conducted a binomial test to evaluate which type of singing 

behaviour occurred more often in the population. 

To analyze diel variation in vocal behaviour, we count the total number of vocalizations 

per hour per individual from 0500 to 1800 hours. Then we tested for the total occurrence of 

each vocalization category throughout the day using linear mixed-models. In this analysis, the 
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fixed factor was the hour of the day. The response variables were the total number of each 

vocalization category produced per hour per individual. Finally, we used subject identity as a 

random factor to control for multiple values for the same subject.  

All descriptive statistics are reported as mean ± SE. We conducted linear mixed-models 

in JMP (version 7.0 SAS Institute, Cary, NC, U.S.A.), the Markov chain test in PAST (version 2.14; 

Øyvind Hammer, Natural History Museum, University of Oslo, Norway), and the rest of the tests 

in Systat (version 11.00.01; SYSTAT Software, Chicago, IL, U.S.A.). 

 

Results 

Calls 

White-eared Ground-sparrows produced two types of call. The first type of call, which we refer 

to hereafter as the “chip” call, is a single, short-duration, high-frequency, broadband note 

(Figure 2.1). The second type of call, which we refer to hereafter as a “tseet” call, is a single 

narrow-bandwidth note that gradually ascends or descends (Figure 2.1). Both types of calls were 

produced by males and females, and varied in the frequency of production (114.10 ± 15.03 chip 

calls per hour per pair; 8.72 ± 1.44 tseet calls per hour per pair based on 1.84 ± 0.15 h focal 

recordings of 49 pairs).  

On average, the duration of the chip call was 0.08 ± 0.003 s (range = 0.06 – 0.09 s, CV = 

25.4 %), with a minimum frequency of 7326 ± 62 Hz (range = 6833 – 8184 Hz, CV = 5.9 %), a 

maximum frequency of 12,345 ± 109 Hz (range = 10,189 – 13,314 Hz, CV = 6.1 %), and a 

frequency of maximum amplitude of 8315 ± 77 Hz (range = 7475 – 8892 Hz, CV = 6.5 %). We 

observed the ground-sparrows using this vocalization in two main contexts: as a contact call 
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when foraging, and when they were excited after a potential predator was close to the nest or 

chicks. 

On average, the duration of the tseet call was 0.28 ± 0.013 s (range = 0.16 – 0.40 s, CV = 

27.6 %), with a minimum frequency of 8356 ± 107 Hz (range = 6833 – 9111 Hz, CV = 7.9 %), a 

maximum frequency of 10,520 ± 109 Hz (range = 9273 – 11,537Hz, CV = 6.4 %), and a frequency 

of maximum amplitude of 9305 ± 91 Hz (range = 7755 – 10,565 Hz, CV = 6.0 %). We observed the 

ground-sparrows using this vocalization in two main contexts: before starting a duet, and when 

both individuals where far away from each other. 

Both call types showed a low level of individual distinctiveness based on the pair that 

produced the vocalization. In a discriminant analysis with cross-validation, chip calls  (Wilks’ λ = 

0.35, F192,36697= 57.0,  p < 0.001) were correctly classified to the pair that produced the call 18 % 

of the time, significantly higher than the 2.08 % expected by chance (binomial test: p < 0.001; in 

comparison to chance expectation of 1 divided by 48 pairs included in the analysis).  Similarly, 

tseet calls (Wilks’ λ = 0.24, F148,2611= 7.5,  p < 0.001) were correctly classified to the pair that 

produced the call 32 % of the time, significantly higher than the 2.63 % expected by chance 

(binomial test: p < 0.001; in comparison to chance expectation of 1 divided by 38 pairs included 

in the analysis).  

 

Solo Songs 

Over two years of field study we never detected a female producing this vocalization. Male solo 

songs were variable and readily classifiable into distinct song types (Figure 2.2). We detected 33 

unique song types in our sample of 3133 analyzed songs (Figure 2.2). Most male solo songs had 

three sections: (1) songs began with high frequency elements similar to chip calls; (2) the middle 
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section of songs contained frequency-modulated elements; and (3) songs concluded with a short 

trill. Of the 33 song types we detected, there were two song types that lacked a frequency-

modulated middle section (Figure 2.2). Among song types, we found substantial variation in the 

number of song elements in the terminal trill section (σ2 = 11.90), with less variation in the 

number of elements in the middle section (σ2 = 0.26), and finally the least variable number of 

elements in the introductory section (σ2 = 0.01; Levene’s test: F = 6.5, p = 0.003). Solo songs 

showed an average duration of 1.9 ± 0.1 s (range = 0.6 – 3.1 s, CV = 16.4 %), a minimum 

frequency of 3535 ± 124 Hz (range = 1595 – 5769 Hz, coefficient of variation: CV = 20.2 %), a 

maximum frequency of 11,209 ± 161 Hz (range = 6220 – 13,801 Hz, CV = 8.3 %), and frequency 

of maximum amplitude of 5956 ± 106 Hz (range = 2498 – 9216 Hz, CV = 10.2 %).  

The solo song repertoire size of White-eared Ground-sparrows, calculated on the basis 

of 19 males where we recorded 80 or more songs, varied from two to eight songs (3.5 ± 0.3 

songs; Figure 2.4). A significant majority of White-eared Ground sparrow males delivered their 

song with immediate variety (binomial test: p = 0.02), with 24 males delivering their songs in a 

random order and 14 males in a predictable order (test of random order based on Markov chain 

approach). These results were not influenced by the repertoire size or the total number of songs 

recorded for each male (multiple regression: F2,35 = 3.0, p = 0.064, r2 = 0.15). 

 

Duets 

Pairs of White-eared Ground-sparrows produced a third type of vocalization that was given 

chiefly as coordinated vocal duets (Figure 2.3). Unlike some other tropical birds (e.g. Mann et al. 

2003; Mennill and Vehrencamp 2005; Logue 2006), the vocalizations that birds contributed to 

duets were wholly different from the vocalizations used by males as solo songs in their spectro-
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temporal features (Figures 2.2 and 2.3). Based on our observations of colour-banded pairs, both 

sexes created duets (i.e. responded to their partner’s duet contribution, turning it from a solo 

into a duet). From a total of 812 recordings of this vocalization obtained during the focal 

recording sessions, we found that this vocalization was produced as a duet 71.68 % of the time, 

and the remaining as a vocalization by just one individual of the pair, i.e. an “incomplete duet” 

(Figure 2.3).  

Duets started with a series of one to six introductory elements (2.31 ± 0.13 elements) 

with longer inter-element intervals than the main duet elements (Figure 2.3). Introductory duet 

elements varied from arc shaped to a slight upward slope on the spectrogram (Figure 2.3). The 

main elements in duets were the elements that overlapped between both individuals of the pair. 

They were broadband and noisy elements (Figure 2.3). The vocalizations of the two individuals 

overlapped for 3.64 ± 0.22 s, on average. Duets were produced by the second individual 

overlapping the first one in both frequency and time (i.e. polyphonal duets; Figure 2.3). The 

second bird concluded its song an average 1.57 ± 0.17 s after the first bird. Complete duets (5.77 

± 0.20 s, range = 3.79 – 8.42 s, CV = 24.0 %) were longer than incomplete duets (4.33 ± 0.24 s, 

range = 1.85 – 8.75 s, CV = 33.4 %; t = 6.44, df = 37, p < 0.001). Complete duets (5093 ± 14 Hz, 

range = 3940 – 6046 Hz, CV = 14.4 %) showed higher minimum frequencies than incomplete 

duets (5205 ± 142 Hz, range = 3792 – 6409 s, CV = 16.8 %; t = -3.77, df = 37, p = 0.001). Complete 

and incomplete duets showed similar values of  maximum frequency (t = 0.29, df = 37, p = 0.78; 

complete: 11,547 ± 80 Hz, range = 10,405 – 12,605 Hz, CV = 4.8 %; incomplete: 11,385 ± 100 Hz, 

range = 10,608 – 12,615 s, CV = 5.4 %), and frequency of maximum amplitude (t = 0.25, df = 37, p 

= 0.81; complete: 7444 ± 169 Hz, range = 6202 – 8829 Hz, CV = 15.7 %; incomplete: 7609 ± 188 

Hz, range = 4565 – 8807 s, CV = 15.2 %). Complete duets showed a low level of individual 

distinctiveness, with just 11 % of correct classification of duets based on the pair that produced 
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the vocalization (Wilks’ λ = 0.26, F188,2121 = 4.5, p < 0.001), significantly higher than the 2.08 % 

expected by chance (binomial test: p = 0.01; in comparison to chance expectation of 1 divided by 

48 pairs included in the analysis). No analysis of individual distinctiveness was conducted on 

incomplete duets, because for most incomplete duets we were unable to determine which 

individual of the pair had produced the sound. 

 

Diel variation 

White-eared Ground-sparrow vocal output varied through the day, with the highest output 

between 0500 and 0600 hours (LMM: F12,156= 10.1, p < 0.001; Figure 2.5). We observed the same 

pattern of vocal output for calls (F12,156 = 3.5,  p < 0.001; Figure 2.5), solo songs (F12,144 = 10.2,  p < 

0.001; Fig. 2.5), and duets (F12,156 = 32.4,  p < 0.001; Figure 2.5). In the case of solo songs, we 

observed that males produced an overwhelming majority of their daily vocal output at the start 

of the day; males sang between the 82% and 93% of all songs in the first hour of the day (Figure 

2.5). This effect was less pronounced in the other two types of vocalization: only 18 % to 31 % of 

calls and 33 % to 39 % of duets were produced during the first hour of the day (Figure 2.5). 

White-eared Ground-sparrows vocalized during all daylight hours, with lowest output around 

noon (Figure 2.5). Songs were the first vocalizations produced in the day, with an average start 

time of 0505 hours ± 2.3 min, follow by calls at 0508 hours ± 0.9 min, and finally by duets at 

0514 hours ± 3.4 min.  
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Discussion 

White-eared Ground-sparrows produce three main categories of vocalizations: two types of call, 

male solo songs, and duets. Our analyses, based on two years of focal and autonomous 

recordings from four populations in Costa Rica, substantiates previous anecdotal descriptions of 

vocalizations in this species, which report the occurrence of three main categories of 

vocalizations (Stiles and Skutch 1989; Howell and Webb 1995; Chapter 6). Our analyses allowed 

us to observe similarities and differences between vocalizations and between pairs. Calls and 

duets were very similar in acoustic structure between pairs, whereas solo songs were highly 

variable in spite of their consistent structure (introductory section, frequency-modulated middle 

section, and terminal trill section). We quantified the pattern of diel variation of each 

vocalization type during the breeding season, and found that all three vocalization types were 

produced at higher levels at the start of the day (0450 to 0600 hours) compared to the rest of 

the day. 

Our bioacoustic analyses reveal, for the first time, that White-eared Ground-sparrows 

produce two distinct types of calls. Both call types were highly different in acoustic and temporal 

structure but were used in similar contexts. The chip call and tseet call were used as a pair 

contact signal when they foraged or moved separately inside the territory. We also observed 

that chip was used as an alarm signal when a potential predator was close (observed predators 

included pygmy owls, dogs, and snakes; birds behaved similarly when humans were close to the 

nest), or as a response to alarm calls by the bird’s breeding partner. In the predation context, 

chip calls were produced at a higher rate than in a contact context. These two main contexts of 

White-eared Ground-sparrow calls have been reported as general functions of calls in several 

bird species (reviewed by Marler 2004). The dual function of chip call also occurs in other 
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species, including Chaffinches (Fringilla coelebs; Marler 1956) and Steller’s Jays (Cyanocitta 

stelleri; Hope 1980), in which they vary the production rate or the duty cycle. The function of the 

differences in call rate in this ground-sparrow is still unknown, and therefore, future research is 

needed. 

The acoustic structure of the chip call, with short duration and broad bandwidth, should 

make this vocalization easy to localize (Marler 2004), which supports the idea that this call 

serves as a contact or alarm call function. In the case of a contact signal function, the production 

of this call type will allow both individuals of the pair to know the location of the other within 

the dense vegetation of the territories of these ground-sparrows (Hale 2006; Sandoval and 

Barrantes 2012). In the case of an alarm signal, considering that the main predators inside 

thickets are stationary predators (e.g., small mammals, lizards, snakes, and avian ambush 

predators); this type of vocalization will be advantageous because it may communicate the 

position of the threat, possibly facilitating a mobbing response from conspecific and 

heterospecific individuals (Marler 2004). The acoustic structure of tseet may transmit better 

inside dense vegetation of thicket habitats due to the longer call duration and the narrower 

bandwidth than the chip call, characteristics that are known to favour sound transmission in 

dense vegetation (Wiley 1991; Bradbury and Vehrencamp 2011). Therefore, White-eared 

Ground-sparrows may benefit from using tseet call to communicate at larger distances between 

pair individuals than using chip call. Due to the acoustic characteristics of tseet call, it may be 

more difficult to localize the position of the signaler.  

Solo songs were the most variable vocalization we recorded from White-eared ground-

sparrows, with spectrotemporal details that varied between songs from the same male. Songs 

were easily classified into distinct types, which males produced with eventual variety. A total of 
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94 % (31 of 33 song types) of all recorded songs showed the same structure of three types of 

elements (introductory notes, frequency-modulated middle part, and terminal trill). The song 

structure in White-eared Ground-sparrows was very different than that reported for the 

congeneric Abert’s (M. aberti), California (M. crissalis), and Canyon Towhee (M. fuscus), which all 

have solo songs composed of a single element repeated several times (Tweit and Finch 1994; 

Johnson and Haight 1996; Benedict et al. 2011). Yet the song structure we report here is quite 

similar to Prevost’s Ground-sparrows, which are closely related to White-eared Ground-

sparrows (DaCosta et al. 2009), in which there are several different elements in the songs 

(Chapter 6). These differences may reflect genetic divergence, since both groups of species are 

part of different clades inside the genus (DaCosta et al. 2009). Given the similarity between 

these two Mesoamerican Ground-sparrows, and their differences from northern Ground-

sparrows, it is possible that song styles vary between the two major clades in this group. 

Alternatively, the acoustic differences may reflect adaptation to different habitats, because the 

northern towhee species within Melozone occupy more open habitats where fast repetition of a 

single element may provide an acoustic advantage (Handford and Lougheed 1991; Wiley 1991; 

Naguib 2003).  

Based on the number of solo song types sung by each White-eared Ground-sparrow 

male (3.5 ± 0.3 song types), this species has a small repertoire, according to the classification 

proposed by Garamszegi et al. (2005). However, one individual Canyon Towhee showed a 

repertoire of five song types (Marler and Isaac 1960), and ten individual Rusty-crowned Ground-

sparrows (M. kieneri) showed repertoires that varied from four to ten song types (Chapter 3), 

indicating that small solo song repertoires may be the rule for the genus Melozone.  
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We found that White-eared Ground-sparrows have a unique vocalization, completely 

distinct in acoustic structure from male solos songs, used chiefly for duetting. This pattern also 

occurs in other Melozone species (Tweit and Finch 1994; Johnson and Haight 1996; Benedict et 

al. 2011; Chapter 6). The acoustic structure of duets bears a similarity to the duets of other 

species in the genus, especially with the duets of Prevost’s Ground-sparrows (Chapter 6), and to 

a lesser degree, with the duets of California Towhees (Benedict and McEntee 2009; Benedict 

2010). As in these congeners, White-eared Ground-sparrow duets start with introductory 

elements with a narrower bandwidth and are followed by noisier elements with broad 

bandwidths. In the case of California Towhees, duets have a single and clear frequency-

modulated element between the introductory and noisy elements that is not found in White-

eared and Prevost’s Ground-sparrow duets (Benedict and McEntee 2009; Chapter 6).  

White-eared Ground-sparrow duets were created by both sexes responding to their 

partner’s duet contribution. The frequency and time overlap within duets is similar to the duets 

of California Towhees (Benedict and McEntee 2009) and Rusty-crowned Ground-sparrows 

(Chapter 3), the only other species with a detailed description of this vocal behaviour. We 

observed duets being produced in two contexts. The first observed context was when a bird 

approached its breeding partner. This behaviour is consistent with the Maintaining Contact 

Hypothesis that states that pair individuals create a duet to indicate their location, and the 

Signalling Commitment Hypothesis that states that pair individuals create a duet to indicate the 

commitment between them (Hall 2004). This pattern has been quantified in two other duetting 

species, the Rufous-and-white Wren (Thryophilus rufalbus; Mennill and Vehrencamp 2008) and 

the Black-bellied Wren (Pheugopedius fasciatoventris; Logue 2007). The second context was 

when pairs responded to the duets of neighbouring pairs. This behaviour is consistent with the 

Joint Territorial Defence Hypothesis, which states that territorial pairs respond aggressively to 
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vocalizations of neighbours or individual conspecific strangers (Hall 2004, 2009). Playback studies 

in White-eared Ground-sparrows reinforce this function for duets, because it was the most 

common vocalization produced by territorial pairs as a response to simulated territory intrusions 

(Chapter 6). 

Our analyses showed that calls and duets were very similar between pairs of White-

eared ground-sparrows. This result may indicate that these vocalizations do not serve to 

communicate pair identity (or individual identity). However, in the case of calls it is possible that 

our methods inflated the variation, reducing the probabilities of finding differences between 

pairs, since we grouped the calls produced by both sexes of the pair as the same unit of 

comparison. A more detailed study that distinguishes the individuals that produce each call is 

necessary to discard the possibility that sex-differences in calls or duet contributions might 

obscure individually-distinctive differences in these vocalizations. Our results on low levels of 

individual distinctiveness in calls and duet contributions stand in contrast with the reported 

results for male solo songs in this ground-sparrow, which show that males have high individual 

distinctiveness based on both acoustic and structural characteristics (Chapter 5).  

White-eared Ground-sparrows show a dramatic dawn chorus performance, where the 

overwhelming majority of vocalizations occur at the start of the day (i.e. 0450 to 0600 hours). 

High output of solo songs and duets early in the morning may contribute to territory defence 

against possible territorial intrusions, as has been suggested previously for other bird species 

(Staicer et al. 1996; Amrhein and Erne 2006; Koloff and Mennill 2013). The three types of 

vocalization showed differences in their pattern of diel variation, and this is probably related to 

the functions of each vocalization. Calls and duets were produced at similar levels after the first 

hour, which reinforces the proposed function for both vocalizations. Behaviours associated with 
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pair contact during foraging, displacement inside the territory, and individual approaches are not 

expected to have a peak during the day; therefore, we expected a parallel output for calls and 

duets throughout the day. 

Males produced more than 88 % of the song output at the start of the day, before males 

and females started to conduct their usual pair behaviours (e.g., foraging and joint territory 

defence). Based on preliminary observations we have collected outside the breeding season, 

males apparently only sing during the breeding season, and song is routinely produced across all 

breeding stages (Chapter 5). This singing behaviour in White-eared Ground-sparrows is similar to 

the behaviour displayed by seasonal breeding bird species in the temperate forest, where the 

main function of the song is mate attraction during the reproductive season (Collins 2004; 

Catchpole and Slater 2008). Males of this ground-sparrow species, however, live in pairs year 

round (Sandoval and Mennill 2012), and may mate with the same female during several 

consecutive years (pers. obs.), reducing the probability that male solo song is used to attract a 

pair each year. Our observations suggest that males may sing to attract neighbouring females for 

extra-pair copulations, as occurs in other bird species that continue producing a dawn chorus 

performance after pair formation (Gibbs et al. 1990; Richardson and Burke 2001; Mennill et al. 

2004). A detailed study that evaluates the occurrence of extra pair copulations is necessary to 

evaluate this assumption about the solo song output function in this species.  

Quantitative descriptions of the vocalizations and vocal behaviours of birds are 

necessary to perform comparative studies to understand the evolution of vocalization types in 

closely related species. For example, this study on White-eared Ground-sparrows allowed us to 

conduct the first comparisons in term of vocalizations with the species in the genus Melozone, 

and revealed similarities and differences between this species and its congeners. For calls, we 
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found that White-eared Ground-sparrows produced two call types that are similar in acoustic 

structure and context of use with the calls produced by Rusty-crowned Ground-sparrows 

(Chpater 3), Abert’s Towhees (Tweit and Finch 1994), California Towhees (Benedict et al. 2011), 

and Canyon Towhees (Johnson and Haight 1996). The calls of the towhees appear to occur at 

lower frequencies (e.g., 1 to 4 kHz approximately; Tweit and Finch 1994, Johnson and Haight 

1996, Benedict et al. 2011), than the ground-sparrows calls (this chapter; Chapter 3). For solo 

songs, we found that White-eared Ground-sparrows produced solo songs with three 

conspicuous parts (introductory high frequency elements similar to chip calls; the middle 

frequency-modulated elements; and a final trill), that differ from its congeners. The structure of 

Rusty-crowned Ground-sparrow solo songs is a mix of different trill elements with some 

frequency-modulate elements (Chapter 3), whereas the congeneric towhee species produce solo 

songs comprising trills (Tweit and Finch 1994, Johnson and Haight 1996, Benedict et al. 2011). 

The minimum frequency at which the solo song is produced for the ground-sparrows is higher 

than the frequency used by towhees, and the frequency bandwidth for ground-sparrows also is 

broader than in towhees. Solo songs appear to be used for female mate attraction in all of these 

Melozone species, as well as territory defence in the towhees, which is a possible function in 

ground-sparrows that still needs to be tested. For duets, we found that White-eared Ground-

sparrows, as in the other congeneric ground-sparrows and towhees, produced duets with 

vocalizations different from vocalizations used as solo songs. In all of the species that have been 

studied to date, duets appear to be used for pair contact and territory defence (Tweit and Finch 

1994, Johnson and Haight 1996, Benedict et al. 2011, Chapter 3 and 7). The acoustic structure of 

White-eared Ground-sparrow duets is more similar to Prevost’s Ground-sparrow than to Rusty-

crown Ground sparrow and the congeneric towhee duets, and showed the longest duration of 

all of the recorded duets (Tweit and Finch 1994, Johnson and Haight 1996, Benedict et al. 2011, 
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Chapter 3 and 6). With respect to the pattern of diel variation, we found that White-eared and 

Rusty-crowned Ground-sparrows showed a parallelism in vocal output during the day with a 

single peak in the first hour of the day and substantially reduced vocal activity the rest of the day 

(Chapter 3). However, the White-eared Ground-sparrow produced more vocalizations per hour 

per individual during all hours of the day in comparison to Rusty-crowned Ground-sparrows 

(Chapter 3). 

All described vocalizations showed multiple functions in this species, revealing that even 

with a small vocal repertoire it is possible to achieve several communication functions. Our study 

also showed that vocalizations that appear to be related to within-pair communication and 

territory defence (calls and duets) were more similar between pairs (i.e. had lower individual 

distinctiveness) than those reported between males singing solo songs (a vocalization more 

related with female attraction). This study expands our knowledge about the vocal diversity in 

Neotropical sparrows species, and will facilitate future experimental analyses to understand in 

more detail the function of each category of vocalization described here, as well as the 

importance of individual and population variation. 
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Figures 

 

 

Figure 2.1. Sound spectrogram showing three examples of the two call types, chip and tseet, 
produced by both sexes of White-eared Ground-sparrows. 
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Figure 2.2. Sound spectrogram showing six common male solo songs in White-eared Ground-
sparrows at four study sites in Costa Rica. 
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Figure 2.3. Sound spectrogram showing three examples of complete duets (produced by male 
and female of the pair) and three incomplete duets (duet contributions produced by a single 
individual with no response from the partner) of White-eared Ground-sparrows. Black and grey 
lines under complete duets represent the contribution of each individual to the duet. 
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Figure 2.4. Repertoire asymptote curve for 19 White-eared Ground-sparrows with 80 or more 
recorded songs, showing four males that reached an asymptote and one that did not. These five 
males were chosen to show the full range of variation in our dataset; the remaining 14 males 
had repertoire asymptote curves overlapped by the curves shown.  
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Figure 2.5. Diel pattern of White-eared Ground-sparrow vocalizations. Dots show means and the 
whiskers show standard error for n= 14 pairs recorded for a 507 hour period (36.2 ± 16.3 hours 
per pair). Vocalizations between 0450 and 0500 were included in the 0500-0600 period. 
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Chapter 3 

A quantitative description of vocalizations and vocal behaviour of Rusty-

crowned Ground-sparrows (Melozone kieneri)* 

  

                                                             
*
This chapter is the outcome of joint research with D. Mennill 
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Chapter summary 

Several species of sparrow (Emberizidae) in the temperate zone provide model systems for 

understanding bird song and singing behaviour. In contrast, the vocal repertoire and vocal 

behaviour for most tropical sparrows is poorly understood, in spite of their impressive 

biodiversity. We present here the first detailed quantitative description of vocal repertoires and 

vocal behaviour of the Rusty-crowned Ground-sparrow (Melozone kieneri), an endemic Mexican 

sparrow. We provide information on the effect of territory spacing on song repertoire-use and 

details of the diel pattern of variation in vocal output, using focal, autonomous, and 

opportunistic recordings in a population in El Tuito, Mexico. Our results demonstrate that Rusty-

crowned Ground-sparrows produce three distinct categories of vocalizations—calls, solo songs, 

and duets—as in other Melozone ground-sparrows. We found that solo songs and duets in this 

species showed acoustic structure intermediate to other northern and southern Melozone 

ground-sparrows. Patterns of repertoire-use in male solo songs were highly similar between 

males holding nearby territories, suggesting that song learning may occur after territory 

establishment. The diel pattern for output of calls and solo songs showed a pronounced peak 

early in the morning, indicative of dawn-chorus singing behaviour. This study provides the first 

quantitative investigation of Rusty-crowned Ground-sparrow vocalizations, providing important 

descriptive information on this little-studied Neotropical Melozone species.   
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Introduction 

The vocalizations and vocal behaviours of many species of north temperate sparrows (family: 

Emberizidae) have been studied in detail. Decades of investigations of temperate sparrows have 

led to the development of many key principles of avian acoustic communication that are widely 

accepted today (Marler 2004a, Catchpole and Slater 2008). For example, White-crowned 

Sparrows (Zonotrichia leucophrys) were the initial species used to examine geographic variation 

at both broad and local scales (Marler and Tamura 1962) which led to the study of cultural 

transmission in animals that learn their vocalizations (Marler 1970; 2004b). Song syntax was first 

studied in Swamp Sparrows (Melospiza georgiana), providing evidence that animals arrange 

their vocalizations with species-specific syntactical structure, much like human language (Marler 

and Pickert 1984). Our understanding of the production of overtones (Nowicki 1987), the 

function of graded signals (Beecher and Campbell 2005, Searcy and Beecher 2009), and the 

dynamics of conventional signals during aggressive interactions (Vehrencamp 2001) arise from 

seminal studies of Song Sparrows (Melospiza melodia). 

Information on the vocal repertoires and vocal behaviour for the majority of tropical 

sparrows, in contrast, is limited or absent. The sole exception is the Rufous-collared Sparrow 

(Zonotrichia capensis); this widely studied tropical sparrow has been instrumental in enhancing 

our understanding of geographic variation and the relationship between habitat and population 

divergence in vocalizations (e.g. King 1972; Handford 1988; Handford and Lougheed 1991; 

Kopuchian et al. 2004; Danner et al. 2011). Further investigations of the vocalizations and vocal 

behaviour of other tropical sparrow species is an important research priority because such 

studies will allow us to conduct experimental studies to expand our understanding of animal 

vocal behaviour generally. 
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In this investigation we studied the Rusty-crowned Ground-sparrow (Melozone kieneri). 

This endemic Mexican sparrow inhabits both deciduous and dry forest habitat from sea level to 

2000 m, with a range extending from the south of Sonora to the northwest of Oaxaca, and the 

interior of Jalisco (Howell and Webb 1995; Rising 2011). Pairs of Rusty-crowned Ground-

sparrows appear to defend territories using vocalizations, as do the other tropical species in the 

genus (Chapters 5 and 6), although their vocal repertoires and behaviour have never been 

described in detail (Howell and Webb 1995; Rising 2011). With this study our goal is to present 

the first quantitative description of the vocal repertoire and vocal behaviour of the Rusty-

crowned Ground-sparrow. In addition, we investigate the relationship between territory spacing 

and song type sharing, and describe the diel pattern of variation in vocal output. 

 

Methods 

Field recordings 

We recorded Rusty-crowned Ground-sparrows at Rancho Primavera, El Tuito, Jalisco state, 

Mexico (20°21’N, 105°20’W, 585 m a.s.l.). We collected recordings from 27 June to 3 July 2012, 

during the species’ breeding season (Rowley 1962). Our field observations confirmed that some 

of the study birds were actively breeding during the recording period: for two pairs we observed 

adults carrying nesting material, and for two other pairs we observed behaviour consistent with 

incubation (i.e. one member of the pair disappeared after a period of foraging early during the 

day).  

Recorded individuals were not colour- banded; we distinguished between territorial 

pairs based on their location (we collected GPS coordinates of the centre of each identified 
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territory). Based on previous field observations of this species, and observations of colour-

banded study populations of a closely related species (White-eared Ground-sparrow, Melozone 

leucotis; Chapters 2, 5, and 6), we estimated the territories of Rusty-crowned Ground-sparrows 

to have a diameter of 70-100 m. Therefore, paired birds that were > 50 m away from the centre 

of the neighbouring territory were considered to be a different pair. We monitored and 

confirmed the daily presence of previously recorded pairs at the same locations. Together, these 

observations made us confident that pairs recorded on different days were distinct and that 

pairs occupied the same territories throughout our recording period. The sexes are 

monomorphic in Rusty-crowned Ground-sparrows, so we were unable to assign sex to our 

unbanded study animals. In a sister species, however, our field observations of colour-banded 

pairs reveals that vocalizations are sex-specific (Chapter 2). We make the assumption that the 

same pattern is true in this species, and our field observations support this assumption (i.e. only 

one member of the pair produced some vocalizations, whereas others were produced by both 

members of the pair). 

We used three recording techniques to describe the vocal and repertoire behaviour for 

this species. First, we collected focal recordings by  following a territorial pair for 1 h period 

between 0700 and  0800 h (at the sun rises at approximately 0705 h during the studied period); 

each pair was recorded on one day using this technique (n = 13 pairs). Second, we used 

autonomous digital recorders (Wildlife Acoustics Song Meters model SM1) set up inside birds’ 

territories to record for a period that varied from 6 to 14 hours (mean ± SE: 10.33 ± 2.18 h; n = 5 

pairs). All of these recordings included a continuous period from 0700 to 0900 h, when this 

species is most vocally active (see Results). Third, we collected opportunistic recordings between 

0800 and 1900 h while we were walking nearby or inside bird territories, when we detected 

birds vocalizing. Focal and opportunistic recording were conducted with a shotgun microphone 
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(Sennheiser ME66/K6) connected to a digital recorder (Marantz PMD660 and Marantz PMD661), 

and with a parabola-mounted omnidirectional microphone (23 in Telinga parabola with a 

Sennheiser ME62/K6 microphone) and digital recorder (Zoom H4n). All recordings were 

conducted in WAV format, with 16 bit accuracy and a 44.1 kHz sampling rate.  

 

Vocal analysis 

We classified vocalizations based on their appearance on sound spectrograms, following similar 

approaches used in other studies (e.g. Franco and Slabbekoorn 2009, Odom and Mennill 2010). 

We measured the fine-structural details in Raven Pro 1.4 sound analysis software (Cornell Lab of 

Ornithology, Ithaca, NY, USA), using a combination of the waveform, spectrogram, and  power 

spectrum to obtain the  most accurate measurements (Charif et al. 2004, Redondo et al. 2013). 

We generated spectrograms with a temporal resolution of 5.8 ms and a frequency resolution of 

188 Hz using the following settings: Hann window with 50 % overlap and 256 Hz transform size.  

For each vocalization, we measured the duration (s), the minimum frequency (Hz), the 

maximum frequency (Hz), and the frequency of maximum amplitude (Hz). From all recordings, 

we calculated the number of unique solo song types produced per individual. We defined soIo 

song types based on the number of different elements (smaller discrete unit of continuous 

sound) and the element shape. Each solo song type was then compared among others included 

in a library of reference developed for this species. We annotated the number of calls, solo songs, 

and duets produced by each pair from 0500 to 2000 hours to analyze diel variation in the vocal 

output, based on data from the autonomous recorders. 
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Statistical analysis 

We evaluated whether the fine structural details of two distinct call types (see Results) differed 

significantly from each other using a two sample t-test. We first calculated an average for each 

fine acoustic measurement per call type per pair, and then used these values as the dependent 

variable in the analysis, and the call type as the independent variable. We report exact P-values 

based in Bonferroni corrections ( = 0.05 divided by four) for multiple comparisons; four 

separate tests were conducted for each of the four measured acoustic characters.  

We estimated male solo song repertoire size for all individuals where we recorded ≥80 

songs, using the Wildenthal equation for curve-fitting (1965). We used a Markov chain analysis 

to estimate if the ground-sparrows delivered song types with a predictable order using the 

technique described in Lemon and Chatfield (1971). This approach analyzes the probability of 

singing a song type within the individual’s repertoire as a function of the previous song type 

(Leonardo and Konishi 1999).  

 We conducted a Mantel test to evaluate repertoire-use similarity, measured using a 

Morisita index of similarity as described in Chapter 5, as a function of the physical distance 

between individuals’ territories. We defined repertoire-use similarity as the production of 

shared vocalization types in similar proportion between males (see Chapter 5 for details). We 

predicted that closer individuals would have higher repertoire-use similarity than would 

individuals further away from each other. 

To examine patterns of diel variation in vocal output within this species, we calculated 

the number of vocalizations per hour (mean± SE) from 0500 to 2000 hours. We then used 

Kolmogorov-Smirnov one-sample tests to compare if the average proportion of calls, solo songs 

and combined vocalizations (both calls and solo songs) showed a peak output during the day. 

We chose this nonparametric test because we had a small sample size and the data were not 
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normally distributed. The values of P for Mantel test and Kolmogorov-Smirnov test are reported 

based in 10000 permutations.  

For duets, we only reported descriptive statistics because our sample size of this 

vocalization type was too small for statistical analysis. We conducted the statistical analysis in 

PAST (version 2.17; Øyvind Hammer, Natural History Museum, University of Oslo, Norway) and 

report means ± SE throughout the paper. 

 

Results 

The vocal repertoire of Rusty-crowned Ground-sparrows includes three main types of 

vocalizations: calls, solo songs, and duets. Calls (n = 956 calls recorded from 12 pairs, one 

recorded pair never produced calls during our recording periods) and solo songs (n = 1906 songs 

recorded from 12 males, one recorded male never produced songs during our recording periods) 

were common vocalizations. Duets, in contrast, were rare. We recorded only eight duets from 

three pairs over 137 hours of recordings.  

We recorded calls from both members of the pair. We observed two types of calls which 

we distinguish as “chip” and “tseet” (Figure 3.1). These two calls were significantly different in 

their fine-structural characteristics (two sample t-test: p < 0.04, n = 19, for all comparisons after 

Bonferroni correction). On average, the duration of the chip call was 0.07 ± 0.004 s (range = 0.06 

– 0.10 s, CV = 18.3 %), with a minimum frequency of 7850 ± 104 Hz (range = 6968 – 8284 Hz, CV 

= 4.6 %), a maximum frequency of 12,654 ± 169 Hz (range = 10,867 – 12,551 Hz, CV = 5.0 %), and 

a frequency of maximum amplitude of 8574 ± 79 Hz (range = 7977 – 8964 Hz, CV = 3.2 %). We 

observed birds producing chip calls when the pair was foraging and when they were close to the 

nest during construction (n=2 pairs).  
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On average, the duration of the tseet call was 0.36 ± 0.026 s (range = 0.26 – 0.41 s, CV = 

19.4 %), with a minimum frequency of 7204 ± 232 Hz (range = 6596 – 8356 Hz, CV = 8.5 %), a 

maximum frequency of 9478 ± 245 Hz (range = 8241 – 10,351Hz, CV = 6.9 %), and a frequency of 

maximum amplitude of 8050 ± 193 Hz (range = 7373 – 8958 Hz, CV = 6.3 %). We observed the 

ground-sparrows using this vocalization when pair members were far apart from each other.  

We observed only one individual per pair producing solo songs, and we assumed that 

this was the male (an observation which matches our knowledge of other ground-sparrow 

species). Male solo songs were variable and readily classifiable into distinct song types (Figure 

3.1). We detected 29 unique song types in our sample of 1482 analyzed songs. Male solo songs 

had three sections: (1) the introductory section began with high frequency elements similar to 

chip calls; (2) the middle section contained broadband frequency-modulated elements; and (3) 

the concluding section contained a trill (Figure 3.1). Solo songs showed an average duration of 

2.2 ± 0.1 s (range = 1.6 – 4.1 s, CV = 22.7 %), a minimum frequency of 3470 ± 121 Hz (range = 

2607 – 4916 Hz, coefficient of variation: CV = 18.8 %), a maximum frequency of 11,111 ± 130 Hz 

(range = 8949 – 11918 Hz, CV = 6.3 %), and a frequency of maximum amplitude of 5635 ± 111 Hz 

(range = 3728 – 6388 Hz, CV = 10.7 %).  

Among 10 males for which we recorded ≥ 80 songs, the repertoire size varied from four 

to ten song types (average: 6.3 ± 0.7 songs, Figure 3.2); all 10 males analyzed reached a 

repertoire asymptote. All of the individuals we studied delivered their song types in a 

predictable order that deviated significantly from random (Markov chain: p < 0.007 for all 

individuals, n = 10). Individuals with nearby territories showed more similar patterns of 

repertoire use than they did with far-away individuals (Mantel test: r = 0.49, p = 0.002, n = 10).  

Duets were produced by both members of the pair and included elements overlapping in 
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both time and frequency (Figure 3.1). Vocalizations used to construct a duet were different from 

vocalizations used as solo songs (Figure 3.1). Complete duets showed an average duration of 4.3 

± 0.4 s (range = 3.7 – 5.0 s, CV = 15.8 %), minimum frequency of 1314 ± 35 Hz (range = 1244 – 

1349 Hz, CV = 4.6 %), maximum frequency of 11,240 ± 539 Hz (range = 10,188 – 11,971 Hz, CV = 

8.3 %), and frequency of maximum amplitude of 7763 ± 397 Hz (range = 6977 – 8250 Hz, CV = 

8.8 %). On three occasions, we observed just one individual of the pair producing an unanswered 

duet contribution, which was shorter in duration than a complete duet (Figure 3.1). We classified 

these vocalizations as “incomplete duets” (Figure 3.1). Incomplete duets showed an average 

duration of 3.0 ± 0.4 s (range = 1.9 – 3.8 s, CV = 26.0 %), minimum frequency of 4747 ± 686 Hz 

(range = 3277 – 6600 Hz, CV = 32.3 %), maximum frequency of 10,215 ± 367 Hz (range = 9327 – 

11,557 Hz, CV = 8.0 %), and frequency of maximum amplitude of 8219 ± 155 Hz (range = 7666 – 

8625 Hz, CV = 4.2 %).  

Rusty-crowned Ground-sparrow vocal output varied throughout the day, with the 

highest peak occurring between 0700 and and 1000 hours (KS: Dmax = 0.80, p < 0.001; Figure 3.3). 

With the 59 % of all vocalizations of the day occurred during this peak in vocal output (Figure 

3.3). The same diel patterns for combined vocalizations was observed for both calls (Dmax = 0.72, 

p < 0.001; Figure 3.3), and solo songs (Dmax = 0.73, p < 0.001; Figure 3.3). Birds produced too few 

duets to conduct a meaningful analysis (n = 8 duets from 3 pairs) although all duets were 

recorded throughout the morning (range: 0705h to 1216h).  

 

Discussion 

The vocal repertoire of Rusty-crowned Ground-sparrows includes three main categories of 

vocalizations: calls, solo songs, and duets. Prior anecdotal descriptions of this species’ 
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vocalizations mention only solo songs (Howell and Webb 1995; Rising 2011). Calls and duets 

were produced by both individuals of the pair, whereas solo songs were produced only by one 

individual in the pair; we assumed that the solo singers were males based on knowledge of vocal 

behaviour in related ground-sparrow species. Pair members create duets using vocalizations 

different from male solo songs, although duets were quite rare during our recording period. This 

ground-sparrow exhibited a diel pattern of variation with one peak of vocal output, coincident 

with dawn. This is the first quatitative description of the vocalizations of this little-studied 

endemic Mexican sparrow. 

Rusty-crowned Ground-sparrows produce two types of calls, which we distinguish as 

chip and tseet calls. Two similar call types have been reported in White-eared Ground-sparrows 

(Chapter 2). Both species sharing similarity in acoustic structure and context of call use. As in 

White-eared Ground-sparrows, our observations of Rusty-crowned-ground-sparrows revealed 

that the chip call was used mainly in the context of contact between the pair members while 

foraging. We also observed birds producing this call when we were close to the nest site during 

the nest construction stage, which suggests this vocalization may also be used as an alarm signal 

(mobbing call), as has been suggested for White-eared Ground-sparrow chip calls (Chapter 6). 

The tseet calls also appear to be used to initiate or maintain contact, but less frequently than 

chip calls.  

Both call types showed different acoustic structures that may affect the distance and 

position perception, as has been suggested for both call types in White-eared Ground-sparrows 

(Chapter 2). The chip call occurs at a higher frequency, with a broad bandwidth, and short 

duration, making it easy to localize the position of the sender (Marler 2004b), but these 

properties may reduce the distance that the call can travel throughout the habitat (Wiley 1991; 
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Bradbury and Vehrencamp 2011). In comparison, the tseet call showed narrow bandwidth, with 

a longer duration, suggesting that this vocalization can transmit over longer distances, but may 

be harder for potential receivers to localize as a result (Wiley 1991; Bradbury and Vehrencamp 

2011). The acoustic properties of chip calls may help other individuals to localize potential 

predators, initiating a mobbing response, thereby better deterring potential predators (Marler 

2004b; Sandoval and Wilson 2012).  

Solo song was the most variable vocalization in terms of structure, because it included 

several types of elements in different combinations and frequency of occurrence, a pattern 

found widely among sparrows (Searcy 1992; Beecher et al. 2000). These high levels of variability 

are believed to be the result of sexual selection on this vocalization, by female selection or male-

male competition (Searcy 1992; Gil and Gahr 2002). In the Rusty-crowned Ground-sparrow, only 

a single individual within a pair produced this vocalization; this was likely the male, based on 

studies in other species within this genus: Prevost’s (M. biarcuata) and White-eared Ground-

sparrows (Chapters 2, 5, and 6). In some sparrows, females prefer males with larger vocal 

repertoires (Searcy 1984, Reid et al. 2004). If this is true in Rusty-crowned Ground-sparrows, this 

may be a force driving the elaboration of male vocal repertoires. In other sparrows, males use 

solo song repertoires as a signal to male-male interactions (Beecher et al. 1994, Vehrencamp 

2001). If this holds true in Rusty-crowned Ground-sparrows, then shared song types between 

neighbouring males may be an important social force that selects for vocal repertoires in solo 

song types. 

We observed a relationship between  repertoire-use similarity and  distance between 

territories, where nearby males share and use their repertoires more similarly than with males 

located at further distances; this pattern has also been observed in a sister taxon, the White-
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eared Ground-sparrow (Chapter 5). This pattern may indicate that males tend to learn their 

songs and use more of their repertoire during the territory establishment period (McGregor and 

Krebs 1989). Sharing repertoire characteristics with the neighbours is advantageous because it 

may help to reduce the territorial response of the neighbours (Fisher 1954), and also may 

facilitate male-male interactions (Beecher et al. 2000). Another advantage to repertoire sharing 

between immediate neighbours is the use of similar song types during male-male interactions, 

especially if matched song types are important signals of escalation during interactions (Krebs et 

al. 1981; Todt and Naguib 2000). To further evaluate these possible hypotheses for solo song 

function, future playback studies will be helpful. 

In general, male solo song and duet structure in this ground-sparrow showed an 

intermediate pattern between the song and duet structures observed among northern and 

southern species in the genus. For example, in the northern species solo songs contain longer 

trills (Tweit and Finch 1994; Johnson and Haight 1996; Benedict et al. 2011) which are similar to 

several trill elements in the Rusty-crowned Ground-sparrows song (Fig. 3.1: song types 11 and 

12); however, the southern species’ songs are a combination of several elements including 

frequency-modulated elements and trills (Chapter 5 and 6), as are also observed in other Rusty-

crowned Ground-sparrows solo songs (Fig. 3.1: song types 13 to 23). On the other hand, duets of 

Rusty-crowned Ground-sparrows included introductory elements similar to the introductory 

elements observed in the duets of Prevost's and White-eared Ground-sparrows (Chapters 2 and 

6), but the elements of the main part of the duet (where the majority of the overlap occurred 

between the vocalization of both pair individuals) were similar to the elements observed in the 

duets of California Towhee (M. crissalis; Benedict and McEntee 2009).  
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The habitat structure where birds inhabit may influence the characteristics of 

vocalizations (Boncoraglio and Saino 2007). Rusty-crowned Ground-sparrows inhabit both 

deciduous and dry forests (Howell and Webb 1995; Rising 2011), habitats more open than those 

inhabited by the southern species (e.g., thickets and young successional forest), but closely 

resemble the habitats of northern species (e.g., desert vegetation and grasslands). Alternatively, 

the presence of the observed intermediate properties of solo songs in Rusty-crowned Ground-

sparrow may be the result of phylogenetic relationships, given that this species shows similar 

relatedness with both ground-sparrow phylogenetic groups (DaCosta et al. 2009). A careful 

evaluation of habitat structure and phylogenetic effect is necessary to understand what 

influences this intermediate vocal pattern.  

Duets were produced with a different vocalization than those used for solo songs, a 

pattern that appears to be widespread in Melozone species (Benedict and McEntee 2009; 

Chapters 2, 6, and 7), but rare in many other duetting species where birds use the same 

vocalizations for solos and duets (e.g. Mann et al. 2003, Mennill and Vehrencamp 2005, Logue 

2006). Although we obtained a limited number of duets during our recordings study, our 

observations suggest that duets in this species are used in a similar way that has been observed 

for the White-eared Ground-sparrow: territory defence and pair contact (Chapter 6). For 

example, when we played back duets to previous recorded pairs to corroborate their presence 

on their territory, both individuals approached quickly to the playback loudspaeaker. We also 

observed duet production when one individual of the pair arrived next to the other. Future 

studies will require larger sample sizes and playback studies to corroborate and test these 

hypotheses. 
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Rusty-crowned Ground-sparrows showed significant variation in vocal output over the 

course of the day. The primary peak in vocal output occurred from 0700 to 1000, just after 

sunrise, coinciding with the dawn chorus in the study area. Calls and solo songs showed the 

same pattern throughout the day. A similar pattern has been observed in the White-eared 

Ground-sparrow (Chapter 2); although in general this species produced more vocalization per 

hour per individual throughout the day.  

In conclusion, Rusty-crowned Ground-sparrows showed a repertoire size similar to that 

observed to the White-eared Ground-sparrows, although the vocalizations shared similar 

acoustic structural characteristics with both northern and southern species in this genus. The 

function of each category of vocalization is also similar to those reported previously for closely 

related species. Male solo song repertoire-use similarity was higher in nearby males, suggesting 

that song vocal learning may occur after territory establishment, as has been suggested for 

White-eared Ground-sparrows. The description of bird vocal repertoire and diel pattern is highly 

recommended because it is the basic information required to conduct comparative studies and 

address experimental questions. 
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 Figures 

 

Figure 3.1. Sound spectrograms of the three main categories of vocalizations produced by Rusty-
crowned Ground-sparrows, with two examples of the two call types; six common male solo song 
types produced in the study site; a complete duet (black and grey blocks show the contribution 
of each individual of the pair); and an incomplete duet featuring a contribution by one 
individual. 
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Figure 3.2. Repertoire asymptote curves for Rusty-crowned Ground-sparrows, showing six males 
that reached an asymptote. These six males were chosen to show the full range of variation in 
our dataset; the remaining four males had repertoire asymptote curves overlapped by the 
curves shown.  
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Figure 3.3. Diel variation in vocal output in Rusty-crowned Ground-sparrows according to calls, 
solo songs, and both vocalizations together. Dots show means and the whiskers show standard 
error for n= 5 pairs recorded for a 52 hour period.  
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Chapter 4 

Transmission characteristics of solo songs and duets in neotropical thicket 

habitat specialist bird* 

  

                                                             
*
This chapter is the outcome of joint research with T. Dabelsteen and D. Mennill 
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Chapter summary 

The Acoustic Adaptation Hypothesis proposes that the structure of animal vocalizations is 

heavily influenced by habitat characteristics, and that animals will develop vocalizations and 

display behaviours that optimise the transmission properties of these signals. White-eared 

Ground-sparrows (Melozone leucotis) live in early succession habitats with dense vegetation 

(thickets) where vocal communication is an ideal mode of communication for territory defence 

and mate attraction. Based on the Acoustic Adaptation Hypothesis, if both vocalizations are used 

in long distance communication, we expected that the solo songs and duets produced by 

ground-sparrows would exhibit structures that enhance sound transmission in thicket habitats. 

We conducted a sound transmission experiment where we broadcast and re-recorded solo 

songs and duets to study their transmission properties. We used two speaker heights and two 

microphone heights to simulate different perch heights of signalers and receivers, and four 

distances between the speakers and microphones to simulate variable distances of separation. 

We found that both solo songs and duets show similar patterns of degradation and attenuation 

with distance and with proximity to the ground. This result suggests that both solos and duets 

facilitate communication with receivers at similar distances. The highest perches, for both 

signalers and receivers, maximized acoustic transmission. This is the first study that evaluates 

the transmission properties of both songs and duets in birds, despite the fact that many bird 

species in the tropical forest produce both types of vocalizations. Surprisingly, we found that 

both solos and duets degraded to very low levels in less than a typical territory’s diameter, 

suggesting that this species has not experienced strong selection for long distance 

communication. 
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Introduction 

The structure of vegetation and the ambient noise characteristics of wilderness habitats have a 

heavy influence on the structure of vocalizations produced by animals (e.g. Dabelsteen et al., 

1993; Forrest, 1994; Balsby et al., 2003). Numerous investigations have demonstrated that 

animal signals are acoustically adapted to optimize transmission characteristics in their habitat, 

(Boncoraglio & Saino, 2007; Ey & Fisher, 2009). The structure of the vocalizations may also 

change over time, if habitat characteristics change, to enhance transmission distance (e.g. Perla 

& Slobodchikpff, 2002; Derryberry, 2009). By studying the transmission properties of animal 

vocalizations, we can explore the relationship between animal communication and animal 

habitats, and thereby the evolution of animal behaviour. 

Some habitats may present more significant challenges for the transmission of animal 

vocalizations than others. In particular, noisy environments may present substantial 

communication challenges to both signallers and receivers, such as habitats near moving water 

or urban areas (Slabbekoorn, 2004; Redondo et al., 2013) or habitats with very dense vegetation 

(Slabbekoorn et al., 2002). In tropical environments, early successional habitats with dense 

vegetation—known as thickets—may present special barriers to signal transmission because 

vegetation causes scattering, reflection, and reverberation, thereby attenuating signals 

especially of high frequencies (Slabbekoorn et al., 2002; Dingle et al., 2008). Many of these 

habitats are also located close to noisy places such as river edges, streets, and towns (Sánchez-

Asofeifa et al., 2001; Harvey et al., 2008; Biamonte et al., 2011), which may further impede 

acoustic communication of animals living therein (Ryan & Brenowitz, 1985; Slabbekoorn & Peet, 

2003; Barker, 2008). 
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Studies of sound transmission have focused on the breeding vocalizations produced by 

animals, including a heavy focus on male songs (Boncoraglio & Saino, 2007; Ey & Fisher, 2009), 

probably because these vocalizations are among the most conspicuous long distance 

vocalizations used to attract females and deter territorial rivals (Andersson, 1994; Catchpole & 

Slater, 2008). According to the Acoustic Adaptation Hypothesis (Morton, 1975; Hansen, 1979), 

the acoustic characteristics of animal vocalizations are adapted to the habitat where they are 

typically transmitted (Boncoraglio & Saino, 2007; Ey & Fisher, 2009); several investigations of the 

transmission properties of bird songs confirm that this is the case (Ryan et al., 1990; Brown, et 

al. 1995; Sabatini et al., 2011). Yet animals also produce a wide variety of other acoustic signals 

beyond male breeding songs, including female songs, calls from both sexes, and vocal duets 

(Langmore, 1998; Matrosova et al., 2011; Geissmann, 2002; Marler, 2004). These vocalizations 

may also be used in long distance communication, and therefore may be acoustically adapted to 

their environment. We have a poor understanding of the transmission properties of other types 

of vocalizations in comparison to the breeding songs of males, and it is worthwhile to explore 

the acoustic adaptation of these other types of signals. 

Our main objective in this investigation is to compare the transmission characteristics of 

the solo songs and duets of White-eared Ground-sparrows (Melozone leucotis). This species 

specializes in dense thicket habitats of the Neotropics (Sandoval & Mennill, 2012), and males 

and females of this species live as territorial pairs throughout the year, as do many tropical birds 

(Stutchbury & Morton, 2008). White-eared Ground-sparrows produce three main types of 

vocalizations: both sexes produce quiet calls; males produce solo songs; and breeding partners 

combine their vocalizations to produce vocal duets (Chapters 2 and 6). Whereas some birds use 

the same vocalization for solos and duets, the duets of White-eared Ground-sparrows are 
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created with very different vocalizations than those used by males as solo songs (Chapter 2 and 

5). Whereas male solo songs are frequency-modulated tones and at frequencies that vary from 

3.5 to 11.2 kHz, the vocalizations males and females contribute to duets are rapid, noisy, and 

with frequencies that vary from 5.1 to 11.5 kHz (Chapter 2). According to the Acoustic 

Adaptation Hypothesis, it is reasonable to predict that White-eared Ground-sparrow solo songs 

for example, have evolved to enhance sound transmission through thicket habitats, especially 

because appear to be used for long distance communication (Chapter 2). Our field observations 

suggest that male songs are used mainly to attract females, and are produced from perches that 

vary between 1 and 3 m height on average. Duets, on the other hand, appear to be used for 

within-pair communication and for territory defence against other pairs and are produced 

mainly from perches close to or directly on the ground (unpub. data). The sound spectrograms 

of White-eared Ground-sparrow vocalizations, however, show unexpected patterns. Their 

vocalizations have broad bandwidth, relatively short duration of elements, high minimum 

frequency, and prominent trills. The Acoustic Adaptation Hypothesis predicts that vocalizations 

with narrow bandwidth, long duration, and with a low minimum frequency should maximize 

transmission in dense vegetation, and trills should be favoured in open environments, rather 

than in dense vegetation (Morton, 1975; Hansen, 1979, Boncoraglio & Saino, 2007; Ey & Fisher, 

2009). A field-study of the transmission properties offers the opportunity to understand if these 

patterns could be an adaptation for optimizing communication range. We conducted a sound 

transmission experiment to evaluate the transmission characteristics of White-eared Ground-

sparrow solo songs and duets. Specifically we addressed two questions: (1) Do the solo songs 

and duets of White-eared Ground-sparrows have different transmission properties? (2) Do 

transmission properties of solo songs and duets vary with the perch height used by the signaler 

or receiver? If White-eared Ground-sparrow songs and duets are used to communicate with 
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receivers at similar distances, we predicted that both types of vocalizations would share the 

same pattern of degradation and attenuation through thicket habitats. If one vocalization is used 

mainly for short-range communication (e.g., between pair members) and the other for long-

range communication (e.g., with animals in adjacent territories), we predicted that one 

vocalization would show more degradation and attenuation than the other. Finally, we predicted 

that higher perches would increase sound transmission, as has been reported in other studies 

(Krams, 2001; Barker & Mennill, 2009; Barker et al., 2009); therefore, vocalizations should show 

higher levels of degradation and attenuation closer to the ground. 

 

Methods 

Study sites and territory measurements 

We conducted this study in the Getsemaní region of Heredia province, Costa Rica (10°01’N, 

84°06’W; 1300 m elevation), where White-eared Ground-sparrows are common inhabitants in 

young secondary forest edges, shade coffee plantations, and naturally occurring thickets. The 

study was conducted from 30 July to 2 August 2012, during the last part of this species’ breeding 

season (Sandoval & Mennill, 2012). All playback sessions took place inside three typical 

territories of White-eared Ground-sparrows (one in a shade coffee plantation and two in natural 

thickets). All experiments took place between 6:00 and 9:00 h, a time when both male solo 

songs and vocal duets are commonly heard from this species (Chapter 2). 

To describe vegetation density within the territories occupied by the study species, we 

measured the number of trees (plants > 2 m tall and with a diameter at breast height ≥ 10 cm), 

bushes (plants 1 - 2 m tall with the main trunk diameter of 2 - 10 cm), and the percentage of 
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ground covered by grasses and small plants (15 - 100 cm tall), in 19 White-eared Ground-

sparrow territories. We collected 8 to 12 measurements per territory using a 2 × 2 m plots. We 

originally endeavoured to take 12 measurements in each territory, but some territories were too 

small for 12 plots; in other territories the land structure, including steep slopes, or creeks, 

prohibited 12 plots. We distributed the plots along the cardinal points at three distances from 

the territory centre: 5, 10, and 20 m. 

 

Transmission playback stimuli 

To create stimuli for playback, we used vocalizations recorded during previous investigations of 

this species. Recordings were collected with a Marantz PMD 661 digital recorder (sampling rate: 

44.1 kHz; accuracy: 16- bit; file format: WAVE), and a Sennheiser ME66/K6 directional 

microphone. We selected our highest quality recordings, focusing on sounds with little or no 

overlapping background sounds and with a high signal-to-noise ratio for both male solo songs 

and duets (Figure 4.1). Sounds used in the experiment were selected from five different 

individuals and were representative of the species’ repertoire. For male solo song stimuli, we 

chose a solo song from two males. For duet stimuli, we chose three duet contributions, one from 

a male and two from individuals of unknown sex (due to the dense vegetation at our study site, 

and the fact that pair members often forage in very close proximity, we could not assign the sex 

of the singer with confidence). We used duet recordings where we recorded non-overlapping 

duet contributions (i.e. incomplete duets, see Chapter 2), rather than the overlapping male-

female contributions that are typical of this species’ duets (i.e. a vocalization produced by both 

members of the pair singing simultaneously), because male and females overlap in frequency 
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and time (see Figure 1.3 in Chapter 2), making it impossible to separate the elements for the 

analysis. 

We played entire solo songs (N = 2) and duets (N = 3), as well as isolated elements of 

solo songs (N = 6 elements, 3 from each of 2 males’ songs) and duets (N = 4 elements from three 

different birds; Figure 4.1). The stimuli were composed of a sequence of five repetitions of two 

complete solo songs, three duet songs, and the ten elements. Each repetition was separated 3 s 

of silence. Solo songs, duets, and the separate elements were separated by 1.5 s of silence. For 

each solo song we selected three elements: one introductory element (I), one middle element 

(M), and one trill element (T, Figure 4.1). We selected four duet elements (D), in two duets we 

selected one element per duet, and in one duet we selected two elements (Figure 4.1).  

Given the variable frequency range of solo and duet songs, we used different filters to 

isolate the sounds of interests, by excluding background sounds, for our playback stimuli. For 

solo songs and solo song elements we used the following filters: solo song 1: 1.5 – 11 kHz; solo 

song 2: 4- 13.5 kHz; element I1: 7.5 – 13 kHz; element I2: 4 – 11.5 kHz; element M1: 1.7 – 8 kHz; 

element M2: 4 – 9 kHz; element T1: 4 – 9.5 kHz; and element T2: 4 – 9 kHz (Figure 4.1). For duet 

songs and duet song elements we used the following filters: duet 1: 4 – 11.5 kHz; duet 2: 4 – 12 

kHz; duet 3: 4 – 10.5 kHz; element D1: 6 – 12 kHz; element D2: 4 – 11 kHz; element D3: 6 – 12; 

element D4: 5 – 11 kHz (Figure 4.1). We applied these filters using the passive option of the Fast 

Fourier Transformed filter in Audition 1.0 (Adobe Systems, San Jose, CA, USA). Stimuli were 

standardized to -1 dB in Audition. The stimuli were transferred to a portable audio player 

(model: Ipod Touch Nano, Apple, Cupertino, CA) for playback in the field. 

 



 

Chapter 5: Individual Distinctiveness in White-eared Ground-sparrows Vocalizations 

82 

 

Transmission experiment 

We broadcast the stimuli from an active loudspeaker (Anchor Audio; Minivox; frequency 

response: 0.1 – 12 kHz), and re-recorded them using an omnidirectional microphone (Sennheiser 

ME62/K6) and a solid-state digital recorder (Marantz PMD661; sampling rate: 44.1 kHz; 

accuracy: 16- bit; file format: WAVE), connected via a microphone preamplifier (Sound Device 

MP-1; frequency response: 0.02 – 22 kHz). We played back the stimuli at a constant volume of 

80 dB SPL, measured at 1 m from the speaker using a digital sound level meter (Radio Shack 

model 33-2055 using C weighting, slow response). As the distance between the loudspeaker and 

the microphone increased, we adjusted the level of our preamplifier so that we could still record 

the playback sounds. We always used a gain of 18 dB at 16 and 32 m of distance between the 

loudspeaker and microphone. Our broadcast amplitude, 80 dB SPL at 1m, matched how loud the 

ground-sparrow solo songs and duets are in the field according to the perception of two 

investigators with three years of experience in recording the study species. 

For each of the three transmission tests, we played sounds across four horizontal 

distances (4, 8, 16, and 32 m between loudspeaker and microphone) and two microphones and 

speaker heights (0.4 and 2.2 m). We used these heights for the microphone and speaker to 

represent the two common heights where we have observed White-eared Ground-sparrows 

producing solo songs (i.e. higher height) and duets (i.e. lower height). The horizontal distances 

were selected to represent the distances we often observed between the pair members (i.e. the 

two shorter distances) and between neighbouring pairs (i.e. the two longer distances). Rather 

than repeating the playback at the four horizontal distances along a linear transect, as has been 

done in previous studies (e.g. Barker et al. 2009, Sabatini et al. 2011), we chose instead to 

playback sounds along four different axes within each territory, to look at the effect of a larger 
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and hence more representative part of the territories. We chose these playback axes according 

to the cardinal points in two territories, and in one territory the four transects started at the 

same point but they were distributed at different directions close to the south because the 

shape of the territory prevented us from conducting the transmission test in the cardinal 

directions. We measured the temperature (mean ± SE: 24.64 ± 0.61 °C) and relative humidity 

(mean ± SE: 94.78 ± 0.17 %) every 5 minutes during the experiment using the internal humidity 

and temperature device of the SM2+ Wildlife Acoustic Song Meters (Wildlife Acoustics Inc., 

Concord, MA, USA) placed at a height of 1 m inside each territory. 

 

Sound analysis 

We used SigPro 3.25 software (Pedersen, 1998), to analyze the re-recorded sounds. Rather than 

comparing the re-recorded sounds to the playback stimuli, we compared them to re-recorded 

sounds collected at a distance of 1.0 m. This allowed us to control for changes in the sound that 

may have arisen because of the playback equipment. For the 1.0 m recording, the speaker was 

oriented upwards and the microphone was hung 1.0 m directly overtop in the centre of an open 

field of 20 × 20 m; we did this to avoid recording the re-recorded sound with reverberations 

produced by the ground and vegetation in the recording. The first three repetitions of each 

sound that were not overlapped by any other sound were selected for use in the analysis. 

We compensated for the stationary background noise that contributes to the amplitude 

values of the experimental sounds. We measured the noise immediately before the start of the 

stimulus for each analyzed sound. As in other transmission studies (e.g. Sabatini et al., 2011), we 

assumed that the background noise before each stimulus was the same as the noise that 



 

Chapter 5: Individual Distinctiveness in White-eared Ground-sparrows Vocalizations 

84 

 

overlapped the experimental sounds. A detailed explanation of the estimation of noise values 

can be found in Sabatini et al. (2011).  

For each experimental sound we measured the following four variables: the signal-to-

noise ratio (the comparison between the amount of energy in the observed sound versus energy 

in the background noise immediately prior to the sound of interest), tail-to-signal ratio (the 

amount of energy in the reverberant tail compared with the energy in the observed sound), the 

blur ratio (the frequency-dependent attenuation and temporal distortion of the signal), and 

excess attenuation (attenuation beyond the spherical spreading of 6dB per doubling of the 

distance). Details about the formulas used to collect these measurements in SigPro are 

presented in Dabelsteen et al. (1993), Holland et al. (1998), and Lampe et al. (2007). For several 

of the 32 m playback sessions, the re-recorded sound was too faint for analysis, even with the 

use of the pre-amplifier.  

 

Statistical analysis 

We performed two general linear models (GLM) to analyze the effect of the sound transmission 

experiments on signal degradation. The first GLM was used to compare the transmission of 

entire solo songs versus entire duets, and the second one was used to compare the transmission 

of solo song and duet elements. We used as independent variables in the GLM the distance 

between the speaker and microphone (four levels), the speaker height (two levels), the 

microphone height (two levels), and stimulus (five levels for solo songs and duets, and ten levels 

for elements). The response variables were the four sound degradation measurements (signal-

to-noise ratio, tail-to-signal ratio, the blur ratio, and excess attenuation) which we ran separately 
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in four independent models. We estimated only main effects and two-factor interactions in our 

analysis. Finally, we performed post hoc tests, conducting all pairwise comparisons between 

main effects and two-factor interactions using Bonferroni corrections. Our response variables 

were normally distributed (Kolmogorov-Smirnov normality test: p > 0.05) and showed equality of 

variances.  

Following by the technique used by several authors (Nemeth et al., 2001; Barker et al., 

2009; Sabatini et al., 2011) we analyzed variation in background noise level by conducting 

another GLM in the region of the sound spectrum that remained after the filters were applied in 

each sound. We used as independent factors in the GLM the distance between the speaker and 

microphone (four levels), the speaker heights (two levels), the microphone heights (two levels), 

and sounds (five levels for solo songs and duets, and ten levels for elements). The response 

variable was the background noise level measurement.  

Throughout, we report all values as mean ± SE. Statistical analyses were conducted in 

JMP (version 10.0; SAS Institute, Cary, NC, U.S.A.). 

 

Results 

Vegetation characteristics 

In the 19 analyzed White-eared Ground-sparrows territories we found 0.10 trees/m2 (range: 0 – 

0.23 trees/m2) and 0.45 bushes/m2 (range: 0.06 – 1.20 bushes/m2). The percent cover of grass 

and small plants was 52% (range: 11.25 – 100%). 
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Degradation of complete solo songs and duets 

For comparisons between complete solo songs and duets, we observed several significant 

patterns for the main effects and two-factor interactions (Table 4.1). As distance increased, 

sounds showed lower signal-to-noise ratios, longer tail-to-signal ratios, a higher blur ratio, and 

increased excess attenuation, as expected (Table 2). When speakers were closer to the ground 

(0.4 m vs 2.2 m), sounds showed lower signal-to-noise ratio (Figure 4.2) but the other three 

variables were not statistically different. When microphones were closer to the ground (0.4 m vs 

2.2 m), sounds showed lower signal-to-noise ratio, higher blur ratio, and increased excess 

attenuation (Figure 4.2). Solo songs showed lower signal-to-noise ratio and shorter tail-to-signal 

ratio than duets (Figure 4.3).  

Less than the half of the interactions showed a significant effect in our models, and 

these interactions included distances, and speaker and microphone heights (Table 4.1). Distance 

× speaker height and distance × microphone height interactions showed higher signal-to-noise 

ratio, shorter tail-to-signal ratio, lower blur ratio, and decreased excess attenuation at shorter 

distances and higher perches (Table 4.1; Figure 4.4). Distance × sound interaction showed longer 

tail-to-song ratio when increased the distance, and at all distances duets showed shorter tail-to-

signal ratio than solo songs (Figure 4.4). Speaker height × microphone height interaction showed 

lower signal-to-noise ratio and increased excess attenuation at lower heights (close to the 

ground); but longer tail-to-signal ratio at diagonal propagation (Figure 4.4). The remaining 

interactions were not significant (Table 4.1). 
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Degradation of solo songs and duet elements  

In addition to our analyses of entire solo songs and duets, we analyzed separately the elements 

that make up solo songs and duets. As with entire solo songs and duets, we found significant 

effects in signal-to-noise ratio, tail-to-signal ratio, blur ratio, and excess attenuation and several 

two-factor interactions (Table 4.3). As distance increased, elements showed lower signal-to-

noise ratios, longer tail-to-signal ratios, a higher blur ratio, and increased excess attenuation, as 

expected (Table 4.2). When the speaker was closer to the ground (0.4 m), elements showed 

lower signal-to-noise ratio and increased excess attenuation. When the microphone was closer 

to the ground (0.4 m), elements showed lower signal-to-noise ratios, longer tail-to-signal ratios, 

a higher blur ratio, and increased excess attenuation. We failed to find any significant pattern of 

degradation on solo song and duet elements, and degradation depended specifically on the 

characteristics of each element (Figure 4.3).  

More than the half of the interaction terms showed some effect in our analysis of solo 

song and duet elements, and these interactions included distance, and speaker and microphone 

heights (Table 4.3). Distance × speaker height, distance × microphone height, and distance × 

element interactions showed higher signal-to-noise ratio, shorter tail-to-signal ratio, lower blur 

ratio, and decreased excess attenuation at shorter distances and higher perches (Table 4.3). 

Some elements degraded equally at 4 and 8 m; while others had higher degradation at 8 m. The 

degradation at 32 m was highest for all elements than at closer distances. Speaker height × 

microphones height interactions showed lower signal-to-noise ratio and increased excess 

attenuation close to the ground, but longer tail-to-signal ratio and higher blur ratio at diagonal 

propagation (i.e. between high speakers and low microphones, or vice versa). Microphone 
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height × element interaction showed a higher blur ratio at lower heights. The remaining 

interactions were not significant (Table 4.3).  

 

Background noise variation  

In our analysis of the background noise that preceded each bout of recording, we found that 

background noise levels varied with distance (Table 4.4), where there was slightly more 

background noise at 32 m, than at 16 m, and with similar noise levels at both 8 and 4 m. This 

result is likely caused by noise produced by an increase in the vegetation between the speaker 

and microphone with the distance, consequently wind will rustle a large number of leaves 

producing more background noise. The only interactions that affected the background noise 

levels were distance × sound and speaker heights × microphone heights (Table 4.4). Distance × 

sound interaction showed more background noise at 32 m than at closer distances, probably due 

to these same causes. Distance × speaker height interactions showed more background noise at 

lower heights (close to the ground), and this effect is likely caused by noise produced by wind 

rustling leaves in the dense understory. 

 

Discussion 

Using a transmission experiment, where we played the solo songs and duets of White-eared 

Ground-sparrows across several different distances and at two different speaker and 

microphone heights in this species’ native thicket habitat, we showed that the degradation and 

attenuation of complete solo songs, duets, and their elements increased with distance and 

proximity to the ground. We found that solos and duets experienced similar patterns of 
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attenuation and degradation, indicating that both types of vocalizations transmit similar 

distances, and suggesting that both solos and duets are designed to communicate with potential 

receivers located at similar distances from signallers. Speaker and microphone height positively 

influenced the transmission of vocalizations, demonstrating that ground-sparrow solos and 

duets experienced less degradation and attenuation from higher perches. Patterns of 

attenuation were influenced by the interaction between the distance with other factors such as 

speaker and microphone height, and rarely with the type of sound analyzed. 

The thicket habitats occupied by White-eared Ground-sparrows impose a limitation on 

visual communication due to the high density of vegetation; therefore acoustic communication 

may be an especially important modality for long-range signalling in thicket habitats. High 

vegetation density, however, affects sound transmission by increasing degradation (Nemeth et 

al., 2001; Slabbekoorn & Smith, 2002; Slabbekoorn, 2004), especially if the vocalizations are not 

adapted to transmit well in this type of habitat. Solo song elements with narrow bandwidth and 

long duration tend to transmit well in dense vegetation, but broadband, short elements do not 

(Wiley, 1991). Our results reveal that the solo songs and duets of White-eared Ground-sparrows 

are not well adapted to transmit in dense habitat. The measurements we collected of signal 

attenuation and degradation (signal-to-noise ratio, excess attenuation, and blur ratio) were 

higher than reported in other transmission studies. For example, in temperate forests, Common 

Blackbirds (Turdus merula; Dabelsteen et al., 1993) and Blackcaps (Silvia atricapilla; Mathevon et 

al., 2005) showed signal-to-noise ratios that were more than double of those report here, excess 

attenuation values were less than one third of our reported values, and blur ratio values were 

less than half of those reported here at longest distances. In one of the few studies of 

degradation conducted in tropical forest, Rufous-and-white Wrens (Thryophilus rufalbus; Barker 
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et al., 2009) showed signal-to-noise ratios that were 1.5 times higher than those reported here, 

excess attenuation values were less than one seventh of those report here, and blur ratio values 

were less than half of those reported here. These comparisons suggest that thicket habitats 

impose a significant barrier to effective communication and demonstrate that White-eared 

Ground-sparrow songs and duets – vocalizations with broad bandwidth, short duration, and 

repeated trill elements – are poorly adapted to transmit long distances inside thicket habitats. . 

Although solo songs and duets have different main functions in this species (Chapter 6), 

similarity in degradation may be the result of constrains that produce both vocalizations to 

evolve in the same way, or avoid the divergence in the acoustic characteristics for each 

vocalization in relationship to their main function. Another possible cause for the similarity in 

degradation between both vocalizations is that the potential receiver for both vocalizations (e.g., 

neighbour females and neighbour pairs) is allocated in a similar distance.  

Field observations suggest that White-eared Ground-sparrow territories have a diameter 

of approximately 50 to 70 m (estimated territory sizes based on tracking 42 banded pairs over 

the last three years), and that birds often occupy territories that abut multiple neighbours 

(Chapter 5). Given our observations of the birds’ territory sizes, combined with the rapid 

degradation reported here, solo songs and duets of these species are not expected to propagate 

more than one territory diameter, limiting the vocal interactions with other pairs or potential 

mates further than one territory apart.  

White-eared Ground-sparrows may use behavioural strategies to enhance sound 

transmission, as has been reported for other bird species (e.g. Krams, 2001; Mathevon et al., 

2005; Barker & Mennill, 2009). For example, we have observed birds singing on the edge of their 

territories, and pairs approaching the shared boundary of a neighbouring territory where a 
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neighbouring pair was vocalizing. These behaviours may make vocal interactions between 

neighbouring animals more efficient, considering the limitations of sound transmission we found 

here, by reducing the distance between signalers and receivers. Another behaviour that may 

help to increase the transmission of the sounds is the use of higher perches for vocalizing, and 

the advantage of this behaviour was corroborated by our results. We found that male solo songs 

and duets were transmitted and received with less degradation (higher signal-to-noise ratio and 

lower excess attenuation) at higher perches, as has been observed in other species in a variety 

of different types of habitat (Dabelsteen et al., 1993; Krams, 2001; Mathevon et al., 2005; Barker 

et al., 2009).  

Some acoustic signals evolved with acoustic characteristics that favour highest levels of 

degradation and attenuation, because the context of production may require privacy (e.g., 

mating signals) or help to prevent eavesdropping by competitors, predators, or parasites 

(Dabelsteen 2005). Probably, acoustic characteristics that favour the highest levels of 

degradation and attenuation observed in the solo songs and duets of White-eared Ground-

sparrows are maintained because help to prevent that the signal may be eavesdropped by 

potential ambushed predators. 

In White-eared Ground-sparrows, duets are vocalizations used mainly for 

communication within pairs (Chapter 2) and possibly with neighbouring pairs during interactions 

(Chapter 6). If the primary receiver for ground-sparrow duets is the bird’s partner, located on the 

same territory, there may be little necessity for this vocalization to transmit long distances. This 

stands in contrast to the function of male solo songs, vocalizations used mainly for mate 

attraction (Chapter 2) and possibly territory defense (Chapter 6). If potential receivers are more 

than one territory width away, we would expect animals to produce vocalizations that transmit 
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over such distances, but this is not the case. However, field observations of two males that lost 

their partner during the breeding season suggest that males may change their vocal behaviour to 

enhance signal transmission. In the case of the two bachelor males, we observed birds singing 

from perches that varied from 8 to 15 m height; this is three to five times higher than average 

singing perches observed during the mornings in males with pairs (2.3 ± 0.1 m; N = 9 males). A 

future transmission experiment using solo songs at these heights is encouraged to evaluate the 

possibility that males may further enhance the transmission range of their mate-attraction solos 

or improve the conditions for hearing a vocal response by using higher perches than we studied 

here. 

Thick vegetation is expected to increase the tail-to-signal ratio of an animal vocalization 

through reverberation (Slabbekoorn et al., 2002; Bradbury & Vehrencamp, 2011). This may 

cause little distortion or amplification on unmodulated tonal sound (Nemeth et al., 2006; 

Slabbekoorn et al., 2002; Barker et al., 2009), but for the dramatic frequency-modulated sounds 

of ground-sparrows, the tail serves to distort the signal (Ryan & Brenowitz, 1985; Brumm & 

Naguib, 2009), although may contain information about the distance to the sender (Holland et 

al., 2001). Ground-sparrow solo songs and duets showed higher tails when the sounds were 

produced from higher perches and received closer to the ground. This effect that might be 

driven by stronger wind levels at these heights, as suggested in other studies (Barker et al., 

2009), but likely arises due to the thick ground vegetation that characterized thicket habitats. 

We also analyzed the degradation and attenuation in isolated elements of solo songs 

and duets because the differences in the frequency, duration, and modulation (Figure 4.1) are 

factors that play a primary role in how the sounds propagate throughout the environment 

(Wiley, 1991; Slabbekoorn et al., 2002; Ey & Fisher, 2009). The combination of the different 
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elements within solo songs and duets is expected to affect how the complete signal propagates 

throughout the environment (Slabbekoorn et al., 2002). Each element of the solo songs and 

duets showed similar degradation patterns to those observed for complete sounds. Excess 

attenuation, blur ratio, and tail-to-signal ratio increased with distance and proximity to the 

ground; meanwhile the signal-to-noise ratio decreased. Although we found differences between 

elements in degradation, we failed to find a significant difference between solo song and duet 

elements.  

Degradation of solo song and duet characteristics may represent cues of the distance 

and position of the signalers (Morton, 1986; Naguib, 1995; Sabatini et al., 2011), given that 

sound degradation varied with both factors in White-eared Ground-sparrows. The evolution of 

vocalizations that provide information on the exact position of the signaler may enhance the 

efficiency of communication in closed habitats, like thickets where visual signals are limited even 

at close distances. This idea needs further investigation. 

 

Conclusions 

Although many bird species in tropical habitats produce solo songs and duets (Langmore, 1998; 

Gil & Gahr, 2002; Hall, 2009), this is the first study to directly compare the transmission 

properties of solo song and duets in the same species. We found that both vocalizations showed 

the same pattern of degradation relative to the distance, supporting our prediction that both 

vocalizations are designed to communicate with receivers at similar distances when both sounds 

are emitted with the same level and the receivers are located at the same height above ground 

level. More comparative transmissions studies are necessary to understand the role of both 

vocalizations in the communication between signaler and potential receivers, especially for 
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species where duets are comprised of different type of vocalizations than vocalizations used for 

solo songs, as is the case for our study species here. For example if solo songs travel larger 

distances than duets with less degradation, it suggests the main function of this vocalization is 

likely to attract females that are far away; in contrast duets are likely used for close-range 

communicationIt is important to analyze the transmission properties of calls because some of 

them may be used in close-range and long-range communication; there are very few 

transmission studies of calls to date. 

Our results showed that solo songs and duets of White-eared Ground-sparrows 

degraded faster than observed in other species’ vocalizations in other transmission studies; this 

pattern stands in contrast to the Acoustic Adaptation Hypothesis that predicts that sounds have 

characteristics that enhance the transmission inside the habitat where they are transmitted 

(Boncoraglio & Saino, 2007; Ey & Fisher, 2009). Yet when we considered the distances between 

signalers and receivers, for both solo songs and duets, the high levels of degradation appear not 

to be a problem for communication because the message arrives before complete degradation 

to the potential receiver. Therefore, it is necessary to take into account the distance between 

signalers and receivers in the interpretation of the results of transmission studies, because not 

all species will need signals that transmit over long distances (Dabelsteen, 2005). As we 

expected, solo songs and duets have less degradation when they were produced and received 

from exposed perches. This confirms that both vocalizations experience more degradation closer 

to the ground, due the reverberations and the dense vegetation. 
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Tables 

Table 4.1. Main effects and two-factor interactions in the general linear models comparing the 
complete solo songs versus complete duets for each attenuation and degradation measurement.  

 

  
Signal-to-noise Ratio Tail-to-Signal Ratio Blur Ratio Excess Attenuation 

 
df* F p F p F p F p 

Model 36 344.98 <0.001 2.77 <0.001 4.12 0.001 146.57 <0.001 

Distance 3 480.44 <0.001 128 <0.001 13.72 <0.001 193.76 <0.001 

Speaker height 1 4.22 0.04 0.06 0.80 2.09 0.15 0.01 0.91 

Microphone height 1 48.78 <0.001 0.78 0.38 7.47 0.006 16.07 <0.001 

Sound 4 6.82 <0.001 8.38 <0.001 0.36 0.83 0.45 0.77 

Distance x speaker height 3 12.08 <0.001 2.68 0.05 2.96 0.03 20.96 <0.001 

Distance x microphone height 3 10.13 <0.001 6.12 <0.001 8.07 <0.001 28.16 <0.001 

Distance x sounds 12 0.42 0.95 3.62 <0.001 1.22 0.26 0.23 0.99 

Speaker height x microphone 
height 

1 12.72 <0.001 20.24 <0.001 1.33 0.25 52.43 <0.001 

Speaker height x sounds 4 0.32 0.86 1.68 0.15 2.95 0.02 0.07 0.99 

Microphone height x sounds 4 0.93 0.45 2.15 0.07 0.49 0.06 0.13 0.97 

 
*For signal-to-noise ration, tail-to signal ratio, and excess attenuation the degrees of freedom of the error are 665, 
and for blur ratio 682. 
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Table 4.2. Variation in the four degradation measurements (average ± SE) according to distance 
analyzed in the transmission experiment of complete solo song and duets, and solo song and 
duet elements. The same letter connecting different distances inside each degradation 
measurement mean no differences in post hoc test. 

Distance (m) 

Signal-to-Noise 

Ratio (dB) 

Tail-to-Signal 

Ratio (dB) Blur Ratio 

Excess 

Attenuation (dB) 

Solo songs and duets 

   4 33.95 ± 0.49 (a) -44.97 ± 0.99 (a) 0.26 ± 0.01 (a) 11.94 ± 0.51 (a) 

8 30.95 ± 0.66 (b) -43.55 ± 0.92 (b) 0.26 ± 0.03 (a) 10.23 ± 0.44 (b) 

16 21.67 ± 0.57 (c) -33.17 ± 0.83 (c) 0.31 ± 0.01 (b) 17.97 ± 0.73 (c) 

32 11.30 ± 0.63 (d) -25.76 ± 0.71 (c) 0.39 ± 0.01 (c) 23.46 ± 0.61 (d) 

Solo song and duet elements 

   4 40.17 ± 0.37 (a) -26.79 ± 0.41 (a) 0.20 ± 0.008 (a) 11.01 ± 0.38 (a) 

8 37.32 ± 0.47 (b) -24.33 ± 0.43 (b) 0.19 ± 0.006 (b) 9.58 ± 0.33 (b) 

16 26.49 ± 0.46 (c) -18.33 ± 0.46 (c) 0.24 ± 0.006 (c) 17.76 ± 0.51(c) 

32 15.83 ± 0.45 (d) -15.7 ± 0.42 (d) 0.28 ± 0.006(d) 23.98 ± 0.44 (d) 
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Table 4.3. Main effects and two-facto interactions in the general linear models comparing the 
solo song elements versus duet elements for each attenuation measurement. 

 

  
Signal-to-Noise Ratio Tail-to-Signal Ratio Blur Ratio Excess Attenuation 

 
df F p F p F p F p 

Model 67 495.03 <0.001 306.75 <0.001 108.61 <0.001 40.18 <0.001 

Distance 3 1006.18 <0.001 248.38 <0.001 55.82 <0.001 457.14 <0.001 

Speaker 
height 

1 231.34 <0.001 0.66 0.42 8.62 0.3 1.98 0.16 

Microphone 
height 

1 334.62 <0.001 93.18 <0.001 234.21 <0.001 35.76 <0.001 

Sound 9 13.81 <0.001 102.45 <0.001 7.31 <0.001 3.12 0.001 

Distance x 
speaker 
height 

3 27.77 <0.001 12.42 <0.001 1.46 0.22 38.14 <0.001 

Distance x 
microphone 
height 

27 21.49 <0.001 18.73 <0.001 16.37 <0.001 45.49 <0.001 

Distance x 
sounds 

12 0.42 0.99 2.38 <0.001 1.9 0.004 0.55 0.97 

Speaker 
height x 
microphone 
height 

1 20.32 <0.001 94.01 <0.001 92.95 <0.001 114.43 <0.001 

Speaker 
height x 
sounds 

9 0.46 0.9 0.67 0.74 1.11 0.36 0.1 0.99 

Microphone 
height x 
sounds 

9 0.76 0.65 0.7 0.71 2.31 0.01 0.39 0.94 

*For all model components, the degrees of freedom of the error are 1373.
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Table 4.4. Main effects and two-factor interactions in the two general linear models comparing 
the background noise across complete solo song and duets; and elements of solo songs and 
duets. 

 

 
Complete solo songs and duets Elements solo songs and duets 

 
df* F p df

+
 F p 

Model 36 10.25 <0.001 66 10.39 <0.001 

Distance 3 81.96 <0.001 3 155.02 <0.001 

Speaker height 1 0.07 0.79 1 0.11 0.74 

Micro height 1 0.0008 0.98 1 0.34 0.56 

Element 4 0.03 0.99 9 0.1 0.99 

Distance x speaker height 3 0.24 0.86 3 0.41 0.75 

Distance x micro height 3 0.67 0.57 3 1.12 0.34 

Distance x element 12 5.6 <0.001 27 4.91 <0.001 

Speaker height x micro height 1 5.4 <0.001 1 12.03 <0.001 

Speaker height x element 4 0.05 0.99 9 0.11 0.99 

Micro height x element 4 0.21 0.93 9 0.14 0.99 

*For all terms in complete solo songs and duets the degrees of freedom of the error are 203. 
+
For all terms in elements solo songs and duets the degrees of freedom of the error are 413. 

 
  



 

Chapter 5: Individual Distinctiveness in White-eared Ground-sparrows Vocalizations 

102 

 

Figures 

 

Figure 4.1. Spectrograms of the solo songs and duets, as well as the elements of solo songs and 
duets, of White-eared Ground-sparrows used in the transmission experiments. Letters indicate 
the code of each element and complete solo song (see Methods). 
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Figure 4.2. Variation in the four degradation measurements according to speaker and 
microphone heights used in the transmission experiments. Error bars are standard errors of the 
mean.  
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Figure 4.3. Variation in the four degradation measurements according to sounds for complete 
solo songs and duets, and solo song and duet elements used in the transmission experiments. 
Codes used in the sound column correspond with the letters in the figure 1. Error bars are 
standard errors of the mean. Bars with the same letters mean not differences in the post hoc 
test. Bars without letters mean no differences between each bar.  
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Figure 4.4. Second order interactions between distance and speaker and microphone heights 
(black, 0.4 m; white, 2.2 m) for complete solo songs and duets. Error bars are standard errors of 
the mean. Bars with the same letters mean no differences in the post hoc test. Bars without 
letters mean no differences between each bar.  
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Chapter 5 

 Individual distinctiveness in the fine structural features and repertoire 

characteristics of the song of white-eared ground-sparrows* 

  

                                                             
*
This chapter is the outcome of joint research with C. Méndez and D. Mennill 
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Chapter summary 

Communication between social animals is often more effective when signals facilitate individual 

recognition. Two critical requirements for individual recognition are the occurrence of 

characteristics that are unique to each individual, and the consistency of these characteristics 

through time. In some animals, characteristics of acoustic signals are known to vary over time 

due to changes in a variety of factors, including physiological and environmental features. Such 

temporal variation requires careful evaluation when exploring the individual distinctiveness of 

animal signals. In this study we evaluate individual distinctiveness in the songs of male white-

eared ground-sparrows Melozone leucotis and the persistence of distinctive characteristics over 

time. We collected focal recordings from populations of banded ground-sparrows during two 

consecutive breeding seasons, including multiple recording sessions within each breeding 

season. We evaluated individual distinctiveness in fine structural acoustic features of songs. We 

also extended our analysis to repertoire characteristics, focusing on whether the relative 

frequency of song type use may provide cues to individual identity. We found that each male 

white-eared ground-sparrow sang individually distinctive songs, although their fine structural 

features varied between recording sessions. We found the frequency with which males sang 

different song types was also individually distinctive, and this feature varied little between 

recording sessions. Receivers may be able to use these distinctive characteristics to differentiate 

individuals over extended time periods; this may be especially important for species that engage 

in long-term social interactions, such as tropical birds that defend territories against rival 

conspecific animals throughout the year.  
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Introduction 

A prerequisite for individual recognition is the occurrence of features that are unique to each 

individual, a characteristic that is common to many animals (Barnard & Burk 1979; Dale et al. 

2001; Tibbetts & Dale 2007). In social groups, signals of identity allow receivers to distinguish 

between different signallers, making social interactions direct and efficient (Beecher 1982; Dale 

et al. 2001; Ellis 2008). For example, a receiver can judge if the signal comes from a competitor, a 

familiar neighbour, a breeding partner, a non-threatening juvenile, or a relative, and then 

respond according to the signaller’s identity (van Rhijn & Vodegel 1980; Whitfield 1986; Tibbetts 

& Dale 2007; Wilson & Mennill 2010).  

Individual-specific components of signals have been measured across a wide variety of 

animal species and multiple signalling modalities, including chemical, visual, and acoustic signals 

(Ptacek 2000; Ord & Stamps 2009; Tibbetts & Dale 2007; Grether et al. 2009; Grether 2011; Ord 

et al. 2011). Individually distinctive acoustic signals have been documented in amphibians (e.g. 

Bee et al. 2001; Feng et al. 2009; Gasser et al. 2009), mammals (e.g. Dallmann & Geissmann 

2001; Blumstein & Munos 2005; Vannoni & McElligott 2007), and birds (e.g. Harris & Lemon 

1972; Lovell & Lein 2004; Barrantes et al. 2008). Within birds, individually distinctive 

vocalizations have been reported in both song-learning species (e.g. Nelson & Poesel 2007; Ellis 

2008; Benedict & McEntee 2009) and those with innate vocalizations (e.g. Lengagne et al. 2000; 

Fitzsimmons et al. 2008; Sandoval & Escalante 2011; Garcia et al. 2012). Individually distinctive 

vocalizations are thought to be more pronounced in song-learning species (Mennill 2011), 

especially because the learning process leads to small changes in acoustic structure, introducing 

“mistakes” and improvisations into the songs of each individual for song-learning species 

(Hultsch & Todt 2004; Catchpole & Slater 2008). 
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 Another important component of individual recognition is the consistency of the 

individually distinctive features of signals through time. There is much evidence of signal 

consistency and of changes in signal characteristics over time, in many different avian taxa and 

other animal taxa (reviewed by Ellis 2008). In some bird species, fine structural characteristics of 

vocalizations may vary over time owing to morphological or physiological changes in the 

signaller (Nottebohm et al. 1987; Gil & Gahr 2002), or changes in the physical environment that 

serves as the transmission medium for the vocalizations (Forrest 1994, Slabbekoorn et al. 2002). 

Beyond fine structural features, broader characteristics of vocalizations may vary over time 

because of ontogenetic changes in repertoire size (e.g. Adret‐Hausberger et al. 1990; Vargas-

Castro et al. 2012) or changes in social status or breeding stage (e.g. Hennin et al. 2009, Topp & 

Mennill 2008). Consequently, it is important to measure temporal variation when evaluating the 

individuality of animal signals, especially in species that have more than one song type.  

There are few studies that evaluate temporal variation in individually distinctive acoustic 

signals. Investigations of species with small repertoires have compared the fine structural 

acoustic characteristics of songs between recording sessions (e.g. Riebel & Salter 2003; Leitão et 

al. 2004; Ellis 2008; Wilson & Mennill 2010). Investigations of species with large repertoires have 

compared repertoire consistency through time (e.g. Adret‐Hausberger et al. 1990; Todt & 

Hultsch 1998; Vargas-Castro et al. 2012). We were motivated by an interest in evaluating 

individual distinctiveness in a species with an intermediate to small repertoire size, to contrast 

two categories of vocal characteristics—fine structural features and repertoire characteristics—

and gain a deeper understanding of individual distinctiveness in animal vocal signals.  

In this study, we test whether male white-eared ground-sparrows Melozone leucotis sing 

with individual distinctiveness, and whether this distinctiveness is found in the fine structural 
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acoustic features of their songs, or the broader characteristics of their repertoires, or both. 

Secondly, we analyze whether individually distinctive characteristics persist over time. White-

eared ground-sparrows are year-round territorial songbirds that inhabit dense thickets, shade 

coffee plantations, and areas with early successional vegetation in Central America (Stiles & 

Skutch 1989; Sandoval & Mennill 2012). The visually-occluded nature of their habitat makes 

vocal signals the principal form of conspecific interaction for this species. Male white-eared 

ground-sparrows sing near their territory boundaries starting just before sunrise, and continue 

singing at a lower level throughout the course of the day; male solo songs have been associated 

with territory defence and mate attraction in this and other closely related species (Benedict & 

McEntee 2009; Sandoval & Mennill 2012; Chapter 6). If fine structural acoustic features or 

characteristics of their vocal repertoires are important for individual recognition, we expected 

that each male would exhibit unique fine structural features or repertoire characteristics. 

Furthermore if their acoustic features or repertoire characteristics are important in individual 

recognition we expected them to remain consistent over time. 

 

Methods 

We recorded songs from 38 male white-eared ground-sparrows in four locations within Costa 

Rica (Figure 5.1): north of Heredia, Heredia province (10°01’N, 84°05’W; elevation: 1200-1500 m; 

n = 14 males); Universidad de Costa Rica campus, San José province (09°56’N, 84°05’W; 

elevation: 1200 m; n = 9); Lankester Botanical Garden, Cartago province (09°50’N, 83°53’W; 

elevation: 1400 m; n = 6); and Estación Biológica Monteverde, Puntarenas province (10°18’N, 

84°48’W; elevation: 1600 m; n = 9). Although white-eared ground-sparrows produce solo songs, 
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duets, and calls, we focus on male solo songs here because these vocalizations are the most 

prominent for this species, and these vocalizations could be readily assigned to one individual.  

We collected recordings between April and August 2011 and between March and June 

2012, during this species’ breeding season (Sandoval & Mennill 2012). Recordings were collected 

prior to egg laying, during incubation, and while the parents had hatchlings. For most of the 

birds sampled we were not able to calculate the exact stage of breeding because the dense 

thicket habitat at our study sites made finding nests and observing breeding behaviour difficult 

(e.g., in eight years of studying this species, we have found only ten nests; Sandoval & Mennill 

2012). For 12 pairs in the current study, however, we observed the adults exhibiting nesting 

behaviour (adults carrying nesting materials or food) or we observed chicks directly, confirming 

that our recordings were collected during the breeding period. 

We recorded each male between 0450 and 0600 h. We banded 35 of the 38 males with a 

unique combination of coloured leg bands. These individually-marked males allowed us to 

record the same individuals on different days during the same year and between years (the 

three unbanded males were recorded on a single day and are included only in our comparison of 

repertoire characteristics between males). We collected these recordings using a Marantz 

PMD660 or PMD661 digital recorder and a Sennheiser ME66/K6 shotgun microphone (recording 

format: WAVE; sampling rate: 44.1 kHz; accuracy: 16 bits). Twenty-one males were recorded 

during a single session in 2012; eleven males were recorded during two sessions in 2011 and one 

session in 2012; four males were recorded during three sessions in 2011 and one session in 

2012; one male was recorded during two sessions in 2011; and one male was recorded during 

one session in each of 2011 and 2012. Each focal recording session lasted from 40 to 75 minutes 

(average ± SE: 59 ± 1 min). We complemented the repertoire size description for 10 males with 



 

Chapter 5: Individual Distinctiveness in White-eared Ground-sparrows Vocalizations 

112 

 

recordings obtained using autonomous digital recorders (model: Song Meter SM2; Wildlife 

Acoustics Inc., Concord, MA, USA) placed in the middle of the white-eared ground-sparrow 

territories. The location of these recorders in the middle of the birds’ territories reduced the 

chance of our recording vocalizations from non-target individuals, particularly since ground-

sparrow songs attenuate and degrade rapidly in this habitat, often in less than the width of one 

territory (Chapter 4). Each automated recording session lasted from 720 to 2160 minutes 

(average ± SE: 1368 ± 168 min). 

 

Song Classification and Measurements 

We classified song types visually based on their appearance on sound spectrograms (as in Franco 

& Slabbekoorn 2009, for example), focusing on the number of different types of elements and 

the overall shape of each element. All songs were compared to a library of song types that we 

developed for white-eared ground-sparrows. Within song types that share most of their 

features, we found subtle variation in the total number of elements; different birds added or 

omitted elements from the introductory component of the song, or varied the number of 

elements in the terminal trill. Songs that varied only in the number of repeats of introductory 

elements and terminal trill elements, but were otherwise similar in their fine structural details, 

we classified as the same song type (see Figure 5.2 for examples).  

We measured two repertoire characteristics: the number of song types, and the 

frequency of use of each song type. We included in the comparisons only males with more than 

20 songs recorded per male (average ± SE: 94.8 ± 11.1 songs per male, n = 38 males), and 

between recording sessions of the same male with more than 12 songs within each session 

within and between years (54.8 ± 7.1 songs per session, n = 13 males). We calculated male 
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repertoire size following the curve-fitting method with the Wildenthal equation (Wildenthal 

1965). We conducted these repertoire size estimations for 19 males where we had recorded 80 

or more recorded songs. We used Excel 2007 to implement the curve-fitting method, and we 

reported the estimated repertoire size from the asymptote of the curve. 

For each song we measured seventeen fine structural acoustic features (Figure 5.3) 

using Raven Pro 1.4 sound analysis software (Cornell Lab of Ornithology, Ithaca, NY, USA). We 

measured duration, number of elements, lowest and highest frequency, and frequency of 

maximum amplitude for the entire song, the middle section of the song, and the terminal trill. In 

addition, we measured the number of inflections for elements in the middle portion of the song 

and the terminal trill (Figure 5.3). We used a combination of spectrograms (to identify the 

songs), power spectra (to measure frequency), and waveforms (to measure duration) to collect 

these 17 measurements. We used a temporal resolution of 5.8 ms and a frequency resolution of 

188 Hz with the following settings: Hann window, 50% overlap, 256 kHz transform size. We 

collected these measurements in a subset of vocalizations from all of the vocalizations available 

from each male, selecting the first eight songs per song type per recording session for each male, 

skipping recordings that had prominent background sounds.  

 

Statistical Analysis 

Different males often share the same song types between their repertoires, but they might sing 

these shared song types in different proportions, giving rise to a behaviour that may be 

individually distinctive. Hereafter, we refer to this behaviour of producing song types in similar 

proportions over time as “repertoire-use similarity”. To measure whether repertoire-use 

similarity can provide a cue of individual identity, we calculated the Morisita index of similarity 
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(Morisita 1959), to quantify the frequency of use of each song type, both between males and 

within males between recording sessions. We calculated the index according to the equation 

presented by Morista (1959; page 75); this index has values from 0 to 1, where values close to 

zero indicate 0% similarity between a pair of recordings, and values close to one indicate 100% 

similarity between a pair of recordings. For example, imagine three different birds that sing 

three song types (A, B, and C). If bird 1 sings type A 80% of the time, type B 20% of the time, and 

type C 0% of the time; bird 2 sings type A 60% of the time, type B 35% of the time, and type C 5% 

of the time; and bird 3 sings type A 20% of the time, type B 20% of the time, and type C 60% of 

the time; then bird 1 versus 2 has a Morisita similarity score of 0.94, bird 1 versus 3 has a 

Morisita similarity score of 0.36, and bird 2 versus 3 has Morisita similarity score of 0.48. We 

used cluster analysis to depict the pattern of repertoire-use similarity based on the Morisita 

scores. We evaluated repertoire-use similarity between populations and between recording 

sessions within males using one-way analysis of similarities (ANOSIM; Clarke 1993; Hammer 

2012), where we used Morisita indices of similarity as the distance measurement.  

We also conducted a Mantel test (using 10000 permutations) to evaluate the 

relationship between the geographic distances between the centre of males’ territories (using 

Euclidian distance) and repertoire-use similarity scores (i.e. Morisita similarity scores). To 

analyze whether repertoire-use similarity between sessions is an effect of correlation in 

recording length, we ran an additional ANOSIM using Jaccard’s index of similarity as the distance 

measurement. Jaccard’s index of similarity compares only the repertoire size within males across 

recording sessions without taking into account the number of songs recorded in each session (as 

in Lapierre et al. 2011, for example). We used the following equation implemented in PAST 

(Hammer 2012): 
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where M is the number of songs shared by two males, and N is the total number of song sang 

just by one male. 

Following the approach used by Ellis (2008), we used a discriminant function analysis to 

compare differences in the seventeen fine structural acoustic features between males. We used 

an interactive backward stepwise discriminant analysis to find the fewest possible acoustic 

features to explain the largest possible amount of variation between individuals. Using SYSTAT 

(version 11.00.01; SYSTAT Software, Chicago, IL, USA) we started with a model that included all 

17 measurements; we excluded from the discriminant analysis the variable with the lowest F-to-

remove value; after each exclusion we cross validated the model (see below for description of 

cross validation approach) and we continued excluding variables until we obtained a model with 

the fewest variables that still provided the same or higher percentage of correct assignments 

relative to the original model that included all acoustic features. This analysis was conducted for 

each song type that was shared by more than five males and that was sung eight or more times 

by each male; six song types satisfied these criteria. We report classification accuracy from the 

discriminant function analysis based on the leave-one-out approach to cross validation (Krebs 

1999). We used a binomial test to compare if the classification accuracy determined by the 

discriminant function analysis is higher than the classification expected by chance. Chance 

expectations were calculated by dividing one by the number of males included in each particular 

DFA.  

We complement the discriminant analysis approach by calculating the Potential for 

Individual Coding scores (PIC scores; Vignal et al. 2004; Robisson et al. 1993), on the six song 

types used in the discriminant function analysis mentioned above. This approach estimates the 
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coefficient of variation in the song characteristics between males (CVb) and within males (CVw). 

We estimated the PIC as the ratio between the two coefficients of variation (CVb/CVw), where 

CVw is the mean value of the CVw of all individuals. When PIC scores are > 1.0 the measured 

feature will have the potential for individual distinctiveness. We compare whether the variability 

in song measurements was different between CVb and CVw using analysis of variance. For this 

analysis, we pooled together all recording sessions for each male. 

We used multiple analysis of variance (MANOVA) to explore whether fine structural 

features varied between recording sessions of the same song type. We focused on the fine 

structural features that were detected by the discriminant function analysis as being important 

for individual distinctiveness. In these analyses we used only males that sang the same song type 

in more than one recording session. For this analysis we nested recording session within male 

identity and used the fine structural measurements of songs as dependent variables. We only 

conducted this analysis for song types that were present in five or more males in two or more 

recording sessions; three song types satisfied these criteria. For each MANOVA, we present the 

details of the whole model as well as recording session nested within male (i.e. Recording 

session [Male]) and between males.  

We used PAST (version 2.17; Øyvind Hammer, Natural History Museum, University of 

Oslo, Norway) for ANOSIM, Mantel tests, and cluster analyses. All other analyses were 

conducted in SYSTAT. Throughout, values are reported as means ± SE. We considered our results 

significant at p = 0.05, except for the analyses that included multiple comparisons (see Results) 

when we reported significance based on exact Bonferroni corrections.  
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Results 

We collected recordings from 38 male white-eared ground-sparrows from four different 

populations in Costa Rica during two consecutive breeding seasons. For 19 males where we had 

80 or more song recorded, the repertoires varied in size from two to eight song types, with an 

average repertoire size of 3.5 ± 0.3 song types. 

 

Fine structure analysis 

We found 32 unique song types in our recordings of the 38 recorded males, although the six 

most common song types dominated our recordings (2282 of 3627, or 62.9% of all recorded 

songs, were the six song types depicted in Figure 5.2). The fine structural acoustic features of the 

six most common male song types of white-eared ground-sparrows showed substantial 

between-male variation. Six discriminant analyses, one for each of the six most common song 

types, consistently assigned songs to the correct male at levels that exceeded chance 

expectations (Table 5.1). The lowest percentage of correctly-assigned songs during cross-

validation for the six song types analyzed was 72%. This high level of distinctiveness was reached 

with a subset of acoustic features, varying from four to eight features, as shown in Table 5.1. 

These features varied among the six song types, although some of them (e.g. structural feature 

14, the highest frequency of the terminal trill) were important in all six song types. 

For the six most common song types, we found PIC scores greater than 1.0 (Tables S5.1-

S5.6) for most of the fine structural features (88 to 100% of features in Tables S5.1-S5.6), 

indicating a high level of individual distinctiveness in male white-eared ground-sparrow songs. 

Following correction for multiple comparisons, three features showed the highest levels of 
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individual distinctiveness across the six song types, according to the PIC analysis: the duration of 

the middle section (p < 0.001 for all comparisons), the lowest frequency of the middle section (p 

< 0.001 for all comparisons), the highest frequency of the middle frequency (p < 0.01 for all 

comparisons), and the lowest frequency of the trill (p < 0.001 for all comparisons).  

 

Repertoire-use similarity 

Male white-eared ground-sparrows share song types between individuals and between 

populations. We found substantial variation between males in repertoire-use similarity (i.e. the 

relative proportion in which different song types are produced over time). Six males received a 

Morisita score for repertoire-use similarity ≤0.50, indicating that their patterns of repertoire use 

were dissimilar from all other males. Eight males received a Morisita score for repertoire-use 

similarity of 0.51 to 0.75, indicating that their song repertoire use was moderately similar. 

Seventeen males received a Morisita score for repertoire-use similarity between 0.76 to 0.95 

indicating that their repertoire use was moderately-to-highly similar. Eight males received a 

Morisita score for repertoire-use similarity higher than 0.95, indicating that repertoire use was 

highly similar (Figure 5.4). Interestingly, although all eight males with the highest similarity 

shared territory boundaries (i.e. two pairs of males in adjacent territories, and four males in a 

cluster from one population), not all males that shared territory boundaries showed this high 

degree in repertoire similarity. These differences in repertoire-use similarity indicate that the 

repetition patterns used by males may provide cues for distinguishing between individuals 

(Figure 5.4). Nearby males (males within each population) were more similar in their patterns of 

repertoire-use similarity when compared to males from other populations (ANOSIM: R = 0.77, p 
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< 0.001, Figure 5.4). This pattern was also true when we analyzed the relationship between 

geographic distance and repertoire-use similarity (Mantel test: R = 0.40, p = 0.001). 

 

Consistency over time 

We analyzed consistency in fine structural features of male songs for the three most common 

song types. The fine structural characteristics of song types varied both between males and 

between recording sessions within males for the three common song types that we analyzed, 

including song  type 1 (whole model, F78,1163 = 128.91, p < 0.001; recording session [male],  F48,1037 

= 17.20, p < 0.001; males, F24,733 = 28.90, p < 0.001), song type 3 (whole model, F78,855 = 75.53, p < 

0.001; recording session [male],  F48,761 = 9.17, p < 0.001; males, F24,538 = 6.12, p < 0.001), and 

song type 18 (whole model, F156,1251 = 49.56, p < 0.001; recording event [male],  F102,1215 = 2.40, p 

< 0.001; males, F48,1047 = 9.69, p < 0.001). In other words, for all three song types analyzed, we 

found significant variation in fine structural features between males and between sessions of the 

same male.  

We compared repertoire-use similarity between recording sessions for 13 male white-

eared ground-sparrows. Patterns of repertoire use were more similar within different recording 

sessions of the same male than between recording sessions of different males. This was true 

when we took into account the number of songs recorded (ANOSIM using Morisita scores: R = 

0.83, p < 0.001, Figure 5.5). The same pattern held true when we analyzed the number of song 

types detected independently of the number of songs recorded (ANOSIM using Jaccard indices: 

R = 0.55, p < 0.001).  
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Discussion 

Male white-eared ground-sparrows have individually distinctive songs and singing styles. Both 

the fine structural features of male songs as well as the proportion of time spent singing each 

song type vary more between individuals than within individuals. This distinctiveness is evident 

when we compared between multiple recording sessions of the same male, although there was 

also significant variation between recording sessions. We also found that males recorded in the 

same population share similar patterns of repertoire use in comparison to males from other 

populations.  

Our results suggest that the solo song repertoire (song types and frequency of use) 

encode sufficient information to distinguish male white-eared ground-sparrow identity, at both 

the population level and the individual level. This pattern has also been reported in other bird 

species such as common blackbird (Turdus merula; Rasmussen & Dabelsteen 2002), white-

crowned sparrow (Zonotrichia leucophrys; Nelson & Poesel 2007), and skylark (Alauda arvensis; 

Briefer et al. 2009). In these examples, one component of male songs or singing behaviour is 

understood to encode individuality and another component is thought to encode geographic or 

group affiliation. In our study of white-eared ground-sparrows, the group level might be 

encoded in the features that are shared between the males in the same population (e.g. 

repertoire-use similarity), and individual distinctiveness might be encoded in features that vary 

most between individuals (e.g. fine structural features).  

We found that the fine structural features of male songs were individually distinctive in 

white-eared ground-sparrows. The structural features that contributed most strongly to 

individual distinctiveness in the discriminant analysis were frequency measurements of the 

songs and the number of elements and inflections within the trills (Table 5.1). Not all of the 
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structural features we measured encode sufficient information to distinguish males. For the six 

most widespread song types that we measured, only four to eight of the seventeen fine 

structural measurements were included in our backwards discriminant analysis, suggesting that 

a subset of fine structural features may be most useful for encoding identity. As in previous 

studies (e.g. Robisson et al. 1993; Tripp & Otter 2006; Garcia et al. 2012) a combination of 

frequency and temporal measures were the most individually distinctive components. We found 

significant differences in fine structural measurements between recording sessions of the same 

male, as has also been found in previous studies (see Ellis 2009). For example, black-capped 

chickadees exhibit significant variation between recording sessions in individually-distinctive 

song features, and their responses to playback reveal that they perceive playback songs from 

different recording sessions as the same male (Wilson and Mennill 2012). We expect white-

eared ground-sparrows would behave in the same fashion, given the significant PIC scores across 

recording sessions and the significant effect of the singer’s identity in our analyses; playback 

experiments will be required to confirm this expectation. 

Repertoire characteristics (such as repertoire-use similarity, or repertoire size) might be 

inefficient for individual recognition (Kroodsma 1976; McGregor & Avery 1986; Botero et al. 

2007), because they would require assessment over long periods. Indeed, if identity can be 

assessed from the fine structural features of a single song, this will necessarily be more efficient 

than assessing multiple songs. However, repertoire characteristics might provide additional 

information in individual discrimination that complements or enhances individual distinctiveness 

of fine structural features (Hartshorne 1956; Krebs 1977; Hultsch & Todt 1981; Searcy & 

Andersson 1986). Our results support the idea that patterns of repertoire use may enhance 

individual recognition within this ground-sparrow species, and that potential receivers (e.g., 

neighbours, other rival males, potential mates) might use these acoustic features to distinguish 
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between males. Playback experiments could help to test this idea by independently altering the 

fine structural features of playback songs and the simulated pattern of repertoire use. 

Consistency of individual signals through time may be a common feature for species 

where individuals have long-term and stable social interactions with other individuals, 

particularly in species where individuals live in social groups (Jones et al. 1993; Riesch et al. 

2006; Wright et al. 2008). White-eared ground-sparrows defend territories year-round (Sandoval 

& Mennill 2012), often occupying the same territory for several years (L. Sandoval, pers. obs.), so 

that neighbourhoods have stable long-term membership. White-eared ground-sparrows will 

benefit from individual recognition because they may defend territories against familiar rivals 

year after year, and it is beneficial to display less aggressive responses against stable neighbours 

as predicted by the dear enemy hypothesis (Fisher 1954).  

In the tropics, early successional habitats may pose challenges for signal transmission 

because of high attenuation rates due the dense vegetation (McGregor & Krebs 1984; Wiley 

1991; Slabbekoorn & Smith 2002; Dingle et al. 2008). In contrast to the predictions of the 

acoustic adaptation hypothesis, the songs of male white-eared ground-sparrows do not appear 

to be well adapted for long distance transmission through the dense vegetation of their native 

habitat. Male solo songs have broad bandwidth frequency modulations and consistently feature 

trills (Figure 5.1). These characteristics are more often associated with open habitats, rather 

than habitats with dense vegetation (Morton 1975; Wiley 1991); these features would be 

expected to show more substantial degradation and attenuation in dense vegetation compared 

to narrow bandwidth song elements or non-trilled songs (Blumstein & Turner 2005; Boncoraglio 

& Saino 2006). Evaluation of the transmission properties of male songs through the white-eared 

ground-sparrow’s native thicket habitat, and whether the individually distinctive components 



 

Chapter 5: Individual Distinctiveness in White-eared Ground-sparrows Vocalizations 

123 

 

persist over long transmission distances (as in Christie et al. 2004), is important for assessing 

whether the individually distinctive components identified here can withstand attenuation and 

degradation. 

In conclusion, our results demonstrate that both the fine structural acoustic features of 

ground-sparrow songs and their patterns of repertoire use encode individual distinctiveness. 

Playback will be required to determine whether white-eared ground-sparrows use these 

individually distinctive acoustic features in individual recognition. This study also reveals that the 

individually distinctive characteristics show little variation over time, as is predicted for species 

that are engaged in long-term social interactions including year-round territorial interactions, a 

common feature for many species of tropical birds. Using a Morisita index of similarity, we found 

that patterns of repertoire delivery by white-eared ground-sparrow males reveal individual 

identity and these patterns are consistent over time. This feature has rarely been investigated in 

birds, because individuals would require integration over long periods of time to assess the 

repertoire composition. Nevertheless, we encourage other investigators to look at higher-order 

cues of individual distinctiveness and their consistency over time. 
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Tables 

Table 5.1. Results of six discriminant function analyses (DFA) used to evaluate individual 
distinctiveness in male white-eared ground-sparrow songs. The analyses were conducted on six 
song types that were found in the repertoire of ≥ 5 males and that were sung ≥ 8 times for each 
male. Sample size (n) shows the total number of males that sang each song type in the analysis. 
The Wilks´s λ and F values show the results of backwards DFA with cross-validation and p < 0.001 
for the six analyses. The p-values show the results of a binomial test comparing the percent of 
correct classification based on chance (i.e. one over n). The features retained in the backwards 
DFA correspond to the seventeen numbered fine structural features outlined in Figure 5.3. 

 

Song 
Type 

n 
Percent 
Correct 

Classification 
Wilks’ λ Fdf p 

Features retained in 
backwards DFA 

Type 1 10 88% <0.001 36.672,634 <0.001 2, 8, 11, 12, 13, 14, 16, 17 

Type 2 11 83% <0.001 27.580,636 <0.001 2, 6, 7, 8, 11, 13, 14, 16 

Type 3 10 80% <0.001 28.872,731 <0.001 6, 7, 8, 12, 14, 15, 16, 17 

Type 18 13 72% <0.001 30.460,621 <0.001 2, 5, 14, 16, 17 

Type 20 6 96% <0.001 31.935,250 <0.001 4, 6, 7, 8, 12, 14, 16 

Type 24 7 86% <0.001 76.224,165 <0.001 2, 6, 8, 14 
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Figures 

 

Figure 5.1. Map showing four populations of white-eared ground-sparrows in Costa Rica where 
male songs were recorded for analyses of individual distinctiveness: (1) Monteverde (MTV); (2) 
north of Heredia (HDIA); (3) the campus of Universidad de Costa Rica (UCR); and (4) Lankester 
Botanical Garden (JBL). 
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Figure 5.2. Sound spectrograms representing six common solo song types, with examples from 
three different male white-eared ground-sparrows for each type. Songs were classified visually 
according to similarities between the elements before the final trill, and overall song structure. 
Male identity is shown above each song, coded by the population of origin (HDIA: north of 
Heredia, JBL: Lankester Botanical Garden, MTV: Monteverde, and UCR: Universidad de Costa 
Rica campus) and a number to represent each individual.  
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Figure 5.3. Sound spectrogram of a typical white-eared ground-sparrow song, showing the 17 
fine structural features we measured: (1) the duration of the whole song, in s; (2) the lowest 
frequency of the whole song, in Hz; (3) the highest frequency of the whole song, in Hz; (4) the 
frequency of maximum amplitude for the whole song (not shown); (5) the total number of 
elements of the whole song; (6) duration of middle section of the song (defined as the portion of 
the song following the high-pitched introductory notes and the start of the terminal trill), in s; (7) 
the lowest frequency of the middle section, in Hz; (8) the highest frequency of the middle 
section, in Hz; (9) the frequency of maximum amplitude for the middle section (not shown); (10) 
the total number of elements of the middle section; (11) the number of inflections points in the 
middle section; (12) the duration of the terminal trill, in s; (13) the lowest frequency of the 
terminal trill, in Hz; (14) the highest frequency of the terminal trill, in Hz; (15) the frequency of 
maximum amplitude for the terminal trill (not shown); (16) the total number of elements in the 
terminal trill; and (17) the number of inflection points in one syllable in the terminal trill.   
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Figure 5.4. Comparison between male solo song repertoire-use similarity in white-eared ground-
sparrows, using the Morisita index of similarity, comparing shared song types and the frequency 
of utilization of each song type (N = 38). The tips of each branch show a letter code for the 
population where the bird was recorded (HDIA: north of Heredia, JBL: Lankester Botanical 
Garden, MTV: Monteverde, and UCR: Universidad de Costa Rica campus) and a number that 
represents the individual’s identity. When individuals are clustered at the end of branches, it 
means they show similar patterns of repertoire use.  
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Figure 5.5. Comparison between recording sessions of male solo song repertoire in white-eared 
ground-sparrows, using the Morisita index of similarity, comparing shared song types and the 
frequency of utilization of each song type within males (N = 13). The tips of each branch show a 
letter code for the population where the bird was recorded (HDIA: north of Heredia, JBL: 
Lankester Botanical Garden, MTV: Monteverde, and UCR: Universidad de Costa Rica campus) 
and a number that represents the individual’s identity.   
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Chapter 6 

Different vocal signals, but not prior experience, influence heterospecific 

from conspecific discrimination* 

  

                                                             
*
This chapter is the outcome of joint research with C. Mendéz and D. Mennill 
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Chapter Summary 

Efficient communication between animals requires specificity to ensure that animals distinguish 

relevant signals from background noise. Research on discrimination between the acoustic signals 

of heterospecific versus conspecific animals, especially in birds, has focused on the songs 

produced by breeding males, in spite of the fact that animals produce other types of acoustic 

signals such as calls and duets. We used acoustic playback experiments to evaluate whether 

tropical white-eared ground-sparrows, Melozone leucotis, use calls, male solo songs and duets to 

discriminate conspecific from heterospecific competitors. We also evaluated whether prior 

experience influences competitors’ discrimination by comparing responses among populations 

of white-eared ground-sparrows that are allopatric and sympatric with a congeneric competitor 

species (Prevost’s ground-sparrows, Melozone biarcuata). White-eared ground-sparrows 

displayed more intense responses to conspecific vocalizations than they did to congeneric 

vocalizations. The duets produced in response to conspecific playback exhibited higher 

bandwidth and maximum frequency, lower minimum frequency and longer duration than duets 

produced in response to heterospecific playback. These results suggest that white-eared ground-

sparrows use information encoded in vocalizations to discriminate competitors from 

noncompetitor species. The observed responses were not influenced by previous experience; 

white-eared ground-sparrows displayed similar responses whether they lived in sympatry or 

allopatry with the congener simulated through playback. Our results expand our understanding 

of how animals use different types of vocalizations to discriminate conspecific from 

heterospecific signals. 
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Introduction 

Species specificity of animal signals is important for efficient communication (Bradbury & 

Vehrencamp 2011). Species-specific components of signals ensure that animals do not attend to 

signals that are not beneficial to their own interests, such as defending territories against 

heterospecifics that are not true competitors (Ryan & Rand 1993; Grether et al. 2009; Ord et al. 

2011). The signals used by animals to distinguish their own species from potential competitors 

vary across taxa (Matyjasiak 2005; Bradbury & Vehrencamp 2011; Grether 2011), and are related 

to the modality of communication (Anderson & Gether 2010; Bradbury & Vehrencamp 2011) 

and also to individual discrimination (Marler 1960; Nelson 1989; Tibbetts 2002; Tibbetts & Dale 

2004).  

Acoustic signals have been particularly well studied as a species recognition signal, yet 

research on species discrimination via acoustic signals has focused almost exclusively on the 

songs produced by breeding males (Grether et al. 2009; Ord & Stamps 2009; Grether 2011; Ord 

et al. 2011). The primary functions of breeding males’ acoustic signals are mate attraction and 

resource defence (Andersson 1994; Catchpole & Slater 2008). Species discrimination appears to 

be particularly important for male breeding signals because this reduces the chance of 

misidentification of relevant territorial competitors or prospective mates during the 

reproductive season (Murray 1981; Ptacek 2000; Ord & Stamps 2009; Grether 2011). Yet many 

animals, including birds, produce other types of acoustic signals beyond male breeding signals, 

such as calls and duets (Langmore 1998; Geissmann 2002; Marler 2004; Catchpole & Slater 2008; 

Furrer & Manser 2009; Bradbury & Vehrencamp 2011; Matrosova et al. 2011); these other types 

of signals may also include species-specific elements. Therefore, to understand the role of these 

others acoustic signals in conspecific and heterospecific discrimination, it is worthwhile to 
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conduct comparative studies between different categories of acoustic signals, rather than 

focusing on a single signal type.  

Given the complexity and diversity of their vocalizations (Catchpole & Slater 2008), birds 

provide an excellent model for studying conspecific and heterospecific discrimination. The most 

biodiverse order of birds is Passeriformes, which is subdivided into oscine birds (suborder: 

Passeres) where birds learn songs from tutors, and suboscine birds (suborder: Tyranni) where 

birds inherit songs without learning (Kroodsma 2004). Although the mode of development of 

songs varies between these groups, calls appear to be nonlearned vocalizations for both groups 

(Marler 2004). Whether female songs and male–female duets are learned or innate is poorly 

understood; however, there are many species where duets comprise the same vocalizations as 

solo songs, suggesting that duets are probably learned in the same manner as male solo songs 

(e.g. Mennill & Rogers 2006). Based on the assumption that the songs and duets of oscine 

songbirds are learned, these vocalizations are more likely to show differences between species 

than are calls. These differences arise because songs and duets evolve under strong social 

evolutionary pressures (e.g. sexual preferences of the opposite sex for specific acoustic features, 

aggressive responses of same-sex animals to specific acoustic features, and the influence of 

neighbours vocalizations during periods of song learning) that are understood to lead to faster 

changes in culturally transmitted traits compared to genetically transmitted traits (Andersson 

1994; Price 2007). Conversely, calls are more likely to show similarity between species than are 

songs or duets (e.g. Klump & Shalter 1984; Marler 2004; Templeton & Greene 2007). This 

similarity may arise because calls are used in interspecific communication, as is the case for 

mobbing calls, alarm calls or food calls (Marler 2004; Radford & Ridley 2007; Templeton & 

Greene 2007; Bradbury & Vehrencamp 2011).  
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In this study our objective was to conduct a comparative playback experiment to explore 

the role of different vocalization types (calls, male solo songs and male–female duets) for 

differentiating between heterospecific and conspecific competitors in Neotropical white-eared 

ground-sparrows, Melozone leucotis. This songbird specializes in thicket habitats in Central 

America (Stiles & Skutch 1989; Howell & Webb 1995; Sandoval & Mennill 2012), which are 

characterized by dense vegetation where visual signals do not propagate well; vocal signals are 

therefore expected to be the dominant forms of communication and interaction between 

competitors in this habitat (Sandoval & Barrantes 2012). At different locations in Costa Rica, 

white-eared ground-sparrows live in sympatry or allopatry with respect to their closest relative, 

Prevost’s ground-sparrows, Melozone biarcuata (Stiles & Skutch 1989; DaCosta et al. 2009). 

Duets and calls of these two ground-sparrows are superficially similar (Figure 6.1), so that there 

is ample opportunity for competitor misidentification when both species are present in the same 

area. As in Hypocnemis antbirds (Tobias & Seddon 2009; Seddon & Tobias 2010), and Ficedula 

flycatchers (Qvarnström et al. 2006), the vocal similarities between these two species, as well as 

their reliance on common resources, give rise to direct interactions between these two ground-

sparrow species. Therefore, comparison of the sympatric and allopatric populations allowed us 

to evaluate the influence of vocal familiarity on the discrimination of heterospecific competitors.  

We made a priori predictions about the responses of white-eared ground-sparrows pairs 

to playback simulating calls, solo songs, and duets of conspecific and congeneric animals. For 

responses to playback of male solo songs (which are known to be important in territory defence 

in this species, Sandoval & Mennill 2012, and in birds generally, Catchpole & Slater 2008), we 

predicted that both male and female white-eared ground-sparrows would show the highest 

intensity of response to conspecific signals versus congeneric signals (i.e. strong discrimination). 

We made this prediction for two reasons. First, the songs of the two congeners show substantial 
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spectrotemporal differences, more so than the other two types of vocalizations (Figure 6.1). 

Second, males and females of the two congeneric species do not compete for breeding partners 

(there is no evidence of hybridization between white-eared and Prevost’s ground-sparrows), so 

that white-eared ground-sparrows should show the highest intensity of response to conspecific 

signals. For responses to playback of vocal duets (which appear to be important in territory 

defence in white-eared ground-sparrows; Sandoval & Mennill 2012) and calls (which appear to 

serve as signals of alarm and contact signals in this species), we predicted that both male and 

female white-eared ground-sparrows would be less discriminating in their responses to 

conspecific versus congeneric competitors. We made this prediction for two reasons. First, 

unlike their songs, both the calls and the duets of these two species are very similar in fine 

structural features (Figure 6.1). Second, the cost of responding to the wrong species may be 

lower for duets and calls than for solo songs; given the function of these three types of signals 

(calls for alarm or contact, duets for territory defence, and solo songs for mate attraction), the 

cost of mistaking a congener for a conspecific should be highest for solo songs. If all vocalizations 

produced by white-eared ground-sparrows encode species information, we predicted a less 

aggressive response to all heterospecific vocalizations than to conspecific ones (Grether 2011). If 

species identity is not encoded in all vocalization types, we predicted the same intensity of 

response to conspecific and heterospecific vocalizations for those types of signals.  

The ability to discriminate between acoustic signals may arise because the animals have 

an innate auditory template of the intraspecific signals or it may be learned (or modified) 

through experience (Ord et al. 2011). If discrimination is learned, then we predicted that birds 

living in sympatry would have frequent contact with the vocalizations of both congeneric and 

conspecific individuals during critical periods in their development, resulting in the ability to 

differentiate congeneric versus conspecific vocalizations (Catchpole 1978; Catchpole & Leister 
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1986). Conversely, birds living in allopatry would lack such experience, and should not show the 

ability to differentiate between the vocalizations that have high structural similarity (e.g. calls 

and duets). If species differentiation develops in the absence of learning through experience 

with the congener (i.e. if discrimination is a genetic trait), and the trait is shared across the 

allopatric and sympatric populations, then birds should respond more to conspecific than to 

congeneric vocalizations in both our allopatric and sympatric populations. It is possible that the 

genetic mechanism that facilitates conspecific from congeneric differentiation may have 

diverged between the sympatric and allopatric populations, in which case we predicted that 

birds living in sympatry would show the ability to differentiate congeneric versus conspecific 

vocalizations, whereas those living in allopatry would not.  

 

Methods 

We studied four populations of white-eared ground-sparrows in Costa Rica from June to July 

2011, during this species’ breeding season (Sandoval & Mennill 2012). Two populations included 

white-eared ground-sparrows but no congeneric Prevost’s ground sparrows: (1) Monteverde, 

Puntarenas Province (10°18’N, 84°48’W; altitude: 1600 m) and (2) Lankester Botanical Garden, 

Cartago Province (09°50’N, 83°53’W; altitude: 1400 m). We refer to these as ‘allopatric 

populations’ hereafter. The remaining two populations included coexisting white-eared ground-

sparrows and Prevost’s ground-sparrows: (3) North Heredia, Heredia Province (10°01’N, 

84°05’W; elevation: 1200-1500 m) and (4) University of Costa Rica campus, San Jose Province 

(09°56’N, 84°05’W; elevation: 1200 m). We refer to theses as ‘sympatric populations’ hereafter. 

In the sympatric populations, both species were found occupying the same type of habitat, and 
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they typically showed overlapping territories. We have observed the two species interacting 

with each other in the field.  

 

Playback experiment 

In all four study populations, we used playback to simulate the presence of four different species 

of birds inside the territories of white-eared ground-sparrows: (1) conspecific white-eared 

ground-sparrows; (2) congeneric Prevost’s ground-sparrows; (3) a ‘sympatric control’, plain 

wrens, Thryothorus modestus; and (4) an ‘allopatric control’, large-footed finches, Pezopetes 

capitalis. We selected plain wrens as a sympatric control because they are common in the same 

habitat as white-eared ground-sparrows throughout their range in Costa Rica (Stiles & Skutch 

1989), but they produce vocalizations that are highly different from ground-sparrows (Figure 

6.1), and they are not known to be ecological competitors with ground-sparrows, feeding on 

different resources at different strata in the same habitat. We selected large-footed finches as 

an allopatric control because they live in similar habitats to both Melozone species, but have a 

completely nonoverlapping distribution with white-eared ground-sparrows (Stiles & Skutch 

1989), and therefore they are not ecological competitors. Large-footed finch vocalizations are 

somewhat similar in structure to white-eared ground-sparrow vocalizations, although they 

contain ample spectrotemporal differences (Figure 6.1). The two control species were also 

selected because they produce all three types of vocalizations (calls, solo songs and duets) of 

interest in our experiments (Figure 6.1). 

We generated playback stimuli by isolating recorded vocalizations with a high signal-to-

noise ratio (assessed visually) from recordings we collected in Costa Rica. Recordings were 

gathered with a shotgun microphone (Sennheiser ME66/K6) and a solid-state digital recorder 
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(Marantz PMD661; sampling rate: 44.1 kHz; accuracy: 16-bit; file format: WAVE). To minimize 

the effects of familiarity with vocalizations and any possible ‘dear enemy effects’ in our results 

(Temeles 1994; Catchpole & Slater 2008), we played back white-eared ground-sparrow 

vocalizations from the same geographical location but from the territory that was farthest from 

that of the playback subjects (minimum distance between the subject’s territory and the 

stimulus bird’s territory was two intervening territories). We used different stimuli for every pair. 

For the Prevost’s ground-sparrow playback stimuli, we used vocalizations recorded from the two 

sympatric populations. For plain wren stimuli, we used recordings from the Central Valley. For 

large-footed finch stimuli, we used recordings from Cerro de la Muerte, Costa Rica.  

We filtered out background noise outside of the range of the species’ vocalizations using 

the Fast Fourier Transform filter function in Cool Edit 2000 (Syntrillium Software Co., Phoenix, 

AZ, U.S.A.). Each type of vocalization had different frequency characteristics, necessitating 

different types of filters. For white-eared and Prevost’s ground-sparrows, we filtered all sounds 

below 3 kHz and all sounds above 12.5 kHz. For plain wrens, we filtered all sounds above 10 kHz; 

for calls and duets, we filtered all sounds below 2 kHz; and for songs, we filtered all sounds 

below 5 kHz. For large-footed finch, we filtered all sounds below 8 kHz and all sounds above 11 

kHz for calls, all sounds below 2 kHz and above 6 kHz for songs, and all sounds below 1 kHz and 

above 10 kHz for duets (see Figure 6.1). The resulting filtered stimuli included only the signal of 

interest, allowing us to rule out the influence of background noise on the responses of the focal 

pair. We normalized all the recordings to -1 dB using the amplify function of Cool Edit 2000. 

After filtering and normalizing sounds, we confirmed that the filtered stimuli sounded realistic 

based on acoustic comparison to live birds in the field. All playback tracks consisted of one 

stimulus vocalization repeated several times. Each vocalization type differs in length; rather than 

holding playback rate constant, we held duty cycle constant. Calls were broadcast at a rate of 12 
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calls/min, songs were broadcast at a rate of eight songs/min, and duets were broadcast at a rate 

of four duets/min. These values also allowed us to broadcast stimuli at rates that corresponded 

with normal rates of delivery for these vocalizations based on our observations of wild birds, 

while still producing stimuli with an equivalent duty cycle between treatments. 

Each playback trial included presentations of the same type of vocalization (calls, solo 

songs or duets) from each of the four species. Playback involved 2 min of vocalizations followed 

by 5 min of silence (Figure 6.2), with multiple trials in quick succession, similar to other 

experimental designs (e.g. Bolton 2007; Geberzahn et al. 2009; Ripmeester et al. 2010). We 

observed birds’ response behaviour during playback and during the first 3 min of the silent 

period, and we treated the remaining 2 min of silence as a recovery period, allowing the focal 

pair to return to normal activities. Our field observations confirmed that birds consistently left 

the playback area by the end of the silent recovery periods. Within each trial we randomly 

selected the stimulus order (using the random number generator in Microsoft Excel), with the 

condition that we never presented vocalizations of two ground-sparrow species consecutively. 

Each focal pair received playback trials on 3 consecutive days (1 day receiving the four species’ 

calls, 1 day receiving the four species’ solo songs, 1 day receiving the four species’ duets) where 

the order of trials followed a randomized design. 

Playback of the four species were presented to 20 territorial white-eared ground-

sparrows pairs in the allopatric populations (13 at Monteverde and 7 at Lankester Botanical 

Garden), and to 24 pairs in the sympatric populations (10 at Heredia and 14 at University of 

Costa Rica). Five pairs at each location had at least one individual banded, and our observations 

of these banded animals confirmed that they used the same territory during successive days and 

were not observed moving between territories throughout the breeding season. Therefore, we 
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are confident that the unbanded pairs that received playback were unique pairs. Playback 

sessions were conducted between 0600 and 1000 hours, a time when all four species were 

vocally active. 

Playback sounds were broadcast using an active loudspeaker (Anchor Audio; Minivox; 

frequency response: 100–12000 Hz) and a portable audio player (Apple iPod classic). 

Loudspeakers were mounted at a height of 0.8–1.5 m, and were positioned inside the subjects’ 

territory, 5–10 m from the edge of the territory. We hung flags at 3 m on either side of the 

loudspeaker to use as a reference during playback trials. Playback volume was held constant 

across all trials at 80 dB SPL, measured at 1 m from the speaker with a digital sound level meter 

(Radio Shack model 33-2055 using C weighting, slow response). We considered this to be similar 

to the amplitude of birds’ voices based on our assessments in the field. Playback trials on 

different days were always broadcast from the same loudspeaker location, and the same 

observer was located at the same position, 8 m from the loudspeaker. 

 

Response measures 

We quantified birds’ reactions to each playback stimulus by measuring both their behavioural 

responses (i.e. their physical reaction to playback) and the fine structural features of their vocal 

responses (i.e. their acoustic reaction to playback). We measured the following behavioural 

response variables: (1) the latency from the start of playback to the subjects’ first vocalization, in 

seconds (if the pair did not vocalize we assigned a value of 300 s); (2) the latency to approach to 

within 3 m of the speaker, in seconds (if the pair did not approach we assigned a value of 300 s); 

(3) the time spent inside a 3 m radius from the speaker, in seconds (if the pair did not expend 

any time inside the 3 m radius we assigned a value of 0 s); and (4) the total number of 
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vocalizations produced during the 5 min, from the start of the playback to 3 min after playback 

finished.  

Previous research shows that males may vary the structure of their vocalizations in 

response to playback experiments (e.g. Slabbekoorn & ten Cate 1997; Mennill & Ratcliffe 2004; 

Sandoval 2011; Bartsch et al. 2012). To evaluate whether ground-sparrows show similar 

behaviour, we measured the spectrotemporal characteristics of vocalizations produced by the 

focal pair during the 3 min of silence after each playback stimulus. Vocalizations produced during 

the 2 min of playback were often overlapped by playback and were therefore difficult to analyse 

in detail based on the sound spectrograms. The birds’ vocalizations were recorded with a 

directional microphone (Sennheiser ME66/K6) and a solid-state digital recorder (Marantz 

PMD660 or PMD661). Using Raven Pro 1.4 (Cornell Lab of Ornithology, Ithaca, NY, U.S.A.), for 

each recorded vocalization we measured: (1) the minimum frequency, in Hz; (2) the maximum 

frequency, in Hz; (3) the frequency bandwidth, in Hz; and (4) the duration, in seconds. We used 

Raven Pro 1.4 settings to achieve a temporal resolution of 5.8 ms and a frequency resolution of 

188 Hz (settings: Hann window; 256 kHz transform size, and 50% overlap). The measurements 

were made through visual assessment of the spectrogram, wave and power spectrum windows 

in Raven Pro; the spectrogram window was used to identify the vocalization, and the wave and 

power spectrum windows were used to measure time and frequency limits, respectively. We 

calculated an average value when pairs produced more than one type of vocalization in response 

to playback.  
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Statistical analysis 

We conducted principal component analysis to combine the four behavioural responses into two 

multivariate response measures, using varimax rotation on the correlation matrix. The first two 

rotated components had eigenvalues greater than 1.0 and together explained 77.3% of the 

variance in the original four behavioural variables. The first rotated component explained 44.4% 

of the variation and showed a strong relationship with rapid approach to the loudspeaker (r = 

0.93; we present correlation coefficients between factor 1 and the raw variables) and time 

within 3 m of the loudspeaker (r = 0.93), and a weak relationship with latency to first 

vocalization (r = 0.23) and the total number of vocalizations produced (r = 0.04). We call this first 

rotated component ‘close approach’, where pairs that received a high score approached rapidly 

and spent more time close to the speaker. The second rotated component explained 32.9% of 

the variation and showed a strong relationship with latency to first vocalization (r = 0.76) and the 

total number of vocalizations produced in response to the stimulus (r = 0.85), but a weak 

relationship with rapid approach to the loudspeaker (r = 0.14) and time within 3 m of the 

loudspeaker (r = 0.60). We therefore call this variable ‘song output’, where pairs that received a 

high score for this second principal component vocalized sooner and produced more 

vocalizations in response to the stimuli. The raw data for the behavioural measurements are 

presented in the Supplementary Material (Table S6.1). 

We analysed variation in these two response variables using a linear mixed-effects 

model. We included the following four fixed factors: (1) the species that produced the stimulus 

(white-eared ground-sparrow, Prevost’s ground-sparrow, plain wren, large-footed finch); (2) the 

type of vocalization (call, solo song, duet); (3) whether the subjects lived in allopatry with 

Prevost’s ground-sparrows (allopatric or sympatric); and (4) the order of the playback stimulus 
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presentation (first, second, third or fourth stimulus of the day). We also included all second-

order interactions between these four factors. To account for the fact that each pair was 

sampled repeatedly, we included subject identity as a random effect. The interaction between 

order of playback and species that produced the stimulus allowed us to evaluate whether 

responses varied with particular species being presented at particular positions within the 

stimulus set, and thereby assess position effects of playback order. We used the restricted 

maximum likelihood method for estimating fixed effects. For all factors or second-order 

interactions that explained significant variation in subjects’ playback responses, we performed 

post hoc tests where we conducted all pairwise comparisons within each stimulus and 

vocalization type, followed by Bonferroni correction to account for multiple comparisons.  

Focal pairs only produced calls and duets in response to playback; we never detected a 

solo song in response to playback. We analysed the structural features of subjects’ calls and 

duets separately, because these vocalizations are structurally different (Figure 6.1) and 

presumed to be functionally distinct. We conducted principal component analysis to combine 

the four acoustic responses into one multivariate response measure for calls and one 

multivariate response measure for duets. For the analysis of calls, the first component had an 

eigenvalue greater than 1.0 and explained 54.6% of the variance in the original four variables. 

The first component showed a strong relationship with the frequency bandwidth (r = 0.97), 

maximum frequency (r = 0.71), minimum frequency (r = 0.63) and duration (r = 0.51). For the 

analysis of duets, the first component had an eigenvalue greater than 1.0 and explained 53.9% 

of the variance in the original four variables. The first component showed a strong relationship 

with the frequency bandwidth (r = 0.97), minimum frequency (r = 0.76), maximum frequency (r = 

0.60) and duration (r = 0.52). Therefore, for both calls and duets, responses with a high principal 

component score had longer duration, broader bandwidth, higher maximum frequency and 
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lower minimum frequency. The raw data for the acoustics measurements are presented in the 

Supplementary Material (Tables S62, S63). 

We conducted two linear mixed-effects model (one for calls, one for duets) to evaluate 

whether the characteristics of vocalizations produced in response to playback of the four species 

varied according to the type of vocalization and whether subjects lived in allopatry or sympatry 

with Prevost’s ground-sparrows. We followed the exact same approach as in the first linear 

mixed-effects model for behavioural responses (above).  

We used a significance threshold of α = 0.025 to reject the null hypothesis for these 

linear mixed-effects models, due to the fact that we conducted two comparisons of behavioural 

responses and vocal responses, instead of just one. All tests were two tailed. All values are 

reported as means ± SE. All statistical analyses were conducted in JMP (version 10.0; SAS 

Institute, Cary, NC, U.S.A.) and SYSTAT (version 11.00.01; SYSTAT Software, Chicago, IL, U.S.A.). 

 

Ethical note 

In this study we presented acoustic stimuli that produced aggressive responses by territorial 

white-eared ground-sparrows. The aggression levels observed during playback trials were similar 

to the natural interactions we have observed between the focal species with other individuals of 

their own species and/or other species. We also observed the subjects for several minutes after 

conclusion of each experiment and confirmed that the focal pair resumed normal activities, 

similar to the behaviour they displayed prior to the experiment. We conducted this study 

following the regulations of the Animal Care Committee of the University of Windsor (AUPP: 09-

06) and the Government of Costa Rica (071-2011-SINAC). 
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Results 

White-eared ground-sparrows responded strongly in many playback trials, often approaching 

the loudspeaker and producing calls and duets near the playback-simulated intruders. The 

approach responses of white-eared ground-sparrows, summarized by the first principal 

component (PC1), varied according to the species of intruder simulated through playback and 

the type of vocalization, as well as the interaction between these two factors (Figure 6.3a; linear 

mixed-effects model of variation in PC1; effect of playback species: F3,466 = 8.4, P < 0.0001; effect 

of playback vocalization type: F2,447 = 9.2, P = 0.0001; interaction of playback species and 

playback vocalization type: F6,447 = 6.6, P < 0.0001). Close approach responses did not vary 

between populations that were sympatric versus allopatric with respect to Prevost’s ground-

sparrows (F1,267 = 0.3, P = 0.58), nor did they vary with presentation order (F3,447 = 2.4, P = 0.07), 

or any of the remaining interaction terms (all F < 2.5, P > 0.06) including the interaction of 

presentation order and stimulus type (F9,473 = 0.9, P = 0.55). Post hoc analysis of the species 

simulated through playback revealed that white-eared ground-sparrows showed closer 

approach responses to all conspecific and congeneric vocalizations than to the two control 

species (Figure 6.3a). Post hoc analysis of stimulus type revealed that white-eared ground-

sparrows showed a closer and faster approach to the duets than to songs and calls (Figure 6.4a). 

Post hoc analysis of the interaction between species and stimulus type revealed that white-

eared ground-sparrows showed a closer and faster approach response to the duets of 

conspecific and congeneric playbacks than to solo songs and calls, whereas they showed no 

differences in response to the calls, solo songs and duets of the two control species (ANOVA: 
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white-eared ground-sparrow: F2,129 = 13.7, P < 0.001; Prevost’s ground-sparrow: F2,129 = 7.0, P = 

0.001; plain wren: F2,129 = 1.2, P = 0.29; large-footed finch: F2,129 = 1.9, P = 0.16; Figure 6.3a).  

Song output, summarized by PC2, varied according to the species of intruder simulated 

through playback (linear mixed-effects model of variation in PC1, effect of playback species: F3,454 

= 3.7, P = 0.01; Figure 6.3b). Song output did not vary between populations that were sympatric 

versus allopatric with respect to Prevost’s ground-sparrows (F1,109 = 0.1, P = 0.80), type of 

vocalization (F2,447 = 3.0, P = 0.05) or presentation order (F3,447 = 1.5, P = 0.21), or any interaction 

terms (all F < 1.5, P > 0.05), including the interaction of presentation order and stimulus type 

(F9,458 = 1.2, P = 0.29). Post hoc analysis revealed that the species simulated through playback 

showed a significant effect; white-eared ground-sparrows showed higher song output in 

response to the conspecific and congeneric playbacks than they did in response to the two 

control species (Figure 6.3b).  

In response to playback, white-eared ground-sparrows produced calls and duets, but 

never solo songs. Analysis of the fine structure of subjects’ calls revealed that duration and 

frequency measurements did not differ significantly with simulated species (F3,347 = 0.5, P = 0.72; 

Figure 6.5a), vocalization type (F2,349 = 0.6, P = 0.05), sympatric versus allopatric population with 

respect to Prevost’s ground-sparrows (F1,33 = 2.4, P = 0.13), presentation order  (F3,349 = 0.5, P = 

0.72) or any interaction terms (all F < 2.4, P > 0.06).  

 The fine structure of duets produced in response to playback varied according to the 

species of intruder simulated (F2,414 = 13.9, P < 0.001; Figure 6.5b) and the type of vocalization 

played (F2,414 = 16.9, P < 0.001; Figure 6.5c), but did not vary between populations that were 

sympatric versus allopatric with respect to Prevost’s ground-sparrows (F1,39 = 5.3, P = 0.026), or 

with presentation order (F3,414 = 2.3, P = 0.074) or any interaction term  (F < 1.5, P > 0.18). Based 
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on post hoc analysis, the species simulated through playback showed a significant effect; white-

eared ground-sparrows produced duets with higher PC1 scores (i.e. higher maximum 

frequencies and bandwidths, lower minimum frequencies and longer durations) than to 

congeneric duets and duets of the two control species (Figure 6.5c). 

 

Discussion 

Pairs of white-eared ground-sparrows displayed stronger responses to playback of conspecific 

calls, solo songs and duets compared to the same types of vocalizations from congeneric species 

and two unrelated control species. Duet playback incited the strongest responses in 

comparisons to calls and solo songs. Although subjects’ responses varied according to the 

species and the type of vocalization simulated, responses were unrelated to previous 

experience; there were no differences in response to conspecific and congeneric playback 

between allopatric and sympatric populations.  

Territorial pairs of white-eared ground-sparrows responded to playback of conspecific 

vocalizations by producing duets with longer duration, broader bandwidth, higher maximum 

frequency and lower minimum frequency (as summarized with a principal component score) in 

comparison to vocalizations they produced in response to the other three species. This result 

supports our prediction that white-eared ground-sparrow vocalizations encode species 

information, and that white-eared ground-sparrows distinguish conspecific from congeneric 

vocalizations. Therefore, the lack of difference in behavioural responses (approach behaviour 

and song output, explored below) towards Prevost’s ground-sparrow duets and songs did not 

arise due to a lack of differentiation between their vocalizations. Instead, we think that the 

statistically similar behaviours shown towards the conspecific and congeneric playback arose 
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because the subjects recognized both species as ecological competitors (Grether 2011; Ord et al. 

2011). Similar levels of aggressiveness are known, for example, in Virginia’s warblers, Oreothlypis 

virginiae, and orange-crowned warblers, Oreothlypis celata (Martin & Martin 2001), and in 

collared flycatchers, Ficedula albicollia,  and pied flycatchers, Ficedula hypoleuca (Qvarnström et 

al. 2006). In both of these examples, territorial birds responded similarly to signals of 

congenerics and conspecifics.  

The behavioural responses of white-eared ground sparrows to calls of the four simulated 

species did not differ significantly. The similar behavioural responses to calls may arise due to 

similarity in call function between species (i.e. to communicate alarm or as a contact signal). We 

cannot distinguish whether birds failed to distinguish which species was simulated by call 

playback, or whether the birds recognized the species but responded in similar fashion to calls of 

the four species (Klump & Shalter 1984; Radford & Ridley 2007; Templeton & Greene 2007; 

Sandoval & Wilson 2012). Our results contrast with those of previous studies showing stronger 

responses to conspecific calls than to other species’ calls, as in satin bowerbirds, Ptilonorhynchus 

violaceus, where males show stronger responses to calls from their own population (Nicholls 

2008). The calls of satin bowerbirds are much more complex than the simple calls of the four 

species that we simulated in the current experiment, which may account for the differences 

between these studies. 

White-eared ground-sparrows did not respond differently to congeneric Prevost’s 

ground-sparrows vocalizations whether they were in zones of sympatry or allopatry. Birds living 

in two of our study populations have historically lived in isolation of this congeneric species (Slud 

1964; Stiles & Skutch 1989), and yet they still discriminated between the two species based on 

playback. This supports our prediction that the mechanism for conspecific discrimination is 
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genetic and that the competitor recognition system has clearly not diverged between sympatric 

and allopatric populations; otherwise, we would have seen different responses in the sympatric 

versus allopatric populations. Previous investigations of two subspecies of Sylvia warblers 

(Brambilla et al. 2008) and populations of medium ground-finch (Podos 2007) showed that 

previous experience was not necessary to distinguish between competitors. For example, the 

two populations of medium ground-finch were separated by 11 km; males in each population 

responded more strongly to their own population’s songs, even though the songs were not 

distinguishable by acoustic measurements (Podos 2007). In the case of Sylvia warblers, males of 

two subspecies show the same degree of reduced aggressiveness to the other subspecies song in 

allopatric and sympatric populations (Brambilla et al. 2008).  

It is easy to imagine that white-eared ground-sparrows combine vocal signals (e.g. duets) 

with visual signals (e.g. plumage features) to distinguish conspecific from heterospecific 

competitors, as occurs in Sylvia warblers (Matyjasiak 2005). Our observations of birds’ behaviour 

during playback support this idea; pairs rapidly approached playback of duets of both Melozone 

species and they typically moved around the speaker, as if to search for the source of the sound 

(behaviours that were not observed during responses to the two control species). This behaviour 

is consistent with the idea that birds may have been searching for additional information, 

possibly in the form of plumage-based signals of species identity, although confirming this idea 

would require a complex experiment on the interplay of acoustic and visual signals in species 

discrimination. 

By focusing on the responses of white-eared ground-sparrows to playback of their own 

species’ calls, solo songs and duets, we can gain insight into the functions of these different 

signals. Interestingly, we found that territorial pairs showed their closest approaches and highest 
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song output in response to duets, and less intense responses to playback of solos and calls. If we 

interpret close approach and high vocal output as aggressive behaviours, these intense 

responses to duets compared to solo songs and calls offer strong support for the territory 

resource hypothesis for duet function in white-eared ground sparrows (Hall 2004). A similar 

pattern has been revealed previously in at least three other species of territorial duetting birds, 

although there are also duetting animals that respond with similar high intensity to solo songs 

and duets (reviewed in Hall 2009).  

In conclusion, results of this playback study demonstrate that three different types of 

avian vocalizations may encode species information that facilitates discrimination between 

conspecific and congeneric competitors versus heterospecific noncompetitors (i.e. allopatric and 

sympatric controls). However, each type of vocalization elicits different intensities of response 

against conspecific and heterospecifc rivals. To develop a better understanding of acoustic 

signals and their role in species discrimination (e.g. species recognition, competitor 

discrimination and mate selection), it is worthwhile to conduct comparative studies between all 

types of acoustic signals and avoid focusing on a single type of signal (e.g. solo songs). Our 

experiments using allopatric and sympatric population comparisons allow us to conclude that 

familiarity based on previous experiences and interactions between sympatric species are not a 

prerequisite for species-specific signal recognition, and our results suggest that this 

discrimination may be an innate process independent of experience with other species.  
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Figure 6.1. (Previous page) Sound spectrograms of three types of vocalizations used in the 
playback experiment to study species recognition in white-eared ground-sparrow. In each 
spectrogram, a male solo song is shown at the far left, a male–female duet is shown in the 
centre, and a call is shown at the far right. Conspecific stimuli were white-eared ground-
sparrows; congeneric stimuli were Prevost’s ground-sparrows; sympatric control stimuli were 
plain wrens; and allopatric control stimuli were large-footed finches. White and black bars 
underscore the contribution of each individual to the duets. 
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Figure 6.2. Schematic representation of the timing of playback trials delivered to white-eared 
ground-sparrows. During each trial, territorial pairs received four playback treatments (either 
calls, solos or duets of the four playback species); each pair received three trials on three 
subsequent days. Playback treatments are represented by black bars and the time between 
treatments is represented by a thick dotted line. The responses of the subjects were assessed for 
the first 5 min following the first playback stimulus, and the remaining 2 min were treated as a 
recovery period. 
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Figure 6.3. Comparison of responses displayed by white-eared ground-sparrow pairs to playback 
of three types of vocalizations (circles: calls; squares: solo songs; triangles: duets) from four 
species (conspecific: white-eared ground-sparrow; congeneric: Prevost’s ground-sparrow, 
sympatric control: plain wren; allopatric control: large-footed finch). The responses are 
measured as principal components scores summarizing (a) variation in approach distance (PC1) 
and (b) variation in song output (PC2; see text for details). Post hoc statistical differences in 
response to the four species are represented by horizontal lines; post hoc statistical differences 
in response to the three types of vocalizations are represented by vertical lines (*P ≤ 0.05; **P ≤ 
0.01; ***P ≤ 0.001). 
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Figure 6.4. Comparison of responses displayed by white-eared ground-sparrow pairs to playback 
of three types of vocalizations (circles: calls; squares: solo songs; triangles: duets) averaged 
across the four species and the two populations. The responses are measured as principal 
components scores summarizing (a) variation in approach distance (PC1) and (b) variation in 
song output (PC2; see text for details). Post hoc statistical differences are represented by 
horizontal lines (*P ≤ 0.05; ***P ≤ 0.001). 
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Figure 6.5. Vocal responses of white-eared ground-sparrow pairs to playback of three types of 
vocalizations (circles: calls; squares: solo songs; triangles: duets) from four species (conspecific: 
white-eared ground-sparrow; congeneric: Prevost’s ground-sparrow; sympatric control: plain 
wren; allopatric control: large-footed finch). Responses were measured as principal components 
scores summarizing variation in (a) call and (b, c) duet characteristics (PC1; see text for details). 
Post hoc statistical differences are represented by horizontal lines (**P ≤ 0.01; ***P ≤ 0.001).  
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Chapter 7 

Analysis of plumage, morphology, and voice reveal species level 

differences between Prevost’s Ground-sparrows subspecies* 

  

                                                             
*
This chapter is the outcome of joint research with P-P. Bitton, S. Doucet, and D. Mennill 
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Chapter Summary 

Melozone biarcuata (Prevost’s Ground-sparrow) has traditionally been divided into two 

allopatric groups based on differences in vocalizations and plumage characteristics: M. b. 

biarcuata and M. b. hartwegi in northern Central America and M. b. cabanisi in Costa Rica. Since 

the original description of the species, the relationship between these three subspecies has 

never been studied using a taxonomic approach. In this study, our objective is to provide the 

first detailed taxonomic comparison between these three subspecies using an integrative multi-

trait approach. We analyzed morphology, plumage patterns, spectral reflectance, and 

vocalizations of individuals from the three taxa. Our results show that M. b. cabanisi can be 

readily distinguished from the two other subspecies using morphology (M. b. cabanisi are 

smaller), plumage patterns (M. b. cabanisi have different facial markings and plumage patches), 

colour differences (M. b. cabanisi have plumage patches that differ in colour and brightness), 

and vocalizations (M. b. cabanisi’s songs and calls are acoustically distinct from those of M. b. 

biarcuata). By contrast, M. b. biarcuata and M. b. hartwegi were very similar for most traits, 

supporting previous suggestions that the two northern subspecies should be considered a single 

subspecies. Our data reveal that the differentiation in phenotypic characteristics between M. b. 

cabanisi and the two northern subspecies is similar in degree to that reported for other 

complexes of subspecies where species status has been recognized. We argue that M. b. 

cabanisi should be treated as a species separate from M. biarcuata and propose that it be called 

M. cabanisi, Cabanis’ Ground-Sparrow. These results will contribute to the conservation efforts 

of Cabanis’ Ground-Sparrow, which is endemic to Costa Rica’s Central Valley and Turrialba 

Valley, by bringing focus to conservation policies that preserve ground-sparrow habitat (thickets, 

shade coffee plantations, and young secondary forest). 



 

Chapter 7: Prevost’s Ground-sparrows Subspecies Differences 

168 

 

Introduction 

The taxonomy of the family Emberizidae, which includes sparrows and buntings, has been the 

focus of several recent studies at different hierarchal levels. These studies have significantly 

altered our understanding of the family, where species that were previously considered 

emberizids have been moved into other families, and species from other families have been 

moved into Emberizidae (Klicka et al. 2000, 2007; Garcia-Moreno et al. 2001; Barker et al. 2013). 

For example, recent research has suggested that New World sparrows be classified in a new 

family called Passerellidae (Barker et al. 2013). These studies also evaluated and reorganized 

species relationships within the family by (1) disentangling species relationship inside 

problematic genera such as Aimophila and Pipilo (DaCosta et al. 2009), and (2) studying 

subspecies relationships in depth, such as in Atlapetes, Buarremon, and Arremon (Cadena et al. 

2007; Cadena & Cuervo 2010). Although these important studies provide us with a better 

understanding of the relationships between the Emberizidae species, it is still necessary to carry 

out work in other species and genera to develop a more comprehensive understanding of the 

species relationships within this family.  

The Melozone group (Chesser et al. 2010), sometimes known as the Melozone-

Pyrgisoma group (DaCosta et al. 2009; Rising 2011), requires careful taxonomic examination. 

Previous studies have failed to resolve the species relationships within Melozone (e.g. DaCosta et 

al. 2009). Furthermore, within this taxonomic group there are unresolved relationships among 

subspecies. An obvious example is the controversial M. biarcuata (Prévost & DesMurs) 

subspecies complex [M. b. biarcuata (Prévost & Des Murs), M. b. hartwegi (Brodkorb), and M. b. 

cabanisi (Sclater & Salvin)], which have been argued, at times, to be different species based on 

anecdotal observations of vocal and plumage differences (Sclater & Salvin 1868; Stiles & Skutch 
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1989; Howell & Webb 1995; AOU 1998; Sánchez et al. 2009). One problematic issue is that the 

subspecies boundary between M. b. biarcuata and M. b. hartwegi is not clear (Figure 7.1); in the 

description of M. b. hartwegi, it is referred to as a lowland species of Chiapas, and this was the 

basis for considering the Mexican birds a separate subspecies compared to the higher elevation 

birds found further south (Brodkorb 1938). We now know, however, that Mexican birds occur 

continuously from 100 m to 2500 m along their distribution (Howell & Webb 2004), ruling out 

the argument that M. b. hartwegi is geographically disjunct from M. b. biarcuata (Figure 7.1). For 

this reason, previous investigators have argued that M. b. hartwegi is not a valid subspecies, and 

have grouped them together within M. b. biarcuata (Hellmayr 1938; Rising 2011).  

Another matter of concern is that the taxonomic status, relationship, and identification 

of M. b. cabanisi have been problematic since this taxon’s description. As early as 1868, Sclater 

and Salvin believed that M. b. cabanisi was a species separate from M. b. biarcuata, declaring, “it 

is unfortunate that all the naturalists who have met with specimens of [M. b. cabanisi] should 

have identified it wrongly.”  Nonetheless, since then, M. b. cabanisi has been treated as a 

subspecies of M. biarcuata (Rising 2011). Despite the morphological and plumage differences 

found within M. biarcuata, which have been acknowledged since its original description (Sclater 

& Salvin 1868; Stiles & Skutch 1989; Howell & Webb 1994; Rising 2011), the relationships 

between the three subspecies have never been studied using a quantitative, taxonomic 

approach. As a consequence, this group’s taxonomic status remains unclear (AOU 1998).  

The objective of this investigation is to provide the first detailed and rigorous taxonomic 

study of the three M. biarcuata subspecies and to use an integrative multi-trait approach to 

evaluate whether the Costa Rican taxon (M. b. cabanisi; Figure 7.1) may be better understood as 

a separate species from the two more northerly taxa, and whether the two northerly taxa should 
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be considered a single subspecies. Melozone b. cabanisi is geographically isolated from the other 

two subspecies and is endemic to Costa Rica. It inhabits mainly young dense secondary 

vegetation and shade coffee plantations of the Central and Turrialba Valleys. The areas covered 

by these habitats are decreasing at high rates due to urbanization and population growth (Joyce 

2006; Sánchez et al. 2009; Biamonte et al. 2011), adding urgency to the resolution of this 

taxonomic problem. 

 

Methods 

In this analysis we included characteristics (e.g., morphological, visual, and acoustic) that were 

consistently present within each subspecies as suggested by Tobias et al. (2010), and that they 

report as important characters to be analyzed. We measured morphology, plumage patterns, 

and plumage reflectance characteristics of adult specimens of M. b. biarcuata, M. b. hartwegi, 

and M. b. cabanisi, from the following museums: Museo de Zoología Universidad de Costa Rica, 

Museo Nacional de Costa Rica, Field Museum of Natural History, University of Michigan Museum 

of Zoology, and Musée National d'Histoire Naturelle in France (Table S7.1). We also included 

morphological data collected from two adult male M. b. cabanisi captured in Costa Rica. Because 

the subspecies boundary between M. b. biarcuata and M. b. hartwegi is not clear (Figure 7.1), 

our comparison of the two northern subspecies treats the border between Mexico and 

Guatemala as the boundary between subspecies hartwegi and biarcuata. 
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Morphology  

We measured the culmen length (exposed culmen), culmen width and depth (at nares), tarsus 

and tail length, and wing cord length (unflattened) from 22 M. b. biarcuata, 20 M. b. hartwegi, 

and 21 M. b. cabanisi museum specimens and the two males captured in the field. All these 

morphological measurements were uncorrelated within both sexes (females: r < 0.63, P > 0.21; 

males: r < 0.43, P > 0.07, for all comparissons). All measurements were taken to the nearest 0.1 

mm following the same methods as in Sandoval & Mennill (2013). We conducted multiple 

analysis of variance (MANOVA) to analyse which morphological measurements are different 

between the three subspecies. We conducted separate analyses for each sex, because 

experience in the field has taught us that males are slightly larger than females (Sandoval & 

Mennill 2013). We used post-hoc tests (pair-wise comparisons) to compare the differences 

between morphological measurements between subspecies, for all morphological 

measurements that were different according to the MANOVA. 

 

Plumage traits and spectrophotometry 

We performed a qualitative assessment of plumage patterns by visually evaluating museum 

specimens (11 M. b. biarcuata, 9 M. b. hartwegi, and 11 M. b. cabanisi). Based on our experience 

with comparing museum specimens and observing birds in the field, we focused our attention 

on body regions that showed substantial variation across all specimens, notably the head and 

the breast, to describe notable differences in plumage patterns across subspecies. 

To objectively quantify differences in plumage colouration, we measured plumage 

colour using reflectance spectrophotometry focusing on ten body regions: throat, breast, belly, 

undertail coverts, forehead, crown, mantle, pre-ocular spot, cheek (because the cheek of M. b. 
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biarcuata fades from black to rust, we targeted both areas of the cheek to obtain the 

measurements), and the lower-flank (the side of the body, just below the tip of the folded wing). 

We measured the plumage characteristics for each of these ten body regions for 11 M. b. 

biarcuata, 9 M. b. hartwegi, and 11 M. b. cabanisi museum specimens. For each body region, we 

collected five measurements, moving the probe at least 3 mm between measurements, and 

keeping the probe at a fixed distance perpendicular to the feathers’ surface using a rubber 

stopper (Andersson & Prager 2006). We collected these reflectance data using an Ocean Optics 

S2000 spectrometer combined with a PX-2 pulsed xenon lamp (Ocean Optics, Dunedin, FL, USA), 

operated using OOIBase software on a laptop computer. We measured the reflectance as the 

percentage of light reflected in reference to a Spectralon pure white standard (WS-2, Ocean 

Optics).  

All spectral analyses were conducted using the R package pavo (Maia et al. 2013). We 

used a tetrahedral colour-space visual model to compare plumage colouration between the 

three groups; these visual models allowed us to compare colours while considering how the 

birds themselves would perceive them, unlike standard colourimetric approaches that consider 

only the properties of the reflective surface. We compared the characteristics of plumage 

patches between the three subspecies using the tetrahedral colour-space model (Burkhardt 

1989; Goldsmith 1990; Stoddart & Prum 2007) instead of the colour opponency model 

developed by Vorobyev & Osorio (1998) because the colour opponency model requires more 

species-specific information, little of which is available for Melozone species. Tetrahedral colour-

space allowed us to model the relative stimulation of the retinal photoreceptors using the 

sensitivity function of each cone separating reflectance characteristics into their chromatic (hue 

and saturation) and achromatic (brightness) components.  
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Determining the position of a colour in tetrahedral colour-space required us to make 

assumptions about: (1) peak sensitivities of all four photoreceptors of the animal’s retina; (2) 

characteristics of the ambient light; and (3) characteristics of the background coloration. (1) We 

used cone peak sensitivities of the average avian visual system for birds that possess an 

ultraviolet cone type because most passerines, and the species most closely related to 

Melozone, have an ultraviolet cone type with a peak sensitivity near 370nm (Hart 2001). (2) We 

used a “forest shade” ambient illumination because these Melozone ground-sparrows are found 

in relatively dense thickets. (3) We used an ideal (wavelength-independent) background because 

it allows plumage patches to be compared without the influence of a background, which in the 

case M. biarcuata, might change among and within locations. We calculated the achromatic 

component based on the stimulation of the two longest wavelength cones (Vorobyev & Osorio 

1998). 

We compared the colours of the same body region between individuals by subspecies 

using the Euclidean distance separating their three-dimensional coordinates in colour-space. To 

avoid independence problems, we compared the plumage characteristics of each individual 

against all others, using a bootstrapping mean of the distance between them according to their 

index of similarity. Then we used one-way analysis of variance (ANOVA) to determine the mean 

differences in the chromatic component of body region per subspecies. If we found differences 

between subspecies, we used pair-wise post-hoc t-tests to compare which subspecies were 

chromatically different. We compared the brightness value (achromatic component) per body 

region between subspecies using another ANOVA. For significant differences, we conducted 

pair-wise post-hoc t-tests to compare which subspecies differed in their brightness. 
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Vocal analyses 

For our acoustic analyses we used recordings from 11 M. b. biarcuata and 32 M. b. cabanisi. We 

were unable to obtain recordings of M. b. hartwegi from the field or from sound libraries. We 

collected recordings in the field using a solid state digital recorder (Marantz PMD661) and a 

shotgun microphone (Sennheiser ME66/K6). We recorded M. b. biarcuata in Guatemala, 

Suchitepéquez, Reserva Los Tarrales (10°31’N, 91°08’W), and we recorded M. b. cabanisi in 

Costa Rica, Heredia, Getsemaní (10°01´N, 84°06’W) and Calle Tiquisia (10°02’N, 84°04’W),  San 

José, Aserrí (9°51’N, 84°06’W), and Universidad de Costa Rica campus (10°02’N, 84°04’W). We 

supplemented our recordings with recordings from the private collections of colleagues, from 

the Macaulay Library of Natural Sounds Cornell Laboratory of Ornithology, and from the 

Laboratorio de Bioacústica Universidad de Costa Rica (Table S7.2).  

We measured the fine-structural properties of both the calls and the male solo songs for 

both M. b. biarcuata and M. b. cabanisi. Although these birds produce duets (see Chapter 6), we 

did not obtain high quality recordings of the duets for the northern subspecies during our field 

research, and therefore we could not compare this vocalization statistically. For each 

vocalization we measured the duration (s), the minimum frequency (Hz), the maximum 

frequency (Hz), and the frequency of maximum amplitude (Hz). For male solo songs we 

measured the number of elements and the number of unique types of element per song. We 

collected acoustic measurements using Raven Pro 1.4 sound analysis software (Cornell Lab of 

Ornithology, Ithaca, NY, USA). We used the following settings in Raven to achieve frequency 

resolution of 188 Hz and temporal resolution of 5.8 ms: Hann window with 50% overlap and 256 

kHz transform size with 16 bit accuracy. 
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Given that the majority of spectrotemporal measurements in calls were correlated but 

none were correlated in songs (r < 0.56, P > 0.09), we conducted a backward stepwise 

discriminant function analysis (DFA) based on the sample size to select the uncorrelated acoustic 

measurements that best distinguished M. b. cabanisi from M. b. biarcuata. We sequentially 

excluded from the analysis the variable with the lowest F value, one at the time, and re-ran the 

analysis after each deletion until we obtained the model with the lowest number of variables 

and highest correct assignment. We compared the two types of vocalizations between the two 

subspecies by calculating an average value for each measurement per individual, and using these 

values as our dependent variables in the DFA. We report the proportion of individuals correctly 

assigned to their correct taxonomic group based on a jackknife approach for all the analyzed 

cases. We used pairwise post-hoc t-tests to compare the differences between the acoustic 

measurements. We used SYSTAT (version 11.00.01; SYSTAT Software, Chicago, IL, USA) for all 

statistical analyses. Data are reported as means ± SE, and all tests are two-tailed. 

 

Results  

Morphology  

We found significant morphological differences between Melozone biarcuata cabanisi, M. b. 

biarcuata, and M. b. hartwegi in both sexes. For females, multiple analysis of variance revealed 

that the best morphological measurement to distinguish between groups was tail length 

(MANOVA: F18,31 = 51.27, P < 0.001). Post-hoc tests showed that female tail length was 

significantly longer in M. b. biarcuata and M. b. hartwegi than in M. b. cabanisi (Table 7.1). The 

other five morphological measurements were similar between females of three subspecies 

(Table 7.1). For males, the best morphological measurements to distinguish between groups 
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were tarsus length, tail length, culmen length, and beak height (F18,102 = 106.82, P < 0.001). Post-

hoc tests showed that tarsus length, tail length, and culmen length were all longer in male M. b. 

biarcuata and M. b. hartwegi than in M. b. cabanisi (Table 7.1). The beak height was taller in 

male M. b. hartwegi than in M. b. biarcuata and M. b. cabanisi (Table 7.1). The other two 

morphological measurements were similar between males of all subspecies (Table 7.1). 

 

Plumage patterns  

Melozone b. biarcuata and M. b. hartwegi were identical in their plumage patterns, but showed 

considerable differences in plumage patterns compared to M. b. cabanisi. The most marked 

differences in plumage patterns were on the face and breast (Figure 7.2). Around the eye, M. b. 

cabanisi exhibited a thin white eye ring, a small white postocular spot, and a large white pre-

ocular spot, whereas M. b. biarcuata and M. b. hartwegi exhibited a large white facial mask. M. 

b. cabanisi displayed a black moustache stripe, a white malar stripe, and a black lateral throat 

stripe; both black stripes were lacking in M. b. biarcuata and M. b. hartwegi, which instead had a 

contrasting bicolored auricular patch (black fading to rust) above an incomplete white nape 

collar. The breast of M. b. cabanisi displayed a large circular black patch below the throat 

whereas M. b. biarcuata and M. b. hartwegi had no contrasting markings on its white breast. 

Plumage features were identical for males and females of each subspecies.  

 

Plumage colour 

Our visual models revealed notable differences in reflectance for some body regions between 

the three groups (Figure 7.3). Our analyses revealed that the most pronounced differences in 
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colour were in the cheek and the breast. The two northern subspecies (M. b. biarcuata and M. b. 

hartwegi) showed bicolored cheeks (black fading to rust), whereas M. b. cabanisi showed rust-

coloured cheeks. In the breast, the northern subspecies showed a grey to white breast, but M. b. 

cabanisi showed a black breast spot. For the chromatic component of reflectance, our visual 

models show that cheek colour (F2,27 = 8.60,  P = 0.001) and breast colour (F2,27 = 5.54,  P = 0.01) 

differed between the two northern subspecies (M. b. biarcuata and M. b. hartwegi) and M. b. 

cabanisi (post-hoc pair-wise comparisons; cheek: biarcuata-vs-cabanisi: P = 0.001; hartwegi-vs-

cabanisi: P = 0.001; and  biarcuata-vs-hartwegi: P = 0.88; breast: biarcuata-vs-cabanisi: P = 

0.007, hartwegi-vs-cabanisi: P = 0.01, and  biarcuata-vs-hartwegi: P = 0.95). For the achromatic 

component, the brightness of both the breast (F2,28 = 36.99,  P < 0.001) and undertail coverts 

(F2,28 = 4.43,  P = 0.02) differed between the two northern subspecies (M. b. biarcuata and M. b. 

hartwegi) and M. b. cabanisi (breast: biarcuata-vs-cabanisi: P < 0.001, hartwegi-vs-cabanisi: P < 

0.001, and  biarcuata-vs-hartwegi: P = 0.42; cheek: biarcuata-vs-cabanisi: P = 0.048, hartwegi-vs-

cabanisi: P = 0.007, and biarcuata-vs-hartwegi: P = 0.30). The brightness of the belly was more 

similar between M. b. biarcuata and M. b. cabanisi, in comparison to M. b. hartwegi (F2,28 = 8.18,  

P = 0.001; biarcuata-vs-cabanisi: P = 0.33, hartwegi-vs-cabanisi: P = 0.004, and  biarcuata-vs-

hartwegi: P = 0.001). Finally, the brightness of the cheeks was more similar between M. b. 

hartwegi and M. b. cabanisi, in comparison to M. b. biarcuata (F2,28 = 4.82,  P = 0.02; biarcuata-

vs-cabanisi: P = 0.006, hartwegi-vs-cabanisi: P = 0.55, and biarcuata-vs-hartwegi: P = 0.04). For 

all other body patches our visual models reveal no differences for the chromatic or achromatic 

component of reflectance (P > 0.05 for all tests). 
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Voice 

Melozone b. cabanisi exhibited significant acoustic differences in comparison to M. b. biarcuata 

(Figure 7.4). For calls, we found that the fine structural measurement that best distinguished M. 

b. biarcuata calls from M. b. cabanisi calls was the maximum frequency (DFA: Wilks’ λ = 0.50, 

F1,14 = 14.10, P = 0.002). This measurement correctly classified 82% of M. b. biarcuata to the 

correct group (9 of 11) and 100% of the M. b. cabanisi in the correct group (5 of 5). In post-hoc 

analyses of calls, minimum frequency (t14 = 3.0, P = 0.01), maximum frequency (t14 = 3.8, P = 

0.002), and frequency of maximum amplitude (t14 = 3.0, P = 0.01), exhibited higher values in M. 

b. cabanisi than in M. b. biarcuata (Table 7.2). Call duration was similar between subspecies (t14 

= 1.10, P = 0.29, Table 7.2).  

For male solo songs, we found that the fine structural measurements that best 

separated M. b. biarcuata from M. b. cabanisi were song duration, maximum frequency, and 

frequency of maximum amplitude (DFA: Wilks’ λ = 0.28, F6,15 = 6.39, P < 0.001). Together, these 

three acoustic measurements correctly classified 100% of M. b. biarcuata to the correct group (9 

of 9) and 92% of M. b. cabanisi to the correct group (12 of 13). Post-hoc tests revealed that M. b. 

cabanisi had higher maximum frequencies (t20 = 4.6, P < 0.001), more song elements (t20 = 2.2, P 

= 0.04) as well as non-significant tendencies for higher frequencies of maximum amplitude (t20 = 

-1.90, P = 0.07) and higher minimum frequencies (t20 = 1.9, P = 0.07; Table 7.2). Solo song 

duration (t20 = 1.5, P = 0.16) and number of element types (t20 = 1.6, P = 0.12) were similar 

between the subspecies (Table 7.2).  

We did not obtain a sufficient number of high quality recordings of the duets of ground-

sparrows in the field, in part because their duets are very quiet sounds. We heard northern birds 

perform duets on a few occasions; to our ear, sounded different from the duets of southern 
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birds, and based on one recording of intermediate quality, they appear to be structurally 

different (Figures 7. 4g, h). 

 

Discussion 

Our data show that the allopatric subspecies Melozone biarcuata cabanisi in Costa Rica is highly 

diagnosable from M. b. biarcuata and M. b. hartwegi in Mexico, Guatemala, El Salvador, and 

Honduras based on phenotypic characteristics. Melozone b. cabanisi can be readily distinguished 

by morphology, plumage patterns, colour differences, and vocalizations, and is also 

geographically isolated from the two northern subspecies by more than 500 km. There are no 

records to date of birds being found in the area between the two parts of their range. Based on 

our results, which include four different traits, we conclude that the two northern subspecies 

and the southern subspecies exhibit remarkable differences, pointing towards differentiation on 

par with many independent species. We also propose based in the high degree of similarities in 

their three different traits and lack of any defined boundary in the distribution of the two 

northern subspecies, should be grouped in the same subspecies, M. b. biarcuata. Below we 

explore in more detail each of the differences which point towards a high level of differentiation 

between the northerly and southerly taxa. 

Although the three subspecies inhabit similar habitats (Stiles & Skutch 1989; Howell & 

Webb 1994; L. Sandoval pers. obs.), a situation which often drives morphology on the same 

evolutionary path for closely related taxa (Mayr 1976; Ricklefs 2012), we found significant 

differences in body size between them. Our results for body size agree with initial reports by 

Sclater & Salvin (1868), which indicated that M. b. cabanisi was of smaller size than M. b. 

biarcuata. Interestingly, the differences in body size are consistent with Bergmann’s rule, which 
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states that individuals at higher latitudes have larger body sizes (Meiri 2011). The two northern 

subspecies, M. b. biarcuata and M. b. hartwegi, shared more similarity in morphological 

measurements than either did with M. b. cabanisi. These similarities in morphology between the 

two northern subspecies reinforce the lack of use of morphology to distinguish M. b. hartwegi 

from M. b. biarcuata as a subspecies (Brodkorb 1938). 

Plumage patterns were markedly different between M. b. cabanisi and both of the 

northern subspecies, allowing unambiguous diagnosis of the northern and southern taxa in the 

field. For the nine plumage patterns that were different between subspecies, seven were 

present exclusively in M. b. cabanisi, and two in M. b. biarcuata and M. b. hartwegi. 

Furthermore, our visual models revealed differences in two chromatic components, and 

achromatic component, of reflectance (breast and cheeks). The breast in M. b. cabanisi showed 

a black spot lacking in the two north subspecies. The cheek in M. b. cabanisi is bicolored (black 

fading to rust), while in M. b biarcuata and M. b. hartwegi it is rufous throughout. In birds, 

plumage patterns are important as signals of species recognition, especially for territory defence 

(Matyjasiak 2005). Inside the thick habitats these ground-sparrows inhabit, the breast and facial 

characteristics are conspicuous body regions. The observed colour and pattern differences in 

these body regions could therefore be an important component of species recognition. As a 

consequence, these plumage characteristics may serve as important reproductive isolation 

barriers, were the northern and southern subspecies ever to come into contact. However, a 

more detailed experimental study testing these hypotheses is necessary to evaluate the exact 

function of the plumage traits and colour differences in these taxa. 

Our fine structural analyses of vocal characteristics revealed that differences in 

frequency and the number of elements in male songs allow the discrimination between M. b. 



 

Chapter 7: Prevost’s Ground-sparrows Subspecies Differences 

181 

 

biarcuata and M. b. cabanisi with a very high level of accuracy. In addition, differences in call 

frequency allowed the proper assignment of subspecies with mean accuracy greater than 90%. 

Solo songs play an important role in female attraction and territory defence in Melozone 

leucotis, a closely related species (Sandoval & Mennill 2012; Chapter 2), and our field 

observations suggest that the same may be true in both M. b. biarcuata and M. b. cabanisi. 

Therefore, significant differences in the fine structural features of solo songs, such as those we 

report here, could potentially work as a reproductive barrier for the subspecies, if the subspecies 

were ever to come into contact. As with male solo songs, calls were highly different between M. 

b. biarcuata and M. b. cabanisi, even though these have previously been demonstrated to work 

mainly as contact and alarm signals in this genus (Chapter 2), suggesting that selective factors 

beyond sexual selection forces may be influencing the evolution of the acoustic characteristics of 

vocalizations in the genus Melozone.  

The northern populations of Melozone b. biarcuata are separated from the southern 

populations of M. b. cabanisi by a gap of ca. 550 km. This separation is caused by the disjoint 

distribution of montane habitats that these two ground-sparrows inhabit (Stiles & Skutch 1989; 

Howell & Webb 1995; Rising 2011), with one region north of Nicaragua and the other in 

northern Costa Rica, separated by the Nicaragua depression (Ferrez Weinberg 1992; Marshall & 

Liebherr 2000).Two significant barriers between the subspecies are humid highlands in southern 

Honduras and northern Nicaragua, and the dry lowlands of Nicaragua depression, the regions 

where these birds do not occur (Stiles & Skutch 1989; Howell & Webb 2005). How this 

separation occurred is unknown; however, climatic oscillation during the Pleistocene may have 

influenced the current distribution (Haffer 1974; 1987; Webb & Rancy 1996; Barrantes 2009). A 

phylogeographic analysis will be needed to confirm how long they have been in allopatry. 
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In conclusion, we found that M. b. cabanisi was fully distinguishable from M. b. 

biarcuata and M. b. hartwegi based on our comparisons of discrete and continuous phenotypic 

characteristics used in different and uncorrelated contexts as is expected under the Tobias et al. 

(2010) protocol: locomotion (tarsus), feeding (beak), reproduction and territoriality (solo song 

and plumage patterns), and alarm communication (calls). Therefore we propose that M. b. 

cabanisi be treated as a different species from their northern counterparts. We suggest that the 

southern taxon be called M. cabanisi (Cabanis’ Ground-Sparrow) distinguished from the 

northern taxa M. b. biarcuata and M. b. hartwegi (Prevost’s Ground-Sparrow). This proposition 

is supported by similar degree of differences in the phenotypic characteristics reported for the 

Arremon torquatus sparrow complex (Cadena and Cuervo 2010), which are now recognized as 

different species (Chesser et al. 2012; SACC proposal 468 - Remsen et al. 2013). We also propose 

based in the high degree of similarities in their morphology, plumage, and colour patterns, in 

addition to the lack of any defined boundary in the distribution of the northern subspecies, that 

M. b. biarcuata and M. b. hartwegi should be grouped in the same subspecies M. b. biarcuata, as 

has been argued by previous investigators (e.g., Hellmayr 1938; Rising 2011).  

Cabanis’ Ground-Sparrow is endemic to the Central Valley of Costa Rica (from Atenas 

and San Ramón in Alajuela province to Paraiso in Cartago province), Turrialba Valley (in the 

Caribbean side of the country), and the west part of Monteverde mountain range, Guanacaste 

province, from 500 to 1700 m (Stiles & Skutch 1989; Garrigues & Dean 2007; L. Sandoval pers. 

obs.). This ground-sparrow inhabits mainly thickets, shade coffee plantations, and young 

secondary forest (Stiles & Skutch 1989; Garrigues & Dean 2007; Sánchez et al. 2009), habitats 

that are not protected by any conservation laws in Costa Rica. The intense levels of urbanization 

in Costa Rica’s Central Valley endangers these thicket habitats and coffee plantations, reducing 

the total coverage of this habitat and fragmenting what habitat remains (Joyce 2006; Biamonte 



 

Chapter 7: Prevost’s Ground-sparrows Subspecies Differences 

183 

 

et al. 2011). If urbanization of thicket and shade coffee habitat continues at its current pace, 

Cabanis' Ground-sparrow faces an uncertain future, potentially making this species one of the 

more endangered bird species in Costa Rica. This endemic taxon brings to light the importance 

of conserving early successional habitats.  
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Tables 

Table 7.1 Mean (± SE) morphometric measurements by sex in three Melozone biarcuata subspecies. Bold 

text indicates significant differences between subspecies; brackets in letters show the results of pair-wise 
post-hoc tests (subspecies with different letters are statistically different). 

 

Females M. b. biarcuata M. b. hartwegi M. b. cabanisi 

Tarsus (mm) 24.58 ± 0.51 24.11 ± 0.16 23.89 ± 0.31 

Tail length (mm) 60.2 ± 1.02 (a) 62.3 ± 0.81 (a) 56.66 ± 1.21 (b) 

Wing cord length (mm)  65.82 ± 1.82 64.28 ± 0.87 67.20 ± 0.86 

Culmen length (mm) 12.60 ± 0.28 13.15 ± 0.19 12.31 ± 0.32 

Beak width (mm) 8.14 ± 0.35 8.68 ± 0.18 7.95 ± 0.23 

Beak depth (mm) 8.20 ± 0.35 7.70 ± 0.16 8.30 ± 0.20 

Males 
   

Tarsus (mm) 24.9 ± 0.18 (a) 25.14 ± 0.36 (a) 23.9 ± 0.27 (b) 

Tail length (mm) 65.94 ± 0.91 (a) 67.25 ± 0.69 (a) 59.97 ± 0.80 (b) 

Wing cord length (mm)  69.52 ± 0.62 69.36 ± 0.53 68.41 ± 0.83 

Culmen length (mm) 13.04 ± 0.15 (a) 13.55 ± 0.14 (b) 12.64 ± 0.12 (c) 

Beak width (mm) 7.94 ± 0.15 8.38 ± 0.16 8.30 ± 0.15 

Beak depth (mm) 8.33 ± 0.10 (a) 8.91 ± 0.09 (b) 8.33 ± 0.15 (a) 

 

  



 

Chapter 7: Prevost’s Ground-sparrows Subspecies Differences 

189 

 

Table 7.2 Mean (± SE) values of male solo song and call fine acoustic measurements by sex and Melozone 

biarcuata subspecies. Bold text variables indicate significant differences between subspecies. 

 

Solo songs  M. b. biarcuata M. b. cabanisi 

Number of elements 6.06 ± 0.38 7.91 ± 0.66 

Number of unique element types 3.21 ± 0.22 3.60 ± 0.13 

Duration (s) 1.76 ± 0.22 1.46 ± 0.08 

Minimum frequency (Hz) 2277 ± 81 2814 ± 225 

Maximum frequency (Hz) 8582 ± 360 10460 ± 234 

Frequency of maximum amplitude (Hz) 4726 ± 376 5456 ± 188 

Calls   

Duration (s) 1.33 ± 0.28 0.81 ± 0.32 

Minimum frequency (Hz) 3248 ± 444 5535 ± 570 

Maximum frequency (Hz) 9080 ± 433 11719 ± 394 

Frequency of maximum amplitude (Hz) 5212 ± 324 6943 ± 456 
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Figures 

 

Figure 7.1. Distribution of the Melozone biarcuata subspecies from Mexico to Costa Rica. The 
distribution of M. b. hartwegi and M. b. biarcuata is continuous. The southern subspecies, M. b. 
biarcuata, is separated by approximately 550 km from the northern subspecies by the 
Nicaraguan depression. 

  



 

Chapter 7: Prevost’s Ground-sparrows Subspecies Differences 

191 

 

 

Figure 7.2. Plumage colour and pattern differences between M. b. biarcuata (left) in M. b. 
cabanisi (right). Photographs were taken under the same light conditions at the Musée National 
d'Histoire Naturelle in Paris, France. The top row shows the differences in breast and throat 
patterns, the middle row shows differences in head patterns, and the bottom row shows 
differences in crowns. 
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Figure 7.3. Average reflectance spectra for ten body regions measured in 11 M. b. biarcuata, 9 
M. b. hartwegi, and 11 M. b. cabanisi. The grey area around each line represents standard error. 
Solid lines show M. b. biarcuata; dashed lines show M. b. hartwegi; and dotted lines show M. b. 
cabanisi. 
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Figure 7.4. Sound spectrograms of calls (a, b), male solo songs (c - f), and duets (g, h) of M. b. 
biarcuata (left) and M. b. cabanisi (right). See text for a detailed explanation of the differences 
between subspecies. 
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Significance 

With this body of research, I provided the first description of the vocal repertoire for the 

Mesoamerican ground-sparrows in the genus Melozone, expanding our knowledge of the 

diversity of vocalizations in this genus specifically, and the sparrow family (Emberizidae) more 

generally. Our knowledge of tropical sparrows is very limited (Rising 2011), and my research has 

helped to address this limitation. For example, I provide the evidence about how unusual the 

diel pattern of the White-eared and Rusty-crowned Ground-sparrows is in comparison to the 

majority of the studied bird species (Staicer et al. 1996). Both studied species showed a very high 

output at dawn followed by low-or-absent output throughout the day. Meanwhile, the majority 

of the species maintain medium level of vocal output production throughout the rest of the day, 

including a small peak at sunset (Staicer et al. 1996). I also provide evidence for the production 

of duets with vocalizations that differ in acoustical structure from vocalizations used for solo 

songs, as occurs in the majority of duetting species (Mann et al. 2003, Mennill and Vehrencamp 

2005, Logue 2006). The occurrence of this particular type of duet vocalizations appears to be 

common inside several closely related sparrows species that inhabit in the Neotropical and 

temperate habitats (Benedict and McEntee 2009, Illes and Yunes-Jimenez 2009). 

I have provided evidence for how habitat, spatial distribution, and intra- and 

interspecific competition may or may not influence the evolution of the characteristics of 

different categories of vocal signals (calls, solo song, and duets) and their perception. This study 

is important because it provides evidence that the environment is probably not the main cause 

to drive all the adaptations in vocal characteristics, and therefore it is necessary to be cautious in 
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the use of this factor to explain the variation between vocal signals and between species. I also 

show how different categories of vocal signals are under different selective pressures and 

therefore that it is important to compare within species how each vocal signal has evolved. 

Finally, I provided new information about the taxonomic status of three controversial 

subspecies in the Melozone genus (Sclater and Salvin 1868; Stiles and Skutch 1989; Howell and 

Webb 1995; AOU 1998; Sánchez et al. 2009), using a phenotypic multi trait comparison of 

uncorrelated characters. This approach is a very valuable tool to anlayze taxonomic relationships 

between taxa where the genetic data is lacking. However, for more accurate results, it is highly 

recommended to include samples from several locations where the taxa occur to have a broad 

representation of the variation, to avoid biasing the results to the extremes of a clinal variation. 

My investigations enhance our understanding of the taxonomy inside the sparrows, family 

Emberizidae, which has recently been the focus of more scrutiny (Klicka et al. 2000, 2007, 

Garcia-Moreno et al. 2001, Barker et al. 2013). 

 

Suggestions for future research 

Future investigations can build upon my dissertation research, expandon these findings, and 

clarify some of the new ideas that I have presented in these data chapters. Relative to songs and 

duets, the calls of tropical birds are poorly understood. Future research on the behaviour, 

ecology, and evolution of calls would help to provide a better understanding of the function and 

transmission properties of these simple vocalizations. Future research on the calls of ground-

sparrows needs should focus on evaluating the function of calls (possibly involving playback), 

providing more detailed observations of the behavioural context of calls, and exploring how 
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different call rates may encode different types of messages (as in Templeton et al. 2005, Wilson 

and Mennill 2011 for example). Future research should explore individual distinctiveness of calls 

and the transmission properties of the two call types that appear to be common among the 

three species I studied here.  

My research revealed that ground-sparrow duets are produced by males and females 

singing different types of vocalizations than solo songs (chapter 2 and 3). This is an uncommon 

behaviour among duetting bird species; the majority of duetting species produce duets using the 

same types of vocalizations used in solo songs (e.g. Mann et al. 2003, Mennill and Vehrencamp 

2005, Logue 2006). To the best of my best knowledge, none of the hypotheses proposed for 

duet function (Hall 2004, 2009) have been tested in species that perform duets with different 

vocalizations than their solo songs. This is therefore a new avenue for investigating duetting; in 

particular, given that the Acoustic Contact Hypothesis predicts that duets are used for individual 

identity in mating contact, it would be worthwhile to investigate whether each individual’s duet 

contribution includes individually-distinctive characteristics, as one would predict under the 

Acoustic Contact Hypothesis. 

Future field studies and genetic studies are needed to advance our understanding of 

extra-pair copulations and extra-pair fertilizations in ground-sparrows. My research 

demonstrated that paired male ground-sparrows produce almost all of their solo songs during 

the first hour of the day, throughout the breeding season, from song posts that were often near 

territory edges. In other bird species, this type of singing behaviour has been associated with an 

increase in the probability of extra pair copulations for both sexes with neighbouring individuals 

(Gibbs et al. 1990, Richardson and Burke 2001, Mennill et al. 2004). If Melozone have extra pair 



 

 

Chapter 8: General Discussion 

198 

 

copulations, as do the majority of birds (Griffiths et al. 2002), including tropical birds (Macedo et 

al. 2008), then we could come to understand the function of male solo songs, and the diel 

pattern of the timing of their production. If they do not have extra pair copulations, however, we 

would interpret the pattern I presented of heightened male solo song vocal output in the early 

morning as territorial defence.  

The occurrence of solo song repertoires among bird species has been studied in detail, 

but the idea of individual distinctiveness based on this characteristic has been investigated 

rarely, although it is believed that it may play an important role in individual recognition 

(Hartshorne 1956, Krebs 1977, Hultsch and Todt 1981, Searcy and Andersson 1986). Therefore, 

studies that attempt to evaluate individual distinctiveness need to take into account this higher-

order cue of individuality and its consistency over time, with the objective of evaluating whether 

the pattern I have documented here stands up among longer recording periods and in other 

species. Furthermore, playback studies would be helpful for determining whether birds actually 

use the pattern of repertoire delivery as a cue of individual distinctiveness. This experiment 

could involve playback of stimuli that mimic a familiar neighbour’s pattern of repertoire delivery, 

and an unfamiliar non-neighbour’s pattern of repertoire delivery. If males are using pattern of 

repertoire delivery to recognize between neighbours, I would expect to see a stronger response 

to the non-neighbour treatment than the neighbour treatment. 

The results of my playback experiment suggest that ground-sparrows can discriminate 

between conspecific and congeneric competitors based on the characteristics of their 

vocalizations alone. However, the observed responses to playback were subtle, and therefore a 

more detailed experimental study including visual signals associated with auditory signals is 
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highly recommended. This would help to evaluate whether multiple signalign modalities 

facilitate differentiation between conspecific and congeneric competitors. All species I have 

studied here have very distinctive facial markings, and therefore tests that involve taxonomic 

models that follow the design of Searcy and collaborators (2006), for example, would allow us to 

evaluate if these ground-sparrows also use visual signals to distinguish between conspecific and 

congeneric competitors.I also recommend avoiding the use of playback in quick succession to 

answer these types of questions, because the recovery time in those playbacks for focal species 

perhaps is not enough, and the successive responses may carry the effect of the previous 

stimuli. 

Finally, an area of particular importance is a future phylogenetic analysis, evaluating the 

genetic relationships between all species and subspecies in this genus, which would aid in 

understanding the evolutionary origins of the genus Melozone. A phylogenetic analysis would lay 

foundations for future comparative studies on the divergence of vocalizations, plumage 

patterns, and habitat use patterns. Recent genetic work has restructured the genus Melozone by 

showing that four northern species formerly considered Pipilo are actually part of Melozone 

(DaCosta et al. 2009, Chesser et al. 2010). I predict that genetic analyses will confirm the results 

of my analysis of vocalization, plumage patterns, and colour spectrophotometric analyses, 

revealing that Cabanis' Ground-sparrow is a distinct species from Prevost’s Ground-sparrow. 

 

Conclusion 

My dissertation provides a body of evidence describing the vocalizations of tropical ground-

sparrows and exploring how different factors influence or constrain the divergence of vocal 
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signals. Furthermore, my dissertation sheds light on the importance of including different 

vocalization categories while conducting comparative studies in order to better understand the 

factors affecting vocal evolution. Finally, I provided evidence on the use of phenotypic 

characteristics to disentangle problematic taxonomic relationships between closely related 

subspecies and species. 
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Table S5.1: Fine-scale song measurements for song type 1 shared between White-eared Ground-sparrow 

males; coefficients of variation between males (CVb) and within males (CVw), potential for individual 
coding (PIC), and results of analysis of variance comparing the coefficients of variation for each song 
measurement. This table accompanies Chapter 5. 

 

 Variable Mean ± SE CVb CVw, mean PIC F1,16 p 

Whole song 

      Duration (s) 1.81 ± 0.06 14.90 10.09 1.48 3.48 0.003 

Lowest freq. (Hz) 3610 ± 353 33.44 13.93 2.40 3.85 0.001 

Highest freq. (Hz) 11392 ± 255 9.92 5.54 1.79 3.28 0.005 

Frequency of maximum amplitude (Hz) 6447 ± 84 12.27 10.78 1.14 0.65 0.52 

Number of elements 8.86 ± 0.67 27.66 15.22 1.82 3.9 0.001 

Middle elements 

      Duration (s) 0.34 ± 0.01 15.92 10.32 1.54 3.88 0.001 

Lowest freq. (Hz) 4967 ± 279 20.16 5.71 3.53 11.43 <0.001 

Highest freq. (Hz) 7587 ± 422 18.35 2.02 9.10 23.91 <0.001 

Frequency of maximum amplitude (Hz) 6115 ± 193 12.73 6.73 1.89 4.68 <0.001 

Number of inflections 1.92 ± 0.2269 45.57 23.35 1.95 4.61 <0.001 

Number of elements 1 ± 0.01 0.00 2.16 0.00 NA NA 

Trill 

      Duration (s) 0.98 ± 0.05 19.08 12.99 1.47 2.93 0.01 

Lowest freq. (Hz) 3627 ± 363 34.55 13.91 2.48 3.69 0.001 

Highest freq. (Hz) 8130 ± 128 6.74 3.46 1.95 2.88 0.01 

Frequency of maximum amplitude (Hz) 6984 ± 153 13.85 10.56 1.31 1.28 0.22 

Number of inflections 1.55 ± 0.16 41.64 17.07 2.44 3.98 0.001 

Number of elements 6.61 ± 0.7 37.62 21.66 1.74 2.73 0.02 
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Table S5.2: Fine-scale song measurements for song type 2 shared between White-eared Ground-sparrow 

males; coefficients of variation between males (CVb) and within males (CVw), potential for individual 
coding (PIC), and results of analysis of variance comparing the coefficients of variation for each song 
measurement. This table accompanies Chapter 5. 

 

 Variable Mean ± SE CVb CVw, mean PIC F1,17 p 

Whole song 
      

Duration (s) 1.84 ± 0.05 14.25 12.69 1.12 0.88 0.39 

Lowest freq. (Hz) 3343 ± 202 25.19 12.19 2.07 4.2 0.001 

Highest freq. (Hz) 10604 ± 144 7.24 6.04 1.20 1.52 0.15 

Frequency of maximum amplitude (Hz) 6041 ± 217 19.43 15.88 1.22 1.34 0.2 

Number of elements 8.05 ± 0.34 22.86 18.25 1.25 1.27 0.22 

Middle elements 
      

Duration (s) 0.23 ± 0.01 23.33 10.46 2.23 6.48 <0.001 

Lowest freq. (Hz) 4094 ± 178 17.09 6.53 2.617 4.82 <0.001 

Highest freq. (Hz) 6905 ± 314 15.66 4.27 3.67 11.26 <0.001 

Frequency of maximum amplitude (Hz) 5203 ± 152 13.65 9.17 1.49 2.5 0.02 

Number of inflections 1.03 ± 0.23 85.64 42.61 2.01 2.06 0.06 

Number of elements 1.37 ± 0.1 38.88 24.82 1.57 2.33 0.03 

Trill 
      

Duration (s) 1.07 ± 0.04 19.84 15.40 1.29 2.32 0.03 

Lowest freq. (Hz) 3481 ± 235 27.18 13.79 1.97 4.17 0.001 

Highest freq. (Hz) 8494 ± 177 7.57 2.28 3.32 12.99 <0.001 

Frequency of maximum amplitude (Hz) 6825 ± 125 13.70 14.15 0.97 -0.19 0.85 

Number of inflections 1.51 ± 0.16 39.38 7.70 5.11 6.16 <0.001 

Number of elements 5.31 ± 0.29 30.80 23.53 1.31 1.26 0.23 
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Table S5.3: Fine-scale song measurements for song type 3 shared between White-eared Ground-sparrow 

males; coefficients of variation between males (CVb) and within males (CVw), potential for individual 
coding (PIC), and results of analysis of variance comparing the coefficients of variation for each song 
measurement. This table accompanies Chapter 5. 

 

 Variable Mean ± SE    CVb CVw, mean PIC F1,16 p 

Whole song 
      

Duration (s) 1.88 ± 0.03 10.20 10.49 0.97 -1.16 0.87 

Lowest freq. (Hz) 2941 ± 177 26.53 13.78 1.93 5.08 <0.001 

Highest freq. (Hz) 10899 ± 228 10.60 8.14 1.30 1.77 0.10 

Frequency of maximum amplitude (Hz) 5790 ± 267 20.67 19.67 1.05 0.27 0.79 

Number of elements 8.14 ± 0.16 9.22 8.14 1.13 0.56 0.58 

Middle elements 
      

Duration (s) 0.31 ± 0.004 307.86 13.88 22.18 28.25 <0.001 

Lowest freq. (Hz) 6203 ± 122 7.15 3.48 2.06 6.85 <0.001 

Highest freq. (Hz) 9076 ± 203 7.81 2.51 3.12 12.15 <0.001 

Frequency of maximum amplitude (Hz) 7593 ± 200 11.28 7.73 1.46 2.76 0.01 

Number of inflections 2.05 ± 0.05 7.76 2.20 3.52 1.55 0.14 

Number of elements 2 ± 0 0.00 0.00 0.00 NA NA 

Trill 
      

Duration (s) 1.08 ± 0.04 17.30 13.73 1.26 1.43 0.17 

Lowest freq. (Hz) 2944 ± 168 25.57 13.50 1.89 4.66 <0.001 

Highest freq. (Hz) 7233 ± 364 16.00 2.30 6.94 30.02 <0.001 

Frequency of maximum amplitude (Hz) 5562 ± 278 20.84 15.01 1.39 1.43 0.17 

Number of inflections 2.04 ± 0.1 21.06 10.19 2.07 1.9 0.08 

Number of elements 5.17 ± 0.15 14.16 11.79 1.20 0.73 0.47 
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Table S5.4: Fine-scale song measurements for song type 18 shared between White-eared Ground-

sparrow males; coefficients of variation between males (CVb) and within males (CVw), potential for 
individual coding (PIC), and results of analysis of variance comparing the coefficients of variation for each 
song measurement. Middle element measurements are not presented for Song Type 18 because this song 
type lacks that part naturally. This table accompanies Chapter 5. 

 

 Variable Mean ± SE     CVb CVw, mean PIC F1,19 p 

Whole song 
      

Duration (s) 1.92 ± 0.08 21.67 13.84 1.57 5.91 <0.001 

Lowest freq. (Hz) 3513 ± 190 22.76 8.43 2.70 1.86 0.08 

Highest freq. (Hz) 11425 ± 173 10.61 7.40 1.43 2.26 0.04 

Frequency of maximum amplitude (Hz) 6040 ± 217 19.21 13.07 1.47 1.81 0.09 

Number of elements 6.28 ± 0.31 21.48 13.80 1.56 11.55 <0.001 

Trill 
      

Duration (s) 1.39 ± 0.04 141.82 15672.29 0.01 11.62 0.29 

Lowest freq. (Hz) 3463 ± 192 22.97 9.18 2.50 5.58 <0.001 

Highest freq. (Hz) 8552 ± 420 19.08 3.01 6.35 25.09 <0.001 

Frequency of maximum amplitude (Hz) 5915 ± 209 17.98 11.39 1.58 2.23 0.04 

Number of inflections 2.07 ± 0.16 34.52 16.76 2.06 3.70 0.002 

Number of elements 5.01 ± 0.25 22.76 16.49 1.38 1.16 0.26 
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Table S5.5: Fine-scale song measurements for song type 20 shared between White-eared Ground-

sparrow males; coefficients of variation between males (CVb) and within males (CVw), potential for 
individual coding (PIC), and results of analysis of variance comparing the coefficients of variation for each 
song measurement. This table accompanies Chapter 5. 

 

 Variable Mean ± SE       CVb CVw, mean PIC F1,12 p 

Whole song 
      

Duration (s) 1.67 ± 0.05 17.77 13.59 1.31 1.17 0.26 

Lowest freq. (Hz) 2443 ± 124 15.15 6.81 2.22 4.92 <0.001 

Highest freq. (Hz) 11491 ± 268 9.06 5.45 1.66 2.93 0.01 

Frequency of maximum amplitude (Hz) 6318 ± 353 22.14 12.93 1.71 1.99 0.07 

Number of elements 5.96 ± 0.29 18.23 10.08 1.81 2.14 0.05 

Middle elements 
      

Duration (s) 0.31 ± 0.02 15.12 8.00 1.89 4.67 0.001 

Lowest freq. (Hz) 5917 ± 114 5.64 2.27 2.48 7.36 <0.001 

Highest freq. (Hz) 8212 ± 97 3.46 1.85 1.87 3.03 0.01 

Frequency of maximum amplitude (Hz) 7193 ± 128 8.64 5.86 1.47 2.3 0.04 

Number of inflections 2.85 ± 0.07 14.92 10.04 1.49 1.19 0.26 

Number of elements 1 ± 0 0.00 0.00 0.00 NA NA 

Trill 
      

Duration (s) 0.96 ± 0.02 17.22 14.33 1.20 0.78 0.59 

Lowest freq. (Hz) 2413 ± 124 15.54 8.04 1.93 4.24 0.001 

Highest freq. (Hz) 6632 ± 239 9.19 1.71 5.37 19 <0.001 

Frequency of maximum amplitude (Hz) 5745 ± 188 16.14 11.20 1.44 0.95 0.36 

Number of inflections 1.94 ± 0.03 14.35 12.71 1.13 0.26 0.8 

Number of elements 3.73 ± 0.19 19.64 13.50 1.46 1.09 0.3 
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Table S5.6: Fine-scale song measurements for song type 24 shared between White-eared Ground-

sparrow males; coefficients of variation between males (CVb) and within males (CVw), potential for 
individual coding (PIC), and results of analysis of variance comparing the coefficients of variation for each 
song measurement. This table accompanies Chapter 5. 

 

 Variable Mean ± SE   CVb CVw, mean PIC F1,13 p 

Whole song 
      

Duration (s) 1.99 ± 0.12 18.66 10.10 1.85 4.58 0.001 

Lowest freq. (Hz) 3930 ± 173 12.63 4.11 3.08 10.14 <0.001 

Highest freq. (Hz) 11239 ± 194 6.37 4.69 1.36 2.13 0.05 

Frequency of maximum amplitude (Hz) 5937 ± 253 20.56 17.61 1.17 0.97 0.35 

Number of elements 7.77 ± 0.53 23.33 13.12 1.78 2.6 0.02 

Middle elements 
      

Duration (s) 0.71 ± 0.07 27.26 4.48 6.08 15.24 <0.001 

Lowest freq. (Hz) 3954 ± 148 10.76 3.74 2.87 6.99 <0.001 

Highest freq. (Hz) 7764 ± 311 11.09 2.46 4.51 13.94 <0.001 

Frequency of maximum amplitude (Hz) 5717 ± 317 18.75 11.96 1.57 2.84 0.01 

Number of inflections 2.57 ± 0.3 34.99 21.56 1.62 1.42 0.18 

Number of elements 2.54 ± 0.28 30.36 3.16 9.62 11.77 <0.001 

Trill 
      

Duration (s) 0.81 ± 0.09 34.27 15.92 2.15 6.49 <0.001 

Lowest freq. (Hz) 4119 ± 186 13.31 5.78 2.30 6.62 <0.001 

Highest freq. (Hz) 9408 ± 409 12.32 2.93 4.21 10.38 <0.001 

Frequency of maximum amplitude (Hz) 5931 ± 182 19.41 16.66 1.16 0.97 0.35 

Number of inflections 1.33 ± 0.23 50.50 13.72 3.68 4.83 <0.001 

Number of elements 4.09 ± 0.56 45.49 22.28 2.04 3.17 0.006 
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Table S6.1. Playback responses of white-eared ground sparrows (average ± SE) separated by the type and the species of playback stimulus, for both 

the sympatric and allopatric populations. This table accompanies Chapter 6. 

 Allopatric Sympatric 

  
Response 
time (s) 

Approach 
duration (s) 

Time (s) inside 
the speaker 
area (3m) 

Vocal rate   
(vocalizations 
per minute) 

Response time 
(s) 

Approach 
duration (s) 

Time (s) 
inside the 

speaker area 
(3m) 

Vocal rate 
(vocalization

s per 
minute) 

Calls                 

Prevost's ground-sparrow 
254.75 ±                        

21.24 
288.40 ±                        

11.60 
3.35 ±                        
3.35 

0.60 ±                        
0.23 

249.00 ±                        
21.07 

284.58 ±                        
11.16 

12.83 ±                        
9.03 

1.08 ±                        
0.42 

White-eared ground-sparrow 
235.85 ±                        

25.69 
288.85 ±                        

10.01 
7.25 ±                        
5.19 

1.80 ±                        
0.87 

225.21 ±                        
22.49 

279.62 ±                        
11.93 

9.08 ±                        
6.57 

3.83 ±                        
1.44 

Large-footed finch 
238.80 ±                        

24.72 
277.25 ±                        

15.83 
6.85 ±                        
5.80 

0.40 ±                        
0.13 

209.79 ±                        
24.59 

273.42 ±                        
15.05 

11.79 ±                        
7.66 

2.58 ±                        
1.21 

Plain wren 
250.00 ±                        

23.03 
300.00 ±                        

0.00 
0.00 ±                        
0.00 

1.05 ±                        
0.70 

232.21 ±                        
22.47 

292.50 ±                        
7.50 

4.79 ±                        
4.79 

2.42 ±                        
0.80 

Songs         

Prevost's ground-sparrow 
200.60 ±                        

28.49 
275.50 ±                        

16.87 
34.65 ±                        
20.98 

1.90 ±                        
0.67 

183.37 ±                        
24.90 

278.29 ±                        
13.09 

2.37 ±                        
2.12 

2.17 ±                        
0.61 

White-eared ground-sparrow 
121.35 ±                        

27.49 
255.60 ±                        

19.09 
34.45 ±                        
16.74 

3.30 ±                        
0.85 

164.08 ±                        
28.52 

224.17 ±                        
21.27 

38.92 ±                        
13.79 

3.92 ±                        
1.13 

Large-footed finch 
215.65 ±                        

26.65 
284.30 ±                        

12.23 
5.95 ±                        
4.69 

0.90 ±                        
0.37 

242.87 ±                        
20.82 

295.50 ±                        
4.50 

1.12 ±                        
1.13 

5.58 ±                        
4.19 

Plain wren 
180.20 ±                        

27.89 
264.30 ±                        

16.74 
15.60 ±                        

9.14 
0.75 ±                        
0.26 

225.79 ±                        
22.07 

290.96 ±                        
9.04 

2.00 ±                        
2.00 

1.58 ±                        
0.58 

Duets         

Prevost's ground-sparrow 
109.75 ±                        

26.55 
192.90 ±                        

27.83 
53.40 ±                        
19.08 

4.50 ±                        
0.86 

164.96 ±                        
26.61 

207.08 ±                        
25.48 

37.67 ±                        
14.50 

8.12 ±                        
3.81 

White-eared ground-sparrow 
120.55 ±                        

27.49 
196.70 ±                        

26.96 
42.50 ±                        
14.63 

4.10 ±                        
1.01 

83.25 ±                        
23.75 

144.42 ±                        
25.79 

94.71 ±                        
23.77 

4.87 ±                        
1.15 

Large-footed finch 
194.15 ±   

27.61 
300.00 ±                        

0.00 
0.00 ±                        
0.00 

2.40 ±                        
0.82 

179.25 ±                        
27.56 

282.71 ±                        
12.07 

1.08 ±                        
1.04 

2.75 ±                        
0.69 

Plain wren 
193.30 ±                        

27.53 
289.45 ±                        

10.55 
2.60 ±                        
2.60 

1.90 ±                        
0.52 

204.08 ±                        
23.88 

288.92 ±                        
11.08 

8.58 ±                        
8.58 

3.67 ±                        
0.84 
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Table S6.2. Acoustic features of the calls produced by white-eared ground sparrows (average ± SE) separated by the type and the species of playback 

stimulus, for both the sympatric and allopatric populations. This table accompanies Chapter 6. 

 

 Allopatric Sympatric 

  
Minimum 

frequency (Hz) 
Maximum 

frequency (Hz) 

Frequency 
bandwidth 

(Hz) 

Duration           
(s) 

Minimum 
frequency (Hz) 

Maximum 
frequency (Hz) 

Frequency 
bandwidth 

(Hz) 

Duration         
(s) 

Calls         

Prevost's ground-sparrow 
7571.03 ± 

486.42 
11575.27 ± 

718.85 
4004.24 ± 

417.32 
0.19 ±         
0.056 

7982.17 ± 
417.43 

11584.73 ± 
647.66 

3602.57 ± 
818.54 

3602.54 ± 
818.56 

White-eared ground-sparrow 
7324.22 ± 

343.91 
11607.28 ± 

712.68 
4283.06 ± 

958.67 
0.21 ±        
0.044 

7663.48 ± 
552.54 

12285.88 ± 
216.36 

4622.41 ± 
530.76 

4622.41 ± 
530.76 

Large-footed finch 
7480.55 ± 

0.00 
10107.95 ± 

0.00 
2627.40 ± 

0.00 
0.21 ±          
0.00 

7414.02 ± 
225.30 

11580.63 ± 
723.98 

4166.61 ± 
690.83 

4166.60 ± 
690.83 

Plain wren 
6892.62 ± 

512.19 
12792.21 ± 

280.56 
5899.59 ± 

282.20 
0.23 ±         
0.056 

7191.65 ± 
376.91 

12424.09 ± 
395.27 

5232.43 ± 
537.23 

5232.42 ± 
537.24 

Duets         

Prevost's ground-sparrow 
4171.97 ± 

0.00 
11686.00 ± 

0.00 
7514.03 ± 

0.00 
4.51 ±         
0.00 

5564.46 ± 
164.83 

11391.05 ± 
286.63 

5826.59 ± 
268.95 

5826.59 ± 
268.95 

White-eared ground-sparrow 
5342.08 ± 

263.52 
11125.27 ± 

350.61 
5783.18 ± 

610.86 
4.99 ±          
0.74 

5732.58 ± 
226.30 

11406.57 ± 
141.15 

5673.99 ± 
209.99 

5673.99 ± 
209.99 

Large-footed finch 
4811.72 ± 

381.69 
11437.82 ± 

129.01 
6626.10 ± 

437.58 
4.52 ±         
0.41 

5394.29 ± 
260.33 

11406.69 ± 
139.41 

6012.40 ± 
321.89 

6012.43 ± 
321.89 

Plain wren 
4396.27 ± 

0.00 
11334.60 ± 

0.00 
6938.33 ± 

0.00 
5.40 ±          
0.00 

5447.21 ± 
36.64 

11338.31 ± 
104.31 

5891.10 ± 
117.54 

5891.07 ± 
117.56 
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Table S6.3. Acoustic features of the calls and duets produced by white-eared ground sparrows (average ± SE) separated by the type and the species 

of playback stimulus, for both the sympatric and allopatric populations. This table accompanies Chapter 6. 

 

 Allopatric Sympatric 

  
Minimum 

frequency (Hz) 
Maximum 

frequency (Hz) 
Frequency 

bandwidth (Hz) 
Duration (s) 

Minimum 
frequency (Hz) 

Maximum 
frequency (Hz) 

Frequency 
bandwidth (Hz) 

Duration (s) 

Calls         

Prevost's ground-sparrow 
7996.87 ± 

250.27 
11339.40 ± 

389.28 
3342.51 ± 

487.56 
0.17 ±                   
0.030 

7767.22 ± 
405.85 

12279.36 ± 
242.25 

4512.15 ± 
540.59 

0.24 ±                   
0.050 

White-eared ground-sparrow 
8056.40 ± 

129.51 
11048.63 ± 

102.32 
2992.24 ± 

230.74 
0.25 ±                   
0.060 

8100.69 ± 
366.12 

11857.03 ± 
456.43 

3756.31 ± 
499.47 

0.32 ±                   
0.050 

Large-footed finch 
6989.09 ± 

290.13 
11839.57 ± 

1554.04 
4850.47 ± 
1336.68 

0.18 ±                   
0.030 

8662.05 ± 
311.78 

11464.46 ± 
280.17 

2802.41 ± 
244.68 

0.32 ±                   
0.040 

Plain wren 
7294.54 ± 

519.61 
10278.42 ± 

1266.04 
2983.87 ± 

780.24 
0.20 ±                   
0.06 

8785.49 ± 
541.27 

12454.53 ± 
450.13 

3669.04 ± 
991.41 

0.33 ±                   
0.070 

Duets         

Prevost's ground-sparrow 
5334.30 ± 

194.02 
11228.80 ± 

193.61 
5894.50 ± 

302.55 
5.24 ±                   
0.38 

5305.71 ± 
98.33 

11642.42 ± 
71.09 

6336.73 ± 
128.53 

5.53 ±                   
0.22 

White-eared ground-sparrow 
5542.34 ± 

221.08 
11645.54 ± 

210.10 
6103.20 ± 

313.68 
5.37 ±                   
0.20 

5507.25 ± 
143.46 

11638.33 ± 
98.25 

6131.07 ± 
192.72 

5.22 ±                   
0.34 

Large-footed finch 
5306.55 ± 

219.01 
11711.82 ± 

286.44 
6405.29 ± 

393.98 
6.82 ±                   
0.42 

5378.16 ± 
167.82 

11808.32 ± 
120.27 

6430.15 ± 
226.35 

5.56 ±                   
0.36 

Plain wren 
5702.47 ± 

145.76 
10788.50 ± 

203.16 
5086.07 ± 

269.33 
5.78 ±                   
1.18 

5500.56 ± 
160.06 

11674.56 ± 
106.86 

6173.99 ± 
183.44 

5.15 ±                   
0.37 
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Table S7.1.List of skins used in this study that were measured at Museo de Zoología Universidad 
de Costa Rica (UCR), Museo Nacional de Costa Rica (MNCR), the Field Museum of Natural History 
(FMNH), the University of  Michigan Museum of Zoology (MZUM), and the Muséum National 
d'Histoire Naturelle (MNHN). 

Melozone biarcuata biarcuata:  

Female: 109482FMNH, 22986FMNH, 109483FMNH, 109480FMNH, 1880-3400MNHN.  

Male: 98401MZUM, 108106MZUM, 89016MZUM, 108105MZUM, 212687FMNH, 212685FMNH, 
109481FMNH, 23374FMNH, 22988FMNH, 22990FMNH, 22985FMNH, 22987FMNH, 
22983FMNH, 22984FMNH, 22989FMNH, 23373FMNH, 212682FMNH.  

Melozone biarcuata hartwegi:  

Female: 94608MZUM, 103527MZUM, 103529MZUM, 107783MZUM, 107784MZUM, 1975-
798MNHN, 1975-799MNHN, 1975-800MNHN.  

Male: 94610MZUM, 94609MZUM, 94607MZUM, 103526MZUM, 103528MZUM, 103530MZUM, 
103531MZUM, 107780MZUM, 107781MZUM, 107785MZUM, 103959MZUM, 1975-797MNHN.  

Melozone biarcuata cabanisi:  

Female: 3176UCR, 2577UCR, 186MNCR, 6834FMNH, 72939FMNH, 72938FMNH.  

Male: 2436UCR, 2435UCR, 1218UCR, 6335, 23050MNCR, 5175MNCR, 23051MNCR, 4561MNCR, 
374214FMNH, 6835FMNH, 72940FMNH, 72937FMNH, 1999-2299MNHN, 1999-2297MNHN.   
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Table S7.2. List of recordings used in this study that were obtained from Laboratorio de 
Bioacústica Universidad de Costa Rica (UCR), the Macaulay Library of Natural Sounds Cornell 
Laboratory of Ornithology (ML), the private collection of Jesse Fagan (JF), and the private 
collection of Knut Eisermann (KE).  

Melozone biarcuata biarcuata:  

15259ML El Salvador, Santa Ana, Cerro Verde; 106025ML El Salvador, Sonsonate, Finca Altamira; 
KE57 Guatemala, Tucurú, Alta Verapaz, Guaxac; KE74 Guatemala, Solitarius;  KE90 Guatemala, 
Solitarius; JF01 Guatemala, Los Fraijanes; JF02 Guatemala, San Juan La Laguna; JF03 Guatemala, 
Guatemala City;  JF04 Guatemala, Guatemala City; JF05 Guatemala, Guatemala City; JF06 
Guatemala, Panajatchel. 

Melozone biarcuata cabanisi:  

UCR01066 Costa Rica, Heredia, Calle Hernández; UCR01067 Costa Rica, Heredia, Calle 
Hernández; UCR01068 Costa Rica, Heredia, Calle Hernández; UCR01069 Costa Rica, Heredia, 
Calle Hernández; UCR01070 Costa Rica, Heredia, Getsemani; UCR01071 Costa Rica, Heredia, 
Getsemani; UCR01072 Costa Rica, Heredia, Getsemani; UCR01073 Costa Rica, Heredia, 
Getsemani; UCR01074 Costa Rica, Heredia, Getsemani; UCR01075 Costa Rica, Heredia, 
Getsemani; UCR01076 Costa Rica, Heredia, Getsemani; UCR01077 Costa Rica, Cartago, Ujarras; 
UCR01078 Costa Rica, Cartago, Ujarras; UCR01079 Costa Rica, Cartago, Ujarras;UCR01080 Costa 
Rica, Turrialba, CATIE; UCR01081 Costa Rica, Heredia, Getsemani; UCR01082 Costa Rica, Heredia, 
Getsemani; UCR01083 Costa Rica, Heredia, Getsemani; UCR01084 Costa Rica, Heredia, Calle 
Hernández; UCR01085 Costa Rica, Curridabat, Las Monjas; UCR01086 Costa Rica, Curridabat, Las 
Monjas; UCR01087 Costa Rica, Curridabat, Las Monjas; UCR01088 Costa Rica, Curridabat, Las 
Monjas; UCR01089 Costa Rica, Curridabat, Las Monjas; UCR01090 Costa Rica, Curridabat, Las 
Monjas; UCR01091 Costa Rica, Heredia, Getsemani; UCR01092 Costa Rica, Heredia, Getsemani; 
UCR01093 Costa Rica, Heredia, Getsemani; UCR01094 Costa Rica, Heredia, Getsemani; 
UCR01095 Costa Rica, Heredia, Getsemani; UCR01096 Costa Rica, Heredia, Getsemani; 
UCR01097 Costa Rica, Heredia, Getsemani; UCR01098 Costa Rica, Cartago, Ujarras; UCR01099 
Costa Rica, Cartago, Ujarras;UCR01100 Costa Rica, Cartago, Ujarras;UCR01101 Costa Rica, 
Cartago, Ujarras; UCR01102 Costa Rica, Heredia, Getsemani; UCR01103 Costa Rica, Heredia, 
Getsemani; UCR01104 Costa Rica, Heredia, Getsemani; UCR01105 Costa Rica, Heredia, Calle 
Hernández; UCR01106 Costa Rica, Heredia, Calle Hernández; UCR01107 Costa Rica, Heredia, 
Calle Cienega; UCR01108 Costa Rica, Heredia, Calle Cienega; UCR01109 Costa Rica, San José, 
Universidad de Costa Rica campus; UCR01110 Costa Rica, San José, Universidad de Costa Rica 
campus; UCR01111 Costa Rica, Heredia, Getsemani 
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