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ABSTRACT 

Breast tumours are heterogeneous and contain populations of cells with stem-like 

qualities that are characterized by long term self-renewal capability and the ability to 

generate more differentiated progeny. This model for carcinogenesis carries significant 

clinical implications as cancer stem-like cells have enhanced protective mechanisms that 

make them resistant to conventional therapies. Designing treatment options to target this 

aggressive population requires an understanding of the mechanisms regulating their 

growth and fate decisions, including cell cycle regulation. The protein Spy1 is an atypical 

cyclin that enhances cell proliferation and overrides senescent barriers. Spy1 has 

demonstrated roles in maintaining stemness in the brain and is elevated in human breast 

carcinoma. This study demonstrated that Spy1 is a driver in the population of stem-like 

cells across a number of different breast cancer cell lines. The findings in this study may 

have clinical implications toward targeted approaches in the treatment of breast cancer.  
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INTRODUCTION 

I. A brief overview of mammary gland development 

Development of the human mammary gland is a dynamic process undergoing a 

series of changes including stages of growth, puberty, pregnancy, lactation and 

regression
1
. The mammary gland is a secretory organ that is responsible for the 

production of milk. It is comprised of two tissue compartments, the epithelium and the 

stroma
1
. The epithelium consists of mammary ducts that transport milk and alveolar cells 

that produce milk
1
. The stroma is a region of connective tissue that is also referred to as 

the mammary fat pad
1
. The stroma hosts a wide variety of cell types including 

adipocytes, fibroblasts, blood cells and neurons
1
. As puberty commences, estrogen and 

progesterone are produced in a cyclical manner causing a stimulation of ductal outgrowth 

and side branching
1
. During pregnancy, prolactin and placental hormones direct the 

proliferation and development of the alveolar compartment preparing the gland for milk 

secretion
2
. In pregnancy, luminal secretory cells functionally differentiate to produce 

milk
3
. Surrounding these secretory cells is a casing of specialized contractile 

myoepithelial cells that aid in milk delivery
3
. This network of ducts and alveoli is 

encased by the stroma, acting as a supporting structure for the epithelial components of 

the mammary gland
3
. When lactation ceases, the loss of suckling and the resulting loss of 

the stimulatory prolactin signal initiates a process called involution
4
. Involution is 

characterized by massive cell death of luminal cells and remodels the mammary gland to 

a state of simple ductal structure that resembles the gland pre-pregnancy
4
. Subsequent 

pregnancies will initiate a new round of alveolar proliferation, maturation and lactation
4
. 
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The profound expansion of the mammary epithelium following successive rounds of 

pregnancy implicates a stem cell population with extensive regenerative capacity
5
.  

Stem cells are characterized by the ability to self-renew, giving rise to more stem 

cells, and by the ability to produce the multitude of differentiated cells that comprise the 

mammary epithelium
5
. Experimentally, these stem cells can be identified at the molecular 

level by a number of markers (e.g., cell-surface proteins)
6-7

, and by gene expression 

profiles
8-9

, as well as functional assays (e.g., enzymatic activity assays, etc.)
10

, to be 

further elucidated below. 

II. The mammary epithelium is organized into a hierarchy  

The concept of a self-renewing and bipotent mammary stem cell (MaSC) was first 

introduced by Daniel et al. through pivotal transplantation experiments in mice and rats; 

their work revealed that the structure of the mammary gland can be recapitulated from 

serially transplanted random fragments of the epithelium
11

. Since then there is increasing 

evidence to support the presence of a differentiation hierarchy in the adult mammary 

gland
7,12-18

. Mammary epithelial transplant experiments have successfully demonstrated 

that specific cell populations are capable of regenerating a fully functional mammary 

gland
16-17,19

. These experiments take advantage of the fact that the epithelial ducts in a 3 

week old mouse are confined to the most proximal region of the mammary fat pad; the fat 

pad can subsequently be cleared through a process of de-epithelialization in which the 

original epithelial ducts are removed
1
. Cell populations isolated based on their differing 

cell surface marker expression can then be transplanted into the cleared fat pad where 

they will be exposed to the native growth factors and hormone environment
20

. Kordon et 
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al. utilized experiments involving the transplantation of random fragments of the 

mammary epithelium marked with the mouse mammary tumour virus (MMTV) to 

highlight the regenerative capability of stem cells within the mammary gland
21

. Serial 

transplantations of clonally derived outgrowths were able to regenerate the functional 

mammary gland in its entirety
21

. It has been established that not all of the different cell 

types found within the mammary epithelium are capable of successfully regenerating a 

functional mammary gland
16-17,19

. For example, cells negative for various lineage markers 

(Lin
-
) and positive for select integrins (ex. CD29/integrin Beta1 and various Cluster of 

Differentiation or CD proteins) have been shown to have stem-like properties
19

. 

Shackleton et al. demonstrated through transplantation experiments that only single cells 

from the Lin
-
CD29

high
CD24

+ 
population were capable of regenerating a fully functional 

mammary gland; cells within this population had properties of multipotency and the 

ability to self renew, both of which are defining characteristics of MaSCs
19

. MaSCs can 

divide asymmetrically
22

. Asymmetric division results in a daughter cell identical to the 

MaSC, functioning as a mode of self-renewal that preserves the stem cell population as 

well as produces another daughter cell, referred to as a progenitor cell, which can 

eventually become a more differentiated cell type
23

. Bipotent progenitors can give rise to 

the cell types that define the mature epithelium of either the luminal or myoepithelial 

lineage (Figure 1)
24-25

. This intermediate bipotent progenitor can differentiate towards the 

luminal lineage that eventually produces the ductal cells that comprise the inner lining of 

the ductal network and the alveolar cells that form the milk producing alveolar structures 

characteristic of pregnancy
24-25

. A bipotent progenitor can also differentiate towards the 

myoepithelial lineage
24-25

; the fully differentiated myoepithelial cells form a matrix  



4 
 

 

 

 

 

Figure 1. Schematic of differentiation hierarchy within the mammary epithelium 

Mammary stem cells (MaSCs) can self-renew to produce an identical stem cell. MaSCs 

can also give rise to the cell types that define the mature epithelium of either the luminal 

or myoepithelial lineage through a common or bipotent progenitor
25

. This intermediate 

progenitor can differentiate towards the luminal lineage that eventually produces the 

ductal cells that comprise the inner lining of the ductal network and the alveolar cells that 

form the milk producing alveolar structures characteristic of pregnancy
1,3

. During 

pregnancy, the alveolar progenitor may demonstrate bipotency
25

. A common progenitor 

can also differentiate towards the myoepithelial lineage eventually forming fully 

differentiated myoepithelial cells. Myoepithelial cells form a matrix enveloping luminal 

secretory cells and aid in milk delivery due to their contractile nature
1,3

. Figure adapted 

from Visvader 2009
25

.  
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enveloping luminal secretory cells and aid in milk delivery due to their contractile 

nature
3,24

.  

III. Stem cells have defining characteristics  

 Stem cells are defined by the ability to self-renew and give rise to progeny that 

can differentiate into the many cell types that comprise a mature gland
23

. The ability to 

self-renew is indicative of a stem cell’s high proliferation potential and contribution to 

organogenesis
26

. The ability to self-renew is also critical for maintaining the mature adult 

gland and in some tissues contributes to repair upon insult or injury to part of the tissue
27-

29
. MaSCs are critical for normal organ development, the maintenance of tissue 

homeostasis, and the regeneration of a functional mammary gland during successive 

reproductive cycles
1,5,30

. Stem cells are also defined by the ability to differentiate; this 

multipotent nature allows for the production of the variety of differentiated cell types that 

contribute to the functionality of the mature gland
5-6,30

. Stem cells have active anti-

apoptotic pathways and telomerase activity that contribute to their long-lived nature
31-34

. 

Consequently, stem cells have more exposure to damaging agents with the risk of 

acquiring mutations and have developed mechanisms to increase their resistance to 

various damaging agents
30,32,35

. One mechanism to counteract this risk is the increased 

expression of membrane transporter proteins, such as P-glycoproteins or breast cancer 

resistance proteins
36-37

. Increased membrane transporter activity serves to protect stem 

cells from toxic agents by pumping potential toxins out of the cells
36-37

. It has also been 

suggested that membrane transporters may prevent stem cells from being subjected to 

differentiation cues
38

. Good et al. demonstrated in Dictyostelium that transporters 

function to exclude various differentiating factors, helping the stem cells remain in an 
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undifferentiated state
38

. In addition, stem cells are able to grow in anchorage independent 

conditions allowing for migration and homing to distant sites
30,39-42

.  

 Stem cells are able to divide symmetrically and asymmetrically (Figure 2)
23

. 

Symmetric division involves the production of two daughter cells identical to the parent 

stem cell
23

. Asymmetric division occurs when the parent stem cell produces one daughter 

stem cell and one differentiated cell
23

. Symmetric cell division provides a mechanism for 

stem cells to rapidly expand in number during critical times, such as in specific 

developmental time periods or in response to injury
26-29

. It has been suggested that 

asymmetric cell division may serve as a mechanism for maintaining appropriate numbers 

of progeny
23

. Investigative studies into pathways regulating self-renewal decisions have 

revealed a role for the Notch transmembrane receptor proteins
43

. In mammals, the Notch 

family consists of four homologues (Notch 1 to 4)
44-47

. Notch proteins interact with both 

surface bound and secreted ligands (Delta, Delta-like, Jagged 1 and 2)
48

, and subsequent 

Notch signaling is modulated by members of the fringe family
49

. Notch receptor 

activation involves cleavage events mediated by proteases of the ADAM (a disintegrin 

and metalloproteinase) family in addition to an intramembrane cleavage event mediated 

by presenilin
48,50

. The Notch intracellular domain then translocates to the nucleus where 

it can regulate gene expression of several downstream targets by interacting with a 

transcription factor complex comprised of C promoter binding factor (CBF), Suppressor 

of Hairless and Lag-1
48

. Activation of the Notch pathway regulates cell fate
51-53

. For 

example, over-expression of activated Notch 4 in culture serves as a block for 

differentiation of normal breast epithelial cells
52

. In vivo studies utilizing transgenic mice 

over-expressing activated Notch 4 in the mammary gland revealed a failure to develop 
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Figure 2. Modes of stem cell division 

(A) Stem cells (S) can symmetrically divide producing two daughter cells identical to the 

parent stem cell. (B) Asymmetric division occurs when the parent stem cell produces one 

identical daughter stem cell and one differentiated progeny cell (P)
23

. 
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normally; in addition, these mice eventually developed poorly differentiated mammary 

tumours
53

.  

IV. Cell cycle mechanisms regulating cell populations 

 For a cell to create a new cell containing genetically identical material it must 

undergo an orderly sequence of events in which it duplicates the cellular contents and 

subsequently divides in two; this process of sequential duplication and division events is 

known as the cell cycle
54

. The cell cycle is defined by distinct phases; S phase of the cell 

cycle is when DNA replication occurs through chromosome duplication and M phase is 

when mitosis and cytokinesis occur resulting in nuclear and cytoplasmic division 

respectively
54

.  Gap phases, G1 and G2, provide time delays to allow for cell growth and 

the opportunity to monitor internal and external environmental conditions
54

. These gap 

phases ensure conditions are favourable before committing to DNA replication. Critical 

to the regulation of cell-cycle control are a type of protein kinases known as cyclin-

dependent kinases (Cdks). The activities of Cdks are up-regulated and down-regulated 

during cell cycle progression causing orderly changes in the phosphorylation of 

intracellular proteins that regulate cell cycle events
54-55

. The most critical regulators of 

Cdk activity are proteins known as cyclins
54-55

. Cyclins have structural and functional 

similarities, and interact with Cdks through a conserved region of amino acids termed the 

cyclin box
57

. Cdks depend on cyclin binding for initiation of protein kinase activity
54-55

. 

In the absence of cyclin binding, a Cdk’s active site is blocked by the T-loop, rendering it 

inactive
58

. Upon cyclin binding, the T-loop leaves the active site, resulting in the Cdk 

becoming partially activated
58

. Complete activation of the cyclin-Cdk complex occurs 

when a Cdk-activating enzyme (CAK) phosphorylates a threonine residue, causing a 
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conformational change
59

. The activated Cdk is then ready to phosphorylate target 

proteins
59

. Various cyclin-Cdk complexes form throughout the distinct phases of the cell 

cycle. For example, Cyclin D forms a complex with Cdk4 or Cdk6 in G1, Cyclin E forms 

a complex with Cdk2 in G1/S, Cyclin A forms a complex with Cdk2 or Cdk1 in S, and 

Cyclin B forms a complex with Cdk1 in M
55

.  

V. Mechanisms regulating Cdk activity 

 Additional mechanisms serve to regulate Cdk activity throughout the cell cycle. 

Phosphorylation of two amino acids found in the active site of the kinase, namely Thr14 

and Tyr15, by the Wee1 protein kinase results in inhibition of Cdk activity
54

. Removal of 

this inhibitory phosphorylation state by the Cdc25 phosphatase in turn increases Cdk 

activity
60

. Binding of Cdk inhibitor proteins (CKIs) negatively regulates cyclin-Cdk 

complexes
61

. One group of CKIs is called the Cip/Kip (Cdk inhibiting protein) family and 

includes p27
Kip1

, p21
Cip1

 and p57
Kip2

. Structural studies revealed that the Cip/Kip CKIs 

bind cyclin-Cdk complexes at the interface of the complex, obstructing the adenosine 

triphosphate (ATP) region of the Cdk
61

. This in turn prevents activation by obstructing 

proper folding of the catalytic cleft
61

.   

VI. MaSC quiescence 

 Adult stem cells are often found in a reversible state of cell cycle arrest termed 

quiescence
62-64

. Characterized by relative inactivity and low division rates, quiescence 

protects stem cells from damage to genetic material and prevents exposure to 

differentiation signals
62-64

. Quiescence also serves as a protective mechanism to prevent 

premature depletion of the stem cell population, preserving their long life span
62-64

. 
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Quiescence is controlled at the G1 phase of the cell cycle through the action of CKIs such 

as p27
Kip1

, p21
Cip1

 and p57
Kip2 65-67

. When a cell receives signals to proliferate or 

differentiate, the actions of CKIs are inhibited, and the stem cell is free to re-enter the cell 

cycle
65-67

. Shackelton et al. demonstrated that there is a population of label-retaining cells 

found within populations enriched for MaSCs, suggesting a subset of quiescent cells
19

. 

The mammary gland niche, or microenvironment of supporting cells and extracellular 

elements found in the stroma, also plays a role in regulating MaSC activity
3
. It is 

suggested that the mammary niche provides both positive and negative signals to 

modulate MaSC activity
68-69

.  

VII. Atypical cell cycle regulators: Spy1 

 Xenopus Speedy was discovered through a screen for genes that displayed 

resistance to a rad1 deficient strain of Schizosaccharomyces pombe when subjected to 

UV or gamma irradiation
70

. An independent group also identified a novel protein, p33-

RINGO (Rapid Inducer of G2/M progression in Oocytes) that was structurally identical to 

Xenopus Speedy
71

. p33-RINGO allowed for initiation of Xenopus oocyte maturation to 

occur and down-regulation of endogenous p33-RINGO inhibited progesterone-induced 

maturation
71

. Xenopus Speedy and the human homolog SpeedyA1 (Spy1) possess 40% 

homology
72

. Spy1 is encoded by the SPDYA gene on chromosome 2 in humans
73

. Spy1 

is a member of the Speedy/RINGO family of proteins and the defining feature of family 

members is a conserved core region termed the Speedy/RINGO box that facilitates 

interaction with Cdks
73

.  
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Spy1 is capable of binding and activating Cdk1 (G2/M) and Cdk2 (G1/S) to allow 

for progression through the cell cycle
70-74

. Spy1 does not display sequence homology to 

cyclin proteins and activates Cdks in a unique manner
74

. Unlike classical cyclins, Spy1 

activates both Cdk1 and Cdk2 independent of the well defined changes in Cdk 

phosphorylation; Spy1 can activate Cdk1 and Cdk2 without the phosphorylation on 

Thr161 and Thr160 respectively
74

. In addition, Spy1-Cdk complexes are less sensitive to 

CKI inhibition mediated specifically through p21
Cip1 74

.  Spy1 has direct interactions with 

p27
Kip1 

to promote its degradation; Spy1-Cdk2 complex phosphorylates p27
Kip1 

at 

Thr187, tagging it for proteasomal degradation and allowing for cell cycle progression to 

occur
72,75

. Thus, Spy1 acts to enhance cell proliferation
72

. Spy1 is a nuclear protein with 

peak expression in the G1/S phase of the cell cycle
75

. Therefore, Spy1 is an atypical cell 

cycle regulator, operating in a manner different from cyclins.  

 Spy1 expression is found in a multitude of human tissues, cell lines, and 

cancers
76-80

. Spy1 protein and RNA levels are tightly regulated during mammary gland 

development, showing elevated expression in the proliferating virgin gland and 

maintaining high levels throughout early pregnancy
78

. Spy1 levels decrease significantly 

in the later stages of pregnancy when terminal differentiation of the gland occurs
78

. 

Previous work has established a role for Spy1 in various cancers
76,79-81

. Spy1 protein 

levels are elevated in multiple types of glioma and are associated with increasing tumour 

grade
80

. Spy1 protein levels are also significantly elevated in many human breast cancers 

and play a role in non-hodgkin’s lymphomas
81

. Recent work from the Porter laboratory 

has established a role for Spy1 in maintaining stemness in the brain
80

. Spy1 over-

expression disrupts neuronal differentiation and promotes neurosphere clonal growth
80

. It 
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was also demonstrated that Spy1 plays a role in maintaining symmetric division and self-

renewal of brain tumour-initiating cells (BTICs), which share many characteristics with 

neural stem cells
80

.  

VIII. The prevalence of breast cancer in Canada 

 In Canada, breast cancer is the most common cancer in women excluding non-

melanoma skin cancers and is the second leading cause of death
82

. Estimates project that 

on average 24 400 Canadian women will be diagnosed with breast cancer in 2014
82

.  

Strikingly, this disease will claim the lives of approximately 14 Canadian women every 

day
82

. The effects of this disease are both devastating and widespread. Over 99% of cases 

affect women, suggesting a critical link between the development of the female 

mammary gland and the incidence of this disease
82

. Although advances in earlier 

detection, diagnosis and treatment have given hope to those diagnosed with this disease, 

much work remains to be done in the fight against breast cancer. Breast cancer is an 

extremely heterogeneous disease, with stark differences at both the histological and 

molecular levels. Gene expression profiling has identified at least six different subtypes 

of breast cancer
8-9

. The subtypes include luminal A or B, basal-like, claudin-low, human 

epidermal growth factor receptor 2 over-expressing (HER2/ERBB2), and normal-breast-

like (Table 1)
8-9

. It is hypothesized that the different subtypes may be reflective of 

different cells of origin responsible for initiating tumour formation
83-84

. The different 

subtypes may also reflect differences in mutational profiles
8
. There is controversy over 

whether normal-breast-like is a distinct molecular subtype; this subtype accounts for less 

than 10% of all breast cancers, typically is characterized by small tumours and has a 

favourable prognosis
85-86

. Luminal cell differentiation is associated with luminal A and B  
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Table 1: Breast cancer subtypes 

Classification Receptor 

status 

Ki67 

status 

Response to 

therapy 

Potential cell of 

origin 

Representative 

cell line 

Luminal A ER
+
 PR

+/-
 

HER2
- 

low often 

chemotherapy 

responsive 

differentiated 

luminal cells 

MCF-7 

Luminal B ER
+
 PR

+/-
 

HER2
+
 

high variable 

chemotherapy 

response, 

endocrine 

responsive 

differentiated 

luminal cells 

BT474 

HER2 ER
-
 PR

-
 

HER2
+
 

high chemotherapy 

responsive, 

trastusumab 

responsive 

late luminal 

progenitor 

SK-BR-3 

Basal ER
-
 PR

-
 

HER2
-
 

high endocrine 

nonresponsive, 

variable 

chemotherapy 

response 

bipotent 

progenitor/luminal 

progenitor 

MDA-MB-468 

Claudin-low  ER
-
 PR

-
 

HER2
-
 

low low 

chemotherapy 

response 

mammary stem 

cell 

MDA-MB-231 
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subtypes; these subtypes are usually responsive to therapies and thus associated with 

favourable patient outcome
25,84,87-88

. Breast cancers over-expressing HER2 also 

exemplify luminal characteristics, although this subtype has poor patient survival 

rates
84,87-89

. Basal breast cancers encompass 15-20% of all breast cancers, are 

heterogeneous in nature, and are poorly differentiated
90

. Claudin-low breast cancers 

characteristically have decreased expression of claudins, proteins involved in tight-

junctions and cell-to-cell adhesion
91

. Another approach to stratifying breast cancers is 

based on receptor status; breast cancers can be classified based on the presence or 

absence of the estrogen receptor (ER), progesterone receptor (PR) and amplification of 

the HER2/ERBB2 locus
92-94

.  Stratification of breast cancers based on receptor status 

allows prediction of a probable response to specific therapies and has improved 

predictions of overall patient outcome
89,92,94

. The most aggressive tumours are classified 

as triple negative, referring to the lack of expression of ER, PR, and HER2 and typically 

respond poorly to treatment
94

. However, despite increases in predictability based on 

receptor status of tumours, patient response to chemotherapy still varies substantially
25

. 

Improving detection and treatment options for breast cancer patients ultimately requires a 

complete understanding of the specific populations of cancer cells that actively drive 

breast tumourgenic growth.  

IX. The cancer stem cell model 

 The cancer stem cell (CSC) model is based on a hierarchical model of tumour 

development
32

. It suggests that only a small population of cells is capable of initiating 

tumours and the vast majority of cells within a tumour are differentiated with limited 

replicative potential
32,95

. The CSC model hypothesizes that deregulation of processes 
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governing normal adult stem or progenitor cells results in malignant transformation of 

this population of cells, allowing for them to drive tumour growth and progression
32,95

. 

Clonal expansion of the stem and progenitor populations allows for the possibility of 

accumulating additional genetic or epigenetic changes, resulting in complete malignant 

transformation of these cells
32,95

. It is this dangerous population of CSCs that initiate and 

drive tumour progression
32,95

. This is in contrast to the stochastic model of tumour 

development, which argues all cells within a heterogeneous population have the capacity 

to initiate a tumour
32

. Evidence for the existence of a CSC was solidified in 1994 by Dr. 

John Dick in a leukemia model system
96

. This pioneering study revealed that cells 

expressing a CD34
+
CD38

-
 cell surface phenotype were leukemia-initiating cells; when 

injected into severe combined immunodeficient (SCID) mice these cells were able to 

form tumours that resembled the heterogeneous tumours found in acute myeloid 

leukemia patients
96

. Evidence for the existence of CSCs in solid tumours was 

demonstrated by the observation that not all cell types within breast tumours were 

capable of initiating tumour growth when transplanted into immunodeficient mice
97

. 

Breast cancer cells marked with the cell surface marker phenotype CD44
+/high

/CD24
-/low

 

have stem-like properties and enhanced tumourigenic capacity
97

. CD24, also known as 

heat specific antigen, is a glycosylphosphatidylinositol-anchored glycoprotein involved in 

cell adhesion
98

. CD44 is a transmembrane glycoprotein involved in numerous cellular 

processes such as cell migration, homing and adhesion
99

. Al-Hajj et al. isolated breast 

cancer cells based on a CD44
+
CD24

-
 phenotype from primary tumours and pleural 

effusions of breast cancer patients and injected them into cleared fat pads of 

immunocompromised mice
97

. As few as 100 CD44
+
CD24

-
 cells formed tumours, whereas 
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injection with over 10 000 CD44
-
CD24

+
 cells did not

97
. Numerous studies have provided 

support for the concept that not all cells within a tumour are created equal in terms of 

their tumour forming ability and capacity to recapitulate a heterogeneous tumour
97,100-102

.  

 Analysis of both normal stem cells and CSCs reveals many similarities in 

important phenotypic characteristics
30

. Normal adult stem cells are slow-dividing and 

long-lived, the latter an attribute which increases the risk of accumulating mutations to 

serve as a target for transformation
30

. A normal adult stem cell is in part defined by its 

ability to self-renew, a property CSCs may use to achieve uncontrolled proliferation and 

tumourgenicity
30

. A CSC is able to differentiate into the multitude of cell types that 

comprise a tumour, contributing to tumour heterogeneity
30

. Zucchi et al. showed that a 

single LA7 cell derived from rat mammary adenocarcinoma was able to differentiate into 

all the cell lineages found within the mammary gland
102

. Normal adult stem cells have 

enhanced protective mechanisms against toxic insults; similarly, CSCs may be resistant 

to damaging agents and may serve as one explanation for chemoresistance in clinical 

settings
30

. Normal adult stem cells are typically anchorage-independent, with the ability 

to survive and migrate to distant sites
30

. This feature may be exploited by CSCs to 

achieve metastasis, or the development of a malignant growth at sites distant from the 

primary tumour
30

. The CSC model for carcinogenesis carries significant clinical 

implications, as this aggressive population of cells may be protected against the action of 

conventional therapies and serve as a mechanism for relapse
30,32,95

.  
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X. Mammosphere culture as a tool to enrich for mammary stem, progenitor, 

and breast CSCs 

 Epithelial cells depend on interaction or attachment to a substratum when cultured 

to survive and proliferate; that is, normal epithelial cells are anchorage-dependent and 

undergo apoptosis when unable to attach to a substratum
39-42,103

. The mammosphere assay 

takes advantage of the observation that stem cells are able to grow in serum-free 

suspension, which in vivo allows for migration and homing to distant sites
30,104-105

. Based 

on the model of neurospheres (free-floating spherical structures enriched for neural stem 

and progenitor cells)
40

, a culture system was developed that involved seeding human 

mammary epithelial cells onto ultra-low attachment plates in order to enrich for cells able 

to grow in anchorage-independent conditions
106

. Early mammosphere experiments 

revealed that a small subset of cells are able to survive and proliferate in such conditions, 

forming multicellular spheroids termed ‘mammospheres’
106-107

. Dontu et al. demonstrated 

that mammospheres are enriched for bipotent progenitors eightfold over mammary cells 

grown in anchorage-dependent conditions
106

. They further demonstrated that these 

progenitors could differentiate into myoepithelial, ductal or alveolar cells
106

. When 

subjected to 3 dimensional culture systems, progenitors were able to form complex 

functional structures
106

. Self-renewal properties of the different cell types forming 

mammospheres were also assessed through clonal assays in which mammospheres were 

dissociated into single cell suspensions, re-plated, and tested for the ability to form 

second generation spheres
106

. The results support the model of a MaSC undergoing 

limited self-renewal divisions and giving rise to more differentiated progenitors
106

. 

Microarray analysis revealed differences in the gene expression profiles of multipotent 
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cells in secondary mammospheres compared to cells grown in conditions favouring 

differentiation
106

. Genes expressed in mammospheres highly overlapped with genes 

expressed in haematopoietic, neuronal and embryonic stem cells
106

. For example, 

increased active TGF-beta signalling and increased expression of membrane transporter 

proteins were found in mammospheres
106

. These characteristics are consistent with 

previously established stemness attributes
106,108

. Thus, the mammosphere assay is a 

reliable in vitro suspension culture system that allows for the study and enrichment of 

mammary stem and progenitor cells.  

XI. Aldehyde dehydrogenase as a marker for normal and CSCs 

 The human aldehyde dehydrogenase (ALDH) superfamily encompasses 19 

known putatively functional genes
109-110

. ALDH enzymes show multiple areas of 

localization including in the cytosol, nucleus and mitochondria and vary widely in their 

tissue and organ distribution
111-113

. The ALDH superfamily is a group of enzymes that 

catalyze the oxidation of aldehydes to their corresponding carboxylic acids
109-110,112

. 

Aldehydes are long-lived, highly reactive compounds with critical roles in normal 

physiological responses, and with mutagenic and cytotoxic potential
109,112

. Aldehydes can 

come from both endogenous and exogenous sources. Endogenous aldehydes are 

generated through metabolic amino acid catabolism
112

, metabolism of vitamins and 

steroids
109-110

, in addition to several other metabolic processes. Exogenous aldehydes can 

be generated through biotransformation of xenobiotics and drugs, and are present in 

smog, cigarette smoke and motor vehicle exhaust
112

. Therefore, ALDH enzymes play a 

critical role in protecting cells from the possible detrimental effects of endogenous and 

exogenous aldehydes
112

. It has been shown that the ALDH1 family (ALDH1A1, 1A2, 
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1A3, 1L1, 1L2) are highly expressed in adult stem cells and CSCs and thus are used as 

markers to characterize this distinct population
10, 112

. To avoid pitfalls with enzyme 

kinetics and immunoblotting methods which require lysis and endogenous release of 

ALDH enzymes from cells
114-115

, the use of flow cytometry and fluorescent substrates for 

ALDH1 allows for the study of ALDH1 activity in viable cells
116-117

. Storms et al. 

developed an assay (Aldefluor® Assay) in which a fluorescent ALDH1 substrate, 

BODIPY aminoacetaldehyde (BAAA) passively diffuses into intact, viable cells (Figure 

3)
117

. ALDH1 will subsequently convert BAAA into the negatively charged product 

BODIPY-aminoacetate (BAA
-
)
117

. BAA
-
 is trapped inside the cell and consequently, cells 

with high ALDH1 activity become highly fluorescent
117

. Use of cold assay buffer 

prevents the ATP-binding cassette transporters from excluding the BAA
-
 substrate out of 

the cells
10

. To distinguish cells with high ALDH1 activity, populations in the top 10-20%, 

populations are compared to a negative control utilizing diethylaminobenzaldehyde 

(DEAB), a specific inhibitor of ALDH1
117-119

. The Aldefluor® Assay serves as a reliable 

tool to identify cells with high ALDH1 activity in various human models
118-120

. 

 Cancer cells expressing high levels of ALDH activity have increased 

tumourigenic capacity and demonstrate more stem-like characteristics compared to low 

ALDH expressing cells
118-119

. Ginestier et al. used transplantation experiments to 

demonstrate the highly tumourigenic nature of ALDH
+
 cells

119
. When 50 000 ALDH

-
 

cells were transplanted into cleared fat pads of immunocompromised mice no tumours 

developed; when 500 ALDH
+
 cells were transplanted tumours formed within a 40 day 

time period
119

.  Recent evidence suggests high activity of ALDH is associated with poor 

prognosis in breast, bladder and prostate cancer patients
119,121-122

. Specific to breast  
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Figure 3. Schematic of Aldefluor® Assay 

The Aldefluor® Assay serves as a reliable tool to indentify cells with high ALDH 

activity in various human models
118-120

. A fluorescent substrate for ALDH1, BODIPY 

aminoacetaldehyde (BAAA), passively diffuses into intact, viable cells. ALDH1 will 

subsequently convert BAAA into the negatively charged product BODIPY-aminoacetate 

(BAA
-
). BAA

-
 is trapped inside the cell and consequently, cells with high ALDH activity 

become highly fluorescent. Use of cold assay buffer prevents the ATP-binding cassette 

transporters from excluding the BAA
-
 substrate out of the cells. To distinguish cells with 

high ALDH activity, populations are compared to a negative control utilizing 

diethylaminobenzaldehyde (DEAB), a specific inhibitor of ALDH1. Figure adapted from 

Aldefluor® Assay Information Sheet (www.stemcell.com) 
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cancer, a study analyzing the tumours of 577 patients revealed tumours positive for 

ALDH have a significantly lower survival overall compared to patients with tumours 

negative for ALDH
119

. It is important to note that ALDH can serve as a valid CSC 

marker in tissue types that normally do not express high levels of ALDH
123

. Some of 

these tissues include the breast, lung and colon
123

. However, tissues with normally high 

levels of ALDH, such as liver and pancreas, are not suitable for this type of analysis
123

.  

 Perhaps the most established functional role of ALDH in cell populations is in the 

retinoid signalling pathway. Retinoic acid (RA) has established roles in regulation of 

gene expression, morphogenesis and development
124-126

. Retinol is oxidized by alcohol 

dehydrogenase (ADH) into retinaldehyde; this is a reversible reaction
112,124

. 

Retinaldehyde is then irreversibly oxidized into RA by ALDH1. RA is then free to bind 

the retinoic acid receptor (RAR) mediating changes in gene expression and cell 

differentiation
124,127

. The regulation of ALDH1 is controlled by a negative feedback 

mechanism
127

. Another functional role for the ALDH superfamily is that of detoxification 

and cellular protection
109-112

 and mutations and overall deficiencies in specific ALDH 

enzymes are associated with disease states
128-129

. For example, mutations in ALDH1A2 

are associated with spina bifida
 

and ALDH2 with hypertension
128-129

. Using the 

hematopoietic model, it was elegantly demonstrated that cells with high ALDH activity 

were resistant to cyclophosphamide, a potent alkylating agent
130

. Using mouse models, it 

was found that inhibiting the activity of ALDH1 caused a delay in the Go/G1  transition, 

causing more hematopoietic stem cells to accumulate in Go compared to G2/S/M 

phases
131

. This has powerful clinical implications. Targeting cells expressing high levels 

of ALDH towards a more differentiated state may make them more sensitive to 
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conventional therapies
132

. Similarly, targeting ALDH with DEAB can result in stem cell 

expansion and can be used in applications like bone marrow transplants to improve 

engraftment and patient survival
131

. More research is needed to investigate these potential 

clinical avenues.  

XII. Cell surface marker expression can be used to isolate stem, progenitor 

and breast CSCs 

 Another method researchers use to isolate MaSCs is separating sub-populations 

based on the cell surface marker expression of the different cell types found within the 

mammary epithelium
17,19

. Primary cell surface marker phenotype differs in the isolation 

of mouse and human MaSC, although there are some instances of overlap
25

. For example, 

MaSCs can express high levels of alpha 6 (CD49f) and/or beta 1 (CD29) integrins; mouse 

MaSCs are enriched in the CD49f
high

CD29
high

 population whereas human MaSC are 

enriched in the CD49f
high

CD24
-
EpCAM

-/low
 subset

24-25
. Beta 1 integrin is an important 

extracellular matrix receptor that acts as a heterodimer with alpha and beta subunits
133

. A 

role for beta 1 integrin has been established in the mammary gland, as it helps in 

maintaining the stem cell pool and regulates the balance between basal and luminal 

lineages through interactions with the stem cell environment
133

. Mammary tumours often 

display decreased expression of both alpha 6 and beta 1 integrin
134-135

. It is suggested that 

this down-regulation may allow for stem cells to detach from their native 

microenvironment and migrate to other areas
134-135

.  Researchers can use cell surface 

marker expression in a combinatorial manner to isolate specific populations, sort these 

populations based on fluorescence-activated cell sorting (FACS), and complete further 

analysis for stemness properties both in vitro and in vivo
97,137

. As previously mentioned, 
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human breast cancer cells marked with the cell surface marker phenotype 

CD44
+/high

/CD24
-/low

 have stem-like properties and enhanced tumourigenic capacity
97,137

. 

Clarke et al. isolated cells based on a CD44
+
CD24

-/low
Lin

-
 phenotype; injecting 200 of 

these cells into cleared mammary fat pads of immunocompromised mice resulted in a 

heterogeneous tumour whereas 20 000 cells negative for this phenotype did not
137

. 

CD44
+
CD24

-/low
Lin

-
 cells retained tumourigenic ability after serial passaging, 

highlighting their ability to self-renew
137

. Al-Hajj et al. isolated breast cancer cells based 

on a CD44
+
CD24

-
 phenotype from primary tumours and pleural effusions of breast 

cancer patients and injected them into cleared fat pads of immunocompromised mice
97

. 

As few as 100 CD44
+
CD24

-
 cells formed tumours

97
. Expression profiling of claudin-low 

tumours reveals significant overlap with the CD44
+
CD24

-/low
 breast cancer stem cell 

population
137

. It has also been shown that cells with a CD44
+
CD24

-
 phenotype exhibit 

enhanced invasive properties that may contribute toward metastatic success and express 

higher levels of anti-apoptotic proteins
138

. In vitro experiments revealed only the 

CD44
high

CD24
low

 fraction of the population are capable of forming mammospheres
106

. 

Although it is well established in the literature that this cell surface phenotype enriches 

for stem and progenitor cells, it likely does not solely contain only CSCs. Using this 

phenotype in combination with other markers, such as ALDH
+
, may represent the most 

aggressive CSC population
119,132

.  

XIII. Using breast cancer cell lines as an in vitro model to study breast cancer 

 Breast cancer cell lines are a valuable in vitro tool for researchers to dissect 

molecular mechanisms regulating the growth of breast cancer
139

. Neve et al. assessed the 

molecular and biological similarities and differences between 51 breast cancer cell lines 
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and primary human breast tumours
140

. Comparing genomic features, cell lines display the 

same heterogeneity in copy number and expression aberrations as do primary tumours
140

. 

In addition, cell line karyotypes remain relatively stable during extended culture 

exposure
140

. Comparison between transcription profiles revealed that breast cancer cell 

lines cluster into basal-like and luminal expression subtypes similar to primary 

tumours
140

. However, tumours clearly resolve into two luminal subsets, which are less 

apparent in cell lines
140

. Similarly, cell lines distinctly resolve into Basal A and Basal B 

clusters, which are less apparent in primary tumours
140

. This may be due to the absence 

of stromal interactions and/or the lack of native physiological interactions that exist in the 

primary tumour microenvironment
141

. It has also been demonstrated that cell lines 

contain functional CSCs
142

. Within 23 different breast cancer cell lines, the ALDH 

positive population was sorted and subjected to analysis for stemness properties in vitro 

and in vivo
142

. It was demonstrated that ALDH positive cells isolated from cell lines were 

able to form mammospheres in culture, as well as form tumours when injected into 

immunodeficient mice
142

. Overall the vast majority of breast cancer cell lines accurately 

reflect the genomic and transcriptional characteristics of primary breast tumours and 

provide a convenient tool for researchers to dissect mechanisms regulating breast cancer 

initiation and progression
140,142

.  

XIV. The role of Spy1 in breast cancer 

 A potential role for Spy1 in breast cancer first emerged when Zucchi et al. found 

Spy1 as one of the 50 genes over-expressed in breast ductal carcinoma
76

. In vivo 

transplantation experiments revealed that Spy1 over-expressing HC11 cells can 

accelerate tumour formation in the mammary gland
78

. High Spy1 levels are found in 
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aggressive breast cancers and down-regulation of Spy1 significantly inhibits breast 

cancer cell growth
79

. It has also been shown that Spy1 protein levels are elevated in 

human breast cancer cell lines
79

. Taking into account the established role of Spy1 in 

breast cancer and maintaining stemness characteristics in other systems
80

, I sought to 

investigate the potential role of Spy1 in the CSC and progenitor populations in breast 

cancer through a variety of reliable in vitro techniques. I hypothesize that Spy1 plays an 

important role in the cell cycle regulation of breast cancer stem and/or progenitor 

cells.  

Objective 1: Determine a role for Spy1 in driving breast cancer stem and/or 

progenitor cell growth. Various breast cancer cell lines were utilized as a model system 

of breast cancer, reflective of some of the different subtypes of breast cancer. The 

essentiality of the Spy1 protein was tested by manipulating levels (over-expression and 

knock-down) of Spy1 by lentiviral infection. The effect on the relative stem cell 

population was assessed through mammosphere assays and cell surface marker analysis 

via flow cytometry.   

Objective 2: Study the functional effect of Spy1 manipulation on the breast cancer 

stem and/or progenitor cell populations. Using breast cancer cell lines as a model 

system, Spy1 protein levels were manipulated by lentiviral infection and the relative 

effect on the ALDH positive population was tested via flow cytometry analysis.  

The CSC model for carcinogenesis carries significant clinical implications, as 

cancer stem cells have enhanced protective mechanisms that make them resistant to 

conventional therapies
30,32,35

. Designing treatment options to target this aggressive 
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population requires an understanding of the mechanisms regulating their cell growth and 

fate decisions. The cell cycle lies at the heart of these decisions, however there are large 

gaps in knowledge regarding how this occurs. This research aims to resolve the key cell 

cycle mediators, namely Spy1, in regulating specific breast cancer stem and/or progenitor 

cell decisions, work that may be essential for advancing potential treatment options and 

preventing patient relapse. 
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MATERIALS AND METHODS 

I. Cell lines utilized 

The human breast cancer cell lines used are listed in Table 2.  

II. Cell culture 

MDA-MB-231 were maintained in Dulbecco's modified Eagle's medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS) (Gibco 12483) and 1% 

penicillin and streptomycin (Gibco 1540). Once cells reached confluency, plates were 

washed with sterile 1XPBS and 1mL of 0.05% trypsin (HyClone SH3023601) was added 

to the plate for 3-4 minutes. Cells were then collected by centrifugation for 5 minutes at 

1000rpm. Cells were cultured in a 5% CO2 environment.  

MCF7s were maintained in DMEM supplemented with 10% FBS and 1% 

penicillin and streptomycin. Once cells reached confluency, plates were washed with 

sterile 1XPBS and 1mL of 0.05% trypsin was added to the plate for 3-4 minutes. Cells 

were then collected by centrifugation for 5 minutes at 1000rpm. Cells were cultured in a 

5% CO2 environment.  

SK-BR-3 cells were maintained in McCoy’s 5A media (ATCC 30-2007) 

supplemented with 10% FBS and 1% penicillin and streptomycin. Once cells reached 

confluency, plates were washed with sterile 1XPBS and 1mL of 0.25% trypsin was added 

to the plate for 3 minutes. Cells were then collected by centrifugation for 5 minutes at 

1000rpm. Cells were cultured in a 5% CO2 environment. 
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III. Establishment of stable cell lines  

10 000 cells per well were seeded in a 96 well plate containing 500µl of DMEM 

media supplemented with 10% FBS for MCF7 and MDA-MB-231 cells and 500µl 

McCoy’s 5A media with 10% FBS for SK-BR-3 cells, in the absence of penicillin and 

streptomycin. Cells were grown overnight in a 5% CO2 environment. The following day 

the growth media was changed to 500µl DMEM or McCoy’s 5A containing no serum or 

antibiotics with 10µg/mL polybrene (Santa Cruz sc-134220). Cells were incubated for 20 

minutes before virus was added to each well. The plate was gently rocked back and forth 

and was returned to the incubator for approximately 24 hours. Multiplicity of infection 

(MOI) was 10 and the virus titer for both control and shSpy1 was 10
7
 titer units (TU). 

After 24 hours, virus was removed by aspirating the media and replaced with fresh 

growth media. The empty vector control (pLKO) and Spy1 knock-down (shSpy1) 

contained puromycin selection and thus fresh media containing 10µg/mL puromycin 

(Sigma-Aldrich P8833) was used to select for successfully infected cells and changed 

every 2 days.  

Over-expression of Spy1 (pEIZ-Spy1) or control (pEIZ) in MDA-MB-231 and 

MCF7s were established by lentiviral infection using the same protocol as previous with 

the exception of puromycin selection. Successful infected cells over-expressing Spy1 

fluoresced green and this was monitored through fluorescence microscopy beginning 1 

week after infection.  
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IV. Mammosphere assay  

Cells were seeded into 6-well ultra low attachment plates at 50 000 cells/well 

(Corning 07-200-601). Each well contained 2mL of mammary epithelial basal medium 

(MEBM, Clonetics CC-3152) supplemented with mammary epithelial cell growth 

medium (MEGM) Single Quots (Clonetics CC-4136), 20ng/mL human basic fibroblast 

growth factor (Sigma-Aldrich F0291), and 4µg/mL heparin (Sigma-Aldrich H0777). 

Mammospheres were grown for 7 days in a 5% CO2 environment. Cells were imaged 

using the Leica CTR6500 microscope using AF software after 7 days. The field of view 

calculation was determined as follows: each well was divided into 4 quadrants and 3 

random images were taken per quadrant for a total of 36 images for each condition to 

generate the average number of mammospheres formed for each condition. Experiments 

were repeated in triplicate. The average mammosphere diameter (μm) was calculated by 

taking the mean of all mammospheres imaged for each condition using ImageJ software.  

 

V. Western blot analysis 

For protein extraction, cell pellets were collected and lysed using lysis buffer (1M 

Tris-HCL pH 8.0, 2.5M NaCl, 0.5M EDTA pH 8.0, 2.5mL Triton X-100) supplemented 

with protease inhibitors Aprotinin (0.5µL/mL), Leupeptin (1µL/mL), and PMSF 

(10µL/mL). Protein lysates were stored at -20°C. A Bradford Assay was performed to 

determine protein concentrations. Briefly, a standard curve was generated and 

subsequently protein concentrations of samples (5µL sample to 995µL Bradford reagent) 

were determined using absorbance readings at 595nm on a spectrophotometer (Biomate 5 

Thermo Electron Corporation BIO145108). Protein concentrations were corrected to the 
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lysis buffer reading. Samples were prepared using a total of 100 to 150µg of lysate 

combined with 4X sample buffer (10% glycerol, 62.5mM Tris-HCL pH 6.8, 2% sodium 

dodecyl sulfate (SDS), 0.01mg/mL bromophenol blue, and 2% beta-mercaptoethanol). 

Samples were run on a 10% SDS-PAGE page for 3 hours and 30 minutes at 120V (Fisher 

Scientfic FB200). Gels were subsequently transferred to a PVDF membrane (Millipore 

IPVH00010) for 2 hours 30 minutes at 30V. The membrane required methanol activation 

for 1 minute prior to the transfer. Membranes were blocked using 1% BSA (1g of 

Albumin Bovine BioBasic Canada Inc. AD0023 in 100mL TBST) for 1 hour on a shaker. 

Membranes were incubated with primary antibodies overnight at 4°C rotating constantly. 

The following primary antibodies were used: SPDYA (Abcam ab153965), cyclin E 

(Abcam ab33911), Numb (Cell Signalling 2756) and Actin Clone C4 (Merck Millipore 

mAB1501R). The next day, membranes were washed in 10 minute intervals in TBST for 

a total of 3 times. Membranes were submerged in secondary antibodies (anti-mouse IgG-

Peroxidase and anti-rabbit IgG-Peroxidase Sigma-Aldrich A9917 and A0545 

respectively) diluted in 1% BSA for 1 hour at room temperature while continuously 

shaking. Subsequently, membranes were washed again in 10 minute intervals in TBST 3 

times. Membranes were imaged under chemiluminescence and densitometry analysis was 

performed using FluorChem HD2 imaging software (Alpha Innotech).  

 

VI. Quantitative real-time polymerase chain reaction (qRT-PCR) 

 RNA was extracted from samples using a RNeasy Extraction Kit (Qiagen 74134). 

Briefly, cells were collected as pellets, lysed and vortexed followed by removal of 

genomic DNA. Ethanol was subsequently added to the samples to facilitate RNA binding 
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to a RNeasy spin column. Several wash steps were performed and RNA was eluted using 

RNase-free water. Concentration and purity were monitored using a NanoDrop 

Spectrophotometer (ND-1000 software version 3.3.0 Thermo Scientific). Reverse 

transcription of RNA utilized Superscript II reverse transcriptase (Invitrogen 100004925), 

0.5µg Oligo dT’s (Eurofin) and 0.5µg random nanomers (Thermo Scientific S0142). 

qRT-PCR was run on an ABI Viia7 thermocycler (Applied Biosystems 278880504) using 

Fast SYBR green detection (Applied Biosystems 4385616). Reactions were run over the 

course of 55 cycles including steps for cDNA denaturation, primer annealing to single 

stranded DNA, and elongation. Primers were used at a concentration of 5μM. GAPDH 

was used as an internal control. Primers used are listed in Table 3. RNA samples were 

stored at -80°C. 

VII. qRT-PCR calculations 

 Analysis of qRT-PCR reactions was completed using Viia7 software version 

1.1.5. Ct values were generated. The Ct value of the gene of interest is normalized to 

GAPDH which served as the internal control. This resulted in a ∆Ct value (∆Ct= Ct gene 

of interest-Ct GAPDH). The control/calibrator, for example pLKO, is then set to 0 and all 

remaining samples are compared to this to generate ∆∆Ct values (∆∆CtshSpy1= ∆CtshSpy1 - 

∆CtpLKO). The relative quantification (RQ) value is then calculated (RQshSpy1=2
-∆∆CshSpy1

). 

Data is displayed as log10 RQ, representing the fold change between the sample and the 

calibrator. Error bars represent the standard error of the average ∆Ct value.  
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VIII. Cell surface marker analysis  

Detection of fluorescent signals were detected using flow cytometry using the 

FL1 (525 BP filter detecting FITC/green) or FL2 (575 BP filter detecting PE/red) 

channels. PEIZ over-expression plasmids contain a zsGreen cassette and are detected on 

the FL1 channel. For each sample 500 000 cells were collected and stained with 

antibodies against CD24-PE (Abcam Inc. ab77219) or CD44-PE (STEMCELL 

Technologies Clone IM7 60068PE) for 45 minutes covered on ice. Controls were used to 

set up gates prior to running samples (positive control >90% fluorescent in FL2, 0% 

fluorescent in FL1). Cells without antibody treatment were used to verify the absence of 

non-specific signals. Approximately 200 000 cells were run per reaction. For cells with 

Spy1 knock-down, each sample was double-labelled with CD24-FITC (STEMCELL 

Technologies Clone 32D12 10424) and CD44-PE covered on ice for 45 minutes. 

Following the incubation period, cells were collected by centrifugation at 250 x g for 5 

minutes. Cell pellets were then resuspended in 500µl cold 1XPBS and samples were 

immediately run on the Beckman Coulter Cytomics FC500 (SYS. ID 469005). Analysis 

was completed on CXP Software (Beckman Coulter).   

 

IX. ALDEFLUOR
®
 Assay  

Aldehyde dehydrogenase detection was conducted using the ALDEFLUOR
®
 

Assay (STEMCELL Technologies 01700). As per the manufacturer’s guidelines 200 000 

cells were collected and resuspended in 1mL of ALDEFLUOR
® 

Assay Buffer. For the 

negative control, 5µl ALDEFLUOR
®
 DEAB Reagent was added to a 50mL conical tube 

and set aside. 5µl of the activated ALDEFLUOR
®
 Reagent was added to the cell 
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suspension, mixed thoroughly by pipetting and subsequently 500µl was immediately 

transferred to the DEAB-containing control tube. Both the test and the control samples 

were incubated at 37°C for 45 minutes. Following the incubation period, cells were 

collected by centrifugation for 5 minutes at 250 x g. Cells were resuspended in 500µl 

ALDEFLUOR
®

  Assay Buffer and samples were stored on ice until run on the Beckman 

Coulter Cytomics FC500. For data acquisition a Side Scatter versus FL1 dot plot was 

generated and 100 000 events were collected for each control and test sample using the 

same instrument settings.   

 

X. Statistical analysis 

Statistics were performed using a Student’s paired t-test. Data was considered 

significant if the p-value was less than 0.05.  
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Table 2: Human breast cancer cell lines  

Cell line Source Receptor Status Classification 

MDA-MB-231 ATCC ER
-
, PR

-
, HER2

-
 Claudin-low 

SK-BR-3 ATCC ER
-
, PR

-
, HER2

+
 HER2  

MCF7 ATCC ER
+
, PR

+/-
, HER2

-
 Luminal A 

 

 

 

Table 3: Human qRT-PCR primer pairs 

 

Human 

Gene 

Forward Primer (5’-3’) Reverse Primer (5’-3’) 

GAPDH GCACCGTCAAGGCTGAGAA

C 

GGATCTCGCTCCTGGAAGATG 

Spy1 TTGTGAGGAGGTTATGGCCA

TT 

GCAGCTGAACTTCATCTCTGTTGT

AG 
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RESULTS 

I. Manipulation of Spy1 levels affects mammosphere forming ability  

 To analyse the effect of elevated Spy1 levels on the relative stem and/or 

progenitor population in triple negative breast cancers, Spy1 protein was over-expressed 

in MDA-MB-231 and seeded into mammosphere culture (Figure 4). Conditions that 

favour the growth of stem-like cells with the ability to self-renew and differentiate were 

used
106-107

. To verify Spy1 levels in the heterogeneous population, western blot analysis 

was performed (Figure 4A and 5A). Mammospheres were imaged using bright-field and 

fluorescence microscopy to indicate cells were successfully expressing pEIZ and pEIZ-

Spy1 throughout the duration of mammosphere culture (Figure 4B). Results indicate that 

Spy1 over-expression significantly increases the number of mammospheres formed by 

approximately 18% compared to control conditions (Figure 4C).  

 Since MDA-MB-231 cells express relatively high levels of Spy1, Spy1 knock-

down was performed to test the endogenous significance on mammosphere formation 

(Figure 5A and 5B). Infected cells expressing pLKO or pLKO-shSpy1 were grown in 

puromycin-containing media for selection. Mammospheres were monitored using bright-

field microscopy (Figure 5C) and results reveal that knock-down of Spy1 significantly 

decreases the number of mammospheres formed by approximately 26% compared to 

control conditions (Figure 5D). Spy1 knock-down did not statistically alter 

mammosphere diameter compared to pLKO conditions (Figure 5E). These results 

indicate that Spy1 manipulation in some triple negative breast cancer cells affects the 

number of mammospheres formed.  
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Figure 4. Over-expression of Spy1 increases the number of mammospheres formed.
MDA-MB-231 cells were infected with lentiviral vectors containing pEIZ as a control and
pEIZ-Spy1 to over-express Spy1. Successfully infected cells fluoresce green. (A) Spy1
protein levels were measured using western blot analysis. Actin served as a loading con-
trol. (B) Representative microscopy images showing bright-field (left panel) and fluores-
cent (right panel) images of mammospheres from pEIZ control and Spy1 over-expressing
conditions. Total magnification of 100x. (C) Average number of mammospheres for pEIZ
control and Spy1 conditions was determined using field of view calculation. Error bars
represent standard error of the mean of three independent experiments each counted in
triplicate. *p<0.05. Statistical significance was assessed using a student’s paired t-test.
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Figure 5. Spy1 knock-down decreases the number of mammospheres formed.
MDA-MB-231 cells were infected with lentivirus carrying shRNA against Spy1 (shSpy1)
or a scrambled control (pLKO). (A) Spy1 protein levels were measured using western blot
analysis. Actin served as a loading control. (B) Efficiency of Spy1 knock-down was
assessed using qRT-PCR. Data is normalized to GAPDH and presented as relative quanti-
fication (RQ) on a logarithmic scale (log10). Error bars represent standard error of the
mean of two independent experiments run in triplicate qRT-PCR reactions. (C) Represen-
tative microscopy images showing bright-field images of mammospheres from pLKO
control and shSpy1 conditions. Total magnification of 100x. (D) Average number of
mammospheres for pLKO control and shSpy1 conditions was determined using field of
view calculation. Error bars represent standard error of the mean of three independent
experiments each counted in triplicate. *p<0.05. (E) Average mammosphere diameter
(µm) for pLKO control and shSpy1 conditions. Mammosphere diameter (µm) was mea-
sured using ImageJ software. Error bars represent standard error of the mean of three
independent experiments each counted in triplicate. p>0.05. Statistical significance was
assessed using a student‘s paired t-test.
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II. Spy1 over-expression increases the number of cells staining positive for 

the stemness marker CD44 

 To assess whether altering Spy1 levels is associated with a change in the relative 

stem and/or progenitor population in luminal breast cancers, MCF7 cells were 

manipulated to over-express or decrease Spy1 protein levels and subjected to cell surface 

marker analysis using the flow cytometer (Figure 6A). Cells successfully expressing 

pEIZ and pEIZ-Spy1 emit green fluorescence; hence infection efficiency was also 

monitored via flow cytometry (Figure 6B). Labelling for either CD24-PE or CD44-PE 

was quantified via flow cytometry analysis (representative profiles Figure 6C). Spy1 

over-expression was associated with an approximately 2.5% decrease in staining for 

CD24 and a 10% increase in staining for CD44 (Figure 6D). These results were found to 

be statistically significant.  

 Cell populations expressing high levels of CD44 and low levels of CD24 have 

been shown to have stem-like properties
97,137

. Following selection with puromycin, cells 

exhibiting successful Spy1 knock-down (Figure 6A) were double-labelled with CD24-

FITC and CD44-PE and subjected to flow cytometry analysis (representative profiles 

Figure 7A). Results indicate that knock-down of Spy1 is associated with an average 14% 

decrease in the CD44
high

CD24
low

 population (Figure 7B).  
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Figure 6. Spy1 over-expression increases the number of cells staining positive for the
stemness marker CD44.
MCF7 cells were infected with lentiviral vectors containing pEIZ as a control and pEIZ-
Spy1 to over-express Spy1. (A) Spy1 protein levels were measured using western blot
analysis. Actin served as a loading control. shSpy1 cells are utilized in Figure 7. (B) Suc-
cessfully infected cells fluoresce green and this was monitored using the FL1 channel
using flow cytometry. (C) Representative flow cytometry plots of either total cell popula-
tions (left panel), percentage of cells staining positive for CD24-PE (middle panel), or
percentage of cells staining positive for CD44-PE (right panel) for pEIZ control and Spy1
over-expression conditions. (D) Average percentage of total population staining positive
for CD24 and CD44 for pEIZ control and Spy1 over-expressing conditions. Error bars
represent standard error of the mean of four independent experiments. *p<0.05 **p<0.01.
Statistical significance was assessed using a student’s paired t-test.
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Figure 7. Spy1 knock-down decreases the stem-like CD44highCD24low population.
MCF7 cells were infected with lentivirus carrying shRNA against Spy1 (shSpy1) or a
scrambled control (pLKO). (A) Representative flow cytometry plots showing cells dou-
ble-labelled with CD44-PE (y-axis) and CD24-FITC (x-axis). Stem-like cells are found in
the CD44highCD24low population (top left quadrant). Percentages indicate the percent
of cells staining positive in each fraction of the total population. (B) Average percentage
of cells of total population staining positive in the CD44highCD24low quadrant for
pLKO control and shSpy1 conditions. Error bars represent standard error of the mean of
four independent experiments. *p<0.05. Statistical significance was assessed using a stu-
dent’s paired t-test.

41



42 
 

III. Spy1 knock-down decreases the ALDH positive population in triple 

negative and luminal breast cancer cells 

 As an alternate approach to cell surface marker analysis, the ALDEFLUOR
®
 

assay was utilized to examine the effect of manipulating Spy1 levels on the ALDH 

positive cell population in both triple negative (MDA-MB-231) and luminal (MCF7) 

breast cancer cell lines. ALDH positive populations are associated with various stem-like 

and/or progenitor characteristics
118-119

. After selection with puromycin, cells successfully 

expressing pLKO or pLKO-shSpy1 were incubated with the fluorescent ALDH substrate 

and subjected to flow cytometry analysis. MDA-MB-231 cells are known to have an 

ALDH positive population
8-9,142

. To control for background fluorescence, a negative 

control using the ALDH inhibitor DEAB was used (Figure 8A left panel). When looking 

at the total population, knocking-down Spy1 was associated with an average decrease of 

11% in the ALDH positive population in MDA-MB-231 cells (Figure 8B). MCF7 cells 

are representative of the luminal subtype of breast cancer and have a relatively small 

percentage of ALDH positive cells compared to more aggressive subtypes of breast 

cancers like triple-negative breast cancers
8-9,142

. Compared to the MDA-MB-231 

representative flow cytometry profiles showing percentage of cells staining positive for 

ALDH in pLKO and shSpy1 conditions, MCF7 cells generally had a smaller percentage 

of ALDH positive cells in both conditions (Figure 9A). The trend of decreased Spy1 

levels and decreases in the ALDH positive population remained consistent in the MCF7 

cells, and was found to be statistically significant (Figure 9B). 
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Figure 8. Spy1 knock-down decreases the ALDH positive population in triple nega-
tive breast cancer cells.
MDA-MB-231 cells were infected with lentivirus carrying shRNA against Spy1 (shSpy1)
or a scrambled control (pLKO). Cells were monitored for ALDH fluorescence using the
ALDEFLUOR® assay. (A) Representative flow cytometry plots showing percentage of
ALDH positive cells for pLKO control (upper panels) and shSpy1 (lower panels) with
DEAB or without the inhibitor (Test sample). Plots represent ALDH fluorescence
(ALDH) vs. Side Scatter (SS). (B) Average percentage of cells of total population staining
positive for ALDH for pLKO control and shSpy1 conditions. Error bars represent stan-
dard error of the mean of three independent experiments. *p<0.05. Statistical significance
was assessed using a student’s paired t-test.
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Figure 9. Spy1 knock-down decreases the ALDH positive population in MCF7 cells.
MCF7 cells were infected with lentivirus carrying shRNA against Spy1 (shSpy1) or a
scrambled control (pLKO). Cells were monitored for ALDH fluorescence using the
ALDEFLUOR® assay. (A) Representative flow cytometry plots showing percentage of
ALDH positive cells for pLKO control (upper panels) and shSpy1 (lower panels) with
DEAB or without the inhibitor (Test sample). Plots represent ALDH fluorescence
(ALDH) vs. Side Scatter (SS). (B) Average percentage of cells of total population staining
positive for ALDH for pLKO control and shSpy1 conditions. Error bars represent stan-
dard error of the mean of three independent experiments. *p<0.05. Statistical significance
was assessed using a student’s paired t-test.
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IV. Spy1 knock-down decreases the stem-like ALDH
high

 population in SK-

BR-3 cells 

 SK-BR-3 cells are representative of the HER2 expressing subtype of breast cancer 

and were one of the original cell lines used to optimize the ALDEFLUOR
®
 assay

143-144
. 

This cell line is known to contain a substantial ALDH
high

 population and is frequently 

used as a positive control for this assay
143-144

. ALDH
high

 cells have exhibited stem cell 

characteristics in normal mammary development and in breast cancer
118-119

. To assess 

whether altering Spy1 levels is associated with a change in the ALDH
high

 population, SK-

BR-3 cells were manipulated to express decreased levels of Spy1 (shSpy1) compared to 

control (pLKO). Efficient knock-down of Spy1 was monitored at the protein level 

(Figure 10A); in addition, control and Spy1 infected cells were selected with puromycin. 

Flow cytometry analysis revealed a substantial percentage of the total population staining 

in the ALDH
high

 population (Figure 10B top right panel). Compared to control conditions, 

shSpy1 expressing cells exhibited a decrease in the ALDH
high

 population, as revealed by 

the representative flow profiles (Figure 10B bottom right panel); results revealed shSpy1 

expressing cells showed an average 14% decrease in the ALDH
high

 population compared 

to pLKO expressing cells (Figure 10C). Overall, these results show that Spy1 knock-

down decreases the stem-like ALDH
high

 population in a cell line representing the HER2+ 

breast cancer subtype.  
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Figure 10. Spy1 knock-down decreases the stem-like ALDHhigh population in SK-
BR-3 cells.
SK-BR-3 cells were infected with lentivirus carrying shRNA against Spy1 (shSpy1) or a
scrambled control (pLKO). Cells were monitored for ALDH fluorescence using the
ALDEFLUOR® assay. (A) Spy1 protein levels were measured using western blot analy-
sis. Actin served as a loading control. (B) Representative flow cytometry plots showing
percentage of ALDHhigh cells for pLKO control (upper panels) and shSpy1 (lower
panels) with DEAB or without the inhibitor (Test sample). Plots represent ALDH fluores-
cence (ALDH) vs. Side Scatter (SS). (C) Average percentage of cells of total population
of ALDHhigh cells for pLKO control and shSpy1 conditions. Error bars represent stan-
dard error of the mean of three independent experiments. *p<0.05. Statistical significance
was assessed using a student’s paired t-test.
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V. Knock-down of CyclinE does not cause a significant change in the ALDH 

positive population 

 To test whether decreased levels of other cell cycle regulators such as CyclinE 

were associated with a decrease in the ALDH positive population, MDA-MB-231s were 

manipulated to express reduced levels of CyclinE (shCyclinE) compared to control 

(pLKO). CyclinE was chosen for comparison with Spy1 because they both bind and 

activate CDK2 to regulate cell cycle progression. Protein levels of CyclinE were 

monitored through western blot analysis to ensure sufficient knock-down (Figure 11A). 

Representative profiles reveal similar staining patterns for both control and CyclinE 

knock-down conditions (Figure 11B right panel). Quantification of the ALDH positive 

population over three replicates revealed a very modest decrease in the ALDH positive 

population in the shCyclinE condition (Figure 11C); there was a large amount of 

variability over the three replicates and these results did not show statistical significance.    

VI. Over-expression of Spy1 decreases Numb protein levels in triple negative 

breast cancer cells 

 To investigate a potential mechanism for Spy1’s regulatory role in the breast 

cancer stem/progenitor populations, Numb protein levels were assessed in control and 

Spy1 over-expression conditions in MDA-MB-231 cells (Figure 12A). Numb has a role 

in cell differentiation as an inhibitor of Notch signalling; inhibition of the Notch pathway 

allows for asymmetric division to occur and subsequent differentiation
145-148

. Over-

expression of Spy1 decreased Numb protein levels in MDA-MB-231 triple negative 

breast cancer cells (Figure 12B).  
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Figure 11. CyclinE knock-down does not cause a significant change in the ALDH
positive population in triple negative breast cancer cells.
MDA-MB-231 cells were infected with lentivirus carrying shRNA against CyclinE
(shCyclinE) or a scrambled control (pLKO). Cells were monitored for ALDH fluores-
cence using the ALDEFLUOR® assay. (A) CyclinE protein levels were measured using
western blot analysis. Actin served as a loading control. (B) Representative flow
cytometry plots showing percentage of ALDH positive cells for pLKO control (upper
panels) and shCyclinE (lower panels) with DEAB (left panels) or without the inhibitor
(Test sample; right panels). Plots represent ALDH fluorescence (ALDH) vs. Side Scatter
(SS). (C) Average percentage of cells of total population staining positive for ALDH for
pLKO control and shCyclinE conditions. Error bars represent standard error of the mean
of three independent experiments. p>0.05. Statistical significance was assessed using a
student‘s paired t-test.
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Figure 12. Over-expression of Spy1 decreases Numb protein levels in triple negative
breast cancer cells.
MDA-MB-231 cells were infected with lentiviral vectors containing pEIZ as a control
and pEIZ-Spy1 to over-express Spy1. (A) Numb protein levels were measured using
western blot analysis. Actin served as a loading control. (B) Levels of Numb protein in
pEIZ control and Spy1 over-expression conditions. Densitometry analysis depicts the
average Numb protein levels of two independent experiments, each corrected to the load-
ing control.
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DISCUSSION 

 Breast cancer is the second leading cause of cancer deaths in Canadian women, 

claiming the lives of approximately 14 women each day
82

. Although advances in earlier 

detection and treatment have improved patient outcomes, further understanding the 

complex heterogeneity of this disease is critical in improving patient response to therapy 

and in the prevention of relapse. Dissecting the roles of different sub-populations found 

in breast cancer tumours has revealed aggressive populations with stem cell 

characteristics as these cells have been shown to recapitulate tumours in transplantation 

experiments
97

, display increased invasiveness properties
138

, and exhibit many phenotypic 

and functional characteristics similar to normal mammary stem cells
24-25,32,95

. 

Understanding how these populations are regulated is necessary for the development of 

targeted approaches in a clinical setting. This work reveals that the atypical cell cycle 

regulator Spy1 is involved in regulating the breast cancer stem and/or progenitor 

populations found in various breast cancer subtypes.  

 To investigate if Spy1 regulates breast cancer stem and/or progenitor populations, 

Spy1 levels were manipulated in a triple negative breast cancer cell line and subsequently 

subjected to in vitro mammosphere assays. MDA-MB-231 cells are known to contain a 

sub-population of breast cancer stem cells and endogenously express high levels of 

Spy1
79,142

. Over-expressing Spy1 in the cell line revealed an increase in the number of 

mammospheres formed. This is consistent with previous findings in the brain showing 

Spy1 over-expression increases neurosphere formation. After 7 days in culture, 

mammospheres were highly fluorescent, indicating successful lentiviral infection and 

high Spy1 expression within the mammosphere structures. To validate these findings, we 
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also knocked-down Spy1 expression in MDA-MB-231 cells. A significant decrease in the 

number of mammospheres formed was revealed, suggesting a role for Spy1 in the sub-

population of cells involved in mammosphere formation. It has been established that only 

cells with stem cell characteristics, mainly the ability to self-renew and give rise to 

differentiated cells, are able to form mammospheres in culture
106-107

. Transcriptional 

profiling of mammospheres demonstrated differential gene expression profiles compared 

to cells in adherent cultures. Up-regulation of genes required in homing (e.g., CXCR4), 

maintaining cells in an undifferentiated state (e.g., IL6), and regulation of self-renewal 

(e.g., Wnt pathway) were found in mammopsheres
106

. Future experiments will look at 

potential transcriptional changes within mammospheres when Spy1 is over-expressed.  

Previous work has revealed a correlation between mammosphere size and the 

ability of mammosphere cells to form tumours in immunocompromised mice, suggesting 

that larger mammospheres contain more stem-like cells with the ability to form tumours 

when injected into cleared mammary fat pads
149

. Spy1 knock-down did not significantly 

decrease mammosphere size compared to control. This may be due to the observation that 

MDA-MB-231 cells normally exhibit variation in mammosphere structure, as opposed to 

neurospheres that form uniform spherical multicellular structures, making it challenging 

to detect small differences in mammosphere size
40,149

. To directly assess whether Spy1 is 

affecting stem cell self-renewal, a FACS experiment is required, which is an important 

future direction for this project. Cells derived from mammospheres that are over-

expressing Spy1 can be sorted based on a successfully incorporated green fluorescent tag 

into single cell suspension and clonal analysis can be performed. If single cells over-
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expressing Spy1 show an enhanced ability to form multicellular structures in vitro, it 

suggests a role for Spy1 in regulating self-renewal parameters.  

To further elucidate a potential role for Spy1 in the breast cancer stem cell and/or 

progenitor populations, cell surface marker analysis was completed using flow cytometry. 

Previous work has revealed a specific cell surface marker phenotype for breast cancer 

cells enriched with stem-like characteristics; cells marked with a CD44
+/high

CD24
-/low

 

phenotype show enhanced mammosphere forming ability, increased invasive properties, 

and the ability to recapitulate tumours when transplanted into the cleared fat pads of 

immunocompromised mice
97,137-138

. Spy1 levels were manipulated in MCF7 cells, 

representing the luminal A breast cancer subtype
8-9

. MCF7 cells represent a less clinically 

aggressive subtype of breast cancer and have relatively low levels of Spy1 compared to 

MDA-MB-231s
8-9,87

. Cells over-expressing the control pEIZ or Spy1 were tagged with a 

fluorescent green marker by lentiviral infection to monitor successful infection over the 

course of multiple repeats. To avoid overlap with expression of cell surface marker 

antibodies conjugated to green tags, samples were labelled separately with either CD24-

PE or CD44-PE. Spy1 over-expression significantly increased levels of CD44 and 

significantly decreased the levels of CD24 compared to control in MCF7 cells. These 

findings suggest a role for Spy1 in regulating the expansion of the CD44+ sub-

population. CD44 plays many important roles in CSCs, aiding in motility, the 

maintenance of stemness through ligand-receptor interactions, and drug resistance
99,150-

152
. While CD44 and CD24 are considered standard cell surface markers for identification 

of stemness, there is a distinction to be made for separating CD44
+
CD24

-
 from 

CD44
high

CD24
low 139

. Both approaches show enrichment for the desired sub-population, 
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however cells expressing a CD44
high

CD24
low

 are thought to contain a higher percentage 

of breast cancer stem cells
137,139,153-154

. Thus, to investigate whether Spy1 alters the 

balance of the CD44
high

CD24
low

 sub-population, Spy1 levels were subsequently knocked-

down, cells were double-labelled with CD24-FITC and CD44-PE and subjected to flow 

cytometry analysis. Results revealed that Spy1 knock-down consistently decreased the 

percentage of CD44
high

CD24
low

 cells over three repeats, demonstrating a statistically 

significant change. This result suggests a role for Spy1 in altering the balance between 

breast cancer stem cell enriched versus non-enriched sub-populations. These finding are 

consistent with the mammosphere data, further strengthening the support for Spy1’s 

potential role in regulating the breast cancer stem/progenitor populations. Sorting cells 

expressing a CD44
high

CD24
low

 phenotype and subsequently subjecting the isolated 

population to clonality assays and in vivo transplantation assays will verify that this sub-

population is enriched for breast cancer stem cells
97,137

, further validating this 

experimental model. Manipulating levels of Spy1 within CD44
high

CD24
low

 expressing 

cells will determine the essentiality of Spy1 in this population.   

As an alternate method to assess Spy1’s role in regulating breast cancer stem/ 

progenitor populations, the Aldefluor® Assay was performed; Spy1 levels were 

manipulated in MDA-MB-231 and MCF7 cells and the ALDH
+
 population was 

monitored using flow cytometry. It has been previously suggested that cells positive for 

ALDH have enhanced stem cell characteristics, both in normal mammary development 

and in breast cancer
10,118-119

. Approximately 16% of MDA-MB-231 control cells were 

positive for ALDH (n = 4), consistent with findings in the literature that triple negative 

breast cancers have a known ALDH
+
 population

118
. Compared to control, Spy1 knock-
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down decreased the ALDH
+
 population to less than 5% on average. This finding, in 

conjunction with the mammosphere data using MDA-MB-231s, supports a role for Spy1 

in breast cancer stem/progenitor populations. MCF7 cells were also subjected to the 

Aldefluor® Assay and control cells had an average lower percentage of cells staining 

positive for ALDH compared to MDA-MB-231s. Compared to control, Spy1 knock-

down decreased the ALDH
+
 population by an average 4%, although the change was less 

substantial compared to the change seen in MDA-MB-231s. This is expected, as MCF7 

cells endogenously have lower levels of Spy1 and are known to contain a comparatively 

smaller fraction of breast cancer stem cells
142

. These results are consistent with the 

decrease in the amount of cells staining positive for CD44
high

CD24
low

 in MCF7 cells with 

knock-down of Spy1. Overall these results indicate that cells expressing lower levels of 

Spy1 show a significant decrease in the ALDH
+
 sub-population, known to contain cancer 

cells with stem cell characteristics. This effect held true across two different breast cancer 

subtypes.  

Similar to cell surface marker expression, the literature shows variation in 

whether researchers use an ALDH
+ 

phenotype versus an ALDH
high 

phenotype. Although 

both show enrichment for the breast cancer stem cell sub-population, cells expressing 

high levels of ALDH are thought to contain a higher percentage of breast cancer stem 

cells
10,118

. The SK-BR-3 cell line was one of the original cell lines used to optimize the 

Aldefluor® Assay for breast cancer samples
143-144

. SK-BR-3 cells have a known 

population of ALDH
high

 cells, and can be used as a positive control
143-144

. SK-BR-3 also 

cells have high Spy1 levels, similar to that of MDA-MB-231s. Thus, to investigate 

whether Spy1 alters the balance of the ALDH
high

 sub-population, Spy1 levels were 
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knocked-down in SK-BR-3 cells and the effect on the ALDH
high

 sub-population was 

assessed using flow cytometry analysis. Knock-down of Spy1 resulted in a significant 

decrease in ALDH
high

 cells, with an average 10% decrease compared to control cells. 

These results further elucidate a role for Spy1 in regulating the stem-like population 

found within the ALDH
high 

fraction in SK-BR-3 breast cancer cells.  

In general, characterizing the stem cell population within breast cancers has been 

challenging due to the lack of definitive markers compared to other cancers. For example, 

brain tumour-initiating cells can be isolated based on CD133 expression; cells expressing 

CD133 can be magnetically sorted and subsequently be subjected to in vitro and in vivo 

analysis
80

. This is in contrast to high/low expression in which magnetic sorting is not 

feasible; instead sub-populations need to be carefully gated and sorted based on 

fluorescence for precise isolation. When looking at the effect of manipulating Spy1 on 

the breast cancer stem/progenitor populations, it was necessary to take multiple 

methodological approaches in order to verify the results. Thus, manipulated cell lines 

were subjected to mammosphere assays, cell surface marker analysis and the Aldefluor® 

Assay; results were therefore corroborated through a variety of different assays, 

strengthening support for a potential role for Spy1 in regulating the stem/progenitor 

populations in breast cancers. To directly assess whether Spy1 is affecting the breast 

cancer stem/progenitor population, it will be necessary to sort the populations and 

perform analysis on the isolated population. For example, the ALDH
high 

fraction can be 

sorted, Spy1 levels can subsequently be knocked-down, and the effect on mammosphere 

forming ability can be assessed in vitro, or subjected to in vivo transplantation 

experiments. These experiments are part of important future directions for this project. 
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Breast cancer is an extremely heterogeneous disease, at both the histological and 

molecular levels. The disease is classified into different subtypes, in which a variety of 

different breast cancer cell lines exist as representative models
8-9,139-140

. Three different 

breast cancer cell lines were utilized in this study to examine whether Spy1 was an 

important regulator across the most prevalent of these subtypes. It was found that 

manipulating Spy1 had a significant effect on the relative stem/progenitor populations in 

cell lines representing triple negative, luminal, and HER2 over-expressing breast cancers. 

Manipulating Spy1 in MDA-MB-231s and SK-BR-3 cells revealed the most substantial 

differences when comparing control to experimental conditions. These findings are 

consistent with the observation that both of these cell lines have comparatively high 

levels of Spy1
79

. Statistically significant differences were also seen in MCF7 cells when 

comparing control to experimental conditions, although the differences were more subtle 

compared to the other cell lines. These results are consistent with the observation that 

MCF7s have comparatively low levels of Spy1. Interestingly, MDA-MB-231s, which 

have high levels of Spy1, are clinically very aggressive and typically respond poorly to 

conventional therapies
94

. The poor clinical response may be reflective of expansion of the 

breast cancer stem population with enhanced protective mechanisms that are both driving 

tumourigenesis and impeding therapeutic response.  

Spy1 is an attractive candidate for regulating the growth of the aggressive breast 

cancer stem cell population. It has been established in the brain that Spy1 levels are 

elevated in clonally derived neurospheres and decrease during stages of differentiation
80

. 

In addition, increased Spy1 levels serve as a block to differentiation and increase the 

number and life-span of neural stem/progenitors in culture
80

. For functional 
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differentiation to occur Cdk2 activity must decrease and p27 protein levels must 

increase
155-156

. Spy1 can activate Cdks in an atypical manner and Spy1-Cdk2 complexes 

are less sensitive to inhibition by certain CKIs
74

. In addition, Spy1 can bind and promote 

the degradation of p27
72,75

, which may allow for expansion of the stem cell population 

when normally cell cycle progression would be inhibited. Spy1 knock-down, but not 

cyclinE knock-down, decreased the ALDH
+
 population in triple negative breast cancer 

cells, suggesting a unique role for Spy1 in regulating the stem-like population. Perhaps 

these findings are due to the atypical nature of Cdk activation and ability to promote the 

degradation of p27 characteristic of Spy1 that allows for this unique role.  

A hallmark characteristic of normal stem cells is the ability to shift between 

symmetric and asymmetric division
23

. Cancer stem cells shift the balance to favour 

symmetric division, as it allows for the rapid expansion of the aggressive stem cell 

population in tumours
23

. In BTICs, Spy1 demonstrated an important role in maintaining 

symmetric division, as revealed through Numb distribution assays
80

. Numb’s primary 

role in cell differentiation is as an inhibitor of Notch signalling; inhibition of the Notch 

pathway allows for asymmetric division to occur and subsequent differentiation
145-147

. 

When the protein Numb is distributed unevenly throughout a cell, this promotes 

asymmetric division because it influences the response of the daughter cells to Notch 

signaling, yielding two distinct cell fates
145

. Numb can be repressed at a translational 

level by Musashi-1 (Msi1); this allows for activation of Notch signalling in the absence 

of the inhibitor Numb (Figure 13)
157

. Interestingly, Spy1-CDK signalling has been shown 

to activate Musashi-1 (Msi1)
157

. Spy1-CDK activation of Msi1 may serve as a 

mechanism for Spy1’s potential regulatory roles in the breast cancer stem/progenitor  
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Figure 13: Potential mechanism for Spy1’s regulatory role in the breast 

cancer stem and/or progenitor populations 

Spy1-CDK signalling has been shown to activate Musashi-1. Numb can be 

repressed at a translational level by Musashi-1
157

; this allows for activation of Notch 

signalling in the absence of the inhibitor Numb
145-147

. Notch signalling is an important 

pathway regulating self-renewal decisions and thus contributes to the maintenance of 

stem and progenitor populations
43, 51-53

.  
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populations. Preliminary data reveal that over-expression of Spy1 in the heterogeneous 

population of triple negative breast cancer cells correlate with a decrease in Numb protein 

levels. The connection between Spy1 and Numb will be further probed in cell sorted 

populations to investigate the potential mechanism for regulation.  

This is the first study to investigate the potential role of Spy1 in stemness 

properties in breast cancer.  In summary, over-expression of Spy1 increases the 

mammosphere forming ability of breast cancer stem/progenitor cells and increases 

overall levels of the stemness marker CD44; similarly, knock-down of Spy1 decreases 

the number of mammospheres formed, and decreases the CD44
high

CD24
low

, ALDH
+
, and 

ALDH
high

 sub-populations (Table 4). Collectively, these findings provide strong support 

that Spy1 plays a regulatory role in breast cancer stem and/or progenitor populations. The 

cancer stem cell model has important clinical implications and understanding the 

different sub-populations driving tumourigenesis is crucial to the development of targeted 

clinical approaches (Figure 14)
30,32,95

. Dissecting the key regulators of the most 

aggressive breast cancer stem and/or progenitor populations will aid target-specific 

approaches, ultimately improving patient outcome. The findings in this study may have 

clinical implications toward targeted approaches in the treatment of breast cancer.  
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Table 4: Effect of Spy1 on the relative stem cell population within various breast 

cancer cell lines 

Breast cancer 

cell line 

Relative 

Spy1 

levels
79 

Mammosphere 

assay 

CD44
high

CD24
low

 

cell surface 

marker analysis 

ALDEFLUOR 

ASSAY® 

MCF7 

Luminal A 

low -   Spy1=    CD44 

staining 

 

  Spy1 = 

CD44
high

CD24
low

 

population 

 

    Spy1=    

ALDH
+ 

population 

SK-BR-3 

HER2 Positive 

high - -     Spy1=    

ALDH
+ 

population 

MDA-MB-231 

Claudin-Low 

high    Spy1=    

number of 

mammospheres 

 

  Spy1=   number 

of 

mammospheres 

-     Spy1=    

ALDH
+ 

population 

 

     CyclinE = no 

change ALDH
+ 

population 
  

 

 

 

 

 

 

 

 

 



61 
 

 

 

 

  

Figure 14: The significance of cancer stem cell directed targeting strategies 

Cancer stem cells (yellow), compared to more differentiated cells (blue, orange, red), 

have enhanced protective mechanisms that make them resistant to conventional therapies 

and may be responsible for relapse
30,32,95

. Designing treatment options to target this 

aggressive population by elimination or coaxing them to a more differentiated state may 

aid in complete remission after treatment. 
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