
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Fall 11-26-2013

Algorithms for Grid Graphs in the MapReduce
Model
Taylor P. Spangler
University of Nebraska-Lincoln, spangler.tay@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Theory and Algorithms Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Spangler, Taylor P., "Algorithms for Grid Graphs in the MapReduce Model" (2013). Computer Science and Engineering: Theses,
Dissertations, and Student Research. 66.
http://digitalcommons.unl.edu/computerscidiss/66

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/66?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages


ALGORITHMS FOR GRID GRAPHS IN THE MAPREDUCE MODEL

by

Taylor Spangler

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Vinodchandran Variyam

Lincoln, Nebraska

December, 2013



ALGORITHMS FOR GRID GRAPHS IN THE MAPREDUCE MODEL

Taylor Spangler, M.S.

University of Nebraska, 2013

Adviser: Vinodchandran Variyam

The MapReduce programming paradigm has seen widespread use in analyzing large data

sets. Often these large data sets can be formulated as graphs. Many algorithms, such as

filtering based algorithms, are designed to work efficiently for dense graphs - graphs with

substantially more number of edges than the number of vertices. These algorithms are not

optimized for sparse graphs - graphs where the number of edges is of the same order as the

number of vertices. However, sparse graphs are also common in big data sets. In this thesis

we present algorithms for maximal matching, approximate edge covering, and approximate

maximum weighted matching problems over grid graphs, a natural class of sparse graphs -

graphs where the vertices and edges lie on a two dimensional integer grid. These algorithms

take advantage of the inherent structure of grid graphs, thus making them more efficient

than the known algorithms. In addition, in the case of maximum weighted matching, the

algorithm presented gives a better approximation ratio than previous MapReduce algorithms.
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Chapter 1

Introduction

The amount of data being stored is growing at an exponential rate, approximately doubling

every four years [7]. In many applications the data required to solve problems cannot fit on

one machine, or even some small number of machines. Recently, new models of computation

have been developed to facilitate more ways of solving problems on these large data sets.

One such new model for solving large problems is a distributed computation model called

MapReduce [10]. The MapReduce computational model is based on a programming paradigm

of the same name. This paradigm has seen widespread use in industry and was originally

developed at Google [6]. The open source implementation, Hadoop [14], is an Apache product

partially developed by Yahoo! and is used at Facebook for analyzing large data sets [3].

Hadoop has also seen use at many other companies and universities [10]. In MapReduce,

the data is split among some number of machines and processed in parallel in one round.

Next, the output of this round is remapped to some set of machines (which may or may not

be the same as the previous round), sent to the new machines, and then processed in the

next round. This is repeated until the problem is solved. The MapReduce computational

model tries to capture the essence of the paradigm and allow mathematical analysis of

problems and algorithms in this framework, by imposing restrictions on the machines used,
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and mathematically describing the system.

Problems which are too large to be practically solved on one machine, or even a small

number of machines, are commonly referred to as big data problems. Typically big data

problems involve at least hundreds of gigabytes of data, but the size depends greatly on the

application, the kinds of problems being solved, and the state of technology [9]. While there

are many big data problems that fit well into the MapReduce model, one area that has seen

lots of interest is massive graph problems. However, solving the problem is not the only

concern. MapReduce rounds require lots of communication and shuffling of the data. In fact it

is possible that the entire problem may be communicated to a new set of machines each round.

This can be very time consuming, so limiting the number of rounds and the communication

per round is desirable. Limiting the number of rounds required by an algorithm to a small

constant number, say two or three, is the goal. There are probabilistic algorithms which

solve maximal matching, approximate maximum weighted matching, minimum spanning tree,

and approximate minimum edge cut in a constant number of rounds [12]. However, these

algorithms were designed for c-dense graphs, that is, graphs with n nodes having at least n1+c

edges. Therefore, these algorithms would not be efficient for sparse graphs. The techniques

used to solve these problems in dense graphs involve shrinking the size of the problem by

filtering edges out of the graph, such that the filtered graph can fit on one machine. This is

done repeatedly until the problem is solved. For sparse graphs, such as planar graphs, this

technique does not typically work well. This is because these graphs have enough vertices that

even performing computations with all of the vertices on one machine becomes impractical.

Grid graphs are a family of sparse graphs, where each node lies on a grid, and the edges

connect vertices which are one row or column away from each other. Here, grid graphs are

explored in the context of MapReduce. Grid graphs have a structure that would appear

to make them ideal candidates for the MapReduce computational model. In this thesis we

investigate MapReduce algorithms for Grid graphs. First an overview of the MapReduce
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computational model is introduced, followed by some definitions and known results for grid

graphs. Finally, MapReduce algorithms for maximal matching, 3
2
-approximation for minimum

edge covering, and finally 1
2
-approximation for maximum weighted matching in grid graphs are

presented and analyzed. All three algorithms are shown to be deterministic, run in a constant

number of MapReduce rounds, and to operate within the confines of the MapReduce model,

when grid graphs contain O(nm) edges. This places maximal matching, 3
2
-approximation for

minimum edge covering, and 1
2
-approximation for maximum weighted matching in the most

efficient MapReduce class DMRC0 for grid graphs with O(nm) edges.
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Chapter 2

Background

2.1 Matchings and Coverings

The algorithms presented in this thesis solve or approximate three fundamental problems in

theoretical computer science. These problems are defined for an undirected graph G = (V,E),

with vertex set V and edge set E, as follows:

Definition 2.1.1. We say that M ⊆ E is a matching, if ∀e, f ∈M e is not adjacent to f .

This matching is said to be maximal if every e ∈ E −M is adjacent to some f ∈M .

Definition 2.1.2. A matching M is a maximum cardinality matching, sometimes

referred to as a maximum matching, if it is the matching of highest possible cardinality.

Definition 2.1.3. For a weighted graph G = (V,E), a matching M is a maximum

weighted matching if there does not exist M ′ on G, such that
∑

f∈M ′ w(f) >
∑

e∈M w(e).

Definition 2.1.4. A 1
2
-approximation for maximum cardinality matching, M ′ is a

matching such that |M ′| ≥ 1
2
|M | where M is a maximum cardinality matching on G. Similarly

a 1
2
-approximation for maximum weighted matching, M ′, is a matching such that∑
f∈M ′ w(f) ≥ 1

2

∑
e∈M w(e) where M is a maximum weighted matching on G.
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Definition 2.1.5. An edge cover on a graph G = (V,E) is a set of edges E ′ ⊆ E, such

that ∀v ∈ V , ∃e ∈ E ′ where e is incident on v. A minimum edge cover is the edge cover

of smallest cardinality.

Definition 2.1.6. A 3
2
-approximation for minimum edge cover E ′ is an edge cover

on G such that |E ′| ≤ 3
2
|F | where F is a minimum edge cover on G

2.2 MapReduce

One of the primary programming paradigms used to handle problems with large amounts of

data is the MapReduce paradigm. A MapReduce program consists of some finite number of

MapReduce rounds. The input to each MapReduce round is a set of

〈key;value〉 pairs, where the key and value are binary strings. Each round has three phases:

a map phase, where each single 〈key;value〉 pair is mapped to the machines in the system

as a new multiset of 〈key;value〉 pairs where the values in each new 〈key;value〉 pair is a

substring of the original value, a shuffle phase where the underlying system communicates

the 〈key;value〉 pairs to the machines as they were mapped, and a reduce phase where some

function is computed on the data on each machine.

Definition 2.2.1. A mapper is a function (which may or may not be randomized) that

receives one 〈key;value〉 pair as input. The mapper outputs a finite multiset of 〈key;value〉

pairs.

Definition 2.2.2. A reducer is a function (which may or may not be randomized) that

receives a key k, and a sequence of values v1, v2, ... all of which are binary strings. The reducer

outputs a multiset of pairs of binary strings 〈k; vk,1〉, 〈k; vk,2〉,.... The key in the output pairs

is the same as the key received by the receiver as input.
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A MapReduce program consists of a finite sequence of MapReduce rounds,

〈µ1, ρ1, µ2, ρ2, ...µR, ρR〉, where each µi is a mapper, each ρi is a reducer, and the subsequence

〈µi, ρi〉 denotes a MapReduce round. The input is a multiset of 〈key;value〉 pairs, denoted by

U0, and Ui is the multiset of 〈key;value〉 pairs output by round i. The program executes as

follows:

For r = 1, 2, ..., R:

1. Map: Feed each pair 〈k; v〉 in Ur−1 to mapper µr and run it. The mapper will generate

a sequence of new 〈key;value〉 pairs 〈k1; v1〉, 〈k2; v2〉,.... Let U ′r = ∪〈k;v〉∈Ur−1µr(〈k; v〉)

2. Shuffle: For each k, let Vk,r be the values such that 〈k; vi〉 ∈ U ′r. Construct Vk,r from

U ′r.

3. Reduce: For each k, feed k and some arbitrary permutation of Vk,r to a separate

instance of reducer ρr and run it. The reducer will generate a sequence of tuples

〈k; v′1〉, 〈k; v′2〉,.... Let Ur be the multiset of 〈key;value〉 pairs output by ρr, that is,

Ur = ∪kρr(〈k;Vk,r〉).

All following algorithms omit the shuffle phase, as the shuffle phase simply communicates

the 〈key;value〉 pairs to the correct machines.

2.3 Matrix Transpose in MapReduce

Often MapReduce is used to solve problems that are very large, but simple in structure and

easily parallelizable. An example of this would be transposing a matrix. A simple MapReduce

algorithm for computing the transpose of a matrix can be seen as follows:
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• Let the mappers each receive a 〈key; value〉 such that the key is the row number i, and

the value is the set of entries S = {mi,1,mi,2, ...,mi,n} in the given row of the n × n

matrix M .

Map: For each mi,j ∈ S, construct the key/value pair 〈j; (mi,j, i)〉.

Reduce: The reducers receive a key/value pair 〈 j, S ′ = {(mi1,j, i1), (mi2,j, i2), ..., (min,j, in)}〉.

Sort S ′ on the ik term in each tuple (mik,j, ik). Output the new row j of the transposed

matrix.

Here each ik is the row number associated with the given entry from M . However, the

shuffle phase does not guarantee that these are in any given order, therefore they must be

sorted. Sorting them puts the entries in the order of the rows they originated from in M .

And, because we used the column j as the key in the map phase, we know that each mik,j

comes from column j. Thus, sorting the values in the reduce phase gives us the associated

row in MT . Therefore, MT has been computed and can be output to a file, or used as part

of another MapReduce computation.

2.4 Filtering Techniques

One of the major challenges when working with MapReduce is that each machine can only

work on a relatively small portion of the entire problem. In fact, the entire system only has

enough space to store some constant number of copies of the entire problem. One way to

handle this challenge is to construct a smaller version of the problem on one machine. This

is typically referred to as filtering.

Filtering is a technique for designing algorithms, which has had some success on graph

problems. Typically, when working with graphs, the filtering is done by repeatedly filtering a

small number of edges from the entire graph onto one machine, and then constructing the
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solution to the problem on this machine. This is repeated until the problem is solved, either

approximately or exactly. This technique has been used to find a minimum spanning tree,

maximal matching, 1
8
-approximation for maximum weighted matching, minimum cut, and a

3
2
-approximation for edge covering in a constant number of MapReduce rounds. The number

of rounds for these algorithms is often parameterized with respect to the density of the graph,

c, and the chosen ε, in the form b c
ε
c. Because c ≤ 2 and ε is constant, this leaves the number

of rounds constant. Parameterizing this way allows for a tradeoff between number of rounds,

and the space required by each machine [12].

2.4.1 Maximal Matching, a filtering example

Let G be a graph with n vertices and m edges. Let µi denote mapper i, and ρi denote reducer

i. A filtering algorithm for maximal matching essentially works as follows:

µ1: Map the graph to the MapReduce system, so that each machine has no more than

O(m1−ε) edges.

ρ1: Randomly sample edges by including each edge in the sample with probability p.

µ2: Remap all edges to the same key. Additionally, map all sampled edges to a new key.

ρ2: Construct a maximum matching on the sampled graph, and add it to the matching M .

µ3: Map all edges to the same key, additionally map M to every machine.

ρ3: Remove any edges adjacent to any matched edges in M .

• Repeat until no edges remain.

This algorithm is probabilistic. The sampling probability p does not guarantee that only

O(m1−ε) edges are sampled in total. However, it can be adjusted so that this algorithm is

successful with probability at least 3
4
.
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The existing filtering algorithms are tailored to graphs where m ∈ O(n1+c). They are

less practical for sparse graphs. For example, in this maximal matching algorithm the entire

partial matching M is passed to every ρ3 by µ3. But M potentially has O(n) edges, and in a

sparse graph m ∈ O(n). Therefore the size of the partial matching M is on the same order as

the size of the entire problem. So, it would be impractical to pass the entire partial matching

each round [12]. Thus, a different approach is needed for sparse graphs.

2.5 Bounds in MapReduce

The metrics typically used for efficiency in a MapReduce algorithm are the number of rounds

required, and the amount of communication per round. There currently exist no lower

bound techniques which can give lower bounds on the number of rounds for problems in the

MapReduce model. However, research has been done on bounding the communication cost

of problems in the MapReduce model, which require one or two rounds. This is done by

modeling the tradeoff between parallelism and communication; more parallelization requires

more communication.

The problems are viewed as sets of inputs, outputs, and a mapping of outputs to inputs.

For example, finding the triangles in a graph: the inputs are sets of two nodes (edges), the

outputs are sets of three nodes (the triangles), and the mapping from outputs to inputs is the

set of three inputs representing the edges making up a given triangle. Here q is defined as the

maximum number of inputs a reducer can receive and r is the replication rate, or the number

of key-value pairs that a mapper can create from each input. The parallelism/communication

tradeoff can be seen here as smaller values of q require more machines to solve the problem,

which leads to more communication.

The replication rate is used as a measure of the communication cost for an instance of

the problem, and is defined in terms of q and the size of the input. Among other results, the
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upper and lower bound of r for finding the number of triangles in a graph of n nodes is n√
2q

.

Similarly, the upper and lower bound of r for finding paths of length two in an n node graph

is 2n
q

. The upper and lower bounds on r for matrix multiplication of an n× n matrix is 2n2

q
,

however the upper bound only holds for q ≥ 2n2[1].

2.6 MRC

The definition for the MapReduce paradigm provides a good framework for parallelization.

However, it does not lay any restrictions on the program, or provide any notion of efficiency.

Thus, a MapReduce Class (MRC) must be defined to help classify problems and algorithms.

Without a restriction on the amount of memory any machine is allowed, any problem with a

polynomial time classical algorithm could be solved in one round. However, the reason to

use MapReduce is that the problem can’t fit into the memory of one machine. Similarly, if

any number of machines is allowed, the implementation becomes impractical. Lastly, some

restriction must be placed on the amount of time that can be taken. For example, allowing

any reducer to run in exponential time would not make practical sense. Similarly, shuffling is

time consuming because communication is orders of magnitude slower than processor speeds.

Thus the number of MapReduce rounds should be bounded in some way. These restrictions

lead to the following definitions [10]:

Definition 2.6.1. A random access machine (RAM) consists of a finite program operating

on an infinite sequence of registers, referred to as words[5].

Definition 2.6.2. Fix an ε > 0. Let π be some arbitrary problem. We say π ∈ MRCi if

there exists an algorithm that takes in a finite sequence of 〈key; value〉 pairs, 〈kj; vj〉 such

that n =
∑
j

(|kj| + |vj|), and consists of a sequence 〈µ1, ρ1, µ2, ρ2, ..., µR, ρR〉 of operations

which outputs the correct answer with probability at least 3
4

where:
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• Each µr is a randomized mapper implemented by a RAM with O(log n)-length words,

that uses O(n1−ε) space and polynomial time, with respect to n.

• Each ρr is a randomized reducer implemented by a RAM with O(log n)-length words,

that uses O(n1−ε) space and polynomial time, with respect to n.

• The total space, Σ〈k;v〉∈U ′r(|k|+ |v|) used by the 〈key;value〉 pairs output by µr is O(n2−2ε).

• The number of rounds R = O(logi n).

It is important to note that the space used by a RAM is measured by the number of

words used. So, the definition above specifies that each mapper and reducer may use O(n1−ε)

words each of size O(log n).

2.7 DMRC

MRC is defined for randomized reducers and mappers. We can similarly define a deterministic

MapReduce Class, DMRC as follows [10]:

Definition 2.7.1. Fix an ε > 0. Let π be some arbitrary problem. We say π ∈ DMRCi if

there exists an algorithm which takes in a finite sequence of 〈key;value〉 pairs, 〈kj; vj〉 such

that n =
∑
j

(|kj| + |vj|), and consists of a sequence 〈µ1, ρ1, µ2, ρ2, ..., µR, ρR〉 of operations

which outputs the correct answer where:

• Each µr is a deterministic mapper implemented by a RAM with O(log n)-length words,

that uses O(n1−ε) space and polynomial time, with respect to n.

• Each ρr is a deterministic reducer implemented by a RAM with O(log n)-length words,

that uses O(n1−ε) space and polynomial time, with respect to n.

• The total space, Σ〈k;v〉∈U ′r(|k|+ |v|) used by the 〈key;value〉 pairs output by µr is O(n2−2ε).
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• The number of rounds R = O(logi n).

Because the shuffle phase is so time consuming, the goal when designing MapReduce algo-

rithms is O(1) rounds, typically a small constant. Even O(log n) rounds is often impractical.

Thus, algorithms in MRC0 and DMRC0 are desired if possible.

Figure 2.1: Graph A is a grid graph. Graph B is not a grid graph.

2.8 Grid Graphs

A grid graph is defined as a node-induced subgraph of the two-dimensional integer grid, that

is, a graph where each vertex corresponds to some point (x, y), where x, y ∈ Z. Each vertex

v = (x, y) can be adjacent to at most four other vertices (x+ 1, y), (x, y + 1), (x− 1, y), and

(x, y − 1).

2.8.1 Grid Graph Representation in MapReduce

In the MapReduce model, the basic unit of information is the 〈key;value〉 pair. It is important

that grid graphs be defined in terms of the MapReduce model, so that the algorithms

presented here may be analyzed in terms of this model. Here the value in each 〈key; value〉

pair is a tuple (n,m) indicating the dimensions of the grid on which the graph lies, followed
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by a list of edges of the form ((x1, y1), (x2, y2), w), where (xi, yi) is the point on the grid on

which the vertex lies, and w is the weight of the edge. In the case of unweighted graphs, the

weight is omitted. The length of a value, then, is the number of edges listed plus one. The

key in each 〈key; value〉 pair represents the grouping of the edges. The initial input to the

first map round may not have a meaningful key. However, the map functions presented here

are all deterministic, thus after the first round the key has meaning. For example, many of

the algorithms presented here, for grid graphs, map the edges to n1−ε ×m1−ε blocks of the

original grid graph. Thus the key would indicate the block assigned to the machine. The

length of the key is simply one. The space used by a 〈key; value〉 pair is defined as the length

of the pair [10]. Therefore, the space of a 〈key; value〉 pair is the number of edges in the

value plus two. So, because the total number of machines is equal to the number of distinct

keys and each machine can only store O(|E|1−ε) edges, the total space required by all of the

〈key;value〉 pairs for a grid graph is O(|E|+ |E|ε) which is O(|E|) when ε < 1.
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Chapter 3

Maximal Matching in Grid Graphs

One elementary graph problem is the maximal matching problem. This is often used as a

1
2
-approximation for maximum cardinality matching. This algorithm works by constructing a

maximum matching on the portion of the graph stored on each machine, and then attempt-

ing to match any unmatched vertices by sharing open edges with machines that contain

neighboring vertices.

Figure 3.1: This is block B1,1 for a 16×16 grid graph, where ε = 1
2
. Here vertices

v4, v8, v13, v14, v15, and v16 are border vertices. The four corner vertices are: v1, v4, v13,
and v16. Additionally, e1, e2, e3, e4, and e5 are cross edges. Notice that e12 is not a border
vertex.
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Definition 3.0.1. For an grid graph G with lying on an n×m grid, and fixed ε > 0, a block

Bi,j ⊆ G is the subgraph containing all of the vertices in rows (i ∗ n1−ε) + 1 to (i+ 1) ∗ n1−ε,

and columns (j ∗m1−ε) + 1 to (j + 1) ∗m1−ε.

Definition 3.0.2. An edge e = (u, v) is called a cross edge if u ∈ Bi,j and v ∈ Bi′,j′, where

i 6= i′ and j 6= j′.

Definition 3.0.3. A vertex is called a border vertex, if it is incident on a cross edge.

Definition 3.0.4. A vertex, v = (x, y), is called a corner vertex when v ∈ Bi,j, and v is one

of {((i ∗ n1−ε) + 1, (j ∗m1−ε) + 1, ((i ∗ n1−ε) + 1, (j + 1) ∗m1−ε), ((i+ 1) ∗ n1−ε, (j ∗m1−ε) +

1), ((i+ 1) ∗ n1−ε, (j + 1) ∗m1−ε)}.

3.1 Algorithm

Given a grid graph G lying on an n×m grid, such that V (G) ⊆ {(x, y)|1 ≤ x ≤ n and 1 ≤

y ≤ m}. Let µi denote mapper i, and ρi denote reducer i. A maximal matching can be

constructed using the MapReduce paradigm as follows:

µ1: Map the grid graph to the O(nεmε) machines such that each machine gets edges incident

on vertices that lie on a block of the original grid, with n1−εm1−ε points, where the

block, Bi,j , will get the edges incident on vertices in the columns (i ∗ n1−ε) + 1 through

(i+ 1) ∗ n1−ε, and the rows (j ∗m1−ε) + 1 through (j + 1) ∗m1−ε. Additionally, map

edges incident on corner vertices of each Bi,j, to Bi,j+1, Bi+1,j, Bi+1,j+1.

ρ1: Construct a maximum cardinality matching on the block Bi,j , using the Hopcroft-Karp

algorithm [8], ignoring any cross edges.

µ2: Map the matching for block Bi,j, called Mi,j, to the same key as Bi,j. Map any cross

edges to Bi,j and the block the edge crosses into if and only if it is incident on an
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unmatched vertex (e.g. for edge e = (u, v) where u ∈ Bi,j and v ∈ Bi,j+1, where u

is unmatched; map edge e to Bi,j and to Bi,j+1). For corner vertices, map the cross

edges that are unmatched to all four blocks bordering the corner vertex the cross

edge is associated with (e.g. for the edge e = (u, v) ∈ Bi,j, where u is the vertex

((i+ 1) ∗ n1−ε, (j + 1) ∗m1−ε), pass the edge to Bi,j, Bi+1,j, Bi,j+1, and Bi+1,j+1).

ρ2: For each Mi,j , extend the matching to use any cross edges, where two copies of the edge

are available. For corner vertices, check all four edges for a given corner and match

edges as follows:

1. If all four edges have two copies, choose the horizontal edges.

2. If three edges have two copies, choose the two that would lead to the largest valid

matching.

3. If two edges have two copies, and they are not adjacent, pick both.

4. If two edges have two copies, and they are adjacent, choose the horizontal edge.

5. If one edge has two copies, match that edge.

6. If no edges have two copies, do not extend the matching.

3.2 Correctness

The algorithm results in a maximal matching on the original grid graph. To prove this, first

observe the following lemma:

Lemma 3.2.1. After the first MapReduce round of the algorithm, the only way the partial

matching can be extended is by matching on cross edges.

Proof. Suppose after round one, there exists some edge, e ∈ Bi,j, that is not a cross edge

and can match two unmatched vertices. Thus, e = (u, v) and u, v /∈Mi,j. This results in a
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contradiction, since the first round would have matched u and v on edge e. Therefore after

round one, any unmatched vertex can only be matched with a cross edge.

Theorem 3.2.2. The algorithm constructs a maximal matching on the original grid graph,

G.

Proof. Clearly, grid graphs are bipartite. Therefore, by the properties of the Hopcroft-Karp

algorithm [8], after round one of this algorithm each block, Bi,j, is maximally matched.

Because of the structure of grid graphs, the only vertices incident on cross edges in block Bi,j

are those in column i ∗ n1−ε, those in column (i+ 1) ∗ n1−ε, those in row j ∗m1−ε, or those in

row (j + 1) ∗m1−ε (the first column, last column, first row, or last row of each block). Notice

that each corner vertex is incident on at most two cross edges. In round two, all blocks are

remapped to the same key. However, all cross edges that are incident on unmatched vertices

are also mapped to the block they cross into.

By lemma 3.2.1, after round one, any unmatched vertex that is not on a corner can only

be matched by a cross edge. Therefore any unmatched non-corner vertex has at most one

edge incident on it that can extend the matching. The algorithm matches along these edges

in round two iff both machines receive two copies of the cross edge. This indicates that

both vertices are unmatched. Therefore, after round two, every non-corner unmatched vertex

that has not been matched is not adjacent to any unmatched vertices and cannot be used to

extend the matching.

Any remaining unmatched vertex must be a corner vertex. While at most two cross edges

may be incident on any corner vertex, u, both prospective neighbors of u may also have an

unmatched neighbor that is in a fourth block. This algorithm passes copies of all existing

corner cross edges on unmatched vertices to all four machines. Each machine will then make

the same decision, because they all have the same information. Again, by lemma 3.2.1 only

cross edges may be used to extend the matching. It is also clear that, by µ2, any cross edge
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incident on an unmatched corner vertex u = (x, y) has two copies sent to each machine

containing the vertices (x, y), (x, y + 1), (x+ 1, y), and (x+ 1, y + 1). There are six possible

cases for extending the matching on corner vertices:

Case 1: All four cross edges have two copies on any machine. Thus, all four corner vertices are

unmatched and all four cross edges exist in the graph. Picking the two horizontal cross

edges results all four corner vertices being matched. So the two remaining cross edges

cannot be used to extend the matching.

Case 2: Three of the edges have two copies on any machine, then all four machines have two

copies of the three edges. Clearly, two of these edges are non-adjacent. Because these

edges are non-adjacent matching along these two edges matches all four corner vertices,

so the remaining edge cannot be used to extend the matching.

Case 3: Two of the edges have two copies on any machine, and both are adjacent. Because they

are adjacent only one can be matched on. Matching on the horizontal edge matches

two of the vertices. The matching cannot be extended along the other edge, because

one of the vertices it is incident on has been matched.

Case 4: Two non-adjacent cross edges incident on corner vertices have two copies on any machine,

then all four machines have two copies of them. Both of these edges can be matched

on. This matches all four vertices on the corner, therefore the matching of these for

vertices cannot be extended.

Case 5: Only one of the cross edges incident on a corner vertex has two copies on any machine.

Matching along this edge matches two of the corner edges. However, the matching

cannot be extended to the other two, because either they are already matched, or

because the edges do not exist.
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Case 6: In the case where no edges have two copies on any machine, then either the edges do

not exist, or because at least one vertex on every edge has been matched. Thus the

matching cannot be extended by any corner cross edges.

Therefore, after round two of the algorithm, no unmatched vertices can be used to extend

the matching. Thus the matching is maximal.

3.3 Efficiency

The above algorithm in Section 3.1 can be shown to be efficient for grid graphs with O(nm)

edges.

Corollary 3.3.1. Maximal Matching in an n ×m grid graph, G = (V,E) is in DMRC0

when |E| ∈ O(nm) and ∀e ∈ E, w(e) ∈ poly(|E|).

Proof. Clearly, by Theorem 3.2.2, the above algorithm solves the maximal matching problem

deterministically, and the number of rounds is O(1). Let G = (V,E) be an n×m grid graph,

such that |E| ∈ O(nm) edges. Let 0 < ε ≤ 1
2
.

Next, it is clear that both mappers are deterministic, and run in linear time in O(n1−εm1−ε),

as they make at most a constant number of copies of any cross edge on any machine but

otherwise map each edge once. The total space of the graph is O(nm log nm). The mapping

functions only store O(n1−εm1−ε) edges, so the data can fit into O(n1−εm1−ε) words of length

log nm. Therefore the mapping functions can each be implemented on a RAM with log nm

length words and O(n1−εm1−ε) time.

Similarly, both reducers are deterministic. It is clear that the first reducer only stores

O(n1−εm1−ε) vertices and O(n1−εm1−ε) edges. The second reducer requires O(n1−εm1−ε) ver-

tices, O(n1−εm1−ε) edges plus the copies of surrounding edges, which are at most 2n1−ε2m1−ε+

16. Therefore the second reducer still only stores O(n1−εm1−ε) total number of edges. There-
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fore the reducers could store their data on O(n1−εm1−ε) words of length log nm. The first

reducer runs the Hopcroft-Karp algorithm [8] which runs in O(n1−εm1−ε
√
n1−εm1−ε) time.

The second reducer simply checks all of the remaining cross edges and matches them if both

copies exist, which only requires O(n1−ε +m1−ε) time. Therefore the reducers can both be

implemented on RAMs with O(log nm) length words and O(n1−εm1−ε) time.

In each round, the keys used are simply the block numbers the edges are being mapped

to. There are O(nεmε) blocks total. Each round the mapper outputs one 〈key;value〉 pair

which contains the entire block Bi,j. Because the entire graph contains O(nm) total edges,

each block must contain O(n1−εm1−ε) edges. The 〈key;value〉 pairs contain the edges and

weights. Recall that the space required by a 〈key;value〉 pair is essentially the number of

keys and values in the pair. Therefore the 〈key;value〉 pair input to an entire block requires

O(n1−εm1−ε) space. The first round does not output any more than this, so we have that

the first mapper uses O(n1−εm1−ε) space. The second mapper additionally outputs the four

〈key;value〉 pairs which contain the cross edges, and then the four 〈key;value〉 pairs which

contain the at most eight corner cross edges. Thus each machine outputs 〈key;value〉 pairs

using at most O(n1−εm1−ε) space. Because there are also O(nεmε) machines, this means that

the 〈key;value〉 pairs use O(nm) space. But, ε ≤ 1
2
, thus O(nm) ∈ O(n2−2εm2−2ε).

Therefore by the definition of DMRC0 [10] maximal matching on a grid graph G = (V,E)

is in DMRC0 when |E| ∈ O(nm).



21

Chapter 4

Approximate Minimum Edge

Covering in Grid Graphs

The minimum edge cover problem is another elementary problem for graphs. An approxima-

tion for minimum edge cover can be constructed, by simply extending a maximal matching

to cover all of the vertices.

4.1 Algorithm

Given a grid graph, G, such that V (G) ⊆ {(x, y)|1 ≤ x ≤ n and 1 ≤ y ≤ m}, we can

construct an edge covering in the MapReduce model as follows:

µ1 - ρ2: Construct a maximal matching using the algorithm in Chapter 3. Call this matching

M .

µ3: Map the grid graph to the O(nεmε) machines such that each machine gets edges incident

on vertices that lie on a block of the original grid, with n1−εm1−ε points, where the

edges in M matched on vertices in the columns (i ∗ n1−ε) + 1 through (i + 1) ∗ n1−ε,
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and the rows (j ∗ m1−ε) + 1 through (j + 1) ∗ m1−ε will be mapped to the key Bi,j.

Additionally, map any edges incident on unmatched vertices in Bi,j and adjacent to an

edge in M to the key Bi,j.

ρ3: For each vertex v ∈ Bi,j such that v /∈M , cover v with any edge adjacent to a matched

edge. If v is covered with a cross edge, store that edge on the block which v lies in.

Remove all remaining edges.

4.2 Correctness

The algorithm in Section 4.1 produces a 3
2
-approximation of a minimum edge covering.

Theorem 4.2.1. The algorithm computes a 3
2
-approximation of a minimum edge covering

on the original grid graph, G.

Proof. Let G be an n×m grid graph, such that an edge covering exists. Clearly after round

two, each machine, Ci,j, contains the vertices in Bi,j and all of the matched edges from

that block. Additionally, after the mapping in round three, the edges which are incident on

unmatched vertices and adjacent to matched edges are also on each Ci,j. Let E(Ci,j) and

V (Ci,j) refer to the edges and vertices, respectively, which lie on Ci,j . Similarly, define E(Bi,j)

and V (Bi,j) as the edges and vertices lying in the block Bi,j.

Any vertex which is not matched can be covered with an edge in E(Ci,j). Suppose

∃v ∈ V (Ci,j) such that v cannot be covered:

Case 1: v ∈ V (Bi,j) is adjacent to a matched vertex. Then there exists an edge e ∈ G, incident

on v, which can be used to cover v, and that edge must exist on Ci,j, as it is incident

on a matched vertex in Bi,j. This results in a contradiction.
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Case 2: v ∈ V (Bi,j) is not adjacent to a matched vertex. Clearly there must exist some edge

incident on v, because we said an edge covering exists. Therefore ∃u such that u /∈M

and ∃(u, v) ∈ E(Ci,j). Therefore ∃M ′ such that M ′ = M ∪ {(u, v)} and M ′ is a valid

matching. This results in a contradiction, since M is a maximal matching.

Therefore every every remaining vertex can be covered by some edge that is adjacent to an

edge in matching M . Therefore after round three, we have an edge covering E ′.

Let OPT denote the cardinality of the maximum matching in G. The size of the minimum

edge cover of a graph is equal to |V |− OPTm [12]. Let U denote the set of unmatched

edges. Clearly |U | = |V | − 2|M |. Because |M | is maximal, OPT≤ 2|M |. Therefore we have

that |E ′| = |V | − |M | ≤ |V | − 1
2
OPT. Therefore E ′ is a 3

2
-approximation for minimum edge

covering.

4.3 Efficiency

The algorithm in section 4.1 can be shown to be efficient for n×m grid graphs with O(nm)

edges.

Corollary 4.3.1. 3
2

approximation for edge covering in an n×m grid graph, G = (V,E) is

in DMRC0 when |E| ∈ O(nm) and ∀e ∈ E, w(e) ∈ poly(|E|).

Proof. By Theorem 4.2.1, this algorithm constructs a 3
2

approximation to the edge covering

problem deterministically, and the number of rounds is clearly O(1). Let G = (V,E) be an

n×m grid graph, such that |E| ∈ O(nm) edges. Let 0 < ε ≤ 1
2
.

Each round, the keys used are simply the block numbers the edges are being mapped to.

There are O(nεmε) blocks total. Each round the mapper outputs one 〈key;value〉 pair which

contains the entire block Bi,j. Because the entire graph contains O(nm) total edges, each
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block must contain O(n1−εm1−ε) edges. The 〈key;value〉 pairs contain the edges and weights.

Recall that the space required by a 〈key;value〉 pair is essentially the number of keys and

values in the pair. Therefore the 〈key;value〉 pair input to an entire block requires O(n1−εm1−ε)

space. In the third round the mapper outputs one 〈key;value〉 pair which contains the entire

block Bi,j, which contains O(n1−εm1−ε) edges, and thus requires O(n1−εm1−ε) space. Thus

the third round mapper uses O(n1−εm1−ε) space. So the third round outputs 〈key;value〉

pairs using at most O(n1−εm1−ε) space. Because there are also O(n1−εm1−ε) machines, this

means that the 〈key;value〉 pairs use O(nm) space, but ε ≤ 1
2
, thus O(nm) ∈ O(n2−2εm2−2ε).

Clearly the first two rounds simply repeat the maximal weighted matching algorithm. By

Corollary 3.3.1 the first two rounds meet the criteria for DMRC0.

Next, it is clear that the remaining third mapper is deterministic and runs in linear time

in O(n1−ε), as it make at most a constant number of copies of any cross edge on any machine

but otherwise maps each edge once. The total space of the graph is O(nm log nm). The

mapping function only stores O(n1−εm1−ε) edges, so the data can fit into O(n1−εm1−ε) words

of length log nm. Therefore the mapping function can be implemented on a RAM with

log nm length words and O(n1−εm1−ε) time.

Similarly, the third reducer is deterministic. It is clear that the third reducer only stores

O(n1−εm1−ε) vertices and O(n1−εm1−ε) edges, as it only stores the portion of the matching of

a given block, and the remaining edges which are adjacent to these matched edges. Therefore,

the third reducer could store its data on O(n1−εm1−ε) words of length log nm. The third

reducer simply checks all of the remaining vertices and extends the covering to any unmatched

vertices. This can be done by simply running through the remaining unmatched vertices,

and covering them with an edge incident on a matched vertex. This can be done in linear

time. Therefore the reducer can be implemented on a RAM with O(log nm) length words

and O(n1−εm1−ε) time.

Therefore by the definition of DMRC0 [10] a 3
2
-approximation for Edge Covering on a
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grid graph G = (V,E) is in DMRC0 when |E| ∈ O(nm).
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Chapter 5

Approximate Maximum Weighted

Matching in Grid Graphs

Maximum weighted matching is a generalized version of the maximum cardinality matching

problem, where the edges have weights. This problem is approximately solved by first fixing

a matching on any cross edges which are the heaviest edges on both vertices they are incident

on. After the matched cross edges are fixed, a maximum matching is constructed on the

remainder of each block.

5.1 Algorithm

Given a grid graph G, such that V (G) ⊆ {(x, y)|1 ≤ x ≤ n and 1 ≤ y ≤ m}, we can construct

an approximate maximum weighted matching as follows:

First, observe the following definition.

Definition 5.1.1. An edge e is called a border edge if it is incident on a border vertex.

µ1: Map the grid graph to the O(n1−ε) machines such that each machine gets a block of the

original grid graph with n1−εm1−ε vertices, where the block, Bi,j, will get the vertices
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in the columns (i ∗ n1−ε) + 1 through (i+ 1) ∗ n1−ε, and the rows (j ∗m1−ε) + 1 through

(j + 1) ∗m1−ε. Additionally, map all edges associated with those vertices to that same

block. Finally, for each corner vertex of each block, map any edges incident on the four

corner vertices to all four blocks.

ρ1: Sort the border edges in descending order, for edges incident on corner vertices, break

ties by row number and then column number. Now, greedily choose the highest weighted

remaining edge, incident on a border vertex and match it, until there are no remaining

unmatched border vertices which can be matched. For cross edges, break ties by row

number and then column number.

µ2: Map all of the edges to the same key, Bi,j . Additionally, map any cross edges that have

been matched on, to the block they cross into.

ρ2: Fix the matching of any cross edges where two copies of that cross edge exist. Delete

any cross edges which do not have two copies, and remove them from the matching.

Delete any corner edges which do not lie in block Bi,j. Remove any edges which are

adjacent to a matched cross edge. Construct a maximum weighted matching on the

remaining block using the Hungarian algorithm.

5.2 Correctness

The algorithm constructs a 1
2
-approximation for maximum weighted matching. First, observe

the following definition:

Definition 5.2.1. An edge f is said to block another edge e, if f = (u, v), where e = (x, y)

where x ∈ {u, v}, and f is the highest weighted matched edge adjacent to e. This then blocks

from being in the matching. This edge is then referred to as a blocking edge for e.
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Next, observe the following lemma:

Lemma 5.2.2. Let OPTb be the border edges in some maximum weighted matching, OPT.

Let Mb be the matching constructed on the border vertices in ρ1. Then every e ∈ OPTb such

that e /∈Mb must be blocked by at least one edge, f , such that w(f) ≥ w(e).

Proof. Let e = (u, v) ∈ OPTb, such that e /∈Mb. Clearly either e is a cross edge, or e is not

a cross edge.

Case 1: e is a cross edge. Clearly, as e /∈Mb, there is at least one edge blocking e. Let f be a

blocking edge for e. Suppose w(f) < w(e). Then clearly, in round one, when the border

edges are sorted by weight in descending order, e comes before f . Thus e would have

been chosen to match on before f . So, either e blocks f , or e is blocked by another

edge f ′ in Bi,j of higher weight. But e is a cross edge, thus e can only be blocked by

one edge in each of the blocks it lies in. Therefore, e would be matched on before f by

the algorithm, contradiction. Thus ∃f ∈Mb, such that w(f) ≥ w(e), and f blocks e.

Case 2: e is not a cross edge. Because e /∈Mb, there is at least one edge f which blocks e, such

that e, f ∈ Bi,j. Let f be a blocking edge for e in Bi,j. Suppose w(f) < w(e). Then,

clearly, in round one when the border edges are sorted by weight, e would have been

chosen to match on before f . Thus, either e blocks f , or e is blocked by another edge

f ′ ∈ Bi,j such that w(f ′) ≥ w(e). But we said that f was a blocking edge for e in Bi,j,

and thus has at least as much weight as any other edges which block e. Therefore e

would have been matched on before f , thus blocking f . This results in a contradiction,

therefore ∃f ∈Mb such that w(f) ≥ w(e) and f blocks e.

Therefore every edge e ∈ OPTb such that e /∈ Mb is blocked by some edge f such that

w(f) ≥ w(e).
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Theorem 5.2.3. The algorithm computes a 1
2
-approximation to Maximum Weighted Matching

on a grid graph G.

Proof. Observe the following definition for subtracting a matching from a graph:

Definition 5.2.4. For graph G, and matching M ,

G−M = {e = (u, v) ∈ G | @(u, x), (v, y) ∈M}

The operation can be similarly defined for subtracting a matching from another matching:

Definition 5.2.5. For matchings Ma,Mb,

Ma −Mb = {e = (u, v) ∈Ma | @(u, x), (v, y) ∈Mb}

Let M be the matching constructed by the algorithm, Mb be the initial matching con-

structed on the border in round one, and OPT be some maximum weighted matching, where

OPTb is the set of edges matched on the border vertices in OPT.

First, notice that the only edges which are removed from G, before running the maximum

weighted matching algorithm, are cross edges which were not matched on in Mb, and edges

which are adjacent to cross edges which were matched on in Mb. The weight lost by removing

these edges can be bounded.

Let e = (u, v) be an edge which is matched on by the algorithm. Then e blocks at most

two edges f, f ′ ∈ OPT . Here, we have two cases:

Case 1: Let e = (u, v) be a cross edge which is matched on in M . Clearly any edge in

OPT blocked by e is a border edge. Then, by lemma 5.2.2, any edge f that is

blocked by e, w(f) ≤ w(e). Clearly e blocks at most two edges f, f ′, and therefore

w(e) ≥ 1
2
(w(f) + w(f ′))
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Let Mx be the set of cross edges matched in M and OPTx be the set of edges in OPT,

which are blocked by the cross edges matched in M . Then:

∑
e∈Mx

w(e) ≥ 1

2

∑
f∈OPTx

w(f) (5.1)

Case 2: Edge e is some edge which was blocked by a non-cross edge in µ1. Let Mx be the set of

cross edges matched in M . Let OPTk be the set of cross edges which are blocked by a

non-cross edge and therefore are not matched on in M . By lemma 5.2.2, ∀e ∈ OPTk,

e is blocked by some edge f , such that w(f) ≥ w(e). If Mk is the set of edges which

block these e ∈ OPTk in the partial matching constructed in ρ1. Each such f blocks

at most two e ∈ OPTk. Therefore
∑

f∈Mk
w(f) ≥ 1

2

∑
e∈OPTk

w(e). It is also clear that

each such edge f lies within some block Bi,j −Mx, thus when the final matching is

constructed on Bi,j in ρ2, w(M ∩ (Bi,j −Mx)) ≥ w(Mk ∩ (Bi,j −Mx)). Therefore, if

Mi,j is the matching constructed on Bi,j −Mx,
∑

i

∑
j w(Mi,j) ≥ w(Mk) ≥ 1

2
w(OPTk).

Additionally, every edge g ∈ OPT−(OPTk∪OPTx) also lies within some Bi,j . Therefore∑
i

∑
j w(Mi,j) ≥ w(OPT − (OPTk ∪ OPTx)). Clearly, ∪i ∪j Mi,j = M −Mx, and

w(M −Mx) =
∑

i

∑
j w(Mi,j).

Now, let f ∈ M − Mx. Clearly f blocks at most two edges e, e′ ∈ OPT − OPTx.

Suppose w(e) + w(e′) > 2w(f). Then at least one of e, e′ /∈ OPTk (as each edge in

OPTk is blocked by an edge of at least as much weight). If one of e, e′ /∈ OPTk, without

loss of generality say e /∈ OPTk, then e, f ∈ Bi,j, and w(e) > w(f). Therefore ∃f ′

adjacent to e, such that w(f ′) +w(f)) > w(e), because a maximum weighted matching

was constructed on Bi,j . Similarly, if both e, e′ /∈ OPTk, then e, e′ ∈ Bi,j , and ∃a, b such

that a is adjacent to e, and b is adjacent to e′, where w(a) +w(b) +w(f) ≥ w(e) +w(e′),

because we have constructed a maximum weighted matching on each Bi,j.

Lastly, suppose e ∈ OPTk is blocked by some edge f ∈ Bi,j in ρ1, but f /∈ M −Mx.
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Then f is adjacent to edges a, b ∈ Bi,j and a, b ∈M−Mx, such that w(a)+w(b) ≥ w(f),

because a maximum weighted matching is constructed on Bi,j. Additionally, because a

maximum weighted matching is constructed on Bi,j, the sum of the weights of all such

a, b must weigh at least as much as the sum of all edges in OPT, which they block.

Therefore
∑

f∈M−Mx
w(f) ≥ 1

2
w(OPT− (OPTk ∪OPTx)) + 1

2
w(OPTk). Thus:

∑
f∈M−Mx

w(f) ≥ 1

2

∑
e∈OPT−OPTx

w(e) (5.2)

Clearly M = (M −Mx) ∪Mx, and OPT = (OPT − OPTx) ∪ OPTx. So, combining

equations 5.1 and 5.2, we get:

w(M) ≥ 1

2
w(OPT) (5.3)

Therefore the algorithm constructs a 1
2
-approximation to the maximum weighted matching.

5.3 Efficiency

The algorithm in section 5.1 can be shown to be efficient for n×m grid graphs with O(nm)

edges.

Theorem 5.3.1. 1
2
-approximation for maximum weighted matching in an n×m grid graph,

G = (V,E) is in DMRC0 when |E| ∈ O(nm) and ∀e ∈ E, w(e) ∈ poly(|E|).

Proof. By Theorem 5.2.3 the above algorithm gives a 1
2
-approximation to the maximum

weighted matching problem deterministically, and in constant rounds. Let G = (V,E) be an

n×m grid graph, such that |E| ∈ O(nm) edges. Let 0 < ε ≤ 1
2
, and ∀e ∈ E,w(e) ∈ poly(|E|).
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Each round, the keys used are simply the block numbers the edges are being mapped

to. There are O(nεmε) blocks total. Each round the mapper outputs one 〈key;value〉 pair

which contains the entire block Bi,j. Because the entire graph contains O(nm) total edges,

each block must contain O(n1−εm1−ε) edges. The 〈key;value〉 pairs contain the edges and

weights. Recall that the space required by a 〈key;value〉 pair is essentially the number of keys

and values in the pair. Because the weights are polynomial with respect to the number of

edges, each weight is of size O(log(nm)). Therefore the 〈key;value〉 pair input to an entire

block requires O(n1−εm1−ε) space. The first round does not output any more than this, so we

have that the first mapper uses O(n1−εm1−ε) space. The second mapper additionally outputs

the four 〈key;value〉 pairs which contain the cross edges, and then the four 〈key;value〉 pairs

which contain the at most eight corner cross edges. Thus each machine outputs 〈key;value〉

pairs using at most O(n1−εm1−ε) space. Because there are O(nεmε) machines, this means

that the 〈key;value〉 pairs use O(nm) space. But, ε ≤ 1
2
, thus O(nm) ∈ O(n2−2εm2−2ε).

It is clear that both mappers are deterministic, and run in linear time in O(n1−εm1−ε),

as they make at most a constant number of copies of any cross edge on any machine, but

otherwise map each edge and vertex once. The total space of the graph is O(nm log nm).

The mapping functions only store O(n1−εm1−ε) edges, so the data can fit into O(n1−εm1−ε)

words of length log nm. Therefore the mapping functions can each be implemented on a

RAM with log nm length words and O(n1−εm1−ε) time.

Similarly, both reducers are deterministic. It is clear that the first reducer only stores

O(n1−εm1−ε) edges. The second reducer requires O(n1−εm1−ε) vertices, O(n1−εm1−ε) edges

plus the copies of surrounding edges, which are at most 2n1−ε2m1−ε + 16. Therefore the

second reducer still only stores O(n1−εm1−ε) total number of edges. Therefore the reducers

could store their data on O(n1−εm1−ε) words of length log nm. The first reducer sorts the

border edges, and greedily matches on them, which is clearly O(n1−εm1−ε log(n1−εm1−ε))

time. The second reducer runs the Hungarian algorithm [11] which runs in O((n1−εm1−ε)3)
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time. Therefore the reducers can both be implemented on RAMs with O(log nm) length

words and O((n1−εm1−ε)3) time.

Therefore by the definition of DMRC0 [10] 1
2
-approximation for Maximum Weighted

Matching on a grid graph G = (V,E) is in DMRC0 when |E| ∈ O(nm).
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Chapter 6

Conclusion

As the amount of new data created each year continues to grow and the MapReduce

programming paradigm sees widespread adoption, there is a greater need for algorithms that

can process these large problems using the MapReduce paradigm. Graphs are a common way

to represent data, thus graph algorithms are an important an important tool for analyzing

large data sets. Here algorithms for three fundamental graph problems have been presented

for grid graphs; maximal matching, 3
2
-approximation to minimum edge covering, and 1

2
-

approximation to maximum weighted matching. The algorithms for grid graphs presented

here all run in some constant number of MapReduce rounds. For grid graphs, O(nm) edges,

these algorithms are all efficient, in that they use O(nεmε) machines, each one storing no

more than O(n1−εm1−ε) edges, and thus no more than O(nm) space is used. Therefore, grid

graphs with O(nm) edges, all three problems are in DMRC0, the most efficient deterministic

MapReduce class. Grid graphs fit well into the MapReduce model, because they have a

simple underlying structure, and can be easily separated in a way that can be guaranteed to

keep the structure intact. When grid graphs have O(nm) edges, they have the property that

every block of n1−ε ×m1−ε points on the grid contains n1−ε ×m1−ε vertices, and therefore

O(n1−ε ×m1−ε) edges. Thus, separating the graph into blocks by n1−ε ×m1−ε points assures
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that no machine ever has ω(n1−ε ×m1−ε) edges mapped to it, and that the total number

machines remains at most O(nεmε). So, separating these grid graphs, as the algorithms here

do, will not violate any conditions required of DMRC0.
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Appendix A

MapReduce implementations

While the MapReduce paradigm was originally developed at Google [6], there are several open

source implementations. Here two very different approaches to implementing MapReduce are

discussed and compared. Hadoop, which is a more robust, system, and MapReduce-MPI,

which is a smaller implementation that makes use of the message-passing interface (MPI)

that has seen widespread use in distributed computing.

A.1 Hadoop

Hadoop is a very widely used implementation of the MapReduce programming paradigm.

Hadoop was developed by Apache in conjunction with Yahoo! Implemented in Java, and

designed to run on relatively inexpensive hardware. Any machine supporting Java can run

the Hadoop Distributed File System (HDFS). A HDFS cluster consists of a NameNode, which

manages the file system namespace, and regulates access to files by the other machines in

the system. Additionally, each node in the cluster contains a DataNode, which handle read

an write requests from the nodes in the cluster, as well as deleting, deleting, and replicating

data upon instruction from the NameNode. The NameNode also determines the mapping of
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blocks to the DataNodes [2].

A Hadoop MapReduce program consists of a Driver, which initializes the MapReduce job,

indicating the Map and Reduce classes, specifying the input files, and specifying the output

files. The Map class takes key/value pairs as input. Because the input into the MapReduce

program is actually some number of files, the values are typically data records and the keys

are the offset from the beginning of the file. The Map class then outputs a set of 〈key;value〉

pairs, which are formatted for the Reduce function. The Reduce function then receives all of

the values with one key, and generates the output. To run a so-called iterative MapReduce

program, Hadoop requires the program to pass the output files of one round of reducers, to

the next round of mappers. This essentially requires a new MapReduce job to be created for

each iteration, which can be very costly [4].

A.2 MR-MPI

Another implementation of MapReduce is built on top of the standard distributed-memory

message-passing interface (MPI), is called MapReduce-MPI (MR-MPI). The MR-MPI libraries

were written in C++, and were specifically designed to be used for graph analytics. However,

there is nothing inherently restrictive to graphs. The MR-MPI library itself is only a few

thousand lines of C++ code. It then links with MPI, which is available for all distributed-

memory systems, and, in many cases, shared-memory parallel machines as well.

As with Hadoop, the user defines map and reduce functions. However, in MR-MPI, a

MapReduce (MR) object is constructed. The users then give the object pointers to specific

map and reduce functions for each MR object. Thus, a multiple round algorithm could

be implemented by calling the map and reduce functions for each MR object in sequence.

Additionally, MR-MPI defines two basic data primitives: the key/value (KV) pair, and the

key/multi-value (KMV) pair. The keys and values can each be of multiple types if necessary.



38

The KMV pair is the structure that holds all values associated with same key.

When the map function is called on the MR object, the function, defined by the user is

called and constructs 〈key;value〉 pairs. Next the collate function is called on the MR object.

This is similar to the shuffle operation from Hadoop, in that it is what actually handles the

underlying communication between the different machines. Once each machine has received

it’s KV pairs, it constructs KMV pairs for each of the unique keys it has received. The reduce

function is then called on the MR object, and the user defined reduce function operates on

the KMV pairs. Several other MapReduce operations are provided for aggregating, copying,

sorting and other common operations [13].

A.3 Comparison

An advantage to using MR-MPI, is that it simplifies implementing multiple round MapReduce

algorithms. With MR-MPI, a program can simply construct a new MR object for each round,

or repeatedly use a few MR objects. With Hadoop, the user has to create a MapReduce job

for each stage, and feed the results of one stage as the input to the next stage. MR-MPI gives

the user more control over the data, and allows for machines to be used repeatedly rather

than shuffling the data to a new machine every time. This may allow for lower communication

cost, which is desirable.

However, the reason that MR-MPI is able to allow the user to have direct control of

the data, is that it assumes all of the processors or machines in the system will always be

available. Hadoop is resistant to data loss and processor failure, because it only requires the

users to write map and reduce methods. The system handles all data flow, and thus handles

any data loss and hardware failure. The MR-MPI system on the other hand provides no

underlying fault tolerance capabilities [13].



39

Bibliography

[1] Foto N. Afrati, Anish Das Sarma, Semih Salihoglu, and Jeffrey D. Ullman. Upper and

lower bounds on the cost of a map-reduce computation. CoRR, abs/1206.4377, 2012.

[2] Dhruba Borthakur. The Hadoop Distributed File System: Architecture and Design. The

Apache Software Foundation, 2007.

[3] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan Muthukkaruppan,

Nicolas Spiegelberg, Hairong Kuang, Karthik Ranganathan, Dmytro Molkov, Aravind

Menon, Samuel Rash, Rodrigo Schmidt, and Amitanand Aiyer. Apache hadoop goes

realtime at facebook. In Proceedings of the 2011 ACM SIGMOD International Conference

on Management of data, SIGMOD ’11, pages 1071–1080, New York, NY, USA, 2011.

ACM.

[4] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. Haloop: effi-

cient iterative data processing on large clusters. Proc. VLDB Endow., 3(1-2):285–296,

September 2010.

[5] Stephen A. Cook and Robert A. Reckhow. Time bounded random access machines.

Journal of Computer and System Sciences, 7(4):354 – 375, 1973.

[6] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large

clusters. In OSDI04: PROCEEDINGS OF THE 6TH CONFERENCE ON SYMPO-



40

SIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION. USENIX

Association, 2004.

[7] McKinsey Global Institute. Big data: The next frontier for innovation, competition, and

productivity. Technical report, 2011.

[8] John Hopcroft and Richard Karp. An n5/2 algorithm for maximum matchings in bipartite

graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[9] Adam Jacobs. The pathologies of big data. Commun. ACM, 52(8):36–44, August 2009.

[10] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for

mapreduce. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA ’10, pages 938–948, Philadelphia, PA, USA, 2010. Society

for Industrial and Applied Mathematics.

[11] Harold W. Kuhn. The hungarian method for the assignment problem. Naval Research

Logistics Quarterly, 2(1-2):83–97, 1955.

[12] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering:

a method for solving graph problems in mapreduce. In Proceedings of the 23rd ACM

symposium on Parallelism in algorithms and architectures, SPAA ’11, pages 85–94, New

York, NY, USA, 2011. ACM.

[13] Steven J. Plimpton and Karen D. Devine. Mapreduce in mpi for large-scale graph

algorithms. Parallel Comput., 37(9):610–632, September 2011.

[14] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop

distributed file system. In Proceedings of the 2010 IEEE 26th Symposium on Mass

Storage Systems and Technologies (MSST), MSST ’10, pages 1–10, Washington, DC,

USA, 2010. IEEE Computer Society.


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Fall 11-26-2013

	Algorithms for Grid Graphs in the MapReduce Model
	Taylor P. Spangler

	tmp.1386002233.pdf.sis4g

