
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

11-2010

Agent Sensing with Stateful Resources
Adam D. Eck
University of Nebraska - Lincoln, aeck@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Artificial Intelligence and Robotics Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Eck, Adam D., "Agent Sensing with Stateful Resources" (2010). Computer Science and Engineering: Theses, Dissertations, and Student
Research. 12.
http://digitalcommons.unl.edu/computerscidiss/12

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/12?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages


 
AGENT SENSING WITH STATEFUL RESOURCES 

 
by 

 
Adam Dewane Eck 

 
 
 
 
 

A THESIS 
 
 
 
 
 

Presented to the Faculty of 
 

The Graduate College at the University of Nebraska 
 

In Partial Fulfillment of Requirements 
 

For the Degree of Master of Science 
 
 
 
 
 

Major: Computer Science 
 
 
 
 
 

Under the Supervision of Professor Leen-Kiat Soh 
 
 
 
 

Lincoln, Nebraska 
 
 
 
 

November, 2010 
  



AGENT SENSING WITH STATEFUL RESOURCES 

Adam Dewane Eck, M.S. 

University of Nebraska, 2010 

Advisor: Leen-Kiat Soh 

 

In many real-world applications of multi-agent systems, agent reasoning suffers from 

bounded rationality caused by both limited resources and limited knowledge.  When agent 

sensing also requires resource use, the agent’s knowledge revision is affected due to its inability 

to always sense when and as accurately as needed, further leading to poor decision making.  In 

this research, we consider what happens when sensing activities require the use of stateful 

resources, which we define as resources whose state-dependent behavior changes over time 

based on usage.  Specifically, sensing itself can change the state of a resource, and thus its 

behavior, which affects both the information gathered and the resulting knowledge refinement.  

This produces a phenomenon where the sensing activity can and will distort its own outcome 

(and potentially future outcomes), termed the Observer Effect after the similar phenomenon in 

the physical sciences.  Under this effect, an agent faces a strategic tradeoff between 1) satisfying 

the need for knowledge refinement, and 2) satisfying the need for avoiding corruption of 

knowledge due to distorted sensing outcomes.  To address this tradeoff, we model sensing 

activity selection as a Markov decision process (MDP) where an agent optimizes knowledge 

refinement while considering the state of the resources used during sensing.  In this model, the 

agent uses reinforcement learning to learn a controller for activity selection, as well as how to 

predict expected knowledge refinement based on resource usage during sensing.  Our approach 

is unique from other bounded rationality and sensing research as we consider how to make 

decisions about sensing with stateful resources which produce side-effects such as the Observer 



Effect, as opposed to simply using stateless resources with no such side-effect.  We evaluate our 

approach in 1) a fully observable robotic mining simulation, as well as 2) a partially observable 

user preference elicitation simulation.  The results demonstrate that considering the Observer 

Effect during sensing activity selection through our approach yields better knowledge 

refinement and often better task performance than not considering the effect of stateful 

resource usage. 

  



iv 
 

ACKNOWLEDGEMENTS 

I would like to thank those who have assisted with the creation of this thesis.  First, I am 

very grateful for my advisor Dr. Leen-Kiat Soh, whose guidance, mentoring, thought provoking 

discussions, meaningful feedback, and careful review have helped me to grow as a researcher, a 

scholar, and a person.  Second, I appreciate the help of my committee members Dr. Stephen 

Scott and Dr. Ashok Samal for their willingness to assist with my research and thoughtful review 

of my work.  Third, I thank my colleagues for the many discussions and critiques that have 

improved my research, especially L.D. Miller and Nobel Khandaker.  Fourth, I acknowledge the 

resources available at the University of Nebraska-Lincoln used to complete my research, 

including the PrairieFire supercomputer made available by the Holland Computing Center upon 

which the simulations in my experiments were run. 

Further, I am forever indebted to my wonderful wife Liz, whose love, support, patience, 

and sacrifice have allowed me to reach for my dreams.  Finally, I thank God for the many 

blessings in my life and for the gifts He has bestowed upon me.  Without either, this research 

would not be possible. 

  



v 
 

GRANT ACKNOWLEDGEMENTS 

I would also like to acknowledge the granting agencies that have provided financial 

support for this research.  Specifically, this thesis has been supported by a GAANN Fellowship 

from the United States Department of Education (grant P200A040150), a grant from the NSF 

(DBI0742783), and more recently, an NSF Graduate Research Fellowship. 

 



vi 
 

Table of Contents 
Chapter 1 Introduction ..................................................................................................................... 1 

1.1. Resource Constrained Multiagent Environments .................................................... 1 

1.2. Limited Resource Sensing Problem ......................................................................... 4 

1.3. Stateful Resources and the Observer Effect ............................................................. 6 

1.4. Observer Effect MDP Solution Overview ............................................................... 8 

1.5. Contributions ........................................................................................................... 9 

1.6. Thesis Overview .................................................................................................... 10 

Chapter 2 The Problem – Limited Resource Sensing and Observer Effect Tradeoff .................... 11 

2.1. Bounded Rationality .............................................................................................. 11 

2.1.1. Bounded Rationality Problem ............................................................................ 11 

2.1.2. Bounded Rationality in Artificial Intelligence ................................................... 12 

2.2. Limited Resource Sensing Problem ....................................................................... 14 

2.3. Observer Effect Tradeoff Problem ......................................................................... 16 

2.3.1. Stateful Resources .............................................................................................. 16 

2.3.2. Observer Effect .................................................................................................. 17 

2.3.3. Observer Effect Tradeoff ................................................................................... 19 

2.4. OETP Formalization .............................................................................................. 21 

Chapter 3 The Solution – Observer Effect MDP ........................................................................... 25 

3.1. Active Perception ................................................................................................... 26 

3.2. Observer Effect MDP ............................................................................................ 27 

3.2.1. MDP Background .............................................................................................. 28 

3.2.2. Observer Effect MDP Mapping ......................................................................... 31 

3.3. Learning a Sensing Activity Controller ................................................................. 33 

3.3.1. Reinforcement Learning Background ................................................................ 33 

3.3.2. Reinforcement Learning for the Observer Effect MDP ..................................... 36 

3.4. Solution Novelty .................................................................................................... 39 

Chapter 4 Experimental Setup – MineralMiner and UserRec ....................................................... 40 

4.1. MineralMiner: A Robotic Mining Simulation ....................................................... 40 

4.1.1. Environment Description ................................................................................... 40 

4.1.2. Observer Effect MDP Instantiation ................................................................... 43 

4.1.3. Experimental Setup ............................................................................................ 45 

4.2. UserRec: A User Preference Elicitation Simulation .............................................. 46 

4.2.1. Environment Description ................................................................................... 46 



vii 
 

4.2.2. Observer Effect POMDP Instantiation .............................................................. 52 

4.2.3. Experimental Setup ............................................................................................ 58 

4.3. Simulation Environment Comparison: MineralMiner vs. UserRec ....................... 61 

Chapter 5 The Results – MineralMiner and UserRec Experiments ................................................ 64 

5.1. MineralMiner Results ............................................................................................ 64 

5.1.1. Observer Effect Validation ................................................................................ 64 

5.1.2. Objective MM1 .................................................................................................. 66 

5.1.3. Objective MM2 .................................................................................................. 71 

5.1.4. MineralMiner Results Discussion ...................................................................... 76 

5.2. UserRec Results ..................................................................................................... 77 

5.2.1. Implementation Validation ................................................................................ 77 

5.2.2. Observer Effect Validation ................................................................................ 78 

5.2.3. Objective UR1 ................................................................................................... 79 

5.2.4. Objective UR2 ................................................................................................... 86 

5.2.5. Experimental Setup ............................................................................................ 93 

5.3. Discussion .............................................................................................................. 94 

Chapter 6 Related Work ................................................................................................................ 97 

6.1. Anytime Sensing .................................................................................................... 98 

6.2. Value of Information Driven Sensing .................................................................. 100 

6.3. Observation Selection Problem ............................................................................ 103 

6.4. Multiagent Resource Allocation .......................................................................... 105 

Chapter 7 Future Work ................................................................................................................ 107 

Chapter 8 Conclusion................................................................................................................... 111 

8.1. Summary .............................................................................................................. 111 

8.2. Contributions ....................................................................................................... 115 

References .................................................................................................................................... 117 

Appendix A Additional Results Figures ........................................................................... 123 

A.1. MineralMiner Time Series Results ...................................................................... 123 

A.1.1. Sensing Performance ................................................................................... 123 

A.1.2. Task Performance ........................................................................................ 129 

A.2. UserRec Time Series Results ............................................................................... 135 

A.2.1. Sensing Performance ................................................................................... 135 

A.2.2. Task Performance ........................................................................................ 137 

A.2.3. User Frustration ........................................................................................... 141 

 



viii 
 

Table of Figures 
Figure 3.1 Methodology Overview ......................................................................................................... 25 
Figure 4.1 Human-Agent Interaction in UserRec ..................................................................................... 47 
Figure 4.2 Action Selection in the Observer Effect and Preference Elicitation POMDPs .......................... 55 
Figure 5.1 Average Microscope Accuracy for MineralMiner ................................................................... 65 
Figure 5.2 Sensing Performance in MineralMiner ................................................................................... 66 
Figure 5.3 Sensing Performance over Time in MineralMiner (0.3   ) .................................................... 69 
Figure 5.4 Sensing Performance of RL vs. Random over Time in MineralMiner (0.3   ) ........................ 70 
Figure 5.5 Sensing Performance of RL vs. Random over Time in MineralMiner (0.5   ) ........................ 70 
Figure 5.6 Sensing Performance of RL vs. Random over Time in MineralMiner (0.2   ) ........................ 71 
Figure 5.7 Task Performance in MineralMiner........................................................................................ 72 
Figure 5.8 Task Performance over Time in MineralMiner (0.3   ) ......................................................... 74 
Figure 5.9 Task Performance of RL vs. Random over Time in MineralMiner (0.3   ) ............................. 74 
Figure 5.10 Average User Response Delay in UserRec ............................................................................ 79 
Figure 5.11 Average User Response Accuracy in UserRec ....................................................................... 79 
Figure 5.12 Sensing Performance in UserRec .......................................................................................... 80 
Figure 5.13 Average Simulation Duration in UserRec ............................................................................. 82 
Figure 5.14 Sensing Performance over Time in UserRec (Task-oriented User) ........................................ 85 
Figure 5.15 Sensing Performance over Time in UserRec (Patient User) .................................................. 85 
Figure 5.16 User Frustration over Time in UserRec (Patient User) .......................................................... 86 
Figure 5.17 User Frustration over Time in UserRec (Task-oriented User) ................................................ 86 
Figure 5.18 Task Performance in UserRec (Correct Submissions) ............................................................ 89 
Figure 5.19 Task Performance in UserRec (Average Task Reward).......................................................... 89 
Figure 5.20 Task Performance over Time in UserRec (Correct Submissions,  Task-oriented User) .......... 91 
Figure 5.21 Task Performance over Time in UserRec (Correct Submissions,  Patient User) ..................... 91 
Figure 6.1 Relationship Between Our Research and Related Work ......................................................... 97 
Figure A.1 Sensing Performance over Time in MineralMiner (0.0   ) ................................................. 123 
Figure A.2 Sensing Performance over Time in MineralMiner (0.1   ) ................................................. 124 
Figure A.3 Sensing Performance over Time in MineralMiner (0.2   ) ................................................. 124 
Figure A.4 Sensing Performance over Time in MineralMiner (0.3   ) ................................................. 125 
Figure A.5 Sensing Performance over Time in MineralMiner (0.4   ) ................................................. 125 
Figure A.6 Sensing Performance over Time in MineralMiner (0.5   ) ................................................. 126 
Figure A.7 Sensing Performance of RL vs. Random over Time in MineralMiner (0.0   ) ..................... 126 
Figure A.8 Sensing Performance of RL vs. Random over Time in MineralMiner (0.1   ) ..................... 127 
Figure A.9 Sensing Performance of RL vs. Random over Time in MineralMiner (0.2   ) ..................... 127 
Figure A.10 Sensing Performance of RL vs. Random over Time in MineralMiner (0.3   ).................... 128 
Figure A.11 Sensing Performance of RL vs. Random over Time in MineralMiner (0.4   ).................... 128 
Figure A.12 Sensing Performance of RL vs. Random over Time in MineralMiner (0.5   ).................... 129 
Figure A.13 Task Performance over Time in MineralMiner (0.0   ) .................................................... 129 
Figure A.14 Task Performance over Time in MineralMiner (0.1   ) .................................................... 130 
Figure A.15 Task Performance over Time in MineralMiner (0.2   ) .................................................... 130 
Figure A.16 Task Performance over Time in MineralMiner (0.3   ) .................................................... 131 
Figure A.17 Task Performance over Time in MineralMiner (0.4   ) .................................................... 131 
Figure A.18 Task Performance over Time in MineralMiner (0.5   ) .................................................... 132 
Figure A.19 Task Performance of RL vs. Random over Time in MineralMiner (0.0   ) ........................ 132 
Figure A.20 Task Performance of RL vs. Random over Time in MineralMiner (0.1   ) ........................ 133 
Figure A.21 Task Performance of RL vs. Random over Time in MineralMiner (0.2   ) ........................ 133 
Figure A.22 Task Performance of RL vs. Random over Time in MineralMiner (0.3   ) ........................ 134 
Figure A.23 Task Performance of RL vs. Random over Time in MineralMiner (0.4   ) ........................ 134 
Figure A.24 Task Performance of RL vs. Random over Time in MineralMiner (0.5   ) ........................ 135 
Figure A.25 Sensing Performance over Time in UserRec (Zero Frustration User) .................................. 135 
Figure A.26 Sensing Performance over Time in UserRec (Patient User) ................................................ 136 



ix 
 

Figure A.27 Sensing Performance over Time in UserRec (Task-oriented User) ...................................... 136 
Figure A.28 Sensing Performance over Time in UserRec (Angry User) .................................................. 137 
Figure A.29 Task Performance over Time in UserRec (Correct Submissions,  Zero Frustration User) .... 137 
Figure A.30 Task Performance over Time in UserRec (Correct Submissions,  Patient User) .................. 138 
Figure A.31 Task Performance over Time in UserRec (Correct Submissions,  Task-oriented User) ........ 138 
Figure A.32 Task Performance over Time in UserRec (Correct Submissions,  Angry User) ..................... 139 
Figure A.33 Task Performance over Time in UserRec (Average Task Reward,  Zero Frustration User) .. 139 
Figure A.34 Task Performance over Time in UserRec (Average Task Reward,  Patient User) ................ 140 
Figure A.35 Task Performance over Time in UserRec (Average Task Reward,  Task-oriented User) ...... 140 
Figure A.36 Task Performance over Time in UserRec (Average Task Reward,  Angry User) ................... 141 
Figure A.37 User Frustration over Time in UserRec (Zero Frustration User).......................................... 141 
Figure A.38 User Frustration over Time in UserRec (Patient User) ........................................................ 142 
Figure A.39 User Frustration over Time in UserRec (Task-oriented User) ............................................. 142 
Figure A.40 User Frustration over Time in UserRec (Angry User) .......................................................... 143 
 
 

  



x 
 

Table of Tables 
Table 2.1 OETP Definitions ..................................................................................................................... 22 
Table 3.1 Transformation from OETP to Observer Effect MDP ............................................................... 31 
Table 4.1 MineralMiner Observer Effect MDP ........................................................................................ 43 
Table 4.2 MineralMiner Experiment Parameters .................................................................................... 47 
Table 4.3 Example Environment Parameters (Doshi and Roy, 2008)....................................................... 49 
Table 4.4 Example Task-Level Reward Structure for Agent Actions (Doshi and Roy, 2008) ..................... 49 
Table 4.5 Preference Elicitation POMDP Model ..................................................................................... 50 
Table 4.6 Example Frustration Structure for Agent Actions .................................................................... 51 
Table 4.7 UserRec Observer Effect POMDP ............................................................................................ 53 
Table 4.8 UserRec Observer Effect POMDP vs. Preference Elicitation POMDP ....................................... 53 
Table 4.9 UserRec Frustration User Types .............................................................................................. 60 
Table 4.10 UserRec Experiment Parameters ........................................................................................... 61 
Table 4.11 MineralMiner vs. UserRec Comparison ................................................................................. 61 
Table 5.1 Two-way ANOVA Results for Sensing Performance in MineralMiner ...................................... 66 
Table 5.2 Two-way ANOVA Results for Task Performance in MineralMiner ........................................... 71 
Table 5.3 Correlation Between Sensing and Task Performance in MineralMiner.................................... 75 
Table 5.4 Two-way ANOVA Results for Sensing Performance in UserRec ............................................... 80 
Table 5.5 Two-way ANOVA Results for Task Performance (Correct Submissions) in UserRec ................. 87 
Table 5.6 Two-way ANOVA Results for Task Performance (Average Task Reward) in UserRec ............... 87 
Table 5.7 Correlation between Sensing and Task Performance (Correct Submissions) in UserRec .......... 92 
Table 5.8 Correlation between Sensing and Task Performance (Average Task Reward) in UserRec ........ 92 

 
 



1 
 

Chapter 1   Introduction 
 

In this chapter, we introduce the research presented within this thesis.  We begin by 

setting up the context of our research within resource-constrained multiagent environments.  

Second, we introduce the Limited Resource Sensing Problem (LRSP) due to the resource 

constraints in the environment.  Next, we detail the focus of this thesis: addressing the Observer 

Effect Tradeoff Problem (OETP), a subproblem of the LRSP.  Following, we give an overview of 

our proposed decision theoretic solution to this problem.  Afterwards, we highlight the key 

contributions of this thesis.  We conclude with a summary of the remaining chapters. 

1.1. Resource Constrained Multiagent Environments 

Recent trends in computer science have resulted in an increase in the ability of 

computational processes to improve our everyday lives.  Building on yesterday’s advancements 

in embedded systems technologies, current research in the following fields aims to leverage the 

capabilities of both small devices and large-scale computing networks to solve real-world 

problems:  

1) cyber-physical systems, which manage physical processes in our environments (Lee, 

2008), including the control of devices in healthcare (Sun et. al, 2007);  

2) wireless sensor networks, which remotely monitor and measure phenomena in physical 

environments ranging from glaciers (Padhy et. al, 2006) to underwater marine 

ecosystems (Akyildiz et. al, 2005);  

3) ubiquitous and pervasive computing systems, which allow for “all-the-time everywhere” 

computation (Saha and Mukherjee, 2003) to support our daily routines, such as car 

computing systems (Burnett and Porter, 2001) and smart homes (Kidd et. al, 1999); and  



2 
 

4) robotic systems, which automatically perform common tasks traditionally performed by 

humans, as well as those difficult for humans to execute, including industrial 

manufacturing (Monostori et. al, 2006) and search and rescue in dangerous spaces 

(Casper and Murphy, 2003).   

Similarly, advancements in software systems have also led to solutions aiming to enhance both 

the user experience and the ability of users to accomplish their goals, including: 

5) intelligent software systems, such as recommender systems (Adomavicius and Tuzhulin, 

2005), collaborative groupwork applications (e.g., Bull and Greer, 2000; Khandaker et. 

al, 2010), and personal information managers (e.g., Chalupsky et. al, 2001; Myers et. al, 

2007; Yorke-Smith et. al, 2009), which often use rich, intelligent interfaces to improve 

human-computer interactions and aim to a) find information to support user activities; 

b) scaffold user interactions to improve productivity; c) work hand-in-hand with users to 

accomplish tasks; d) manage information, schedules, and tasks for users; and/or e) assist 

user decision making; and  

6) autonomic computing systems, which aim to reduce the “man-in-the-loop” required to 

control most computing systems, allowing the system to adapt, manage, configure, heal, 

and protect itself without the need for human intervention, improving system 

effectiveness and freeing users to instead focus on high, abstract-level tasks for which 

their skills are better suited (Kephart and Chess, 2003; Ganek and Corbi, 2003). 

One common theme to these trends and applications is the use of capabilities from the field 

of artificial intelligence, such as planning, scheduling, computer vision, and machine learning to 

adapt to changes in both the physical environment and user demands/needs.  Commonly, 

software and hardware components are represented by intelligent agents capable of 1) sensing 

to gain information about their environments, 2) reasoning to make decisions to guide system 



3 
 

behavior, and 3) acting in order to change the environment to meet system goals and 

objectives.  Depending on the applications, often these agents are aware of one another and 

communicate while operating either cooperatively or competitively, forming a multiagent 

system (MAS).  For example, MASs have been used to control routing in wireless network 

communications (Dowling et. al,  2005) and matchmake collaborating users (Bull and Greer, 

2000; Khandaker et. al, 2010).  Here, a MAS approach is appropriate given the distributed nature 

of these systems, along with challenges commonly seen in physical environments such as 

uncertainty (in both sensing and actuation), noise, partial observability, dynamic processes, and 

multiple actors capable of changing the environment. 

However, another common theme to these emerging trends and applications is the lack of 

resources necessary to completely support the computational processes controlling these 

systems during all times of operation.  These limited resources can be internal or external to the 

system component responsible for making decisions (e.g., processor power vs. network 

bandwidth), as well as physical or abstract (e.g., memory and sensors vs. user skills, time, and 

domain knowledge).  Given these constraints on reasoning, agents using techniques from 

artificial intelligence suffer from bounded rationality, requiring reasoning which aims for 

acceptable levels of performance, often through satisficing rather than optimal solutions which 

require more resources than are available.  This problem of bounded rationality was originally 

studied in the context of human reasoning in the fields of economics (e.g., Conlisk, 1996; 

Rubinstein, 1998; Simon 1955, 1956, 1997) and cognitive science (e.g., Gigerenzer and 

Goldstein, 1996; Gigerenzer and Todd, 1999), but has been applied to artificial intelligence for 

the last twenty years (e.g., Horvitz, 1987; Boddy and Dean, 1989; Zilberstein and Russell, 1993; 

Russell, 1995; Zilberstein 1996; 2008). 



4 
 

Another constraint on reasoning studied under bounded rationality is a lack of knowledge 

about choices during reasoning.  Thus, another constraint on intelligent agent reasoning is 

limited information necessary for guiding reasoning.  For example, an agent might have all of 

the CPU cycles, memory, and time (i.e., resources) necessary to promptly make decisions and 

complete its tasks, but if it relies on information sources which produce accurate information 

slowly or infrequently needed in order to refine the agent’s knowledge, the agent’s reasoning is 

constrained to suboptimality similar to an agent running on a less capable machine with a 

perfect and quick information source.  While this knowledge constraint is studied in conjunction 

with bounded rationality in the economics (e.g., Conlisk, 1996; Rubinstein, 1998) and cognitive 

science (e.g., Gigerenzer and Goldstein, 1996; Gigerenzer and Todd, 1999) literature, the impact 

of incomplete information and need for refining knowledge has been studied more under the 

guise of perception and belief revision in the computer science domain (e.g., Josang, 2001; 

Weyns et. al, 2004). 

1.2. Limited Resource Sensing Problem 

However, less understood in the computer science literature is the relationship between 

these two types of constraints – specifically, the impact on reasoning from sensing activities 

which are also bounded by a lack of resources necessary for gathering information and refining 

knowledge.  For example, in a recommender system, an agent must perform preference 

elicitation to model its user and guide its recommendations (Adomavicius and Tuzhulin, 2005).  

Sometimes, this elicitation requires directly interrupting the use to inquire about preferences 

which can cause frustration (Adamcyzk and Bailey, 2004) and reduce user goodwill and patience 

with the system (Klein et. al, 2002), especially if they are busy (Mark et. al, 2008).  Likewise, 

distributed sensing and information sharing in wireless sensor networks and multiagent systems 

use limited communication resources to perform sensing activities (e.g., Landeldt et. al, 2000).  



5 
 

Finally, any sensing activities performed by devices with limited energy resources consume 

energy, reducing the lifetime of the device (Akyildiz et. al, 2002).  Ignoring these effects can lead 

to poor information gathering and subsequent poor reasoning, as well as reduced resource 

availability for other agent activities, both damaging overall system performance.  Some 

preliminary work has studied this problem in the context of the computational resources (i.e, 

CPU, memory, and time) necessary for analyzing and interpreting raw data collected during 

sensing (Zilberstein and Russell, 1993; Zilberstein, 1996), but to the best of our knowledge, no 

research has thoroughly investigated the effect on reasoning of using limited (possibly non-

computational) resources during the (physical) process of sensing raw data from the 

environment.   

This relationship between limited resources and sensing results in a tradeoff between 

the quality of information gathered during sensing and the cost of resource consumption to 

gather that information.  Both of these factors affect an agent’s reasoning as it cannot make 

good decisions without good information, but reasoning also requires limited resources which 

could be shared with sensing activities.  We term the problem of achieving this balance the 

Limited Resource Sensing Problem (LRSP).  This problem is at least as challenging as the 

standard bounded rationality problem in artificial intelligence since an agent must perform at 

least some (bounded) reasoning about its sensing behavior in order to mitigate the effects of 

consuming resources during sensing.   

Like the standard bounded reasoning problem, the LRSP is also made more challenging 

due to the environments of its applications.  As mentioned previously, these limited resource 

environments common to cyber-physical systems, wireless sensor networks, intelligent software 

systems, etc. are often characterized by dynamic processes, uncertainty, noise, and multiple 

actors (i.e., other agents) which change the environment and contend for limited resources.  



6 
 

Furthermore, this problem is also challenging since it is subject to the same “infinite recursion” 

problem common to metareasoning approaches to bounded rationality (Russell, 1995) since the 

reasoning at the meta-level about sensing resource consumption requires information which 

requires sensing which might entail another level of metareasoning control.   

1.3. Stateful Resources and the Observer Effect 

Within the LRSP, one important subproblem arises when agents use stateful resources 

during sensing.  We define stateful resources as resources whose behavior depends on their 

current state which changes with resource use.  When such resources are used during sensing, 

the act of sensing itself changes the state of the resource and thus alters and potentially distorts 

its own outcome (and future outcomes).  We call this interesting phenomenon the Observer 

Effect (OE) after the similar phenomenon in the physical sciences.  For example, in an intelligent 

user interface application such as the aforementioned intelligent software systems, the 

interface agent may need to prompt a user to elicit her preferences over a range of options.  

However, prompts are interruptions which can cause user frustration (Adamcyzk and Bailey, 

2004), yielding worsened feelings about the system (Klein et. al, 2002) and potentially fewer 

quality responses.  Thus in this case, the user is a stateful resource where her patience is the 

internal state while the responses constitute the user’s behavior (i.e., resource behavior), and 

the change in the quality of the responses caused by the prompts is the Observer Effect. 

From the perspective of the intelligent agent, the Observer Effect creates an important 

tradeoff in the ability of sensing to support agent reasoning guided by its knowledge; that is, a 

tradeoff between 1) satisfying the need for knowledge refinement from sensing with stateful 

resources, and 2) satisfying the need to avoid knowledge corruption due to distorted sensing 

outcomes caused by the Observer Effect.  Solving this tradeoff, which we call the Observer 

Effect Tradeoff Problem (OETP) and is the specific focus of this thesis, entails 1) modeling the 



7 
 

impact of the Observer Effect on knowledge refinement as a function of both resource state and 

sensing activity, and 2) selecting sensing activities which provide refinement while avoiding 

knowledge corruption which can lead to bad decision making.  This problem is a subproblem of 

the LRSP because not only are agents using resources during sensing, but resources in a state 

capable of producing good information during sensing become limited as the states of all 

resources used change over time through additional sensing.  It is an important subproblem 

because the distortion caused by the Observer Effect is an additional type of cost incurred 

through resource usage during sensing which makes solving the LRSP more difficult.  If an agent 

does not consider the Observer Effect when using stateful resources during sensing, the agent 

cannot effectively solve the LRSP because it won’t be considering all costs of sensing which could 

prove detrimental to the agent in the long run.  For example, pushing a stateful resource into a 

bad state can cause sensing distortion to snowball as continually using a resource while it is in a 

bad state could keep the resource in that bad state (e.g., continually interrupting an already 

frustrated user) which leads to more bad sensing in the future.  

Note that considering the Observer Effect and its associated tradeoff is novel from prior 

work in bounded rationality which generally assumes no such side effects caused by using 

resources.  For example, in traditional solutions to bounded rationality such as anytime 

algorithms, outcome quality is assumed to be monotonically increasing with resource usage 

(Zilberstein, 2008), which is valid when those resources are stateless.  However, as postulated 

earlier, additional stateful resource usage during sensing can distort the sensing outcome, which 

leads to knowledge corruption, not refinement—thus non-monotonic outcome quality in 

resource usage.   



8 
 

1.4. Observer Effect MDP Solution Overview 

To properly address the LRSP in agent sensing, we adopt the active perception 

perspective (Weyns et. al, 2004) to sensing where agents actively choose which sensing 

activities to perform, as opposed to reactively collecting whatever information is provided by 

the environment to the agent’s sensors during its task-oriented actions.  Specifically, this 

perspective provides a vehicle for making decisions about sensing activities to perform, given 

their need for resources and the consequences of their use.  Within this methodology, we 

propose a decision-theoretic solution which models the problem of selecting sensing activities 

which require stateful resources as a Markov decision process (MDP), called the Observer Effect 

MDP.  Using this model, we develop a sensing activity controller for choosing sensing activities 

capable of reasoning about and mitigating the Observer Effect by maximizing the expected 

knowledge refinement performed by the agent’s sensing.  Specifically, this controller models the 

relationship between resource state, the current knowledge of the agent, the possible sensing 

activities, and the value of knowledge refinement produced by sensing in order to select sensing 

activities which provide a maximal amount of expected knowledge refinement given the current 

states of resources, thereby avoiding knowledge corruption while meeting the agent’s 

informational needs.  Because such a model is difficult to construct a priori (e.g., due to a lack of 

knowledge by agent developers or due to frequent changes in the dynamic environment), we 

use reinforcement learning to learn such a controller online as the agent interacts with its 

environment. 

This MDP-based solution to the OETP is appropriate given the dependence of resource 

behavior on its state and the fact that resource state is changed through agent sensing activities.  

We note that this solution follows a past tradition of using MDPs or partially observable MDPs 

(POMDPs) to model agent action selection in similar problems, such as metareasoning (Raja and 



9 
 

Lesser, 2007), as well as preference elicitation from users (Boutilier, 2002; Doshi and Roy, 2008).  

However, our solution is novel in that it considers the side-effects of using stateful resources 

during agent (sensing) activities (i.e., the Observer Effect and its tradeoff), while similar prior 

solutions do not. 

1.5. Contributions 

The research presented in this thesis makes several important contributions to the fields 

of artificial intelligence and multiagent systems, including: 

1. An extension of bounded rationality as studied in artificial intelligence to the sensing 

activities of the agent through the Limited Resource Sensing Problem, 

2. The formalization of the Observer Effect in agent sensing with stateful resources and its 

associated tradeoff with respect to knowledge refinement,  

3. A decision theoretic solution called the Observer Effect MDP for modeling the effects of 

stateful resource usage during sensing and solving the OETP, 

4. Simulation environments mimicking real-world scenarios and applications for studying 

the Observer Effect and solution approaches, and 

5. A Java library offering various general artificial intelligence techniques which can be 

reused for other AI projects. 

First, from a research perspective, as introduced in Section 1.2, our research 

investigates the Limited Resource Sensing Problem which occurs due to the bounds on agent 

rationality imposed by the relationship between limited resource and knowledge constraints.  

Second, we address a previously unstudied side-effect of using stateful resources during sensing 

which results in a type of distortion in activity outcome—the Observer Effect—not considered 

by traditional bounded rationality research in artificial intelligence.  Third, we propose a novel 

solution enhancing prior bounded rationality research to handle this side-effect and its 



10 
 

associated tradeoff which can be potentially extended to other problems which exhibit similar 

characteristics. 

From a software perspective, this thesis has also resulted in two simulation 

environments, including 1) a new Tileworld (Pollack and Ringuette, 1990) environment, similar 

to those commonly studied in multiagent systems research (e.g., Smith and Simmons, 2004; 

Weyns et. al, 2005), as well as 2) an extension of a previously published user preference 

elicitation simulation (Doshi and Roy, 2008) adding a model of user frustration and its effect on 

human-agent interactions.  These simulations are both linked to real-world sensing problems 

and can be reused for other research involving similar applications.  Finally, combined with the 

other research activities of the authors, it has also produced a Java-based library for general 

artificial intelligence techniques including various algorithms for reinforcement learning, search, 

and solving (partially observable) Markov decision processes, amongst other techniques. 

1.6. Thesis Overview 

The rest of this thesis is organized as follows.  We describe the Limited Resource Sensing 

Problem and formalize the Observer Effect Tradeoff Problem within the context of bounded 

rationality in Chapter 2, followed by a description of our proposed Observer Effect MDP solution 

methodology in Chapter 3.  Chapter 4 describes the various simulations used to study our 

methodology, as well as the setup of the various experiments used to validate our proposed 

solution in these applications.  Chapter 5 presents the results of those experiments, including a 

discussion of the lessons learned from our research.  In Chapter 6, we summarize relevant 

related work.  In Chapter 7, we describe the future work we intend to perform as a result of this 

thesis.  Finally, in Chapter 8 we conclude by summarizing the ideas presented in this thesis. 

 
  



11 
 

Chapter 2   The Problem – Limited Resource Sensing and Observer 

Effect Tradeoff 
 

In this chapter, we first provide background on bounded rationality – the greater 

context within which our research is grounded.  Next, we introduce the Limited Resource 

Sensing Problem (LRSP), the general focus of our research, within the context of bounded 

rationality.  Then, we highlight the specific focus of this thesis: the Observer Effect Tradeoff 

Problem (OETP), a subset of the LRSP where agents use stateful resources for sensing.  Finally, 

we formalize the OETP with mathematical notation for our solution in Chapter 3. 

2.1. Bounded Rationality 

2.1.1. Bounded Rationality Problem 

In our research, we consider the bounded rationality perspective on agent (i.e., human, 

software, or hardware) intelligence.  That is, the decision-making abilities of agents are limited 

by the resources and information available to each agent.  These resources can be internal to an 

agent, such as computational ability and memory, as well as external to an agent, such as time, 

network bandwidth and latency for communications, a human user during human-computer 

interactions, and other application-specific resources which are pertinent to the environment in 

which the agent operates.  This perspective is grounded in the economics (e.g., Conlisk, 1996; 

Rubinstein, 1998; Simon 1955, 1956, 1997) and cognitive psychology literature (e.g., Gigerenzer 

and Goldstein, 1996; Gigerenzer and Todd, 1999), arising from a descriptive theory intended to 

describe the manner in which humans make decisions.  In contrast to the classical rational man 

assumption in decision problems, i.e. perfect rationality, where agents: 

 

 

 



12 
 

1) have perfect knowledge of the available choices,  

2) have perfect knowledge of their preferences over choices (and/or the 

consequences/outcomes of those choices), often in the form of a utility function on 

choices and/or outcomes, and  

3) have unlimited ability to calculate the optimal choice given what is feasible, available, 

and most preferred,  

bounded rationality assumes that agents generally lack at least one of these three 

characteristics.   

2.1.2. Bounded Rationality in Artificial Intelligence 

Within the artificial intelligence community, deviations from these characteristics of 

perfect rationality are studied under different areas in the literature.  First, the lack of 

knowledge about choices (or actions) available to agents is studied under the planning and 

search domains (e.g., Fikes and Nilsson, 1971; desJardins et. al, 1999; Weiss, 1999).  By planning, 

an agent becomes capable of determining appropriate actions to achieve its goals, possibly by 

forming new actions through combinations of simpler, singleton actions.  By searching, an agent 

determines which choices are available and feasible in different situations.  By combining these 

abilities, agents can determine what choices (including combinations of actions) are available for 

its current decision. 

Second, the lack of knowledge about preferences over choices (and/or the 

consequences of those choices) implies that agents do not always inherently know which actions 

are better to take in different situations, as opposed to which actions it can take.  This problem 

is primarily studied in the machine learning literature, especially in reinforcement learning 

(Kaelbling et. al, 1996; Sutton and Barto, 1998) where agents learn the utility of various actions 

based on the current situation and the resulting outcome, allowing the agent to form 



13 
 

preferences based on an ordering on utility.  However, this lack of knowledge about preferences 

can also result from a lack of knowledge about the current state of the environment and the 

situation the agent is facing.  That is, if the agent cannot differentiate its current predicament 

from other scenarios, it is difficult for the agent to know which actions are most appropriate.  

This type of knowledge deficiency has primarily been studied under the areas of perception 

(e.g., Weyns et. al, 2004) and belief revision (e.g., Josang, 2001). 

Finally, the problem of controlling reasoning when agents have only limited capacity to 

calculate optimal solutions, possibly due to real-time constraints or a lack of computational 

ability or memory, is primarily studied under the domain of metareasoning (e.g., Russell, 1995; 

Zilberstein, 2008).  Here, agents tradeoff between the quality of their reasoning (e.g., proximity 

to optimality, breadth or depth of alternatives considered) against the amount of resources 

(e.g., time, computation, memory) required for computation.  This can be done in multiple ways, 

including the use of anytime algorithms (e.g., Horvitz, 1987; Boddy and Dean, 1989; Zilberstein 

and Russell, 1993; Zilberstein 1996) which use a performance profile quantifying this tradeoff to 

create and revise the quality of reasoning until a satisficing decision is made (i.e., a decision 

whose outcome yields a sufficient expected utility).  One important property of these 

performance profiles used by anytime algorithms is that the quality of reasoning is 

monotonically increasing with resource usage (Zilberstein, 2008).  Thus, further reasoning (and 

the use of resources) yields no worse of a solution during the execution of the algorithm.  If this 

assumption is not valid, however, the problem of selecting a stopping point for the algorithm 

becomes a much more difficult problem as the performance profile might have several local (not 

global) optima, meaning that continued reasoning could produce a worse outcome before a 

better one (if such exists). 



14 
 

Another approach to metareasoning follows a decision theoretic approach, modeling 

the selection of reasoning activities as a Markov decision process (MDP) (c.f., Section 3.2.1) 

where agents choose reasoning activities (which use computational resources) which maximize 

rewards based on the state of the agent.  For example, Raja and Lesser (2007) consider a MDP 

which chooses reasoning control actions based on internal and external environment 

characteristics about tasks (e.g., current assignments and incoming rate, respectively).  They use 

offline reinforcement learning to generate a policy for solving the MDP, which is encoded within 

the agent.  Of note, this style of approach does not require monotonic performance profiles for 

resource use during sensing, instead optimizing reward functions of any shape. 

One important subproblem to point out from the metareasoning literature is that the 

additional reasoning required to perform metareasoning takes resources away from the general 

reasoning performed by the agent.  Thus, the solution to the problem actually influences the 

problem itself.  However, although this subproblem closely resembles the original problem being 

solved (how to reason under limited resources), additional metareasoning is not necessarily a 

valid solution since this creates an infinite loop of reasoning control (Russell, 1995): 

metareasoning about reasoning requires further metareasoning to appropriately use 

computational resources, which requires more resource consumption, leading to further 

metareasoning, etc.  

2.2. Limited Resource Sensing Problem 

Together, techniques and solutions from these aforementioned areas of research 

provide artificially intelligent agents (both software and hardware) the means to reason and 

make decisions to solve problems, accomplish tasks, and achieve goals in complex environments 

where perfect rationality is not feasible.  However, one drawback to the existing literature is 

that prior research primarily only considers limitations on the reasoning process itself.  In 



15 
 

contrast, decision making is essentially the transformation of knowledge created through sensed 

information into rational decisions.  Thus, the rationality of agents is bounded not only by the 

resources required during reasoning, but also the information provided to the agent.  While the 

connection between bounded rationality and information gathering has been considered in the 

aforementioned research on perception, belief revision, etc., little attention1 has been given to 

the effects of resource limitations on the process of gathering information.  As with reasoning, 

information is not available for free from the environment and can require resources to extract.  

This includes resources for both the physical sensing activity (e.g., time, energy, network 

bandwidth/latency for communications, a human user to interact with), as well as resources for 

processing the raw data gathered into useful information (e.g., computation and memory).  As 

pointed out by Conlisk (1996) from the economics perspective, bounded rational decision 

making thus becomes the product of both resource-limited reasoning processes and resource-

limited information gathering.   

Therefore, a parallel to the metareasoning problem of bounded rationality is the analog 

to sensing, which we term the: 

Limited Resource Sensing Problem (LRSP): determining how to gather 

information used in decision making under limited resources required to gather 

that information, trading off resource consumption for information (and 

subsequent decision) quality.   

Indeed, this problem shares many properties with the metareasoning problem: 1) a separate 

decision must be made to balance the tradeoff between the steps taken to support an activity 

and the quality of the activity’s outcome, 2) the meta-level decision requires the same resources 

as the base-level activity – as a decision process, sensing control might require additional 

                                                           
1
 For a notable exception, please see the end of Section 2.3.3. 



16 
 

information to guide the sensing behavior of an agent, thereby consuming more sensing 

resources, and 3) adding further meta-behavior to control meta-level decisions induces an 

infinite loop of control and limited resource consumption. 

It is also important to point out the interconnection between the resource needs of the 

reasoning and sensing processes within an agent’s decision making.   Not only does reasoning 

often require sensed information about the environment or the local agent before any decision 

can be made, but the activities of the two processes also share many of the same resources.  For 

example, gathering information requires time, which limits the amount of time available for 

reasoning, given real-time constraints.  Processing raw sensed data also requires computational 

resources which can prohibit simultaneous reasoning.  Likewise, when sensing and reasoning 

form a continuous cycle, resource consumption by reasoning can limit availability for concurrent 

and future sensing activities. 

2.3. Observer Effect Tradeoff Problem 

2.3.1. Stateful Resources 

However, despite their numerous similarities and interconnected relationship, the LRSP 

is not simply a subset of the better understood metareasoning problem.  Consider another 

categorization of resources: stateful vs. stateless.  We define stateful resources as resources 

whose behavior depends on some notion of state for the resource which changes over time 

based on resource usage, while stateless resources always behave the same way regardless of 

past usage.  For example, in an environment with limited network capacity, sensing activities by 

agents called active monitoring which monitor  network state introduce additional traffic into 

the network, thereby changing the underlying state (e.g., bandwidth) of the resource (Landeldt 

et. al, 2000).  Depending on the network protocols used within the application (e.g., whether or 



17 
 

not they delay packet delivery based on earlier packet loss), different behaviors (e.g., latencies) 

can result for different network states.  Likewise, interrupting human users to gather 

information about their preferences and activities, such as in a recommender system (e.g., 

Adomavicius and Tuzhulin, 2005) or personal information management (e.g., Chalupsky et. al, 

2001; Myers et. al, 2007; Yorke-Smith et. al, 2009) application, can distract the user’s cognitive 

processes (Klein et. al, 2002) leading to frustration (Adamcyzk and Bailey, 2004; Mark et. al, 

2008) and affecting future interactions with the user.  Therefore, one important subproblem 

within the LRSP is deciding how to select sensing activities which change the behavior of state-

dependent resources used during sensing.  Within the metareasoning problem, on the other 

hand, the computational resources (e.g., time, CPU cycles, memory) considered generally are 

stateless and thus their behavior does not depend on any notion of state – a CPU cycle will 

perform the same computations and memory will hold the same information regardless of 

previous resource usage.  Thus, beyond simple availability, resource history is important for LRSP 

but not for metareasoning.  In other words, unlike reasoning processes, sensing can directly 

change the environment surrounding the agent.  Given this property of the LRSP not found in 

metareasoning, combined with the similarities of the two problems, we instead hypothesize 

that the type of metacognitive problem exemplified by the LRSP is instead a superset of the 

classic metareasoning problem. 

2.3.2. Observer Effect 

In this thesis, we focus on the subproblem of the LRSP where agents must select sensing 

activities which use such stateful resources.  Because these activities change the state of the 

resource used during sensing, this change in state can impact the behavior of the resource, thus 

affecting the outcome of the sensing activity.  In other words, using stateful resources during 

sensing produces a phenomenon where the act of making an observation can distort the 



18 
 

observation itself (and potentially future observations).  We term this phenomenon the 

Observer Effect (OE) after a similar phenomenon in the physical sciences.   

This distortion can occur for several reasons, depending on the influence of resource 

behavior on sensing outcomes.  One example of the Observer Effect occurs when sensing 

accuracy depends on the behavior of the resource, resulting in a situation where a sensing 

activity reduces its own accuracy. In our earlier example of the stateful network resource, the 

additional traffic produced by active monitoring reduces bandwidth (Landeldt et. al, 2000) which 

increases congestion and latency (Fowler and Leland, 1991).  As a result, observations produced 

do not reflect the state of the network when sensing is not performed.  Thus, from the 

perspective of the LRSP, using stateful resources can cause a cost with respect to information 

quality (e.g., reduced accuracy) due to the Observer Effect. 

Similarly, even if an agent is not monitoring its network but is communicating with other 

agents to share information, the reduced bandwidth from communications can cause 

information sent by other agents to be outdated and inaccurate by the time it is received.  This 

problem can also arise when the agent uses a wireless sensor network to gather information 

about its environment even without interacting with other agents.  For example, when using an 

energy-aware communication protocol (e.g., Arisha et. al, 2002; Shah and Rabaey, 2002), as the 

energy level of the nodes in the sensor network is diminished, the nodes will change their 

communication behavior.  If the protocol chooses to use longer routes through energy-rich hops 

along the network (e.g., Arisha et. al, 2002), this longer route could cause the information 

transmitted to be stale before it is received by the agent responsible for refining knowledge and 

making decisions.  In this latter example, the stateful resource is the wireless sensor network 

used by the agent whose behavior depends on its energy level.   



19 
 

Of note, this example illustrates that a stateless resource (energy) can affect agent 

sensing performance, seemingly contradicting our implicit assumption that only stateful 

resources lead to the Observer Effect.  However, this phenomenon only occurs when that 

stateless resource is part of the state of a stateful resource (wireless sensor network) used by the 

agent.  Specifically, the behavior of the specific energy units used by the sensor network do not 

change based on past usage.  However, the behavior of the sensor network does change based 

on the amount of energy available to the sensors.  Please note that this still differs from 

stateless resource usage during metareasoning as a stateless resource is part of a stateful 

resource used during sensing and thus contributes towards a side-effect from resource usage. 

Another example of the Observer Effect occurs when the quantity of information 

provided by sensing depends on the behavior of the resource.  For instance, in our earlier 

preference elicitation example, prompting the user to elicit her preference is an interruption 

which affects the user’s feelings towards the system (Klein et. al, 2002) which can lead to less 

willingness to provide responses in the present and future.  Similarly, in our energy-aware 

wireless sensor network example, if the network’s protocol is unsuccessful and key sensors run 

out of energy, the network is not able to transmit as much information back to the agent.  Thus, 

from the perspective of the LRSP, using stateful resources can also cause a cost with respect to 

information quantity (i.e., reduced quantity) due to the Observer Effect. 

2.3.3. Observer Effect Tradeoff 

Considering all of these examples, we see that the Observer Effect is an important 

challenge during resource-based sensing.  Specifically, because the ultimate purpose of sensing 

is to gather information to refine the agent’s knowledge which is used to produce good 

decisions during reasoning, the Observer Effect leads to the following difficult subproblem of 

the LRSP: 



20 
 

Observer Effect Tradeoff Problem (OETP): determining how to gather 

information with stateful resources to refine knowledge used in decision making 

while balancing the tradeoff between 1) satisfying the need for knowledge 

refinement from sensing with stateful resources, and 2) satisfying the need to 

avoid knowledge corruption due to distorted sensing outcomes caused by the 

Observer Effect.   

That is, as an agent chooses to perform more sensing activities to provide more information to 

support its reasoning, the benefits might be offset by a decrease in sensing performance caused 

by the Observer Effect from increasing resource usage, leading to wrong decisions and incorrect 

agent behavior.  On the other hand, if an agent chooses to perform less sensing to reduce the 

Observer Effect by avoiding resource state change in the hope of maintaining sensing 

performance, the agent might end up with insufficient or outdated knowledge, again leading to 

wrong decisions and improper agent behavior.  Thus, the Observer Effect places stress on the 

sensing activity selection of agents to create information used to refine the agent’s knowledge, 

necessary to properly achieve its goals.  Based on this tradeoff, we propose the following 

research hypothesis: 

OE Hypothesis: Considering the current state of stateful resources used during 

sensing will allow agents to effectively balance the Observer Effect Tradeoff, 

compared to approaches which do not consider resource state. 

While this hypothesis seems intuitive, it is unclear whether it will actually hold in practice for 

several reasons: 1) the relationship between resource state and knowledge refinement could be 

difficult to model, especially without using a large number of observations to build such a 

model, and 2) incorrect actions taken to balance the tradeoff could make things worse, causing 



21 
 

the sensing distortion and knowledge corruption to snowball out of control (an Avalanche 

Effect). 

The distinction between the LRSP and traditional metareasoning due to the Observer 

Effect is important because state-dependent resource behavior implies that the performance 

profile of sensing is not always monotonically increasing, and in fact, is often nonmonotonic in 

general.  In other words, while additional sensing activities which require more resource usage 

might lead to better knowledge refinement in some situations, this will not always be the case 

after an undesired resource state change.  Thus, traditional metareasoning approaches such as 

anytime algorithms cannot be applied to the problem of making decisions about stateful 

resource usage during sensing.  Of note, Zilberstein (1996; with Russell, 1993) has applied 

anytime algorithms to the problem of using stateless computational resources to process sensed 

information from raw sensory data whose performance is monotonic, but this does not apply to 

the physical activity of sensing nor stateful resource usage.  Instead, we require a solution that 

handles non-monotonicity of sensing performance, such as the MDP-based approaches to 

metareasoning (e.g., Raja and Lesser, 2007). 

2.4. OETP Formalization 

Given our definition of the LRSP and the OETP, we now formalize the OETP in 

mathematical notation to setup our solution in the next chapter.  The following definitions are 

summarized in Table 2.1.  Formally, an agent over time must make decisions from a sequence 

      .  Each decision    requires information from the environment         .  Such 

information is available either 1) in the agent’s internal knowledge base   or 2) from a sensing 

activity selected from a set of possible activities          performed on a source of 

information selected from a set of possible sources       .  Together, the valid combinations 

of sensing choices (i.e., activity/source pairs) form a set of two-tuples             .   



22 
 

Table 2.1 OETP Definitions 

Symbol Definition 

  The agent’s current knowledge 

       Decision sequence faced by the agent 

         Set of information required for decision    

         Set of sensing activities 

       Set of information sources 

             Set of choices of possible sensing activity/source pairs 

       Set of stateful resources 

           Set of resources needed by          

   Set of all possible resource states 

    
 Set of possible states of    

      Current state of    

               State transition function for    

                  State-dependent set of information provided by          

  Knowledge refinement operator 

   Refined knowledge from information provided by sensing 

                      State-dependent value of knowledge refinement produced by 
         with respect to    

        Value of knowledge with respect to    

 

Performing these sensing choices requires the use of stateful resources         with possible 

states                      
, where     

 is the set of possible states for resource   .  The 

current state of a resource is denoted by       with       .  The set of specific resources 

needed by a sensing choice          are denoted by            with           .  Using 

each stateful resource potentially changes the state of the resource, depending on the activity 

and source chosen.  This transition function is represented by                with        

       .  Finally, performing a sensing activity      on an information source     produces 

                  depending on the current state of the resources used by activity/source 

pair due to the Observer Effect.   This information is used to refine the knowledge of the agent 

through the domain dependent knowledge operator   (for example, c.f., possibility updates 

and belief state updates in Sections 3.2.2, 4.1.2, or 4.2.2).  Putting everything together, we see 



23 
 

that performing a sensing activity results in both a resource state change and knowledge 

refinement: 

                                                                                            (1) 

                                                                                      (2) 

Recall that the purpose of solving the OETP is to balance 1) the need for knowledge 

refinement through additional sensing to support decision making, and 2) avoiding knowledge 

corruption due to distorted sensing outcomes caused by the Observer Effect.  To make choices 

about sensing activities that lead to knowledge refinement and corruption, we need a way to 

quantify the changes in knowledge produced by sensing.  Specifically, the agent is concerned 

with the value of a change in knowledge, we measure as the difference between the value of 

the revised and previous knowledge with respect to the current decision    using the function  

                     : 

                                                                                         (3) 

where         with         measures the domain-dependent value of the subset of an 

agent’s knowledge necessary for making a given decision.  For example, this value of knowledge 

might be the confidence the agent has in the correctness of its knowledge pertinent to the 

decision which is increased or decreased after considering new information collected during 

sensing, or the possibility the agent ascribes to the correct state of the environment (c.f., 

Section 4.1.1). 

Given these definitions, we can describe the primary goal of each agent under the OETP: 

Given             

Choose                                         (4) 

Until                      (5) 



24 
 

In words, the goal of the agent is to select sensing choices (i.e., activity/source pairs) 

which maximize the value of refinement in agent knowledge with respect to its current 

reasoning decision until the agent has the knowledge it needs to successfully make a decision in 

order to achieve its goals.  In doing so, the agent effectively balances the Observer Effect 

Tradeoff between the need for knowledge refinement to make decisions and the need to avoid 

knowledge corruption due to the Observer Effect.  In the next chapter, we provide a 

methodology for making such sensing choices in order to solve the OETP. 

Finally, we note that other constraints might be added to the selection process, 

depending on the application and environment.  For instance, in applications where specific 

states of a resource should be avoided, where these states can be predicted by those which 

provide expected knowledge distortion, an additional constraint can be included.  Here, the 

agent also stops sensing no when expected refinement is possible, modeled as: 

                                                                                     (6) 

For example, this constraint might be useful in a user preference elicitation application (c.f., 

Section 4.2) where the user’s state is her frustration level increased by interruptions (Adamcyzk 

and Bailey, 2004; Mark et. al, 2008) for sensing.  Here, too high of frustration should be avoided 

or the user might lose faith in the system (Klein et. al, 2002) and quit wanting to use the system 

altogether.  



25 
 

Chapter 3   The Solution – Observer Effect MDP 
 

In this chapter, we present our proposed decision theoretic solution to the Observer 

Effect Tradeoff Problem (OETP) introduced in Chapter 2.   We begin by providing background on 

active perception, including the specific framework we adopt for use as a vehicle for sensing 

activity selection.  Next, we describe Markov decision processes (MDP) and demonstrate how 

the OETP formalization defined in Section 4 of Chapter 2 can be mapped to a MDP which we 

brand the Observer Effect MDP.  Afterwards, we detail how a sensing activity selection 

controller following the Observer Effect MDP can be developed through reinforcement learning 

in order to solve the OETP.  Finally, we highlight the novelty of this proposed solution. 

 

 
Figure 3.1 Methodology Overview 

The overall solution methodology is summarized in Figure 3.1.  In short, an agent uses 

sensors to collect information (in the form of observations) from the environment.  Sometimes, 

this requires the use of stateful resources, and the observations collected depend on the 

behavior of the resources.  To control the agent’s sensors and its use of stateful resources, the 

agent uses active perception which also processes the data from the sensors to revise the 

agent’s knowledge.  To make such control decisions, the agent models the sensing activity 

selection process as an Observer Effect MDP and uses reinforcement learning to build and revise 

a sensing controller.  This sensing controller is responsible for creating a policy for active 

perception that chooses sensing activities while balancing the OETP. 



26 
 

3.1. Active Perception 

Within the context of the LRSP, an agent is tasked with balancing 1) the need for 

information of sufficient quality to refine its knowledge to support its reasoning with 2) the 

costs of resource consumption during sensing (which occur whether or not the resources used 

are stateful or stateless).  Balancing such a tradeoff entails making decisions about what sensing 

activities to perform.  Thus, an agent cannot simply rely on observations produced by task-level 

actions and instead must explicitly reason about sensing.  Therefore, in our research in solving 

the LRSP, we adopt the active perception perspective (e.g., Bajcsy, 1988; Floreano and 

Mondada, 1994; Weyns et. al, 2004; So and Sonenberg, 2009) to sensing which focuses on 

making such decisions.  As part of our research, we also extend existing active perception 

research to provide resource-aware decisions in order to handle the LRSP. 

Specifically, we follow the domain-independent active perception framework proposed 

by Weyns et. al (2004), which separates the perception process into three steps: 1) sensing , 2) 

interpretation, and 3) filtering.  First, during the sensing step, an agent uses physical sensors to 

extract raw observations from its environment.  The specific observation made by the agent 

depends on 1) the foci of its sensors (i.e., sensing activities chosen), and 2) the perceptual laws 

of the environment, which determine what the agent is actually able to observe.  For example, 

in a network monitoring scenario (e.g., Landeldt et. al, 2000), an agent might choose to monitor 

a specific region of the network by sending packets to another agent in that region.  The 

perceptual laws in this scenario include the routing behavior of packets in the network (e.g., the 

number of paths the packets take through the network to reach their destination), as well as the 

limitations in the transmission of packets, such as message buffer behavior and transmission 

rates.  The second step, interpretation, uses a set of domain-dependent descriptions to 

transform the raw data collected by the sensors into an internal representation understood by 



27 
 

the agent’s reasoning process.  In our example, the agent transforms packet responses from the 

other agent into important metrics, such as packet latency, network bandwidth, etc.  Finally, to 

avoid overloading the agent’s reasoning with more information than required (as not all 

information perceived by the agent’s sensors is necessarily relevant to the current or future 

decisions), the agent applies a set of chosen filters to select only the information it needs.  In our 

example, the agent might select a filter to only use latency measurements. 

Within this framework, the reasoning process controlling active perception centers on 

two decision processes: 1) selecting the set of foci for the sensing step which determines exactly 

what sensing activities the agent will perform, and 2) selecting the set of filters during the 

filtering step which determine what information is passed from perception to knowledge 

refinement for reasoning. In our research, we are interested in the former as it is the foci (i.e., 

sensing activities) chosen by the agent that determine how stateful resources will be used 

during sensing.  Furthermore, by carefully selecting sensing activities, the agent can potentially 

reduce the amount of filtering necessary by only choosing sensing activities which provide the 

exact information needed by the agent (if possible), thereby being efficient during sensing (an 

extension to our research we intend to investigate in the future). 

3.2. Observer Effect MDP 

In constructing a controller for selecting which sensing activities to perform, where 

those activities require stateful resources, we assume that the behavior of the stateful resources 

used is stochastic, a common assumption about the environment in multiagent systems.  This 

assumption allows us to consider resource behavior as a stochastic process. This is an especially 

valid assumption in multiagent systems as actions by other agents which influence the state of 

resources might not be observable by each agent, thus making the resources’ behavior appear 

random even if it is truly deterministic.  Therefore, from the perspective of each agent, the 



28 
 

problem of making choices about sensing activities which change the state of such a process is 

itself a stochastic decision process.  To simplify the model, we further assume that the behavior 

of a resource depends only on its current state, allowing us to model this decision process as a 

Markov decision process.  Without this assumption, an agent could have to account for any 

number of prior states in a resource’s history, making the model very complex and difficult to 

solve.  Thus, as a first-step solution, we assume state independence from distant history and will 

later investigate how to adapt our solution to relax this assumption when necessary. 

3.2.1. MDP Background 

Specifically, a Markov decision process (MDP) (Kaelbling et. al, 1998) models a 

stochastic decision process as a tuple           where       is a set of (fully observable) 

states of the environment,       is a set of choices (i.e., actions) available to the agent, and 

                is the probabilistic transition function representing the likelihood that the 

environment changes from state   to    if the agent makes choice  , that is           

           , and          is a function modeling the reward of making a choice dependent on 

the current state of the process.   

Given a MDP modeling the decision process facing the agent, the goal of the agent is to 

build a policy   mapping states to choices which optimize the rewards received by the agent for 

its choices.  The values of states used to compute policies are represented by a set of Bellman 

equations optimizing discounted, expected future rewards: 

                          
 
                                                (7) 

where    is the reward for making choice      by following policy   in state   at time   and 

        is a discount factor for weighting the consideration of expected future rewards.  From 

these values, the agent computes an optimal policy using the value-iteration algorithm which 

solves the set of equations: 



29 
 

                                                                                                (8) 

by iteratively computing the (immediate and discounted future) value of making each choice in 

each state, represented by        and used to represent the value of      if a particular choice 

is made: 

                                                                                 (9) 

                                                                                        (10) 

until the      calculations converge, a select number of iterations have occurred, or some other 

stopping condition is met, then choosing the best choice for each state as the policy choice for 

that state.  This policy then serves as a controller for guiding the agent’s choices. 

When the state of the environment is not directly observable (i.e., is hidden from the 

agent), a more appropriate model is a partially-observable Markov decision process (POMDP) 

(Kaelbling et. al, 1998), which augments a MDP to form a six-tuple               where 

       and   are as in the MDP discussed above,       is a set of observations produced 

when a choice is made, and                 is the probabilistic observation function 

representing the likelihood that   is observed after making choice   leading to (hidden) state   , 

that is                      .  In this decision process, the hidden state of the process must 

be estimated based on the observations produced by choices.  Here, the agent maintains a 

belief state vector            describing the likelihood that the current state of the process is 

each    .  This vector is updated through belief revision based on recent observation   after 

choice  : 

                                                        
 

 
                              (11) 

where   is a normalization factor to insure that the new belief values both remain between 0 

and 1 as well as sum to 1 (since this vector represents a probability distribution over states), and 

   is the new belief state vector.   



30 
 

Since in partially-observable environments the agent does not know exactly which state 

the process is actually in, it must now consider the possibility of each possible state in its belief 

state.  This makes developing a policy for a POMDP much more complicated and 

computationally expensive than building a policy for a MDP because policy and value iteration 

for a POMDP would require creating a policy over an infinite number of belief states.  Different 

solutions for POMDPs handle this problem in different ways.  For example, some compute a 

policy offline when more time and computational power can be applied to building a policy, 

such as creating decision trees where branches are observations and choices of maximal 

expected value are nodes (Kaelbling et. al, 1998).  Another type of offline approach further tries 

to avoid the computational complexity of finding an exact solution, instead approximating 

regions of the value function through approaches such as Point-based Value Iteration (PBVI) 

(e.g., Pineau et. al, 2003; Doshi and Roy, 2008) which prescribe a choice based on which region 

is closest to the current belief state of the agent.  More recently, researchers have worked on 

online approaches for applications where an agent should develop new policies as it interacts 

with the environment, as opposed to offline like those already discussed.  The tradeoff with 

using an online approach, however, is that the agent has even fewer computational resources 

and possibly harder real-time constraints for calculating a policy than in an offline approach.  

These online approaches (Ross et. al, 2008) include limiting decision trees to a short depth (since 

the complexity of building such trees is exponential in the depth of the tree), as well as heuristic 

search (Ross and Chaib-draa, 2007) through the possible paths of the decision tree. 

 
 
 
 
 
 
 
 



31 
 

Table 3.1 Transformation from OETP to Observer Effect MDP 

Observer Effect 
MDP 

OETP Transformation Description 

                                        

            

The sensing states are 
combinations of resource states 
and knowledge state. 

                 The active perception choices are 
the valid sensing activity/source 
pairs. 

                         

   

Sensing state changes depend on 
the changes in resource and 
knowledge states due to a chosen 
sensing activity/source pair. 

                            The reward for making choices 
given the current sensing state is 
the value of knowledge refinement 
as the result of sensing. 

 

3.2.2. Observer Effect MDP Mapping 

Given this description of MDPs, we can naturally transform the Observer Effect Tradeoff 

Problem formalization described in Section 2.4 into a MDP–which we term the Observer Effect 

MDP–as follows (summarized in Table 3.1).  We define the current sensing state     as tuple 

        which is a factored state consisting of the current state of all resources    and the 

current state of the agent’s knowledge    from the OETP, with 

                                                                                           (12) 

                                                                                            (13) 

where          is an application-specific description of the current knowledge of the agent.  For 

example, in a user preference elicitation scenario, the resource state could represent the user’s 

frustration, and the knowledge state could represent the amount of evidence supporting the 

agent’s belief about the user’s preference.  In our model, we include both resource state and 

knowledge state in the sensing state because both play a role in the value of knowledge revision 

(Eq. 3):  resource state through the Observer Effect and knowledge state through the 

improvement in knowledge.  We define the active perception choices   in the MDP to be the set 



32 
 

of possible sensing activity/source pairs   in the OETP.  In our example, the choices are the 

different ways the agent can gather information about the user’s preference (e.g., asking the 

user directly, observing her behavior in a task).  Furthermore, we define the transition function 

          in the MDP as a probability measure over the changes to resource state       and 

knowledge state        ’  by a sensing activity          determined by equations (1-2).  In our 

example, interrupting the user to ask about her preference increases frustration (Adamcyzk and 

Bailey, 2004; Mark et. al, 2008), changing her state.  Based on the user, her frustration could 

increase by different amounts at different times (e.g., one time by a little and another by much) 

for the same interruption.  Also, the information gathered through the interruption revises the  

agent’s knowledge, changing the knowledge state.  Finally, we define the        reward 

function in the MDP as the value of knowledge revision we are concerned with in the OETP: 

                     (Eq. 3).  For our example, this could be the increase in the possibility 

(Josang, 2001) the agent ascribes to the correct preference of the user. 

Using this approach, we see that building a policy for the MDP optimizes the reward 

function based on making choices given the current state of the process.  Since our problem 

mapping sets the reward function to be the value of knowledge refinement, following the MDP’s 

policy optimizes the value of knowledge refinement function                      given a 

current reasoning-level decision    from the OETP.  This is made possible due to the fact that the 

reward function explicitly considers the current state of the process and the action chosen, 

which is necessary for calculating the expected value of knowledge refinement due to the 

Observer Effect.  Thus, the policy created by the MDP provides the necessary means to 

construct a controller for choosing sensing activities to balance the OETP.  However, as the OETP 

has a set of constraints on when to stop choosing sensing activities, we require the following in 

the controller: the controller should stop if 1) more knowledge refinement is unnecessary, or 2) 



33 
 

positive knowledge refinement is not expected to occur (if this second optional constraint is 

included, c.f. Section 2.4)).  Both of these “safeguards” are in place in order to avoid knowledge 

corruption.  Otherwise, the controller should simply follow the MDP’s policy. 

Considering the relationship between this        reward function and resource usage 

in sensing,        can be viewed as a state-dependent sensing performance profile mapping 

sensing activities (corresponding to resource usage) into sensing performance (value of 

knowledge refinement).  As this performance profile is optimized by solving the corresponding 

MDP, it is not restricted to be monotonic.  Thus, the performance profile can model the 

Observer Effect, matching the solution requirement set forth in Section 2.3.3. 

3.3. Learning a Sensing Activity Controller 

When an explicit, parameterized Observer Effect MDP model of the active perception 

decision process is not provided by the agent designer, an agent must instead learn how to 

make sensing activity choices.  This lack of an a priori model might occur due to a lack of prior 

knowledge about the domain or because the underlying environment is inherently dynamic and 

the MDP model’s parameters change over time.  To perform such learning, we turn to the field 

of reinforcement learning. 

3.3.1. Reinforcement Learning Background 

Reinforcement learning (RL) (Kaelbling et. al, 1996; Sutton and Barto, 1998) is a process 

by which agents learn how to act in an environment by optimizing the outcome of performing 

actions, where outcomes depend on the underlying state of the environment, based on some 

response signal from the environment signifying those outcomes.  Often, this response is an 

immediate reward or cost, and the outcome learned is the (possibly discounted future) utility of 

performing the chosen action.  Using the learned outcome function, agents can then build an 



34 
 

optimal policy mapping states of the environment to the best actions to take in order to achieve 

desired outcomes (e.g., utility maximization).  Looking at reinforcement learning from the 

perspective of MDPs, we see that the goal of learning is to build the policy   with experienced 

rewards used to (explicitly or implicitly) learn a reward function        necessary for creating 

the policy, as opposed to simply using a given reward function when learning is unnecessary. 

RL algorithms generally come in two types (Kaelbling et. al, 1996): 1) model-based RL, 

where the agent first learns an explicit model of the environment (often an MDP) and then uses 

that model to determine an optimal action policy, and 2) model-free RL, where the agent learns 

mappings of state/action pairs to outcomes to guide policy creation without building an explicit 

descriptive model of the environment.   

Please note that both types of learning generally start with knowledge about the 

structure of the environment, including the relevant environment states and potential actions 

the agent can take (i.e, choices it can make).  The difference between the two types of RL is 

whether or not they learn the parameters to the underlying environment model (e.g., state 

transitions in a MDP) used to construct the controller.  Specifically, model-based RL algorithms 

do learn model parameters, while model-free RL algorithms do not.  

For example, one simple yet popular model-based RL algorithm is RMax (Brafman and 

Tennenholtz, 2002), a polynomial-time, probably approximately correct (PAC) RL algorithm 

which uses evidence counting to learn the parameters of the underlying MDP.  Specifically, it 

starts by assuming all states transition to the same fictitious state with probability 1 and all 

       values are some maximal value     .  By assuming only transitions to a fictitious state, 

the algorithm narrows the space of learning until the most relevant transitions are observed, 

after which it learns for those transitions.  On the other hand, assuming a maximal       value 

for the rewards encourages exploration of the state/action pairs not yet encountered because 



35 
 

an agent tries to maximize its rewards.  This is because state/action pairs that have been 

encountered will have updated values which cannot be greater than this maximal value and 

therefore will not be immediately exploited.  To learn while interacting with the environment, 

the agent counts the number of transitions from each state to every other state dependent on 

each action.  Once the sum of the counts from a particular state exceeds a threshold, the state 

transitions from that state are updated using these counts as likelihoods.  Furthermore, the 

       values are updated after the first encounter of the state/action pair, assuming that the 

reward function is static (for an extension for nonstatic rewards, c.f. Section 3.3.2).  Thus, this 

algorithm learns not only the reward function, but also the transition function for the underlying 

MDP of the environment, making it a model-based algorithm.  Learning these transition 

probabilities allows the agent to directly solve the MDP to build a policy maximizing its rewards 

which serves as a controller for making choices about actions. 

One simple yet popular model-free RL algorithm, on the other hand, is Q-Learning 

(Watkins, 1989).  Specifically, Q-Learning learns an approximation of the underlying MDP’s 

utility function in tabular form based on rewards received from the environment.   Similar to the 

value iteration algorithm described previously, it maintains a        entry for every 

state/action pair representing an approximation of the utility of taking action   in state  .  

However, instead of updating        iteratively given a reward function       , Q-Learning 

instead updates its        approximation whenever the state/action pair is encountered and an 

explicit reward is received from the environment.  These updates follow the formula: 

                                          –                                     (14) 

where   is the learning rate determining how much weight to assign to updates (i.e., how 

aggressively to learn),        is the explicit reward just received for taking action   in state  , 

and   is again a discount factor for future values.  Note that this formula does not consider the 



36 
 

probabilities of transitioning between states   and    after taking action   and instead waits until 

it knows the next state and only considers the best action maximizing the myopic future reward 

for the next state of the environment.  Thus, Q-Learning does not require any parameter 

information about the environment, including a MDP model of the decision process.  Instead, it 

just uses rewards actually received to learn the expected, discounted, myopic utility which can 

subsequently be used in a controller which selects actions that maximize this learned utility. 

As in MDPs and POMDPs, when the environment is partially observable, a different set 

of algorithms are required to provide the agent with the capability to learn a controller for 

selecting actions.  These algorithms are called partially observable reinforcement learning 

(PORL) and also come in model-based and model-free variants.  Here, model-based PORL 

algorithms again learn a model of the environment– often a PODMP (e.g., Ross et. al, 2007)–

which is used to generate a controller for selecting actions (e.g., using the POMDP solutions 

described at the end of Section 3.2.1).  Model-free PORL algorithms, on the other hand, directly 

learn a controller which directly maps observations or belief estimates to actions to perform 

(e.g., Wierstra, 2007). 

3.3.2. Reinforcement Learning for the Observer Effect MDP 

As alluded to earlier, given our assumption that an explicit, parameterized model of the 

Observer Effect MDP is not provided to agents who use stateful resources during sensing, agents 

must use reinforcement learning to develop a controller for choosing sensing activities.  While 

building such a controller, the agent can use either model-based RL to actually learn the 

parameterized model for the Observer Effect MDP (e.g., state transition probabilities) then solve 

the MDP to generate its controller, or the agent can use model-free RL to learn the controller 

directly.  We conjecture that either type of RL algorithm is acceptable (c.f., Chapters 4 and 5 for 

experiments testing this conjecture), but note that one type might be more appropriate 



37 
 

depending on the specific domain and application to which the agent is deployed.  For example, 

if the environment is very dynamic, using a model-free RL algorithm might be more appropriate 

than a model-based RL algorithm as the parameters learned by the latter might become 

outdated as the environment changes, decreasing the usefulness of the learned environment 

model and potentially leading to improper decisions by the controller.  In such a scenario, 

model-free algorithms can better adapt to the dynamic environment as they do not need to 

“unlearn” as much outdated information.  If the environment is more static, however, 

leveraging the additional environment model learned by a model-based RL algorithm could 

result in better proactive behavior as the agent is able to consider the probability of each state 

transition before taking an action, as opposed to waiting until after the action to observe the 

exact transition taken (e.g., in Q-Learning (Watkins, 1989)) and thus potentially better long term 

reward maximization.  

  However, although the two types of algorithms differ in whether or not they learn a 

model of the Observer Effect MDP parameters, one requirement is that whatever RL algorithm 

is chosen, it must learn the reward function        which represents the expected value of 

knowledge refinement of a given sensing activity/source pair.  Without learning the reward 

function, the agent will not be capable of considering the Observer Effect (whose effect on 

knowledge is captured in the reward function) during its sensing activity selection and thus 

cannot solve the OETP.  How the agent performs this learning depends on the specific RL 

algorithm chosen.  In our previous RMax (Brafman and Tennenholtz, 2002) example, an agent 

traditionally only updates the expected reward for a given state/action pair the first time a 

reward is received, expecting the reward value for a state/action pair to be static and consistent.  

As the value of knowledge refinement might be dynamic, we can extend the reward update in 

RMax to follow a similar counting-based learning strategy as it uses for learning state transition 



38 
 

probabilities to learn a stochastic reward function.  In our Q-Learning (Watkins, 1989) example, 

on the other hand, the agent can learn the reward function in one of two ways: 1) implicitly by 

just learning the        values which approximate the sum of current and myopic future 

rewards, or 2) explicitly by only considering immediate rewards while learning (i.e.,    ), 

which reduces Q-Learning to:  

                                                            –                      (15) 

representing a geometric averaging scheme for learning rewards where        replaces        

since only immediate rewards are considered instead of discounted, myopic utility. 

Recall that in the Observer Effect MDP for solving the OETP, the reward function        

is the knowledge refinement value function                      calculated as (Eq. 3) (c.f., 

Section 2.4).  In a particular application of the Observer Effect MDP, the specific measure for the 

value of knowledge denoted by         in (Eq. 3) used to calculate the value of knowledge 

refinement is dependent on the knowledge framework used by the agent, as well as the domain 

of the application.  For example, if the agent maintains a possibility measure over its beliefs 

(e.g., Josang, 2001), the value of knowledge refinement (if positive, or corruption if negative) 

from a sensing activity is the increase (or decrease, respectively) of the possibility the agent 

assigns to the true state of the environment (calculated once the correct belief is later known).  

Similarly, if the agent instead models its task-level decision process (separate from the active 

perception sensing activity selection process) as a POMDP (Kaelbling et. al, 1998), the value of 

refinement (or corruption) of agent knowledge can be measured as the increase (or decrease) in 

the belief state value for the true state of the environment (again calculated once this state is 

known by the agent).  Concrete examples of how this reinforcement learning process works in 

the Observer Effect MDP for various RL algorithms in specific applications is provided in Section 

4.1.2 and 4.2.2 when the various simulation environments used in our experiments are detailed. 



39 
 

3.4. Solution Novelty 

To conclude this chapter, we briefly highlight the novelty of our proposed solution 

methodology, which is two-fold.  First, it extends prior work in bounded rationality (e.g., Raja 

and Lesser, 2007) using a MDP and RL to choose activities which use resources and ultimately 

impact the reasoning of the agent (ours through knowledge refinement).  The extension comes 

from the fact that our methodology considers the impact of using stateful resources which 

produce side-effects such as the Observer Effect, as opposed to simply using stateless resources 

with no such side-effects.  Furthermore, we believe that this extension could be important to 

determining how to handle other types of side-effects from resource usage outside of sensing, 

such as interacting with a human user during the reasoning portion of mixed-initiative systems 

(e.g., Ferguson and Allen, 2007).  We intend to investigate this avenue of research as future 

work. 

Second, our proposed solution represents a foci selection mechanism within active 

perception which considers the impact of using stateful resources during sensing.  In the original 

work in the active perception framework adopted by our solution (Weyns et. al, 2004), the 

specific mechanism for foci selection is not specified but is left open to the specific problem 

being solved.  Thus, we contribute one such selection mechanism for use with stateful 

resources.  Furthermore, this mechanism offers a starting point for our more general research 

into using active perception as a vehicle for sensing activity selection balancing the need for 

information to refine knowledge for agent reasoning and the costs of resource use under the 

LRSP. 

  



40 
 

Chapter 4   Experimental Setup – MineralMiner and UserRec 
 

In this chapter, we detail the experimental setup used to investigate and validate our 

Observer Effect MDP solution methodology from Chapter 3 for solving the Observer Effect 

Tradeoff Problem (OETP), a subproblem of the Limited Resource Sensing Problem (LRSP), 

described in Chapter 2.  Specifically, we consider two simulation environments, both 

implemented using the Repast Agent Simulation Toolkit (North et. al, 2006): 1) MineralMiner, a 

fully-observable environment, and 2) UserRec, a partially-observable environment.  For both 

simulation environments, we 1) describe the environment, 2) detail how we apply the Observer 

Effect MDP to the environment, including the specific RL algorithms used, and 3) present the 

objectives of our experiments, along with the specific parameters defining the experimental 

setup.  Finally, we provide a comparison of the two environments highlighting their unique 

properties. 

4.1. MineralMiner: A Robotic Mining Simulation 

4.1.1. Environment Description 

The first simulated environment considered in our experiments is MineralMiner, a 

modified Tileworld (Pollack and Ringuette, 1990) similar to Packet-World (Weyns et. al, 2005) 

and RockSample (Smith and Simmons, 2004).  In this environment, multiple agents are randomly 

placed in a 2D grid which they must navigate. Specifically, competitive agents are assigned 

overlapping collection tasks over time with firm deadlines to find and collect rare minerals (gold, 

uranium, and silver) from various mines randomly distributed throughout the grid.  A task is 

considered completed when enough of a specified mineral has been collected and deposited in 

a special cell called the base.  To navigate the grid, agents can move in each cardinal direction 

which requires the consumption of limited energy from the agents’ batteries.  To avoid running 



41 
 

out of energy, agents must recharge their batteries at a single recharge station in the grid, an 

action which converts uranium into energy.  Because the recharge station is essential to 

maintaining the agents’ ability to perform tasks within the grid, it emits a special radio gradient 

allowing the agents to navigate towards it from any location.  To conserve energy when it has no 

tasks, the agent can also perform a wait action and do nothing.  In order to extract minerals 

from a mine, the agent must perform a collection action, which requires a drill which must be 

rented from a toolshed also located in the grid and later returned.  

Overall, an agent operates by first locating the necessary landmarks (base, toolshed, 

recharge station) required to operate in the grid, then finding mines to provide the minerals 

necessary for its current tasks.  Once relevant mines are identified, the agent collects the 

necessary minerals and returns them to the base.  An agent prioritizes its actions based first on 

its need to either recharge its battery or rent tools, then on which tasks expire first.  If an agent 

fails to accomplish a task before its deadline, that task is discarded and any minerals collected 

are saved for later tasks. 

Agents begin with no knowledge of the environment and must use sensing actions 

which can be fit into two categories to explore their surroundings.  First, adapted from Packet-

World (Weyns et. al, 2005), agents perform sensing activities for exploring the grid and finding 

the recharge station which require only agent energy, a stateless resource whose usage does 

not distort the outcome of sensing.  Second, more interesting to our research, agents also 

perform three sensing activities with a stateful resource (called an electronic microscope, also 

rented from the toolshed) for testing the contents of a mine:  1) basic mine test, 2) advanced 

mine test, and 3) the aforementioned wait.  The two different tests require different amounts of 

microscope energy (powered by a slowly self-recharging battery) and produce different levels of 

accurate response (c.f., Table 4.1), where the advanced test requires more energy but is more 



42 
 

accurate.  The specific amount of energy required is random up to a maximum value, 

representing an unknown amount of work required to perform a test.  Furthermore, each test is 

also affected by the current energy level of the microscope, where the ability of the microscope 

to perform tests decreases with energy usage.  However, the wait action allows the microscope 

to recharge, increasing the accuracy of the next test. 

Information provided by sensing is used to refine the agent’s knowledge about the grid, 

including the contents of each cell (e.g., landmark, supply, obstacle, empty) as well as the type 

of mineral in each supply.  Agent knowledge takes the form of evidence-based opinions (Josang, 

2001) for each possible cell contents and is refined by counting evidence in favor of or against 

each possibility based on observations made during sensing.  Agents continue sensing about a 

cell until the expectation (   ) of the top opinion in that cell is above a confidence threshold, 

where expectation is calculated as: 

                                                                                
      

     
        (16) 

where   and   are the amounts of evidence in favor of and against the belief, respectively,   is 

the amount of uncertain evidence, and    is the relative atomicity of the belief (i.e., the 

uniform likelihood of the belief against all others).  In this environment, each possible sensing 

outcome with the microscope yields evidence in favor of one mineral type and against the 

others.  The uncertainty count starts with and remains a 1 (never incremented by sensing which 

always yields a type of mineral), representing a prior estimate that the likelihood of all types is 

equal and non-zero for any given mine.  Finally, the relative atomicity of the three types is each 

1/3 since there are three possible types of minerals in each mine. 



43 
 

4.1.2. Observer Effect MDP Instantiation 

In the MineralMiner environment, each microscope is a stateful resource used during 

sensing whose behavior depends on its state (energy): using a microscope reduces the available 

energy in its battery which leads to less accurate observations.  Thus, an agent must tradeoff the 

need for knowledge refinement necessary for accomplishing its current tasks against knowledge 

corruption due to Observer Effect-produced faulty observations.  To handle this tradeoff, we 

model the process of selecting microscope-based sensing actions as an Observer Effect MDP, 

whose mapping is shown in Table 4.1.  Please note that we represent the state of knowledge as 

the number of previous observations for a belief equal to     in equation (16) since these 

combine with the constant prior     to be a weighting factor on the influence of the next 

update.  Finally, we represent the value of knowledge refinement as the change in the agent’s 

top expectation for the mineral type in each supply, calculated using equation (16). 

Table 4.1 MineralMiner Observer Effect MDP 

Observer Effect MDP Mineral Miner Characteristics 

Stateful Resource Electronic Microscope 

Sensing States 
            

    Microscope Energy,  
    # of Previous Observations 

Activity Choices    Advanced/Basic Mine Test, Wait 

Transition Probabiliites 
       

Change in energy from a test  
or self-recharge during wait,  
increased number of observations 

Knowledge Refinement  
Reward 
       

Increase or decrease in  
the believed possibility of the 
true mineral in the supply 

To learn how to operate in this Observation Selection MDP, we consider three RL 

algorithms: 1) Q-Learning (Watkins, 1989), 2) RMax (Brafman and Tennenholtz, 2002), and 3) 

REINFORCE (Williams, 1992).  These algorithms were not chosen as an exhaustive study of state-

of-the-art RL algorithms, but rather due to the range of types of RL algorithms they represent, as 

well as their popularity and simplicity or their special properties.   



44 
 

As we have already previously described Q-Learning and RMax in Sections 3.3.1 and 

3.3.2, we do not go into further detail here. REINFORCE (Williams, 1992), on the other hand, is a 

class of model-free RL algorithms which use neural networks to learn both an action selection 

controller and the reward function       .  Specifically, the agent learns 1) a stochastic neural 

network which determines the probability it should select each action depending on the state of 

the environment, and 2) a neural network which approximates the reward function, dependent 

on the current state and action taken.  The latter is learned using traditional supervised learning 

methods, while the former is learned by reinforcing the weights of the network based on the 

reward received for taking an action.  In our experiments, we use the following update function 

(Williams, 1992) to train the network using backpropogation (Rumelhart et. al, 1986): 

                                                                                          (17) 

where  ,       , and        are as defined previously (c.f., Section 3.3.1) and   is the 

computed eligibility of weight updates (Williams, 1992).  Of note, we reinforce using        

       rather than just the recent        as our learned        provides a baseline for rewards 

which allows the algorithm to clamp down on variance during learning. 

Comparing these three algorithms, Q-Learning and RMax are simple yet popular model-

free and model-based RL algorithms, respectively.  However, both of these use discrete states, 

so some information is lost discretizing the true sensing state.  In MineralMiner, the state of the 

microscope resource (energy) is continuous, so we discretize the    values into discrete bins 

across their range [0, 1].  REINFORCE, on the other hand, allows for continuous states since it is 

neural network-based, allowing us to keep the continuous values for    during learning. 



45 
 

4.1.3. Experimental Setup 

Objectives: Within the MineralMiner environment, we conduct experiments to evaluate the use 

of the Observer Effect MDP for controlling agent sensing with stateful resources.  Specifically, 

we have two objectives to evaluate two hypotheses: 

Objective MM1: Evaluate the Observer Effect Hypothesis in MineralMiner 

We evaluate the OE Hypothesis (c.f., Section 2.3.3) by comparing the three previously 

mentioned RL algorithms for learning how to choose sensing activities according to the Observer 

Effect MDP against three baseline agents which follow sensing policies which do not consider 

resource state or the Observer Effect: 1) Advanced and 2) Basic, where the agent always 

chooses the advanced and basic mine test sensing actions, respectively, and 3) Random, where 

the agent randomly chooses one of the three sensing actions, including wait. 

The metric we use to compare the various approaches is sensing performance: the 

average knowledge refinement per sensing activity.  This metric was chosen because it is 

knowledge refinement which agents aim to optimize in the Observer Effect MDP.  In 

MineralMiner, average knowledge refinement is defined as the change in the expectation of the 

agent’s opinion of the correct mineral type in the mine tested (known by the agent for sure once 

it drills the mine). 

Objective MM2: Evaluate the Performance Hypothesis in MineralMiner 

Performance Hypothesis: Improving agent sensing performance will lead to 

improved agent task performance through proper decisions informed by 

knowledge refined through sensing. 

This Performance Hypothesis is important to motivate research on agent sensing:  the primary 

value of sensing is in knowledge refinement for the sake of informing decisions to support task 

and goal accomplishment.  While we assume this hypothesis holds in many MAS environments, 



46 
 

it could be the case in some that it does not due to several factors, including ease of task 

accomplishment, faulty (i.e., non-perfect) actuators, or a lack of need for sensing due to good a 

priori knowledge about the environment. 

To evaluate the Performance Hypothesis we consider the correlation between sensing 

performance and task performance, measured as the total number of tasks completed by all 

agents. We choose this measurement because the primary goal of agents is to complete as 

many tasks as possible. If sensing performance does lead to improved task performance, we 

should expect to see a positive correlation between these metrics. 

Environments: In order to understand the impact of the Observer Effect on agent behavior, we 

consider six environments with varying levels of OE in the microscopes, using different amounts 

of state-dependent accuracy error by varying the noise factor (  ): 

                                                                  
            

   
             (18) 

where a larger    produces a larger error and Observer Effect.  Thus, as the energy (i.e., state) 

of a microscope decreases due to usage, error increases and accuracy decreases.  

Parameters: The values of the parameters to the MineralMiner simulation important to our 

experiments are presented in Table 4.2. To reduce the variance of the results, we run the 

experiments 30 times (each with a different random seed) and average the results. 

4.2. UserRec: A User Preference Elicitation Simulation 

4.2.1. Environment Description 

The second simulated environment used in our experiments is UserRec which simulates 

a user preference elicitation problem.  This simulation is based on an environment originally 

proposed by Doshi and Roy (2008) to evaluate a new PBVI-based algorithm for solving the 

preference elicitation POMDP (Boutilier, 2002; Doshi and Roy, 2008).  We begin this section by  



47 
 

Table 4.2 MineralMiner Experiment Parameters 

Parameter Value 

Grid Size 20 x 20 

# Supplies 20/type 

# Agents 30 

# Tasks 50 

# Agents/Task 5 

Microscope Recharge Rate 10%/time unit 

Max Advanced Test Energy 50% 

Max Basic Test Energy 25% 

Advanced Test Accuracy 0.8 

Basic Test Accuracy 0.4 

Belief Confidence Threshold 0.65 

Learning Rate   0.3 

# Discrete Sensing States 400 

   0, 0.1, 0.2, 0.3, 0.4, 0.5 

 

 
Figure 4.1 Human-Agent Interaction in UserRec 

describing their environment, followed by our extension to more realistically model the real-

world scenario by including effects of user frustration. 

Doshi and Roy’s World.  In the original environment proposed by Doshi and Roy (2008), an 

intelligent agent is tasked with supporting a human user.  See Figure 4.1 for the interactions 

between an agent and its human user.  To provide such support, an intelligent agent interacting 

with a human user must elicit the user’s preference over a set of items (e.g., goods, scenarios, 

goals) in order to provide support to the user (e.g., customized user recommendations 



48 
 

(Adomavicius and Tuzhulin, 2005)) over a sequence of episodes.  To do so, the agent can 

perform two sensory actions:  

1) query, which asks the user to state their current preference, and  

2) confirm, whereby the agent asks the user if its belief about the user’s top 

preference is correct.   

The user then responds to the agent’s query or confirm actions based on its actual preference, 

providing observations used to revise the agent’s beliefs (i.e., knowledge) about current user 

preference.  Once the agent is confident that it understands the user’s preference, it can 

perform a third submit action which performs the intelligent support desired by acting on the 

user’s preference.  Each series of interactions with the user to elicit her preference represents 

an episode which ends with the submit action.  After a submit, the user’s preference is reset and 

a new episode begins. 

To accurately model the real world scenario, the user’s responses are noisy in that they 

stochastically provide incorrect responses (according to a fixed probability for each of the two 

sensory actions mentioned above, as shown in Table 4.3), inducing uncertainty in the agent’s 

beliefs.  Because of this noise, an agent may perform a series of query actions before 

committing to a confirm action to increase its confidence in its beliefs—in other words, to 

reduce uncertainty in its beliefs.  Furthermore, there exists a slight probability (also shown in 

Table 4.3) that the user will switch its preference during an episode of interactions with the 

agent.  Thus, it is possible that while an agent is trying to model its user’s preference, the agent 

receives a true response from the user but later on this response is no longer accurate, making it 

difficult for the agent to reconcile all responses in its beliefs about user preference. 

 



49 
 

Table 4.3 Example Environment Parameters (Doshi and Roy, 2008) 

Environment Parameter Value 

Correct Query Response Likelihood 50% 

Correct Confirm Response Likelihood 80% 

User Preference Change Likelihood 1% 

Number of Possible User Preferences 10 

 
Table 4.4 Example Task-Level Reward Structure for Agent Actions (Doshi and Roy, 2008) 

Action Reward 

Query Preference -2 

Confirm Correct Preference -1 

Confirm Incorrect Preference -5 

Submit Correct Preference 100 

Submit Incorrect Preference -200 

Furthermore, sensory actions taken by an agent incur a fixed cost (i.e., negative reward).  

Thus, an agent tries to avoid performing sensing actions unnecessarily if it believes that it has 

gathered enough information about the user’s preference to successfully submit the user’s 

preference.  To help an agent decide whether to perform an action and which actions to take, 

an example reward structure was proposed in (Doshi and Roy 2008), and reproduced here in 

Table 4.4.    For example, in the given reward structure, an agent is penalized more when its 

confirm and submit actions are incorrect (i.e., the wrong preference is identified), and queries 

are more costly than a correct confirm as it takes more effort from a user to respond over a set 

of preferences than to agree or disagree with the agent’s top belief. 

In the design of agent behavior to solve the preference elicitation problem in this 

environment, Doshi and Roy (2008) consider a POMDP model of the environment called the 

Preference Elicitation PODMP (Boutilier, 2002), described in Table 4.5.  Specifically, an agent is 

given a fully parameterized PODMP model of the environment (created by an assumed domain 

expert) from which it builds a policy (using variants of the PBVI algorithm) to choose which 

actions to perform given its current belief state.  Here, the belief state represents the agent’s 

knowledge about user preferences as it measures the likelihood ascribed by the agent to the 

fact that each possible preference is the user’s actual preference.   



50 
 

Table 4.5 Preference Elicitation POMDP Model 

POMDP Model Preference Elicitation Problem 

States User preferences 

Actions Query, Confirm, Submit 

Observations User preference or true/false 

State transitions probabilities Small chance of preference change during an episode 

Observation probabilities Likelihood of correct/incorrect responses to sensing actions 

Reward Reward structure (e.g, Table 4.4) 

 
Our Extension: User Frustration.  To more accurately model the real-world dynamics within the 

environment, we have added user frustration which persists across elicitation episodes and is 

increased by interruptions by the agent (i.e., the sensing actions) (Adamcyzk and Bailey, 2004; 

Mark et. al, 2008).  Frustration is also increased when the agent improperly acts on its beliefs 

about user preference (i.e., submits a wrong preference), as bad actions decrease user trust in 

the system and desire to use the system (Klein et. al, 2002).  In turn, frustration disrupts her 

cognitive state (Klein et. al, 2002), and she takes less time to respond in order to quickly return 

to what she was already doing before being interrupted due to increased time pressure from 

lost time due to interruptions (Mark et. al, 2008).  On the other hand, frustration and its side 

effects are decreased when the agent provides proper intelligent support from correct beliefs 

about user preference, reducing the workload of the user.   

After searching through the human-user interaction (HCI) literature, including research 

from the intelligent user interface (IUI) community, we could not find any quantifiable 

mathematical models for computer user frustration to include in our implementation.  Thus, we 

propose the following as a first step approximation for user frustration to create a starting point 

for our research. 

In order to keep things simple while still including user frustration within our simulated 

application, we model user frustration as a cumulative effect, where agent actions either 

increase or decrease frustration within the user.  We represent a user’s frustration level as an 



51 
 

amount within [0, 100] symbolizing a percentage ranging from completely unfrustrated to 

completely frustrated, respectively.  Specifically, a user’s frustration level is additive with the 

individual consequences of each agent action.  We provide an example of these values in Table 

4.6.  Please note that we have based these values on the reward values given in Table 4.3, but 

modified by:  

1)  changing positive values to negative and vice-versa due to frustration being more 

similar to a cost instead of a reward,  

2)  reducing the magnitude of values so user frustration doesn’t increase too quickly 

(since it ranges from 0 to 100) and so that correct/incorrect submissions do not 

dominate sensing actions but are still relatively more impactful, and  

3)  changing ratios so that the penalty/benefit for incorrect/correct preference 

submissions offset rather than incorrect submissions dominating.   

Table 4.6 Example Frustration Structure for Agent Actions 

Action Frustration Increase 

Query Preference 1 

Confirm Correct Preference 0.5 

Confirm Incorrect Preference 2.5 

Submit Correct Preference -10 

Submit Incorrect Preference 10 

 
To make our extension even more interesting, based on her current frustration level, 

the user both changes her response time (i.e., responds faster to return to her work), as well as 

responds less accurately (due to disrupted cognitive state).  Here, we model both the change in 

response delay and accuracy reduction as being proportional to current user frustration by 

making these effects linear with frustration2.  Specifically, user delay defaults to a maximum 

                                                           
2
 We acknowledge that these effects might not be linear in practice, but given a lack of available models, 

we deemed this an appropriate starting point.  For future work, we intend to investigate other models 
(e.g., linear regressions, exponential/polynomial models) as well as any developed through HCI research. 



52 
 

value (         ) when the user is not frustrated at all and is calculated as this maximum 

minus the product of frustration (     ) with a frustration delay factor (   ): 

                                                                      –                            (19) 

(ceilinged to produce an integer number of simulation ticks representing time), while the 

decrease in user response accuracy (     ) is calculated as the product of frustration with a 

frustration noise factor (FNF): 

                                                                                                      (20) 

Finally, because a human user cannot be expected to continue to work while completely 

frustrated, we also end our simulations early (i.e., before all episodes are finished) if the user is 

at maximum frustration at the end of a certain number of episodes in a row.  We call this 

number the user’s boiling point count as it represents the amount of time they are willing to 

have their frustration above a maximum boiling point (100% frustration). 

4.2.2. Observer Effect POMDP Instantiation 

In the UserRec environment, each user is a stateful resource used during sensing whose 

behavior depends on her state (frustration): interrupting a user to perform sensing increases 

frustration which leads to less accurate observations.  Thus, as in the MineralMiner 

environment, an agent must tradeoff the need for knowledge refinement necessary for 

accomplishing its current tasks against knowledge corruption due to Observer Effect-produced 

faulty observations.  To handle this tradeoff, we again model the process of selecting user-

interrupting sensing actions as an Observer Effect MDP.  However, since user frustration is a 

hidden environment property, an agent must instead use an Observer Effect POMDP instead of 

a MDP.  Here, the agent relies on observable response delays to estimate the hidden, 

cumulative frustration of the user.  The mapping of this Observer Effect POMDP is shown in 



53 
 

Table 4.7 and we compare our Observer Effect POMDP with  Doshi and Roy’s (2008) Preference 

Elicitation POMDP in Table 4.8.  

Table 4.7 UserRec Observer Effect POMDP 

Observer Effect POMDP UserRec Characteristics 

Stateful Resource Human User 

Sensing States 
            

    User Frustration,  
    # of Previous Observations 

Activity Choices    Query, Confirm 

Observations   User Response Delay 

Transitions Probabilities 
          

Change in frustration from a sensing action,  
Increased number of observations 

Observation Probabilities 
          

Likelihood of possible response delay values  
dependent on user frustration 

Knowledge Refinement  
Reward 
       

Increase or decrease in the belief state probability  
assigned to the true user preference 

 
Table 4.8 UserRec Observer Effect POMDP vs. Preference Elicitation POMDP 

POMDP Model Observer Effect POMDP Preference Elicitation POMDP 

States   Sensing State User Preference 

Choices   Query, Confirm Query, Confirm, Submit 

Observations   User Response Delay User Responses 

Transitions Probabilities 
          

Change in Sensing State Change in User Preference 

Observation Probabilities 
          

Likelihood of Delay Values 
Likelihood of  
Correct/Incorrect Responses 

Reward 
       

Value of Knowledge Refinement Task Reward 

An agent using the Observer Effect PODMP for sensing activity selection in the UserRec 

simulation operates as follows.  First, to be fair in our experiments (described in the following 

section), the agent uses the same knowledge representation and revision procedure as the 

Preference Elicitation POMDP3.  Specifically, the agent uses the user goal change and response 

accuracy probabilities to calculate a probability distribution over user preferences representing 

the likelihood that the agent ascribes to each preference being the correct one.  This 

                                                           
3
 Please note that we did not have to use the same knowledge representation and revision procedures in 

the Observer Effect POMDP.  Instead, we could have used any framework, including the possibility logic 
framework (Josang, 2001) used in the MineralMiner experiments.  However, if we had not used the same 
framework, it would be difficult to later compare the results between using the Preference Elicitation 
POMDP and the Observer Effect POMDP. 



54 
 

distribution is revised using equation (11) from Section 3.2.1.  However, it is important to note 

while this knowledge does represent a belief state in the Preference Elicitation POMDP, it is not 

the belief state of the Observer Effect PODMP since the latter’s states represent user 

frustration, not preference.  Finally, using this form of knowledge (i.e., preference probabilities), 

we again represent knowledge state in the Observer Effect POMDP as the number of previous 

observations (c.f., Section 4.1.2) because an increased number of observations drives the belief 

differences between states supported and unsupported by observations further apart, and thus 

effects the magnitude of possible change in belief after the next observation. 

In order to make decisions about what sensing activities to perform to gather 

information used to revise the agent’s knowledge about user preferences, the Preference 

Elicitation POMDP and the Observer Effect POMDP differ in their behavior.  In the former, an 

agent builds a controller based on maximizing expected task rewards (Table 4.4) for selecting 

sensing activities.  In the latter, the agent builds a controller based on maximizing the expected 

value of knowledge refinement provided by sensing.  Thus, the Preference Elicitation POMDP 

focuses on task rewards while the Observer Effect MDP focuses on knowledge refinement.  This 

is an important distinction as task rewards are considered to be constant and independent of 

user frustration, whereas considering the frustration-dependent value of knowledge refinement 

captures the possible distortion of sensing outcomes caused by the Observer Effect.   

Finally, we want to point out that both approaches do use the task reward structure 

from the Preference Elicitation POMDP to decide whether or not to sense.  At an abstract level, 

both approaches choose the submission action if the expected task reward of acting is greater 

than the expected task reward of sensing based on the probabilities assigned to each possible 

user preference in the agent’s knowledge.  That is, an agent chooses to submit once the highest 

probability assigned to a user preference is large enough (determined by the relative values in 



55 
 

the task reward structure, e.g., 66% for the values in Table 4.4).  If the agent does not choose to 

submit, then the two approaches differ in how they select a sensing activity, as described in the 

previous paragraph.  Furthermore, an agent using the Observer Effect POMDP also chooses a 

submission action if it believes that the expected value of knowledge refinement will be 

negative, following the optional constraint to the OETP described in Section 2.4 in order to avoid 

further frustrating the user, risking the user no longer being willing to use the system and/or 

increased corruption to agent knowledge due to the Observer Effect.  We present a diagram of 

the reasoning processes of both approaches in Figure 4.2 for comparison. 

 
Figure 4.2 Action Selection in the Observer Effect and Preference Elicitation POMDPs 

   
To build a controller for the Preference Elicitation POMDP to follow the selection 

process shown in Figure 4.2, the agent simply solves the POMDP model provided to the agent 

(e.g., by using PBVI (Pineau et. al, 2003)).  To build a controller for the Observer Effect POMDP, 

on the other hand, we consider two PORL algorithms: 1) Bayes-Adaptive POMDPs (Ross et. al, 

2007), and 2) Recurrent Policy Gradients (Wierstra et. al, 2007).  For the latter, we use PORL 

because we do not assume that any knowledge about stateful user behavior is provided to the 

agent a priori. 



56 
 

First, Bayes-adaptive POMDPs (BA-POMDPs) (Ross et. al, 2007) is a state-of-the-art 

model-based PORL approach.  Like the aforementioned fully-observable RMax algorithm 

(Brafman and Tennenholtz, 2002) (c.f., Sections 3.3.1 and 3.3.2), this model relies on experience 

tracking (in Dirichlet distributions) to model the conditional transition and observation 

probability functions.  These distributions are represented by two sets of vectors 1)          

the conditional transition distributions where      records the number of times the environment 

transitioned from state   to    with entries for each action    , and 2)          the 

observation probability distributions where      records the number of times the environment 

produced observation   after transitioning to state    with entries for each action    .  

However, because the agent does not know exactly what the state of the environment is at any 

point in time, the entries in these vectors cannot be counted deterministically.  Instead, the 

agent considers the possibility that a number of possible   and   are correct.  To handle this 

difficulty, the states in the BA-POMDP are augmented with the Dirichlet distributions 

themselves, yielding a state space          , where   represents the power set of   and 

  represents the power set of  .  Thus, the new (larger) POMDP contains all possible 

state/learned model pairs as its states, allowing the agent to consider all possible models and all 

possible states with a single belief state.  The agent learns which model is best by favoring more 

likely models and states with higher values in the belief state after each belief update.  To build 

a policy controlling agent actions using BA-POMDPs, an agent solves each model for each 

complex state and chooses actions accordingly.  Specifically, we solve each model online using 

1-step decision trees (c.f., Section 3.2.1) and choose the action which has the highest expected 

utility over all models, weighted by the probability of the complex BA-POMDP state to which 

that model corresponds.  To learn the reward function for use with BA-POMDPs, we take a 

similar experience counting approach as that taken with the RMax RL algorithm in the 



57 
 

MineralMiner environment (c.f., Section 3.3.2).  Specifically, we discretize the value of 

knowledge refinement ranging from [-1.0, 1.0] into discrete bins and count the number of times 

each discrete bin is experienced for each sensing activity and environment state.  A minor detail 

is that since the state of the environment is hidden and estimated by the POMDP belief state, 

we actually increment fractional counts based on the amount of belief we have in each state, 

rather than a full 1.0 count for a known state in fully-observable environments. 

Second, we also employ a state-of-the-art model-free PORL approach called the 

Recurrent Policy Gradient (RPG) algorithm (Wierstra et. al, 2007).  This algorithm is an extension 

for partially-observable environments of the REINFORCE (Williams, 1992) algorithm described 

previously in Section 4.1.2.  Specifically, for its neural networks, it trains long short-term 

memory (LSTM) recurrent neural networks (RNNs).  Here, a RNN (e.g., Jaeger, 2002) is a special 

type of neural network which allows for bidirectional connections between individual neurons 

and layers in the network, as opposed to the more commonly used feed-forward networks 

(which we use in REINFORCE) which only have connections directed from inputs towards 

outputs through the various layers.  While RNNs can be used to learn over time sequences due 

to their ability to retain information within the hidden layer, possible due to the bidirectional 

communications between individual neurons, the amount of time information can be retained 

in the network is often limited to only a few time steps before it is lost in new information.  To 

overcome this problem, LSTM RNNs (Hochreiter and Schmidhuber, 1997; Gers et. al, 2000) 

include memory cells within the hidden layer of the network, allowing arbitrarily long retention 

of information.  This is very important as it allows the LSTM RNN to find relationships and 

patterns amongst widely separated inputs in the history.  Within the context of PORL, this allows 

the learner to more accurately predict appropriate actions because it implicitly discovers and 

considers patterns of environment behavior based on observing the results of previous actions.  



58 
 

This occurs within the network’s memory and does not require building an explicit 

parameterized environment model as done by model-based PORL. Training the action controller 

and reward function neural networks in RPG follows the same update rule as REINFORCE (Eq. 

17).  However, since we are now using LSTM RNNs, we use a variant of backpropogation-

through-time (Werbos, 1990) for LSTMs (Hochreiter and Schmidhuber, 1997; Gers et. al, 2000) 

for network training, instead of standard backpropogation as we do for REINFORCE.  Further, 

since the state of the environment is now hidden, these networks take the observable delay in 

user response as an input, in place of resource state. 

4.2.3. Experimental Setup 

Objectives: Within the UserRec environment, we conduct experiments similar to those for 

MineralMiner (c.f., Section 4.1.3) to evaluate the use of the Observer Effect POMDP for 

controlling agent sensing with stateful resources in partially observable environments.  Again, 

we have two objectives to evaluate two hypotheses: 

Objective UR1: Evaluate the Observer Effect Hypothesis in UserRec 

We evaluate the Observer Effect Hypothesis (c.f., Section 2.3.3) by comparing the two 

previously mentioned PORL algorithms (c.f., Section 4.2.2) for learning how to choose sensing 

activities according to the Observer Effect POMDP against two baseline agents which follow 

sensing policies that do not consider resource state or the Observer Effect: 1) PBVI, where the 

agent follows the general approach of Doshi and Roy (2008) by solving the Preference Elicitation 

POMDP using PBVI (Pineau et. al, 2003), and 2) Random, where the agent randomly chooses one 

of the two sensing actions when it needs information. 

As in the Mineral Miner experiments (Objective MM1), the metric we use to compare 

the various approaches is sensing performance: the average knowledge refinement per sensing 

activity.  In UserRec, average knowledge refinement is defined as the change in the agent’s 



59 
 

belief state about the correct user preference (determined at the end of each episode after 

submitting to the user). 

 Objective UR2: Evaluate the Performance Hypothesis in UserRec 

Again, we evaluate the Performance Hypothesis to determine whether or not changes in 

sensing performance (evaluated in Objective UR1) equate to improved task performance by the 

agent.  To evaluate the Performance Hypothesis in UserRec, we again consider the correlation 

between sensing performance and task performance, where the latter is measured as the 

number of correct preference submissions by the agent, totaled across all episodes. We choose 

this measurement because the primary goal of the agent is to correctly determine the user’s 

preference and provide intelligent support.  However, we also consider a second task 

performance metric: average task utility, measured as the average amount of task reward 

received for each episode of interaction with the user.  This measurement is appropriate 

because the secondary goal of the agent is to maximize its utility (i.e., minimize sensing costs) 

while interacting with the user.  Overall, if sensing performance does lead to improved task 

performance (confirming the Performance Hypothesis), we should expect to see a positive 

correlation between the sensing performance metric (i.e., average knowledge refinement) and 

these two task performance metrics (i.e., correct submissions and average reward). 

Environments: In order to understand the impact of the Observer Effect on agent behavior in 

our simulated preference elicitation problem, we consider four environments in UserRec varying 

the rate of frustration change in the user while keeping the frustration delay and noise factors 

(i.e.,     in (Eq. 19) and     in (Eq. 20)) constant.  In other words, here we vary the state 

transitions while keeping the magnitude of the Observer Effect constant.  This differs from the 

strategy taken in the MineralMiner experiments (c.f., Section 4.1.3) where we do the opposite.  

We take this approach for two reasons: 1) given a lack of quantitative models of user frustration, 



60 
 

we hypothesize that actions frustrate different users differently but are unsure whether or not a 

similar level of frustration effects different users differently, and 2) this approach allows us to 

study two different ways of varying the Observer Effect, when considered in conjunction with 

the MineralMiner experiments.  Specifically, we consider four different sets of frustration 

increases caused by agent activities which interrupt the human user.  We call these four sets 1) 

Zero, representing a user who does not become frustrated (i.e., an environment with no 

Observer Effect); 2) Patient, representing a user who does not easily become frustrated; 3) 

Angry, representing a user who is much quicker to frustration than patient (by a factor of 5), and 

4) Task-oriented, representing a user unbothered by sensing activities but cares about whether 

or not the agent is supporting her tasks.  The specific values for the sets are shown in Table 4.9. 

Table 4.9 UserRec Frustration User Types 

Action Zero Frustration  
User 

Patient User Angry User Task-oriented  
User 

Query Preference 0 0.2 1 0.2 

Confirm Correct Preference 0 0.1 0.5 0.1 

Confirm Incorrect Preference 0 0.5 2.5 0.5 

Submit Correct Preference 0 -1 -5 -5 

Submit Incorrect Preference 0 1 5 5 

 
Parameters: The values of the parameters to the UserRec simulation important to our 

experiments are presented in Table 4.10, as well as reused from Tables 4.3-4.4 (c.f., Section 

4.2.1) and 11.  Please note that we limit the number of interactions per episode to 10 in order to 

avoid over-sensing and frustrating the user too quickly while learning how to control sensing.  As 

in the MineralMiner experiments, to reduce the variance of the results, we run the experiments 

30 times, each with a different random seed, and average the results. 

  



61 
 

 
Table 4.10 UserRec Experiment Parameters 

Parameter Value 

# Episodes 200 

Max # Interactions / Episode 10 

Boiling Point Count 3 

          10.0 

    0.1 

    0.005 

Learning Rate   0.3 

# Discrete Sensing States 50 

4.3. Simulation Environment Comparison: MineralMiner vs. UserRec 

We conclude this chapter by comparing the properties of the two simulation 

environments considered in this thesis: MineralMiner and UserRec.  A summary of this 

comparison is provided in Table 4.11. 

Table 4.11 MineralMiner vs. UserRec Comparison 

Property MineralMiner UserRec 

Resource State 
Observability 

Fully observable Partially Observable 

MAS Multiple agents Single Agent 

Stateful Resource Microscope (energy) Human user (frustration) 

Causes of State Change Microscope Usage, 
Recharge over time 

Interrupting the user, 
Submitting user preference 

Knowledge Representation Possibility Logic  
(Josang, 2001) 

Preference Elicitation POMDP 
belief states (Doshi and Roy, 
2008) 

Value of Knowledge 
Refinement 

Change in possibility of true 
state 

Change in belief probability of 
true state 

Agent Reasoning Plan-oriented Preference Elicitation PODMP 
policy 

RL Algorithms Q-Learning (Watkins, 1989) 
RMax (Brafman and 
Tennenholtz, 2002) 
REINFORCE (Williams, 1992) 

BAPOMDP (Ross et. al, 2007) 
RPG (Wierstra et. al, 2007) 

 
Concerning the Observer Effect MDP, the most notable difference between the two 

applications is the observability of the resource state.  In the MineralMiner environment, the 

agent can always read the current energy level of the microscope (the resource state), while in 

the UserRec environment, the user’s frustration level is hidden from the agent and must be 



62 
 

estimated based on the delay in user responses.  Thus, MineralMiner represents a fully 

observable environment, while UserRec is a partially observable environment.  Considering both 

types allows us to test the Observer Effect MDP in a range of environments agents are likely to 

experience in real-world applications.  Given that these environments differ in their 

observability, they also use different types of reinforcement learning algorithms: traditional, 

fully observable RL in MineralMiner and more recent PORL in UserRec.  Finally, the means 

through which the resource states change also differ between the two environments.  

Specifically, while resource state is changed by sensing activities in both, it is also changed over 

time through energy recharging in MineralMiner, while task-oriented outcomes (i.e., intelligent 

support through preference submissions) can change resource state in UserRec. 

Considering the internal structure of the agent, we note that the reasoning processes 

and subsequent knowledge representations also differ between the two environments.  In 

MineralMiner, the agent follows a more strict plan-oriented reasoning process, performing 

actions while following a set of priorities (c.f., Section 4.1.1), while in UserRec, the agent 

represents the preference elicitation problem as a Preference Elicitation POMDP (Boutilier, 

2002; Doshi and Roy, 2008) whose reward structure assists the agent in determining whether to 

sense or submit the user’s preference.  Furthermore, the agent in MineralMiner uses evidence 

counting of observations in opinions following a possibility logic framework (Josang, 2001) to 

track the mineral type in each mine, while the agent in UserRec uses the given Preference 

Elicitation POMDP’s parameters to refine a belief state representing probabilities over possible 

user goals.  In both environments, the amount of change in the correct opinion/belief after a 

sensing activity is the measurement used for the value of knowledge refinement.  This value is 

calculated after the correct belief is known for sure:  once the agent drills a mine in 

MineralMiner and after submitting the user’s preference in UserRec. 



63 
 

Finally, the two environments differ in the number of agents involved.  MineralMiner 

represents a teleological, multiagent environment where different agents can all rent the same 

microscope at different times and thus influence its state when the microscope is first rented by 

the next agent (unless it has fully recharged before rented again).  UserRec, on the other hand, 

represents a single agent environment where only one agent uses and changes the state of the 

human user resource. 



64 
 

Chapter 5    The Results – MineralMiner and UserRec Experiments 
 

In this chapter, we evaluate the results of the experimental setup described in Chapter 4 

of this thesis, used to validate our Observer Effect MDP solution from Chapter 3 to solve the 

Observer Effect Tradeoff Problem from Chapter 2.  We begin by evaluating the results of the 

fully observable MineralMiner experiments, followed by the results of the partially observable 

UserRec experiments.  Finally, we conclude the chapter with a discussion of the results across all 

experiments, including common trends and important discoveries. 

5.1. MineralMiner Results 

In this section, we present the results of the MineralMiner experiments described 

previously in Section 4.1.  First, we briefly validate the existence of the Observer Effect in this 

environment, taking the form of reduced microscope accuracy.  Next, we follow our two 

objectives to evaluate two hypotheses:  the Observer Effect Hypothesis (c.f., Section 2.3.3) and 

the Performance Hypothesis (c.f., Section 4.1.3).  Specifically, we evaluate the former by 

considering the sensing performance of the various sensing activity selection approaches.  Then, 

we evaluate the latter by considering the task performance of the approaches, as well as the 

correlation between sensing and task performance.  Finally, we provide a brief discussion 

summarizing the lessons learned from the MineralMiner experiments.  Please note that for both 

sensing and task performance, we evaluate both across the overall results, as well as the results 

over time since we are considering learning algorithms which should improve over time. 

5.1.1. Observer Effect Validation 

Before we start the results analysis, we briefly validate the state-dependent behavior of 

the microscope resource in the simulation results, exemplifying the Observer Effect.  This is an 



65 
 

important step because 1) if the Observer Effect does not exist, then there is no reason to 

consider it within our solution approaches, and 2) if it does not exist, then we know for sure that 

the ability of the RL approaches to consider the Observer Effect is not the cause of their 

difference in performance (presented in the following sections).  Recall that in the MineralMiner 

simulation (c.f., Section 4.1.2, 4.1.3), the Observer Effect takes the form of reduced microscope 

test accuracy due to noise caused by a less-than-perfect energy level in the microscope during 

testing.  The amount of this noise is governed by a noise factor    which we vary in our 

experiments to represent different levels of Observer Effect.   

To validate the existence of the Observer Effect in our MineralMiner experiments, we 

present the average microscope accuracy over all environments and approaches in Figure 5.1.  

We observe that for all of the approaches, as the noise factor    increases, the average 

accuracy of microscope decreases.  Thus, our experiments do contain the Observer Effect as 

desired. 

 

 
Figure 5.1 Average Microscope Accuracy for MineralMiner 

 



66 
 

5.1.2. Objective MM1 

Now that we have demonstrated that the Observer Effect is present in the experiments 

analyzed here, we begin the MineralMiner results analysis by considering the sensing 

performance of the various sensing activity selection approaches, represented by the average 

value of knowledge refinement per sensing activity.  We present these results across all 

approaches and environments in Figure 5.2.  We note that these results are statistically 

significant (  < 0.005) with the two-way ANOVA results shown in Table 5.1. 

 

 
Figure 5.2 Sensing Performance in MineralMiner 

Table 5.1 Two-way ANOVA Results for Sensing Performance in MineralMiner 

Source of 
Variation 

SS df MS F P-value F crit 

Environment 0.356758 5 0.071352 63.73987 4.14E-58 2.222674 

Approach 0.51282 5 0.102564 91.6225 5.09E-80 2.222674 

Interaction 0.032532 25 0.001301 1.162461 0.264806 1.516665 

Within 1.168674 1044 0.001119    

       

Total 2.070784 1079         

  
From the sensing performance data shown in Figure 5.2, we observe that agents using RL 

(Q-Learning, REINFORCE, and RMax) to solve the Observer Effect MDP perform better 

knowledge refinement than agents which do not consider the Observer Effect (Advanced, Basic, 



67 
 

and Random) for environments with    values of 0.2 and 0.3 but do not outdo the simpler 

approaches above and below these values.  We believe this is due to the impact of the Observer 

Effect at each of these levels:   

 For smaller    values (i.e., 0 and 0.1), we contend that there is not enough Observer 

Effect present to effectively distort sensing to make a difference in knowledge 

refinement.  This is evidenced by the very similar results of the average value of 

knowledge refinement for the three simple approaches between the 0 and 0.1    

levels.  Thus, small amounts of Observer Effect (0.1   ) are insignificantly different than 

no Observer Effect (0   ) and considering this detrimental effect is not necessary here.   

 As the Observer Effect increases (i.e., 0.2 and 0.3   ), the sensing performance of 

approaches which do not consider this effect decreases.  Thus, increased Observer 

Effect makes it more difficult to refine knowledge.  Yet, the RL-based approaches are 

able to counter this problem by learning the relationship between sensing state, sensing 

actions, and the value of knowledge refinement in order to achieve very similar sensing 

performance as when the Observer Effect is negligible.   

 For the largest    values (i.e., 0.4, 0.5), the Observer Effect appears to increase to a 

point where considering its effect on knowledge refinement is not enough to counter 

this challenge as the RL algorithms all perform worse than in smaller    amounts, 

following a similar trend as the non-RL approaches.  We do note that the Advanced 

approach appears to perform very well for the 0.4    level of Observer Effect, going 

against its trend of doing worse as OE increases.  However, we believe that this is an 

anomaly as it decreases again for 0.5   , demonstrating a continued trend of 

decreasing sensing performance. 

 



68 
 

Based on these results, we conclude that considering resource state and the Observer Effect 

can improve sensing performance and confirm the Observer Effect Hypothesis, but note that low 

levels of Observer Effect do not necessitate this consideration and high levels make it difficult to 

do so.  In the future, we intend to investigate what happens around the point when this 

difficulty appears in order to find a way of predicting its occurrence, as well as find ways to 

adapt our methodology to mitigate more Observer Effect. 

Next, we consider the sensing performance of the various approaches over time.  

Specifically, we break each experiment into time periods (called Task Groups) based on 

groupings of the successive tasks performed by the agents, where each period breakpoint is 

defined by the deadline of the fifth4 task in a Task Group.  This analysis of the time series of the 

results is an important consideration because we employ reinforcement learning algorithms to 

solve the Observer Effect MDP:  in general in artificial intelligence research, we desire that a 

learning approach improve its performance over time.   

We present the sensing performance over time results from the 0.3    environment in 

Figure 5.3 as an example (c.f., Appendix A.1 for the other environments).  From this figure, we 

make two key observations with respect to the Observer Effect Hypothesis which holds for the 

other environments as well: 

 None of the approaches consistently outperforms the others across all task groups.  

Thus, while we can draw statistically significant conclusions from the overall results, 

these results do not indicate that at any given point in time, one approach is guaranteed 

to do better than the others. 

 Further, none of the approaches consistently increase their performance over time, 

including the RL approaches.  However, except for the highest Observer Effect 

                                                           
4
 We chose a task group size of five in order to split the 50 task groups into a nice number of 10 Task 

Groups.  In general, any group size could have been employed. 



69 
 

environments (0.4 and 0.5   ) where the Observer Effect becomes too difficult to 

handle, the RL approaches do increase their performance over time when compared to 

the Random approach.  We give examples of this behavior and its exception in Figures 

5.4 and 5.5 for the 0.3    and 0.5    environments, respectively.  For this observation, 

we compare the RL approaches against Random because without learning, the former 

degrade into the latter approach as they start with equal rewards for all actions in all 

states (or near equal random values in the case of REINFORCE’s neural networks).  Thus, 

comparing the performance of the RL approaches versus Random shows the 

contribution of reinforcement learning to the agent’s sensing performance. 

 Similarly, we note that for the 0.2    environment shown in Figure 5.6, the RL 

approaches generally get better over time against Random until the very last task group.  

We believe this is an anomaly as the Random approach performs very little sensing in 

this last task group resulting in less knowledge refinement to compute an average value 

for, an interesting phenomenon which does not occur anywhere else in our simulations. 

 

 
Figure 5.3 Sensing Performance over Time in MineralMiner (0.3   ) 



70 
 

 

 
Figure 5.4 Sensing Performance of RL vs. Random over Time in MineralMiner (0.3   ) 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.5 Sensing Performance of RL vs. Random over Time in MineralMiner (0.5   ) 



71 
 

 

 
Figure 5.6 Sensing Performance of RL vs. Random over Time in MineralMiner (0.2   ) 

5.1.3. Objective MM2 

Next, we consider the task performance for the various approaches to sensing activity 

selection, represented as the number of tasks accomplished by the agents.  We also evaluate 

the Performance Hypothesis by considering the relationship between sensing and task 

performance for each approach.  We begin by presenting the task performance results in Figure 

5.7.  We note that unlike the sensing performance results, these results are not statistically 

significant as shown in the two-way ANOVA results in Table 5.2. 

Table 5.2 Two-way ANOVA Results for Task Performance in MineralMiner 

Source of 
Variation 

SS df MS F P-value F crit 

Environment 589.1269 5 117.8254 0.057094 0.997901 2.222674 

Approach 12142.52 5 2428.503 1.176761 0.318501 2.222674 

Interaction 1631.79 25 65.27159 0.031628 1 1.516665 

Within 2154521 1044 2063.717    

       

Total 2168884 1079         

 



72 
 

 
Figure 5.7 Task Performance in MineralMiner 

Considering the task performance of the sensing activity selection approaches, we observe 

the following: 

 REINFORCE and RMax generally have the best task performance, except in the 0.3 and 

0.4    environments when Advanced performs between the two approaches.  We 

believe that the better performance by these two RL approaches is due to better 

sensing by the agents through RL, even if that better sensing doesn’t always correspond 

to higher average value of knowledge refinement (although for REINFORCE, this average 

is higher than the other approaches in general).  The improved performance by 

Advanced appears to just be a random outlier (recall that we lack statistical significance 

for these results). 

 Unlike the sensing performance results from the previous section, there are no 

observable general trends between the amount of Observer Effect and task 

performance.  In other words, unlike sensing performance, increasing the Observer 

Effect does not generally result in worse task performance in the environments 

considered.  This indicates that the agents are able to suffer from some sensing 



73 
 

distortion causing lower agent sensing performance (e.g., at the higher Observer Effect 

environments 0.4, 0.5   ) but still create good enough knowledge to accomplish some 

tasks.  However, we hypothesize that if we pushed the Observer Effect further past 0.5 

  , we would eventually observe that the task performance of agents decreases with 

increasing Observer Effect.  We believe that the 0.5    was not sufficient for this 

behavior because in Figure 5.1 we observe that the average accuracy of the microscope 

was still above 50% for this environment but should continue to decrease as the noise 

factor increases. 

Next we look at the task performance results over time, shown using the 0.3    

environment again as an example in Figure 5.8 for all of the approaches and in Figure 5.9 

comparing the RL approaches to Random.  We observe: 

 Over time, all of the approaches follow the same general trend: worse task 

performance.  This is due to some agents running out of energy or having insufficient 

minerals collected necessary for recharging their batteries and renting tools, as well as 

mines running out of mineral supply.  Within this trend, none of the approaches 

consistently outperform the others, as with sensing performance. 

 Unlike sensing performance, RL does not continually improve task performance over 

Random, even though sensing performance is increased (Figure 5.4).  This is explained in 

the correlation results analyzed next. 



74 
 

 
Figure 5.8 Task Performance over Time in MineralMiner (0.3   ) 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.9 Task Performance of RL vs. Random over Time in MineralMiner (0.3   ) 



75 
 

 
To further explain our task performance results, we consult the correlation between 

sensing and task performance, shown in Table 5.3.  From these correlation results, we observe: 

Table 5.3 Correlation Between Sensing and Task Performance in MineralMiner 

Approach 0 NF 0.1 NF 0.2 NF 0.3 NF 0.4 NF 0.5 NF 

Advanced 0.1631 0.0252 -0.0984 -0.4004 -0.2987 -0.3787 

Basic -0.1844 -0.2241 -0.2427 -0.1219 -0.0878 -0.1758 

Random 0.2250 0.2477 0.1439 0.0443 -0.0534 0.0558 

Q-Learning 0.0433 -0.1070 -0.0779 0.1340 -0.0019 -0.0437 

REINFORCE 0.1153 0.1917 0.1301 0.2321 0.1410 0.2608 

RMax 0.0221 0.0982 -0.0036 -0.1183 -0.0984 -0.2465 

Total 0.0654 0.0349 -0.0259 -0.0404 -0.0218 -0.0978 

 

 For all but the REINFORCE approach, there exists no general correlation between 

sensing and task performance.  We believe that this occurs for the following reason:  the 

trend for sensing performance is decreasing as Observer Effect increases, while no 

similar trend exists for task performance.  Thus, although sensing performance becomes 

worse as more Observer Effect is present, task performance is mostly unchanged.  This 

seems to imply that even relatively bad sensing can provide some level of information 

for knowledge revision which allows the agents to build good enough knowledge to 

accomplish some tasks, but not all.   

 However, for the REINFORCE approach, we observe a general positive correlation 

between sensing and task performance.  Thus, since REINFORCE generally has some of 

the best sensing performance (Figure 5.3), it is able to convert its improved sensing into 

accomplishing more tasks.  Compared to our previous observations, this implies that 

although all sensing seems sufficient to accomplish some tasks, better sensing can yield 

even better tasks.   

Based on these results, we reject the Performance Hypothesis because of the general 

lack of correlation between sensing and task performance.  However, we note that one RL 



76 
 

algorithm is able to leverage improved sensing performance to raise task performance.  In the 

future, we intend to further investigate why this algorithm (REINFORCE) achieved this result and 

how we might be able to replicate that in other approaches to sensing activity selection. 

5.1.4. MineralMiner Results Discussion 

From the results presented above, we have confirmed the Observer Effect Hypothesis 

for a fully observable environment where the Observer Effect is relevant (i.e., non-negligible but 

not overpowering).  We also note that sensing performance is positively correlated with task 

performance for the REINFORCE approach, thus improved sensing by considering the Observer 

Effect can yield better task performance, a desired emergent behavior.  Therefore, the Observer 

Effect and its Tradeoff are challenges to sensing necessary to consider for stateful resources.  

Furthermore, our Observer Effect MDP is beneficial for doing so.  

However, one question remaining is what type of RL algorithm is best for solving the 

Observer Effect MDP?  In Section 3.3.2, we proposed that any RL algorithm is appropriate, 

leaving the choice up to the agent designer.  However, from these results, we can draw some 

conclusions about the various algorithms used, chosen as examples of various types of RL 

algorithms.  In both sensing and task performance, we observe that the REINFORCE algorithm 

performed the best, which we attribute to its ability to handle continuous states, such as 

microscope energy in our sensing state.  The other two algorithms instead discretize sensing 

state which loses some information useful for distinguishing between states.  Finally, we note 

that model-based RMax generally outperformed model-free Q-Learning, which we attribute to 

the increased amount of information about the environment (transition probabilities) learned 

by RMax.  Therefore, we now hypothesize that model-based and/or continuous RL algorithms 

are most appropriate for solving the Observer Effect MDP and intend to further investigate with 

a wider range of RL algorithms. 



77 
 

5.2. UserRec Results 

In this section, we present the results of the UserRec experiments described in Section 

4.2.  Since this simulation environment is based on previous work by Doshi and Roy (2008), we 

first briefly test our implementation by comparing the overlapping experiments between our 

work and theirs to validate that the simulation was implemented properly.  Then, as with the 

MineralMiner results, we also briefly validate the existence of the Observer Effect within the 

UserRec experiments.  We follow with our two objectives to evaluate the Observer Effect 

Hypothesis (c.f., Section 2.3.3) and the Performance Hypothesis (c.f., Section 4.1.3).  Again, we 

evaluate the former by considering the sensing performance of the various sensing activity 

selection approaches.  Then, we evaluate the latter by considering the task performance of the 

approaches, as well as the correlation between sensing and task performance.  We conclude this 

section with a brief discussion summarizing the lessons learned from the UserRec experiments. 

5.2.1. Implementation Validation 

We begin by briefly validating our implementation of the user preference elicitation 

simulation described by Doshi and Roy (2008) by demonstrating that we receive similar results 

on the experiments conducted in the original paper.  Here, we consider the Zero Frustration 

User environment which does not include the Observer Effect but does use the same simulation 

parameters as Doshi and Roy (2008), provided in Tables 4.3 and 4.4 in Section 4.2.1.  Specifically, 

we consider the PBVI approach.  

In the original paper (Doshi and Roy, 2008), the agent’s performance is evaluated based 

on the median reward received over all episodes.  In our experiments, we observed a median 

reward per run (with a given 95% confidence interval) of 92.8667 +- 0.3483 (averaged over all 30 

runs) which matches the median reward achieved by Doshi and Roy between 90 and 95.  Thus, 



78 
 

from these results, we can deduce that our implementation produces similar results to those 

presented in the original paper. 

5.2.2. Observer Effect Validation 

As in the MineralMiner results (c.f., Section 5.1.1), we also briefly validate the existence 

of state-dependent behavior of the user resource and the Observer Effect within our simulation 

results.  Recall that in the UserRec experiments (c.f., Section 4.2.1), the user is a stateful 

resource whose behavior depends on her current frustration level.  User frustration results in 

both faster responses (i.e., reduced delays) to interruptions used by the agent to elicit the user’s 

preference, as well as less accurate responses by the user (c.f., Section 4.2.1 for justification).  

Here, the latter represents the Observer Effect in this simulation.  The changes in user 

frustration are governed by the type of user which we vary in our experiments.   

To validate the existence of state-dependent behavior–including the Observer Effect–in 

our UserRec experiments, we present the average user response delay and accuracy over all 

environments and approaches, shown in Figures 5.10-5.11, respectively.  We observe that for all 

of the approaches, when the user can become frustrated (non-Zero User Frustration Types: 

Patient, Task, and Angry), both her response delays and accuracy are reduced when compared 

to the non-frustrated Zero User Frustration Type, as desired.  Thus, our experiments do contain 

state-dependent resource behavior, including the Observer Effect. 

 



79 
 

 
Figure 5.10 Average User Response Delay in UserRec 

 
 

 
Figure 5.11 Average User Response Accuracy in UserRec 

5.2.3. Objective UR1 

Next, we start the UserRec results analysis by considering the sensing performance of 

the various sensing activity selection approaches, again represented by the average value of 

knowledge refinement per sensing activity.  We present these results across all approaches and 

environments in Figure 5.12.  We note that unlike the MineralMineral results (c.f., Section 



80 
 

5.1.2), these results are not statistically significant as shown in the two-way ANOVA results in 

Table 5.4. 

 
Figure 5.12 Sensing Performance in UserRec 

 
Table 5.4 Two-way ANOVA Results for Sensing Performance in UserRec 

Source of 
Variation 

SS df MS F P-value F crit 

Environment 0.000523 3 0.000174 0.469968 0.703361 2.624124 

Approach 6.68E-05 3 2.23E-05 0.059996 0.980729 2.624124 

Interaction 0.000132 9 1.47E-05 0.03965 0.999993 1.900058 

Within 0.17215 464 0.000371    

       

Total 0.172872 479         

 
From these results, we again observe that an agent using PORL to solve the Observer Effect 

POMDP (BAPOMDP) performs better knowledge refinement than agents which do not consider 

the Observer Effect (PBVI, Random) when it is necessary to consider this effect and the effect is 

not over-powering; that is, when the user is not of type Zero or Angry (see further discussion for 

explanation).  Specifically: 

 In the Zero Frustration User environment, there is no Observer Effect because the user 

does not become frustrated by human-agent interactions, so her response delay and 

accuracies do not vary over time.  Thus, there is no reason to consider the Observer 



81 
 

Effect, causing the non-PORL approaches to perform very similarly to the PORL 

approaches.  However, this similarity is important because it shows that considering the 

Observer Effect even when it is not present does not degrade agent sensing 

performance. 

 In the Patient and Task-oriented User environments, the user is frustrated by 

interruptions caused by agent sensing activities, thus producing an Observer Effect.  

Here, we observe that the model-based BAPOMDP approach is able to outperform the 

other approaches in sensing-performance.  However, we also note that the model-free 

RPG approach does not.  We believe that this is due to the extra parameter learning 

performed by the model-based approach, giving it more information about the 

environment to properly make decisions (i.e., just learning the expected value of 

knowledge refinement is not enough). 

 In the Angry User environment, we see similar performance to the Zero Frustration User 

environment where the non-PORL and PORL approaches (PBVI vs. RPG, Random vs. 

BAPOMDP) perform similarly.  This is due to the fact that none of the solutions last near 

the 200 episodes before stopping because they exceed the user’s frustration boiling 

point, confirmed in Figure 5.13 which presents the average duration of each simulation 

run.  Thus, we believe the PORL solutions do not have enough time to learn how to 

handle user frustration before the user is too frustrated to continue.  In fact, it appears 

that the little bit of learning done by BAPOMDP actually drives down sensing 

performance (compared to Random) due to the difficulty of learning over a small 

number of episodes during the high frustration of the user.  We also note that the 

shortness of the experiments due to exceeding the frustration boiling point for this 



82 
 

environment compared to the others makes it difficult to draw any strong conclusions 

from its results. 

 

Based on these results, we again conclude that considering resource state and the 

Observer Effect can improve sensing performance and confirm the Observer Effect Hypothesis, 

but note that, as observed in the MineralMiner results (c.f., Section 5.1.2), low levels of 

Observer Effect do not necessitate this consideration and high levels make it difficult to do so.  

In the Angry User environment, we posit that the PORL approaches’ (especially BAPOMDP) poor 

performance was due to a lack of episodes to properly learn how to handle user frustration 

during sensing.  In the future, we intend to investigate possible ways to speed up agent learning 

to avoid this problem, or strategies to lower user frustration when it appears the user is about 

to reach her boiling point and stop using the system. 

 

 
Figure 5.13 Average Simulation Duration in UserRec 

Next, we consider the sensing performance of the various approaches over time.  In the 

UserRec experiments, we evaluate the time series over a sequence of episodes split into Episode 



83 
 

Groups, where each group consists of 20 successive episodes5.  We present these results from 

the Task-oriented User and Patient User environments in Figures 5.14-5.15 as examples (c.f., 

Appendix A.2 for the other environments) as these were the most interesting results.  Please 

note that in these figures, Random has fewer data points due to the fact that none of its 

simulation runs ever survived all 200 episodes before exceeding the user’s frustration boiling 

point.  From these figures (and those given in the appendix), we make the following 

observations with respect to the Observer Effect Hypothesis:  

 For the Task-oriented User Frustration environment, each of the approaches generally 

retained the same rank in comparison to the others and the best PORL approach was 

almost always on top.   This differs from the results from MineralMiner (c.f., Section 

5.1.2) where no such dominance occurred.  Thus, for this environment, the Observer 

Effect Hypothesis holds over time, as well.  However, we note that this only occurred for 

this environment and not the other three (e.g., Figure 5.15), so in general, the UserRec 

results match those from MineralMiner in that no PORL approach always performs the 

best at all time points.  Thus, the Observer Effect Hypothesis still generally holds just for 

cumulative results. 

 In contrast, in the Patient User Frustration environment, each of the approaches tends 

to do worse over time.  This is caused by a steady increase in user frustration over time 

in this environment, shown in Figure 5.16.  This frustration increase, in turn, is caused by 

frustration from the agent’s sensing activities being similar in magnitude to the 

reduction in frustration resulting from correct submissions (c.f., Table 4.9 in Chapter 4).  

Thus, correct submissions do not remove enough frustration in the user, in spite of the 

fact that all of the frustration increase values are small.  However, it does appear the 

                                                           
5
 As in MineralMiner, we chose a group size of 20 in order to have 10 groups for the time series. 



84 
 

BAPOMDP approach has a resurgence towards the end of the simulations due to a 

decrease in frustration at the end of the simulations in Figure 5.16 for this approach and 

none of the others, but this might be an outlier as we cannot find an appropriate 

justification.  

 In the Task-oriented User Frustration environment, on the other hand, the reduction in 

frustration from correct submissions is greater while the frustration increase values 

from sensing stay the same.  This enables correct submissions to offset frustration 

incurred from sensing interruptions, even though the potential increase in frustration 

from wrong submission is greater.  Thus, the frustration levels of the user in the Task-

oriented environment remain low over time, shown in Figure 5.17.  From this result, we 

can conclude that the relative rates of change in resource state (user frustration) play an 

important role in the behavior of the resource and its impact on sensing, as one may 

expect. 

 Because the Random approach increases user frustration so quickly due to poor sensing 

choices, its simulation runs do not last as long as the others.  Thus, for many time points, 

there is no data for the Random approach, so we cannot evaluate how the PORL 

approaches perform against the baseline Random approach over time as we did for 

MineralMiner. 



85 
 

 
Figure 5.14 Sensing Performance over Time in UserRec (Task-oriented User) 

Note: Random has fewer data points because each of its simulation runs exceeds the user’s 
frustration boiling point and does not survive all 200 episodes.   

 
 
 
 
 
 
 
 
 

 
Figure 5.15 Sensing Performance over Time in UserRec (Patient User)  

Note: Random has fewer data points because each of its simulation runs exceeds the user’s 
frustration boiling point and does not survive all 200 episodes.  



86 
 

 
Figure 5.16 User Frustration over Time in UserRec (Patient User) 

Note: Random has fewer data points because each of its simulation runs exceeds the user’s 
frustration boiling point and does not survive all 200 episodes.  

 

 
Figure 5.17 User Frustration over Time in UserRec (Task-oriented User) 

Note: Random has fewer data points because each of its simulation runs exceeds the user’s 
frustration boiling point and does not survive all 200 episodes.  

5.2.4. Objective UR2 

Next, we consider the task performance of the sensing activity selection approaches in 

UserRec, represented as 1) the number of correct submissions by the agents, and 2) the average 



87 
 

task reward6 for a submission.  Here, the first measures how often the agent was successful, and 

the second measures how efficient they were (since negative task rewards are received for 

sensing).  We also evaluate the Performance Hypothesis by considering the relationship 

between sensing and both types of task performance for the various approaches.  We begin by 

presenting the task performance results in Figures 5.18 and 5.19.  We note that unlike in 

MineralMiner (c.f., Section 5.1.3), these results are statistically significant (  < 0.005 but with a 

significant interaction between approach and environment) as shown in the two-way ANOVA 

results in Tables 5.5 and 5.6. 

Table 5.5 Two-way ANOVA Results for Task Performance (Correct Submissions) in UserRec 

Source of 
Variation 

SS df MS F P-value F crit 

Environment 1348963 3 449654.4 429.682 1.7E-133 2.624124 

Approach 69654.77 3 23218.26 22.18697 1.93E-13 2.624124 

Interaction 55537.28 9 6170.808 5.896718 8.22E-08 1.900058 

Within 485567.6 464 1046.482    

       

Total 1959723 479         

 
Table 5.6 Two-way ANOVA Results for Task Performance (Average Task Reward) in UserRec 

Source of 
Variation 

SS df MS F P-value F crit 

Environment 936346.4 3 312115.5 190.1171 2.17E-80 2.624124 

Approach 87955.38 3 29318.46 17.85859 5.51E-11 2.624124 

Interaction 44672.59 9 4963.622 3.023463 0.001603 1.900058 

Within 761749.2 464 1641.701    

       

Total 1830724 479         

 
Considering the task performance of the sensing activity selection approaches, we 

observe the following: 

                                                           
6
 Recall that task reward is defined as an amount earned by the agent for performing each action.  Please 

do not confuse this with the value of knowledge refinement reward used in the Observer Effect 
MDP/POMDP.  The former occurs at the task level of agent activities, while the latter is at the sensing 
level. 



88 
 

 Unlike in MineralMiner (c.f., Section 5.1.3), including the Observer Effect does play an 

important role in agent task performance.  We observe that the best task performance 

is achieved when there is no Observer Effect (Zero User Frustration Type) and overall 

task performance decreases as the impact of Observer Effect increases:  Patient and 

Task-oriented are worse than Zero and Angry is the worst.  This implies that for some 

applications, the Observer Effect does affect the ability of agents to accomplish their 

tasks and goals. 

 Comparing the various baseline approaches, PBVI generally performs the best (or closely 

behind), due its focus on task performance through maximizing task rewards.  Random, 

on the other hand, does very poorly due to over-frustrating the user, evidenced by 

shorter simulation durations (Figure 5.13) as previously described.   

 Considering the PORL approaches, we observe that RPG generally performs close to 

PBVI.  This demonstrates that focusing on sensing performance is another means to 

good task performance, in spite of the fact the RPG approach doesn’t explicitly consider 

this metric when choosing how to sense.  While it does not appear upon first glance that 

this conclusion holds for BAPOMDP as well, which performs worse than both PBVI and 

RPG, we discuss next that this is due to decreased performance while BAPOMDP is 

learning, after which it exploits its learning to perform at least as well as the other 

approaches.  Thus, if we were to extend the number of episodes, the gap between 

BAPOMDP and the better approaches would shrink.  

 



89 
 

 
Figure 5.18 Task Performance in UserRec (Correct Submissions) 

 

 
Figure 5.19 Task Performance in UserRec (Average Task Reward) 

For task  performance over time, we present these results for the Task-oriented and 

Patient User Frustration environments in Figures 5.20 and 5.21.  Please note that we only 

present the correct submissions results because the average task reward results look the same 

but with different y-axis scales.  Again, all of the other results are available in Appendix A.2.  

From these results, we observe: 



90 
 

 Task performance is strongly related to user frustration for each episode group.  For 

each of the approaches, we observe from Figure 5.17 that in the Task-oriented User 

Frustration environment, user frustration remained low (except for Random which over-

frustrated the user).  This low frustration leads to better sensing performance (Figures 

5.12 and 5.14) and also better task performance (Figure 5.20).   

 For the Patient environment, we also observe a dependence on frustration in task 

performance for each episode group.  From Figure 5.16, we observe that user 

frustration increases over time, leading to not only worse sensing performance over 

time (Figure 5.15), but also worse task performance (Figure 5.21). 

 Again, as with MineralMiner, none of the approaches outperforms the others 

consistently over time.  However, we do note that BAPOMDP suffers from worse 

performance at the beginning of the simulations in both environments, then performs 

at least as well as the others for the rest of the episode groups.  We believe that this is 

due to the effect of learning on the approach – while the agent is learning, it performs 

worse than the PBVI and RPG approaches, but still better than Random indicating that it 

has learned something positive.  Then, once the agent has learned enough, it is able to 

successfully exploit this knowledge to have good task performance relative to all other 

approaches considered.  A longer learning period for BAPOMDP than RPG makes sense 

because the former is a model-based PORL approach and thus learns a parameterized 

POMDP model, while the latter is model-free PORL approach and learns only the value 

of knowledge refinement function and a controller for sensing activity selection. 

 



91 
 

 
Figure 5.20 Task Performance over Time in UserRec (Correct Submissions,  

Task-oriented User) 
Note: Random has fewer data points because each of its simulation runs exceeds the user’s 

frustration boiling point and does not survive all 200 episodes.  
 
 
 
 
 
 
 
 

 
Figure 5.21 Task Performance over Time in UserRec (Correct Submissions,  

Patient User) 
Note: Random has fewer data points because each of its simulation runs exceeds the user’s 

frustration boiling point and does not survive all 200 episodes.  



92 
 

Finally, we present the correlation results between sensing performance and both types 

of task performance: 1) correct submissions and 2) average task reward in Tables 5.7 and 5.8, 

respectively.  From these results, which again are not statistically significant, we observe: 

 
Table 5.7 Correlation between Sensing and Task Performance (Correct Submissions) in 

UserRec  

Approach Zero Patient Task Angry 

PBVI -0.0656 0.1375 0.1323 0.1318 

Random 0.1543 -0.2924 0.1838 0.1660 

RPG -0.0218 -0.0611 -0.2386 0.4516 

BAPOMDP 0.0471 0.1826 0.2095 0.1334 

Total 0.0246 0.1083 0.1047 0.2019 

 
Table 5.8 Correlation between Sensing and Task Performance (Average Task Reward) in 

UserRec 

Approach Zero Patient Task Angry 

PBVI 0.02572 0.1357 0.1370 0.1800 

Random 0.2884 -0.3842 0.1280 0.1006 

RPG -0.0280 -0.1404 -0.2142 0.3512 

BAPOMDP 0.0787 0.1941 0.1881 0.1573 

Total 0.0541 0.0695 0.0991 0.1967 

 

 In general, a positive correlation exists between sensing and task performance when the 

user can become frustrated (i.e., all environments except Zero), but not when there is 

no Observer Effect (i.e., Zero User Frustration Type).  Thus, considering sensing 

performance is important when stateful resource behavior affects sensing outcomes, 

and increasing sensing performance is a potential means to increase task performance.  

However, because these correlations are not very large (< 0.2), increasing sensing 

performance is not guaranteed to increase task performance.   

 However, contrary to this general trend, RPG’s sensing performance is not positively 

correlated with task performance.  This is further evidenced when comparing the 

sensing and task performances of this approach (Figures 5.13, 5.18-5.19) where we 



93 
 

observe that model-free RPG achieves higher overall task performance but worse 

sensing performance than model-based BAPOMDP. 

 Finally, although the Angry environment has the highest correlations, these are not very 

conclusive due to the shortness of these experiments (Figure 5.13).  However, they do 

imply that at least in the short term, sensing performance might be correlated to task 

performance, but compared to our other results, that correlation might be reduced over 

time.  We cannot fully support this implication without further investigation, however.  

Thus, we intend to test this implication in future work by varying the number of 

episodes to determine how correlation varies with the number of interactions between 

human and agent. 

Based on these results, we observe some evidence in support of the Performance 

Hypothesis based on the general positive correlation between sensing and task performance.  

However, as these correlations are small, we cannot draw any significant conclusions.  Further, 

we note that one of the PORL approaches (BAPOMDP) had the highest positive correlation, 

similar to our MineralMiner results (where REINFORCE was the highest). 

5.2.5. Experimental Setup 

From the UserRec results presented above, we have confirmed the Observer Effect 

Hypothesis for partially observable environments where the Observer Effect is relevant (i.e., 

non-negligible but not overpowering).  We also note that sensing performance is generally 

positively correlated with task performance for all but the RPG approach, thus improved sensing 

by considering the Observer Effect can yield better task performance, a desired emergent 

behavior.  This result is demonstrated in the task performance results over time as BAPOMDP, 

which has the highest sensing performance, also has the highest task performance after going 

through its learning period.  Therefore, we have more evidence that the Observer Effect and its 



94 
 

Tradeoff are challenges to sensing necessary to consider when using stateful resources and our 

Observer Effect POMDP is beneficial in doing so.  

Comparing the two PORL approaches considered in the UserRec experiments, we have 

more evidence confirming our conjecture from Section 5.1.4 that model-based approaches 

outperform model-free approaches because our model-based BAPOMDP approach was the best 

in terms of sensing performance, with the caveat that they might (and did in our experiments) 

take longer to learn given that they are learning more from the environment. Therefore, we still 

hypothesize that model-based RL algorithms are most appropriate for solving the Observer 

Effect MDP/POMDP.  However, since we have only considered a few approaches, we still intend 

to further investigate with a wider range of RL/PORL algorithms in both fully observable and 

partially observable environments. 

5.3. Discussion 

Considering the results from both the MineralMiner and UserRec simulations, we see 

several similarities.  First, for both simulations, we have observed that the RL- or PORL-based 

approaches have higher sensing performance than non-RL/PORL approaches because the 

former consider the value of knowledge refinement impacted by resource state through the 

Observer Effect, while the latter do not.  This result is somewhat to be expected due to the fact 

that the RL/PORL approaches directly intend to optimize sensing performance through picking 

sensing activities maximizing this value.  However, it is important for three reasons.  First, it 

confirms the Observer Effect Hypothesis stating that such improvement in sensing performance 

is possible, which is the motivation of this research.  Second, it demonstrates that our Observer 

Effect MDP with RL solution is one way of improving sensing performance.  Finally, it shows that 

the approach works not just in theory but also in practice, a fact not always observed for 

complex, real-world environments such as those simulated by our experiments (especially 



95 
 

UserRec).  In the future, we intend to further explore this fact by applying our approach to real-

world (non-simulated) environments, such as an intelligent user interface for supporting 

collaborative research (c.f., Chapter 7). 

Next, we observed in both simulations that task performance isn’t always correlated 

with sensing performance, so increasing sensing performance alone does not necessarily 

generate an improvement in task performance.  This goes against our Performance Hypothesis 

which motivates research in agent sensing in general.  However, we did observe evidence that 

at least for some approaches, including REINFORCE in MineralMiner and BAPOMDP in UserRec, 

increasing sensing performance enough above that experienced for non-RL approaches yields an 

additional task performance boost by creating a positive correlation between sensing and task 

performance.  Thus, although any sensing approach can sometimes provide quality information 

for refining agent knowledge, boosting the quality of sensing eventually yields a boost in task 

performance, even if that boost isn’t necessarily as large. 

Third, considering the relative performance of the various RL/PORL algorithms 

employed in our experiments, we observed that in general, model-based approaches 

outperform model-free in sensing performance and sometimes task performance.  Thus, in spite 

of our earlier conjecture (c.f., Section 3.3.2) that any type of reinforcement learning algorithm is 

applicable, it appears that some are better than others.  As previously stated, we intend to 

further explore (by considering wider range of algorithms) what types of algorithms are most 

appropriate based on the properties of different types of environments in order to provide a set 

of guidelines for better solving the OETP through the Observer Effect MDP/POMDP.  

Finally, we note that the same general results we observed for both sets of experiments, in 

spite of the fact that the two simulation environments and experimental setups differ in several 

key properties, including:  



96 
 

1) the observability of resource state (i.e., fully observable vs. partially observable),  

2) the types of knowledge representation (i.e., possibility logic (Josang, 2001) vs. 

probabilistic belief states),  

3) the specific RL/PORL algorithms used, and  

4) the MAS applications represented (i.e., robotic exploration vs. intelligent user support).  

Thus, we believe that our Observer Effect MDP solution can apply to a wide range of 

applications and real-world scenarios which rely on using stateful resources during agent 

sensing. 

 
 

  



97 
 

Chapter 6   Related Work 
 

In this chapter, we describe work from the artificial intelligence and multiagent systems 

literature that is most closely related to ours.  This includes research from the following areas: 1) 

anytime sensing, 2) value of information driven sensing, 3) the Observation Selection Problem, 

and 4) multiagent resource allocation.  The relationship between these four areas and our 

research in summarized in Figure 6.1.  We note that prior work in bounded rationality and 

general metareasoning in artificial intelligence are also related to our work, but these were 

already discussed in Chapter 2. 

 
Figure 6.1 Relationship Between Our Research and Related Work 

First, anytime sensing represents prior work in metareasoning about sensing.  However, 

their research considers only computational resource usage and not stateful resource usage, 

and thus no Observer Effect.  Second, prior work involving value of information driven sensing 

chooses sensing activities which try to optimize the value of information gathered during 

sensing, similar to our goal of optimizing the value of knowledge refinement.  However, they 

only consider stateless resource costs for sensing.  Third, the Observation Selection Problem 

represents prior work in selecting observations to perform in order  to optimize an objective 



98 
 

function given various constraints (including costs), similar to our Observer Effect Tradeoff 

Problem.  However, they work with monotonic, submodular objective functions which cannot 

include the non-monotonic Observer Effect.  Finally, resource allocation represents a broad field 

covering reasoning about how to allocate resources between agents and/or tasks to accomplish 

agent goals.  Our research extends work in this area by considering an additional resource 

characterization: stateful resources, and is closely related to recent work involving the use of 

MDPs to model decisions about resource allocation. 

6.1. Anytime Sensing 

First, one of the closest related areas of research to our own is prior work involving the 

control of anytime algorithms as a metareasoning strategy for controlling the use of stateful 

computational resources during sensing.  Specifically, Zilberstein (1996; with Russell, 1993) 

considered the problem of how to decide how much time to allocate to sensing and planning in 

a robot in order to accomplish the robot’s tasks (e.g., navigate to a location) as quickly as 

possible.  Here, the robot views its environment with a camera and the quality of the 

information gathered through the camera depends on the amount of time spent processing the 

raw pixels observed.  Similarly, the quality of the agent’s plan for navigating through its 

environment depends on the amount of time spent on planning, as well as the quality of the 

information gathered through sensing.  Balancing the time spent by the robot on sensing, 

planning, and movement in this scenario is challenging due to the tradeoff between 1) the need 

to spend time now on sensing and planning to create better movement plans in order save time 

later by avoiding the need to resense and replan if the robot runs into an obstacle, versus 2) 

spending too much time now on sensing and planning, delaying the robot from reaching its goal.  

To overcome this problem, Zilberstein considered both the processing of sensed pixels and 

planning procedures to be anytime algorithms, assuming that the quality of information 



99 
 

produced by processing the raw pixels and the quality of the plan will never decrease with 

additional resource usage (i.e., time spent).    This allowed them to model the robot’s ability to 

process sensed information with a monotonic performance profile dependent on the amount of 

time spent on processing.  They also modeled the robot’s planning with a conditional 

performance profile which depends on both the amount of time spent, as well as the input 

quality from its sensing.  Using these performance profiles, generated through experience with 

the environment, the agent could then solve for an ideal amount of time to spend on each in 

order to reach its goal as fast as possible.   

Comparing this work to ours, we note that theirs is appropriate for applications where 

additional sensing activities always produce better or no worse information than the agent 

already has, such as the processing of vision data.  In environments where this assumption 

breaks down, however, sensing can no longer be represented as an anytime algorithm and using 

monotonic performance profiles to select an amount of resource to use during sensing will not 

work.  Thus, their approach is applicable to sensing with stateless resources (such as time as 

considered in their work), but not sensing with stateful resources where sensing changes the 

state (and subsequent behavior) of resources, possibly distorting future sensing outcomes (i.e., 

the Observer Effect).  Zilberstein (1996) foreshadowed this problem, stating: 

However, certain types of sensors, in particular active sensors, require a more 

complex treatment.  The reason is the fact that active sensors may have a 

significant effect on the state of the environment and thus have additional 

influence on the planning process… The anytime sensing processes that we 

describe in this paper are used for information gathering only and have no 

effect on the state of the environment. 



100 
 

   However, in spite of their prescience with respect to the challenge of sensing with 

stateful resources, to the best of our knowledge no prior work was undertaken by Zilberstein to 

address this problem.  Our work accounts for the changes in resource state (which is part of the 

state of the environment) caused by sensing in the Observer Effect MDP in order to choose 

sensing activities to optimize the amount of knowledge refinement produced by possibly 

distorted sensing outcomes due to the Observer Effect. 

6.2. Value of Information Driven Sensing 

Second, prior work on sensing activity selection has also focused on optimizing the value 

of information (VOI) provided by the observations made which is very similar to our goal of 

selecting activities which optimize the value of knowledge revision.  For example, Grass and 

Zilberstein (1997, 2000) created an approach called value-driven information gathering (VDIG) 

within a system which gathers information for user decision support from the internet under 

time and monetary cost limitations.  Given a model of the user’s decision as an inference 

diagram, VDIG both determines a set of queries to perform on distributed information sources 

to gather the information necessary to make a decision, as well as performs those queries to 

support the user.  Specifically, it calculates the VOI for each piece of missing information 

necessary for the user’s decision, where VOI is defined as the increase in the expected utility of 

the user’s decision if it knows the missing information.  Once the information with the highest 

VOI is computed, the agent determines which information sources can provide this information.  

Finally, the agent calculates the expected likelihood of each source returning the desired 

information in time (where information sources might be slow and not respond fast enough for 

the user’s decision) as well as the monetary cost of purchasing information from the source.  If 

the VOI of the desired information weighted by the likelihood of successful response is greater 



101 
 

than the monetary cost of using the source, the agent proceeds to gather the information, else 

it stops and has the user make her decision. 

This work is similar to ours in that they determine appropriate sensing activities and 

execute them to gather information to support a decision process.  Also, both consider the 

benefits versus costs of sensing when making decisions about what sensing activities to 

perform.  However, our work differs in several ways.  First, our value from sensing is based on 

the outcome of sensing itself (knowledge revision), not the reward for making a decision.  Thus, 

our sensing action selection is independent of decision outcomes.  Second, we consider 

information costs due the Observer Effect caused by stateful resource usage, instead of time 

and monetary costs from using those stateless resources.   

Another approach to sensing driven by VOI is BIG, an agent-based approach developed 

by Lesser et. al (2000) which also automates information gathering from the internet for users.  

Specifically, BIG collects information requested by a user by performing multi-level planning to 

choose and execute sensing activities.  At the top-down level, BIG creates a schedule of sensing 

activities to gather the desired information by considering important properties of the plan and 

desired information, including cost (e.g., time and money) and uncertainty.  It also considers the 

value of information, derived from the sources which provide the information (e.g., good 

sources give better information).  On the other hand, at the bottom-up level, BIG is 

opportunistic and looks for ways to collect additional low-cost information based on its current 

activities prescribed by the top-down level. 

  Like VDIG, BIG is similar to our work in that it considers both the value of sensing and 

costs when making decisions about what sensing to perform.  Further, it is more like our 

approach in that its assigned value of information is based on the quality of information 

(through the source’s history) as opposed to its relationship to decision outcomes as in VDIG.  



102 
 

However, again BIG only considers stateless time and monetary costs and not the Observer 

Effect.  On the other hand, we do note that the planning component of BIG is very interesting, 

especially how it considers both overall goals through the top-down level, as well as 

opportunistic sensing at the bottom-up level.  We are interested in extending our work to 

account for both need-driven sensing based on information needed for current decisions (as we 

already do), as well as data-driven sensing based on information useful for refining knowledge 

that is expected to be used in the future.  Opportunistic sensing could play a key role in our 

intended data-driven sensing as an agent will need to balance the expected likelihood of 

needing the information in the future versus its current cost, so finding opportunities for low-

cost sensing will increase the usefulness of data-driven sensing. 

Finally, in the original Preference Elicitation POMDP work by Boutilier (2002), sensing 

selection is related to the value of information collected by a sensing activity.  Unlike Doshi and 

Roy’s (2008) work considered in the UserRec experiments (c.f., Section 4.2.1) where preferences 

are single values, Boutilier’s POMDP represents the user’s preference as a utility function over 

all possible items (which doesn’t change so there are no state transitions), so each state in the 

POMDP represents each possible utility function.  Observations from sensing help the agent 

refine its belief state which serves as a probability distribution indicating the likelihood that any 

of the utility functions is the correct one.  In their work, the POMDP’s reward function is defined 

as the expected utility of making a decision based on the current beliefs about the user’s utility 

function.  The value of information, then, is defined as the change in expected reward based on 

the change in the agent’s belief about the user’s utility function after a sensing activity outcome.  

Thus, like VDIG (Grass and Zilberstein, 1997; 2000), Boutilier’s (2002) Preference Elicitation 

POMDP also uses task rewards (where the agent’s task is to make a decision supporting the 

user) in its calculation of value of information.  Our work, on the other hand, only considers the 



103 
 

agent’s knowledge in its value calculations and not task reward.  However, our reward function 

is more closely related to Boutilier’s as theirs does consider the change in belief about the user’s 

preference, which is what we consider to be the value of information (independent of task 

reward).  Further, as described for Doshi and Roy’s (2008) Preference Elicitiation POMDP in 

Section 4.2.2, our work differs from Boutilier’s (2002) in that ours considers the resource’s state 

(e.g., user frustration) which impacts resource behavior and the value of knowledge revision, 

while the only state they are concerned with is user preference and instead assume constant 

(albeit stochastic) behavior of the user in responding to sensing. 

6.3. Observation Selection Problem 

More recently, Krause et. al (2008; with Guestrin, 2005; 2007) have studied the problem 

of selecting sensing activities to perform in order to optimize one or more objective functions 

given a set of constraints, which they term the Observation Selection Problem (OSP).  

Specifically, this problem commonly takes the form: 

                                               Select               subject to          (21) 

where   is the set of all possible observations,   is the chosen set of observations to perform, 

     is an objective function evaluating the “goodness” of a set of observations,      is the cost 

of performing a set of observations, and   is a cost budget.   One popular application of this 

problem is the placement of sensors in an environment, such as to monitor the quality of a 

water supply (Krause and Guestrin, 2009).  Here, one goal might be to maximize the area of 

coverage of the sensors according to a budget of a fixed number of sensors.  Other applications 

include robotic patrol path planning (Singh et. al, 2009), experiment design (Krause et. al, 2008), 

and variance minimization (Krause et. al, 2008). To solve the OSP, Krause et. al prove that the 

simple greedy approach of always adding the best observation to the set selected will yield a 

good approximation to the optimal value (which is difficult to calculate since the problem is NP-



104 
 

Hard) when the objective function optimized satisfies two key properties: 1) monotonicity, and 

2) submodularity (i.e., diminishing returns from adding to the set evaluated).   

As we indicated earlier, this problem can also be naturally extended to include multiple 

objective functions and/or multiple constraints.  Often, this entails maximizing the minimum 

objective function value to offer some guarantee on worse case performance.  In the sensor 

placement example (Krause and Guestrin, 2009), another goal might be to optimize the 

likelihood of outbreak detection based on an intruder poisoning the water supply.  Given that 

there are multiple possible intrusion scenarios, the likelihood of detecting each can be 

represented by a different objective function.  Thus, maximizing the minimum across these 

functions guarantees a worst-case bound that any intrusion is at least that likely to be detected.  

For this case where there are multiple objective functions, Krause et. al (2008) prove that no 

polynomial time approximation algorithm exists (unless P = NP) to solve this problem.  However, 

they also show that by relaxing the cost constraints, an algorithm does exist (called Saturate) 

which can find a decent approximation to the optimal selection set. 

Comparing the Observer Selection Problem to our own work, we see strong similarities 

to the Observer Effect Tradeoff Problem formulation.  Specifically, our value of knowledge 

refinement function represents an objective function over sensing activities and we choose 

individual sensing activities to optimize this function (similar to their greedy approach to solving 

the OSP).  However, we roll the costs of information distortion and knowledge corruption from 

the Observer Effect into the learned objective function because these cannot be observed 

directly and independently in the environment.  Further, we again note that the Observer Effect 

results in non-monotonic sensing performance, so the objective function we consider does not 

satisfy the aforementioned properties required by Krause et. al (2008) to guarantee the quality 

of results.  Finally, on a more positive note, our work does contribute back to the Observation 



105 
 

Selection Problem by adding in the consideration about resource state and side-effects from 

sensing based not only on the sensing activity selected, but the state of the resource in the 

environment.  Thus, our solution could be considered a state-dependent Markov decision 

process solving a variant of the OSP. 

6.4. Multiagent Resource Allocation 

Finally, the area of multiagent resource allocation is related to our research.  Specifically, 

both characterize resources and build solutions depending on these properties.  Chevaleyre et. 

al (2006) summarize the common characterizations of resources in multiagent resource 

allocation as: 

1) continuous vs. discrete: can the a resource physically have any quantity, or is it 

constrained to whole units? 

2) divisible or not: can the resource be allocated in any quantity, or must it be allocated in 

whole units? 

3) sharable or not: can multiple agents use the same resource at the same time? 

4) static or not: is the resource consumed (i.e., depleted quantity through usage), 

perishable (i.e., depleted quantity over time), or static (unchanged)? 

5) single-unit vs. multi-unit: is the resource homogeneous or heterogenous? 

6) resources vs. tasks: task allocation is similar to resource allocation, where tasks are 

resources with added constraints (e.g., subtasks, task ordering, etc) 

Comparing our work to that described by Chevaleyre et. al (2006), we note that we have added 

a new resource characterization: stateful vs. stateless.  Similar to static resources, stateless 

resources do not change over time.  However, the behavior of stateful resources depends on the 

internal state of the resource which does change over time based on its usage.  This differs from 

both consumed and perishable resources which only consider the change in quantity of the 



106 
 

resource through usage and time.  The state of a stateful resource, on the other hand, can 

depend on more than just the resource’s quantity.  For example, a human user resource in an 

intelligent user interface application does not have less quantity after interactions, but her 

frustration level does change based on interruptions (Adamcyzk and Bailey, 2004; Mark et. al, 

2008). 

Lastly, the use of MDPs to model decisions about resource allocation has recently been 

studied in the context of environment sustainability for decisions about harvesting natural 

resources (Ermon, 2010).  Here, the state of the MDP is resource quantity which naturally grows 

over time but is reduced by harvesting the resource.  While this MDP does not consider the 

behavior of resources based on state (nor the state of resources other than quantity) in its 

model as ours does, its modeling of resource renewal over time could be useful for refining our 

Observer Effect MDP when the stateful resource in question naturally changes its own state 

over time, which we intend to investigate in the future. 

  



107 
 

Chapter 7   Future Work 
 

In this chapter, we describe our plans to advance and improve our research as future 

work.  Specifically, we categorize our future work into four areas:  1) further experiments, 2) 

solution improvement, 3) real-world application, and 4) research extension. 

First, we have identified several types of experiments we intend to conduct to further 

investigate both the Observer Effect Tradeoff Problem and our Observer Effect MDP.  These 

include: 

1) Determine what clues the environment and/or resource behavior provides which hints 

that the Observer Effect might become overpowering, useful for enabling the agent to 

predict this problem and avoid it (if possible) (c.f., Section 5.1.2) 

2) Investigate why REINFORCE (Williams, 1992) and RMax (Brafman and Tennenholtz, 

2002), an RL and PORL algorithm respectively, achieved a higher correlation between 

sensing and task performance, indicating that the two approaches were able to leverage 

the better sensing performance through considering the Observer Effect to achieve 

higher task performance (especially over time for RMax), while the other approaches 

were not (c.f., Sections 5.1.3 and 5.2.4) 

3) Experiment with a wider range of fully and partially observable reinforcement learning 

algorithms to better understand how learning algorithm characteristics (e.g., model-

based vs. model-free, continuous vs. discrete) affect the ability of agents to learn a 

controller for sensing activity selection within the Observer Effect MDP (c.f., Sections 

5.1.4 and 5.2.5) 

4) Better understand how the correlation between sensing and task performance depends 

on different approach and environment characteristics, such as model-based vs. model-

free learning, as well as learning duration (c.f., Section 5.2.4) 



108 
 

  

Second, based on our experiment results (c.f., Chapter 5) and related work (c.f., Chapter 

6), we have also determined some avenues for improving our Observer Effect MDP solution.  

These include: 

1) Add the ability to predict (using clues from the environment and/or resources as 

discussed above) when the Observer Effect will overpower the agent’s sensing in order 

to possibly mitigate this problem before it occurs, enabling the agent to maintain good 

sensing performance (c.f., Section 5.1.2) 

2) Enhance the rate of learning, especially for the PORL algorithms such as BA-POMDP 

(Ross et. al, 2007), in order to minimize decreased performance while learning before 

the agent is able to exploit a good controller learned from interactions with the 

environment (c.f., Sections 5.2.3 and 5.2.4) 

3) Improve our Observer Effect MDP model to allow agents to reason about self-state 

changes by the resources themselves (e.g., naturally decaying user frustration over 

time) similar to the application of MDPs to resource allocation in environment 

sustainability (Ermon et. al, 2010) (c.f., Section 6.4) instead of only considering changes 

to resource state by the agent 

4) Extend the Observer Effect MDP model to allow for joint reasoning by multiple 

cooperative agents in order to better facilitate joint sensing and problem solving 

between agents in a multiagent system.  Possible extensions include using a 

decentralized MDP or POMDP (DEC-MDP, DEC-POMDP) (Bernstein et. al, 2002) rather 

than a single-agent MDP/POMDP, as well as using multiagent reinforcement learning 

(Busoniu et. al, 2008) 



109 
 

5) Develop theoretical guarantees such as lower or upper bounds for solution performance 

based on resource or environment properties (e.g., rates of state change), as well as 

identify key properties we can exploit to improve performance (e.g., shape of the 

learned reward function) 

6)  Relax the Markovian state-history independence assumption in our solution for 

application to environments where more than just the current state effects the behavior 

of stateful resources 

7) Consider both need- and data-driven motivations for sensing, extending our approach 

beyond just satisfying current knowledge refinement needs to collect information to 

revise knowledge it expects to need in the near future if such information can be 

acquired with lower expected Observer Effect now than later, (c.f., Section 6.2) 

Third, we are interested in moving our research out of simulation and into real-world 

applications of multiagent systems.  Specifically, we are currently working to include the 

Observer Effect MDP in an intelligent user interface agent used to support collaborating 

researchers in the Biofinity Project (http://biofinity.unl.edu).  This agent monitors user activities 

such as editing a collaborative Wiki, sharing information with collaborators, running in silico 

experiments, or data management.  This monitoring provides information valuable for modeling 

the user, necessary for providing customized support tailored to the individual needs of 

different users.  However, at times the agent will need to interrupt the user to gather 

unobservable information (e.g., user goals) or clarify uncertain information in its models.  To 

balance the need for information through such interruptions and the possible frustration 

increase in the user (which affects sensing outcomes (c.f., Section 4.2.1)), we plan to utilize the 

Observer Effect MDP.  The intelligent user interface has already begun implementation and will 

http://biofinity.unl.edu/


110 
 

be initially deployed in the intelligent wiki portion of the Biofinity Project in November 2010.  

The addition of the Observer Effect MDP will follow shortly thereafter. 

Finally, we are interested in extending aspects of our work beyond the problem of 

sensing with stateful resources.  First, our work is grounded within the more general Limited 

Resource Sensing Problem (c.f., Section 2.2), so we would like to build a more generalized 

framework which handles reasoning about both stateful and stateless resources during sensing.  

Second, stateful resources can also be required during agent reasoning, such as a human user 

who collaboratively makes decisions with an agent in a mixed-initiative system (e.g., Ferguson 

and Allen, 2007).  Our model of the effects of changes in the state of a resource on its behavior 

should be extendable into such a scenario.  For example, an analog to our Observer Effect MDP 

might be useful for modeling the state-dependent (i.e., frustration) behavior of the human user 

the agent is reasoning with to choose interactions which avoid negative side-effects from user 

frustration (i.e., reduced cognitive ability or willingness to use the system (Klein et. al, 2002)).  

Further, the problem of choosing sensing activities under various costs is very closely related to 

the active learning problem in machine learning (Settles, 2010) (which is closely related to the 

Observer Selection Problem (Krause et. al, 2008) (c.f., Section 6.3)) where an agent must choose 

which costly data instances to purchase that will be used for training the learner.  If selecting 

which instances to purchase effects future instances and learning, the instance provider can be 

seen as a stateful resource (e.g., an intelligent oracle that models the learner and offers 

suggestions of which instances to purchase or changes the cost to optimize its benefit) and 

aspects of our work could apply to this problem as well. 

  



111 
 

Chapter 8   Conclusion 
 

In this chapter, we conclude the thesis.  We begin by summarizing what we have 

presented in the previous chapters, followed by a highlight of the key contributions of the work. 

8.1. Summary 

In Chapter 1, we provided a general introduction to our research.  We began by 

describing a common problem in current research areas of computer science in general and 

applications of artificial intelligence in specific: limited resources which constrain the intelligent 

agent’s activities, including reasoning through bounded rationality.  Next, we briefly introduced 

the main focus of this thesis: how the use of stateful resources during sensing also affects the 

bounded rationality of agents.  Finally, we gave a brief overview of our Observer Effect MDP 

solution and highlighted the key contributions of this thesis (summarized again in the following 

section). 

In Chapter 2, we dove deeper into the problem we address with our research: the 

Observer Effect Tradeoff Problem (OETP), a subproblem of the Limited Resource Sensing 

Problem (LRSP).  First, we provided important background on bounded rationality to set the 

context of our work.  Next, we described the LRSP which occurs when an agent must decide how 

to balance the need for information and knowledge revision with the costs incurred from using 

limited resources during sensing.  Then, we introduced an important subproblem of the LRSP: 

the OETP which occurs when the resources used by agents during sensing are stateful.  

Specifically, we define stateful resources as those resources whose behavior depends on some 

notion of internal state which changes with resource usage.  In the context of agent sensing, this 

is important because using such resources during sensing can change the state of the resources, 

altering their behavior and resulting in a different sensing outcome than would have occurred if 

the resource were in a different state.  This produces a phenomenon we call the Observer Effect 



112 
 

(after the similar phenomenon in the physical sciences) where the act of sensing can and will 

distort its own outcome (and potentially future outcomes).  From the perspective of sensing and 

bounded rationality, this is an important challenge to sensing because it creates a tradeoff (the 

OETP) between 1) the need for sensing to refine knowledge used to guide agent decision 

making, and 2) the need to avoid knowledge corruption produced by distorted sensing 

outcomes from the Observer Effect.  We concluded the chapter by formalizing the OETP in 

mathematical notation. 

In Chapter 3, we introduced our solution to the OETP: the Observer Effect MDP.  We 

began by describing how we use active perception as a vehicle for making decisions about what 

sensing activities to perform, a step we consider necessary for solving the LRSP and its 

subproblems including the OETP.   Next, we describe how we model the decision process of 

selecting sensing activities which require the use of stateful resources as a Markov decision 

process (MDP), which we call the Observer Effect MDP.  In this MDP, we account for the state of 

resources (along with the state of knowledge) in a sensing state and the agent makes decisions 

about what sensing activities to perform based on optimizing the value of knowledge refinement 

as the reward to the MDP based on the current sensing state and the agent’s sensing activity 

choice.  Here, the value of knowledge refinement captures not only expected benefits to 

knowledge refinement from sensing, but also expected distortions due to the current state of 

the resource.  Because such an MDP model is difficult to provide a priori to the agent, we 

describe how an agent can use reinforcement learning (RL) to learn both a controller to choose 

actions, as well as a model of the value of knowledge refinement reward function based on its 

experience interacting with the stateful resources through sensing. 

 



113 
 

In Chapter 4, we described the experimental setup used to explore and validate our 

Observer Effect MDP solution approach to the OETP.  Specifically, we considered two simulation 

environments, each with unique characteristics.  First, we used a fully observable robotic mining 

simulation called MineralMiner where an agent must use a microscope to determine the 

mineral contents of a mine which it must collected to complete tasks.  The accuracy of the 

microscope depends on its current energy level, which is both reduced through microscope use 

(depending on the type of test performed) and recharges over time when not used.  Second, we 

used a partially observable user preference elicitation simulation called UserRec, based on prior 

work by Doshi and Roy (2008), where an intelligent user interface agent must determine a user’s 

preference through interruptions which prompt the user for information.  These interruptions 

frustrate the user, affecting both the timeliness and accuracy of her responses.  Thus, in both 

environments, the state of the resource (energy for the microscope and frustration for the user) 

influence the accuracy of the sensing outcomes, producing an Observer Effect during sensing 

and requiring the agent to solve the OETP to make proper decisions about what sensing 

activities to perform.  For both simulations, we described how we model the Observer Effect 

MDP, as well as the reinforcement learning algorithms used to control agent sensing. 

In Chapter 5, we presented the results of the experimental setup described in Section 4.  

Specifically, we tested two hypotheses in both environments.  First, we tested the Observer 

Effect Hypothesis, which states that approaches which consider the state of stateful resources 

and the Observer Effect during sensing (such as our Observer Effect MDP) will outperform other 

approaches which do not consider resource state, even though the side-effects of sensing based 

on resource state is difficult to model and selecting wrong actions could worsen the effect.  

Second, we tested the Performance Hypothesis which states that increased sensing 

performance should yield higher task performance.  After demonstrating that the Observer 



114 
 

Effect exists in both environments as intended, we confirmed the Observer Effect Hypothesis 

(with statistical significance in MineralMiner), noting that the RL-based approaches tested which 

consider the Observer Effect achieved higher sensing performance (in the form of average value 

of knowledge refinement per sensing activity and thus less distortion) than ignoring this effect.  

Thus, considering resource state and the Observer Effect when using stateful resources is 

important and our Observer Effect MDP solution approach (with reinforcement learning) is 

capable of doing so.  However, we were unable to confirm the Performance Hypothesis as the 

top RL algorithms achieved the highest task performance, but there was generally little to no 

correlation between sensing and task performance. 

In Chapter 6, we described the most relevant related work from the artificial intelligence 

and multiagent systems literature.  Specifically, we described four areas of research.  First, prior 

work in anytime sensing has considered the use of anytime algorithms as metareasoning control 

of sensing activities.  However, this work only applies to stateless resources with monotonic 

sensing performance with resource usage, an assumption violated by the Observer Effect in 

stateful resources.  Second, prior work in value of information (VOI) driven sensing has 

considered how to choose sensing actions which maximize the VOI produced by sensing, which 

is similar to our selection based on the value of knowledge refinement.  However, most of these 

approaches rely on decision or task rewards to calculate the VOI, while our value is independent 

of the outcomes of decisions, making our approach more modular.  Third, prior work in the 

Observation Selection Problem has also considered sensing activity selection to optimize an 

objective function, usually given constraints, similar to our formalization of the OETP.   However, 

their work provides algorithms with theoretical guarantees about the quality of the selection 

which assumes properties such as monotonicity and submodularity again not present (at least 

monotonicity) due to the Observer Effect.  Finally, prior work in multiagent resource allocation 



115 
 

has defined important characteristics of resources used by agents, to which we add the stateful 

property.  Further, very recent work has looked at the use of MDPs for modeling resource 

allocation in environment sustainability which considers the renewal of resource quantity over 

time which could be useful for improving our Observer Effect MDP model when resources also 

renew their states over time. 

Finally, in Chapter 7, we discussed the future work we intend to explore after the 

conclusion of this thesis.  Specifically, we are interested in four areas of future work: 1) further 

experimentation to discover key environment/resource properties related to the Observer 

Effect or further explain results discovered in this thesis, 2) further improvement to the 

Observer Effect MDP, including the aforementioned state renewal of resources over time, as 

well as considering both need- and data-driven motivations for sensing, 3) the application of our 

work to real-world multiagent deployments, including an intelligent user interface for 

supporting collaborating researchers within the Biofinity Project (http://biofinity.unl.edu), and 

finally 4) extending our work both to solve other problems, including the general LRSP, as well as 

into other areas of research, including agent reasoning in mixed-initiative systems and active 

machine learning. 

8.2. Contributions 

We conclude this thesis by re-emphasizing its key contributions.  Specifically, we have 

provided: 

1. An extension of bounded rationality as studied in artificial intelligence to the sensing 

activities of the agent through the Limited Resource Sensing Problem, 

2. The formalization of the Observer Effect in agent sensing with stateful resources and its 

associated tradeoff with respect to knowledge refinement,  

http://biofinity.unl.edu/


116 
 

3. A decision theoretic solution called the Observer Effect MDP for modeling the effects of 

stateful resource usage during sensing and solving the OETP, 

4. Simulation environments mimicking real-world scenarios and applications for studying 

the Observer Effect and solution approaches, and 

5. A Java library offering various general artificial intelligence techniques which can be 

reused for other AI projects. 

  



117 
 

References 
 
Adamczyk, P.D. and Bailey, B.P. 2004. If not now, when? The effects of interruption at different 

moments within task execution. Proc. of CHI’04. Vienna, Austria. April 24-29. 271-278. 
 
Adomavicius, G. and Tuzhulin, A. 2005. Toward the next generation of recommender systems: A 

survey of state-of-the-art and possible extensions. IEEE Transactions on Knowledge and 
Data Engineering. 17(6). 734-749. 

 
Akyildiz, I.F., Pompili, D., and Melodia, T. 2005. Underwater acoustic sensor networks: research 

challenges. Ad hoc networks. 3(3), 257-279. 
 
Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. 2002. Wireless sensor networks: a 

survey. Computer Networks. 38. 393-422. 
 
Arisha, K., Youssef, M., and Younis, M. 2002. Energy-aware TDMA-based MAC for sensor 

networks. System-level power optimization for wireless multimedia communication. ed. 
Karri, R. and Goodman, D. Kluwer Academic Publishers: Norwell, MA.  21-40. 

 
Bajcsy, R. 1988. Active perception. Proceedings of the IEEE. 76(8). 996-1005.  
 
Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S. 2002. The complexity of decentralized 

control of Markov decision processes. Mathematics of Operations Research. 27(4). 819-
840.  

 
Biofinity Project, The. 2010. Available online at http://biofinity.unl.edu 
 
Boddy, M. and Dean, T., 1989. Solving time-dependent problems. Proc. of IJCAI’89. 979-984. 
 
Boutilier, C. 2002. A POMDP formulation of preference elicitation problems. Proc. of AAAI’02, 

239-246. 
 
Brafman, R.I. and Tennenholtz, M. 2002. R-max – A general polynomial time algorithm for near-

optimal reinforcement learning. Journal of Machine Learning Research. 3. 213-231. 
 
Bull, S. and Greer, J. 2000. Peer help for problem-based learning. Proceedings of the 8th 

International Conference on Computers in Education (ICCE/ICAI ’00). 2. 1007-1015. 
 
Burnett, G.E. and Porter, J.M. 2001. Ubiquitous computing within cars: designing controls for 

non-visual use. International Journal of Human-Computer Studies. 55(4). 521-531. 
 
Busoniu, L., Babuska, R, and De Schutter, B. 2008. A comprehensive survey of multiagent 

reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics – Part C: 
Applications and Reviews. 32(2). 156-172. 

 
Casper, J. and Murphy, R.R. 2003. Human-robot interactions during the robot-assisted urban 

search and rescue response at the World Trade Center. IEEE Transactions on SMC – Part 
B: Cybernetics. 33(3). 367-385. 

http://biofinity.unl.edu/


118 
 

Chalupsky, H. et al. 2001. Electric Elves: Applying agent technology to support human 
organizations. Proc. of IAAI ’01. Seattle, WA. Aug. 7-9, 2001. 51-58. 

 
Chevaleyre, Y. et. al. 2006. Issues in multiagent resource allocation. Informatica. 30. 3-31. 
 
Conlisk, J. 1996. Why bounded rationality? Journal of Economic Literature. 34. June 1996. 669-

700. 
 
desJardins, M.E. et. al. 1999. A survey of research in distributed, continual planning. AI 

Magazine. 20(4). 13-22. 
 
Doshi, F. and Roy, N. 2008. The permutable POMDP: fast solutions to POMDPs for preference 

elicitation. Proc. of AAMAS’08, 493-500. 
 
Dowling, J. et. al 2005. Using feedback in collaborative reinforcement learning to adaptively 

optimize MANET routing, IEEE Transactions on SMC, Part A. 35(3). 360-372. 
 
Ermon, S. et. al. 2010. Playing games against nature: optimal policies for renewable resource 

allocation. Proc. of UAI’10. 
 
Ferguson, G. and Allen, J. 2007. Mixed-initiative systems for collaborative problem solving. AI 

Magazine. 28(2). 23-32. 
 
Fikes, R.E. and Nilsson, N.J. 1971. Application of theorem proving to problem solving. Artificial 

Intelligence. 2(3-4). 189-208. 
 
Floreano, D. and Mondada, F. 1994. Active perception, navigation, homing, and grasping: An 

autonomous perspective. Proc. of the Perception to Action Conference. 122-133. 
 
Fowler, H.J. and Leland, W.E. 1991. Local area network traffic characteristics, with implications 

for broadband network congestion management. IEEE Journal on Selected Areas of 
Comm., 9(7). 1139-1149. 

 
Ganek, A.G., and Corbi, T.A., 2003. The dawning of the autonomic computing era. IBM Systems 

Journal.  42(1). 5-18. 
 
Gers, F.A., Schmidhuber, J., and Cummins, J. 2000. Learning to forget: Continual prediction with 

LSTM. Neural Computation. 12(10). 2451-2471. 
 
Gigerenzer, G. and Goldstein, D.G. 1996. Reasoning the fast and frugal way: Models of bounded 

rationality. Psychological Review. 103(4). 650-669. 
 
Gigerenzer, G. and Todd, P.M. 1999. Fast and frugal heuristics – The adaptive toolbox. Simple 

heuristics that make us smart. Oxford University Press: New York. 3-34. 
 
Grass, J. and Zilberstein, S. 1997. Value-driven information gathering. Proc. of AAAI Workshop on 

Building Resource-Bounded Reasoning Systems. 



119 
 

Grass, J. and Zilberstein, S. 2000. A value-driven system for autonomous information gathering. 
Journal of Intelligent Information Systems. 14. 5-27. 

 
Hochreiter, S. and Schmidhuber, J. 1997. Long short-term memory. Neural Computation. 9. 

1735-1780. 
 
Horvitz, E. 1987. Reasoning about beliefs and actions under computational resource constraints. 

Proc. of UAI’87. 429-444. 
 
Jaeger, H. 2002. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and 

the "echo state network" approach. GMD Report 159. German National Research Center 
for Information Technology.  

 
Josang, A. 2001. A logic for uncertain probabilities, International Journal of Uncertainty, 

Fuzziness & Knowledge-Based Systems. 9. 279-311. 
 
Kaelbling, L.P., Littman, M.L., and Cassandra, A.R. 1998. Planning and acting in partially 

observable stochastic domains. Artificial Intelligence. 101. 99-134. 
 
Kaelbling, L.P., Littman, M.L., and Moore, W. 1996. Reinforcement learning: A survey. Journal of 

Artificial Intelligence Research. 4. 237-285. 
 
Kephart, J.O. and Chess, D.M. 2003. The vision of autonomic computing. IEEE Computer. 36(1). 

41-50. 
 
Khandaker, N., Soh, L.-K., Miller, L.D., Eck, A., & Jiang, H. (to appear). Lessons Learned from 

Deploying I-MINDS and ClassroomWiki – Collaborative Learning and Writing 
Applications. to appear in IEEE Transactions on Learning Technologies (Special Issue on 
Intelligent Support Systems for CSCL). 

 
Kidd, C.D. et. al. 1999. The aware home: A living laboratory for ubiquitous computing research. 

Cooperative Buildings: Integrating Information, Organizations, and Architecture. 
Springer. 191-198. 

 
Klein, J., Moon, Y., and Picard, R.W. 2002. This computer responds to user frustration: theory, 

design, and results. Interacting with Computers. 14. 119-140. 
 
Krause, A. and Guestrin, C. 2005. Optimal nonmyopic value of information in graphical models – 

efficient algorithms and theoretical limits. Proc. of IJCAI’05. 1339-1345. 
 
Krause, A. and Guestrin, C. 2007. Near-optimal observation selection using submodular 

functions. Proc. of AAAI’07. 
 
Krause, A. et. al. 2008. Robust submodular observation selection. Journal of Machine Learning 

Research. 9. 2761-2801. 
 
Krause, A. and Guestrin, C. 2009. Optimizing sensing: From water to the web. IEEE Computer. 

42(8). 38-45. 



120 
 

Landeldt, B., Sookavantana, P., and Seneviratne, A. 2000. The case for a hybrid passive/active 
network monitoring scheme in the wireless internet. Proc. ICON’00. 139-143. 

 
Lee, E.A. 2008. Cyber-physical systems: Design challenges. Technical Report UCB/EECS-2008-8. 

University of California at Berkeley. January 23. 
 
Lesser, V., et al., 2000. BIG: An agent for resource-bounded information gathering and decision 

making. Artificial Intelligence. 118. 197-244 
 
Mark, G., Gudith, D., and Klocke, U. 2008. The cost of interrupted work: more speed and stress. 

Proc. of CHI’08. 107-110. 
 
Monostori, L., Vancza, J., and Kumara, S.R.T. 2006. Agent-based systems for manufacturing. CIRP 

Annals – Manufacturing Technology. 55(2). 697-720. 
 
Myers, K.L.  et al. 2007. An intelligent personal assistant for task and time management. AI 

Magazine. 28(2). 47-61. 
 
North, M.J., Collier, N.T., and Vos, J.R. 2006. Experiences creating three implementations of the 

Repast agent modeling toolkit, ACM Transactions on Modeling & Computer Simulation. 
16. 1-25. 

 
Padhy, P., Dash, R.K., Martinez, K., and Jennings, N.R. 2006. A utility-based sensing and 

communication model for a glacial sensor network. Proc AAMAS’06. Hakodate, Japan, 
May 8-12. 1353-1360. 

 
Pineau, J., Gordon, G., and Thrun, S. 2003. Point-based value iteration: An anytime algorithm for 

POMDPs. Proc. of IJCAI'03. 1025-1032. 
 
Pollack, M.E. and Ringuette, M. 1990. Introducing the tileworld: experimentally evaluating agent 

architectures. Proc. of AAAI’90. 183-189. 
 
Raja, A. and Lesser, V. 2007. A framework for meta-level control in multi-agent systems. 

JAAMAS. 15. 147–196. 
 
Ross, S. and Chaib-draa, B. 2007. Aems: An anytime online search algorithm for approximate 

policy refinement in large POMDPs. Proc. of IJCAI ’07. 2592-2598. 
 
Ross, S., Chaib-draa, B., and Pineau, J. 2007. Bayes-adaptive POMDPs. Proc. of NIPS’07. 
 
Ross, S., Pineau, J., Paquet, S., and Chaib-draa, B. 2008. Online planning algorithms for POMDPs. 

Journal of Artificial Intelligence Research. 32. 663-704. 
 
Rubinstein, A. 1998. Modeling Bounded Rationality. MIT Press: Cambridge, MA. 
 
Rumelhart, D.E., Hinton, G.E., and Williams, R.J. 1986. Learning internal representations by error 

propogation.  Parallel distributed processing: explorations in the microstructure of 
cognitions. MIT Press:Cambridge, MA. 1. 318-362. 



121 
 

Russell, S. 1995. Rationality and intelligence. Proc. IJCAI ’95. Montreal, Quebec, Canada. 950-
957. 

 
Saha, D. and Mukherjee, A. 2003. Pervasive computing: A paradigm for the 21st century. 

Computer. 36(3). 25-31.  
 
Settles, B. 2010. Active learning literature survey. Computer Sciences Technical Report 1648. 

University of Madison, Wisconsin. Updated Jan. 26, 2010. 
 
Shah, R.C. and Rabaey, J.M. 2002. Energy aware routing for low energy ad hoc sensor networks. 

Proc. of WCNC’02. March 17-21. 350-355. 
 
Simon, H.A. 1955. A behavioral model of rational choice. Quarterly Journal of Economics. 69(1). 

99-118. 
 
Simon, H.A. 1956. Rational choice and the structure of the environment. Psychological Review. 

63(2). 129-138. 
 
Simon, H.A. 1997. Models of bounded rationality. 3. MIT Press: Cambridge, MA. 
 
Singh, A. et. al. 2009. Efficient information sensing using multiple robots. Journal of Artificial 

Intelligence Research. 34. 707-755. 
 
Smith, T. and Simmons, R. 2004. Heuristic search value iteration for POMDPs. Proc. UAI’04. 520–

527. 
 
So, R. and Sonenberg, L. 2009. The roles of active perception in intelligent agent systems. 

PRIMA’05, LNAI 4078. ed. Lukose, D. and Shi, Z. Springer-Verlang: Berlin, Germany. 139-
152. 

 
Sun, M., Wang, Q., and Sha, L. 2007. Building reliable MD PnP systems. Proc. of HCMDSS-

MDPnP’07. Boston, MA. July 25-27. 104-110. 
 
Sutton, R.S. and Barto, A.G. 1998. Reinforcement learning: an introduction. MIT 

Press:Cambridge, MA. 
 
Watkins, C.J. 1989. Learning from delayed rewards. Ph.D thesis, Cambridge University, 

Cambridge, England. 
 
Weiss, G. 1999. Multiagent systems: a modern approach to distributed artificial intelligence. The 

MIT Press: Cambridge, MA. 
 
Werbos, P.J. 1990. Backpropogation through time: what it does and how to do it.  Proc. of the 

IEEE. 78(10). 1550-1560. 
Weyns, D., Helleboogh, A., and Holvoet, T. 2005. The packet-world: a test bed for investigating 

situated multi-agent systems. Software Agent-Based Applications, Platforms, and 
Development Kits. 383-408. 

 



122 
 

Weyns, D., Steegmans, E., and Holvoet, T. 2004. Towards active perception in situated multi-
agent systems. Applied Artificial Intelligence. 18. 867-883. 

 
Wierstra, D., Foerster, A., Peters, J., and Schmidhuber, J. 2007. Solving deep memory POMDPs 

with recurrent policy gradients. Proc. of ICANN’07. 697-706. 
 
Williams, R.J. 1992. Simple statistical gradient-following algorithms for connectionist 

reinforcement learning. Machine Learning, 8, 229-256. 
 
Yorke-Smith, N., Saddati, S., Meyers, K.L., and Morley, D.N. 2009. Like an intuitive and courteous 

butler: a proactive personal agent for task management. Proc. of AAMAS’09. Budapest, 
Hungary. May 13-15. 337-344. 

 
Zilberstein, S. 1996. Resource-bounded sensing and planning in autonomous systems. 

Autonomous Robots. 3. 31-48. 
 
Zilberstein, S. 2008. Metareasoning and bounded rationality. Proc. of AAAI Workshop on 

Metareasoning: Thinking about Thinking. 
 
Zilberstein, S. and Russell, S.J. 1993. Anytime sensing, planning, and action: A practical model for 

robot control. Proc. of IJCAI’93. 1402-1407. 
  



123 
 

Appendix A  Additional Results Figures 
 

In this appendix, we provide all of the time series results for both the MineralMiner and 

UserRec experiments discussed in Chapter 5.  We begin by providing the results for 

MineralMiner, followed by UserRec. 

A.1. MineralMiner Time Series Results 

A.1.1. Sensing Performance 

 

 
Figure A.1 Sensing Performance over Time in MineralMiner (0.0   ) 

 
 



124 
 

 
Figure A.2 Sensing Performance over Time in MineralMiner (0.1   ) 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.3 Sensing Performance over Time in MineralMiner (0.2   ) 



125 
 

 
Figure A.4 Sensing Performance over Time in MineralMiner (0.3   ) 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.5 Sensing Performance over Time in MineralMiner (0.4   ) 



126 
 

 
Figure A.6 Sensing Performance over Time in MineralMiner (0.5   ) 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.7 Sensing Performance of RL vs. Random over Time in MineralMiner (0.0   ) 



127 
 

 
Figure A.8 Sensing Performance of RL vs. Random over Time in MineralMiner (0.1   ) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.9 Sensing Performance of RL vs. Random over Time in MineralMiner (0.2   ) 



128 
 

 
Figure A.10 Sensing Performance of RL vs. Random over Time in MineralMiner (0.3   ) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.11 Sensing Performance of RL vs. Random over Time in MineralMiner (0.4   ) 



129 
 

 

 
Figure A.12 Sensing Performance of RL vs. Random over Time in MineralMiner (0.5   ) 

 
 
 
 
 
 
 
 
 

A.1.2. Task Performance 

 
Figure A.13 Task Performance over Time in MineralMiner (0.0   ) 



130 
 

 

 
Figure A.14 Task Performance over Time in MineralMiner (0.1   ) 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.15 Task Performance over Time in MineralMiner (0.2   ) 



131 
 

 

 
Figure A.16 Task Performance over Time in MineralMiner (0.3   ) 

 
 
 
 
 
 
 
 
 
 
 

 
Figure A.17 Task Performance over Time in MineralMiner (0.4   ) 



132 
 

 

 
Figure A.18 Task Performance over Time in MineralMiner (0.5   ) 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.19 Task Performance of RL vs. Random over Time in MineralMiner (0.0   ) 



133 
 

 

 
Figure A.20 Task Performance of RL vs. Random over Time in MineralMiner (0.1   ) 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.21 Task Performance of RL vs. Random over Time in MineralMiner (0.2   ) 



134 
 

 
Figure A.22 Task Performance of RL vs. Random over Time in MineralMiner (0.3   ) 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.23 Task Performance of RL vs. Random over Time in MineralMiner (0.4   ) 



135 
 

 
Figure A.24 Task Performance of RL vs. Random over Time in MineralMiner (0.5   ) 

 

A.2. UserRec Time Series Results 

A.2.1. Sensing Performance 

 
 
 
 
 

 
Figure A.25 Sensing Performance over Time in UserRec (Zero Frustration User) 



136 
 

 
Figure A.26 Sensing Performance over Time in UserRec (Patient User) 

Note: Random has fewer data points because each of its simulation runs exceeds the user’s 
frustration boiling point and does not survive all 200 episodes.  

 
 
 
 
 
 
 
 
 

 
Figure A.27 Sensing Performance over Time in UserRec (Task-oriented User) 

Note: Random has fewer data points because each of its simulation runs exceeds the user’s 
frustration boiling point and does not survive all 200 episodes.  



137 
 

 
Figure A.28 Sensing Performance over Time in UserRec (Angry User) 

Note: Each approach has incomplete data points because each of their simulation runs 
exceeds the user’s frustration boiling point and does not survive all 200 episodes.  

 
 
 
 
 
 
 

A.2.2. Task Performance 

 
Figure A.29 Task Performance over Time in UserRec (Correct Submissions,  

Zero Frustration User) 



138 
 

 
Figure A.30 Task Performance over Time in UserRec (Correct Submissions,  

Patient User) 
Note: Random has fewer data points because each of its simulation runs exceeds the user’s 

frustration boiling point and does not survive all 200 episodes.  
 
 
 
 
 
 
 

 
Figure A.31 Task Performance over Time in UserRec (Correct Submissions,  

Task-oriented User) 
Note: Random has fewer data points because each of its simulation runs exceeds the user’s 

frustration boiling point and does not survive all 200 episodes.  



139 
 

 
Figure A.32 Task Performance over Time in UserRec (Correct Submissions,  

Angry User) 
Note: Each approach has incomplete data points because each of their simulation runs 

exceeds the user’s frustration boiling point and does not survive all 200 episodes.  
 
 
 
 
 
 
 
 
 

 
Figure A.33 Task Performance over Time in UserRec (Average Task Reward,  

Zero Frustration User) 



140 
 

 
Figure A.34 Task Performance over Time in UserRec (Average Task Reward,  

Patient User) 
Note: Random has fewer data points because each of its simulation runs exceeds the user’s 

frustration boiling point and does not survive all 200 episodes.  
 
 
 
 
 
 
 

 
Figure A.35 Task Performance over Time in UserRec (Average Task Reward,  

Task-oriented User) 
Note: Random has fewer data points because each of its simulation runs exceeds the user’s 

frustration boiling point and does not survive all 200 episodes.  



141 
 

 
Figure A.36 Task Performance over Time in UserRec (Average Task Reward,  

Angry User) 
Note: Each approach has incomplete data points because each of their simulation runs 

exceeds the user’s frustration boiling point and does not survive all 200 episodes.  
 
 
 
 
 
 
 
 

A.2.3. User Frustration 

 
Figure A.37 User Frustration over Time in UserRec (Zero Frustration User) 



142 
 

 
Figure A.38 User Frustration over Time in UserRec (Patient User) 

Note: Random has fewer data points because each of its simulation runs exceeds the user’s 
frustration boiling point and does not survive all 200 episodes.  

 
 
 
 
 
 
 
 
 
 

 
Figure A.39 User Frustration over Time in UserRec (Task-oriented User) 

Note: Random has fewer data points because each of its simulation runs exceeds the user’s 
frustration boiling point and does not survive all 200 episodes.  



143 
 

 
Figure A.40 User Frustration over Time in UserRec (Angry User) 

Note: Each approach has incomplete data points because each of their simulation runs 
exceeds the user’s frustration boiling point and does not survive all 200 episodes.  

 
 
 
 
 


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	11-2010

	Agent Sensing with Stateful Resources
	Adam D. Eck

	tmp.1291134438.pdf.KOd6X

