University of Windsor Scholarship at UWindsor

Electronic Theses and Dissertations

2016

Tolerance of the lamprey olfactory system to copper concentrations found in roadway runoff waters to the Great Lakes

Jenna May Jones *University of Windsor*

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Jones, Jenna May, "Tolerance of the lamprey olfactory system to copper concentrations found in roadway runoff waters to the Great Lakes" (2016). *Electronic Theses and Dissertations*. 5740. https://scholar.uwindsor.ca/etd/5740

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Tolerance of the lamprey olfactory system to copper concentrations found in roadway runoff waters to the Great Lakes

By

Jenna M. Jones

A Thesis
Submitted to the Faculty of Graduate Studies
through the Department of Biological Sciences
in Partial Fulfillment of the Requirements for
the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2016

© 2016 Jenna Jones

Tolerance of the lamprey olfactory system to copper concentrations found in roadway runoff waters to the Great Lakes

By
Dj
Jenna M. Jones
APPROVED BY:
ALTROVED DT.
J. Gagnon Great Lakes Institute of Environmental Research
Great Lakes histitute of Environmental Research
D. Heath
Department of Biological Sciences
- ·F
B. Zielinski, Advisor
Department of Biological Sciences
Bepartment of Brotogreat Serences

Declaration of Co-authorship

I hereby certify that this thesis incorporates material that is the result of joint research as follows: My third chapter was co-authored with my committee member Dr. Daniel Heath, as well as Kyle Wellband. My collaborators contributed to experimental design, provided technical support that directly contributed to the dataset, and provided editorial input. I am the primary contributor to each chapter of this thesis. No part of this thesis has been published or submitted for publication.

I am aware of the University of Windsor Senate policy on authorship and I certify that I have properly acknowledged the contribution of other researchers to my thesis, and have obtained written permission from my co-authors to include the above materials in my thesis.

I certify that, with the above qualification, this thesis, and the research to which it refers, is the product of my own work, completed during my registration as a graduate student at the University of Windsor.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my thesis, published or otherwise, are fully acknowledged in accordance with the standard referencing practices. Furthermore, to the extent that I have included copyrighted material that surpasses the

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the copyright owner(s) to include such material(s) in my thesis and have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a higher degree to any other University or Institution.

.

Abstract

In fishes, olfaction mediates a variety of behaviours necessary for survival and reproduction. Environmental contaminants, specifically copper, are able to disrupt a broad range of olfaction-mediated behaviour, and can cause long-lasting damage due to physiological and genetic changes at low concentrations. To investigate effects of copper on olfaction, the sea lamprey (*Petromyzon marinus*), an invasive fish species in the Laurentian Great Lakes, was exposed to environmentally relevant copper concentrations of 0, 5, 10 and 30 µg Cu-L. Three techniques were used to measure the effects of exposure of contamination: (i) immunohistochemical analysis of olfactory epithelium, (ii) local field potential recordings in odor-evoked responses, and (iii) gene transcription response to copper toxicity. Impairment in olfactory epithelium was demonstrated through loss of dendritic extension of olfactory sensory neurons, as well as a dosedependent reduction in olfactory response to male sex pheromone odors. Differentially expressed genes were identified following exposure in each concentration. Low levels of copper measured in urban waterways were found to impair olfactory senses of the sea lamprey.

Dedicated to my parents, Mike and Debbie Jones, and my sister, Kara Jones. Thank-you for your constant love and support in every aspect of my life.

Acknowledgements

There is a great deal of people I would like to thank for their help and support throughout the course of my Master's degree. First, I would like to thank my supervisor, Dr. Barbara Zielinski. She has taught me what it is to be a scientist, and without her mentorship, patience and advice, I would not be where I am today.

I would also like to thank Dr. Daniel Heath, as well as my external committee member Dr. Joel Gagnon. I could not have asked for a greater committee, where the willingness to help and assist was so readily available. I am thankful for the integrative nature of my research, and the diversity of techniques brought by each of my committee members.

It is a privilege to have worked beside so many skilled colleagues and labmates in both the Zielinski and Heath lab. I would especially like to thank Karl Boyes, and Kyle Wellband for their assistance and collaboration in areas of my research. I would especially like to thank Kyle, who I am sure I could not have completed my final chapter without. An additional thank-you to the past and current members of the Zielinski and Heath lab for your friendship, banter, discussion and support: Tina Suntres, Sa, Baker, Dr. Michelle Farwell, Gianfranco Grande, Dr. Warren Green, Ron Padilla, and Alex Zygowska.

The technical staff at the University of Windsor has not only helpful in completing my research, but have been friendly faces throughout my degree. I owe my gratitude to the help of: Ingrid Churchill and Rodica Leu in the stockroom; Bob Hodge for going above and beyond the role of technician; our wonderful secretaries (DJ, Brenda and Judy); our amazing grad secretary Nancy Barkley; our animal care tech Linda Sterling; and Jerry and Candy from Chemical Control Centre. I also must acknowledge the help I received from the guys at the Technical Support Centre: Steve, Marc and Dean for their help with instrumentation development.

Finally, a thank you to my parents, Mike and Debbie Jones. I have been blessed with two of the most amazing parents and role models in my life, and cannot express enough how much it is appreciated. And to my sister, Kara Jones, for being not only a sister, but also a best friend.

Table of Contents

DECLARATION OF CO-AUTHORSHIP	iii
ABSTRACT	v
DEDICATION	vi
ACKNOWLEDGEMENTS	vii
LIST OF TABLES	X
LIST OF FIGURES	x i
LIST OF APPENDICES	Xii
LIST OF ABBREVIATIONS	
Chapter 1: General Introduction	1
Chapter 2: Copper levels in urban roadway runoff in the Winds	
on neural activity in the olfactory system of the sea lamprey	
2.2 Materials and Methods	
2.3 Results	
2.4 Discussion	
2.5 Tables	20
2.6 Figures	21
2.7 References	27
Chapter 3: Transcriptomic effects of copper on the olfactory sys	
lamprey	
3.1 Introduction	
3.2 Materials and Methods	
3.3 Results	
3.5 Conclusion.	
3.6 Figures	
3.7 References	
3.8 Appendices	
Chapter 4: City of Windsor ERASMUS Internship	74
4.1 Materials and Methods	
4.2 Results and Discussion.	
4.3 Table	
Chapter 5: Closing Remarks	80

VITA AUCTODIC	07
VITA AUCTORIS	86

List of Tables

Table 2.6	Total dissolved copper values	20
Table 4.4	Copper values for LRPCP and LRWRP	77

List of Figures

Fig 2.1	Water sampling values for total dissolved copper	21
Fig 2.2	Map of locations of water sampling sites in Windsor, ON	22
Fig 2.3	The effect of copper chloride on olfactory bulb responses to the pheromone 3KPZS applied to the olfactory epithelium	23
Fig 2.4	The effect of dissolved copper chloride applied to the sea lamprey olfactory olfactory epithelium	24
Fig 2.5	Cresyl violet staining of lamellae in the peripheral olfactory organ of sea lampreys exposed to dissolved copper chloride for 24 h	25
Fig 2.6	Acetylated α - tubulin immunoreactivity in the olfactory epithelium after sea lamprey were exposed to copper chloride for 24 hours	26
Fig 3.1	Dose response curves for differentially expressed transcripts in all copper treatments and common between (Cu-L and Cu-H)	46
Fig 3.2	Dose response curve for the single differentially expressed genes for medium and high doses of copper treatments (Cu-M, and Cu-H)	47
Fig 3.3	Functional assignment of all genes significantly responding to copper exposure (FDR≤0.05) identified using Blast2Go	48
Fig 3.4	Venn diagram showing the pattern of the differentially transcribed genes	50
Fig 3.5	Dose response plot for candidate genes that showed a significant change in expression compared to control at the 30 $\mu g/L$ Cu dose	51
Fig 3.6	Expression of top five genes showing greatest fold change in the Cu-L (5 $\mu g/L$)	52
Fig 3.7	Expression of top five genes showing highest fold change in the Cu-L (10 $\mu\text{g/L})$	53
Fig 3.8	Expression of top five genes showing highest fold change in the Cu-L (30 $\mu g/L$)	54

List of Appendices

Appendix A	Differentially expressed gene transcripts	60
Appendix B	Chemosensory receptor candidate genes	73

List of Abbreviations

3kPZS 3- keto-petromyzonal sulfate BLAST Basic local alignment search tool

Cu Copper

GLM Generalized linear model

GO Gene ontology

GPCR G-protein coupled receptor

ICP-MS Inductively coupled plasma-mass

spectometry

LFP Local field potential

LRPCP Little River Pollution Control Plant
LRWRP Lou Romano Water Reclamation Plant

mRNA Messenger ribonucleic acid

OB Olfactory bulb

ON Ontario

OR Olfactory receptor

OSN Olfactory sensory neuron PBS Phosphate-buffered saline

RNA Ribonucleic acid
TAAR Trace-amine receptors
V1R Vomeronasal receptor

Chapter 1: General Introduction

In fishes, olfaction mediates social behaviours, such as reproduction, homing, schooling, as well as food-search, and predator avoidance (Kotrschal, 2000).

Contaminants are able to disrupt a broad range of olfaction-mediated behaviour in fishes, and can cause long-lasting damage to physiological and olfactory epithelial structures (Wang et al., 2013). One contaminant that has received great attention in the literature with respect to olfaction is copper (Cu). Cu contamination is typically observed through anthropogenic sources, including those in urban areas near roadways. Disc brake utilization in motor vehicles causes particles to be abraded onto the roads and subsequently drained into waterways during snowmelt and rain events (Boulanger, 2003).

Copper is a ubiquitously distributed olfactory toxicant and a pervasive contaminant in urban runoff at concentrations that vary from 1 to 64 µg Cu-L (Soller et al., 2005). In a concentration-dependent manner, Cu concentrations within this range can inhibit physiological responsiveness of olfactory sensory neurons during short-term exposures in salmon (Sandahl et al., 2007), as well as lead to inhibition of genes in the olfactory system pathway of teleost fish (Tilton et al., 2008; Wang et al., 2013). Since salmon rely on olfaction for behaviours necessary for survival, including spawning, they may be threatened by living within areas of urban development (Baldwin, 2003; Sandahl, 2007). The adverse effects of copper on the fish olfactory system have been found even at levels below legally established concentrations (Sandahl et al., 2007).

Whereas the effects of copper on olfaction in salmon and a variety of other teleost have been investigated, responses of basal vertebrates were not tested. Lamprey rely heavily on olfaction for migration and spawning events (Vrieze et al., 2011), yet the lamprey olfactory system has not been investigated for the potential effects of copper

toxicity. Being an invasive fish species to the Great Lakes, the sea lamprey has received increasing attention in terms of population abatement strategies (Johnson et al., 2009). Current abatement strategies under development utilize a male sex-pheromone 3- keto-petromyzonol sulfate (3kPZS) application to streams, in attempts to lure and capture ovulating females (Johnson et al., 2009). The potential of copper toxicity effects on the olfactory systems may hinder the success of these strategies. In comparison, populations of lamprey are seen as a delicacy and threatened in parts of Europe, such as Portugal, as well as species in Asia, where conservation methods are widely employed to address declines in native sea lamprey populations (Pereira et al., 2010). Both scenarios present important implications for analyzing the effect of copper toxicity; for species that are targets for abatement management, as well as those whose populations are considered critically endangered (Cabral et al., 2005).

The goals of this thesis are to first explore the levels of copper in an urban environment proximal to sea lamprey populations. This includes independent copper analysis of roadway runoff and a study of copper values assessed by the City of Windsor (through a collaborative internship). The effects of copper levels entering through roadway runoff into urban watersheds were examined for olfactory sensory impact by testing neural responses to pheromones using electroencephalogram (EEG) local field potential recordings. A technique widely used for studies on olfaction (Byrd and Caprio, 1982), the EEG measures activity of olfactory sensory neuron responses to an odour in the olfactory bulb. Based on reduced responses during copper exposure, the cellular integrity of the peripheral olfactory organ was examined using immunohistochemical techniques, to address physical damage to the olfactory epithelium during increasing

toxicity. Lastly, the underlying molecular mechanisms of toxicity responses were further analyzed for genetic modifications to olfactory tissue that result during exposure. The recent annotation of the sea lamprey genome (Smith et al, 2013) presents the opportunity for investigating the effect of environmental copper on the RNA (transcriptome) of the olfactory system in the sea lamprey, a process previously unexplored. By analyzing RNA transcriptome data, the analysis of genes being up-regulated or down-regulated in response to copper can be identified, exploring the potential for adaptive responses in the sea lamprey. This study will provide a quantification of the lamprey's tolerance effects to copper, and the changes that result from exposure. It is hypothesized that low levels of heavy metals in urban waterways will impair sea lamprey olfactory function and alter their gene expression pattern in a number of biological processes.

Chapter 2: Copper levels in urban roadway runoff in an urban area and effects on neural activity in the olfactory system of the sea lamprey

2.1 Introduction

Chemical communication in fishes is managed by olfactory responses, mediating social behaviours and processes necessary for survival (Kotrschal, 2000). It is hypothesized that functions associated with reproduction, recognition, foraging, and predator avoidance are behaviours mediated by conspecific odours in a variety of organisms (Wyatt, 2014). While much of our understanding of chemical communication is based upon invertebrate species, pheromone communication utilized by the sea lamprey (*Petromyzon marinus*) has been well documented (Pietrzakowski et al. 2013; Buchinger et al. 2015).

The sea lamprey is a basal vertebrate, with a complex life history involving a variety of life stages throughout its life cycle. As an invasive fish species to the Great Lakes, the sea lamprey has inflicted considerable damage to the ecosystem, as well as the economy, with severe damages including those to populations of native fish species. Current abatement strategies implement the development of a synthesized pheromone based trapping (Johnson 2008), a strategy relying heavily on the olfactory biology of the sea lamprey. Previous research has demonstrated that traps baited with the natural migratory cue and male sex pheromone (3kPZS) successfully capture more sea lamprey than unbaited traps (Johnson et al., 2006; Johnson et al., 2009). Trapping efficiencies increased by 10% when 3kPZS was applied as bait (Johnson et al., 2013); however, these methods explore trapping in pristine, odour-controlled environments. In contrast, some populations of lamprey such as the brook lampreys (*Lampetra planeri*) of Portuguese streams and the northern hemisphere lampreys (*Petromyzontidae*) are of high economic

value. Conservation methods have been implemented in attempt to suppress the threat of survival of these species (Pereira et al, 2010; Almeida et al. 2002; Renaud, 2007).

One contaminant that has received great attention in the literature with respect to olfaction is copper (Cu). Cu contamination is typically observed through anthropogenic sources, including those in urban areas near roadways. Disc brake utilization in motor vehicles causes particles to be abraded onto the roads and subsequently drained into waterways during snowmelt and rain events (Boulanger 2003). Cu is a ubiquitously distributed olfactory toxicant and a pervasive contaminant in urban runoff at concentrations that vary from 1 to 64 µg Cu-L (Soller et al., 2005). Concentrations within this range can inhibit physiological responsiveness of olfactory sensory neurons during short-term exposures in salmon (Sandahl et al., 2007). Based on this information, recent studies have since been successful in contributing to the banning of brake pads containing copper in the states of Washington, New York, Rhode Island, Oregon and California (Lee and Lin, 2013; Barlow et al., 2014). Adverse effects of Cu in fishes include suppression of pheromone detection, reproduction and predation (Sandahl et al., 2007; Kolmakov et al., 2009).

Here we explored the levels and the effects of copper concentrations present in an urban roadway runoff waterway, as well as passage through a rural region, and compare these to waterways that inhabit and are migrating/spawning streams of the sea lamprey. Water samples were collected seasonally in urban waterways adjacent to high traffic streets, and also those in low traffic areas. It was hypothesized that there would be an increased copper concentration during the spring snow melt and rain events, where the highest amount of copper particles from brake pads will be washed into waterways.

Based on the measurement of environmentally relevant levels of copper found in local urban roadway runoff, we tested to determine the effects of both short term (rapid onset) and 24-hour exposures of copper on the olfactory system of the sea lamprey. Odour responses to pheromones were tested for short exposure to Cu. For histological effects on the olfactory epithelium, immunohistochemical labeling of acetylated tubulin (present in the dendrites, cell bodies, and axons of olfactory sensory neurons) was conducted to explore olfactory odour responses at various copper concentrations.

2.2 Materials and Methods

2.2.1 Copper levels in urban roadway runoff analysis

Urban and rural streams were sampled to compare copper concentrations in streams that exhibit high traffic roadway runoff, as well as streams that inhabit the sea lamprey in a less urbanized setting. A series of eight sites were chosen in Windsor, ON, and the surrounding area to cover highly urbanized streams surrounded by high traffic roadways in downtown Windsor. Samples were strategically chosen along a single water source, the Grand Marais Drain, to represent the range of effluent levels from roadways in areas of high traffic across the City (Figure 2.1). Indicative of an urban environment, each site was documented to have consistently high traffic based on information obtained from the City of Windsor. Water samples were obtained for water quality analysis from summer (July 4 2014)- spring (April 28 2015) at all 8 locations. Both unfiltered and filtered 50 mL water samples were taken at each site to account for total suspended copper concentrations. Sites included major roadways in Windsor, including: Outfall at the Detroit River, West Grand Blvd, Huron Church Rd, Walker Rd, Dougall Storm Drain. Areas in Lasalle, ON were also sampled for areas with less traffic flow than inner city,

which included: Turkey Creek, Grand Marais Drain and Basin Drain. Water samples were tested seasonally following major rain events in the area.

To compare urban water copper concentrations to pristine locations with inhabit sea lamprey, 5 rural streams in Millersburg, Michigan known for migration and spawning locations for the sea lamprey were sampled in the spring of 2015. These locations are also where current abatement strategies utilizing the male sex pheromone 3kPZS are implemented. Sites in Michigan included Black Mallard Creek, Ocqueoc River, Trout River, Cheboygan River and Schmidt Creek. All 5 sites exhibited low traffic year-round.

Copper concentration analysis from water samples was conducted at the Great Lakes Institute of Environment Research using inductively- coupled plasma mass spectrometry (Agilent Technologies 7900 ICP-MS, method detection limit of $0.0612~\mu g$ Cu-L).

2.2.2 Effects of copper on neural activity in the olfactory system

2.2.2.1 Experimental fish

Petromyzon marinus were obtained from United States Geological Survey

Hammond Bay Biological Station in Millersburg in May 2015, Michigan. All animals were then transferred to the University of Windsor and held in the Central Animal Care Facility at University of Windsor, according to UWindsor Animal Care Guidelines

(AUPP#14-05). Animals were housed in an 8°C cold room in tanks with recirculated dechlorinated water. Temperature and pH were measured using a standardized pH meter. Copper levels were reported for each tank to be at or below 0.4 μg Cu-L.

Immunohistochemistry analysis of 24-h Cu exposures using transformer phase lamprey at 0 μg Cu-L (N=3), 5 μg Cu-L (N=3), 10 μg Cu-L (N=3) and 30 μg Cu-L (N=3).

Electrophysiology test procedures used adult phase sea lamprey for a similar range of copper concentration, not including 30 μ g Cu-L; of 0 μ g Cu-L (N=5), 5 μ g Cu-L (N=5) and 10 μ g Cu-L (N=5) for exposures of 30 min.

2.2.2.2 Changes to the olfactory epithelium

To investigate the potential effects of copper on olfactory epithelial tissues, cresyl violet staining, as well as labeling of acetylated tubulin, were performed. Olfactory epithelium was collected from transformer phase sea lamprey. Animals were placed in individual 10 L tanks, with appropriate amounts of copper chloride of 0, 5, 10 and 30 µg Cu-L. Immediately following each 30 minute Cu-exposure, each fish was deeply anesthetized with 150 mg/L MS-222, and then decapitated. For histological and immunohistochemical analysis, the olfactory epithelium tissue was placed in paraformaldehyde fixative containing 4% paraformaldehyde in 0.1 M PBS for 24-h. Olfactory epithelium tissue was then placed in 30% sucrose gradient in 0.1 M PBS, and cryosectioned in 18 µm slices and rinsed in phosphate-buffered saline (PBS) with Triton to rehydrate cells, for 2-h. Cresyl violet staining was also completed on sections of olfactory epithelium from the same animals to outline structural components of lamellae in the peripheral olfactory organ. Additionally, tissue was labeled with primary antibody, monoclonal mouse anti-acetylated tubulin (1:1000; Sigma- Aldrich, Oakville ON, T7451) overnight. Labeling of α -acetylated tubulin is a novel marker of olfactory sensory neurons, ciliary processes and microtubules labeling in olfactory epithelium. Each olfactory epithelial tissue was then mounted, coverslipped with VectaShield Hardset with DAPI (fluorescence anti-fade mounting medium; Vector Laboratories Burlingame, CA, USA) and stored in 4°C until analyzed.

Low power micrographs (20x objective) were captured using LAS AF (Leica DM1600B) following cresyl violet staining. High power micrographs (60x oil immersion objective) were captured using confocal (Olympus fluoview FV1000) microscopy following anti-acetylated tubulin labeling.

2.2.2.3 Electrophysiology test procedure

Stimulus water contained 10⁻⁸ M 3KPZS (3-Keto Petromyzonal Sulfate), a sea lamprey male sex pheromone known to elicit consistent responses in adult lampreys (Li et al., 1995). Copper-exposure water was produced with the appropriate additions of 0, 5, and 10 Cu-L, to chilled lamprey Ringer solution (130 mM NaCl, 2.1 mM, KCl, 2.6 mM CaCl₂, 1.8 mM MgCl₂, 4 mM HEPES, 4mM dextrose, 1 mM NaHCO₃). Fresh Ringer's was prepared prior to each experiment, and pH adjusted to 7.4 with 5 mM NaOH. Ringer's were chilled and oxygenated (95% oxygen and 5% carbon dioxide) throughout the duration of experiments.

Following Ringer's solution preparation, a lamprey was obtained from Animal Quarters and anaesthetized using a 0.15 g-L dose of tricaine mesylate (MS-222, Sigma-Aldrich, Oakville, ON, Canada). The individual lamprey was then decapitated at the third branchiopore and tissue placed in a dissection dish containing Ringer's solution. Tissue was rotated onto the ventral side, so that a cut could be made along the gill pores and removed down to the buccal cavity and nasopharyngeal pouch. On the dorsal side, the skin, musculature and cartilage were removed to expose the brain, olfactory epithelium, nasal cavity and olfactory bulbs. Dura matter was removed from the surface of the olfactory bulbs and nerves (Green 2012).

The exposed dissected tissue was placed into a recording chamber. During the

experiments, chilled and oxygenated Ringer's solution was continuously perfused at a flow rate of 1mL/min, from the top of the dish and into the nasal cavity, and at the bottom of the dish (Figure 2.3). A 1 h recovery period between the dissection and recording was allowed (Green 2012, Boyes 2014).

Copper concentrations were created using copper chloride (CuCl₂), and added to the Ringer's solution during the copper exposure experimental duration. Copper concentrations of 0 µg Cu-L (N=5), 5 µg Cu-L (N=5) and 10 µg Cu-L (N=5) were tested.

The same procedural outline was performed for all sets of experimental copper concentrations. The lamprey pheromone 10⁻⁸M 3kPZS was delivered to the nasal cavity in three phases: i) a 9 minute pre-copper control period, (ii) a 30 minute copper exposure period and (iii) a 30 minute post-copper recovery period. During the pre-copper control period, solely Ringer's solution was perfused through the nasal cavity. At 3 min intervals, an odour delivery system applied 3kPZS above the nasal cavity, causing stimulation of olfactory sensory neurons. During administration of 3kPZS, an electrode recorded local field potential responses from the dorsal area of the olfactory bulb. Local field potentials are electrophysiological signals generated from the sum of the electric currents from a group of neurons found on nervous tissue. At the 12 min mark, once a steady baseline of pre-copper exposure was established, the copper exposure period began. Appropriate copper concentrations were added to the Ringer's solution, and were perfused through the nasal cavity. 3kPZS was then administered in 5-minute intervals for a total of 6 deliveries. At the 42 min mark, the recovery period began and the copper/Ringer's mixture was replaced with initial Ringer's solution. 3kPZS was administered in 5-minute intervals for a total of 6 deliveries (Green et al., 2010).

2.2.3 Electrophysiology data analysis and statistical evaluations

Local field potential recordings (LFP) were digitally filtered through a low pass filter, cut off at 100Hz, to reduce random noise using LabChart software (version 6.1.3, ADInstruments). The mean peak amplitude was calculated for each delivery during each odour response. Averages of mean peak amplitudes were used as a reference point, for the pre-copper control period. The mean peak amplitudes for the remaining deliveries were then divided by the reference value, to produce individual response magnitudes for the deliveries corresponding to each individual animal. Individual response magnitudes were then averaged across all animals to produce a total olfactory bulb (OB) response magnitudes value.

Repeated measures two-way ANOVA was conducted using JMP (SAS Institute), in order to determine if there any significant differences between the pre-copper control values and the values during the copper exposure and the post-copper recovery period.

2.3 Results

2.3.1 Chemical analysis of local waterways in Windsor, ON and surrounding area

Frequency distributions of copper concentrations of Windsor sampling sites, both urban and rural, are presented in Figure 1. Values ranged from 0.54 - $7.42~\mu g$ Cu-L over all time points, with the majority of the values falling between 1- $3~\mu g$ Cu-L. Spring, summer, autumn and winter samples all show similar distribution patterns, with a significant increase in copper concentration in spring 2015, compared to all other seasonal time points. Summer 2014 sampling of copper concentrations ranged between $0.54-3.1~\mu g$ Cu-L, Fall 2014 between $1.21-4.79~\mu g$ Cu-L, Winter 2014 between $1.36-3.54~\mu g$ Cu-L and Spring 2015 between $1.59-7.42~\mu g$ Cu-L (Table 2.1).

Water sampling from sea lamprey migratory streams in Hammond Bay,
Michigan, in Spring May 28, 2015 demonstrated relatively low levels of copper (0.342.45 µg Cu-L) in all 5 streams after a significant rain event.

2.3.2 Effects of 24 hour copper exposure on the olfactory epithelium

The olfactory epithelium was examined in views of cresyl violet stained preparations (Figure 2.5) after 24 copper exposures of 0, 5, 10 and 30 μ g Cu-L. In negative control sections of 0 μ g Cu-L, the lamellae in the peripheral olfactory organ show uniform and intact structure of the epithelium (Figure 2.5A). Differences were evident with increasing copper concentrations, as tips of lamellae begin to stain more darkly and appear more pointed (Figure 2.5B). With increasing copper concentrations of 10 and 30 μ g Cu-L, debris begins to accumulate in the lumen of the nasal cavity, as well as surface of the olfactory lamellae appear shortened (Figure 2.5 C, D).

Acetylated α -tubulin immunoreactivity indicated the presence of cilia, as well as microtubules in the dendrites (Figure 2.6). In lampreys not exposed to copper, intense labeling was seen in the cilia mucociliary complex above of the olfactory epithelium, as well as in dendrites as far as the apical surface of the epithelium. This labeling in the apical dendritic regions of the olfactory sensory neurons treated with increasing copper concentration, as some acetylated tubulin labeling of the dendrites did not reach the surface of the olfactory epithelium starting in the lowest copper concentration (5 μ g Cu-L) (Figure 2.6B). Loss of apical extension of dendrites become more prominent as copper concentration increased and the olfactory sensory neurons appeared swollen at higher doses of copper (30 μ g Cu-L) (Figure 2.6 D).

2.3.3 Effects of copper on olfactory bulb responsiveness to male sex pheromone odour

Following a 5 µg Cu-L exposure to the olfactory epithelium, 2 out of 5 animals showed a significant decrease in peak amplitudes of LFP response to 10^{-8} M 3kPZS, during copper exposure. The remaining 3 individuals did not show significant reduction in peak amplitude values. Following exposure to 10 µg Cu-L, 4 out of 5 animals showed a significant decrease in LFP peak amplitude response to 10^{-8} M 3kPZS, during copper exposure. The remaining individual showed a small decrease in peak amplitude value (Figure 2.3).

Individual olfactory bulb response to $10^{-8}M$ 3kPZS was also observed following 5 and 10 µg Cu-L copper exposures (Figure 2.4). In the 5 µg Cu-L experiment, pre-copper control period showed a small OB response magnitude variation. During the 5 µg Cu-L exposure, 2 out of 5 animals had reduced OB response magnitude values. The responses to 5 µg Cu-L were highly variable, resulting in a high standard error value. During post-copper recovery period, OB response magnitudes for all 5 animals showed an even greater variation between animals, resulting in large standard error. During the increased copper exposure concentration of $10 \mu g$ Cu-L, variation in OB response magnitude was small in the pre-copper period. During copper exposure period, 4 out of 5 animals were observed to have reduced OB response magnitudes, with less variation during exposure than the 5 µg Cu-L exposure. Variation in post-copper recovery was also large, resulting in large standard error.

Relative to the control exposure, OB response to 10⁻⁸M 3kPZS was reduced during both copper concentrations of 5 and 10 µg Cu-L (Figure 2.4). Individuals exposed to control concentrations did not show a reduced in OB response magnitude. The

variation between animals during the control exposure was also large, resulting in large standard error.

Animals subjected to the 5 µg Cu-L showed a decrease of 20% in OB response magnitude during copper exposure periods. In comparison, animals subjected to the 10 µg Cu-L exposure showed approximately 40% reduction in OB response magnitude. However, during the 5 µg Cu-L copper exposure, only the 26 min delivery mark showed a significant reduction in OB response magnitude relative to the pre-copper exposure values. Following the 5 µg Cu-L exposure, OB response magnitude returned to pre-copper exposure values within 20 min of recovery period. Exposure to the higher concentration of 10 µg Cu-L caused a greater reduction in OB response magnitude during copper exposure periods, with a significant decrease during each time point during exposure with respect to pre-copper period values. During the post-copper recovery period, OB response magnitude showed a slight increase in recovery, however these values did not return to pre-copper exposure levels.

2.4 Discussion

Understanding the functional and mechanistic relationships between aquatic habitats and organisms presents major challenges. The olfactory system of fish has been recognized to be particularly vulnerable to the toxic effects of dissolved pollutants, specifically copper, in aquatic environments (Baldwin et al., 2003). This study correlates levels present in the environment to effects on the olfactory system of the sea lamprey. It is shown that copper suppresses odour responses to sex pheromone odour 3kPZS in the olfactory bulb of the sea lamprey OSNs that respond. Moreover, this inhibitory effect is

increased at higher concentrations of Cu. As consequence, these low levels of copper exposures may affect the potential of olfactory-mediated behaviours, such as mate attraction mediated by pheromones.

Copper exposures used in this study were of environmental relevance, and designed to mimic copper pollution in local urban habitats, such as those where the sea lamprey inhabits. Low levels of copper (1-3 µg Cu-L) (Sandhal et al., 2007) known to cause impairment in fish are found to be present in local urban waterways sampled in Windsor, ON. Additionally, higher values of 1.59- 7.42 µg Cu-L were present during the Spring of 2015, consistent with the hypothesis of the spring snow and rain melt events presenting highest copper concentration values. Roadways that are known to exhibit higher traffic levels (Huron Church) also experienced higher values of copper contamination consistently through the season.

Indicative of a typical rural environment, Hammond Bay streams in Michigan were sampled and experienced relatively low values of copper in all sample locations, compared to urban sites tested in this study. Similar values of copper were reported for urban sites in historical water quality data from the Ministry of the Environment (2003), as well as previous studies (Davis 2003; Prestes 2006). These findings highlight the importance of water quality analysis during pheromone abatement strategies, which may have the potential to be unsuccessful in streams with heavy metal contamination.

Although streams in Windsor do not contain sea lamprey, they do allow for a comparison to urban environments in lamprey may be found. Some streams in Toronto, Ontario inhabit sea lamprey, as well as use pheromone abatement strategies to control sea lamprey populations. Based on historic Provincial Water Quality Monitoring Network

Data, Cu values for streams in Toronto streams range from values of 3.77- 7.46 µg Cu-L. Based on findings in the current study, values as low as 5 µg Cu-L can inhibit olfactory neural activity in the sea lamprey. This should be considered during future pheromone based applications into urban streams when attempting to control increasing lamprey populations in the Great Lakes.

Dosages of low (5 μ g Cu-L) to high (30 μ g Cu-L) copper exposure were used to measure potential effects on olfactory epithelial tissues. Olfactory sensory neuronal effects were present starting at the lowest dosage of 5 μ g Cu-L, through the depletion of dendritic extension to the apical surface of the epithelium, as well as lamellar irregularity. Previous studies have also found similar changes in olfactory epithelial tissues in response to copper, reporting the number of olfactory receptors significantly reduced in Chinook salmon exposed to \geq 0 μ g Cu-L (Kolmakov et al., 2009). Based on the changes indicated by immunohistochemistry techniques, doses of 5 and 10 μ g Cu-L were used to analyze odour response changes in response to the male sex pheromone 3KPZS. As reported in previous research in teleost fish, changes in odour response were also present in doses as low as 5 and 10 μ g Cu-L, with increasing inhibition present in the higher dose of 10 μ g Cu-L (Green, 2012; Hansen et al., 1999).

In summary, we have shown exposure to copper significantly impairs the olfactory bulb responsiveness of the sea lamprey, as well as causes impairment to the olfactory epithelial tissues. These exposures were typical of copper concentrations found in urban water runoff. Therefore, copper may interfere with a variety of olfactory mediated behaviours, as well as the potential success of implemented abatement strategies of the invasive fish species, as well as those species targeted for conservation

methods. More work is needed to understand the behavioural consequences, as well as the potential for transcriptomic analysis on the biological processes affected by this neurotoxicity.

Tables $\textit{Table 2.1} \ \text{Total dissolved copper values (μg\ Cu-L$) reported for urban sampling sites in Windsor and surrounding area. }$

	Copper Concentration (µg Cu-L)			
Sampling Location in	Summer	Fall	Winter	Spring
Windsor, ON	July 4/ 14	Oct 17/ 14	Mar 10/15	April 28/15
Outfall at River 42°31`N, 83°07`W	0.54	1.21	1.36	1.59
West Grand Blvd 42°27`N, 83°01`W	0.85	2.67	2.33	4.13
Dougall Storm Drain 42°27'N, 83°01'W	3.10	4.79	2.56	5.97
Huron Church Rd 42°26' N, 83°04' W	1.60	2.89	3.54	7.42
Walker Rd 42°29' N, 82°98` W	0.54	1.21	3.04	4.72
Grand Marais Drain 42°25`N, 83°06`W	1.17	2.38	2.19	5.20
Basin Drain 42°25`N, 83°06`W	1.18	2.05	1.79	3.11
Turkey Creek 42°24`N, 83°09`W	1.31	2.00	2.04	3.38

Figures 2

Figure 2.1 Water sampling values for total dissolved copper chloride found in urban waterway runoff sites in Windsor, ON for all sampling time points.

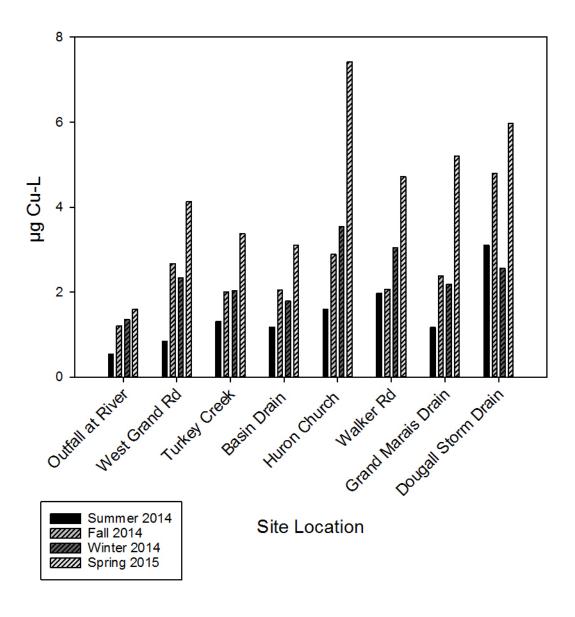


Figure 2.2 Map of locations of water sampling sites in Windsor, ON and surrounding areas. Water quality data for Winter March 10, 2015 copper values appear in order from lowest to highest copper concentrations at each of the 8 site locations.

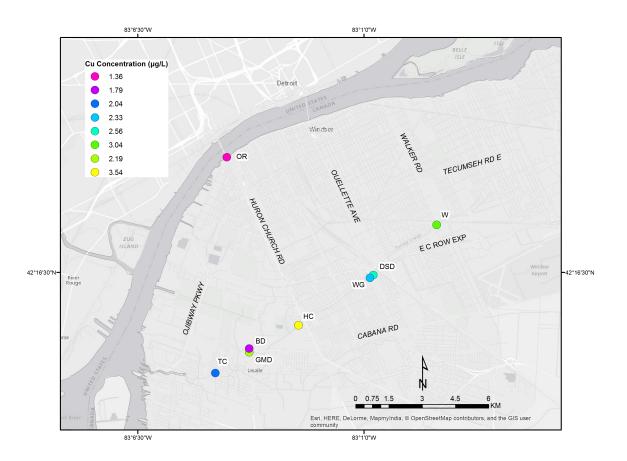


Figure 2.3. The effect of copper chloride on olfactory bulb responses to the pheromone 3KPZS applied to the olfactory epithelium. The nose-brain preparation was utilized to examine the effect of applying copper chloride to the peripheral olfactory organ, on olfactory bulb responses to 10^{-8} M 3KPZS applied to olfactory epithelium. Local field potentials were recorded from the dorsal region of the olfactory bulb. The amplitude of each peak in response is shown in microvolts (μV) and duration in milliseconds (ms). The center trace in each panel indicates the copper exposure to the peripheral olfactory organ for 30 min periods for (**A**) 0 μg copper (Cu)-L (**B**) 5 μg copper (Cu)-L and (**C**) 10 μg copper (Cu)-L. For each treatment, the control responses, depicted by the top trace in each panel, were collected prior to 30 min copper exposure. Recovery responses, depicted by the bottom trace in each panel, were recorded 30 min following each copper treatment.

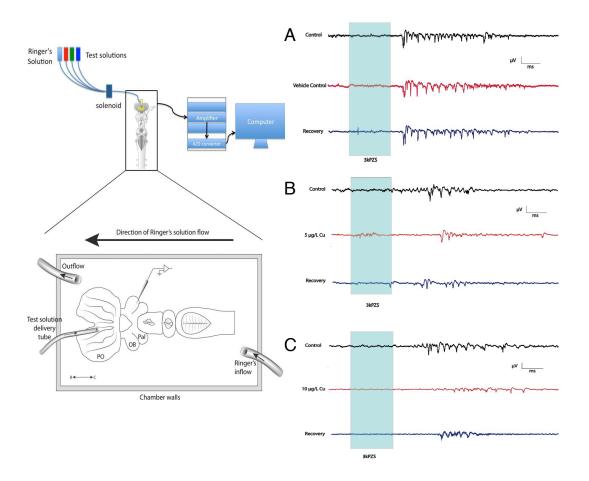


Figure 2.4. The effect of dissolved copper chloride applied to the sea lamprey olfactory olfactory epithelium. Mean (n=5) relative LFP response were recorded from the olfactory bulb to 10^{-8} M 3KPZS delivered to the olfactory epithelium for the precopper, copper and postcopper exposure periods of concentrations 0, 5 and 10 μg copper (Cu)-L. Relative responses were determined by dividing each response value for a given fish by the respective premetal exposure response average. Plotted means were determined by averaging the response to 10^{-8} M 3KPZS of all five fish for a given time point. Repeated measures ANOVA was conducted for each Cu concentration and asterisks indicate significant differences from respective premetal exposures ($p \le 0.05$). Solid bar indicates copper exposure period.

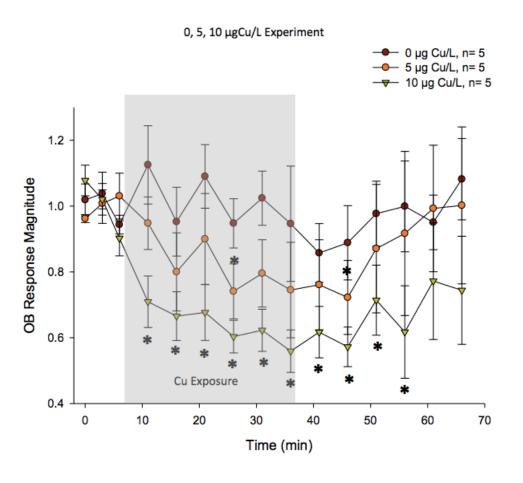


Figure 2.5. Cresyl violet staining of lamellae in the peripheral olfactory organ of sea lampreys exposed to dissolved copper chloride for 24 h.

- (A) Negative control. Staining of the lamellae in the peripheral olfactory organ shows uniform and intact structure of the olfactory epithelium.
- (\mathbf{B}) 5 µg Cu-L. The tips of the olfactory lamellae (indicated by asterisks) appear pointed and are more darkly stained than the surrounding epithelium.
- (C) 10 μ g Cu-L. The arrows point to debris in the lumen of the nasal cavity and adjacent to the olfactory epithelium. Lamellae appear shriveled, and the epithelial thickness is irregular
- (**D**) 30 μ g Cu-L. The surface of the olfactory lamellae is irregular. Arrows point to debris in the lumen of the nasal cavity, adjacent to the olfactory epithelium. Bar shown in (**B**) indicates 200 μ m.

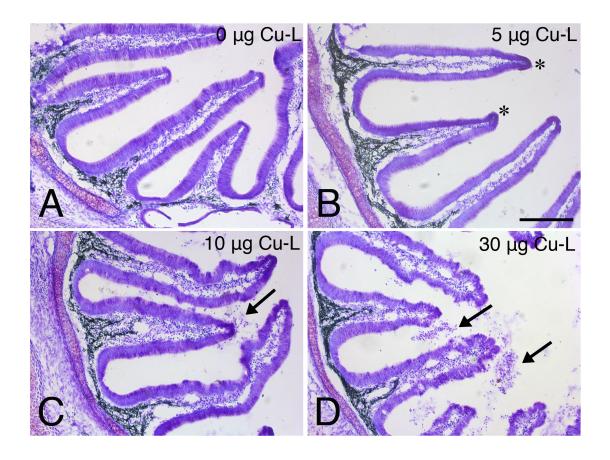
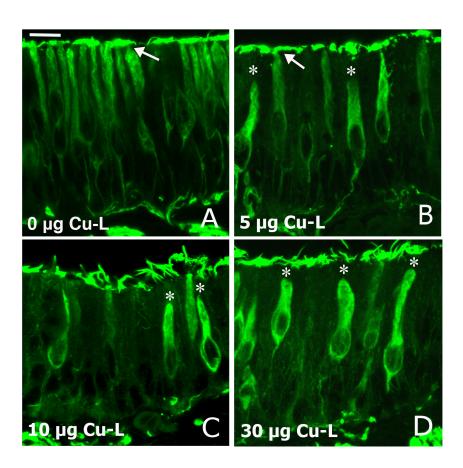



Figure 2.6. Acetylated α- tubulin immunoreactivity in the olfactory epithelium after sea lamprey were exposed to copper chloride for 24 hours. Confocal laser scanning microscope Z stacks are projections of 11 sections per image.

- (A) Negative control. Acetylated tubulin immunoreactivity surrounds the cell bodies of olfactory sensory neurons and is localized in the dendrites, including the apical regions of the dendrites (arrows). Intense acetylated tubulin labeling is seen in the mucociliary complex on the surface of the olfactory epithelium.
- (**B**) 5 μg Cu-L. Acetylated tubulin labeling is dense in the mucociliary complex. Arrows point to the immune-labeled apical dendritic regions of the olfactory sensory neurons. Labeling is seen in the dendrites, cytoplasm around the cell body, and in the axons. In some olfactory sensory neurons, dendritic acetylated tubulin immunoreactivity does not reach the surface of the olfactory epithelium (asterisks).
- (C) 10 μ g Cu-L. Prominent cilia extend from the apical surface. While some acetylated tubulin-immunoreactive olfactory sensory neuron dendrites reach the apical surface of the olfactory epithelium, others do not (asterisks).
- (**D**) 30 μ g Cu-L. Cilia are prominent on the surface of the olfactory epithelium. The acetylated tubulin immunoreactivity does not reach the apical surface in most olfactory sensory neurons. Overall, the dendrites of the olfactory sensory neurons appear swollen. Bar in (**D**) indicated 10 μ m.

References

- Almeida, P. R., Quintella, B. R., Nuno, M. D. & Nuno, A. (2002). The anadromous sea lamprey in Portugal: Biology and conservation perspectives. In The Biology of Lampreys, Symposium Proceedings of the International Congress on the Biology of Fish (Moser, M., Bayer, J. & MacKinlay, D., eds), pp. 49–58. Vancouver: University of British Columbia.
- Baldwin DH, Sandahl JF, Labenia JS, Scholz NL. 2003. Sublethal effects of copper on coho salmon: Impacts on nonoverlapping receptor pathways in the peripheral olfactory nervous system. Environ Toxicol Chem 22(10): 2266-2274
- Barlow C, Bendell LI, Duckman C, Faugeroux D, Koo V. 2014. Three-dimensional profiling reveals trace metal depositional patterns in sediments of urban aquatic environments: A case study in Vancouver, British Columbia, Canada. Water, Air, & Soil Pollution. 225: 1856
- Boulanger B, Nikolaidis NP. 2003. Mobility and aquatic toxicity of copper in an urban watershed. Journal of the American Water Resources Association. 39(2): 325-336
- Byrd RP, Caprio J. 1982. Comparison of olfactory receptor (EOG) and bulbar (EEG) responses to amino acids in the Catfish (*Ictalurus punctatus*). Brain Research. 249: 73-80.
- Cabral H., Almeida J., Almeida P. R., Dellinger T., Ferrand de Almeida N., Oliveira M. E., Palmeirim J. M., Queiroz A. I., Rogado L. & Santos-Reis M. 2005. Livro Vermelho dos Vertebrados de Portugal. Lisboa: Instituto da Consevac a o da Natureza
- Davis AP, Shokouhia M, Sharma H, Minami C, Winogradoff D. 2003. Water quality improvement through Bioretention: Lead, copper and zinc removal. Water Environ Res. 75:73
- Deletic A. 1998. The first flush load of urban surface runoff. Water Research. 32 (8): 2462-2470
- Green WW, Mizra RS, Wood CM, Pyle GG. 2010. Copper binding dynamics and olfactory impairment in Fathead Minnows (Pimephales promelas). Environ Sci Technol 44: 1431-1437
- JA, Rose JD, Jenkins RA, Gerow KG, Bergman HL. 1999. Chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss) exposed to copper: Neurophysiological and histological effects on the olfactory system. Environ Toxicol Chem 18: 1979-1991

- Hara TJ, Law YMC, Macdonald S. 2011. Effects of mercury and copper on the olfactory response in rainbow trout, *Salmo gairdneri*. Journal of the Fisheries Research Board of Canada. 33(7): 1568-1573
- Johnson N, Yun SS, Thompson HT, Brant CO, Li W. 2008. A synthesized pheromone induces upstream movement in female sea lamprey and summons them into traps. Proceedings of the National Academy of Sciences. 106(4): 1021-1026
- Julliard A, Saucier D, Astic L. 1993. Effects of chronic low-level copper exposure on ultrastructure of the olfactory system in rainbow trout (*Oncorhynchus mykiss*). Histol Histopath. 8: 655-672.
- Julliard A, Saucier D, Astic L. 1996. Time-course of apoptosis in the olfactory epithelium of rainbow trout exposed to a low copper level. Tissue & Cell. 28 (3): 367-377.
- Kotrschal K. 2000. Taste(s) and olfaction(s) in fish: A review of specialized sub-systems and central integration. Pflügers Arch. 439(7): 178-180
- Kolmakov NN, Hubbard PC, Lopes O, Canario AVM. 2009. Effect of acute copper sulfate exposure on olfactory responses to amino acids and pheromones in Goldfish (carassius auratus). Environ Sci Technol. 43: 8393-8399
- McIntyre JK, Baldwin DH, Beauchamp DA, Scholz N. 2012. Low-level copper exposures increase visibility and vulnerability of juvenile coho salmon to cutthroat trout predators. Ecological Applications. 22: 1460-1471
- Österle W, Prietzel C, Kloß H, Dmitriev AI. 2010. On the role of copper in brake friction materials. Tribology International. 43 (12): 2317-2326
- Pereira AM, Robalo JI, Freyhof J, Maia C, Fonseca JP, Valente A, Almada VC. 2010. Phylogeographical analysis reveals multiple conversation units in brook lampreys *Lampetra planeri* of Portuguese streams. Journal of Fish Biology. 77(2):361-371
- Prestes EC, dos Anjos VE, Sodre FF, Grassi MT. 2006. Copper, lead and cadmium loads and behaviour in urban stormwater runoff in Curitiba, Brazil. J Braz Chem Soc. 17(1): 53-60
- Renaud CB. 2007. Conservation status of Northern Hemisphere lampreys (*Petromyzontidae*). Journal of Applied Ichthyology. 13(3): 143-148
- Sandahl JF, Baldwin DH, Jenkin JJ, Scholz NL. 2007. A sensory system at the interface between urban stormwater runoff and salmon survival. Environ. Sci. Technol. 41 (8): 2998-3004

- Sansalone J, Buchberger, S. 1997. Partitioning and first flush of metals in urban roadway storm water. J Environ Eng. 123(2): 134-143
- Soller J, Stephenson K, Oliveiersi K, Downing J, Olivieri AW. 2005. Evaluation of seasonal scale first flush pollutant loading and implication for urban runoff management. Journal of Environmental Management. 76: 309-318
- Tierney KB, Baldwin DH, Hara TJ, Ross PS, Scholz NL, Kennedy CJ. 2010. Olfactory toxicity in fishes. Aquatic Toxicology. 96 (1): 2-26
- Wang L, Espinoza HM, Gallagher EP. 2013. Brief exposure to copper induces apoptosis and alters mediators of olfactory signal transduction in coho salmon. Chemosphere. 93: 2639-2643
- Wyatt TD. 2014. Pheromones and animal behavior: Chemical signals and signature mixes. New York, USA: Cambridge University Press.

Chapter 3: Transcriptomic effects of copper on molecular activity in the olfactory system of the sea lamprey

3.1 Introduction

Olfaction in fish is necessary for reproduction, schooling, homing, pheromone detection, as well as predator avoidance (Tierney et al., 2009). Odours within the aquatic environment that facilitate these behaviour in fish are hypothesized to mediate chemical communication (McIntyre, 2012); however, chemical communication based on olfaction can be disrupted by a variety of environmental pollutants, leading to the suppression of these behaviours and a loss of fitness (Baatrup, 1991; Atchison et al., 1987; Sandhal et al., 2007). The majority of studies have focused on the effect of metals on behaviors (Atchison et al., 1987; Scott and Sloman 2004, McIntyre 2012). However, very few of them explore the underlying molecular mechanisms of the effects of exposure. New molecular genetic technologies such as of next-generation sequencing (NGS) are increasingly applied to issues in human health, yet few studies have employed these methods to study ecotoxicogenomics in fish (Mehinto et al., 2012). With the development of NGS whole- genome gene transcription analyses, environmental stressor effects can be studied on a molecular level.

One contaminant receiving increasing attention in the aquatic environment literature is copper, which is highly toxic to aquatic organisms that come in contact with it through water (Vieira et al., 2009; Grosell et al., 2003). Copper is known to be an active olfactory toxicant at environmentally relevant concentrations, that is, from 2.0 to 64 µg Cu/L, levels reported in urban waterways (Sandhal et al., 2007; Soller et al., 2005). Common sources of copper include disc brake pad dust from vehicles, as well as a variety of other anthropogenic sources, such as roof and downspout corrosion (He et al., 2001). During rain and snow melt events, dissolved copper is washed off roadways and urban

landscapes, and enter drainage systems leading to aquatic habitat contamination (Boulanger, 2003). Copper has been shown to disrupt broad ranges of fish behaviour and physiology; however, copper is known to specifically target the olfactory system of fish (McIntyre et al, 2012; Baldwin et al., 2003). Long lasting damage of olfactory epithelial structures result following copper exposure, which is associated with inhibition of olfactory responses to odours (Wang et al., 2013; Dew et al, 2012). Recent studies on zebrafish (*Danio rerio*) have shown that copper contamination leads to downregulation of genes within the olfactory signal transduction pathway (Tilton et al., 2008). Additionally, a study on Chinook salmon (*Oncorhynchus tshawytscha*) found olfactory receptors undergo necrosis following copper exposure (Hansen et al., 1999), while brown trout (*Salmo trutta*) exposed to copper exhibit rapid apoptosis of nearly half the olfactory neurons (Moran et al., 1992). Consequently, the olfactory system is especially susceptible to copper toxicity, and thus copper has the potential to impact olfactory-related fish behaviors and ultimately fitness.

The sea lamprey (*Petromyzon marinus*) is a native fish species to the northern Atlantic Ocean and Mediterranean Sea, where today they are a threatened fish species, with conservation efforts implemented to address their decline in some populations (Pereira et al., 2010). Since their invasion into the Great Lakes, the sea lamprey has caused significant damage to native fish stocks, leading to population declines and loss of economic opportunities for the commercial and recreational fisheries (Lawrie, 2011). Lamprey rely on pheromones to locate spawning streams, an olfactory based behavior (Vrieze et al., 2011), and is the basis for lamprey control efforts in the Great Lakes. Proposed abatement strategies in the Great Lakes include a male-sex pheromone odor

application into streams to lure ovulating female into traps or streams ill suited for offspring survival (Johnson et al., 2008). Copper exposure may affect the olfactory system (Tierney et al., 2009) and thus migration and homing, reducing the success of current abatement strategies that rely on olfaction. Due to the recent sequencing of the lamprey genome (Smith et al., 2013), transcriptomic approaches characterizing the effect of copper on sea lamprey olfaction offer a powerful model for predicting the effects of copper exposure on lamprey behaviour. It is important to use new molecular genetic methods to determine the mechanism of contaminant effects on olfaction for management of this invasive species, but also to augment our fundamental understanding of the olfactory system in this primitive vertebrate.

Here, we investigate the mechanisms of olfactory sensory loss resulting from copper exposure in sea lamprey, to aid in conservation where they are native, as well as containment where invasive. Transcriptomic RNA sequencing ("RNA seq") analysis of copper-induced olfactory impairment in the olfactory organ was implemented on sea lamprey exposed to environmentally relevant levels of copper. This approach provides a detailed overview of the mechanisms of biological response to copper in the olfactory system. It is hypothesized that copper will cause two types of response, involved in adaptive repair or compensation, and non-adaptive damage leading to downregulation of genes involved in olfactory signaling, coupled with up-regulation of apoptotic processes within olfactory sensory neurons. The current study uses a novel approach to study the potential effects of copper toxicity at a molecular level in the olfactory system, providing insight into the sea lamprey transcriptomic response to a common aquatic environmental contaminant.

3.2 Materials and Methods

3.2.1 Animal care and maintenance

Transformer sea lamprey were obtained from United States Geological Survey

Hammond Bay Biological Station in Millersburg, Michigan. Animals were transferred to
the University of Windsor, and held in the Central Animal Care Facility, according to
UWindsor Animal Care Guidelines (AUPP#14-05). Animals were maintained in aquaria
with re-circulating filtration and water quality was recorded daily.

Copper exposures

Groups of 4 transformer sea lamprey were exposed for 24 hours to 3 concentrations of copper (CuCl₂) and one control group were handled identically; however, no copper was added. Copper chloride was weighed out based on dilution into 10L tanks, at concentrations of 5 μ g/L, 10 μ g/L, and 30 μ g/L. Water samples were taken after the exposure trial for later copper concentration determination to confirm dose. Exposure trials were conducted in 10 L tanks with recirculated water, while temperature was maintained at 9 °C.

3.2.2 Collection of olfactory tissue and RNA isolation

Immediately following the 24-hour copper exposure, each fish was deeply anesthetized with 150 mg/L MS-222, and decapitated. Heads were placed under a dissecting microscope, where the nasal cavity was cut to expose the olfactory rosettes, olfactory bulb, as well as portions of the brain. Tissue containing the olfactory rosettes, olfactory bulb, as well as portions of the brain were removed and immediately placed in RNAlaterTM and incubated at 4°C for 24 hours, after which they were held at -80°C until total RNA extraction.

Tissue samples were thawed and mechanically homogenized with glass beads in 0.75 mL Trizol (Ambion) and total RNA extraction was carried out following protocols established by Chomczynski & Sacchi (1987). Total RNA integrity was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA, USA). RNA samples were also tested for contamination using the absorbance ratio at A260/A280.

3.2.3 RNA Sequencing quantification

For each of the 16 olfactory RNA samples, 15 µg of total RNA was aliquoted for library preparation. Total RNA samples were shipped on dry ice to BGI Americas (Cambridge, MA, USA) where RNA sequencing libraries were prepared and sequenced using 100 bp pair-end sequencing on the Illumina-HiSeq 2000 platform.

Sequences were assembled using a reference-guided transcriptome assembly with the sea lamprey genome (Smith et al. 2013). Sequences from all samples were pooled and mapped onto the lamprey genome using Tophat (Trapnell et al. 2009). Putative gene transcripts were assembled from the mapped sequences using the reference-guided approach implemented in Trinity v3.0.3 (Grabherr et al. 2011).

3.2.4 Whole transcriptome analysis

Gene transcription patterns in the lamprey olfactory system were investigated first on a whole transcriptome basis, investigating broad processes that may be affected following copper challenges. To compare gene transcription at various copper concentrations, individual lamprey samples were aligned to the assembled transcriptome using Bowtie2 (Langmead and Salzberg 2012), thus producing an estimate of transcript abundance for each "gene" for each sample using RSEM (Li and Dewey, 2011).

To characterize patterns of gene transcription response for the three copper challenge trials across the whole transcriptome, differentially expressed gene transcripts (relative to control samples) were identified using generalized linear models (GLMs) with likelihood ratio rests of significance in the edgeR v3.8.6 package (Robinson et al. 2010) in R v3.1.3 (R Core Team 2015). A false discovery rate of 0.05 was used to correct p-values for multiple comparisons (Benjamini and Hochberg 1997). GLMs implemented were negative binomial approximations of RNAseq count data, which first normalize trimmed mean of M-values, accounting for individual variation. Using an empirical Bayes approach (McCarthy et al. 2012), the negative binomial models are then fit to normalized count data for individuals gene by gene, and significance tested using a likelihood ratio test. We tested for significant responses between the control and 5 µg/L Cu treatment animals, between the control and 10 µg/L Cu exposure, and finally between the control and 30 µg/L Cu exposure. Gene ontology (GO; Ashburner et al., 2000) terms describing gene function were assigned to each unique differentially expressed gene based on annotation in Blast2GO v3.1 software (Conesa et al., 2005).

3.2.5 Dose response patterns analysis

Our copper exposure trials were designed to detect dose-response for genes affected by copper exposure. To identify genes showing a consistent dose response to the challenge of increasing copper concentrations, we used a Venn diagram analysis to identify genes that showed consistent and significant transcription response to two or more copper doses. It was hypothesized that few genes would show a strong response to $5 \mu g/L$, where more would in the $10 \mu g/L$ and the most within the $30 \mu g/L$ exposure. The greatest overlap of response among exposure concentrations were hypothesized between

the medium and high doses of copper. Additionally, single dose response genes should be most common at the 30 μ g/L, and the least in the lower dose of 5 μ g/L. To further elucidate copper toxicity on the olfactory transcriptome, genes differentially expressed in at least two treatment groups were investigated in greater detail. To visualize the patterns of dose response, we plotted relative transcription against dose for all 3 categories of consistently regulated genes using R v3.1.3 (R Core Team 2015) (Figure 3.1- 3.2).

3.2.6 Candidate gene response

Although whole-transcriptome response to copper exposure in lamprey is important for our understanding of the process, a candidate gene approach also was included to test for dose-response patterns in genes known or suspected to have a role in olfaction and that may be sensitive to copper. Previous published studies in fish have shown that copper causes impairment to olfactory sensory responses (Green, 2012; Hansen et al., 1999), as well as a reduction in the number of olfactory receptors in exposed fish (Kolmakov et al., 2009; Julliard et al., 1996). Twenty-four genes of interest were thus selected based on previous studies on chemosensory receptors that interact with odorant molecules in olfactory epithelia in fish (Libants et al., 2009; see Appendix B). Specific olfactory sensory receptor genes in the sea lamprey (Libants et al., 2009) were analyzed for an expected down-regulation with increasing copper concentrations. We included G-protein coupled receptors (GPCRs), expressed in olfactory sensory neurons, as they are hypothesized to be a target for copper toxicity and show a downregulation of expression in a dose dependent manner (Sandhal et al., 2006). The G-protein coupled receptors included in this study are homologous to chemosensory receptors including: olfactory receptors (ORs; N=12), trace amine-associated receptors (TAARs; N=4), as

well as vomeronasal pheromone receptors (V1Rs; N=7). Individual gene sequences were selected using sequence homology through BLAST to identify candidate genes. All 24 transcripts identified using BLAST had a minimum e-value of 1x10⁻⁵, indicating significant matches between candidate gene and transcripts in our transcriptomic data. We tested for copper effects on the transcription level for these candidate specific genes using GLMs to examine overall dose effects across all four trials and subsequently tested for specific differences between the control and each copper concentration.

Lastly, anonymous function candidate genes were identified based on the magnitude of transcriptional response to copper exposure (fold change) within our transcriptome data. Transcriptional responses to copper exposure were ranked in order of fold change for up- and down-regulation at each of the three exposures, and then compared to the other two concentrations to analyze potential dose-response patterns. The five highest responding genes (of either up- or down-regulation) for each individual copper challenge were selected for analysis as genes experiencing the greatest change of expression during copper exposure, and hence are candidate genes for physiological response to copper toxicity in the olfactory regions of the lamprey. GO functional annotations were then assigned to the selected candidate genes to identify biological processes associated with each gene.

3.3 Results

All of the RNA samples were of high quality (RIN great than: 7.0, 28S: 18S rRNA ratio greater than: 1.0) with little contamination with DNA (A260:A280>1.9). A range of 15.9- 24.7-million paired-end reads were produced per sample. Following assembly using Trinity v3.0.3 software, a total of 286 011 transcripts were reconstructed.

The number of final assembled transcripts analyzed based on a minimum level of expression of 1 count per million in one treatment group (over 4 individuals) was 29 167 putative genes (transcripts).

3.3.1 Differentially expressed transcripts involved in copper toxicity

Transcripts responsive to copper exposure were identified as statistically significantly (FDR≤0.05) differentially expressed based on read number relative to the control samples (Figure 3.3). A total of 48 differentially expressed genes were identified at the lowest copper concentration of 5 μg/L. At 10 μg/L copper exposure, 179 genes were differentially expressed. Lastly, in the highest dose of Cu exposure (30 μg/L), 279 differentially expressed genes were identified. As predicted, more genes showed a significant transcriptional response as copper exposure dose increased (Figure 3.4). Of those total 536 genes, 266 genes were successfully blasted to putative known function, while the remaining 270 were unannotated (see Appendices 1, 2 &3).

3.3.2 Dose response patterns in differentially expressed transcripts

One gene showed differential expression in all treatment groups (Figure 3.1 A), reflecting decreased (down-regulated) response processes associated with the protein proteolysis with peptidase activity as identified by Blast2GO mapping. In addition, one gene showed significant increase in expression in both the 5 μ g/L and 30 μ g/L dose treatments (Figure 3.1 B) but did not have a known annotated function.

The highest number of genes that showed a significant transcriptional response in at least two dose treatments was between the $10~\mu g/L$ and $30~\mu g/L$ dose, where 84 common differentially expressed genes were identified (Figure 3.2). Among the 84 common differentially expressed genes, 10 exhibited down-regulation (negative fold

change value) with copper exposure and of these 10 genes, all were unannotated (no known function). The remaining 74 genes exhibited up-regulation (positive fold change value) in response to copper exposure, and of those genes, 37 were unannotated. All genes showed consistent response of either upregulation or downregulation for the 10 µg/L and 30 µg/L doses of copper. Of the 37 annotated transcripts, a few genes of particular significance emerged, such as: *cAMP-responsive element modulator*, *cytochrome c, Rho-related GTP-binding protein*, and *metalloproteinase*.

3.3.3 Candidate gene comparison

Sequences for candidate genes identified in published literature were obtained from the public database for the sea lamprey genome, and blasted to identify them in our whole transcriptome data. Of the 24 candidate genes, all were successfully identified within our sea lamprey transcriptome data allowing us to test for the effect of copper on their transcription levels. Our overall GLMs were (used to test whether there was a significant effect between overall effect of dose compared to control) showed no significant effect for any of the candidate genes. Response at individual dose concentrations were compared to control to explore variation between concentrations and potential threshold effects. Five genes were significantly down-regulated in the $10~\mu g/L$ dose. Of these 5 genes, 3 represented olfactory receptors (OR 330, OR 23O, OR 424), 1 trace-amine receptor (TAAR 345), and 1 pheromone odor receptors (V1R 320), all showing significant decrease in transcription at the highest copper exposure (Figure 3.5).

Lastly, the five genes that experienced the greatest fold change (up- or down-regulated) in transcription at each copper concentration were analyzed. These five genes represent the greatest alteration in expression following copper exposure. Expression of

these genes for all copper exposures was then compared for dose-response patterns (Figure 3.6- 3.8). Thirteen of the 15 selected genes did not have annotation information, while one gene in the 10 and 30 μ g/L dose successfully annotated as *prostaglandin g h synthase 2*, displaying functions associated with response to oxidative stress, oxidative-reduction process and peroxidase activation. Patterns within individual genes in both the 10 μ g/L and 30 μ g/L doses of copper showed generally consistent up- or down-regulation of gene expression (Figure 3.7- 3.8). However, all genes showing either up- or down-regulation in the Cu-L dose of copper, changed direction of transcription response with increasing copper concentrations (Figure 3.6).

3.4 Discussion

Transcriptome-wide RNA seq analyses of sea lamprey olfactory sensory loss resulting from copper exposure were investigated to aid in abatement where the lamprey are invaders, and conservation in their native range. Transcriptomic analysis showed a general trend of increasing copper exposure driving dose dependent down-regulation in transcription of genes in the olfactory system, as well as downregulation in some candidate genes of chemosensory receptor expression. This study supports our predictions for the effect of copper exposure on the olfactory system transcriptome, as well as provides insight into other potentially novel mechanisms involved in copper toxicity through whole-transcriptome analysis.

Differentially expressed transcription following copper exposure was examined first through transcriptome-wide analyses. Of the genes that were identified in our whole-transcriptome analysis, the greatest biological functional groups affected were related to; animal organ development, response to external stimulus, intracellular signal

transduction, and cell proliferation. It has been previously shown in fish that copper exposure disrupts olfactory responses by blocking voltage-gated ion channels and G-protein coupled receptors, which may explain the differential expression of intracellular signal transduction processes in the current data (Chapter 2; Green et al., 2010; Mazon et al., 2002; Sandhal et al., 2006). Additionally, previous studies have identified rapid proliferative processes of olfactory sensory neurons following copper exposure, suggesting a recovery mechanism in the olfactory system following exposure (Julliard et al., 1996; Kolmakov et al., 2009).

Using transcriptome-wide responses, we identified specific genes showing dramatic responses to copper exposure. One gene in particular showed consistent downregulation in response to all copper exposures. The transcript was characterized as producing a protein involved in proteolysis and peptidase activity. This decrease in production and thus reduced proteolysis is associated with the accumulation of oxidized proteins, oxidative damage, and impairment of proteasome functionality, ultimately leading to cellular dysfunction, such as those found in previous studies on sunflower (Helianthus annuus L) leaves (Pena et al., 2007). Additionally, a decrease in proteasome activity is associated with the accumulation of carbonylated proteins, promoted by reactive oxygen species in mammalian cells (Grune et al., 2003). A previous study on cadmium exposure in carp (Cyprinus carpio) also reported a decrease in the activity of proteases in the gill at lethal concentration exposures (Smet and Blust, 2001). In our study at the highest copper dose, genes of interest include those involved in the G-protein olfactory sensory neuron messaging cascades, such as *cAMP-responsive element* modulator, and Rho-related GTP-binding protein, showing up-regulation of response.

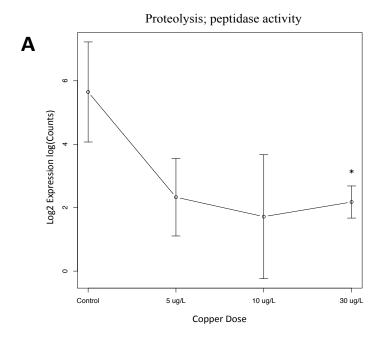
This suggests the disruption of signaling, and ion and voltage gated channels within the olfactory system (Hansen et al., 1999; Green et al., 2010; Wang et al., 2013).

Additionally, transcripts associated with downregulation of *cytochrome c* suggest processes involved in oxidative damage, often linked to copper overload, which initiates cell death signaling (Gaetke and Chow, 2003; Craig et al., 2007; Hosseini et al., 2014), and *metalloproteinase*, a metal binding protein, suggests a detoxifying transcriptomic response to increased copper toxicity through metallothioneins, of which copper has the highest affinity (Craig et al., 2007; Dameron and Harrison, 1998; Daniel et al., 2004; van Heerden et al., 2004). The olfactory processes that we show are impacted by copper exposure in the sea lamprey may also be affected in other organisms during copper exposure. Such a community level loss of chemosensory communication among fishes could contribute to ecosystem-wide decrease in response to chemical cues and pheromones in the aquatic environment.

We know copper causes impairments to olfactory epithelial tissues reflected in structural irregularity of the lamella, as well as depletion in the number of olfactory sensory neuronal dendrites (Hansen 1999; Julliard et al., 1996; Chapter 2). Specifically, copper causes inhibition in olfactory bulb responses to a male sex pheromone odor (3kPZS) in the sea lamprey (Chapter 2), similar to previous studies on fish in response to odours during copper exposure (Green et al., 2012; Sandahl et al., 2007). Five of the 24-selected candidate genes exhibited a dose dependent down-regulation response to copper exposure, with the response becoming significant following the highest dose of copper. This supports previous findings that identified copper induced olfactory injury through the inhibition of olfactory sensory G-protein coupled receptors, associated with olfactory

sensory neurons (Tilton et al., 2008). It is also important to note that the exposure concentrations used in previous studies on ranged as high as 50-1000 μ g/L (Hansen et al., 1999; Johnson et al., 2007; et al., Wang et al., 2013), while the current study utilized concentrations that were relevant to urban environment waterways (5- 30 μ g/L). Our use of environmentally relevant copper exposure concentrations may thus account for the lack of transcriptional responses for some of the candidate genes for which we expected a significant response.

The single gene identified in BLAST2Go in the highest responding candidate gene analysis (an upregulated response to copper exposure) was identified as prostaglandin g h synthase 2, associated with oxidative stress and peroxidase activation. Previous studies have identified necrosis of olfactory receptors to be mediated by lipid peroxidation by oxidizing plasma membranes and causing them to rupture (Hansen et al., 1999; Matta et al., 1999; Hosseini et al., 2014). In addition, oxidative stress has been identified as playing a role in copper toxicity in fish (Vieira et al., 2009). The majority of the highest responding gene transcripts were unannotated, resulting in unknown biological processes. However, at the lowest dose of copper, genes initially showing one direction of regulation (either up- or down) changed direction with increasing doses of copper in each of the five genes. This suggests that some genes may display different types of responses resulting from copper exposure. One type of response may result due to simple damage, expected to down-regulate and inhibit function of processes in response to cellular damage. An alternative response to copper exposure may be an adaptive response (up- or down-regulated), driving either repair or compensatory response for damaged pathways. Thus, although the majority of these processes have


unknown function, all show dramatic response to copper. It is possible that these highest responding genes at each copper exposure are associated with adaptive repair mechanisms in the olfactory system, showing upregulated dose responses with increasing copper exposure, but have yet to be characterized at a molecular level.

3.5 Conclusion

In summary, our findings suggest that acute exposures to copper does have rapid and profound impacts of the transcriptome, that are likely directly connected with olfactory sensory loss in the sea lamprey. Similar effects from copper exposure have been linked to impairments in odor detection and chemical communication, ultimately leading to suppression of processes necessary for survival and successful reproduction in a variety of other fish species (Baldwin et al., 2003; McIntyre et al., 2012; Saucier et al., 1991). Our molecular examination of olfactory responses following copper exposure indicates impairment of processes involved in G-protein coupled receptor olfactory receptors, as well as up and down regulation of processes previously identified as targets of olfactory injury. In the context of pheromone abatement strategies applied to the Great Lakes, it is important to measure levels of copper present in waterways, prior to implementation of such programs. Additionally, it would be useful for conservation purposes to measure and perhaps regulate potential heavy metal pollution entering waterways where they are threatened. Our study is important for both conservation and management issues around contaminate exposure in aquatic ecosystems.

Figures

Figure 3.1. (A) Dose response curves for the single differentially expressed gene (associated with proteolysis and peptidase activity) common for all copper treatments (Cu-L (5 μ g/L)), Cu-M (10 μ g/L) and Cu-H (30 μ g/L)). (B) Dose response curve for the single differentially expressed gene common for copper treatments (Cu-L (5 μ g/L)), and Cu-H (30 μ g/L)). Log2expression is based on read count data. Error bars depict 95% confidence interval and the asterisk denotes a significant difference in expression between control and 30 μ g/L.

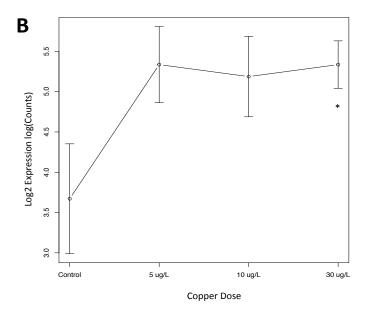


Figure 3.2. Dose response curve for the single differentially expressed genes common for copper treatments (Cu-M (10 μ g/L) and Cu-H (30 μ g/L)). Log2expression is based on read count data. The asterisk denotes a significant difference in expression between control and 10 μ g/L, and control and 30 μ g/L.

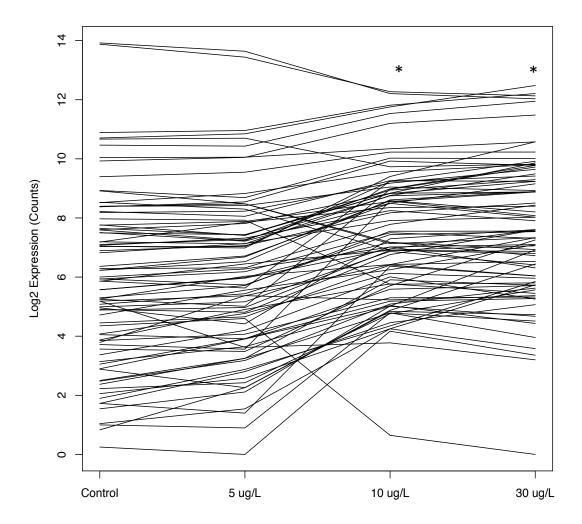


Figure 3.3. Functional assignment of all genes significantly responding to copper exposure (FDR≤0.05) identified using Blast2Go. Gene ontology (GO) groups have similar functions and are graphed according to the number of genes assigned to that functional group. Functional groupings suggest copper affects processes likely related to intracellular signal transduction, response to external stimulus, and organ development. A total of 270 out of 419 genes did not have GO descriptions, and are not represented. Colours repeat from 12 o'clock clockwise in the order listed on the top of image.

Figure 3.4. Venn diagram showing the pattern of the differentially transcribed genes in response to copper exposure shared among the 3 copper exposure concentrations. The number of transcribed genes (percent in parentheses) is displayed for all unique and intersecting groups based on different concentrations

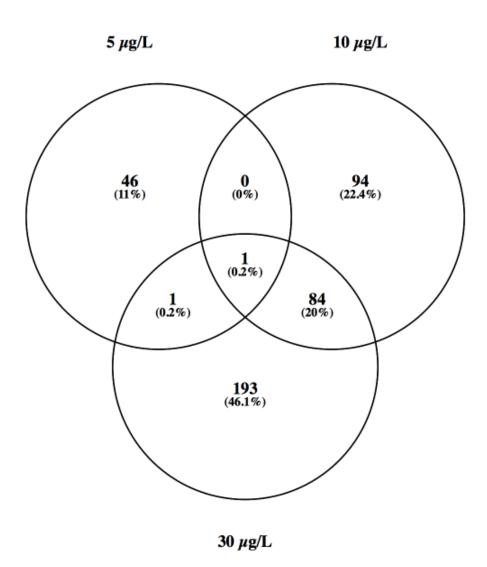


Figure 3.5. Dose response plot for candidate genes that showed a significant change in expression compared to control at the 30 μ g/L Cu dose. Olfactory receptors OR 330, OR 230 and OR 424 show a down-regulation of transcription, as does the trace amine-receptor TAAR 345, and vomeronasal receptor V1R 320. The asterisk denotes a significant difference in expression between control and copper exposed for each candidate gene based on FDR. Confidence intervals reflect p-values for individual tests.

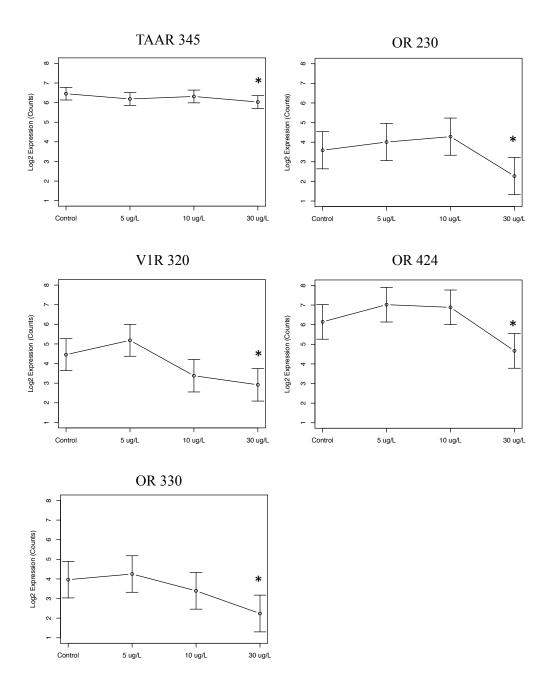


Figure 3.6. Expression of top five genes showing greatest fold change in the Cu-L (5 μ g/L). Log2expression is based on read count data. X axis represents dose of copper. Confidence intervals reflect p-values for individual tests.

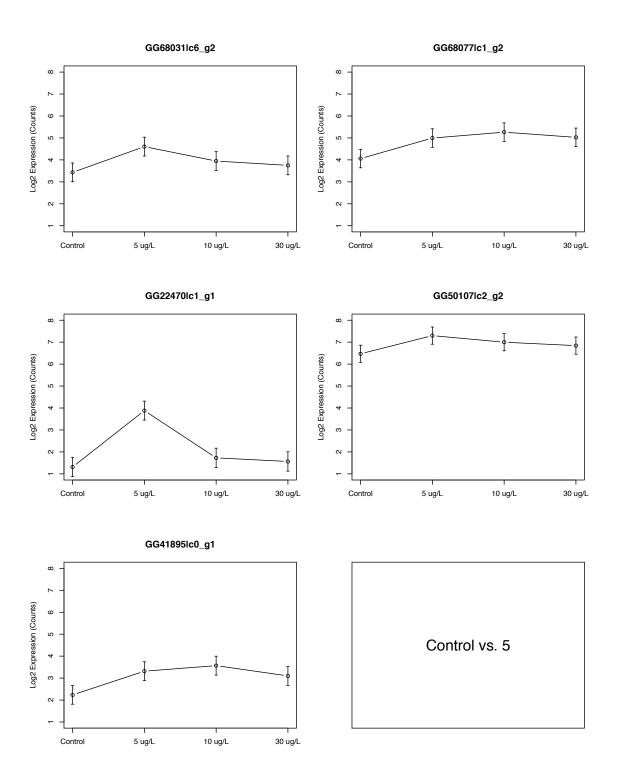


Figure 3.7. Expression of top five genes showing highest fold change in the Cu-L (10 μ g/L). Log2expression is based on read count data. X axis represents dose of copper. Confidence intervals reflect p-values for individual tests.

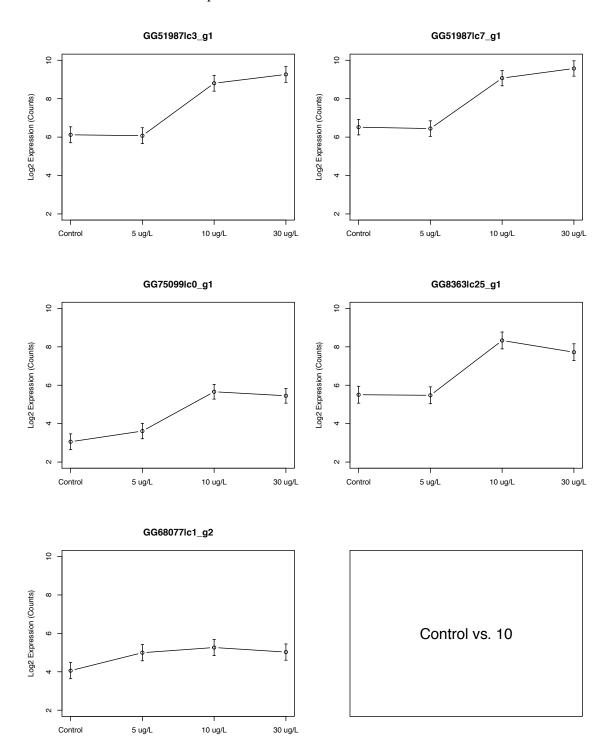
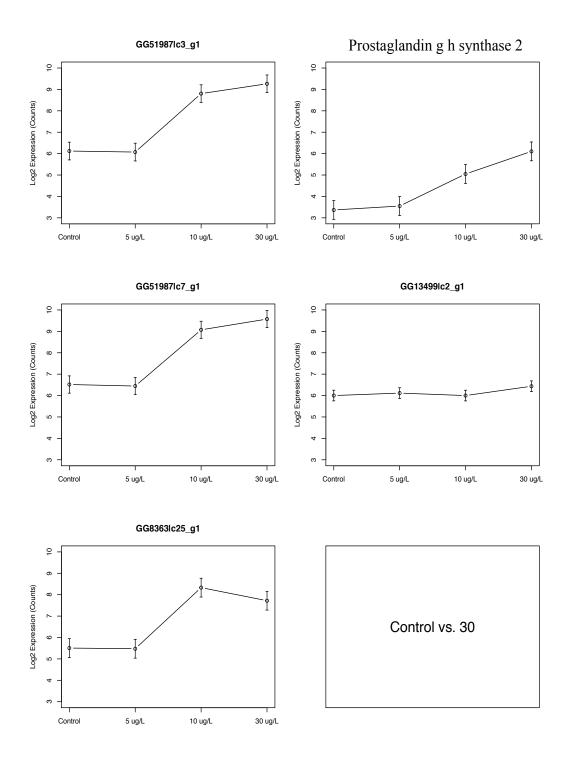



Figure 3.8. Expression of top five genes showing highest fold change in the Cu-L (30 μ g/L). Log2expression is based on read count data. X axis represents dose of copper. Confidence intervals reflect p-values for individual tests.

References

- Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, David AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarvel L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene ontology: tool for the unification of biology. Nature Genetics. 25: 25-29.
- Atchison GJ, Henry MG, Sandheinrich MB. 1987. Effects of metals on fish behavior: a review. Environmental Biology of Fishes. 18(1): 11-25.
- Baatrup E. 1991. Structural and functional effects of heavy metals on the nervous system, including sense organs, of fish. Comp. Biochem. Physiol. 100: 253-257.
- Baldwin DH, Sandhal JF, Labenia JS, Scholz NL. 2003. Sublethal effects of copper on coho salmon: Impacts on nonoverlapping receptor pathways in the peripheral olfactory nervous system. Environmental Toxicology and Chemistry. 22(10): 2266-2274.
- Benjamini Y, Hochberg Y. 1997. Multiple hypotheses testing with weights. Scandinavian Journal of Statistics. 24(3): 407-418.
- Boulanger B, Nikolaidis NP. 2003. Modeling framework for managing copper runoff in urban watersheds. Journal of the American Water Resources Association. 39(2): 337-345.
- Buchinger TJ, Siefkes MJ, Zielinski BS, Brant CO, Li, W. 2015. Chemical cues and pheromones in the sea lamprey (*Petromyzon marinus*). Frontiers in Zoology. 12:35.
- Craig PM, Wood CM, McClelland GB. 2007. Oxidative stress response and gene expression with acute copper exposure in zebrafish (*Danio rerio*). Am K Physiol Regul Integr Comp Physiol. 293: 1882-1892.
- Conesa A, Gotz S, Garcia-Gomes JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal took for annotation, visualization and analysis in functional genomics research. Bioinformatics. 21(18): 3674-3676.
- Chomezynski P, Sacchi N. 1987. Single step extraction of RNA using acid guanidium thiocyanate and phenolchloroform. Anal Chem. 162: 156-159.
- Damerson CT, Harrison MD. 1998. Mechanisms for protection against copper toxicity. Am J Clin Nutr. 67: 1091S-7S.
- Daniel KG, Harbach RH, Guida WC, Dou QP. 2004. Copper storage diseases: Menkes, Wilson's, and Cancer. Frontiers in Bioscience. 9: 2652-2662.

- Dew WA, Wood CM, Pyle GG. 2012. Effects of continuous copper exposure and calcium on the olfactory response of fathead minnows. Environ. Sci. Technol. 46: 9019-9026.
- Gaetke LM, Chow CK. 2003. Copper toxicity, oxidative stress, and antioxidant nutrients. Environmental and Nutritional Interactions Antioxidant Nutrients and Environmental Heath. 189(1-2): 1-163.
- Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature. 29:644-652.
- Green WW, Mizra RS, Wood CM, Pyle GG. 2010. Copper binding dynamics and olfactory impairment in Fathead Minnows (Pimephales promelas). Environ Sci Technol 44: 1431-1437
- Grossell M, Wood CM, Walsh PJ. 2003. Copper homeostasis and toxicity in the elasmobranch *Raja erinacea* and the teleost *Myoxocephalus octodecemspinosus* during exposure to elevated water-borne copper. Comp. Biochem. Physiol. 135: 179-190.
- Grune T, Merker K, Sandig G, Davies KJA. 2003. Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Bioph Res Com. 305: 709-718.
- Hansen JA, Rose JD, Jenkins RA, Gerow KG, Bergman HL. 1999. Chinook salmon (*Oncorhynchus tshawytscha*) and rainbow trout (*Oncorhynchus mykiss*) exposed to copper: Neurophysiologial and histological effects on the olfactory system. Environ. Toxicol. Chem. 18(9): 1979-1991.
- He W, Leygraf C, Wallinder O. 2001. A laboratory study of copper and zinc runoff during first flush and steady-state conditions. Corrosion Science. 43: 127-146.
- Horning MS, Trombley PQ. 2001. Zinc and copper influence excitability of rat olfactory bulb neurons by multiple mechanisms. J Neurophysiol. 84(4): 1652-1660.
- Hosseini MJ, Shaki F, Ghazi-Khansari M, Pourahmad J. 2014. Toxicity of copper on isolated liver mitrochondria: Impairment at complex I, II, and IV leads to increased ROS production. Cell Biochem Biophys. 70: 367-381.
- Hubbard PC, Canario AV. 2007. Evidence that olfactory sensitivities to calcium and sodium are mediated by different mechanisms in the goldish Carassius auratus. Neurosci Lett. 414(1): 90-93.
- Johnson A, Carew E, Sloman KA. 2007. The effects of copper on the morphological and

- functional development of zebrafish embryos. Aquatic Toxicology. 84: 431-438.
- Johnson NS, Yun SS, Thompson HT, Brant CO, Li W. 2008. A synthesized pheromone induces upstream movement in female sea lamprey and summons them into traps. Proceedings of the National Academy of Sciences. 106(4): 1021-1026.
- Julliard A, Saucier D, Astic L. 1996. Time-course of apoptosis in the olfactory epithelium of rainbow trout exposed to a low copper level. Tissue & Cell. 28 (3): 367-377.
- Kolmakov NN, Hubbard PC, Lopes O, Canario AV. 2009. Effect of acute copper sulfate exposure on olfactory responses to amino acids and pheromones in goldfish (*Carassius auratus*). Environ. Sci. Technol. 43: 8393-8399.
- Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods. 9(4): 357-359.
- Lawrie AH. 2011. The sea lamprey in the Great Lakes. Transactions of the American Fisheries Society. 99(4): 766-775.
- Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. Bioinformatics. 12:323
- Libants S, Carr K, Wu H, Teeter JH, Chung-Davidson YW, Zhang Z, Wilkerson C, Li W. 2009. The sea lamprey *Petromyzon marinus* genome reveals the early origin of several chemosensory receptor families in the vertebrate lineage. BMC Evol Biol. 9(1): 180.
- Matta J, Milad M, Manger R, Tosteson T. 1999. Heavy metals, lipid peroxidation, and ciguatera toxicity in the liver of the Caribbean Barracuda (*Sphyraena barracuda*). Biological Trace Element Research. 70: 69-79.
- Mazon AF, Cerqueira CCC, Fernandes MN. 2002. Gill cellular changes induced by copper exposure in the South American tropical freshwater fish *Prochilodus scrofa*. Environmental Research. 88(1): 52-63.
- McCarthy DJ, Chen Y, Smyth G. 2012. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucl. Acids Res. 40: 4288-4297.
- McIntyre JK, Baldwin DH, Beauchamp DA, Scholz NL. 2012. Low-level copper exposures increase visibility and vulnerability of juvenile coho salmon to cutthroat trout predators. Ecological Applications. 22(5): 1460-1471.
- Mehinto AC, Maryniuk CJ, Spade DJ, Denslow ND. 2012. Applications for next-generation sequencing in fish ecotoxicogenomics. 3:62. doi:10.3389/fgene.2012.00062
- Moran DT, Rowley JC, Aiken GR, Jafek BW. 1992. Ultra-structural neurobiology of the

- olfactory mucosa in the brown trout *Salmo trutta*. Microsc. Res. Technol. 23(1): 28-48.
- Pena LB, Zawoznik MS, Tomaro ML, Gallego SM. 2007. Heavy metals effects on proteolytic system in sunflower leaves. Chemosphere. 72: 741-746.
- Pereira AM, Robalo JI, Freyhof J, Maia C, Fonseca JP, Valente A, Almada VC. 2010. Phylogeographical analysis reveals multiple conversation units in brook lampreys *Lampetra planeri* of Portuguese streams. Journal of Fish Biology. 77(2):361-371
- Robinson MD, McCarthy Dj, Smyth GK. 2009. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26(1): 139-140.
- Sandhal JF, Miyasaka G, Koide N, Ueda H. 2006. Olfactory inhibition and recovery in chum salmon (*Oncorhynchus keta*) following copper exposure. Can. J. Fish. Aquat. Sci. 63: 1840-1847.
- Sandahl JF, Baldwin DH, Jenkins JJ, Scholz NL. 2007. A sensory system at the interface between urban stormwater runoff and salmon survival. Environ Sci Technol. 41: 2998-3004.
- Saucier D, Astic L, Rioux P. 1991. The effects of early chronic exposure to sublethal copper on the olfactory discrimination of rainbow trout, *Oncorhynchus mykiss*. Environmental Biology of Fishes. 30: 345-351.
- Smet HD, Bluest R. 2001. Stress responses and changes in protein metabolism in carp (*Cyprinus carpio*) during cadmium exposure. Ecotoxicology and environmental safety. 48(3): 255-262.
- Scott GR, Sloman KA. 2004. The effects of environmental pollutants on complex fish behaviour: Integrating behavioural and physiological indicators of toxicity. Aquat Toxicol. 68: 269-392.
- Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, Yandell MD, Manousaki T, Meyer A, Bloom OE, Morgan JR, Buxbaum JD, Ravi S, Sims C, Garruss AS, Cook M, Krumlauf R, Wiedemann LM, Sower SA, Decatur WA, Hall JA, Amemiya CT, Saha NR, Buckley KM, Rast JP. 2013. Sequencing of the sea lamprey (*Petromyzon marinus*) genome provides insights into vertebrate evolution. Nature Genetics. 45: 415-421.
- Soller JA, Stephenson J, Olivieri K, Downing J, Olivieri AW. 2004. Evaluation of seasonal scale first flush pollutant loading and implications for urban runoff management. Journal of Environmental Management. 76: 309-318.
- Tierney KB, Singh CR, Ross PS, Kennedy CJ. 2007. Relating olfactory neurotoxicity to altered olfactory- mediated behaviors in rainbow trout exposed to three currently-

- used pesticides. Aquat Toxicol. 81: 55-64.
- Tierney KB, Baldwin DH, Hara TJ, Ross PS, Scholz NL, Kennedy CJ. 2009. Olfactory toxicity in fishes. Aquatic Toxicology. 96 (1): 2-26.
- Tilton F, Tilton SC, Bammler TK, Beyer R, Farin F, Stapleton PL, Gallagher EP. 2008. Transcriptional biomarkers and mechanisms of copper-induced olfactory injury in zebrafish. Environ Sci Technol. 42(24): 9404-9411.
- Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 25(9): 1105-1111
- Van Heerden D, Vosloo A, Nikinmaa M. 2004. Effects of short-term copper exposure on gill structure, metallothionein and hypoxia-inducible factor- 1α (HIF-1 α) levels in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology. 69: 271-280.
- Vieira LR, Gravato C, Soares AMVM, Morgado F, Guilhermino L. 2009. Acute effects of copper and mercury on the estuarine fish *Pomatoschistus microps:* Linking biomarkers to behaviour. Chemosphere. 79: 1416-1427.
- Vrieze LA, Bergstedt RA, Sorensen PW. 2011. Olfactory-mediated stream-finding behavior of migratory adult sea lamprey (*Petromyzon marinus*). Can. J. Fish. Aquat. Sci. 68: 523-533.
- Wang L, Espinoza HM, Gallagher EP. 2013. Brief exposure to copper induces apoptosis and alters mediators of olfactory signal transduction in coho salmon. Chemosphere. 93: 2639-2643.

Appendices

Appendix A

Appendix A.1. Differentially expressed genes in the Cu-L (5 μ g/L) copper concentration. Description based on Blast2Go GO database functional grouping. Transcript codes given by Blast2Go database. Italicized gene transcript names indicate genes showing highest fold change.

Transcript	log2Fold Change Cv5	Description
GG68031 c6_g2	2.193	
GG28255 c73_g1	1.449	
GG6888 c1_g1	-0.964	
GG76991 c3_g1	-1.089	Disks large- associated protein partial
GG72502 c8_g1	-0.858	Tubulin beta partial
GG51016 c0_g1	-0.814	
GG20708 c0_g1	-1.145	
GG51526 c1_g1	-1.126	
GG76991 c4_g1	-1.371	
GG52969 c19_g1	-0.688	
GG63089 c19_g1	-1.632	
GG36768 c0_g2	-1.085	
GG1267 c0_g1	-1.659	
GG9387 c2_g2	-1.145	
GG17790 c0_g2	-0.920	
GG45354 c1_g6	-1.598	
GG23352 c0_g1	-0.698	
GG46638 c1_g1	-1.294	RNA-directed DNA polymerase from mobile element jockey
GG47585 c19_g1	-0.727	
GG36521 c0_g1	-1.519	
GG22860 c0_g1	-1.515	Proteolysis; peptidase activity
GG43941 c1_g1	-1.477	
GG2727 c7_g1	-1.140	
GG71153 c2_g1	-0.812	Serine threonine-protein phosphatase cpped1
GG62741 c149_g1	-0.860	
GG38478 c3_g1	-0.545	Septin-7-like isoform x2
GG72487 c0_g1	-0.834	
GG79320 c5_g1	-1.048	Transposable element tcb1 transposase
GG22816 c11_g1	-1.062	Retrovirus-related pol polyprotein from transposon
GG63012 c2_g1	-0.927	

GG8089 c1_g1	-1.088	
GG6756 c12_g1	-0.959	
GG76170 c0_g1	-0.816	
GG50682 c6_g1	-0.849	Synpatosomal-associated protein 25 isoform
GG29315 c1_g1	1.405	GTP binding
GG41215 c0_g1	-1.380	Receptor-type tyrosine-phosphatase
GG39471 c7_g1	-1.092	
GG10588 c0_g1	-1.325	
GG24526 c0_g1	-1.269	
GG26320 c6_g1	-1.065	Potassium channel subfamily k member partial
GG7416 c6_g1	0.998	Prominin-1 isoform
GG57260 c0_g1	-1.322	
GG73765 c4_g1	-0.971	
GG29597 c1_g1	-1.186	
GG80563 c2_g1	-1.250	Pro-partial
GG66331 c2_g1	1.184	
GG57260 c1_g1	-1.241	
GG40179 c1_g1	-0.790	

Appendix A.2. Differentially expressed genes in the Cu-M ($10 \mu g/L$) copper concentration. Description based on Blast2Go GO database functional grouping. Italicized gene transcript names indicate genes showing highest fold change.

Transcript	log2Fold	Description
	Change Cv10	
GG37147 c0_g2	-1.831	
GG51987 c7_g1	2.476	prostaglandin g h synthase 2
GG51987 c3_g1	2.477	
GG2556 c3_g1	1.677	
GG71704 c0_g2	1.904	
GG75099 c0_g1	2.215	
GG68817 c7_g1	1.748	rho-related gtp-binding protein
GG8363 c25_g1	2.131	
GG9928 c0_g1	1.426	
GG37967 c3_g1	1.431	
GG19578 c2_g1	1.814	
GG10354 c0_g1	1.507	
GG56816 c5_g1	-0.683	up-regulated during skeletal muscle growth protein 5
GG47919 c51_g4	-1.375	
GG5311 c5_g1	0.880	neutral amino acid transporter a

GG52826 c3 g1	1.291	e3 sumo-protein ligase egr2 isoform x2
GG39670 c1_g1	1.771	
GG75955 c0_g1	-1.836	
GG40573 c19_g1	1.248	
GG67201 c0_g1	-1.043	
GG77353 c2_g1	1.745	
GG1525 c2_g1	-0.988	
GG7444 c2_g1	1.060	
GG13053 c13_g2	1.341	
GG26520 c22_g1	1.346	
GG50407 c15_g1	1.519	
GG73544 c2_g1	-1.684	
GG19432 c16_g1	1.065	
GG16688 c0_g1	-0.696	ATP synthase subunit mitochondrial
GG79178 c4_g1	1.274	Nf-kappa-b inhibitor zeta
GG79181 c0_g1	1.476	
GG75957 c0_g1	-1.263	
GG10564 c9_g1	-0.499	Alpha-enolase isoform x1
GG52826 c1_g1	1.345	
GG18550 c3_g2	1.186	
GG16476 c0_g1	1.625	
GG13837 c3_g1	1.552	
GG8363 c21_g1	1.614	Tetraspanin-1 like
GG30616 c4_g1	-1.263	
GG27935 c0_g1	1.632	Fatty acid 2-hydroxylase
GG69135 c1_g1	1.374	cAMP-responsive element modulator isoform x1
GG33063 c6_g1	0.932	
GG7447 c7_g1	1.089	Glutamine-fructose-6-phosphate aminotransferase
GG481 c1_g1	1.487	
GG46866 c0_g2	1.580	
GG52174 c23_g1	0.926	Thrombospondin-1
GG17196 c2_g1	-1.542	Craniofacial development protein
GG76239 c3_g1	1.483	
GG40382 c0_g1	1.579	
GG36173 c6_g1	0.886	Proto-oncogene c-partial
GG31231 c0_g1	1.472	Interleukin-8-like
GG25524 c1_g1	1.449	
GG70273 c4_g1	0.927	
GG56859 c2_g1	1.052	
GG56087 c4_g1	1.502	
GG75306 c5_g1	0.988	
GG57115 c1_g1	-0.598	ATP synthase f complex subunit mitochondrial
GG55910 c10_g1	1.039	

1 473	Adapter protein ciks isoform x2
	Adapter protein ciks isolomi A2
	NADH dehydrogenase
	NADII denydrogenase
	Usmothatical matein DVDD 022710
	Hypothetical protein BVRB_023710
	Transmembrane protein 51-like
	rRNA promotor binding protein
	ATP synthase subunit mitochondrial
	Claudin-19 isoform x2
	Zinc finger protein c3h1 type-like 1
	Krueppel-like factor 3
-0.708	Cytochrome c
1.077	
1.020	Ornithine decarboxylase
0.553	Catenin alpha-2 isoform x2
-0.421	NADH dehydrogenase
1.416	
-0.793	
1.288	U3 small nucleolar ribonucleoprotein protein imp4
1.373	
-1.052	60s ribosomal I35
1.103	
-0.778	
1.357	Craniofacial development protein
1.358	Tumor necrosis factor receptor superfamily member 17 isoform x1
1.324	Tetraspanin-1 like
0.934	Nuclear receptor subfamily 4 group a member 2
1.377	
1.377	
-0.634	
-0.843	
	1.077 1.020 0.553 -0.421 1.416 -0.793 1.288 1.373 -1.052 1.103 -0.778 1.357 1.358 1.324 0.934 1.377 1.377 -0.634

GG62741 c176 g1	1.000	
GG42592 c2 g3	-0.664	
GG1102 c1_g1	0.720	
GG55670 c6 g1	-1.034	Ankyrin repeat domain-containing protein 1
GG40365 c8 g1	1.339	
GG81373 c3_g1	1.336	Inositol-trisphosphate receptor-interacting protein
GG78571 c0 g2	-0.737	
GG2428 c1 g1	0.786	
GG26520 c21_g2	1.020	Serine threonine-protein kinase sgk2 isoform x2
GG80337 c3_g1	-1.273	
GG70273 c5_g1	0.997	Myosin-iiib-like isoform
GG5311 c11 g1	1.136	
GG22860 c0_g1	-1.272	Proteolysis; peptidase activity
GG12571 c2_g1	1.087	
GG71553 c1_g1	-1.136	
GG50606 c2_g1	1.197	Transmembrane 4I6 family
GG47680 c12_g2	-0.991	
GG16021 c0_g1	-1.082	Pentapeptide repeat-containing protein
GG68818 c0_g1	1.170	
GG41107 c4_g1	-0.348	Mitochondrial-processing peptidase subunit beta
GG18550 c6_g1	1.109	
GG41662 c3_g1	1.031	
GG25524 c2_g1	1.207	
GG48852 c1_g1	1.033	
GG81093 c4_g1	-1.247	
GG78614 c8_g1	0.962	An1-type zinc finger protein 2a
GG7392 c3_g1	1.034	Zinc finger protein 40 isoform x1
GG30596 c0_g1	0.790	
GG81086 c0_g1	-0.768	40s ribosomal protein s16
GG24583 c11_g1	1.264	
GG18900 c5_g1	0.602	Neuronal-specific septin-3 –like isoform x2
GG55670 c4_g1	-0.983	
GG15844 c4_g1	1.199	
GG70123 c1_g1	1.245	
GG54179 c55_g4	-0.991	Hypothetical protein BVRB_023710
GG5210 c6_g1	1.075	
GG74371 c0_g1	0.825	
GG75800 c3_g1	1.240	Tumor necrosis factor receptor superfamily member
GG66621 c49_g1	0.792	
GG55017 c2_g1	1.036	Proto-oncogene c-fos-like
GG47748 c8_g1	-0.787	
GG577 c9_g1	-0.554	l-lactate dehydrogenase a chain

GG80760 c22 g1	1.087	
GG30606 c1 g4	0.870	
GG61787 c4 g1	1.186	
GG67369 c0 g1	-1.146	
GG77708 c14_g1	1.219	
GG36001 c1 g1	-0.361	ATP synthase subunit mitochondrial
GG62448 c11 g2	0.877	Phospholipid-transporting ATPase ic
GG27406 c1 g1	-0.841	
GG52019 c9_g1	1.060	Ephrin type-a receptor 5 isoform x3
GG58942 c6_g1	0.705	Ubiquitin-conjugating enzyme e2 d2
GG6450 c0_g1	1.220	Phospholipase b-like
GG27042 c7_g1	-0.583	39s ribosomal protein mitochondrial
GG77708 c10_g1	1.210	
GG15017 c8_g1	1.212	
GG54179 c12_g1	-0.843	
GG54209 c0_g1	-1.059	
GG47919 c112_g1	-1.167	Protein
GG4109 c3_g1	1.088	
GG52037 c3_g1	0.793	
GG52904 c0_g1	-0.455	Succinyl-ligase
GG79913 c1_g1	1.156	Calpain-8
GG65958 c5_g1	-0.776	ATP synthase subunit mitochondrial
GG67535 c7_g1	-0.758	RNA-directed DNA polymerase
GG15017 c11_g1	1.130	
GG3971 c4_g1	0.982	Insulin-like growth factor binding protein 3
GG57427 c3_g1	1.191	
GG17950 c4_g1	-0.745	
GG18550 c5_g1	1.163	
GG57840 c4_g1	0.745	Epithelial membrane protein
GG13724 c0_g1	1.159	
GG49941 c20_g1	-0.353	Complex I intermediate-associated protein mitochondrial
GG7078 c2_g1	0.965	
GG72162 c0_g3	-1.058	
GG80440 c6_g1	0.376	Mitogen-activated protein kinase 6
GG14864 c12_g2	-0.519	39s ribosomal protein mitochondrial
GG78328 c4_g1	-0.379	Succinyl-ligase
GG13053 c13_g1	1.040	

Appendix A.3. Differentially expressed genes in the Cu-H (30 μ g/L) copper concentration. Description based on Blast2Go GO database functional grouping. Italicized gene transcript names indicate genes showing highest fold change.

Transcript	log2Fold Change Cv30	Description
GG51987 c3_g1	3.528	
GG51987 c7_g1	3.163	Prostaglandin g h synthase 2
GG23647 c2_g1	3.241	
GG52826 c3_g1	2.069	E3 sumo-protein ligase egr2 isoform x2
GG10354 c0_g1	1.751	
GG18550 c3_g2	1.532	
GG52174 c23_g1	1.346	Thrombospondin-1
GG52826 c1_g1	1.998	
GG8363 c25_g1	2.771	
GG33798 c0_g1	-2.725	
GG69135 c1_g1	2.053	cAMP-responsive element modulator isoform x18
GG55017 c2_g1	1.959	Proto-oncogene c-fos-like
GG6751 c3_g1	2.452	
GG40573 c19_g1	1.654	
GG16476 c0_g1	2.149	
GG75099 c0_g1	2.352	
GG74670 c5_g1	1.429	Zinc finger protein c3h1 type-like 1
GG57427 c4_g1	2.413	
GG77708 c14_g1	2.417	
GG36048 c13_g1	1.443	Mitochondrial uncoupling protein 2
GG39670 c1_g1	2.298	
GG62272 c0_g1	1.749	
GG13053 c13_g2	1.510	
GG75306 c5_g1	1.578	
GG5985 c1_g1	1.493	
GG8363 c21_g1	2.269	Tetraspanin-1 like
GG77708 c15_g1	1.658	Ornithine decarboxylase
GG51477 c0_g1	2.255	CD44 partial
GG57427 c3_g1	2.196	
GG57427 c5_g2	2.161	
GG13837 c3_g1	1.847	
GG75306 c4_g1	1.233	Protein cyr61
GG55017 c1_g1	2.100	Proto-oncogene c-fos-like
GG57427 c6_g1	2.030	
GG54022 c17_g1	1.032	Tissue factor pathway inhibitor partial

GG80440 c6 g1	0.636	Mitogen-activated protein kinase 6
GG78614 c8 g1	1.422	An1-type zinc finger protein 2a
GG8812 c1 g1	1.146	Leucine-rich repeat neuronal protein 4
GG9465 c17 g1	1.972	Histone h3 type 2
GG69945 c0_g1	1.672	
GG11014 c1 g1	1.251	Krueppel-like factor 3
GG7444 c2_g1	1.293	
GG55020 c1_g1	1.854	Proto-oncogene c-fos-partial
GG72474 c4 g1	-1.202	Filamin-a isoform x2
GG7392 c3 g1	1.221	Zinc finger protein 40 isoform x1
GG59647 c6_g1	-1.066	
GG80302 c4 g1	1.720	
GG15079 c12_g1	1.389	
GG77708 c10 g1	1.917	
GG26520 c21_g2	1.680	Serine threonine-protein kinase sgk2 isoform x2
GG71704 c0 g2	1.763	
GG31231 c0_g1	1.871	Interleukin-8-like
GG7447 c7_g1	1.173	Glutamine-fructose-6-phosphate aminotransferase
GG4109 c3 g1	1.455	animotralisterase
GG18435 c10_g1	-1.738	
GG62764 c3_g2	-1.868	
GG57840 c7 g1	-0.789	
GG6751 c0 g1	1.859	
GG75955 c0_g1	-1.844	
GG15079 c5_g1	1.111	
GG50634 c33_g1	1.721	Hyaluronan synthase 1
GG77500 c3_g1	1.609	
GG26520 c22_g1	1.748	
GG69087 c1 g1	-1.755	
GG27834 c1 g1	-1.509	
GG52826 c3_g2	1.629	
GG50366 c3_g2	1.627	
GG56799 c3 g1	1.038	Chemokine receptor exer4
GG58393 c4 g1	1.017	Lecithin retinol acyltransferase-like
GG19578 c2_g1	1.577	
GG30596 c0 g1	1.108	
GG52669 c4 g1	1.618	Dual specificity protein phosphatase 1
GG40365 c8 g1	1.692	
GG45241 c8 g1	1.150	
GG15017 c11 g1	1.710	
GG51818 c1 g1	1.621	l-serine dehydratase l-threonine deaminase
GG19206 c4_g1	0.910	Transcription factor ap-1-like

GG81373 c3 g1	1.661	Inositol-triphosphate receptor-interacting protein
GG29982 c71 g1	1.650	Histone partial
GG50366 c4 g1	1.553	
GG79932 c2 g1	1.221	
GG5311 c5_g1	0.903	Neutral amino acid transporter a
GG44401 c0 g2	1.217	Carbohydrate deacetylase
GG56087 c4 g1	1.576	
GG68817 c7 g1	1.535	Rho-related GTP-binding protein
GG25589 c1 g2	1.393	
GG46866 c0 g2	1.617	
GG51987 c3_g1	-1.625	
GG25055 c2 g1	0.745	
GG66334 c2_g1	1.130	Zinc finger partial
GG22860 c0 g1	-1.613	Proteolysis; peptidase activity
GG9928 c0_g1	1.278	
GG59820 c0 g1	1.099	
GG15538 c1_g1	-1.523	Low quality protein: protein phosphatase regulatory 1 subunit
GG39421 c5_g1	-1.354	
GG12571 c2_g1	1.216	
GG50249 c0_g1	1.357	
GG5533 c6_g1	1.450	
GG66064 c0_g1	1.521	
GG58009 c28_g1	-1.508	Olfactory receptor 51i1-like
GG77500 c1_g1	1.402	
GG2093 c2_g1	0.793	
GG54022 c27_g1	1.417	Tissue factor pathway inhibitor partial
GG5533 c1_g1	0.669	
GG12945 c2_g1	1.208	
GG5985 c0_g1	1.505	Transcription factor ap-partial
GG78855 c1_g1	1.029	Nuclear receptor subfamily 4 group a member 2
GG42594 c8_g1	0.819	
GG46905 c4_g1	1.486	
GG13052 c0_g3	-1.431	
GG44881 c7_g1	-1.162	E3 ubiquitin-protein ligase trim39-like
GG36911 c7_g1	1.038	
GG55018 c3_g1	0.995	Cyclic amp-dependent transcription factor
GG68182 c21_g1	-1.414	
GG30222 c23_g1	1.073	
GG29982 c75_g2	1.268	Histone h3 type 2
GG50959 c0_g1	-1.463	Fatty acid synthase
GG65292 c0_g1	1.109	Dual specificity protein phosphatase 10
GG481 c1_g1	1.356	

GG66334 c1_g1	1.190	
GG80193 c1 g1	1.302	
GG13724 c0_g1	1.330	
GG54353 c0 g1	0.855	
GG3971 c4_g1	1.032	Insulin-like growth factor binding protein
GG6129 c15 g1	-1.130	
GG37967 c3_g1	1.200	Rho- related GTP binding protein
GG44534 c10 g1	0.561	
GG35218 c17 g2	-0.992	
GG36116 c0 g1	0.932	
GG2556 c3_g1	1.202	
GG13926 c2 g1	1.357	
GG69575 c0 g1	-0.846	
GG51455 c5_g1	0.599	Monocyte to macrophage differentiation factor 2
GG68209 c9 g1		PTB domain-containing engulfment adapter
0000207 67_51	0.711	protein
GG21709 c1 g1	1.021	
GG76988 c14 g2	-1.338	
GG61473 c5_g1	0.938	Cysteine dioxygenase type 1
GG37147 c0 g2	-1.247	
GG8483 c1 g1	-1.143	Collagen alpha-2 chain isoform x2
GG18435 c12 g1	-1.338	
GG52019 c9 g1	0.866	Ephrin type-a receptor 5 isoform x3
GG28066 c9 g1	0.741	Arginase-mitochondrial
GG31818 c3 g1	-0.893	
GG12891 c1 g1	-1.301	Plexin-a1 isoform x2
GG200 c0 g1	0.978	
GG52586 c4_g1	0.751	
GG54022 c25_g1	1.327	Tissue factor pathway inhibitor partial
GG49224 c5_g1	0.902	Excitatory amino acid transporter 2
GG5210 c5_g1	1.124	RNA-directed DNA polymerase from mobile
	1.124	element
GG17008 c6_g1	1.002	Claudin-19 isoform x2
GG35027 c1_g1	1.051	Kelch-like protein 38
GG13066 c13_g1	0.986	
GG68818 c0_g1	1.203	
GG39015 c4_g1	-0.807	Protein transport protein sec31a isoform
GG71580 c1_g1	1.045	Tribbles homolog 2 isoform x2
GG4290 c0_g1	0.768	Transcription factor sox-4
GG78553 c13_g1	-0.917	
GG31966 c3_g2	0.453	
GG18339 c9_g1	-1.226	
GG22047 c0_g1	1.210	Tumor necrosis factor receptor superfamily

		member 17 isoform x1
GG8363 c21 g2	1.259	Tetraspanin-1 like
GG34253 c4 g1	1.018	Alpha-crystallin b chain
GG55624 c0 g1	-1.224	Forkhead box protein q1
GG19912 c10 g1		Coenzyme q-binding protein coq10 homolog
001//12 010_51	0.618	mitochondrial
GG79155 c0 g1	1.259	Pr domain zinc finger protein 1 isoform
GG5786 c0 g1	1.268	A disintegrin and metalloproteinase
GG5477 c2 g1	1.053	Transmembrane protein 51-like
GG27935 c0_g1	1.270	Fatty acid 2-hydroxylase
GG18073 c271_g1	0.722	Multiple epidermal growth factor-like domains protein 6
GG46319 c5 g2	0.509	Dehydrogenase reductase sdr family member 7
GG16413 c11 g1	0.975	
GG67200 c4 g1	0.794	
GG68712 c1 g1	1.228	
GG66331 c2_g1	1.167	
GG74788 c0_g1	-1.200	Protein
GG55832 c0_g1	-1.178	
GG45241 c2_g1	1.046	
GG40187 c2_g1	0.484	
GG66343 c7_g1	0.965	
GG4208 c4_g1	0.607	
GG7078 c2_g1	0.919	
GG79274 c15_g1	0.760	
GG12434 c0_g1	0.771	
GG33205 c4_g1	0.539	
GG36911 c7_g2	1.019	
GG30616 c4_g1	-1.104	
GG20094 c1_g1	0.815	
GG63299 c9_g1	1.174	Glyceraldehyde-3-phosphate dyhydrogenase
GG9661 c0_g1	0.611	
GG55453 c13_g1	0.557	Tyrosine- protein phosphatase non-receptor type 14
GG23268 c15_g1	-1.191	
GG62967 c1_g1	-0.707	NAD mitochondrial-partial
GG51909 c0_g1	1.222	
GG66161 c2_g2	0.816	
GG67955 c0_g1	-0.260	Cytochrome heme mitochondrial
GG13366 c1_g1	0.675	
GG12385 c4_g1	0.586	Cysteine and glycine-rich protein 2
GG52718 c8_g2	-1.106	Yeats domain-containing protein 2 isoform
GG31743 c2_g1	0.597	

GG59886 c12 g1	0.470	Probable ATP-dependent RNA helicase
GG75991 c2 g1	-0.933	
GG62976 c1 g1	-1.018	
GG48847 c0 g1	-1.123	
GG16328 c1_g1	-0.342	ATP synthase subunit mitochondrial isoform x1
GG50407 c15 g1	1.154	
GG555 c16 g1	-1.172	
GG64174 c20 g1	1.093	P2Y purinoceptor 8
GG28464 c14 g1	0.810	Arrestin domain-containing protein 3
GG31743 c3 g1	0.814	
GG15396 c7 g1	0.652	
GG21362 c4 g1	0.502	
GG25753 c13 g1	1.174	
GG77353 c2 g1	1.179	
GG37696 c14_g1	0.637	
GG11011 c2 g1	-0.690	ATP-dependent 6- muscle type
GG49492 c0_g1	1.016	
GG2821 c16_g2	-0.929	
GG44401 c1_g1	0.810	Carbohydrate deacetylase
GG47919 c51_g4	-1.099	
GG67867 c1_g1	0.524	Cell adhesion molecule partial
GG57022 c1_g1	-0.586	Kelch-like protein 40
GG58711 c1_g1	-0.791	Rho-related GTP-binding protein isoform
GG21476 c0_g1	-1.018	Four and a half lim domains protein 3
GG2771 c0_g1	-0.415	Spliceosome RNA helicase ddx39b isoform x2
GG13053 c13_g1	1.065	
GG29867 c2_g1	-1.142	
GG28875 c1_g1	-0.957	
GG7148 c2_g1	-1.150	
GG58711 c7_g1	-0.542	
GG79587 c3_g1	-0.474	ADP ATP translocase 1
GG54209 c0_g1	-1.127	
GG22391 c0_g1	-0.902	Collagen alpha-1 chain isoform
GG20973 c6_g1	0.560	
GG13066 c14_g1	0.674	Glutamine synthetase
GG68892 c4_g1	0.796	Electrogenic sodium bicarbonate cotransporter 1 isoform
GG32006 c2_g1	0.875	
GG65293 c0_g1	0.990	
GG67287 c2_g1	0.571	
GG13499 c2_g1	2.105	
GG75809 c2_g1	0.898	
GG58942 c6_g1	0.630	Ubiquitin-conjugating enzyme e2 d2

GG54619 c2_g1 0.871 GG77500 c2_g1 1.067 GG20063 c5_g2 -0.740 Magnesium transporter nipal GG64289 c10_g1 0.946 Sco-spondin GG72242 c39_g1 -0.467 Mitogen-activated protein kinase GG66514 c4_g2 -0.665 GG666162 c0_g1 0.764 GG65853 c35_g1 -1.068 Ankyrin unc44 GG77325 c30_g1 1.020 Myosin heavy chain b193a04 GG7753 c4_g2 -0.795 GG24619 c1_g1 0.663 GG2496 c1_g1 0.736 Krueppel-like factor 15 GG35040 c3_g1 1.023 GG47936 c5_g1 0.845 60s ribosomal protein I35 GG7926 c1_g1 0.579 GG25524 c1_g1 0.987 GG50606 c2_g1 1.002 Transmembrane 416 family GG70553 c4_g1 -0.603 Tropomodulin-1 GG30873 c2_g1 -0.952 GG4505 c1_g1 0.711 Anosmin-1 GG30873 c2_g1 -1.062 Fatty acid synthase GG650 c1_g1 0.974 GG3002 c3_g1 -1.059 GG33002 c3_g1 -1.059 GG54179 c123_g1 0.998 Hypothetical protein BVRB_023710 GG23103 c1_g1 1.094 GG41192 c0_g1 -1.048 GG74111 GG74111 GG74111 GG74111 GG74111 GG74111 GG741111 GG	GG43158 c2 g1	-0.889	
GG77500 c2_gl 1.067 GG20063 c5_g2 -0.740 GG64289 c10_gl 0.946 GG72242 c39_gl -0.467 GG16514 c4_g2 -0.665 GG66162 c0_gl 0.764 GG65853 c35_gl -1.068 GG77325 c30_gl 1.020 GG7753 c4_g2 -0.795 GG24619 c1_gl -0.663 GG16762 c0_gl 1.062 GG2496 c1_gl 0.736 GG35040 c3_gl 1.023 GG7925 c1_gl 0.579 GG2524 c1_gl 0.987 GG2524 c1_gl 0.987 GG50606 c2_gl 1.002 GG7053]c4_gl -0.603 GG7957 c0_gl 0.995 GG43350 c2_gl 0.071 GG30873 c2_gl -1.062 GG4350 c1_gl 0.711 GG30873 c2_gl 0.711 GG30873 c2_gl 0.711 GG30873 c2_gl 0.974 GG7612 c0_g2 -1.010 GG80957 c0_gl 0.996 GG33002 c3_gl 1.094 GG23103 c1_gl 1.094 GG23103 c1_gl 1.094 GG23103 c1_gl 1.094 GG23103 c1_gl 1.094 GG41192 c0_gl -1.048			
GG20063 c5_g2	'		
GG64289 c10_g1 0.946 Sco-spondin GG72242 c39_g1 -0.467 Mitogen-activated protein kinase GG16514 c4_g2 -0.665 GG66162 c0_g1 0.764 GG65853 c35_g1 -1.068 Ankyrin unc44 GG77325 c30_g1 1.020 Myosin heavy chain b193a04 GG7753 c4_g2 -0.795 GG24619 c1_g1 -0.663 GG2496 c1_g1 0.736 Krueppel-like factor 15 GG35040 c3_g1 1.023 GG47936 c5_g1 0.579 GG2524 c1_g1 0.579 GG2524 c1_g1 0.987 GG50606 c2_g1 1.002 Transmembrane 416 family GG70553 c4_g1 -0.603 Tropomodulin-1 GG70553 c4_g1 -0.952 GG43350 c2_g1 0.607 Elongation of very long chain fatty acids protein 5 GG45065 c1_g1 0.711 Anosmin-1 GG30873 c2_g1 -1.062 Fatty acid synthase GG650 c1_g2 1 0.974 GG76121 c0_g2 -1.010 GG80957 c0_g1 0.906 GG33002 c3_g1 -1.059 GG54179 c123_g1 -0.998 Hypothetical protein BVRB_023710 GG41192 c0_g1 -1.048			Magnasium transportar nine 1
GG72242 c39_g1	· —-		
GG16514 c4 g2	. —-		*
GG66162 c0_g1			Wittogen-activated protein kinase
GG65853 c35_g1 -1.068			
GG77325 c30_g1 1.020 Myosin heavy chain b193a04 GG7753 c4_g2 -0.795 GG24619 c1_g1 -0.663 GG16762 c0_g1 1.062 GG2496 c1_g1 0.736 Krueppel-like factor 15 GG35040 c3_g1 1.023 GG47936 c5_g1 -0.845 60s ribosomal protein I35 GG7926 c1_g1 0.579 GG25524 c1_g1 0.987 GG50606 c2_g1 1.002 Transmembrane 4I6 family GG70553 c4_g1 -0.603 Tropomodulin-1 GG75957 c0_g1 -0.952 GG43350 c2_g1 0.607 Elongation of very long chain fatty acids protein 5 GG45065 c1_g1 0.711 Anosmin-1 GG30873 c2_g1 -1.062 Fatty acid synthase GG650 c1_g1 0.974 GG76121 c0_g2 -1.010 GG80957 c0_g1 0.906 GG33002 c3_g1 -1.059 GG53103 c1_g1 0.998 Hypothetical protein BVRB_023710 GG23103 c1_g1 1.094 GG41192 c0_g1 -1.048	,		A alternia sua e 4.4
GG7753 c4_g2 -0.795 GG24619 c1_g1 -0.663 GG16762 c0_g1 1.062 GG2496 c1_g1 0.736 Krueppel-like factor 15 GG35040 c3_g1 1.023 GG47936 c5_g1 -0.845 60s ribosomal protein I35 GG7926 c1_g1 0.579 GG25524 c1_g1 0.987 GG50606 c2_g1 1.002 Transmembrane 4I6 family GG70553 c4_g1 -0.603 Tropomodulin-1 GG30875 c0_g1 -0.952 GG43350 c2_g1 0.607 Elongation of very long chain fatty acids protein 5 GG45065 c1_g1 0.711 Anosmin-1 GG30873 c2_g1 -1.062 Fatty acid synthase GG650 c1_g1 0.974 GG76121 c0_g2 -1.010 GG80957 c0_g1 0.906 GG33002 c3_g1 -1.059 GG3103 c1_g1 0.998 Hypothetical protein BVRB_023710 GG23103 c1_g1 1.094 GG41192 c0_g1 -1.048	. —-		-
GG24619 c1_g1	,		Myosin neavy chain 6193a04
GG16762 c0_g1			
GG2496 c1_g1 0.736 Krueppel-like factor 15 GG35040 c3_g1 1.023 GG47936 c5_g1 -0.845 60s ribosomal protein I35 GG7926 c1_g1 0.579 GG25524 c1_g1 0.987 GG50606 c2_g1 1.002 Transmembrane 4I6 family GG70553 c4_g1 -0.603 Tropomodulin-1 GG75957 c0_g1 -0.952 GG43350 c2_g1 0.607 Elongation of very long chain fatty acids protein 5 GG45065 c1_g1 0.711 Anosmin-1 GG30873 c2_g1 -1.062 Fatty acid synthase GG650 c1_g1 0.974 GG76121 c0_g2 -1.010 GG80957 c0_g1 0.906 GG33002 c3_g1 -1.059 GG54179 c123_g1 -0.998 Hypothetical protein BVRB_023710 GG23103 c1_g1 1.094 GG41192 c0_g1 -1.048	· —-		
GG35040 c3_g1	,		 X
GG47936 c5_g1	,		Krueppel-like factor 15
GG7926 c1_g1	· - -		
GG25524 c1_g1 0.987 GG50606 c2_g1 1.002 Transmembrane 4I6 family GG70553 c4_g1 -0.603 Tropomodulin-1 GG75957 c0_g1 -0.952 GG43350 c2_g1 0.607 Elongation of very long chain fatty acids protein 5 GG45065 c1_g1 0.711 Anosmin-1 GG30873 c2_g1 -1.062 Fatty acid synthase GG650 c1_g1 0.974 GG76121 c0_g2 -1.010 GG80957 c0_g1 0.906 GG33002 c3_g1 -1.059 GG54179 c123_g1 -0.998 Hypothetical protein BVRB_023710 GG23103 c1_g1 1.094 GG41192 c0_g1 -1.048			60s ribosomal protein 135
GG50606 c2_g1 1.002 Transmembrane 4I6 family GG70553 c4_g1 -0.603 Tropomodulin-1 GG75957 c0_g1 -0.952 GG43350 c2_g1 0.607 Elongation of very long chain fatty acids protein 5 GG45065 c1_g1 0.711 Anosmin-1 GG30873 c2_g1 -1.062 Fatty acid synthase GG650 c1_g1 0.974 GG76121 c0_g2 -1.010 GG80957 c0_g1 0.906 GG33002 c3_g1 -1.059 GG54179 c123_g1 -0.998 Hypothetical protein BVRB_023710 GG23103 c1_g1 1.094 GG41192 c0_g1 -1.048	· —-		
GG70553 c4_g1 -0.603	· —-		
GG75957 c0_g1 -0.952 GG43350 c2_g1 0.607 Elongation of very long chain fatty acids protein 5 GG45065 c1_g1 0.711 Anosmin-1 GG30873 c2_g1 -1.062 Fatty acid synthase GG650 c1_g1 0.974 GG76121 c0_g2 -1.010 GG80957 c0_g1 0.906 GG33002 c3_g1 -1.059 GG54179 c123_g1 -0.998 Hypothetical protein BVRB_023710 GG23103 c1_g1 1.094 GG41192 c0_g1 -1.048	,		<u>-</u>
GG43350 c2_g1			Tropomodulin-1
GG45065 c1_g1 0.711 Anosmin-1 GG30873 c2_g1 -1.062 Fatty acid synthase GG650 c1_g1 0.974 GG76121 c0_g2 -1.010 GG80957 c0_g1 0.906 GG33002 c3_g1 -1.059 GG54179 c123_g1 -0.998 Hypothetical protein BVRB_023710 GG23103 c1_g1 1.094 GG41192 c0_g1 -1.048	,	-0.952	
GG30873 c2_g1 -1.062 Fatty acid synthase GG650 c1_g1 0.974 GG76121 c0_g2 -1.010 GG80957 c0_g1 0.906 GG33002 c3_g1 -1.059 GG54179 c123_g1 -0.998 Hypothetical protein BVRB_023710 GG23103 c1_g1 1.094 GG41192 c0_g1 -1.048	GG43350 c2_g1	0.607	
GG650 c1_g1 0.974 GG76121 c0_g2 -1.010 GG80957 c0_g1 0.906 GG33002 c3_g1 -1.059 GG54179 c123_g1 -0.998 Hypothetical protein BVRB_023710 GG23103 c1_g1 1.094 GG41192 c0_g1 -1.048	GG45065 c1_g1	0.711	Anosmin-1
GG76121 c0_g2 -1.010 GG80957 c0_g1 0.906 GG33002 c3_g1 -1.059 GG54179 c123_g1 -0.998 Hypothetical protein BVRB_023710 GG23103 c1_g1 1.094 GG41192 c0_g1 -1.048	GG30873 c2_g1	-1.062	Fatty acid synthase
GG80957 c0_g1 0.906 GG33002 c3_g1 -1.059 GG54179 c123_g1 -0.998 Hypothetical protein BVRB_023710 GG23103 c1_g1 1.094 GG41192 c0_g1 -1.048	GG650 c1_g1	0.974	
GG33002 c3_g1 -1.059 GG54179 c123_g1 -0.998 Hypothetical protein BVRB_023710 GG23103 c1_g1 1.094 GG41192 c0_g1 -1.048	GG76121 c0_g2	-1.010	
GG54179 c123_g1 -0.998 Hypothetical protein BVRB_023710 GG23103 c1_g1 1.094 GG41192 c0_g1 -1.048	GG80957 c0_g1	0.906	
GG23103 c1_g1 1.094 GG41192 c0_g1 -1.048	GG33002 c3_g1	-1.059	
GG23103 c1_g1 1.094 GG41192 c0_g1 -1.048	GG54179 c123_g1	-0.998	Hypothetical protein BVRB_023710
1 =5		1.094	
CC40265[a11 a1 1 020	GG41192 c0_g1	-1.048	
GG40303 C11_g1	GG40365 c11_g1	1.039	
GG20490 c8_g1 -0.926	GG20490 c8_g1	-0.926	
GG25777 c1_g1 0.532 Cell adhesion molecule 2 isoform x2	GG25777 c1_g1	0.532	Cell adhesion molecule 2 isoform x2
GG14588 c1_g1 -1.034 Obscurin isoform x8	· —-	-1.034	Obscurin isoform x8
GG12945 c1_g1 1.085 Apoptosis-enhancing nuclease	· —	1.085	Apoptosis-enhancing nuclease
GG69726 c3_g1 -0.684 Hypothetical protein, transmembrane transport		-0.684	
GG81086 c0_g1 -0.668 40s ribosomal protein s16	GG81086 c0_g1		**

Appendix B

Sea lamprey olfactory organ candidate genes of the chemosensory receptors: olfactory receptors (OR), vomeronasal receptors (V1R) and trace-amine receptors (TAAR) (Libants et al., 2009). All genes were expected to show downregulated expression with increasing copper exposure.

Functional Group	Gene
Olfactory Receptor	OR 320
Olfactory Receptor	OR 330
Olfactory Receptor	OR 325
Olfactory Receptor	OR 343
Olfactory Receptor	OR 345
Olfactory Receptor	OR 230
Olfactory Receptor	OR 361
Olfactory Receptor	OR 328
Olfactory Receptor	OR 320
Olfactory Receptor	OR 322
Olfactory Receptor	OR 381
Olfactory Receptor	OR 326
Vomeronasal Receptor	V1R 320
Vomeronasal Receptor	V1R 342
Vomeronasal Receptor	V1R 311
Vomeronasal Receptor	V1R 312
Trace-amine Receptor	TAAR 351
Trace-amine Receptor	TAAR 355
Trace-amine Receptor	TAAR 353
Trace-amine Receptor	TAAR 358
Trace-amine Receptor	TAAR 355
Trace-amine Receptor	TAAR 353
Trace-amine Receptor	TAAR 348

Chapter 4: City of Windsor pollution plant treatment assessment of waste and storm water for heavy metals

4. 1 City of Windsor pollution plant treatment assessment of waste and storm water for heavy metals

Funding provided by ERASMUS- CREATE program offered a unique opportunity through an internship placement with the City of Windsor. Primary goals of the NSERC CREATE program are to provide additional training and communication to prepare environmental researchers to lead future investigations on sustainable freshwater resources. To address the issues of heavy metal contamination in an urban setting, the City of Windsor water treatment plant data was analyzed to investigate the potential of heavy metals being missed in treatment and subsequently being returned to the Detroit River. It was hypothesized that heavy metal values, specifically copper, would be highest in the influent water quality samples, and during spring data collection.

4.2 Materials and Methods

I was to analyze heavy metal water quality data for the Lou Romano Water Reclamation Plant (LRWRP), Windsor ON between 2013-2015. The plant provides primary and secondary treatment to combined sanitary and storm flows, with a plant capacity of 273,000 m3/d (60 MIGD). Storm water is collected from the core section of the City, as well as sewer systems in recently developed areas of South Windsor. Depending on rainfall events, contribution of both will be variable. Samples compiled of both sanitary and storm water effluent, influent and sludge values were analyzed to determine the abundance of copper and the potential output that is returning directly to the Detroit River.

Two collection sites analyzed were the Lou Romano Water Reclamation Plant, and the Windsor Little River Pollution Control Plant (LRPCP). Little River serves the

eastern portion of the City of Windsor and the surrounding municipality of Tecumseh, with a plant capacity of 73,000 m³/d (16 MIGD). Heavy metal values were obtained from January 2013- December 2015 for both site locations. With specific interest in copper input and outputs, the effluent, influent, monthly removal efficiencies, as well as sludge data analysis was conducted per month at both site locations.

Influent values are sampled once a month for water coming into the treatment plants. Influent values are sampled at the Outfall at the Detroit River for water that is returning into the Detroit River following treatment. Sludge from primary settling tanks is then dewatered, and turned to dry cake to be used for fertilizer pellets. Final values of copper (μ g/L) are reported in Table 1. Based on these values, copper that is present in effluent water (0.4483-0.0262 μ g/L) is seemingly removed in the sludge (0.0274-0.2892 μ g/L), and does not return to the Detroit River effluent (0.0046- 0.0283 μ g/L). Values are below those that are reported to impair fish olfaction (1-3 μ g/L) (Sandhal et al., 2007).

4.3 Results and Discussion

In summary, values of copper were highest (0.0262- 0.4483 μ g/L) during the influent data sampling collection time point, however did not reach the threshold known to impair fish olfaction from findings in Chapter 2 (5 μ g/L), and previous studies (1-3 μ g Cu-L) (Sandahl et al., 2007; Kolmakov et al, 2009). In addition, spring sampling time points did not show higher copper values than other seasonal time points. However, treatment at both sites is adequate for removal of heavy metal values of copper during each sampling point, based on removal efficiency percentages between 70- 95% (Table 4.1).

Table 4.1. Copper values for Little River Pollution Control Plant (LRPCP) and Lou Romano Water Reclamation Plant (LRWRP) for 2013- 2015 in influent, effluent and sludge. Copper concentrations reported in μ g/L. Removal efficiency reported in percent (%) removed following treatment.

January	Influent μg/L	Effluent μg/L	Removal	Sludge μg/L
			Efficiency %	
LRPCP 2013	0.0890	0.0189	78.68	0.0274
LRPCP 2014	0.0601	0.0154	75.00	0.0455
LRPCP 2015	0.0929	0.0051	94.50	0.0699
LRWRP 2013	0.4366	0.0002	93.82	0.1783
LRWRP 2014	0.2684	0.0231	91.37	0.1473
LRWRP 2015	0.1767	0.0205	88.37	0.1637

February	Influent μg/L	Effluent μg/L	Removal	Sludge μg/L
			Efficiency %	
LRPCP 2013	0.0290	0.0631	78.26	0.0480
LRPCP 2014	0.0262	0.0570	90.00	0.0434
LRPCP 2015	0.0388	0.0538	75.00	0.0458
LRWRP 2013	0.2581	0.2390	90.74	0.1403
LRWRP 2014	0.2824	0.2139	92.42	0.1618
LRWRP 2015	0.2171	0.1884	92.64	0.1919

March	Influent μg/L	Effluent μg/L	Removal	Sludge μg/L
			Efficiency %	
LRPCP 2013	0.0532	0.0064	87.80	0.0413
LRPCP 2014	0.0786	0.0083	89.36	0.0403
LRPCP 2015	0.0851	0.0376	68.42	0.0575
LRWRP 2013	0.1983	0.0022	88.88	0.1594
LRWRP 2014	0.4134	0.0027	93.24	0.1593
LRWRP 2015	0.3184	0.0513	91.22	0.1890

April	Influent µg/L	Effluent μg/L	Removal	Sludge μg/L
			Efficiency %	
LRPCP 2013	0.1250	0.0188	84.93	0.0508
LRPCP 2014	0.0945	0.0064	86.48	0.0489
LRPCP 2015	0.0604	0.0067	88.88	0.0580
LRWRP 2013	0.3849	0.0296	92.30	0.1653
LRWRP 2014	0.1619	0.0231	85.71	0.1911
LRWRP 2015	0.1952	0.0227	88.37	0.2324

May	Influent μg/L	Effluent μg/L	Removal	Sludge μg/L
			Efficiency %	
LRPCP 2013	0.0547	0.0059	89.13	0.0510
LRPCP 2014	0.0847	0.0154	81.81	0.0629
LRPCP 2015	0.0630	0.0151	76.00	0.0491
LRWRP 2013	0.2192	0.0219	90.00	0.2328
LRWRP 2014	0.3632	0.0283	92.18	0.2276
LRWRP 2015	0.2529	0.0242	90.38	0.1733

June	Influent µg/L	Effluent µg/L	Removal	Sludge μg/L
			Efficiency %	
LRPCP 2013	0.0339	0.0070	79.16	0.0080
LRPCP 2014	0.0270	0.0135	84.21	0.0513
LRPCP 2015	0.0183	0.0417	95.45	0.0529
LRWRP 2013	0.2059	0.0264	87.17	0.2576
LRWRP 2014	0.3091	0.0234	92.42	0.2058
LRWRP 2015	0.2296	0.0151	86.84	0.2892

July	Influent μg/L	Effluent μg/L	Removal	Sludge μg/L
			Efficiency %	
LRPCP 2013	0.0569	0.0083	85.29	0.0509
LRPCP 2014	0.0663	0.0115	82.53	0.0549
LRPCP 2015	0.0643	0.0681	90.38	0.0558
LRWRP 2013	0.2255	0.0341	84.84	0.1915
LRWRP 2014	0.1763	0.0219	87.80	0.2157
LRWRP 2015	0.2242	0.0238	89.36	0.1744

August	Influent μg/L	Effluent μg/L	Removal	Sludge μg/L
			Efficiency %	
LRPCP 2013	0.0464	0.0046	89.36	0.0464
LRPCP 2014	0.0581	0.0581	77.35	0.0463
LRPCP 2015	0.0521	0.0521	69.56	0.0542
LRWRP 2013	0.1524	0.0341	86.11	0.1605
LRWRP 2014	0.2731	0.0219	90.90	0.1934
LRWRP 2015	0.4483	0.0238	94.73	0.1910

September	Influent μg/L	Effluent μg/L	Removal	Sludge μg/L
			Efficiency %	
LRPCP 2013	0.0436	0.0111	74.41	0.0411
LRPCP 2014	0.0418	0.0148	64.51	0.0432
LRPCP 2015	0.0371	0.0281	84.84	0.0500
LRWRP 2013	0.2151	0.0202	90.56	0.1415
LRWRP 2014	0.2938	0.0249	91.52	0.1934
LRWRP 2015	0.2443	0.0222	90.90	0.1670

October	Influent μg/L	Effluent μg/L	Removal	Sludge μg/L
			Efficiency %	
LRPCP 2013	0.0728	0.0049	93.24	0.0527
LRPCP 2014	0.0809	0.0120	86.41	0.0529
LRPCP 2015	0.2630	0.0567	78.43	0.0393
LRWRP 2013	0.2807	0.0200	92.85	0.1535
LRWRP 2014	0.2931	0.0212	92.75	0.1962
LRWRP 2015	0.1901	0.0445	76.59	0.1336

November	Influent μg/L	Effluent μg/L	Removal	Sludge μg/L
			Efficiency %	
LRPCP 2013	0.0489	0.0133	72.72	0.0355
LRPCP 2014	0.0485	0.0055	89.58	0.0406
LRPCP 2015	0.0649	0.0193	70.17	0.0395
LRWRP 2013	0.2662	0.0464	82.53	0.1445
LRWRP 2014	0.1527	0.0200	86.84	0.1596
LRWRP 2015	0.2443	0.0211	90.56	0.1899

December	Influent μg/L	Effluent μg/L	Removal	Sludge µg/L
			Efficiency %	
LRPCP 2013	0.0598	0.0059	90.00	0.0209
LRPCP 2014	0.0507	0.0050	90.00	0.0506
LRPCP 2015	0.0629	0.0067	89.36	0.0318
LRWRP 2013	0.2443	0.0226	90.74	0.1277
LRWRP 2014	0.3492	0.0198	94.31	0.1514
LRWRP 2015	0.1369	0.0244	82.14	0.1666

Chapter 5: Closing Remarks

The present study investigated the effect of exposure to environmentally relevant copper concentrations on the olfactory system of the sea lamprey (*Petromyzon* marinus). To identify environmentally relevant copper concentrations in urban and rural settings, water sampling was conducted throughout the City of Windsor and surrounding area, as well as lamprey spawning streams in Michigan. The investigation of storm water and sewage treatment at the Lou Romano Water Reclamation Plant in Windsor, ON was also conducted to analyze the amount of copper present in wastewater effluent following treatment. The work described in this thesis adds to extensive research relating to the toxic effects of copper on fish olfaction, and identifies gaps in literature in regards to study species and environmentally relevant exposures (5-10 µg/L), as well higher concentrations (30 µg/L) previously shown in waterways, such as those experiencing mining and sewage effluent runoff. This thesis has described the effects of copper on the sea lamprey, an invasive species within the Great Lakes, and a basal vertebrate with early divergence from the main vertebrate line. Water sampling was conducted to identify environmentally relevant values of copper in high traffic areas, as copper contamination through roadway runoff is the main source of contamination into aquatic environments. Based on these levels, effects of copper were investigated using a variety of techniques, addressing functional, mechanistic and genetic processes of toxicity. Copper exposure was found to disrupt olfactory sensory function at concentrations lower than those that cause physical damage. At low copper levels (5 μg/L) there was found to be a reduction in olfactory responses to the lamprey sex pheromone 3KPZS, as well as moderate effects on the structural integrity of the olfactory epithelium and on transcriptome responses. At higher doses (10- 30 μg/L) however, there was significant reductions in the sensory

response to 3KPZS, increased epithelial damage, and increased transcriptome responses, with majority of common genes differently expressed occurring between these two concentrations. This dramatic change in response at higher doses compared to lower may depict a threshold response to copper toxicity in the sea lamprey, where they may be able to adapt to lower levels of copper than those that begin to cause damage to the structural integrity of the cells in the olfactory system.

Effects on the olfactory epithelium led to an understanding of the potential damage to tissues during copper exposure, exposing irregularities in the olfactory sensory neuronal cells, as well as damage to the structure of the olfactory epithelium lamellae occurring at the low levels of 5 μ g/L. The ability to label the olfactory epithelium leads to a greater understanding of copper effects on olfactory sensory processes leading to neurotransmission.

Our study has also shown that the cyclostome sea lamprey responds in similar ways as teleost fishes during copper exposures in regards to odor responses (Sandhal et al., 2007; Green 2012), as we report odor response inhibition as well as olfactory epithelium damage at levels as low as 5 µg/L. Odor-evoked local field potential recordings were analyzed through recordings in response to a specific male sex pheromone odour, 3KPZS. A dose-dependent reduction in odor responses was recorded, with significant reduction in response during our highest dose of copper, 30 µg/L. This study furthers the understanding of heavy metal contamination and the effect on the olfactory system in fishes, as well as the potential of recovery thresholds, seen in olfactory bulb recordings following post-copper exposure.

Based on changes in odor response and epithelial damage, underlying molecular mechanisms involved in toxicity were analyzed through transcriptomic analysis on olfactory tissues. Environmentally relevant concentrations (5-10 µg/L), as well as a high dose of copper (30 μg/L) were addressed following a 24-hour exposure, investigating candidate genes and transcriptome-wide modifications during exposures. As presented through the transcriptome-wide analyses, an increasing number of transcripts showed differential expression in a dose dependent manner with increasing copper concentration. In addition, olfactory receptor candidate genes showed a significant downregulated response in the highest dose of copper (30 µg/L). By conducting transcriptomic analysis, a molecular understanding is presented, giving a snapshot of the biological processes affected during copper contamination in the olfactory system of the sea lamprey. This study presents a novel approach to the study of copper toxicity on the olfactory epithelium and olfactory bulb in the sea lamprey, and furthers understanding of the molecular processes involved. While no similar studies have described such an analysis, this provides an initial investigation into copper toxicity in transcriptomic modulation.

It may be advantageous for future research to further investigate a variety of areas in regards to toxicity on the olfactory system of the sea lamprey. One area of focus could analyze the effects of copper toxicity in response to other odor stimuli than pheromones, such as amino acid odors. The sea lamprey has a highly sensitive olfactory response specific to pheromone odors. Because of this, copper toxicity may have a greater effect in olfactory response reduction to odors that do not have such a specialization for response in the olfactory system, and may more detrimental to other

olfactory mediated behaviours, such as alarm response to predation. Additionally, it would be worthwhile to investigate the specific copper concentration in which an adaptive response to copper toxicity is overcome. The current study has shown that low levels of copper exposure (5 µg/L) cause a reduction in odor response, but one that is able to show an adaptive response through the up-regulation of specific processes involved in copper metabolism within the transcriptome. This response is seemingly overcome at higher concentrations, showing significant physical damage to olfactory tissues and changes to the transcriptome. It would be beneficial to increase copper concentrations in smaller increments, to determine what specific threshold the sea lamprey are able to adapt to copper toxicity.

Overall, this thesis has made important contributions to the field of environmental toxicity by investigating the effects of copper on the sea lamprey. To my knowledge, no previous studies have employed these analyses on the sea lamprey, and ours is one of the few that characterizes these effects using multiple techniques to give a holistic analysis of the effects of copper olfactory system tissues. Additionally, the implementation of pheromone abatement strategies, proven highly advantageous, should consider these results upon application to streams. In areas where the lamprey are threatened, this should also be considered for conservation methods, where if copper levels are within the range known to impair olfaction, this could affect population levels. Lastly, guidelines for manufacturing protocols should be applied to anthropogenic sources of copper, such as brake pads in vehicles, and downspout and roofing material, which should consider the effects of heavy metal contamination entering aquatic ecosystems through roadway runoff. In conclusion, it is our belief that the work

presented here has made a distinctive contribution to the fields of toxicology and olfactory biology.

VITA AUCTORIS

Jenna May Jones NAME:

PLACE OF BIRTH: Windsor, Ontario

YEAR OF BIRTH: 1991

B.Sc. (H) Medical Science and Psychology University of Western Ontario **EDUCATION:**

London, ON 2009-2013