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Abstract 

 

Colorectal cancers (CRC) express high level of 3-Hydroxy-3-Methylglutaryl-CoA 

Reductase (HMGCR) protein suggesting an increased requirement for endogenous 

cholesterol biosynthetic pathway by growing cancer cells. Intake of statins, 

pharmacological inhibitors of HMGCR has been reported to exert varying responses in 

reducing the risk of CRC in humans, suggesting the existence of tumours with statin-

sensitive and statin-resistant phenotypes.  Normally intracellular cholesterol homeostasis 

involves several proteins including HMGCR and the membrane bound low density 

lipoprotein receptor (LDLR) which allows uptake of plasma cholesterol and increase 

intracellular cholesterol level. Therefore, HMGCR activity within a cell is highly 

dependent on the level of LDLR.  Whether LDLR is playing a role in CRC growth and 

cholesterol homeostasis remains poorly understood. In the first study, it was observed that 

experimentally induced colonic tumours, express lower LDLR and higher HMGCR, 

SREBP2 (Sterol Regulatory Element Binding Protein) and PCSK9 (Proprotein convertase 

subtilisin/kexin type 9) compared to colonic mucosa. This observation led to the hypothesis 

that a low LDLR phenotype   favours tumour growth. To test this hypothesis, three human 

colorectal cancer cell lines (HCT 116, HT 29 and DLD 1) were selected. Through Western 

blot analysis and q-RT-PCR, it was established that all three cancer cell lines express lower 

levels of LDLR and higher levels of HMGCR, SREBP2 and PCSK9 compared to normal 

colonic epithelial cells, similar to solid tumours.  DLD1 cells expressing the lowest LDLR 

protein exhibited the highest cell viability and proliferation amongst the three cancer cell 

lines. HCT 116 and HT 29 showed higher sensitivity to the growth inhibitory effect of 

cholesterol lowering drugs such as lovastatin and RO 48-8071 and were able to upregulate 

LDLR unlike DLD 1 cells.  Ectopic overexpression of LDLR in the three CRC cell lines 

was associated with reduced cell viability, cell motility and migration and enhanced growth 

inhibition by lovastatin. Furthermore, ectopic over expression of LDLR induced tumour 

suppressive p38 and PTEN signaling and reduced activation of pro-survival signaling 

proteins such as ERK1/2and AKT. The present dissertation alludes to a novel role of LDLR 

in CRC development. More importantly  the  findings  support a  tumour suppressive role 
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of elevated LDLR in  CRC and  support the contention  that  the drugs being used to inhibit  

HMGCR and/or increase  LDLR, for the prevention of coronary artery diseases  could also 

be effective in the prevention of CRC.  
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1.1 Introduction 

Colorectal cancer (CRC), is one of the leading causes of cancer related deaths 

worldwide, alongside lung, prostate and breast cancer. In the Western world population, 

the average lifetime risk of a person developing colorectal cancer is approximately 5%, 

risk being marginally higher in males than females. 85% of the cases are sporadic caused 

by mutations due to environmental factors, diet and lifestyle [1]. Less than 10% of the cases 

are due to genetic predisposition in which a person inherits a single or several germline 

mutations in tumour suppressor gene or DNA mismatch repair (MMR) enzyme causing 

familial adenomatous polyposis (FAP) or called Hereditary Non polyposis Colorectal 

cancer (HNPCC) [2]. 

In 1990, Fearon and Vogelstein proposed that pathogenesis of CRC is a sequential, 

multistep process characterized by accumulation of mutations in tumour suppressor and 

oncogenes, leading to gross genomic instability[3]. The adenoma-carcinoma model (Figure 

1.1) which shows the morphological transformation of hyper-proliferating colonic mucosa 

cells to metastatic carcinoma through a series of intermediate stages, still serves as a classic 

model to study solid tumour progression.  
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Figure 1.1 Fearon and Vogelstein’s model for the adenoma-carcinoma sequence of 

colorectal cancer development. This model gave a schematic representation of stepwise 

morphological transformation of normal colonic epithelium to adenoma and metastatic 

carcinoma due to accumulation of mutations in key tumour suppressor and oncogenes, 

which is now known as the hallmark of chromosomal instability (CIN) pathway. Increasing 

genomic instability, which is the end point of all driver mutations, can also be achieved by 

alternate carcinogenesis pathway such as microsatellite instability (MSI) and CpG island 

methylator phenotype (CIMP) pathway. MSI phenotype is characterized by defective DNA 

repair system and CIMP phenotype is characterized by hypermethylation of CpG island in 

promoter regions of tumour suppressor genes. This image was adapted from Toribara NW, 

1995. New England Journal of Medicine [4]. 
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1.2 Carcinogenesis pathways of CRC 

 The prognosis of CRC and patients response to therapeutic treatment largely 

depends on the morphological subtype and underlying molecular carcinogenesis pathway. 

There are two main morphological subtypes that have been identified in CRC. One is the 

classical adenocarcinoma subtype which is characterized by tubular or tubulovillous 

adenomas that develop into carcinoma in later stages and the other one is the serrated 

neoplasia subtype identified by hyperplastic polyps or sessile, serrated adenomas [5]. The 

morphological transformation of preneoplastic lesions like adenomas or hyperplastic 

polyps to carcinoma is driven by three main carcinogenesis pathways- chromosomal 

instability pathway (CIN), microsatellite instability pathway (MSI) or the CpG Island 

Methylator Phenotype (CIMP) [6]. 

 

Chromosomal Instability Pathway (CIN) 

The CIN phenotype is the most common phenotype observed in 80-85% of sporadic 

CRC cases [7, 8]. CIN is characterized by accelerated genomic instability due amplification 

or deletion of whole or part of chromosomes resulting in karyotype abnormality or 

aneuploidy. This phenotype could result either due to defect in chromosomal segregation 

or DNA damage responses. Defective chromosomal segregation could arise due to 

abnormalities in spindle assembly checkpoints, anaphase promoting complex (APC/C) and 

other cell cycle proteins associated with chromosomal segregation[9]. Other mechanisms 

that contribute to karyotype abnormalities typical of CIN phenotype include dysfunction 

of the centrosome or telomere [10]. Amongst the DNA damage response proteins, tumour 

suppressor p53 is the most frequently mutated genes in cancer and has been found to be 

inactivated in majority of CRC cases with CIN phenotypes [11]. Chromosomal aberrations 

cause increasing genomic instability, which results in accumulation of mutations in 

oncogenes and tumour suppressor genes. These mutations also known as driver mutations 

contribute to tumour progression by deregulating important growth signaling and apoptotic 

pathways. 

 One of the early events that marks the transition of preneoplastic lesion to proliferative 

early adenoma is deregulation of Wnt signaling pathway primarily through APC 
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(Adenomatous Polyposis Coli) mutation. APC is mutated in 60-80% sporadic adenomas 

and majority of the mutations are usually clustered in a specific region of the gene called 

‘’mutation cluster region’’[12]. Germline mutation of APC causes familial adenomatous 

polyposis (FAP). APC is a multi-functional protein that regulates cellular differentiation, 

migration, polarity, adhesion and apoptosis through Wingless/Wnt signaling pathway [13]. 

In the absence of Wnt glycoprotein signal, APC binds β-catenin into a ‘’destruction 

complex’’ with axin and glycogen synthase kinase-3β (GSK-3β), directing it for 

phosphorylation and ubiquitination mediated proteasomal degradation. In an induced 

proliferating cell, binding of Wnt ligand to the membrane bound frizzled receptor, 

inactivates GSK-3β, thus stabilizing β- catenin in the cytoplasm.  β-catenin binds to DNA 

binding proteins of T cell factor/Lymphocyte Enhancer family (TCF/LEF family) and 

facilitates transcription of several genes involved in cell proliferation, cell cycle regulators, 

membrane proteins, growth factors eg- cMyc, cyclin D, matrix metalloproteases (MMPs), 

nuclear laminin etc [14, 15]. Mutated APC disrupts β- catenin/ GSK-3β complex formation 

resulting in constitutive stabilization and activation of β- catenin that triggers transcription 

of several. Hypermethylation of the APC gene promoter has been observed in ~ 15-20 % 

of colorectal adenomas and carcinomas [16]. Deregulation of the Wnt signaling pathway 

is critical for early disruption of cellular homeostasis in the colonic crypt which is achieved 

either through genetic or epigenetic alteration of APC or through mutations in β-catenin 

and GSK3 β [17]. 

Approximately 30-50% of colorectal tumours have Kirsten Rat Sarcoma Viral 

Oncogene Homolog or the KRAS mutation, which is often associated with resistance to anti- 

epidermal growth factor receptor (EGFR) therapy [18]. KRAS is a small molecular weight 

(~21 KDa) signaling protein that belongs to the G-protein superfamily. Growth factor 

binding to membrane bound growth receptors belonging to receptor tyrosine kinase (RTK) 

family such as EGFR activates guanine exchange factor (GEF) that catalyzes the 

conversion of inactive RAS-guanosine diphosphate (RAS-GDP) to active RAS-guanosine 

triphosphate (RAS-GTP). This triggers the activation of the downstream signaling 

pathways regulating cell growth, differentiation, apoptosis, cytoskeletal organization and 

vesicle trafficking [19]. Point mutation in codon 12 or codon 13 of exon 2, impairs the 

GTPase reaction that converts active GTP RAS to inactive GDP RAS, resulting in a 
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constitutively active RAS and amplification of its downstream signaling [20]. Of the 

several signaling pathways that RAS regulates, mitogen activated protein kinase (MAPK) 

and phosphoinositide -3 kinase/AKT (PI3K/AKT) pathways are the ones that are primarily 

responsible for cellular growth, survival, differentiation and apoptosis. Deregulation of 

MAPK and PI3K/AKT pathways due to mutations in growth hormone receptor, signaling 

molecules like RAS or BRAF is frequently observed in colorectal adenomas [21]. Mitogen 

activated protein kinases (MAPK) cascade is a key signaling pathway downstream of 

KRAS that regulates cell growth, proliferation, differentiation and apoptosis in a normal 

untransformed cell. This signaling cascade that belongs to the serine/threonine kinase 

superfamily, has three protein kinases that relay the signal downstream mainly through 

phosphorylation of their target proteins – MAPK kinase kinases (MAPKKK) that includes 

Raf protein kinases, MAPK kinase (MAPKK) also known as MEK ½ and lastly the MAPK. 

MAPK are the terminal effector serine threonine kinase that include the extracellular signal 

regulated kinases (ERK1/2), c-Jun N-terminal kinases (JNK) also known as stress activate 

protein kinases (SAPKs) and p38 kinases [22].  

               ERK1/2pathway is generally activated by growth factors, whereas JNK or SAPK 

and p38 are activated in response to oxidative or nutrient stress, inflammation and DNA 

damage. MAPKKK or Raf is the first target in Raf/MEK/ERK pathway that is activated by 

GTP bound KRAS. Activation of Raf kinase initiates a phosphorylation cascade that results 

in downstream activation of MAPKK (MEK1/2) and MAPK (ERK1/2, JNK and/or p38). 

Activated ERK1/2 phosphorylates and activates a host of membrane bound, cytoplasmic 

and nuclear proteins that regulate cellular growth, proliferation and mitogenesis which 

makes this pathway an attractive target for chemotherapeutic drugs.  In contrast to ERK, 

SAPK and p38 signaling pathways are less characterized in context of their role in chronic 

diseases including cancer. Majority of the p38 inhibitors are in phase I and phase II clinical 

trials for treatment of chronic inflammatory diseases. Now several in vitro studies are 

focusing on exploring the role of p38 and SAPK pathway in cancer development with an 

aim to target these pathways for restricting tumour growth.  

        Besides MAPK signaling, the other important growth signaling pathway that 

KRAS regulates, is the phosphatidylinositol- 3 kinase (PI3K)/AKT pathway. Genetic and 

epigenetic alterations leading to amplification of PI3K/AKT signaling is observed in 
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almost 10-12% of CRC cases and is often implicated in resistance to cancer therapies [23]. 

This pathway is activated in response to extracellular growth signals, cytokines, glucose 

and amino acids that lead to activation of PI3 kinase and its downstream effector AKT. 

Growth factor binding to receptor tyrosine kinases at the cell membrane (RTK) causes 

receptor dimerization that results in activation of PI3K. Activated PI3K phosphorylates 

Phosphatidylinositol 4,5- bisphosphate (PIP2) to produce Phosphatidylinositol 3,4,5-

triphosphate (PIP3) which is followed by recruitment of serine threonine kinases with PIP3 

binding domains, mainly phosphoinositide dependent kinase 1 (PDK1) and protein kinase 

B also known as AKT. Phosphorylation of AKT by PDK1 triggers a phosphorylation 

cascade that leads to activation of a plethora of cellular proteins involved in regulation of 

cell growth, survival, differentiation, proliferation and apoptosis. Some of the prominent 

genes activated by PI3K/AKT signaling include the mammalian target of rapamycin 

complex 1 (mTORC1), BAD, caspase 9, FOXO, GSK3β, Mouse double minute 2 homolog 

(MDM2) and tuberous sclerosis 1 (TSC1) [24].  Phosphatase and tensin homolog (PTEN) 

is a key molecule upstream of P3K/AKT which acts as a tumour suppressor by inhibiting 

cell growth and sensitizing cells to apoptosis. PTEN is a phosphatase that negatively 

regulates PI3K/AKT pathway by dephosphorylating PIP3 thus blocking the activation of 

AKT and its downstream signaling [25]. Loss of PTEN activity due to genetic and/or 

epigenetic alterations underlines PI3K/AKT pathway dysregulation in several cancers 

including CRC [26, 27]. 

Another tumour suppressor gene p53, also known as the guardian of the genome, 

is a stress induced transcription factor that mediates cellular response to environmental 

stress, DNA damage, DNA replication or segregation and aberrant growth and proliferation 

signals. p53 mutations are found in 30-50% of sporadic CRC cancers [11]. In humans, p53 

gene consisting of 11 exons and 10 introns is located on chromosome 17p. It encodes for 

a 393 amino acid long protein that has several functional domains including an N-terminal 

transactivation domain followed by a DNA binding domain, tetramerization domain and a 

C-terminal terminal regulatory domain [28]. In the absence of cellular stress, MDM2 

(murine/human double minute 2), an E3 ubiquitin ligase regulates the ubiquitination and 

proteasomal degradation of p53 thus keeping p53 protein level low.  
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 When the cell is under any internal or external stress, p53 is stabilized and its level is 

elevated dramatically due to self polyubiquitination and degradation of MDM2. Stabilized 

p53 regulates cellular response to stress through transcriptional activation of a host of genes 

involved in cell cycle arrest, DNA repair, apoptosis, autophagy and senescence.  Some of 

the prominent p53 target genes are cell cycle regulators and mediators of intrinsic or 

extrinsic apoptotic pathways such as  cyclin dependent kinase (CDK) inhibitor 

p21WAF1/CIP, pro- apoptotic Bcl-2 (B-cell lymphoma-2) family of proteins including 

BAX, Noxa and PUMA, death receptors such as Fas and DR-5 (Death receptor 5), DNA 

damage response proteins such as GADD45 (Growth arrest and DNA damage 45) [29]. In 

CRC, the majority of the mutations in p53 are located in exon 5-8 that includes the DNA 

binding domain that results in disruption of DNA binding and transactivation of the target 

gene.  

                The canonical transforming growth factor-β (TGF-β) signaling pathway 

mediates growth inhibitory response in intestinal cells. This response is mediated by TGF-

β receptor, which upon binding with TGF- β ligand, phosphorylates and activates SMAD 

proteins (SMAD 2 and SMAD 3). Receptor activated SMADs interact with the common 

mediator SMAD 4 which translocates into the nucleus and regulates the transcription of 

target genes. Deregulating of the TGF- β signaling pathway due to somatic mutations in 

TGFBR1, TGFBR2 and SMADs has been observed in 10-15% of sporadic CRC cases [30]. 

 

Microsatellite Instability Pathway (MSI) 

            The MSI phenotype also known as the mutator phenotype develops in CRC as a 

consequence of defective DNA mismatch repair (MMR) enzyme system. MSI phenotype 

is seen in 15-25% of CRC cases, majority of which are sporadic, acquired due to promoter 

hypermethylation of DNA mismatch repair enzymes and approximately 3% of the cases 

are due to germline mutations in MMR enzymes (Lynch syndrome) [31]. Colorectal 

tumours with MSI phenotype have unique clinicopathological features such as poor 

differentiation, mucinous or signet ring appearance, proximal location in the colon and are 

generally associated with a better prognosis compared to CIN phenotype [32]. Unlike CIN 

colorectal tumours, which are frequently aneuploid, MSI associated tumours rarely show 

karyotype abnormality. Genetic instability in MSI arises due to genetic and epigenetic 
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alterations in the simple sequence repeat (SSR) regions or microsatellite regions of the 

genome. Microsatellites or short tandem repeats (STRs) also known as simple sequence 

repeats of di, tri, tetra nucleotides are distributed throughout the genome. The bulk of 

microsatellite sequences are embedded in the non-coding sequences of the genome such as 

the intergenic regions or introns. However, it is the small proportion of microsatellites that 

are associated with coding DNA sequences, which due to susceptibility to DNA 

polymerase slippage can accumulate several mutations. These mutations can be a single 

base-base mismatch causing point mutation or insertion deletion loop causing frameshift 

mutation resulting in a truncated protein. The DNA mismatch repair enzyme system was 

first identified in bacteria and later found to have homologues in yeast and other eukaryotes 

including mammals. The human MMR enzyme consists of the mammalian MutS 

homologues (MSH) and the MutL homologues (MLH) such as MLH1, MSH2, MSH3, 

MSH6, PMS1 and 2 [33]. Inactivation of these repair enzymes due to promoter 

hypermethylation leads to accumulation of mutations in genes, many of which are 

associated with tumourigenesis such as B-Raf, Phosphatidylinositol-4,5-Bisphosphate 3-

Kinase Catalytic Subunit Alpha (PIK3CA), TGFβRII , Bax, RAD50, IGFIIR and PTEN  

[33, 34].  

 

CpG Island methylator phenotype (CIMP) pathway 

 The CIMP phenotype is found in 30-40% CRC cases and is highly associated with the 

pathogenesis of sporadic MSI colonic tumours. DNA methylation is an important 

epigenetic regulatory mechanism in which DNA methyl transferases (DNMTs) transfer 

methyl groups to the cytosine base of CG dinucleotides also known as CpG (cytosine 

preceding guanine) islands. Approximately 70-80% of the CpG islands in the genome that 

lie in the non-promoter regions are methylated whereas the remaining CpG sequences lying 

closer to the promoter region remain unmethylated [35]. During cancer development, a 

genome wide hypomethylation and promoter hypermethylation of tumour suppressor, cell 

cycle inhibitors and DNA repair enzymes is frequently observed. Within CIMP phenotype, 

three sub groups have now been identified- CIMP1, CIMP2 and CIMP negative. CIMP1 

colorectal tumours are highly associated with MSI phenotype and BRAF mutation whereas 

CIMP2 have a high incidence of KRAS mutations. CIMP negative subgroups showed a low 
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frequency of KRAS or BRAF mutations but were mostly p53 negative. CIMP classification 

has kept evolving with time however they have certain unique clinicopathological features 

such high rate of KRAS or BRAF mutations, wild type p53 and high incidence in proximal 

colon [36].  

 

1.3 Biological heterogeneity within colorectal cancer 

 CRC exhibits differences in incidence, pathogenesis, tumour histopathology and drug 

response outcome depending on the anatomical location of the tumours. In 1990, Bufill 

had proposed that the tumours appearing in the proximal region of the colon (right sided) 

are biologically distinct  from those appearing in the distal region of the colon (left side) 

[37]. To begin with, they appeared histologically and morphologically different in 

appearance, the proximal tumours being mucinous and poorly differentiated in comparison 

to distal tumour. It was also observed that the proximal tumours had predominantly MSI 

phenotype whereas the distal tumours were mostly CIN phenotype [38]. Proximal tumours 

seem to have poorer prognosis and survival rates compared to distal tumours. These 

findings gave prominence to the idea that colorectal cancer is not a single entity and that 

colorectal tumours show intra-tumoural biological heterogeneity with distinct site specific 

pathogenesis. Anatomically, proximal or the right sided colon has an embryological origin 

in the midgut whereas distal colon develops from the hindgut region. The proximal colon 

has a richer blood supply from superior mesenteric artery whereas distal colon is connected 

to the inferior mesenteric artery. Proximal and distal colon are also exposed to different 

microenvironments including gut flora, nutrients, toxins and enzymes. Gene expression 

studies have revealed that proximal colon shows overexpression of several genes 

associated with inflammation and drug metabolism whereas distal colon has an overall high 

transcriptional activity of genes related to cell cycle and DNA metabolism [39]. Tumours 

appearing in the proximal region are generally slow growing, poorly differentiated and 

mucinous. Most of the proximal tumours exhibit an MSI or CIMP phenotype with high 

frequency of KRAS or BRAF mutation. The distal tumours are fast growing, well 

differentiated and in majority of the cases they show CIN phenotype. They also show 

karyotype abnormalities (aneuploidy) due to structural chromosomal aberrations such as 

deletion and amplification of large regions of the chromosome. The distal tumours also 
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exhibit mutations in several tumour suppressors and oncogenes that contribute to genomic 

instability through deregulation of growth signaling and apoptotic pathways.  

 

1.4 Deregulation of metabolic pathways in colorectal cancer 

The first major breAKThrough in understanding reprogramming of cancer 

metabolism came in 1920s, from the lab of Otto Warburg in Germany. He observed that 

tumour cells show a dramatic increase in the rate of aerobic glycolysis to ‘’ferment’’ 

glucose to lactic acid [40]. This phenomenon known as the ‘’Warburg effect’’ is one of the 

hallmarks of cancer. Earlier it was speculated that this abnormal behavior of cancer cells 

in which glucose intake is upregulated by almost 10 fold to produce far less adenosine 

triphosphate (ATP) molecules and lactic acid as a waste byproduct, was due to 

mitochondrial dysfunctioning. However, this idea faced criticism due to observations of 

normal mitochondrial functioning in cancer cells.  A normal proliferating cell also shows 

an increase in aerobic glycolysis like a proliferating cancer cell, the difference being the 

regulation of the process, which is lost in case of cancer. Non-dividing, differentiated cell, 

under limited nutrient supply conditions, prefers the complete oxidation of glucose to 

maximize the production of ATP (36 molecules). A proliferating cell, on the hand, has 

altered preferences because it needs both energy as well as molecules for anabolism, which 

includes biosynthesis of lipids, proteins and nucleic acids. This is the reason it switches to 

aerobic glycolysis where pyruvate produced at the end of glycolysis instead of entering the 

TCA cycle and oxidative phosphorylation in the mitochondria, is converted to lactic acid 

in the cytosol. This is an ‘’energy saving’’ mechanism for proliferating cells by which they 

compromise on energy and metabolize glucose aerobically through glycolysis to produce 

various intermediates required for biomass production. The entire process is regulated at 

various steps beginning at the level of upstream growth receptor signaling. However, in a 

proliferating cancer cell, genetic and/or epigenetic alterations in oncogenic growth 

signaling pathways and tumour suppressor genes allow the cancer cells to switch to aerobic 

glycolysis without any nutrient stimulus or growth signal induction.  Glucose and 

glutamine are the main sources of carbon and nitrogen for cancer cells [41]. Glioblastoma 

cells, for instance, use 90% of glucose and 60% of glutamine as a source of carbon for 

acetyl CoA synthesis which is used for biosynthesis of fatty acids and lipids as well as 
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source of nitrogen for synthesis of non-essential amino acids for protein synthesis [42]. 

Overexpression of glucose transporter (GLUT) and several glycolytic enzymes such as 

hexokinase, pyruvate kinase, lactate dehydrogenase allows cancer cells to acquire this 

altered phenotype. Adaptation of cancer cells to reprogrammed cellular metabolism, 

requires assistance from the cellular growth machinery. PI3K/AKT signaling pathway 

which is often mutated, plays a major role in upregulating aerobic glycolysis through 

expression of glucose transporters (GLUT), hexokinase and phosphofructokinase [43]. 

PI3K/AKT pathway also directs glucose carbon flux towards biosynthetic pathways for 

lipid, cholesterol and isoprenoid synthesis through activation of SREBP pathway [44]. 

These pathways require acetyl-CoA, which is produced in the mitochondria from glucose, 

derived pyruvate. Since Acetyl-CoA cannot be transported to cytosol directly, it is first 

converted into citrate by another mitochondrial enzyme citrate synthase. Once citrate is in 

the cytoplasm, it is converted to Acetyl-CoA by ATP-citrate lyase (ACL). By 

phosphorylating and activating ACL, AKT ensures that mitochondrial citrate is diverted 

towards Acetyl-CoA production for feeding lipogenesis and sterol biosynthetic pathways. 

AKT also induces hypoxia inducing growth factor (HIF1α) that activates aerobic glycolysis 

in oxygen independent manner by upregulating the expression of glycolytic enzymes and 

glucose transporters. HIF1α is the O2 dependent subunit of the heterodimeric HIF1 protein 

and is frequently overexpressed in cancer. Overexpression of HIF1 and HIF2 is associated 

with poor prognosis in several cancers but the data is inconclusive for CRC due to small 

sample size in most of the studies [45, 46]. HIF1α is subjected to O2 dependent 

hydroxylation by von Hippel-Lindau tumour suppressor protein (VHL), which recruits an 

E3 ubiquitin ligase protein to the complex, targeting it for polyubiquitination and 

proteasomal degradation. Under hypoxia conditions, frequently observed in a tumour 

microenvironment, hydroxylation of HIF1α by VHL is inhibited, resulting in its 

stabilization and dimerization with HIF-1β. This HIF1 complex then binds to the promoter 

of target genes and recruits coactivators to drive transcription of genes involved in cancer 

progression. Some of the key target genes activated by stabilization of HIF1α that promote 

cancer progression are – angiopoietin 2, angiopoietin like 4, breast cancer resistant protein, 

endothelin1, fibronectin1, glucose transporter1, glucose phosphate isomerase, hexokinase1 

and 2, lactate dehydrogenase (LDH) A, insulin like growth factor-2 (IGF-2), matrix 
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metalloproteinase (MMP) 2 and 14, vascular endothelial growth factor (VEGF), urokinase 

plasminogen activator receptor [47]. Downstream of the PI3K/AKT is the mammalian 

target of rapamycin (mTOR) signaling pathway, which enhances protein synthesis and also 

induced mitochondrial biogenesis [48]. mTOR driven activation of SREBP pathway for 

enhanced lipid and cholesterol synthesis is also part of metabolic reprograming in cancer 

cells [49, 50].  Oncogenes such as Myc and KRAS, also assist in upregulating aerobic 

glycolysis in cancer cells. Myc transcriptionally activates splice variant of pyruvate kinase 

(PKM2) that directs the cell to upregulate aerobic glycolysis. Myc has also been shown to 

promote mitochondrial consumption of glutamine by upregulating the expression of 

glutaminase (GLS) [51]. Cancer cells with cMyc mutation are addicted to glutamine, which 

gives an opportunity to utilize GLS as therapeutic target. KRAS oncogene that is frequently 

mutated in colorectal cancers are also known to upregulate GLUT1 expression thereby 

increasing glucose uptake in cancer cells. In vitro studies have shown that glucose 

deprivation in colorectal cancer cells with wild type KRAS, resulted in survival of few cells 

all of which had acquired KRAS mutation with concomitant upregulation of GLUT1 [52]. 

Genetic alterations in metabolic enzymes like PKM2, isocitrate dehydrogenase (IDH), 

succinate-dehydrogenase assist in metabolic reprogramming of cancer cell by favouring 

aerobic glycolysis [49, 53]. Apart from heightened glucose uptake in cancer cells, 

glutamine metabolism is also key to cancer cell growth and proliferation. Glutamine 

metabolism is essential for tumour cells as a source of carbon, nitrogen, oxaloacetic acid 

(OAA) and NADPH for biomolecule synthesis [41, 54]. Additionally, glutamine is 

required for replenishing the TCA cycle intermediates to sustain the production of 

biomolecules in cancer cells, a process called anaplerosis [55, 56]. 
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Figure 1.2 Metabolic reprogramming in cancer cells. A well-coordinated reprogramming 

of oncogenic signaling and metabolic pathways resulting in accelerated growth of cancer 

cells is considered to be one of the hallmarks of cancer. Increased glucose uptake and 

glycolysis (Warbug effect) is supported by hyperactive PI3K/AKT signaling through 

increased GLUT1 expression and activity. AKT also phosphorylates and activates ATP-

citrate lyase (ACLY) that converts mitochondrial citrate to Acetyl-CoA required for lipid 

and cholesterol synthesis. AKT is also responsible for stabilization of HIF1α subunit, which 

results in activation of genes required for glycolysis, angiogenesis, invasion and 

metastasis. mTORC1, located downstream of AKT is responsible for enhanced protein 

synthesis and mitochondrial biogenesis. It also mediates PI3K/AKT dependent 

upregulation of SREBPs for increased lipid and cholesterol synthesis. Figure adapted from 

Vito Iacobazzi* and Vittoria Infantino, 2014. Biol.Chem [57].  
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1.5 Deregulation of lipid homeostasis in cancer 

           Aberrant upregulation of lipid and cholesterol biosynthesis is frequently   

associated with several cancers.. In a normal cell, intracellular cholesterol homeostasis is 

maintained by a tight regulation of cholesterol biosynthesis, uptake and metabolism at both 

transcriptional and post-translational level. Cholesterol is synthesized in the cell from the 

precursor Acetyl-CoA through an enzymatic pathway called the mevalonate pathway [58]. 

The mevalonate pathway plays a crucial role in the normal growth and development of the 

cell by supplying cholesterol for membrane biogenesis, bile acid and steroid hormones 

synthesis. Cholesteryl esters derived from the mevalonate pathway are also utilized for the 

assembly of cholesterol and sphingomyelin rich microdomains in the plasma membrane 

known as lipid rafts that function as docking sites for several receptors required for growth 

and extrinsic apoptotic pathway signaling [59]. The non-sterol intermediates of mevalonate 

pathway such the isoprenoids are required for the post-translational modification of 

signaling proteins such as RAS, RHO, RAC and RAB. Studies in prostate cancer, 

hepatocellular carcinoma and acute myeloid leukemia have shown that an upregulation of 

cholesterol biosynthesis is associated with an aggressive tumour phenotype [60, 61]. 

Pharmacological inhibitors of mevalonate pathway enzymes such as statins have been 

shown to reduce cancer cell proliferation and viability in pre-clinical studies [62, 63].   

             The other mechanism through which cells are able to derive cholesterol is the 

low-density lipoprotein receptor (LDLR) mediated endocytosis pathway. Both LDLR and 

3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), the rate-limiting enzyme of 

cholesterol biosynthesis pathway are under transcriptional regulation of sterol regulatory 

element binding protein (SREBP) family of transcription factors. Elevated accumulation 

of nuclear SREBP (mature form) resulting in upregulation of lipogenesis and cholesterol 

biosynthesis has been observed in prostate cancer with hyperactive PI3K/AKT/mTORC1 

signaling [64]. Loss of sterol mediated feedback regulation of HMGCR and LDLR has 

been reported in several cancers including prostate cancer, colorectal cancer, breast cancer, 

liver cancer, lung cancer and leukemia [65-69]. Previous studies have shown that 

upregulated LDL-cholesterol uptake is correlated to increase in cyclooxygenase (COX-2) 

activity and prostaglandin (PGE-2) levels [70]. Elevated influx of essential fatty acids 
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through LDLR increases synthesis of prostaglandins (PGE2) thatplay an important role in 

cancer cell growth, proliferation and metastasis.The pro-inflammatory cytokines and 

chemokines such as tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and C-

reactive proteins secreted by the tumour cells and their microenvironment have been 

implicated in disruption of sterol mediated regulation of HMGCR and LDLR gene 

expression [71, 72]. Downregulation of PCSK9 and concomitant increase in LDLR protein 

level has been observed in several cancers including but not limited to hepatocellular 

carcinoma and melanoma [73, 74]. In a recent study in breast cancer cells, it was 

demonstrated that the mutant oncogenic form of p53 can disrupt mammary acinar 

morphology in 3-dimensional culture conditions by upregulating the mevalonate pathway 

through SREBP activation [75].  

 

 

1.6 Cholesterol biosynthesis pathway 

Cholesterol is required by the cell for membrane biogenesis, synthesis of steroid 

hormones, bile acids and for mediating intracellular signaling through lipid raft. 

Cholesterol is derived by the cell either through endogenous synthesis of cholesterol 

through the mevalonate pathway or import of serum cholesterol through membrane bound 

low density lipoprotein receptor (LDLR). Cholesterol is synthesized from Acetyl-CoA in 

three stages. The first stage is conversion of Acetyl-CoA into activated isoprene unit called 

isopentyl pyrophosphate (IPP) through a series of enzymatically catalyzed reaction [76]. 

The second step is condensation of six isoprene units to form squalene and the third stage 

is cyclisation of squalene to form cholesterol. Cholesterol biosynthesis starts with 

condensation of Acetyl-CoA and Acetoacetyl-CoA to form 3-Hydroxy-3-methylglutaryl 

coenzyme A (HMGCA). The first committed step in cholesterol biosynthesis pathway is 

the conversion HMGCA to mevalonate by 3-Hydroxy-3-methylglutaryl coenzyme-A 

reductase (HMGCR) enzyme. HMGCR, an approximately 98 KiloDalton (KDa), 

endoplasmic reticulum (ER) and peroxisomal glycoprotein, is the rate limiting enzyme of 

this pathway. It has a sterol sensing NH2-terminal transmembrane domain spanning the ER 

membrane and COOH-terminal catalytic domain facing the cytosol. HMGCR has been 

under intense scrutiny for therapeutic targeting of cholesterol biosynthesis to treat 
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hypercholesterolemia. Statins are a class of pharmacological inhibitors of HMGCR that 

bind to the active site of HMGCR and inhibit its enzymatic activity by reversible 

competitive inhibition. Mevalonate is converted to isopentyl pyrophosphate, which is the 

structural unit of isoprenoids like farnesyl pyrophosphate (FPP) and geranylgeranyl 

pyrophosphate (GGPP). FPP and GGPP are required for membrane anchorage and 

activation of signaling molecules like RAS, RHO, RAC etc. In the next set of reactions, an 

ER enzyme called squalene synthase catalyzes synthesis of a 30 carbon isoprenoid called 

squalene from FPP. In the final stages of cholesterol biosynthesis, squalene is first cyclized 

to form squalene epoxide, which forms the nucleus of the tetracyclic steroid structure of 

cholesterol. Squalene epoxide is then converted into lanosterol by oxidosqualene cyclase 

(OSC). Inhibitors of OSC such as RO 48-8071 are being studied in pre-clinical models as 

an alternative to statins for therapeutic targeting of cholesterol biosynthesis. Lanosterol is 

converted into cholesterol through a series of enzymatic reactions that include several 

oxidation, reductions and demethylation reactions. Some of the prominent enzymes 

functional in the final stages of cholesterol biosynthesis are 7-dehydrocholesterol 

reductase, which catalyzes the synthesis of the immediate precursor of cholesterol called 

7-dehydrocholesterol. Newly synthesized cholesterol can be acylated by Acyl-CoA 

Cholesterol-acyl transferase (ACAT) to form cholesteryl esters or oxidized to form 

oxysterols such as 25-dehydrocholesterol or used for biosynthesis of bile acids and steroid 

hormones. While cholesteryl esters are stored in lipid droplets as cellular store for 

cholesterol, oxysterol can translocate freely in the aqueous cytosolic environment thus 

functioning as potent signaling molecules.  
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Figure 1.3 Mevalonate pathway of de novo cholesterol biosynthesis. Intracellular 

cholesterol is synthesized by a series of enzymatic reactions in a pathway called the 

mevalonate pathway. This pathway is critical for cellular functioning since it provides the 

cell with essential biomolecules that include sterols and non-sterol products. Cholesterol, 

the end product of this pathway is required for cell membrane biogenesis, steroid and bile 

acid synthesis as well as assembly of lipid rafts. Non-sterol bioactive intermediates such 

isoprenoids are required for membrane anchorage and activation of signaling proteins like 

RAS and RHO. Other important non-sterol intermediates of the pathway include haeme A, 

dolichol and ubiquinone, which are required for posttranslational modification of several 

cellular proteins.  Portions of this figure have been adapted from Valerie Leduc et al., 

2010. Trends in Molecular Medicine [77]. 
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1.7 Low Density Lipoprotein Receptor pathway  

Investigation into the pathogenesis of the genetic disorder Familial 

Hypercholesterolemia (FH) by Goldstein and Brown in 1980s led to the discovery of low-

density lipoprotein receptor (LDLR). FH is an autosomal dominant disease that is 

characterized by abnormally high levels of plasma cholesterol which was later found to be 

a result of homozygous mutation in LDLR [78]. LDLR receptor is approximately 840 

amino acids long 160 KDa transmembrane glycoprotein that is primarily involved in 

clearance of plasma LDL cholesterol. It has five functional domains: Extracellular ligand 

binding domain that binds to apolipoprotein B 100 (apoB100) or apolipoprotein E (apoE) 

of very low density lipoprotein (VLDL),intermediate density lipoprotein (IDL) and low 

density lipoprotein (LDL) cholesterol complex followed byepidermal growth factor (EGF) 

like domain, O-linked glycosylation domain, transmembrane domain and cytosolic domain 

[79]. LDLR can bind to all classes of lipoproteins with varying affinity, apoB100 (LDL) 

and apoE (VLDL) being the ones that have maximum affinity for LDLR. The dietary 

cholesterol absorbed in the gut is packaged along with triglycerides into chylomicron 

particles that are released in the blood stream. During their transport, triglycerides are 

hydrolyzed by lipases present on the surface of endothelial cells and are replaced by 

apolipoproteins such as apoE to form chylomicron remnants, which are taken up by 

hepatocytes. The other triglyceride rich lipoprotein is the very low-density lipoprotein or 

VLDL, which is synthesized in the liver and secreted in the blood stream to deliver 

cholesterol to extrahepatic tissues. Triglycerides in VLDL are hydrolyzed by endothelial 

cell lipases to form LDL, which are bound to apoE. LDL cholesterol binds to LDLR on the 

cell surface of hepatic or extra-hepatic tissues and is internalized by receptor-mediated 

endocytosis. In the low pH environment of the lysosome, the receptor unloads the protein-

cholesteryl ester complex. Cholesteryl ester is hydrolyzed by lysosomal acid lipase to free 

cholesterol from protein complex. Free cholesterol is used for steroid and bile acid 

synthesis, incorporated in membranes or re-esterified by Acyl CoA Cholesterolacyl 

Transferase (ACAT) to form cholesteryl ester, which is stored in lipid droplets. Excess 

cholesterol is eliminated from the body by liver through bile acid secretion. 
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Figure 1.4 Structure of low-density lipoprotein receptor. Low-density lipoprotein 

receptor or LDLR is an 840 amino acids long membrane bound glycoprotein receptor 

which is primarily involved in uptake of blood cholesterol by receptor mediated 

endocytosis. Structurally, LDLR has 5 functional domains each having a distinct function. 

At the N-terminal lies the LDLR repeat domain consisting of seven homologous repeats 

which binds to apoAPOB100 and apoAPOE lipoproteins of LDL and VLDL cholesterol 

respectively. This is followed by the EGF repeat domain, which is also binding site for 

PCSK9 serine protease, which degrades LDLR. O-linked glycosylation domain is ~58 

amino acids longs and acts as a connecting link between the EGF repeat domain and 

transmembrane domain. The transmembrane domain is a 25 amino acids long membrane 

spanning domain rich in hydrophobic amino acids, which anchors LDLR to the plasma 

membrane. The cytosolic domain at the C-terminal contains a unique NPXY amino acid 

sequence, which interacts with ARH1 adapter protein on the inner side of the plasma 

membrane. This interaction is critical for sorting of the receptor in clathrin-coated pits 

and also for internalizing LDL cholesterol through receptor-mediated endocytosis. This 

figure has been adapted from Wasan K.M, 2008. Nature Reviews Drug Discovery [80]. 
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1.8 Cholesterol efflux pathway 

Over loading of cholesterol in the non-hepatic cells that cannot be metabolized into 

free cholesterol, for instance macrophage foam cells in the arterial wall, can increase the 

risk of cytotoxicity and cardiovascular diseases. Therefore it is imperative for the cells to 

have a system to efflux free cholesterol for transport to the liver where it can be 

metabolized. Most of this cholesterol efflux takes place through the ATP binding cassette 

receptors called the ABCA1 and ABCG2 through a process called ‘’reverse cholesterol 

transport’’. These receptors are transcribed by the liver x receptor (LXR) family of 

transcription factors [81]. Peripheral tissues release excess cholesterol into lipid poor 

apoA1 containing nascent high density lipoprotein (HDL) particles through 

ABCA1/ABCG1 and scavenger receptor SR-B1. This cholesterol rich HDL particle 

delivers cholesterol to the liver either directly through SR-B1 or indirectly through 

cholesteryl ester transfer protein (CETP) which converts cholesterol rich HDL into 

triglyceride rich LDL and VLDL. LDL particles interact with LDLR and enter the 

hepatocytes where they are metabolized and secreted as bile acids. This process called 

reverse cholesterol transport is critical in eliminating excess cholesterol from the body, 

especially from macrophage foam cells and atherosclerotic plaques thus reducing the risk 

of cardiovascular diseases.  

 

1.9 Transcriptional regulation of cholesterol homeostasis 

Cholesterol biosynthesis and uptake is under transcriptional regulation of a subclass 

of the basic helix loop helix leucine zipper (bHLH-LZ) family of transcription factors 

known as the sterol regulatory element binding proteins (SREBPs). The basic structure of 

SREBPs consists of an N-terminal DNA transactivation domain (~ 480 amino acids), a 

hydrophobic transmembrane domain (~ 80 amino acids) and a 590 amino acids C-terminal 

regulatory domain [82]. There are three isoforms of SREBPs- SREBP1a, SREBP1b and 

SREBP2. While SREBP1a and SREBP1c are transcribed from different promoters on the 

same gene, SREBP2 is encoded by a separate gene on a different chromosome. SREBP1a 

and SREBP2 are responsible for transcription of genes involved in cholesterol biosynthesis 

and uptake whereas SREBP1c is associated with transcription of lipogenesis genes. Unlike 
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other bHLH-LZ transcription, which recognize E-box sequence in the target promoters, 

SREBPs recognize a unique 10 base pair long sequence called the sterol regulatory element 

(SRE) in the enhancer region of target promoter. In the case of the LDLR gene, SREBP2 

binds to 5’-ATCACCCCAC-3’ called SRE1 [83]. The full length precursor form of the 

SREBP is anchored to the endoplasmic reticulum (ER) membrane in a complex with the 

SREBP cleavage activating protein (SCAP) and the Insulin induced gene (INSIG) protein. 

Excess of cholesterol or oxysterol derivatives of cholesterol such as 25-hydroxychoelsterol 

in the ER membrane binds to sterol sensing domain of INSIG which blocks the loading of 

SREBP-SCAP complex to ER transport vesicles. When sterol is depleted in the ER 

membrane, INSIG undergoes a conformational change and releases the SCAP-SREBP 

complex which gets loaded in the coatomer II protein (COPII) vesicles and is carried to the 

Golgi complex. In the Golgi complex two proteases, site proteases I and II, cleave the 

transactivation N-terminal domain of the SREBPs. This cleaved, mature form of SREBP 

which is approximately 68 KDa, then translocates to the nucleus where it binds to the SRE 

in the enhancer region of genes like HMGCR, LDLR, PCSK9 and INSIG and upregulates 

their transcription. HMGCR shows basal level of transcription in the presence of sterols, to 

meet the demand for non-sterol products of the mevalonate pathway, especially the 

isoprenoids which are critical for functioning of signaling proteins like RAS and Rho.  

The other class of transcription factors that regulate cholesterol homeostasis in the 

cells are the liver X receptors or LXRs. They regulate the transcription of a host of 

cholesterol pathway related genes such as ATP binding cassette subfamily A member 1 

(ABCA1) cholesterol efflux transporter, inducible degrader of LDLR (IDOL) and apoE 

[81].The transcriptional activity of LXRs require binding of physiological ligands like 

oxysterols to its sterol sensing domain which triggers their hetero-dimerization with 

retinoid X receptor (RXR). LXR-RXR heterodimer binds to the direct repeat 4 (DR4) sterol 

regulatory element in the enhancer region of its target genes.  

Alternate splicing of genes like HMGCR, LDLR, HMGCS, MVK, PCSK9, apoE is 

another mechanism of transcriptional regulation of cholesterol pathway related genes [84]. 

An HMGCR splice variant with an exon 13 deletion is associated with reduced statin 

response and enzyme activity [85]. LDLR splice variants with deleted exon 4 and 12 are 

associated with reduced expression and uptake of LDL cholesterol [86].  
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Figure 1.5 Proteolytic cascade of SREBP activation. Sterol regulatory binding element 

proteins (SREBP) are ER membrane bound leucine zipper family of transcription factors 

that regulate lipid and cholesterol homeostasis. In their inactive state, SREBPs are bound 

to ER membrane along with SREBP cleavage activating protein (SCAP) and Insulin 

induced gene (INSIG) protein. When sterol levels are low in ER membrane, SREBP 

translocates to the Golgi complex where it is cleaved by site proteases 1 and 2, resulting 

in release of the mature, transcriptionally active form. This mature form of the 

transcription factor translocates to the nucleus and binds to the sterol regulatory element 

(SRE) in the promoter region of lipid and cholesterol pathway genes to drive their 

transcription. This figure has been adapted from Russel A DeBose-Boyd, 2008. Cell 

Research [87]. 
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1.10 Post translational regulation of HMGCR and LDLR 

Accumulation of sterols in the ER membrane, triggers degradation of the HMGCR 

enzyme by ubiquitination and proteasomal degradation. This entire process is a complex 

mechanism that involves interaction of HMGCR transmembrane domain embedded in the 

ER membrane with sterol derivatives like oxysterols, isoprenoids and INSIG [88]. When 

sterol levels are high, INSIG binds to the ER membrane bound HMGCR and recruits gp78 

E3 ubiquitin ligase and E2 Ubc7 ligase. This results in a conformational change in the 

cytoplasmic domain of HMGCR which gets exposed to gp78 and Ubc7 mediated 

polyubiquitination. An ER associated ATPase called valosin containing protein (VCP) 

regulates the extraction of polyubiquitinated HMGCR from ER and its subsequent 

degradation in the proteasome.  

  

 

.  
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Figure 1.6 Endoplasmic reticulum associated degradation of HMGCR. Saturation of ER 

membrane with 25-hydroxycholesterol, lanosterol etc. results in a conformational change 

in insulin induced gene1 (INSIG) ER resident protein. INSIG binds to HMCGR 

transmembrane domain along with gp78 that is ER membrane bound E3 ubiquitin ligase. 

HMGCR-INSIG-gp78 protein scaffold at the ER membrane is bound by E2 Ubc7 and VCP 

ATPase which is required for extraction of ubiquitinated HMGCR from ER membrane. 

HMGCR is poly-ubiquitinated by combined action of gp76 and Ubc7, followed by 

extraction from ER membrane by VCP and proteasomal degradation. Portions of this 

figure have been adapted from Russel A DeBose-Boyd, 2008. Cell Research [87]. 
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The LDLR protein turnover is regulated by Proprotein convertase subtilisin like 

Kexin type 9 (PCSK9) serine protease and an E3 ubiquitin ligase called the Inducible 

degrader of LDLR (IDOL). PCSK9 is primarily expressed in the liver in an inactive 

precursor form that contains an N terminal signal peptide, followed by a prodomain, 

subtilisin like catalytic domain and the C terminal domain [89]. Autocatalysis of the 

inactive precursor, releases the prodomain from the catalytic domain however it remains 

bound to mask the catalytic domain and direct it for extra cellular secretion. Once secreted 

out of the cell, the exposed catalytic domain binds to the extra cellular EGF like repeat 

domain of LDLR in a calcium dependent manner, resulting in its uptake and lysosomal 

degradation. IDOL or Induced degradation of LDLR is an E3 ubiquitin ligase transcribed 

by the liver X promoter (LXR) which targets LDLR for ubiquitination and proteasomal 

degradation [90]. Along with statins, PCSK9 inhibitors are being clinically tested as 

therapeutic targets for cardiovascular disorders [91].   
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Figure 1.7 Regulation of the LDLR pathway. Cellular cholesterol is imported into the cell 

through membrane bound receptors called the low-density lipoprotein receptor (LDLR) by 

receptor mediated endocytosis. In the low pH environment of the lysosome, free cholesterol 

is released and LDLR is recycled back to the cell membrane. LDLR gene is under 

transcriptional regulation of SREBP2 transcription factor, which also transcribes PCSK9. 

PCSK9 is a secretory serine protease, which binds to the extracellular EGF domain of 

LDLR and targets it for lysosomal degradation. Another protein that is responsible for 

LDLR turnover is an E3 ubiquitin ligase called Inducible degrader of LDLR (IDOL), which 

is transcribed by LXR transcriptional factor. This figure has been modified from LDLR and 

Familial Hypercholesterolemia, Genetic 677. UW-Madison and Moore KJ, 2010. Trends 

in Endocrinology and Medicine. 
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1.11 Regulation of SREBP and its role in cancer signaling 

Despite of significant overlap in the pathways regulated by the three isoforms of 

SREBPS, they show distinct tissue distribution and response to regulatory cues. The 

regulation of SREBP expression occurs at both the transcriptional and post-transcriptional 

level. At the post transcriptional level, the SREBP activity is regulated by intracellular 

cholesterol level as well as a cross talk between SCAP and INSIG proteins as described in 

the earlier section (Figure 1.5). Out of the three isoforms of SREBPs, SREBP1a is 

expressed constitutively at a low level in the liver as well as in other mammalian tissues. 

SREBP1c and SREBP2 share a common feed forward transcriptional regulation mediated 

by the SREs in the enhancer regions of the promoters of both the genes. Other factors that 

are known to regulate SREBP1c expression are the liver X activated receptors, insulin and 

glucagon. Insulin not only induces SREBP1c promoter through LXR but also regulates ER 

to Golgi transport of precursor SREBP1c and its nuclear accumulation through mTOR 

activation [94]. ER retention protein INSIG, which binds SREBP to ER membrane in a 

complex with SCAP, is negatively regulated by insulin. This implies that when insulin 

signaling is low, INSIG is active which results in reduced nuclear accumulation of 

SREBP1c. Studies in the past have shown that insulin like growth factor 1 (IGF-1) 

upregulates SREBP1 mRNA and protein expression with a concomitant increase in its 

target gene expression [95]. Similarly, platelet derived growth factor increase ER to Golgi 

complex translocation of SREBP thus increasing its nuclear accumulation [96]. AKT plays 

an important role in regulation of SREBP expression and activity at many levels. In prostate 

cancer, high expression levels of SREBPs and their downstream effector genes has been 

positively correlated with progression to an androgen independence aggressive tumour 

phenotype. In a xenograft model of human prostate cancer cells, upregulation of SREBPs 

has been shown to increase AKT phosphorylation and lipid raft growth signaling [98]. 

Studies have shown that a feed forward regulation between AKT signaling and lipogenesis 

promotes cell proliferation in advanced stages of cancer [99] . A similar bidirectional 

relationship between AKT and SREBPs has been observed in ovarian cancer, where 

hyperactive AKT signaling induces SREBP activity upregulating lipogenesis, which in 

turn feeds AKT signaling to support cell growth and proliferation [100]. Studies in prostate 
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cancer cell lines have shown that SREBP-1 besides regulating lipogenesis, also induces 

expression of androgen receptor resulting in enhanced growth and survival of PCa cells 

[101]. SREBP-1 also promotes prostate cancer cell proliferation by inducing AKT 

signaling and  increasing oxidative stress through induction of Nox5 and generation of 

reactive oxygen and nitrogen species [98]. In glioblastoma cases, studies have shown that 

rapamycin resistant phenotype have an EGFR and AKT dependent pro-survival pathway 

that promotes glioblastoma cell growth and survival through SREBP mediated lipogenesis 

pathway [102]. Whereas most of the evidence of deregulation of the SREBP pathway and 

its role in modulating cancer growth signaling come from studies on prostate cancer, 

ovarian cancer and glioblastoma, there is limited work done in CRC. 

 

1.12 Cholesterol reducing drugs and cancer 

In a tumour cell, multiple signaling pathways can deregulate cholesterol 

homeostasis to support their growth and proliferation and also modulate the tumour 

microenvironment to favour cancer cell survival. Upregulation of the mevalonate pathway 

is critical for cholesterol accumulation as well as for effective growth signaling in a tumour 

cell. For this reason, the mevalonate pathway serves as an ideal therapeutic target for cancer 

prevention. One of the most prominent therapeutic agents that reduce intra cellular 

cholesterol biosynthesis by inhibition of HMGCR, are the statins. They have traditionally 

been used to lower serum cholesterol in patients suffering from hypercholesterolemia or 

atherosclerosis. Several case control and epidemiological studies have shown that long-

term use of statins lowers the risk of cancer associated mortality [103-105]. There are 

evidence from in vitro studies in preclinical models that have also established the role of 

statins as a negative regulator of cancer cell growth and viability. However, the protective 

role of statins has been a matter of intense debate due to many contradicting evidence from 

clinical and epidemiological studies that challenge the efficacy of statins to retard call cell 

growth and proliferation. Since statins target HMGCR located upstream of the mevalonate 

pathway, they also reduce the production of bioactive isoprenoids which are required for 

posttranslational modification of signaling molecules. This limitation of statins was 

overcome with the advent of other cholesterol reducing drugs such as PCSK9 inhibitors 

and RO-48-8071. PCSK9 inhibitors block the protease activity of PCSK9, concomitantly 
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increasing LDLR protein which accelerates uptake of serum cholesterol. RO 48-8071 

inhibits the enzymatic activity of oxidosqualene cyclase (OSC), which catalyzes the 

conversion of squalene epoxide to lanosterol thus blocking cholesterol biosynthesis 

without affecting the synthesis of isoprenoids.  

 

Statins as chemotherapeutic drugs  

Statins, are a class of cholesterol reducing drugs that bind to the catalytic domain 

of HMGCR and block its enzymatic activity by competitive inhibition. Compactin, a 

secondary metabolite of the fungus, Penicillium citrinum, was the first statin to be 

discovered by the Japanese biochemist Akira Endo in the year 1973. A few years later, in 

1978 Merck discovered lovastatin (earlier called mevinolin) from the secondary metabolite 

of the fungus Aspergillus terreus. After several clinical trials, lovastatin finally got 

approval from Food and Drug Administration (FDA) and was commercially released by 

the name of Mevacor in 1987 [106, 107]. Structurally, statins have three main domains- 

one is the structural analogue that competitively binds to the active site of HMGCR 

enzyme, the other is a covalently attached ring structure which helps in binding of the 

analogue to the enzyme and third is the side chain that determines the solubility and 

absorption of the drug. Most of the statins are lipophilic and are easily absorbed by hepatic 

and extra hepatic tissues whereas some like Fluvastatin, which are hydrophilic need carrier 

mediated absorption. Prodrug, or the inactive form of statins have a closed lactone ring 

which upon oxidation by microsomal enzyme cytochrome P450, turn into an active open 

ring acidic form that binds to the catalytic domain of HMGCR [108, 109]. The reversible 

competitive inhibition of HMGCR by statins has several direct and indirect effects on 

cellular metabolism. The direct effect of statin inhibition is decrease in intracellular 

cholesterol level as well as downstream secondary metabolites of mevalonate pathway such 

as isoprenoids (FPP, GGPP), dolichol, ubiquinone etc. The lowering of intracellular 

cholesterol upregulates LDLR expression which effectively reduces serum cholesterol 

level in patients suffering from hypercholesterolemia. In addition to this, statins also reduce 

the synthesis of isoprenoids required for membrane anchorage of signaling proteins like 

RAS, Rho, RAC which effects cell growth and proliferation. There are reports that have 

shown statins to inhibit epidermal growth factor induced tumour cell invasion by blocking 
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the prenylation of RhoA. [110, 111]. Other protective roles of statin that are independent 

of HMGCR, include synchronizing tumour cells for G1-S phase cell cycle arrest. Since S 

phase cells are most resistant to radiotherapy, arresting tumour cells in G1-S phase 

sensitizes them to radiotherapy. There are reports of statins increasing the expression of 

p21 and p27 cyclin dependent kinase inhibitors in prostate cancer cells, causing cell cycle 

arrest in G1-S phase [112]. On its own, statins have shown several anti- tumourigenic 

characteristics that have encouraged researchers to test them along with other known 

anticancer drugs in pre-clinical models. For instance, in human colon cancer cell lines, 

lovastatin in combination with cisplatin and 5-Flourouracil, have been shown to increase 

apoptosis [113]. Similarly, in animal models, statins have shown anti-tumourigenic effect 

in combination with doxorubicin, cisplatin, TNFα and non-steroidal anti-inflammatory 

drugs like Sulindac [113, 114]. 

Studies with evidence on the protective role of statins in patients suffering from 

CRC are limited and inconsistent. This may be partially due to colonic tumour 

heterogeneity associated with tumour location and molecular subtype or due to analytical 

limitations. For instance, some of these observational studies that analyzed statin effect pre 

and post CRC diagnosis, did not take into account several unmeasured variables such as 

medication history that included long term use of hypotensive drugs, non-steroidal anti-

inflammatory drugs (NSAIDs), hypoglycemic agents, molecular profile of the tumour, diet 

and lifestyle, that could have impacted the final outcome [105, 115]. In another population 

based study which examined the association of statin use and colorectal cancer risk, it was 

observed that statin efficacy was associated with KRAS mutation status in colonic tumours 

[116]. Statins are known to modulate KRAS signaling through isoprenoids that are required 

for posttranslational prenylation of signaling molecules like RAS and RHO. KRAS 

mutation, observed in ~40% of CRC cases, results in constitutively active growth signaling 

independent of EGFR.  In these KRAS mutated tumours both anti EGFR and statin therapy 

were found to be ineffective. Hence the conclusion drawn from this study was that the 

effectiveness of statin in reducing cancer specific mortality seems to be restricted to 

colorectal tumour with wild type KRAS.  In yet another case control study of CRC, a single 

nucleotide polymorphism in HMGCR gene was identified which modulates serum 

cholesterol levels and CRC risk [117]. In the same study, mRNA expression of full length 
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HMGCR and alternately spliced isoform was studied in lymphocyte cell lines derived from 

patients on simvastatin medication. HMGCR v1, alternately spliced isoform of HMGCR 

has an exon 13 deletion, which encodes for the statin binding domain. Not surprisingly, 

cells enriched with HMGCRv1 were more resistant to statin inhibition, which supported 

the idea that altered ratio of full length, and alternately spliced HMGCRv1 mRNA is an 

important mechanism for differential sensitivity to statins in patients with CRC risk. 

 

RO 48-8071 as an alternate to statins 

RO 48-8071, chemically known as (4-Bromophenyl)-[2-fluoro-4-[6-[methyl(prop-

2-enyl)amino] hexoxy]phenyl]methanone, is an inhibitor of oxidosqualene cyclase (OSC), 

a downstream mevalonate pathway enzyme that catalyses the coversion of 2,3 

epoxysqualene to lanosterol [118]. Since OSC functions downstream of FPP and GGPP 

synthesis reactions in mevalonate pathway, blocking of this enzyme by any 

pharmacological inhibitor will block synthesis of sterols without affecting the synthesis of 

essential isoprenoids. Also, inhibition of OSC by RO 48-8071, does not upregulate 

HMGCR unlike statins, due to an indirect, negative feedback regulation of HMGCR [119]. 

RO 48-8071 has been reported to reduce cell viability and induce apoptosis in prostate 

cancer cells. Investigation into the mechanism of its anti tumourgenic role in prostate 

cancer cells showed that it reduced androgen receptor protein expression and in parallel 

increased the expression of anti proliferative estrogen receptorβ [120]. It also retarded the 

tumour growth in prostate cancer cells mice xenografts without any toxicity to normal cells. 

Similar results were seen in breast cancer cells, where RO was shown to reduce the 

expression of ERα and simultaneously increase the expression of antiproliferative ERβ to 

reduce breast cancer cell viability and induce apoptosis [121]. It concomitantly brought 

down the expression level of prosurvival BCL2 protein and increased the expression of cell 

cycle arrest protein p21 in a dose and time dependent manner. In breast cancer cells and 

even in xenograft models used to test the efficacy of the drug, RO proved to be more potent 

than statins in inducing apoptosis and containing tumour growth.  
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1.13 Pre-clinical models in colorectal cancer research 

Pre-clinical models using animals, cell lines, tumour xenotransplants and human 

biopsy specimens have become indispensable in understanding the complexities of tumour 

pathogenesis. Biological diversity of CRC makes it virtually impossible for a single animal 

model to recapitulate all the features of the human disease. There are three main criteria 

for selection of an animal model for CRC study. The first criterion is that the tumours 

should be restricted to the large intestine (colon). Secondly, the histological and 

morphological features of the lesions should resemble their human counterpart and lastly, 

the animal model should be able to recapitulate the basic mutation profile and alterations 

in cell signaling pathways.  

 

 1,2 Dimethylhydrazine and Azoxymethane model 

                 The most commonly used model for study of sporadic CRC are 1,2-

dimethylhydrazine (DMH) and azoxymethane (AOM) which are exclusively colon specific 

carcinogens [122]. Both these models are highly reproducible in murine models with 

different genetic backgrounds and faithfully recapitulate human CRC pathogenesis. The 

majority of the tumours produced by these carcinogens appear in the distal region of the 

colon and have a histology similar to the human adenomas and carcinomas [123]. DMH 

and its metabolite AOM both require metabolic activation by metabolizing enzymes of the 

liver such as cytochrome P450 to form active DNA alkylating compounds called 

methylazoxymethanol (MAM).  The hydroxylated metabolite MAM is a stable compound 

with a half life of 12 hours which allows it travel from liver to the colon without getting 

degraded. In the colon, MAM is further metabolized to release methyldiazonium ions that 

can add methyl groups to the guanosine residues of macromolecules in the colon cells. 

Usually two intraperitoneal or subcutaneous injections of DMH (150mg/kg body weight) 

or AOM (15mg/kg body weight) given one week apart is sufficient to induce colonic 

tumours in rats or mice in 20-30 weeks. Tumour incidence and multiplicity can be 

manipulated by altering diet and genetic background, which makes this model useful to 

study the effect of chemopreventive drugs and also understand pathogenesis of CRC [122]. 

The synergistic effect of AOM (tumour inducing) and DSS (tumour promoting) in 

development of colonic tumours in the AOM/DSS colitis related murine CRC model 
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allows the investigation of the pathogenesis of inflammatory bowel disease (IBD) 

associated CRC. AOM/DSS induced colonic tumours generally appear in the distal region 

of the colon, which is where most of human sporadic tumours appear. These tumours rarely 

metastasize but they do show frequent mutation in APC, β-catenin, KRAS genes. They also 

show elevated levels of prostaglandin and nitric oxide synthesizing enzymes such as 

cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS).  

  Murine models have an advantage of other animal models in having extensive 

genetic information available which allows the development of recombinant inbred mouse, 

transgenics, knock out and knock in models for study of cancer pathogenesis. 6 week old 

male F344, wistar or Sprague Dawley rats are most commonly used to induce colonic 

tumours using DMH or AOM.  The other animal model that has been widely used for 

colorectal cancer preclinical research is the APCMIN mouse model. This model is 

characterized by multiple intestinal neoplasm (MIN) phenotype due to autosomal 

dominant mutation of the APC gene [125]. Heterozygous APCMIN carry a T to A 

transversion mutation in one of the alleles of APC that results in small lesions mostly in 

the small intestinal region [126]. For adenoma formation, loss of heterozygosity of APC 

gene is required. Because of close similarity to FAP, the APCMIN mouse model is used to 

study the etiology of CRC with mutated APC phenotype. 

 

Cell culture based CRC models 

Cell lines derived from human tumours are widely used as preclinical model 

systems to study the pathogenesis of cancer. They allow mechanistic study of specific 

signaling pathways, chemotherapeutic drug screening as well as identification of novel 

targets and biomarkers. Despite their limitations of being largely monoclonal in nature and 

devoid of a tumour micro environment, their significance in micro examining pathogenesis 

of cancer cannot be undermined. The scope they provide, to gentically manipulate or 

delineate signalling pathways via specific treatments under controlled experimental 

conditions, is unquestionable.  

The cancer cell line database is a repertoire of genetic profile of thousands of human 

cancer cells including CRC cells and it is ever expanding. The Cancer genome project of 

the Sanger institute and cancer cell line encyclopedia project as a joint collaboration 



35 
 

between the Novartis institute of Biomedical research and the Broad institute have 

substantial database containing genetic profiles of thousands of human cancer cells 

[127].This database is particularly useful in research for finding new therapeutic targets in 

the wake of acquired resitance of tumour cells to pharmacological drugs. 

CRC cell lines derived from primary tumour show heterogeneity in their growth 

characteristics, morphology, drug sensitivity, genetic and mutation profiles [128]. 

Mutation and gene expression data showed a close similarity between the cell lines and 

already published data on colorectal tumours, validating the use of cancer cell lines in pre-

clinical research [129] 

CRC cell lines have been classified into three classes based on their mutation 

profiles and altered genetic pathways. 1) MSI-H cell lines either have MLH hyper-

methylated in their promoter region or mutated DNA repair genes 2.) Hypermutated 

mismatch repair deficient cell lines with defective DNA polymerase proof reading 3.) A 

CIN phenotype that show genomic instability due to chromosonal rearrangements in key 

oncogenes and tumour suppressors like Wnt, MAPK, PI3K, p53, TGFβ [129]. A fourth 

subclass of cell lines has the CIMP phenotype with epigenetic modifications in BRAF, 

PTEN etc. To a large extent, the molecular signature of CRC cell lines have shown a close 

resemblance to that of the primary tumours. Human colorectal derived cell lines also 

exhibit the biological heterogeneity observed at tissue level. For example- cell lines derived 

from same primary tumour like DLD 1 and HCT 15 show differences in their DNA copy 

number and mutation profiles, reflecting the inherent heterogeneity of the parent tumour 

tissue.  

With a plethora of information centered around understanding  the association of 

the cholesterol biosynthetic pathway with colorectal cancer tumourigenesis, there seems to 

be an increasing space for exploring the potential role of other molecules of cholesterol 

metabolism, LDLR in particular. The focus of my dissertation has been on elucidating  the 

role of LDLR in modulating cholesterol drug response, growth and cell viability of 

colorectal cancer cells.  
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1.14 Evidence from pre-clinical studies 

                 Preclinical models have been extensively used to study the effect of statins on 

colorectal cancer cell growth, proliferation and development of colonic tumours. Some of 

the early evidence came from studies that showed that low dose of pravastatin was able to 

significantly reduce the tumour incidence in 1,2 dimethylhydrazine (DMH) induced 

colonic tumour model in mice by modulation of cholesterol biosynthesis pathway [130]. 

In another study, it was shown that a combination of low dose of atorvastatin, aspirin, a 

non-steroidal anti-inflammatory drug (NSAID) and celecoxib, a cyclooxygenase- 2 (COX-

2) inhibitor can inhibit cell proliferation and induce apoptosis in AOM induced colonic 

tumours in F344 male rats [131]. In a recent study it was shown that simvastatin induces 

mitochondrial pathway mediated apoptosis in colorectal cancer cells by inhibiting 

geranygeranylation of RhoGTPase and activating the JNK pathway [132]. A combination 

therapy including sinvastatin and irinotecan, a chemotherapeutic drug used to treat 

metastatic colon cancer was reported to act synergistically in inhibiting colon cancer cell 

proliferaration [133]. It was suggested that simvastatin mediated its anti-proliferation 

effects either by reducing the activity of ABCG1 receptors which confer irinotecan drug 

resistance or by reducing colorectal cancer stemness through bone morphogenetic 

pathway. In a study conducted by Clouston et.al, it was shown that dietary lipid modulate 

the tumour growth inhibitory effectors of lovastatin [134]. In the same study it was shown 

that all tumours regardless of dietary lipid or lovastatin treatment, exhibited high 

expression of HMGCR protein and low expression of LDLR protein compared to normal 

mucosa from tumour bearing rats. This study provided the first evidence that 

experimentally induced colonic tumours have heightened cholesterol biosynthetic pathway 

and this could be due to the fact the tumours had lower level of LDLR protein. The review 

of previous work done in pre-clinical models to study the role of statin in cancer prevention 

alludes to the possibility that statin can have pleiotropic effects on CRCdevelopment that 

goes beyond their lipid lowering activity. It also underlines the significance of HMGCR 

and the mevalonate pathway as attractive targets for chemotherapeutic drug intervention. 

The fact that HMGCR activity is regulated by coordinated feedback regulation between 

intracellular cholesterol and LDLR activity, raises the question about the role of LDLR in 

CRC development.  
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1.15 Specific Aims 

              The main premise of this dissertation was to explore the role of the cholesterol 

biosynthetic pathway in particular the role of LDLR in CRC.  We hypothesized that LDLR 

plays an important growth regulatory role in CRC development and that up-regulation of 

LDLR protein will negatively affect CRC growth. To test the hypothesis, the following 

aims were pursued :  

1. To determine the protein expression levels of key molecules associated with cholesterol 

homeostasis in experimetally induced colonic tumour rat model (addressed in chapter 2). 

2. To assess the suitability of human CRC cell lines as preclinical models to explore the role 

of LDLR in CRC development (addressed in chapter 3 ). 

3. To determine if ectopic overexpression expression of LDLR affects the growth of CRC 

cells in vitro and to elucidate the underlying molecular pathways through which LDLR 

could be exerting its anti-tumourigenic effects (addressed in chapter 4). 
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2.1 Introduction 

  Cholesterol homeostasis is critical for the normal growth and development of a cell 

and its deregulation is frequently associated with pathogenesis of several chronic diseases 

including cancer. Besides regulating the fluidity of phospholipid bilayer plasma membrane, 

cholesterol is also an important structural component of sphingomyelin rich microdomains 

called lipid rafts, which are distributed throughout the plasma membrane [1, 2]. 

Additionally cholesterol is required as a precursor for steroid and bile acid synthesis. The 

cholesterol biosynthetic pathway also synthesizes several non-sterol bioactive 

intermediates called isoprenoids that are required for post translational activation of small 

G-proteins such as RAS, RHO and RAC which are located upstream of several growth 

signaling pathways [3]. 

  In hepatocytes, endogenously synthesized cholesterol is incorporated into 

apolipoprotein B100 (apoB100) containing very low density lipoprotein (VLDL) particles 

and released into the blood stream to supply of cholesterol to peripheral tissues [4]. 

Alternately, it can be stored as cholesteryl esters or incorporated in lipid rafts. Cells can 

also acquire cholesterol by low density receptor mediated endocytosis which is either 

esterified by Acyl CoA Cholesterol-acyl Transferase (ACAT) enzymes and stored in lipid 

droplets or secreted from the cells as bile acids. Accumulation of excess cholesterol can be 

toxic to the cells, hence it is imperative for the cells to have a mechanism to control 

intracellular cholesterol levels, a process known as cholesterol homeostasis. Cholesterol 

homeostasis relies on an interplay between key proteins associated with cholesterol 

biosynthesis, uptake and metabolism. HMGCR, the rate limiting enzyme of the cholesterol 

biosynthesis pathway and LDLR, both are under transcriptional regulation of sterol 

sensitive transcription factors called sterol regulatory element binding protein (SREBPs) 

[5]. SREBPs have three structural isoforms of which SREBP2 is responsible for 

transcriptional regulation of cholesterol pathway associated genes such as HMGCR, LDLR 

and Proprotein convertase subtilisin/kexin type 9 (PCSK9). SREBP1c regulates the 

transcription of lipogenic genes such as fatty acid synthase (FASN). Cholesterol depletion 

in the endoplasmic reticulum (ER) membrane, promotes translocation of SREBP cleavage 

activating protein (SCAP) and precursor SREBP complex to the Golgi complex. At the 
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Golgi complex, the NH2 terminal transactivation domain of SREBP2 is cleaved by 

proteolytic action of two site proteases (SP 1 and SP2) to release the mature, 

transcriptionally active form of SREBP2. This mature form of SREBP2 moves to the 

nucleus and binds to the sterol regulatory element (SRE) located in the enhancer region of 

LDLR and HMGCR thus upregulating cholesterol biosynthesis and uptake. Interestingly, 

SREBP2 also transcribes PCSK9 which negatively regulates LDLR expression by 

degrading LDLR through endosomal lysosomal pathway.  

                 Deregulated cholesterol homeostasis resulting in abnormal accumulation of 

cholesteryl ester has been observed in several solid tumours such as prostate cancer, breast 

cancer, colorectal cancer (CRC), liver carcinoma, melanoma and glioblastoma [6-9]. 

Several cancer types, including but not limited to, breast, prostate and colon cancer express 

elevated levels of and HMGCR, fatty acid synthase (FASN) and other genes of cholesterol 

and lipogenic pathways [10]. Loss of sterol mediated negative feedback regulation of 

HMCGR and LDLR has been reported in different cancer types particularly in prostate 

cancer and CRC [11, 12]. Loss of feedback regulation of cholesterol homeostasis has been 

associated with resistance to cholesterol reducing drugs such as statins [13]. In case ofCRC, 

apart from few studies that have reported the upregulation of cholesterol biosynthesis 

pathway, there is negligible information available to understand the role of cholesterol 

biosynthetic pathway in the development of CRC. There are few studies that have reported 

elevated expression of LDLR in CRCcells [12] whereas in some studies low expression of 

LDLR has been reported in colorectal cancer cells [14, 15] but the role that LDLR plays in 

tumourigenesis remains elusive. 

The main objective of this study was to examine the steady state levels of HMGCR, 

LDLR, SREBPs and PCSK9 in azoxymethane (AOM) induced colonic tumours in Sprague 

Dawley rat model. We report that AOM induced colonic tumour rat model display 

deregulated cholesterol and lipid metabolism. All tumours examined exhibited elevated 

protein expression level of HMGCR and reduced protein expression level of LDLR. 

Moreover, the tumours showed significant upregulation of SREBPs and PCSK9 protein 

levels. These findings support the contention that deregulated cholesterogenic and 

lipogenic pathway may play an important role in colonic tumour initiation and progression 

in experimentally induced colonic tumour model. More importantly, in addition to elevated 
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level of HMGCR, a markedly reduced level of LDLR in tumours raises an important 

question about the role of LDLR in the sequential development of colonic tumours. This 

may represent a subset of colorectal tumour that requires low LDLR protein expression to 

support enhanced tumour growth. Whether or not this tumour phenotype is required for 

tumour initiation or progression is matter of further investigation. However, our study does 

open up a possibility of exploring a novel cancer prevention strategy targeted towards 

increasing the level of LDLR in colorectal tumours.  

 

2.2 Materials and Methods  

 

Colon carcinogen 

Azoxymethane (AOM; Sigma Aldrich, St. Louis, MO, USA) was used as colon 

specific carcinogen. AOM was dissolved in 0.9% saline and subcutaneously injected into 

the animals once every week for two weeks at a concentration of 15mg/kg body weight. 

 

Experimental animals and treatment 

Sprague Dawley weaning male rats (3-4 weeks old) were purchased from Charles 

River Laboratories (Saint-Constant, Quebec, Canada) and were housed in laboratory 

conditions with 12 hour light/12 hour dark cycle. Temperature and humidity were 

controlled at 22C and 50%, respectively. Animals were acclimatized to the conditions for 

1 week prior to treatment. During the entire course of the experiment, animals had free 

access to drinking water and food.  

Animals were randomly categorized into two groups of 10 animals, each which 

served as experimental, and control respectively. Animals from experimental group were 

subcutaneously injected with azoxymethane (AOM), a colon specific carcinogen (15mg/kg 

body weight/week for 2 weeks) [16]. Animals injected with saline served as control. 

Animals were killed by CO2 asphyxiation 30 weeks after the first AOM injection. Their 

colons were excised, flushed with cold PBS and slit open longitudinally from caecum to 

anus on a cold plate. The mucosal surface was examined for tumours and macroscopic 

lesions. The location and size of the tumours was recorded before snap freezing in liquid 
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nitrogen. All animal protocols were approved by the University of Windsor, Animal Care 

Committee according to the Canadian Council on Animal Care guidelines. 

 

 Tumour assessment and selection criteria for analysis 

The tumour assessment and selection parameters used, are previously described by 

Bird et al [16]. These included tumour incidence (percentage of total animals with 

tumours); tumour multiplicity (average number of tumours/tumour-bearing rat); average 

tumour size (mm2) per tumour-bearing rat; average tumour size/group (average size of all 

tumours in a group); and tumour burden (average of the total tumour area in each tumour-

bearing rat).  For the purpose of this study tumours ranging in size between 12 to 25 mm2 

or larger were used.  Any visible tumours including micro adenomas of 1-2 mm2 were 

removed. Therefore mucosal samples were devoid of any exophytic tumours. A majority 

of large tumours were located between 4-10 cm from the rectal end of the colon. For the 

sake of consistency and to avoid location specific heterogeneity observed in clinical 

samples [17], we used tumours which were located between 6-10 cm of the colon and were 

either adenomas or adenocarcinomas. The tumour incidence was 60% and each animals 

had 1-3 tumours in the selected colon region. Normal appearing surrounding mucosae from 

tumour bearing animals were used as control in the study.  

 

Chemicals and antibodies 

The following antibodies were used for Western blot analysis: LDLR (sc-18823), 

HMGCR (sc-27578), SREBP1 (sc-366), SREBP2 (sc-5603), β-actin (sc-1616), secondary 

antibodies including horse radish peroxide (HRP) conjugate anti-mouse (sc-2005) and anti-

rabbit (sc-2030) IgG were purchased from Santa Cruz Biotechnology. PCSK9 (NB300-

959) antibody was purchased from Novus Biologicals. 

  Other chemicals used were: protease inhibitor cocktail (Roche/Sigma Aldrich), 

Bradford reagent (Bio-Rad Laboratories), Perkin Elmer Enhanced Chemiluminescence 

reagent (Thermo Fisher Scientific). 
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Sample preparation and Immunoblotting 

Frozen tissues were excised and weighed (approximately 50mg) before 

homogenization using Radioimmunoprecipitation assay (RIPA) buffer (see appendix 1). 

Whole tissue homogenate was centrifuged at 12000 x g for 20 minutes (4°C). Clear 

supernatant was collected and used for protein estimation by Bradford assay. Equal amount 

of protein was used for SDS-PAGE and transferred to PVDF membrane by electro-blotting 

using wet transfer method. Membranes were blocked in 5% skimmed milk for 1 hour at 

room temperature, followed by overnight incubation in primary antibodies prepared in 5% 

bovine serum albumin (BSA) in Tris-buffered saline (TBS)-Tween (1%v/v) at 4°C. 

Membranes were washed three times in TBS-Tween (TBST) and then probed with HRP-

conjugate secondary antibodies (1:10000) for 1 hour at room temperature. After washing 

three times in TBST, protein bands were visualized using Perkin Elmer ECL reagent and 

Fluor-Chem Western blotting imaging system. Protein bands were quantified using ImageJ 

software (Version 1.42q) 

 

Statistical analysis 

          All Western blot analysis are represented as mean ± SEM (Standard error of mean). 

Statistical analysis were performed using Student t-test. P values were calculated using 

GraphPad Prism3.0 software (GraphPad software). Differences were considered 

significant for P values ≤ 0.05.  

 

 

2.3 Results 

 

Colonic tumour show reduced level of LDLR protein expression and increased level 

of HMGCR protein expression 

                To assess the protein expression level of LDLR in AOM induced colonic tumour 

model system, we collected tissue homogenate from colonic tumour and mucosa followed 

by protein quantification and Western blot analysis. β-actin was used as loading control. 

Results of Western blot analysis showed lower expression of LDLR protein in tumour 

tissue compared to normal mucosa tissue (Figure 2.1A). An average of LDLR protein 
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expression levels in colonic tumour and normal appearing mucosa from tumour bearing 

animals (n=10) showed significant downregulation of LDLR protein (~ 160 KDa) in 

tumour tissue samples compared to colonic mucosa (Figure 2.1B).  
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Figure 2.1 LDLR protein expression is downregulated in colonic tumour.  Protein was 

extracted from colonic mucosa and tumour tissue from Sprague Dawley rats injected with 

azoxymethane (15mg/kg body weight) followed by Western blotting. (A) Representative 

image of Western blot showing LDLR protein expression in colonic mucosa and tumour 

tissue. (B) Quantification of LDLR protein expression in mucosa and tumour tissue (n=10) 

using ImageJ software. β-actin was used as internal loading control. Results are 

represented as mean ± SEM (Standard error of mean), *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. 

Statistical analyses were performed using student t-test. P values were calculated using 

Graph-Pad Prism 3.0 software. M1-M4=Mucosa protein samples, T1-T4=Tumour protein 

samples. 
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Several studies have shown an increase in HMGCR expression and upregulation of 

cholesterol biosynthesis pathway during the development of solid tumours [18, 19]. 

Consistent with the previous findings from clinical studies, we confirmed that HMGCR 

protein expression is upregulated in AOM induced colonic tumours compared to mucosa. 

Statistical analysis (n=10) showed significant upregulation of HMGCR protein in tumour 

tissue samples compared to normal mucosa (Figure 2.2). The band representing active form 

of the enzyme HMGCR (~ 97 KDa) was quantified and normalized using β actin as loading 

control. Heightened expression of HMGCR protein in tumours also confirms the loss of 

sterol dependent negative feedback regulation of cholesterol biosynthesis in 

experimentally induced tumour model.  
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Figure 2.2 HMGCR protein expression is upregulated in colonic tumour.  Protein was 

extracted from colonic mucosa and tumour tissue from Sprague Dawley rats injected with 

azoxymethane (15mg/kg body weight) followed by Western blotting. (A) Representative 

image of Western blot showing catalytically active form of HMGCR protein (~97KDa) 

expression in mucosa and tumour tissue. (B) Quantification of HMGCR protein expression 

in mucosa and tumour tissue (n=10) using ImageJ software. β-actin was used as internal 

loading control. Results are represented as mean ± SEM (Standard error of the mean), *p 

≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Statistical analyses were performed using student t-test. 

P values were calculated using Graph-Pad Prism 3.0 software. M1-M4=Mucosa protein 

samples, T1-T4=tumour protein samples. 
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SREBPs and PCSK9 protein expression levels are upregulated in colonic tumours 

The sterol regulatory binding element proteins or the SREBPs are family of 

endoplasmic reticulum (ER) membrane bound transcription factors that regulate the 

expression of lipids and cholesterol pathway related genes. SREBPs have three isoforms –

SREBP1a, SREBP1c and SREBP2. SREBP1a and SREBP2 are responsible for 

transcription of cholesterol associated genes including LDLR, HMGCR, PCSK9 whereas 

SREBP1c is solely dedicated to lipogenic pathway related genes. Previous studies have 

reported modulation of SREBP pathway and aberrant activation of its target genes in cancer 

[20]. Deregulation of cholesterol biosynthesis and lipogenesis in tumours has been shown 

to be mediated by aberrant activation of SREBPs through PI3K/AKT and mTORC 

signaling [21]. In a recent study in breast cancer cells, it was reported that mutant p53 

interaction with SREBP2 upregulates cholesterol biosynthesis pathway which results in 

disruption of normal tissue architecture in 3-dimensionalbreast cancer cell model [22]. 

             In our study we found that protein expression of transcriptionally active mature 

form of SREBPs (~ 68 KDa) are elevated in colonic tumour in comparison to normal 

mucosa (Figure 2.3A and 2.4A). High protein expression level of transcriptionally active 

SREBP1 and SREBP2 correlates with upregulated lipogenic and cholesterogenic pathways 

in colonic tumours.  
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Figure 2.3 SREBP1 protein expression is upregulated in colonic tumour.  Protein was 

extracted from colonic mucosa and tumour tissue from Sprague Dawley rats injected with 

azoxymethane (15mg/kg body weight) followed by Western blotting. (A) Representative 

image of Western blot showing SREBP1 (68 KDa mature form) protein expression in 

mucosa and tumour tissue (n=4). (B) Quantification of SREBP1 protein expression in 

mucosa and tumour tissue (n=10) using ImageJ software. β-actin was used as internal 

loading control Results are represented as mean ± SEM (Standard error of mean), *p ≤ 

0.05, **p ≤ 0.01, ***p ≤ 0.001. Statistical analyses were performed using student t-test. P 

values were calculated using Graph-Pad Prism 3.0 software. M1-M4=Mucosa protein 

samples, T1-T4=tumour protein samples. 
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Figure 2.4 SREBP2 protein expression is upregulated in colonic tumour.  Protein was 

extracted colonic mucosa and tumour tissue from Sprague Dawley rats injected with 

azoxymethane (15mg/kg body weight) followed by Western blotting. (A) Representative 

image of Western blot showing SREBP2 (mature form ~68 KDa) protein expression in 

mucosa and tumour tissue (n=4). (B) Quantification of SREBP2 protein expression in 

mucosa and tumour tissue (n=10) using ImageJ software. β-actin was used as internal 

loading control. Results are represented as mean ± SEM (Standard error of mean), *p ≤ 

0.05, **p ≤ 0.01, ***p ≤ 0.001. Statistical analyses were performed using student t-test. P 

values were calculated using Graph-Pad Prism 3.0 software. M1-M4=Mucosa protein 

samples, T1-T4=tumour protein samples.    
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We also analyzed the protein expression level of Proprotein convertase subtilisin 

kexin 9 (PCSK9) in colonic tumour in comparison to normal mucosa. PCSK9 is a serine 

protease that post transcriptionally regulates LDLR turn over in the cell by binding to its 

extra-cellular domain and targeting it for lysosomal degradation [23]. The subtilisin like 

catalytic domain (~ 72 KDa) is secreted by the cell after auto catalysis and proteolytic 

cleavage of the pro-protein.  Gain of function mutation in PCSK9 catalytic domain results 

in increased serum cholesterol due to down regulation of LDLR [24]. Some of the previous 

studies have reported deregulation of PCSK9 expression in lung cancer, hepatocellular 

carcinoma, colorectal cancer, melanoma [25, 26].Except for few studies that have reported 

a correlation of reduced PCSK9 protein expression with decrease in metastasis [25], not 

much is known about the role of PCSK9 in cancer progression.   Western bot analysis for 

PCSK9 protein expression showed either elevated level of PCSK9 protein in tumour tissue 

or no significant change compared to mucosa tissue sample (Figure 2.5A). An average of 

PCSK9 protein levels in colonic tumour and normal appearing mucosa from tumour 

bearing animals (n=10) showed an overall upregulation of PCSK9 protein expression in 

colonic tumour. 
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Figure 2.5 PCSK9 protein expression is upregulated in colonic tumour.  Protein was 

extracted from colonic mucosa and tumour tissue from Sprague Dawley rats injected with 

azoxymethane (15mg/kg body weight) followed by Western blotting. (A) Representative 

image of Western blot showing PCSK9 (~72 KDa) protein expression in mucosa and 

tumour tissue (n=4). (B) Quantification of PCSK9 protein expression in mucosa and 

tumour tissue (n=10) using ImageJ software. β-actin was used as internal loading control 

Results are represented as mean ± SEM (Standard error of the mean), *p ≤ 0.05, **p ≤ 

0.01, ***p ≤ 0.001. Statistical analyses were performed using student t-test. P values were 

calculated using Graph-Pad Prism 3.0 software. M1-M4=Mucosa protein samples, T1-

T4=tumour protein samples. 
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2.4 Discussion 

In a normal cell cholesterol homeostasis is a well-coordinated mechanism that 

involves several proteins interacting with each other to maintain intracellular cholesterol 

homeostasis. This is achieved through transcriptional and post-transcriptional regulation of 

cholesterol pathway related genes that are involved in biosynthesis, uptake and export of 

cholesterol. HMGCR, the rate limiting enzyme of mevalonate pathway and LDLR, the 

membrane bound glycoprotein receptor responsible for cellular uptake of cholesterol are 

under sterol mediated negative feedback regulation. HMGCR is the critical rate-limiting 

enzyme in the mevalonate pathway that catalyzes the conversion of HMGCoA to 

mevalonate. This pathway is also crucial for synthesis of several non-sterol isoprenoids 

that are required for posttranslational modification and activation of GTP-bound signaling 

proteins like Ras, Rho. Prenylation of these signaling molecules is crucial for downstream 

growth signaling pathways like the MAPK signaling pathway, PI3K/AKT/mTORC1 etc. 

Several studies have reported that KRAS mutation which is observed in 40% of CRC cases, 

results in constitutive activation of KRAS independent of isoprenylation [27]. Acquired 

resistance to anti-epidermal growth factor (EGFR) therapy has also been attributed to 

KRAS mutation [28]. KRAS mutation has also been associated with resistance to statin 

mediated reduction in cancer specific mortality in colorectal cancer case study [29]. The 

mevalonate pathway has interested cancer researchers worldwide because of the direct and 

indirect role it plays in tumourigenesis especially with growing evidence of statins and 

other cholesterol pathway inhibitors being able to induce apoptosis and cell cycle arrest in 

cancer cells [30-33] . LDLR has so far been in focus mostly for its role in uptake of 

cholesterol. It has been the target for drug therapy to reduce serum cholesterol to treat 

abnormal cholesterol level related diseases like atherosclerosis and hypertension. Both 

LDLR and HMGCR are under transcriptional regulation of SREBP2 transcription factors. 

Another key player in this pathway is the secretory protease called PCSK9, which is also 

under transcriptional regulation of SREBP2. PCSK9 binds to LDLR extracellularly and 

targets it for degradation. PCSK9 inhibitors have come up as a potent substitute for statins 

to reduce the levels of serum cholesterol by upregulation of LDLR. Deregulation of 

cholesterol homeostasis and loss of sterol dependent feedback regulation of LDLR and 
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HMGCR has been observed in several cancers like prostate cancer, CRC, glioblastoma, 

melanoma and breast cancer [9, 12, 34, 35]. In this study, for the first time we have assessed 

the protein expression of the key players that are involved in cholesterol homeostasis in 

AOM induced rat colon cancer model corroborating a link between these molecules and 

pathogenesis of colon cancer. 

           In order to answer the broader question about the role of LDLR in tumourigenesis, 

we wanted to first determine protein expression profile of LDLR and related molecules of 

cholesterol metabolic pathway in AOM induced colonic tumour rat model. Pre-clinical 

models like the Sprague Dawley rats which are well characterized to study the development 

of colonic tumours using like azoxymethane (AOM), provide an ideal model system for 

our study. By inducing tumour in the animals through carcinogen injection, we were able 

to detect tumours throughout the length of colon in 30 weeks. Tumour assessment along 

the length of colon showed considerable heterogeneity in tumour morphology, size and 

multiplicity. This heterogeneity may be attributed to the difference in the embryological 

origin as well as gene and protein expression pattern of proximal and distal tumour. 

              In our study, we observed that LDLR protein was significantly lower in tumour 

compared to normal mucosa. Our results are contradictory to some of the previous findings 

that have reported upregulation of cellular cholesterol levels in the tumour cells due to 

overexpression of LDLR and HMGCR protein. This suggests that colorectal cancer being 

a heterogeneous disease has a molecular subtype in which LDLR protein downregulation 

along with elevated levels of HMGCR might be playing an important role in early onset or 

late progression of the disease. The significance of the effect of low levels of LDLR protein 

in tumour is a question that we address through mechanistic study in colon cancer cell lines. 

Whether or not LDLR downregulation gives a survival advantage or drug resistant 

phenotype to the tumours are questions that are addressed in further studies. Compared to 

LDLR, there are far more compelling evidence on HMCGR that suggest that mevalonate 

pathway and related enzymes are upregulated in tumours. Our studies show that indeed 

this might be a more general phenomenon for tumours. We saw heightened expression of 

HMGCR protein in all tumour tissues compared to normal colonic mucosa. Increase in 

expression of HMGCR protein is directly related to increase in synthesis of cholesterol and 

non-sterol bioactive isoprenoids. Over expression of HMGCR ensures constitutive 
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activation of mevalonate pathway to meet the requirement of cholesterol for membrane 

biogenesis and assembly of lipid rafts for facilitating cellular growth signaling. Increase in 

HMGCR expression is directly linked to abnormal RAS activity that results in enhanced 

growth signaling in tumour cells [3]. Gene expression of both LDLR and HMGCR is 

dependent on SREBP2 transcription factor hence it was logical for us to analyze the 

expression of SREBPs in tumour. Several studies in the past have shown that regulation of 

lipid and cholesterol pathway by SREBPs is critical for growth and survival of cancer cells. 

Under hypoxic conditions of the tumour microenvironment, SREBPs expression is 

upregulated to increase lipid and cholesterol biosynthesis in brain tumour cells [36]. 

Depletion of SREBPs in glioblastoma cell lines, induced apoptosis due to ER stress and 

activation of unfolded protein response (UPR) pathway. Thus, SREBPs are critical for 

tumour growth and survival because of the role they play in coordinating lipid and protein 

biosynthetic pathways. In our study, we found elevated expression of transcriptionally 

active mature form of both SREBP1 and SREBP2 in tumours in comparison with normal 

mucosa. From these results, it is evident that the elevated expression of HMGCR and 

PCSK9 in tumour tissues can be attributed to upregulation of SREBP2. However, the 

downregulation of LDLR protein despite overexpression of SREBP2 suggests the 

involvement of another pathway in post translationally depleting LDLR protein levels in 

tumour. One of the proteins that is responsible for LDLR turn over in the cell, is PCSK9. 

C-terminal domain of  PCSK9 binds to the extracellular domain of LDLR at the cell surface 

to form LDLR-PCSK9 complex that enters the endosomal pathway and is ultimately 

degraded in the lysosome. Hence LDLR protein abundance is inversely related to PCSK9 

expression. In our study, we observed PCSK9 elevated in tumours when compared to 

mucosa. This suggests that PCSK9 might play a role in downregulation of LDLR protein 

in certain tumour phenotype. The significance of PCSK9 upregulation in colonic tumour, 

other than affecting LDLR protein levels, is yet to be understood. In some of the earlier 

reports, it was reported that PCSK9 deficiency reduces melanoma metastasis in liver by 

reducing serum cholesterol [25].  

The overall objective of our study was to investigate the protein expression of key 

molecules of cholesterol metabolic pathway in AOM induced colon tumour rat model. Our 

results establish that in our selected model system, LDLR protein levels are significantly 
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low in tumour when compared to normal colonic mucosa. We also show that other key 

molecules of cholesterol pathway, such as HMGCR, SREBPs and PCSK9 have elevated 

protein expression in colonic tumour. Taken together, our results establish that 

experimentally induced colonic tumours have an altered lipid and cholesterol protein 

expression profile with reduced LDLR protein expression, which could be a tumour, 

acquired phenotype assisting the growth and survival of a subset of colorectal cancer.  

 

.  
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Towards developing a cell culture based model to study 
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3.1 Introduction:  

Most of our understanding of the pathogenesis of CRC comes from studies 

conducted in preclinical models of the disease [1, 2]. Human tumour derived CRC cell 

lines in particular have been instrumental in elucidating the complex signaling pathways 

that underline the process of human malignancy. Extensive genetic and epigenetic profiling 

of cancer cell lines has allowed researchers to genetically manipulate these cell lines by 

using techniques like homologous recombination, short hairpin RNA (shRNA) mediated 

gene silencing, gene knockdown and overexpression of specific genes using expression 

vectors[3, 4]. CRC lines are being widely used for drug screening, biomarker identification 

and mechanistic studies to delineate signaling pathways that drive tumourigenesis [5]. In 

comparison to an animal based model cancer cell lines are relatively inexpensive to 

maintain in the laboratory and are more amenable to genetic manipulation under controlled 

experimental conditions. Despite of limitations such as their monoclonal nature and the 

absence of tumour macro and micro-environmental interaction, cell lines have emerged as 

powerful tools to study the altered signaling pathways in cancer using a reductive approach.  

  Previous studies investigating the regulation of cholesterol biosynthesis in colonic 

adenocarcinoma cell lines have reported that colon cancer cells exhibit high endogenous 

cholesterol synthesis which is not inhibited by exogenous low density lipoprotein (LDL) 

treatment [6]. In the same study it was demonstrated that cholesterol biosynthesis could be 

reduced by oxysterol and mevinolin (inhibitor of 3-Hydroxy-3-Methylglutaryl-CoA 

Reductase) treatment but the cancer cells were unresponsive to LDL treatment. LDL 

binding and internalization studies showed that in these colon cancer cells the expression 

of LDLR was significantly downregulated. In another study, six human colonic 

adenocarcinoma cell lines showed no growth inhibition when cultured in media containing 

lipoprotein deficient serum. When treated with mevinolin, these colon cancer cells showed 

significant reduction in cell growth and proliferation which could not be rescued by 

exogenous LDL. An enzyme linked immunosorbent assay (ELISA) using human/bovine 

monoclonal antibody against LDLR was used to demonstrate that five out of the six colon 

cancer cells had a significantly low expression of LDLR [7]. In our previous study, we 

used azoxymethane (AOM) induced colonic tumour rat model to compare the basal protein 
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expression of key molecules of cholesterol metabolic pathway in colonic tumour with 

normal colonic mucosa. Our results showed that tumour tissue had lower levels of LDLR 

protein expression compared to mucosa along with elevated levels of HMGCR, SREBP1, 

SREBP2 and PCSK9 indicating that colonic tumour displayed a loss of sterol mediated 

feedback regulation of cholesterol biosynthesis pathway. To investigate the role of LDLR 

in CRC development, we selected three colorectal cancer cell lines. HCT 116, HT 29 and 

DLD 1 that broadly represented the main molecular subtypes of human CRC namely CIN 

and MSI phenotypes. While HCT 116 and DLD 1 have an MSI phenotype, HT 29 has a 

microsatellite stable (MSS) or CIN phenotype [3, 8, 9]. HCT 116 and DLD 1 have a 

defective DNA mismatch repair enzyme system with mutations in DNA repair enzyme 

MLH132 and MSH6 respectively [8, 9]. HT 29 shows karyotype abnormalities 

characteristic of CIN phenotype. It shows mutations in BRAF and p53 tumour suppressor 

gene [10]. Both HCT 116 and DLD 1 are near diploid and have mutated KRAS and 

PIK3CA genes. DLD 1 has mutated p53 while HCT 116 has a wild type p53 [11].  All 

three of these colon cancer cell lines are fast growing with a doubling time of 20-24 hours. 

HCT 116 cells were originally derived from primary tumour in ascending or proximal 

colon of a patient suffering from colorectal carcinoma Duke’s D stage[3]. HT29 cells 

originated from primary tumour of a 44 year old Caucasian female suffering from 

colorectal adenocarcinoma, Duke’s C stage. DLD1 cells were derived from primary tumour 

of a male with colorectal adenocarcinoma[9]. While HCT116 and DLD1 cells are well 

differentiated in culture, HT29 cells are poorly differentiated under standard growth 

conditions. 

               Statins are pharmacological inhibitors of HMGCR that are routinely used as lipid 

lowering drugs to treat hypercholesterolemia. There is compelling evidence from in vitro 

studies that have alluded to the possibility of statins exerting anti-tumourigenic effects on 

growth of cancer cells. By inhibiting HMGCR, statins block the synthesis of mevalonate 

and its downstream metabolites including farnesyl pyrophosphate (FPP) and 

geranylgeranyl pyrophosphate (GGPP), which are required for prenylation, and activation 

of G-protein signaling molecules like RAS and RHO. This is one of the several 

mechanisms through which statins are now known to negatively regulate cell growth, 

proliferation, migration and survival of cancer cells [12]. Statins have been shown to induce 
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G1/S cell cycle arrest, inhibit cell proliferation/viability and induce cellular autophagy in 

glioblastoma (GBM) and breast cancer cell lines. In prostate cancer cells, statins have been 

reported to induce apoptosis and inhibit cell invasion by blocking prenylation of signaling 

proteins such as RAS and RHO [13-15]. In a recent study, it was reported that in HCT 116 

cells, simvastatin induces apoptosis by activation of p38 mitogen activated protein kinase 

(MAPK)-p53-survivin signaling pathway [16]. In another study, statins were shown to 

upregulate (Phosphatase and tensin homolog) PTEN activity through bone morphogenetic 

protein (BMP) signaling pathway that resulted in downregulation of PI3K/AKT/mTOR in 

HCT 116, RKO and HT 29 cells [13].  

In this study, we set out to assess the suitability of CRC cell lines which could serve 

as a human CRC cancer model for investigation of the role of LDLR and cholesterol 

biosynthesis pathway in tumourigenesis. We began with determining the protein and 

mRNA expression of the key molecules associated with cholesterol homeostasis that were 

previously studied in animal model. Additionally, we analyzed the cell viability and 

proliferation rate of the CRC cells with and without lovastatin and RO 48-8071 (inhibitor 

of oxidosqualene cyclase enzyme of cholesterol biosynthesis pathway) treatment. We also 

assessed the ability of CRC cells to modulate mRNA and protein expression of cholesterol 

homeostasis associated genes in response to lovastatin and RO 48-8071. In this study we 

show that all the three colorectal cancer cells can serve as ideal pre-clinical models to study 

the role of LDLR in CRC development. Further, we confirm that lower LDLR expression 

is correlated with higher cancer cell viability, proliferation and resistance to cholesterol 

reducing drugs treatment.  

 

3.2 Material and Methods  

 

Cell culture 

Human CRC cell lines, HCT 116 (CCL-247; ATCC), HT 29 (HTB-38; ATCC) and 

DLD 1 (CCL-221; ATCC) were obtained from ATCC, USA. HCT 116 and HT 29 were 

maintained in McCoy's 5a Medium Modified (Sigma) supplemented with 10% fetal bovine 

serum (FBS; Gibco) and 1% penicillin streptomycin. DLD 1 cell line was maintained in 

RPMI-1640 (Sigma) supplemented with 10% FBS and 1% penicillin-streptomycin. Cells 
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were grown as monolayers at 37°C in a humidified atmosphere with 5% CO2. Human 

normal colonic mucosa cell line (NCM-460), was kindly provided by Dr. Siyaram Pandey, 

Department of Chemistry/Biochemistry, University of Windsor. NCM 460 cells were 

maintained in RPMI-1640 media under standard culture conditions.  

 

Antibodies and Reagents 

The following antibodies were purchased from Santa Cruz Biotechnology: LDLR 

(sc-18823;), HMGCR (sc-27578) ), SREBP1 (sc-366); , SREBP2 (sc- 5603), β actin (sc-

1616), horse radish peroxidase (HRP) conjugate secondary anti-mouse IgG (sc-2005) and 

anti- rabbit IgG (sc-2030). PCSK9 antibody (NB300-959) was purchased from Novus 

Biologicals. Other chemicals used were-lovastatin (Sigma Aldrich), RO 48 -8071 (Cayman 

Chemicals), high capacity c-DNA reverse transcription kit (Applied Biosystems), power 

SYBR green mastermix (Applied Biosystems), MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-

Diphenyltetrazolium Bromide) (Sigma Aldrich). 

 

Sample preparation and immunoblotting 

  Cells were plated in 6 well plates and cultured in their respective media. On 

reaching desired confluence, cells were washed with cold phosphate buffered saline (PBS) 

followed by lysis in Radioimmunoprecipitation assay (RIPA) buffer (see appendix1). Total 

cell lysate was centrifuged at 12000Xg for 10 minutes at 4°C. Supernatant was collected 

in sterile tubes and used for protein quantification by Bradford assay. Equal amount of 

protein was used for SDS-PAGE followed by electro blotting onto PVDF membrane using 

wet transfer method. Membranes were blocked in 5% skimmed milk for 1 hour at room 

temperature, followed by overnight incubation in primary antibodies prepared in 5% 

bovine serum albumin (BSA) TBS-Tween (1% v/v) at 4°C. Membranes were washed three 

times in TBS-Tween (TBST) and probed with secondary antibodies (1:10000) for 1 hour 

at room temperature. After washing three times in TBST, proteins were detected using 

Perkin Elmer Enhanced Chemiluminescence reagent and Fluor-Chem Western blotting 

imaging system. Protein bands were quantified using ImageJ software (Version 1.42q). 

To analyze the time dependent effect of lovastatin and RO 48-8071 on protein 

expression level of LDLR, HMGCR, SREBP1, SREBP2 and PCSK9 in colorectal cancer 
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cells, cells were seeded in 6 well culture plates and allowed to grow for 24 hours. Next day 

cells were treated with 20µM lovastatin (Sigma Aldrich) for 8 hours, 16 hours, 24 hours 

and 48 hours. Untreated cells growing in their respective media at each time point served 

as control for the treated sample. At the end of each time point, protein was extracted, 

quantified and used for immunoblotting by the same method described above. For RO 48-

8071 treatment, cells were treated for 24 hours before protein extraction and Western blot 

analysis.  

 

RNA isolation and Quantitative Real time PCR (Q-RT PCR) 

 

  Total RNA was extracted from control and treated cells using TRIzol reagent 

(Invitrogen) followed by spectrophotometric quantification. 250 ng of total RNA was used 

to synthesize cDNA in a 20µl reaction. 1µL of cDNA along with 1 µL primer (final 

concentration 10mM) and 10 µL of 2X SYBR green PCR master mix (ABI) was used in a 

20 µl reaction to perform quantitative Real time PCR in Applied Biosystems 7300 PCR 

system (ABI). The amplification was performed under the following conditions: 10 min at 

95 ̊C for one cycle, 40 cycles of 95 ̊C for 15 sec and 60 ̊C for 60 sec. The relative levels of 

gene expression were quantified by using the comparative CT method of –ΔΔCt [17]. β-

actin was used as endogenous control for data normalization. 

 

Table 3.1 Primer sequence 

 

Gene Primer Sequence

LDLR-F tgctactggccaaggacat

LDLR-R ctgggtggtcggtacagtg

HMGCR-F gacctttctagagcgagtgcat

HMGCR-R gctatattctcccttacttcatcctg

SREBP1-F acaagattgtggagctcaagg

SREBP1-R tgcgcaagacagcagattta

SREBP2-F gtgcagacagtcgctacacc

SREBP2-R aatctgaggctgaaccagga

PCSK9-F gtaccgggcggatgaatac

PCSK9-R tctgtatgctggtgtctaggaga

β-Actin-F ccaaccgcgagaagatga

β-Actin-R ccagaggcgtacagggatag
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Cell viability assay 

To analyze cell viability and proliferation rate, cells were seeded with a density of 

2000 cells/well in 96 well plate (BD Biosciences, San Jose, CA) and cultured overnight to 

allow them to adhere. At the end of desired time point, cells were washed with PBS. 10 µL 

of 5 mg/ml MTT [3-(4, 5-dimethylthiazol-2- yl)-2, 5-diphenyltetrazolium bromide] 

solution was added to a final concentration of 0.5 mg/ml, followed by incubation for 4 

hours. After 4 hours, MTT solution and media was removed and 100 µL DMSO was added 

to each well to dissolve the formazan crystals. Absorbance was measured at 570 nm using 

microplate reader. 

To study the effect of lovastatin and RO 48-8071 on cell viability and proliferation 

rate of colorectal cancer cells, cells were seeded at a density of 2000 cells/well and allowed 

to grow for 24 hour before treating them with 20uM lovastatin (Sigma) or 20µM RO 48-

8071 for 24 hours. At the end of time point, MTT assay was performed as mentioned above. 

 

Statistical analysis 

In vitro results are shown as mean ± SEM (standard error of mean). Comparisons 

of datasets were performed using unpaired Student’s t test (experimental group compared 

with control group) or ANOVA test to compare more than two experimental conditions. P 

values were calculated using GraphPad Prism 3.0 software (GraphPad software). 

Differences were considered significant for P values ≤ 0.05. 

 

3.3 Result  

 

Human CRC cell lines mimic AOM induced colonic tumour rat model for protein 

expression levels of LDLR, HMGCR, SREBPs and PCSK9 

Our first objective was to establish cell culture based model that would recapitulate 

the protein expression of cholesterol homeostasis associated genes we had previously 

observed in animal model. To that effect, we compared the expression levels of LDLR, 

HMGCR, SREBPs and PCSK9 between colorectal cancer cells and untransformed colonic 

mucosa cells NCM 460. Our results showed significantly lower expression of LDLR 
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protein in HCT 116, HT 29 and DLD 1 when compared to NCM 460 (Figure 3.1A). We 

observed that all three colorectal cancer cell lines showed variability in downregulation of 

LDLR protein, with DLD 1 cells showing the lowest expression of LDLR amongst all three 

CRC cell lines. Consistent with our findings in animal model and previous reports on 

expression of HMGCR in tumour, we found that HMGCR protein expression level was 

significantly elevated in all three colorectal cancer cell lines in comparison with NCM 460 

(Figure 3.1B). Protein expression of transcriptionally active, mature form (~68KDa) of 

SREBP1 and SREBP2 was also significantly higher in HCT 116, HT 29 and DLD 1 cells 

when compared to NCM 460 cells (Figure 3.1C, 3.1D). Furthermore, we observed that 

PCSK9 (~72kDa) protein level was increased in colorectal cancer cell lines compared to 

untransformed mucosa cells (Figure 3.1E). Taken together, our results for this study 

showed that our selected panel of human colorectal cancer cells, HCT 116, HT 29 and DLD 

1 show significantly elevated expression of HMGCR, SREBP1, SREBP2 and PCSK9 in 

comparison to NCM 460 cells. Furthermore, LDLR protein expression is significantly 

reduced in all three colorectal cancer cell lines with DLD 1 showing the lowest expression 

of LDLR protein.  
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Figure 3.1 CRC cells show differential protein expression of cholesterol homeostasis 

related genes in comparison with untransformed colonic mucosa cells. CRC cells (HCT 

116, HT 29 and DLD 1) and untransformed colonic mucosa cells (NCM 460) were 

harvested for Western blot analysis. Representative image and quantification (n=3) 

showing expression level of (A and B) LDLR, (C and D) HMGCR, (E and F) SREBP1 (G 

and H) SREBP2 (I and J) PCSK9 in HCT116, HT29 and DLD1, compared to NCM-460 

cell line. Experiment was repeated three times. Results are represented as mean ± SEM 

(Standard error of the mean), *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Statistical analyses 

were performed using one-way ANOVA. P values were calculated using Graph-Pad Prism 

3.0 software. 
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Human CRC cell lines show differential mRNA expression of cholesterol homeostasis 

associated genes  

  To analyze the relative mRNA expression of cholesterol metabolic pathway 

associated genes (LDLR, HMGCR, SREBP2 and PCSK9), quantitative real time PCR was 

performed. Results of q-RT PCR showed that LDLR mRNA level was significantly lower 

in colon cancer cells compared to NCM 460. Between the different colorectal cancer cell 

lines, DLD 1 cells showed lowest LDLR mRNA expression (Figure 3.2A). HMGCR 

mRNA expression was significantly elevated in all three colon cancer cell lines compared 

to NCM 460 (Figure 3.2B). All three CRC cells showed high mRNA expression for 

SREBPs (SREBP1 and SREBP2) (Figure. 3.2C, 3.2D). PCSK9 mRNA expression was 

elevated in all three cancer cell lines with DLD 1 showing the highest expression (Figure 

3.2E). To summarize, we concluded that the transcripts levels of cholesterol homeostasis 

associated genes corroborated the protein expression data analyzed in the previous study. 
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Figure 3.2 CRC cells show differential gene expression of cholesterol homeostasis 

related genes in comparison with normal colonic mucosa cells. CRC cells (HCT 116, 

HT 29 and DLD 1) and normal colonic mucosa cells (NCM 460) were cultured overnight 

in 6-well plate and used for total RNA extraction, followed by cDNA synthesis and 

quantitative real time PCR to analyze relative mRNA expression. (A) LDLR mRNA level 

was low in HCT 116, HT 29 and DLD 1 cells compared to NCM 460. DLD 1 cells showed 

the lowest expression of LDLR mRNA.  (B) HMGCR, (C) SREBP1, (D) SREBP2 and (E) 

PCSK9 mRNA expression were significantly higher in HCT 116 HT 29 and DLD 1 cells 

compared to NCM 460. Experiment was repeated three times. Results are represented as 

mean ± SEM (Standard error of the mean), *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Statistical 

analyses were performed using one-way ANOVA. P values were calculated using Graph-

Pad Prism 3.0 software. 
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DLD 1 cells have greater cell viability and higher proliferation rate   

The mRNA and protein expression data for cholesterol homeostasis related genes 

suggested that colorectal cancer cells have an upregulated cholesterol biosynthesis pathway 

and low LDLR expression, which indicates that they have a deregulated cholesterol 

homeostasis. Next we measured the effect of downregulation of LDLR protein affects the 

growth and cell viability of the cancer cells. To this end, we determined cell viability using 

MTT assay. 2000 cells/well for each cell line, were seeded in replicates of six, in a 96 well 

plate and grown for 24 and 48 hours before performing MTT assay. After 24 hours, we 

observed that DLD 1 cells showed higher cell viability (Figure 3.3A) and proliferation rate 

(Figure 3.3B) compared to HCT 116 and HT 29 cells (Figure 3.3A and B). This supports 

our hypothesis that lower LDLR protein expression is associated with increased cancer cell 

survival and growth. 
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Figure 3.3 DLD 1 cells show greater cell viability and higher cell proliferation rate. 

CRC cells (HCT 116, HT 29 and DLD 1) were plated in 96 well plate at a cell density of 

2000 cells/well in replicates of 6. After 24 and 48 hours MTT assay was performed. (A) 

Absorbance at 570nm showing cell viability after 24 hours and 48 hours for HCT 116, HT 

29 and DLD 1. (B) Difference in cell proliferation rate of HCT 116, HT 29 and DLD 1 

cells. DLD 1 cells showed highest cell proliferation and viability amongst the three CRC 

cells. Experiment was repeated three times. Results are represented as mean ± SEM 

(Standard error of the mean), *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Statistical analyses 

were performed using (A) student t-test and (B) One-way ANOVA. P values were 

calculated using Graph-Pad Prism 3.0 software. 
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Lovastatin treatment is able to induce LDLR protein upregulation in HCT 116 and 

HT 29 but not in DLD 1 cells 

To further characterize the CRC cell lines, we studied their response to cholesterol 

reducing drugs such as lovastatin. Statins binds to HMGCR, the rate-limiting enzyme of 

cholesterol biosynthetic pathway, blocking the synthesis of cholesterol and several non-

sterol intermediates such as isoprenoids. The downstream effect of this inhibition is 

upregulation of LDLR expression, which reduces serum cholesterol levels in patients 

suffering from hypercholesterolemia or atherosclerosis. Studies in prostate cancer cells 

such as PC-3 and DU145, have shown that these cancer cells do not respond to statins by 

upregulating LDLR protein expression [18, 19]. This is due to defective sterol dependent 

negative feedback regulation of LDLR and HMGCR. To study the effect of statins, we 

cultured colorectal cancer cells in 6 well plates overnight in their respective media followed 

by treatment with or without 20 µM lovastatin for 8 hours, 16 hours, 24 hours and 48 hours. 

At the end of each time point, protein was extracted to analyze the response of colorectal 

cancer cells to lovastatin followed by Immuno-blotting. All three colorectal cancer cell 

lines showed differential response to lovastatin treatment. HCT116 showed an early 

response to lovastatin treatment by upregulating LDLR protein expression at 8 and 16 

hours (Figure 3.4B) with a concomitant decrease in HMGCR at the same points (Figure 

3.4C). However, after 48 hours of lovastatin treatment HCT 116 cells significantly 

upregulated HMGCR protein level. We looked at the protein expression of 

transcriptionally active form of SREBP2, which regulates the transcription of cholesterol 

pathway associated genes and found that it was significantly elevated in lovastatin treated 

samples at all time points (Figure 3.4D). We also observed an elevation in PCSK9 protein 

expression in HCT 116 cells treated with lovastatin (Figure 3.4E).  (Figure 3.4C). The 

response of HT 29 cells to lovastatin treatment was similar to HCT 116.  We observed an 

increase in LDLR expression between 16 and 48 hours (Figure 3.4G). Lovastatin did not 

seem to have an effect on HMGCR protein expression though we did see an increase in 

protein level after 24 hours (Figure 3.4H). SREBP2 and PCSK9 protein levels were also 

significantly elevated after lovastatin treatment in HT 29 cells (Figure 3.4 I and Figure 

3.4J).  
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In DLD 1 cells, we did not observe any change in LDLR protein expression in 

response to lovastatin as observed in HCT 116 and HT 29 cells (Figure 3.4 L). Around 24 

hours, we observed a significant elevation in HMGCR protein expression in lovastatin 

treated DLD 1 cells compared to untreated control (Figure 3.4M).  SREBP 2 showed an 

early elevation in protein level at 8 hours in response to statin followed by a steady decline 

at later time points (Figure 3.4N).  Lovastatin treatment was able to induce PCSK9 protein 

expression between 16 and 48 hours (Figure 3.4O). 

In summary, all three colorectal cancer cell lines showed variable response to 

lovastatin treatment with respect to increase in protein expression of cholesterol metabolic 

pathway associated genes. HCT 116 and HT 29 cells responded to lovastatin treatment by 

upregulating LDLR in time dependent manner. However, lovastatin was unable to induce 

LDLR protein expression in DLD1 cells which exhibited the lowest level of LDLR protein 

amongst the three cancer cell lines as shown in the previous study. 
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Figure 3.4 Lovastatin treatment increases LDLR protein expression in HCT 116 and 

HT 29 cells but not in DLD 1 cells. CRC (HCT 116, HT 29, DLD 1) were plated in 6 well 

tissue culture plates and grown in their respective media for 24 hours before treating them 
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with lovastatin (20µM final concentration) for 8 hours, 16 hours 24 hours and 48 hours 

under standard culture conditions. Untreated control for each time point had cells growing 

in cell specific media supplemented with 10% FBS and 1% penicillin-streptomycin. At the 

end of each time point, cells from treated group and control group were used to extract 

whole cell lysate. Equal amount of protein was loaded onto SDS PAGE followed by 

Western blot analyses. Representative image and quantification (n=3) showing expression 

levels of LDLR, HMGCR, SREBP2 and PCSK9 in (A-E) HCT116, (F-J) HT29 and (K-O) 

DLD1. Experiment was repeated three times. Results are represented as mean ± SEM 

(Standard error of the mean), *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Statistical analyses 

were performed using student t-test. P values were calculated using Graph-Pad Prism 3.0 

software. 
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DLD1 cells do not upregulate LDLR mRNA in response to lovastatin treatment unlike 

HCT 116 and HT 29 cells  

To determine whether the time-dependent response of the colon cancer cell lines to 

lovastatin can be seen at mRNA level, we extracted total RNA from control and lovastatin 

treated cells and performed quantitative real time PCR (q-RT PCR). Analysis of q-RT PCR 

results showed that HCT 116 cells responded to statin treatment by significantly 

upregulating LDLR mRNA expression at almost all time points (Figure 3.5A). HMGCR 

mRNA expression was elevated around 24 and 48 hours in lovastatin treated HCT 116 cells 

(Figure 3.5B).  There was an elevation in SREBP2 transcript level however, the results 

were only significant between 24 and 48 hours (Figure 3.5C). In contrast, upregulation of 

PCSK9 transcript level was not significant at any time point (Figure 3.5D). A similar trend 

was observed in HT 29 cells which showed a consistent increase in LDLR mRNA levels 

in response to lovastatin (Figure 3.5E), however HMGCR mRNA was significantly 

upregulated only at 48 hours (Figure 3.5F). We also noted that lovastatin is able to induce 

SREBP2 (Figure 3.5G) and PCSK9 (Figure 3.5H) mRNA expression between 16-48 hours. 

   Unlike HCT 116 and HT 29 cells, DLD 1 cells did not show any significant increase 

in LDLR mRNA expression in response to lovastatin treatment at any given time point. 

(Figure 3.5I). Lovastatin did induce HMGCR mRNA expression after 48 hours (Figure 

3.5J).  In DLD 1 cells, we saw a significant elevation in SREBP2 transcript level only after 

16 hours of lovastatin treatment (Figure 3.5K). There was no significant difference in 

PCSK9 transcript level between untreated control and lovastatin treated DLD 1 cells 

(Figure 3.5L). 

The results of this study demonstrate that HCT116 and HT29 respond to lovastatin 

by upregulating LDLR mRNA and protein expression, whereas, DLD 1 cell are resistant 

to lovastatin treatment, suggesting a disconnect in LDLR-HMGCR feedback regulation. 
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Figure 3.5 mRNA expression levels of LDLR, HMGCR, SREBP2 and PCSK9 are 

upregulated in HCT 116 and HT 29 cells in response to lovastatin but not in DLD 1 

cells. Colorectal cancer cells (HCT 116, HT 29 and DLD 1) treated with or without 

lovastatin (20µM) for 8, 16, 24 and 48 hours, were harvested for total RNA and q-RT PCR 

analysis. Bar graph shows relative mRNA expression of LDLR, HMGCR, SREBP2 and 

PCSK9 in (A-D) HCT 116 cells, (E-H) HT 29 cells and (I-L) DLD 1 cells. Data was 

normalized using β actin as endogenous control. All experiments were repeated three 
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times. Results are represented as mean ± SEM (Standard error of the mean), *p ≤ 0.05, 

**p ≤ 0.01, ***p ≤ 0.001. Statistical analyses were performed using student t-test between 

treated and untreated samples. P values were calculated using Graph-Pad Prism 3.0 

software. 
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DLD 1 cells do not upregulate LDLR mRNA and protein expression in response to 

RO 48-8071 unlike HCT 116 and HT 29 

 

Our previous results showed that DLD1 cells fail to respond to lovastatin treatment 

by upregulating LDLR expression even though they do upregulate HMGCR at a later time 

point. Resistance of DLD 1 cells to lovastatin treatment could be attributed to higher 

expression of HMGCR v1 splice variant which lacks exon 13 known to contain the statin 

binding domain [20, 21]. Another reason for DLD 1 cells not upregulating LDLR 

expression in response to lovastatin could be a loss of LDLR feedback regulation, which 

has earlier been observed in some prostate cancer cells [19]. To analyze if DLD 1 cells 

exhibit a loss of sterol mediated negative feedback regulation of LDLR, we selected 

another cholesterol reducing drug, which inhibits the enzymatic activity of a mevalonate 

pathway enzyme called oxidosqualene cyclase (OSC). OSC catalyzes the conversion of 2, 

3- squalene epoxide to lanosterol, reducing the level of intracellular cholesterol without 

depleting the supply of isoprenoid intermediates [22]. 

For the purpose of this study, we seeded HCT 116, HT 29 and DLD 1 cells in 6 

well plates and cultured them for 24 hours in their respective media before treating them 

with 20 µM of RO 48-8071 for 24 hours. At the end of each time point, total RNA and 

protein was extracted for mRNA and protein expression study.  

Results of immunoblotting (Figure 3.6A), showed that HCT 116 upregulated the 

protein expression of LDLR (Figure 3.6B), HMGCR (Figure 3.6C), SREBP2 (Figure 3.6D) 

and PCSK9 (Figure 3.6E) in response to 24 hours of RO 48-8071 treatment. HT 29 cells 

showed a significant increase in LDLR (Figure 3.6B) and HMGCR (Figure 3.6C) protein 

levels after RO 48-8071 treatment. Unexpectedly there was no significant change in 

SREBP2 (Figure 3.6D) and PCSK9 (Figure 3.6E) protein levels. DLD 1 cells again failed 

to upregulate LDLR (Figure 3.6B) and HMGCR (Figure 36C) protein levels in response to 

RO 48-8071 even though there was a significant elevation in protein level of mature form 

of SREBP2 (Figure 3.6D). PCSK9 (Figure 3.6E) protein expression remained unaltered by 

RO 48-8071 treatment.  

At the mRNA level, LDLR expression was significantly increased in HCT 116 and 

HT 29 cells but not in DLD 1 cell after RO 48-8071 treatment (Figure 3.7A). HMGCR 
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(Figure 3.7B) and SREBP2 (Figure 3.7C) mRNA level was significantly upregulated after 

24 hours of RO 48-8071 treatment in all three colorectal cancer cell lines with highest 

increase in HCT 116 and HT 29 cells. PCSK9 (Figure 3.7D) mRNA expression was 

increased in HCT 116 cells and DLD 1, whereas HT29 showed increase in PCSK9 

transcript level but it was statistically insignificant. 

Taken together, we conclude that lovastatin and RO 48-8071 induce similar 

response in HCT 116, HT 29 and DLD 1 cells with regards to altering the expression of 

key molecules of cholesterol metabolic pathway. HCT 116 and HT 29 colorectal cancer 

cell lines respond to lovastatin and RO 48-8071 by upregulating mRNA and protein 

expression of cholesterol biosynthetic and uptake genes, however DLD 1 cells s show a 

resistant phenotype by not inducing LDLR expression in response to lovastatin and RO 48-

8071.  
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Figure 3.6 DLD 1 cells do not upregulate LDLR protein expression in response to RO 

48-8071. CRC cells were plated in 6 well culture plates and cultured overnight before 

treatment with 20µM of RO 48-8071 for 24 hours. At the end of time point, cells were 

harvested for protein extraction and Western blot analyses.  (A) Representative image 
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showing protein expression of LDLR, HMGCR, SREBP2 and PCSK9 in RO 48-8071 

treated and untreated HCT 116, HT 29 and DLD 1 cells. Bar graphs showing 

quantification (n=3) of (B) LDLR, (C) HMGCR, (D) SREBP2 and (E) PCSK9 protein 

expression after 24 hours of RO 48-8071 treatment in HCT 116, HT 29 and DLD 1 cells. 

Results are represented as mean ± SEM (Standard error of the mean), *p ≤ 0.05, **p ≤ 

0.01, ***p ≤ 0.001. Statistical analyses were performed using unpaired student t-test 

between treated and untreated samples. P values were calculated using Graph-Pad Prism 

3.0 software. 
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Figure 3.7 DLD 1 cells do not upregulate LDLR mRNA expression in response to RO 

48-8071. CRC cells were plated in 6 well plates and cultured overnight followed by 

treatment with 20µM of RO 48-8071 for 24 hours. At the end of time point, total RNA was 

extracted from the cells and used for cDNA synthesis and quantitative real time PCR (q-

RT PCR). Bar graph shows (A) LDLR, (B) HMCGR, (C) SREBP2 and (D) PCSK9 in HCT 

116, HT 29 and DLD 1 in response to RO 48-8071 treatment. All experiments were 

repeated three times. Results are represented as mean ± SEM (Standard error of the mean), 

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Statistical analyses were performed using unpaired 

student t-test between treated and untreated samples. P values were calculated using 

Graph-Pad Prism 3.0 software. 
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DLD 1 cells show minimum reduction of cell viability in response to lovastatin and 

RO 48-8071 

  Previously we had observed that DLD 1 cells which showed the lowest expression 

of LDLR protein amongst the three colorectal cancer cells was associated with maximum 

cell proliferation and viability. We further observed that DLD 1 did not respond to 

lovastatin and RO 48-8071 treatment by upregulating LDLR expression unlike HCT 116 

and HT 29 suggesting that they are resistant to cholesterol reducing drugs. Therefore, it 

was of interest to us to determine if the colorectal cancer cells, DLD 1 in particular are able 

to maintain their cell viability after treatment with lovastatin and RO 48-8071. Cells were 

plated at a density of 2000cells/well in replicates of six, in 96 well plates and allowed to 

adhere overnight before treating with 20µM of lovastatin and RO 48-8071 for 24 hours. At 

the end of time point, MTT assay was performed. Our results showed that following 

lovastatin treatment, there was a significant reduction in HCT 116 and HT 29 cell viability 

whereas DLD 1showed no change in cell viability. Similar observation was made for RO 

48-8071 treatment in which DLD 1 cells maintained cell viability after 24 hours of RO 48-

8071 treatment.  
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Figure 3.8 DLD 1 cells show minimum reduction of cell viability in response to 

lovastatin and RO 48-8071.  CRC cells (HCT11 6, HT 29 and DLD 1) were plated in 96 

well plate at a cell density of 2000 cells/well in replicates of 6 and cultured overnight. Cells 

were treated with 20µM of lovastatin and RO 48-8071 for 24 hours followed by MTT assay. 

(A) Absorbance at 570nm showing cell viability after 24 hours of lovastatin treatment in 

HCT 116, HT 29 and DLD 1. (B) Absorbance at 570nm showing cell viability after 24 

hours of RO 48-8071 treatment in HCT 116, HT 29 and DLD 1. Experiment was repeated 

three times. Results are represented as mean ± SEM (Standard error of the mean), *p ≤ 

0.05, **p ≤ 0.01, ***p ≤ 0.001. Statistical analyses were performed using student t-test. P 

values were calculated using Graph-Pad Prism 3.0 software.  
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3.4 Discussion 

 Our previous work in animal model was suggestive of a dysregulation in 

cholesterol homeostasis in colonic tumours, which was characterized by elevated protein 

expression of cholesterol, and lipid biosynthesis pathway associated genes such as 

HMGCR, SREBP1 and SREBP2. Additionally we had observed that colonic tumours have 

a significant low expression of LDLR protein and elevated PCSK9 protein expression 

which could be the factor responsible for high turnover of LDLR in tumour cells. The 

conclusion that we had drawn from these results was that elevated cholesterol synthesis 

and less dependence of LDL cholesterol is a colonic tumour phenotype that is selected and 

clonally expanded during CRC development. In order to explore the role of LDLR in CRC 

tumourigenesis, it was of importance to us to select a model system that would allow us to 

perform the mechanistic studies with relevance to human disease. Human tumour derived 

cell culture based models have become instrumental as biomedical research tools in 

elucidating signaling pathways, drugs screening and discovering novel biomarkers.  

For the purpose of our study, we selected three human colorectal cancer cell lines, 

HCT 116, HT 29 and DLD 1, each with distinct tumour origin, growth characteristics and 

mutation profile. These CRC cell lines are genotype authenticated and broadly represent 

the main molecular subtypes of CRC.  To begin with,  we determined the expression  of 

HMGCR, LDLR, SREBP2 and PCSK9 at both protein and mRNA level, in all three cancer 

cell lines in comparison with untransformed colonic epithelial cell line NCM 460. Our 

results showed that all three cancer cell lines had high mRNA and protein expression of 

HMGCR, SREBP2 and PCSK9 with a concordant low expression of LDLR compared to 

the normal colonic cell line. While all three cancer cell lines varied in their expression of 

LDLR with respect to untransformed mucosa cell, it was interesting to note that DLD 1 

had the lowest expression of LDLR at both mRNA and protein level. Low expression of 

LDLR despite of elevated protein expression of transcriptionally active form of SREBP2 

suggests that LDLR could have be negatively regulated at post translational level, either 

through PCSK9 or IDOL [23]. PCSK9 is a secretory serine protease with binds to 

extracellular domain of LDLR and degrades it through endosomal-lysosomal pathway 

whereas IDOL is an E3 ubiquitin ligase that targets LDLR for ubiquitination and 
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proteasomal degradation [24].  Previous studies conducted in female C57BL/6 mice 

showed that inflammation induced by lipopolysaccharides (LPS), Zymosan A or turpentine 

oil upregulated PCSK9 expression through SREBP2 pathway activation which resulted in 

a significant increase in PCSK9 mediated degradation of LDLR [25]. It now well 

established that inflammation play a crucial role in etiology of cancer. Colonic tumour and 

their microenvironment have been shown to secrete pro-inflammatory cytokines and 

chemokines like tumour necrosis factor-α (TNF-α), interleukin-1 β (IL-1β), IL-6 etc. in an 

autocrine fashion by positive feedforward regulation that promotes tumour growth [26, 27]. 

Hence, the possibility of inflammation playing a role in PCSK9 mediated downregulation 

of LDLR in colon cancer cells cannot be ruled out. It was interesting to note that colonic 

tumours had high expression of SREBP2 which regulates transcription of all three 

cholesterol pathway associated genes such as LDLR, HMGCR and PCSK9. However, our 

results showed that high SREBP2 expression correlated with upregulated HMGCR and 

PCSK9 mRNA expression but could not explain the low expression of LDLR mRNA 

suggesting that increased SREBP activation does not necessarily underline the changes in 

LDLR expression. It could also mean that LDLR expression is negatively regulated at both 

mRNA and protein level, probably through microRNAs and/or PCSK9. MicroRNAs are 

small endogenous RNAs that negatively regulate gene expression by targeting mRNA for 

degradation. In a recent study, microRNA 185 was shown to target 3’untranslated region 

(UTR) of LDLR resulting in its rapid degradation [28].  

Our cancer cell line data corroborated with the finding in animal models indicating 

that low LDLR expression could be playing a role in CRC development. LDLR has mainly 

been implicated in its role of serum cholesterol uptake but there is very little known about 

its role in tumourigenesis. In prostate cancer cells, loss of LDLR feedback regulation has 

been reported in PC-3 cells and DU145 due to defect in SREBP2 regulation of LDLR 

transcription [19, 29]. Our results from cell viability assay showed that DLD 1 cells have 

highest cell viability and proliferation rate followed by HCT 116 and HT 29. Coincidently, 

DLD 1 had also shown the lowest expression of LDLR mRNA and protein amongst all 

three cancer cell lines which suggests that low LDLR expression along with elevated 

cholesterol biosynthesis could favour a highly proliferative phenotype in colorectal cancer.   

Considering that all three cancer cell lines have a unique genetic background, mutation 
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profile and carcinogenesis pathway, one can argue that it would affect the way these cells 

grow, proliferate and respond to various chemotherapeutic drugs. For instance, both HCT 

116 and DLD 1 cells have an MSI phenotype with mutations in KRAS and PIK3CA 

oncogenes whereas HT 29 has CIN phenotype with BRAF mutation. KRAS and PIK3CA 

mutation has frequently been associated with increase in pro-survival and growth signaling 

through the AKT/mTOR and/or the MAPK signaling pathway which could be a reason for 

greater cell viability and proliferation rate in HCT 116 and DLD 1 cells compared to HT 

29 cells [30, 31]. Previous reports on the efficacy of cholesterol reducing drugs such as 

statins, PCSK9 inhibitors and RO 48-8071 have shown promising results in reducing 

cancer cell viability and proliferation in vitro [32-35]. Pharmacological inhibition of key 

effectors of cholesterol metabolism such as HMGCR, squalene synthase and liver X 

receptor (LXR), have shown reduction in tumour growth in xenograft models [36-38]. It is 

generally accepted that cholesterol lowering drugs such as statin will reduce tumour growth 

by reducing endogenous production of cholesterol and other important metabolites such as 

isoprenoids required for cell growth signaling. Lovastatin binds to HMGCR by reversible 

competitive inhibition which blocks the production of mevalonate and its downstream 

metabolites including cholesterol and isoprenoids [12]. RO 48-8071 inhibits cholesterol 

biosynthesis in the cell by targeting oxidosqualene cyclase (OSC) which converts 2,3- 

squalene epoxide into lanosterol downstream of mevalonate pathway [22]. These two drugs 

allowed us to analyze the effect of cholesterol biosynthesis inhibition with and without 

depletion of mevalonate and isoprenoids on cancer cell growth and viability. Based on 

review of previous work done with statins in in vitro and our own optimization, 20µM of 

lovastatin and 20 µM of RO 48-8071 were selected to treat the colorectal cancer cells [35, 

39].  

Our results for lovastatin treatment showed a time dependent elevation in LDLR 

protein expression level in HCT 116 and HT 29 but not in DLD 1. Other proteins of 

cholesterol metabolism pathway such as HMGCR, SREBPs and PCSK9 were elevated in 

all three colorectal cancer cell lines at different time points. While HCT 116 and HT 29 

responded to lovastatin by increasing the expression of LDLR, DLD 1 cells seem to lack 

LDLR feedback regulation. Elevated protein levels of HMGCR suggests that the 

cholesterol biosynthetic pathway could be resistant to sterol dependent negative feedback 
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regulation in these colorectal cancer cells. Earlier studies have also reported lack of 

cholesterol mediated feedback regulation of HMGCR [40].  This implies that sterol 

regulatory element 1 (SRE 1) which is shared by promoters of LDLR and HMGCR gene 

could play an important role in loss of sterol mediated regulation of LDLR. However, our 

results showed an upregulation of SREBP2, HMGCR and PCSK9 expression levels in all 

cancer cell lines which suggests that LDLR protein and mRNA downregulation in DLD1 

cells could be independent of SREBP activation. 

We observed that the response of the cancer cells to RO 48-8071 was similar to 

what we had observed in case of lovastatin. RO 48-8071 was able to upregulate cholesterol 

biosynthesis and uptake related genes significantly in HCT 116, HT29. DLD 1 cells again 

failed to upregulate LDLR mRNA and protein levels in DLD 1 cells though we did see an 

increase in expression of HMGCR, SREBP2 and PCSK9 mRNA level and protein level 

after 24 hours. Our results from lovastatin and RO 48-8071 treatment suggest that HCT 

116 and HT 29 have a functional sterol mediated feedback regulation of LDLR and 

HMGCR, however DLD 1 cells an alteration in sterol mediated regulation of LDLR 

expression.  Interestingly, DLD1 had the lowest expression of LDLR protein and highest 

cell viability compared to the other two cancer cell lines which suggests that the loss of 

LDLR feedback regulation resulting in low LDLR levels may be correlated to increased 

cell survival of DLD1 cells. It also suggests that DLD 1 cells may be more dependent on 

endogenous biosynthesis of cholesterol than cellular uptake for its growth and additionally 

LDLR may have an alternate role to play in growth of DLD 1 cells. Results of cell viability 

assay demonstrated that DLD 1 cells showed minimum reduction of cell viability after 24 

hours of lovastatin and RO 48-8071treatment. HCT 116 and HT 29 showed significant loss 

in cell viability after treatment with lovastatin and RO 48-8071. Hence, we concluded that 

in both HCT 116 and HT 29, statin was able to reduce cell viability possibly by lowering 

intracellular cholesterol isoprenoids synthesis required growth and signaling as discussed 

earlier, though there are reports of statins showing growth inhibitory effects independent 

of HMGCR inhibition [41, 42].   Furthermore, the unresponsiveness of DLD 1 cells to 

lovastatin and RO 48-8071 treatment suggest that these cells have a loss of LDLR feedback 

regulation since they were unable to upregulate LDLR expression in response to 

cholesterol reducing drug treatment. Statin resistance in DLD 1 cells could also be 
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attributed to elevated expression of HMGCR v1 splice variant which shows a deletion of 

exon 13 that contains the statin binding domain [43]. However, the fact that DLD 1 cells 

showed an upregulation of SREBP2 in response to lovastatin and RO 48-8071 indicates 

that HMGCR may not be playing a role in statin resistance in DLD 1 cells. In the present 

study we demonstrated that the three colorectal cancer cell lines show deregulated 

cholesterol metabolic pathway most importantly a phenotype, which favoured a lower level 

of LDLR protein. However, each cell line showed different sensitivity to inhibitors of 

endogenous cholesterol biosynthetic pathway Importantly, DLD 1 cells with lowest LDLR 

expression showed least response to statin and RO-48-8071 treatment. Therefore it was 

concluded that all three colorectal cell lines could serve as model systems to explore a role 

of LDLR in the growth and survival of developing colonic tumours harboring different 

genetic aberrations. Additionally, they could serve as model systems to test the efficacy of 

cholesterol reducing drugs in retarding tumour growth and survival. 
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Chapter 4 

Ectopic overexpression of LDLR negatively regulates 

colorectal cancer cell growth and viability 
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4.1 Introduction 

The low density lipoprotein (LDL) gene family consists of seven structurally 

related cell surface receptors that are involved in receptor mediated endocytosis and 

lysosomal delivery of a diverse spectrum of extracellular ligands [1]. Members of this 

evolutionary conserved gene family were initially thought to be mere cargo receptors 

involved in lipid metabolism. However, recent studies have shown that they play several 

important biological functions that are much more diverse than initially thought. These 

include regulating calcium homeostasis, protease uptake, regulating Wnt signaling and 

intracellular signaling during embryonic brain development [2, 3]. LDL receptor (LDLR) 

is the prototype of this gene family and also the first member to be identified [4]. The role 

of LDLR in regulating cholesterol homeostasis through clearance of LDL cholesterol from 

the blood circulation has been extensively researched. The pioneers in this field are 

Goldstein and Brown who were working to unravel the genetics behind the pathogenesis 

of an inherited autosomal dominant diseases called familial hypercholesterolemia (FH) [5, 

6]. Patients suffering from this disorder had abnormally high levels of blood cholesterol 

which was later found to be due to a genetic defect in LDLR. The extracellular ligand 

binding domain of LDLR binds to apolipoprotein B of the cholesterol rich LDL particle. 

This LDL particle receptor complex formed at the clathrin coated pits on the cell surface 

is internalized through the endosomal lysosomal pathway. In the low pH environment of 

the lysosomes, LDLR releases the free cholesterol, which is either esterified and stored in 

lipid droplets or metabolized into bile acids. Ligand free LDLR is recycled back to the 

plasma membrane to repeat the process. The intracellular cholesterol level is regulated by 

sterol dependent transcriptional and post translational regulation of cholesterol 

biosynthesis and uptake genes. At the transcriptional level, a family of basic helix loop 

helix leucine zipper (bHLH-LZ) transcription factors called the sterol element regulatory 

binding proteins (SREBPs) regulate both LDLR and HMGCR, the rate limiting enzyme of 

mevalonate pathway [7]. Interestingly, SREBP also regulates transcription of  PCSK9 

which regulates LDLR turnover in the cell by degrading it through the endosomal 

lysosomal pathway. Post translationally, LDLR can also be also subjected to an E3 

ubiquitin ligase called inducible degrader of LDLR (IDOL) mediated ubiquitination and 
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proteasomal degradation [8]. HMGCR protein turnover is regulated by oxysterol and/or 

isoprenoid mediated degradation by endoplasmic reticulum associated E3 ubiquitin ligase 

gp78 [9]. Role of LDLR as a membrane receptor responsible for uptake and delivery of 

cholesterol and essential fatty acids has been extensively studied whereas limited attention 

has been paid to its role in tumourigenesis.  

Alteration in sterol mediated feedback regulation of LDLR and HMGCR has been 

observed in several cancers, mainly prostate, colorectal and ovarian cancer [10-12]. 

Previous studies have shown that prostate cancer cells PC-3 and DU145 lack sterol 

dependent regulation of SREBP2 mediated LDLR expression [13-15]. The loss of 

cholesterol mediated feedback regulation of LDLR and HMGCR has been observed in 

other cancers such as hepatocellular carcinoma, glioblastoma, acute myeloid leukemia and 

melanoma [15-19]. Most of these studies have focused on abnormal cholesteryl ester 

accumulation in cancer cells through upregulation of cholesterol biosynthetic and LDLR 

pathway. Whether genetic or epigenetic alteration of LDLR expression can be correlated 

to an enhanced colonic tumour cell growth, invasion and/or metastasis through modulation 

of key signaling pathways, remains elusive.  

  Our previous data in CRC cell lines showed downregulated LDLR protein 

phenotype in cancer cells compared to normal colonic mucosa cells corroborating the 

findings in experimentally induced colonic tumours. We selected all the three CRC cell 

lines with varying LDLR protein expression to test the hypothesis that LDLR protein 

downregulation imparts a favourable growth and survival environment for the colonic 

tumours. It is now well known that tumours alter their growth signaling and metabolism to 

favour rapid cell proliferation, growth and survival. Recent studies have brought into focus 

the role of SREBPs in mediating the upregulation of lipogenesis and cholesterol 

biosynthesis in cancer through Phosphatidylinositol-3 kinase (PI3K)/AKT and cMyc 

regulated glucose and glutamine pathway [20-22]. There are evidence that hyperactive 

EGFR and AKT dependent rapamycin insensitive pathway increases cell survival of 

glioblastoma through SREBP1 mediated enhanced lipogenesis [23]. Alteration of the 

MAPK signaling pathway has been characterized as one of the most prominent genetic 

markers in CRC that regulates early clonal expansion of transformed cells and also 

modulates invasion and metastasis in later stages [24-26]. KRAS and EGFR mutation 
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observed in 30-40% of CRC cases are directly correlated with amplification of cell 

signaling through RAF/MEK/extracellular signal related kinases (ERK1/2) resulting in 

enhanced cell proliferation and growth [27]. The three terminal kinases of the MAPK 

signaling cascade namely, ERK, stress activated protein kinases ( SAPK ) also known as 

C-Jun N-terminal kinases and p38 MAPK have all been shown to play diverse roles in 

cancer progression as well as tumour growth inhibition [28, 29]. Previous studies have 

reported that ERK signaling pathway is involved in SREBP2 mediated upregulation of 

LDLR expression in human hepatoma cells [30, 31]. Stress activated protein kinases or 

SAPK/c-Jun N-terminal kinase signaling pathway has been implicated in NF-КB inhibition 

mediated apoptosis in HCT 116 cells [32]. Both ERK and SAPK pathways have also been 

shown to have a cross talk with other signaling pathways such as the signal transducer and 

activator of transcription (STAT) pathway that regulates gene expression of pro and anti-

apoptotic genes resulting in enhanced cancer cell growth, invasion and migration [33]. 

SAPK signaling pathway can have a context dependent role in either promoting or 

inhibiting tumour growth. Another important stress induced pathway in the MAPK 

cascade, is the p38 MAPK signaling pathway which has shown apoptosis inducing and 

growth inhibitory effects in several cancers including CRC [34, 35]. Pharmacological 

growth inhibitors such as selenite, anti-angiogenic agent 5,6-Dimethylxanthenone-4-acetic 

acid (DMXAA) and anti-proliferation agent β-elemene exert their growth inhibitory effect 

through p38 signaling pathway [36-38]. Correlation of cholesterol biosynthetic pathway 

with altered growth signaling through deregulated PI3K/AKT and MAPK pathway is well 

established, however there is limited information on the involvement of the LDLR 

pathway. Hyperactivation of the PI3K/AKT growth signaling is often due to deletion or 

mutation of Phosphatase and TENsin homologue deleted on chromosome 10 (PTEN) 

tumour suppressor gene which a negative regulator of P13K/AKT signaling pathway [39]. 

PTEN is a phosphatase that antagonizes the function of oncogenic PI3K by 

dephosphorylating phosphatidylinositol (3,4,5)-trisphosphate (PIP3). This results in 

deactivation of AKT and its downstream growth signaling. PTEN phosphatase activity is 

regulated by several post translational modifications including acetylation, oxidation, 

ubiquitination and phosphorylation [40]. Many phosphorylation sites have been identified 

on PTEN that are subject to phosphorylation by cellular kinases such as casein kinase, 

https://en.wikipedia.org/wiki/Phosphatidylinositol_(3,4,5)-trisphosphate
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glycogen synthase kinase 3β (GSK3β) resulting in inactivation of its phosphatase activity. 

An increase in phosphorylation at serine 380 and threonine 382/383 has been observed in 

many cancers [41, 42]. Loss of PTEN activity due to genetic and epigenetic alterations has 

been correlated with increased cholesterol accumulation through PI3K/AKT signaling 

mediated SREBP2 activation [43, 44].  

                The main premise of this study was to determine if ectopic over expression of 

LDLR in colorectal cancer cell lines can modulate their growth, cell viability and cell 

motility. We also analyzed the underlying molecular mechanisms through LDLR could 

exert its anti-tumourigenic effect in colorectal cancer cells by looking at the induction of 

the three main downstream effector kinases of MAPK signaling pathway such as ERK, 

SAPK and p38 signaling. Additionally, we studied the AKT/PTEN pathway to determine 

if elevated LDLR protein levels can regulate AKT signaling through PTEN, which is 

critical for cancer cell growth as noted in earlier studies.  

 

4.2 Materials and Methods 

 

Cell culture 

              Human CRC cell lines, HCT 116 (CCL-247; ATCC), HT 29 (HTB-38; ATCC) 

and DLD 1 (CCL-221; ATCC) were obtained from ATCC, USA . HCT 116 and HT 29 

were maintained in McCoy's 5a Medium Modified (Sigma) supplemented with 10% fetal 

bovine serum (FBS; Gibco) and 1% penicillin streptomycin. DLD 1 cell line was 

maintained in RPMI-1640 (Sigma) supplemented with 10% FBS and 1% penicillin-

streptomycin. Cells were grown as monolayers at 37°C in a humidified atmosphere with 

5% CO2.  

Construction of LDLR expression vector  

  Human LDLR gene was amplified by polymerase chain reaction (PCR) from 

pJP1520 retroviral expression vector (DNASU) containing cytomegalovirus (CMV) 

promoter and ampicillin resistance gene. PCR primers used were as follows: Forward 

primer:GATAAGCTTGGGCCCTGGGGCTGG,Reverseprimer:AAAGCGGCCGCCTA

CGCCACGTCATCC with Hind111 and Not1 sites for cloning. The PCR product was 

cloned into a linearized p3XFLAG-CMV-7.1 Expression Vector (Sigma) with Hind111 
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and Not1 overhangs. Positive clones selected by restriction enzyme digestion were sent for 

sequencing to confirm LDLR open reading frame using JPO113 sequencing primer 

(GCGGTTTTGGCAGTACATCAATGGGCG). After DNA sequence confirmation, 

LDLR p3XFLAG-CMV-7.1 was used for overexpression of LDLR in colorectal cancer 

cells HCT 116, HT 29 and DLD 1. 

 

DNA transfection 

Cells were plated in 10 cm tissue culture plates and cultured in their respective 

media till they reached desired (~80-90%) confluency. The plasmid p3XFLAG-CMV-7.1 

LDLR was transfected using Xtreme GENE HP DNA Transfection Reagent (Roche 

Applied Science, Mannheim, Germany). Briefly, 5ug of DNA was diluted in 200ul of 

serum free media containing 15ul of DNA transfection reagent. After gently mixing the 

contents, the transfection mixture was incubated at room temperature for 20 minutes. 

Transfection mixture was then added dropwise to the cells followed by gentle swirling 

before incubating them at 37°C for 24 hours. The next day media was removed and fresh 

media containing 1% penicillin-streptomycin was added. LDLR overexpression was 

confirmed by Western blotting.  

 

Antibodies and Reagents 

The following antibodies were purchased from Santa Cruz Biotechnology-: LDLR 

(sc-18823), HMGCR (sc-27578), SREBP1 (sc-366), SREBP2 (sc-5603), β actin (sc-1616), 

secondary antibodies including horse radish peroxidase (HRP) conjugate anti-mouse IgG 

(sc-2005) and anti-rabbit IgG (sc-2030,). PCSK9 (NB300-959) antibody was purchased 

from Novus Biologicals. Other chemicals used were- lovastatin (Sigma Aldrich), RO 48-

8071(Cayman Chemicals), high capacity c-DNA reverse transcription kit (Applied 

Biosystems), power SYBR green mastermix (Applied Biosystems), MTT (3-(4,5-

Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) (Sigma Aldrich) 

 

Sample preparation and immunoblotting 

CRC cells growing in their respective media with or without treatment were washed 

with cold phosphate buffer saline (PBS) followed by lysis in Radioimmunoprecipitation 
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assay (RIPA) lysis buffer (See appendix 1). Total cell lysate was centrifuged at 12000 x g 

for 10 minutes at 4°C. Supernatant was collected in sterile tubes and was used to quantify 

protein by Bradford assay. Equal amount of protein was used for SDS-PAGE followed by 

electro-blotting onto PVDF membrane (PVDF; Bio-Rad, Hercules, CA, USA), using wet 

transfer method. Membranes were blocked in 5% skimmed milk for 1 hour at room 

temperature, followed by overnight incubation in primary antibodies prepared in 5% 

bovine serum albumin (BSA) TBS-Tween (1% v/v) at 4°C. Membranes were washed three 

times in TBST and probed with HRP conjugated secondary antibodies (1:10000) for 1 hour 

at room temperature. After washing three times in TBST, proteins were detected using 

Perkin Elmer Enhanced Chemiluminescence reagent and FluorChem Western blotting 

imaging system. Protein bands were quantified using ImageJ software (Version 1.42q) 

 

RNA isolation and Quantitative Real time PCR (Q-RT PCR) 

RNA was isolated from p3XFLAG-CMV-7.1 or p3XFLAG-CMV-7.1 LDLR 

expressing HCT 116, HT 29 and DLD 1 cells using TRIzol reagent (Invitrogen) followed 

by spectrophotometric quantification. 250ng of total RNA was used for first strand cDNA 

synthesis in a 20 µl reaction using ABI High Capacity cDNA Reverse Transcription kit 

using the given cycling conditions (25°C for 10 minutes, 37°C for 120 minutes, 85°C for 

5 seconds). 1µL of cDNA along with 1 µL primer (final concentration 10mM) and 10 µL 

of 2X SYBR green PCR master mix (ABI) was used in a 20 µl reaction to perform 

quantitative Real time PCR in Applied Biosystems 7300 PCR system (ABI). Following 

PCR cycling conditions was used: 10 min at 95 ̊C for one cycle, 40 cycles of 95 ̊C for 15 

sec and 60 ̊C for 60 sec. The relative levels of mRNA expression were quantified by using 

the comparative CT method of -ΔΔCt [45]. 

 

Cell viability assay 

To assess the growth of CRC cells in an LDLR overexpression background 

compared to empty vector transfected control cells, cell viability assay was performed. 

Briefly, the cells were seeded in 6-well plates and cultured overnight before transfecting 

them with p3XFLAG-CMV-7.1 empty vector or p3XFLAG-CMV-7.1 LDLR. After 

confirming the overexpression of LDLR by Western blotting using anti-Flag antibody, 
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transfected cells were re-plated in 96 well tissue culture plates. At the end of desired time 

point, 10 µl of MTT solution (5 mg/ml) was added into each well for a final concentration 

of 0.5mg/ml, followed by incubation for 4 h at 37˚C. After 4 hours, media was replaced 

with 100 µl of dimethyl sulfoxide (DMSO) in each well to dissolve the formazan crystals.  

Absorbance was measured at 570 nm using microplate reader.  

 

Wound healing scratch assay 

Cellular motility was measured by in vitro scratch-wound healing assay. Equal 

number of HCT 116, HT 29 and DLD 1 expressing p3XFLAG-CMV-7.1 or p3XFLAG-

CMV-7.1 LDLR, were seeded in six-well plates (replicates of three) and incubated until 

they were 90-95% confluent. The monolayer of cells was scratched with a sterile pipette 

tip (2-10ul) followed by washing twice with PBS to remove cell debris. Images were 

captured immediately after wounding using an inverted microscope with 4X objective 

(Olympus). The cells were then incubated in complete media for 16 and 32 hours. At the 

end of each time point, wound closure was monitored under the microscope. The 

percentage wound closure between the wounded edges was analyzed using the ImageJ 1.42 

program.  

 

Statistical analysis 

In vitro results are shown as mean± SEM (standard error of mean). Comparisons of 

datasets were performed using unpaired Student’s t test (experimental group compared 

with control group) or ANOVA test to compare more than two experimental conditions. P 

values were calculated using GraphPad Prism 3.0 software (GraphPad software). 

Differences were considered significant for P values ≤ 0.05. 

 

4.3 Results 

 

LDLR overexpression reduced cell viability of colorectal cancer cells  

 The deregulation of lipogenesis and cholesterol metabolism is a hallmark of 

tumourigenesis and has been under intense scrutiny for development of pharmacological 

inhibitors of the involved pathways. Several effectors of cholesterol metabolism such as 
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HMGCR and SREBP 1 and 2 have been reported to have increased expression that 

increases cancer cell growth, proliferation and migration [16, 46, 47]. In our previous 

studies, we found that colorectal cancer cells showed a significantly low expression of 

LDLR compared to untransformed colonic cells. We also reported that DLD 1 cells with 

the lowest LDLR protein expression amongst the three colorectal cancer cell lines, had the 

highest cell viability and proliferation rate. To investigate if ectopic overexpression of 

LDLR in the colorectal cancer cells can modulate cancer cell viability, we transfected HCT 

116, HT 29 and DLD 1 cells with LDLR overexpression vectors or empty vector (control). 

After confirming the overexpression of LDLR in transfected cell by Western blot analysis 

using anti-Flag antibody (Figure 4.1A), we followed up with MTT assay to analyze cell 

viability. Our result showed that ectopic overexpression of LDLR significantly reduced 

cell viability in HCT 116, HT 29 and DLD1 colorectal cancer cells when compared to the 

empty vector transfected control cells.  (Figure 4.1B). This implies that LDLR could be 

involved in negative regulation of cancer cell growth and survival in a subset of CRC cases.  
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Figure 4.1 Overexpression of LDLR reduces CRC cell viability. CRC cells (HCT 116, HT 

29 and DLD 1) were transfected with p3XFLAG-CMV-7.1-Empty vector (control) or 

p3XFLAG-CMV-7.1-LDLR. After confirming overexpression of LDLR by Western blotting 

using anti-Flag antibody, cells were re-plated in 96 well tissue culture plate and MTT assay 

was performed to analyze the cell viability. (A) Western blot showing over-expression of 

LDLR in HCT 116, HT 29 and DLD 1 cells using anti-flag antibody. (B) Change in cell 

proliferation rate of HCT 116, HT 29 and DLD 1 cells expressing p3XFLAG-CMV-7.1-

Empty vector (control) or p3XFLAG-CMV-7.1-LDLR. Experiment was repeated three 

times. Results are represented as mean ± SEM, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. 
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Statistical analysis was performed using student t-test. P values were calculated using 

Graph-Pad Prism 3.0 software. 
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Overexpression of LDLR reduces cell motility and migration of CRC cells  

  Tumour invasion and metastasis is a complex, multi-stage process that requires 

increase in cell motility through cytoskeletal remodeling. Cancer cells show high degree 

of plasticity in the mechanisms through which they achieve increased cell motility that 

would support their invasive behavior for metastatic growth. A complex network of 

regulatory mechanism ensures appropriate actin polymerization and its response to external 

or internal stimuli [48]. Alteration of this regulatory mechanism and over expression of 

pro-migratory actins promote cancer cell invasion. This is achieved through modulation of 

several growth signaling and metabolic pathways. For instance, cytoskeletal rearrangement 

mediated by altered activity of Rho guanosine triphosphatases (Rho GTPase), Rac and 

PI3K has been well documented in cancer [49, 50] . Aberrant lipid, glucose and glutamine 

metabolism has been positively correlated with increased cancer cell migration and 

invasion [51-53]. For the purpose of our study, we wanted to assess if increase in LDLR 

expression can modulate cancer cell migration and motility. HCT 116, HT 29 and DLD 1 

cells expressing empty vector (control) or LDLR expression vector were used for wound 

healing scratch assay.  Our results showed that in all three colorectal cancer cell lines, 

ectopic overexpression of LDLR significantly reduced the cell migration from wounded 

edges to scratched cell free area as analyzed by the average distance measured between the 

wounded edges at the end of 16 hours and 32 hours (Figure 4.2). Overall, our results 

suggest that ectopically overexpressed LDLR negatively regulates cancer cell motility and 

migration. 
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Figure 4.2 Ectopic expression of LDLR reduces colorectal cancer cell motility and 

migration. Colorectal cancer cells (HCT 116, HT 29 and DLD 1) were transfected with 

p3XFLAG-CMV-7.1-Empty vector (control) or p3XFLAG-CMV-7.1-LDLR. After 

confirming LDLR overexpression by Western blotting, in-vitro scratch wound healing 

assay was performed. Representative images showing wound closure after 16 and 32 hours 

in (A.) HCT 116 (C) HT 29 and (E.) DLD 1 cells transfected with p3XFLAG-CMV-7.1-

Empty vector (control) or p3XFLAG-CMV-7.1-LDLR. The wound closure was quantified 
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at 16 hours and 32 hours post wounding by measuring the average distance between 

wounded edges using ImageJ software in (B.) HCT 116 (D.) HT 29 and (F). DLD 1. 

Experiment was repeated three times. Results are represented as mean ± SEM (standard 

error of the mean), *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Statistical analysis was performed 

using student t-test. P values were calculated using Graph-Pad Prism 3.0 software. 
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Overexpression of LDLR retards cell growth and cell proliferation of CRC cells 

through modulation of the MAPK signaling cascade.  

  The mitogen activated protein kinases (MAPK) signaling pathways relay 

extracellular signals to regulate the expression of several cytoplasmic and nuclear proteins 

through a phosphorylation cascade. The three effector MAPK proteins including ERK, 

JNK (SAPK1) and p38 (SAPK2) show aberrant expression in several cancers [29]. Altered 

MAPK signaling has been associated with enhanced tumour cell growth, proliferation, 

invasion and metastasis. Tumour initiation in CRC which is frequently driven by KRAS or 

BRAF mutation, show upregulated ERK1/2 signaling [54]. Besides increasing tumour cell 

proliferation and growth, the ERK signaling has also been shown to promote epithelial to 

mesenchymal transition, migration and invasion [55]. To gain insight into the molecular 

pathways through which LDLR could be exerting its anti-tumourigenic effects in CRC 

cells, we analyzed the induction of MAPK signaling pathway in cancer cells 

overexpressing LDLR.  

Briefly, p3XFLAG-CMV-7.1 expressing control cells and p3XFLAG-CMV-7.1 

LDLR expressing HCT 116, HT 29 and DLD 1 cells were plated in four, 6 well plates. 

Except for one plate which served as control to determine the basal expression of MAPK 

signaling proteins, all other plates containing cancer cells with (transfected with 

p3XFLAG-CMV-7.1-LDLR) or without LDLR overexpression (transfected with 

p3XFLAG-CMV-7.1-Empty vector control)  were serum starved for 4 hours. After 4 hours, 

serum was added back to the media for 30 and 60 minutes. Cells were harvested for protein 

extraction and Western blot analysis to detect induction of ERK, p38 and c-Jun N-terminal 

kinase (JNK) or SAPK signaling pathway. For the analysis of MAPK signal pathway 

Western blot results, we normalized activated phosphorylated MAPK protein (p-ERK, p-

p38, p-SAPK) with total protein (t-ERK, t-p38, t-SAPK). The ratio of phosphorylated 

MAPK protein to total protein was indicative of the induction of the signaling pathway.  

In HCT 116, induction of ERK signaling was significantly reduced after 30 and 60 

minutes of serum replenishment in LDLR overexpressing cells compared to the control 

cells (Figure 4.3B). HT 29 cells overexpressing LDLR had significantly low basal level of 

ERK signal induction in comparison with control cells and serum starvation was found to 
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have no effect on ERK signaling. We did observe an induction in ERK signaling after 

serum replenishment for 30 and 60 minutes, but it was significantly less in LDLR 

overexpressing HT 29 cells compared to the empty vector transfected control cells (Figure 

4.3 C). DLD 1 cells with ectopic expression of LDLR exhibited an overall decrease in 

induction of ERK signaling at basal level as well as after serum starvation. Serum 

replenishment for 30 and 60 minutes resulted in significantly less induction of ERK 

signaling in DLD 1 cells with ectopic overexpression of LDLR compared to mock 

transfected control cells.  To summarize, overexpression of LDLR in CRC cells reduced 

the induction of ERK1/2 signaling suggesting that LDLR can negatively regulate tumour 

growth, survival and migration by reducing the activation of pro-survival ERK signaling 

pathway. 
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Figure 4.3. LDLR over-expression reduces ERK activation in CRC cells. p3XFLAG-

CMV-7.1 empty vector (control) and p3XFLAG-CMV-7.1 LDLR expressing HCT 116, HT 

29 and DLD 1 cells were used to analyze the induction of ERK signaling in control versus 

LDLR overexpressing cancer cells by serum starving the cancer cells for 4 hours followed 

by serum replenishment for 30 and 60 minutes. Relative expression of phospho-ERK was 

normalized with total-ERK expression. Representative image (A) and quantification (n=3) 

showing ratio of expression levels of phospho-ERK and total-ERK (p-ERK/total-ERK) in 

(B) HCT116, (C) HT29 and (D) DLD1. Experiment was repeated three times. Results are 

represented as mean ± SEM (standard error of mean), *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. 
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Statistical analysis was performed using student t-test. P values were calculated using 

Graph-Pad Prism 3.0 software. 
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To determine if LDLR mediated suppression of cancer cell growth and migration 

involves p38 signaling pathway, we looked at the induction of p38 under serum starved 

conditions in empty vector transfected (control) and LDLR overexpressing colorectal 

cancer cells. Results for Western blot analysis showed that 4 hours of serum starvation 

induced p38 signaling significantly higher in LDLR overexpressing HCT 116 cells when 

compared to the control cells (Figure 4.4 B). However, there was no significant difference 

observed in induction of p38 after 30 and 60 minutes of serum replenishment. In HT 29 

cells with ectopic LDLR overexpression, we observed a significantly higher induction of 

p38 signaling after 4 hours of serum starvation when compared to control cells (Figure 

4.4C). After 30 minutes of serum treatment, HT 29 overexpressing LDLR had a higher 

induction of p38 signaling compared to control cells. DLD 1 cells showed no significant 

difference in basal level induction of p38 signaling between LDLR overexpressing and 

control cells (Figure 4.4D). In in DLD 1 cells overexpressing LDLR, we observed that p38 

signaling was significantly induced after serum starvation. Even after 30 minutes of serum 

replenishment, p38 was induced significantly higher in LDLR overexpressing DLD 1 cells 

compared to mock transfected control cells.  Taken together, these results suggest that the 

anti-tumourigenic effect of LDLR in colorectal cancer cells could be mediated by induction 

of p38 MAPK signaling pathway.   
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Figure 4.4. LDLR overexpression induces p38 MAPK signaling in colorectal cancer 

cells. p3XFLAG-CMV-7.1 empty vector (control) and p3XFLAG-CMV-7.1 LDLR 

expressing HCT 116, HT 29 and DLD 1 cells were used to analyze the induction of p38 

signaling in control versus LDLR overexpressing cells by serum starving the cancer cells 

for 4 hours followed by serum replenishment for 30 and 60 minutes. Relative expression of 

phospho-p38 was normalized with total- p38 expression. Representative image (A) and 

quantification (n=3) showing ratio of expression levels of phospho-p38 and total-p38 (p- 

p38/t- p38) in (B) HCT 116, (C) HT 29 and (D) DLD 1. Experiment was repeated three 

times. Results are represented as mean ± SEM (standard error of mean), *p ≤ 0.05, **p ≤ 
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0.01, ***p ≤ 0.001. Statistical analysis was performed using student t-test. P values were 

calculated using Graph-Pad Prism 3.0 software. 
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In case of c-Jun N-terminal kinase (JNK) or SAPK signaling, we observed that 

HCT 116 cells with ectopic overexpression of LDLR had an overall less induction of SAPK 

compared to control cells (Figure 4.5B). There was a significant induction of SAPK after 

4 hours of serum starvation in control HCT 116 cells, however in LDLR overexpressing 

cells we did not observe much of an induction of SAPK. Interestingly, in HT 29 and DLD 

1 cells, we saw the opposite trend in which ectopic expression of LDLR, increased SAPK 

induction when compared to control cells. HT 29 cells overexpressing LDLR had a 

significant induction of SAPK signaling at all time points in comparison to control cells 

(Figure 4.5C). Similarly, DLD 1 had a significantly high induction of SAPK at basal level 

as well as after 4 hours of serum starvation under LDLR overexpression conditions 

compared to control. After 30 and 60 minutes of serum replenishment, DLD 1 

overexpressing LDLR had a higher induction of SAPK than control cells, though the 

difference was not significant at 60 minutes time point (Figure 4.5D). To summarize, our 

results suggest that LDLR is a negative regulator of tumour proliferation, growth and 

survival and the underlying mechanisms include modulation of MAPK signaling pathway. 
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Figure 4.5 LDLR over expression differentially regulates SAPK signaling in colorectal 

cancer cells. p3XFLAG-CMV-7.1 empty vector (control) and p3XFLAG-CMV-7.1 LDLR 

expressing HCT 116, HT 29 and DLD 1 cells were used to analyze SAPK signaling in 

control versus LDLR overexpressing cells by serum starving the cancer cells for 4 hours 

followed by serum replenishment for 30 and 60 minutes. Relative expression of phosphor-

SAPK was normalized with total-SAPK expression. Representative image (A) and 

quantification (n=3) showing ratio of expression levels of phospho-SAPK and total-SAPK 
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(p-SAPK/total-SAPK) in (B) HCT 116, (C) HT 29 and (D) DLD 1. Experiment was 

repeated three times. Results are represented as mean ± SEM (standard error of mean), *p 

≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Statistical analysis was performed using student t-test. 

P values were calculated using Graph-Pad Prism 3.0 software. 
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Overexpression of LDLR suppresses AKT activation by inducing PTEN signaling 

  The role of AKT also known as protein kinase B as the central node of cellular 

signaling network connecting various components of the growth and survival machinery, 

has been extensively researched. In context of CRC, AKT has been implicated with SREBP 

mediated increase in lipogenesis and tumour growth [56]. Pharmacological inhibitors of 

AKT have shown to reduce SREBP2 protein levels and its downstream transcriptional 

activity [57]. These results were complemented with the findings that showed insulin 

growth factor- 1 (IGF-) mediated activation of AKT resulted in direct activation of SREBP 

2 and upregulation of its downstream targets LDLR and HMGCR. Activation of AKT by 

upstream kinase PI3K, mediates several pro-survival pathways that play important role in 

development and progression of cancer. In this study, we aimed to explore the effect of 

ectopic expression of LDLR on induction of AKT signaling. We also analyzed PTEN 

activity by determining the expression of total active PTEN and phosphorylated inactive 

PTEN in LDLR overexpressing colorectal cancer cells and compared that to control cells 

transfected with empty vector. AKT induction was analyzed as ratio of phospho-AKT to 

total AKT, same as MAPK signaling. For analysis of PTEN signal induction, the ratio of 

total PTEN to phosphorylated PTEN was interpreted as induction of PTEN activity. 

Analysis of Western blot results showed that HCT 116 cells over expressing LDLR have a 

significantly higher PTEN induction, i.e higher expression of total PTEN compared to 

phosphorylated inactive PTEN, at basal level compared to control cells (Figure 4.6B). 

Additionally, they also showed higher PTEN induction after 4 hours of serum starvation. 

Significantly high level of active total PTEN was observed after 30 and 60 minutes of 

serum replenishment. Interestingly, we observed lower AKT induction in HCT 116 cells 

with ectopically over expressed LDLR. There was significantly less induction of AKT 

signaling at basal level and after 4 hours of serum starvation in HCT 116 overexpressing 

LDLR (Figure 4.6 E) compared to control cells. Even after 30 minutes of serum starvation, 

we observed that AKT was induced less under LDLR overexpression conditions. HT 29 

cells had high induction of PTEN in LDLR overexpressing cells (Figure 4.6F). Contrary to 

HCT 116 cells, AKT induction at basal level was significantly higher in HT 29 cells with 

ectopic expression of LDLR. We could only observe a significant decrease in AKT 
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induction after 60 minutes of serum replenishment in HT 29 cells overexpressing LDLR 

compared to control cells. DLD 1 cells had higher PTEN induction at basal level under 

LDLR overexpression conditions though it was not statistically significant Figure 46 G). 

After 4 hours of serum starvation, there was a much higher induction of PTEN activity in 

DLD 1 cells overexpressing LDLR compared to control. However, 30 and 60 minutes of 

serum replenishment, LDLR overexpression did not seem to have an effect on induction of 

PTEN since it was found to be the same as control cells. These results provide another line 

of evidence suggesting that elevated expression of LDLR protein could suppress the 

proliferation and growth of tumours by PTEN mediated suppression of AKT signaling 

pathway.  
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Figure 4.6. LDLR over-expression suppresses AKT induction through PTEN signaling 

in CRC cells. p3XFLAG-CMV-7.1 empty vector (control) and p3XFLAG-CMV-7.1 LDLR 

expressing HCT 116, HT 29 and DLD 1 cells were used to analyze PTEN and AKT 

induction by serum starving the cancer cells for 4 hours followed by serum replenishment 

for 30 and 60 minutes. Relative expression of PTEN was normalized with phospho-PTEN 

expression. Relative expression of phospho-AKT was normalized with total AKT 

expression. Representative image (A) and quantification (n=3) showing ratio of expression 

levels of t-PTEN/p-PTEN and p-AKT/t-AKT in (B, E) HCT 116, (C, F) HT 29 and (D, G) 

DLD 1 respectively. Experiment was repeated three times. Results are represented as mean 

± SEM (standard error of mean), *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Statistical analysis 

was performed using student t-test. P values were calculated using Graph-Pad Prism 3.0 

software 
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Overexpression of LDLR enhances the growth inhibitory effect of lovastatin 

As we have discussed in our earlier sections, statins have showed inconsistency in 

their efficacy to retard tumour growth in clinical and epidemiological studies. Results in 

preclinical models have been more convincing in suggesting that statins have an anti-

proliferative effect and that they can induce cell cycle arrest and apoptotic response in 

cancer [58-60]. KRAS mutation, altered ratio between full length HMGCR and HMGCR 

v1 splice variant which shows a deletion of statin binding domain containing exon 13, are 

some of the mechanisms associated with differential host sensitivity to statins [61]. In our 

initial finding (chapter3), we reported that all three colorectal cancer cells selected for the 

study had significantly low levels of LDLR protein compared to untransformed colonic 

mucosa cells, with DLD 1 showing the maximum downregulation. Next, we observed that 

DLD 1 cells showed the least sensitivity to statins amongst the three colorectal cancer cell 

lines, with respect to upregulation of LDLR, though they did increase HMGCR protein 

level at a later time point. DLD 1 cells were also able to maintain their cell viability and 

proliferation rate in the presence of statins, compared to HCT 116 and HT 29 cells which 

showed a significant decrease in cell viability on statin treatment. These results suggested 

that low LDLR protein in DLD 1 cells was protecting the cells from statin mediated anti-

growth and survival effects. We, therefore sought to examine the role of LDLR in 

modulating the response of colorectal cancer cells to cholesterol reducing drug like 

lovastatin. To that effect, we measured cell viability in LDLR over expressing cell lines 

treated with or without 20µM of lovastatin for 24 hours by MTT assay. Our results showed 

that LDLR overexpression enhanced the growth inhibitory effect of lovastatin by 

significantly reducing cell viability in all three colorectal cancer cell lines compared to 

control cells transfected with empty vector (Figure 4.7).  
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Figure 4.7 Overexpression of LDLR enhances the growth inhibitory effect of statin. 

Colorectal cancer cells (HCT 116, HT 29 and DLD 1) were transfected with p3XFLAG-

CMV-7.1-Empty vector (control) or p3XFLAG-CMV-7.1-LDLR. 24 hours post 

transfection, cells were trypsinized and re-plated in 96 well plates (2000 cells/well) 

followed by treatment with or without lovastatin (20uM) for 24 hours. At the end of time 

point, MTT assay was performed. Bar graphs represent fold change in cell viability of HCT 

116, HT 29 and DLD 1 cells expressing p3XFLAG-CMV-7.1-Empty vector (control) or 

p3XFLAG-CMV-7.1-LDLR treated with or without lovastatin for 24 hours. Experiment 

was repeated three times. Results are represented as mean ± SEM, *p ≤ 0.05, **p ≤ 0.01, 

***p ≤ 0.001. Statistical analyses were performed using student t-test. P values were 

calculated using Graph-Pad Prism 3.0 software. 
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4.4 Discussion 

  The low density lipoprotein receptor or LDLR has traditionally been implicated in 

clearance of blood LDL cholesterol to maintain intracellular and extracellular cholesterol 

homeostasis[1]. Besides its role as a cargo receptor delivering cholesterol and essential 

fatty acids into the cell, not much is known about its role in etiology of chronic diseases 

like cancer. LDLR, being an indispensable component of cellular cholesterol homeostasis, 

is under stringent sterol mediated negative feedback regulation by a family of 

transcriptional factors called sterol regulatory element binding proteins or SREBPs [62]. 

SREBPs have three isomers, SREBP1a, SREBP2 and SREBP1c which despite of having a 

significance sequence overlap, have distinct role to play in lipid and cholesterol metabolic 

pathways. In humans, SREBP1c primarily regulates fatty acid metabolism whereas 

SREBP1a and SREBP2 on account of their almost identical N-terminal transcriptional 

domain regulate cholesterol metabolism [63]. LDLR protein turnover is regulated mainly 

by the activity of PCSK9 serine protease that degrades LDLR by endosomal lysosomal 

pathway or by IDOL which degrades LDLR in the cell by polyubiquitination and 

proteasomal degradation pathway. The other component of cholesterol metabolism which 

has got a lot more attention for therapeutic intervention as a part of cancer therapy, is the 

cholesterol biosynthesis or mevalonate pathway. Pharmacological inhibition of key 

enzymes of this pathway such as HMGCR, squalene synthase, oxidosqualene cyclase and 

farnesyl pyrophosphate transferase have shown promising in vitro results that underline the 

significance of cholesterol biosynthesis pathway in initiation and progression of cancer. 

Statins in particular, have been a subject of intensive research for its potential anti-

cancerous effects. Several in vitro studies have supported the idea that statins activate anti-

proliferation and pro-apoptotic markers in cancer cells. By inhibiting HMGCR enzymatic 

activity, statins reduce the flux of mevalonate and downstream metabolites of the 

cholesterol biosynthesis pathway, most importantly isoprenoids and cholesterol, thus 

reducing cancer cell proliferation and growth[64]. Clinical data has not always 

complimented the in vitro results from statin study and there are few cases where 

contradictory claims have been made [65]. However, there is an increasing body of 

evidence corroborating the statin studies done in cancer cell lines. Interestingly, in a 
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number of case control population based studies, host specific differential sensitivity to 

statins have been reported which was associated with the KRAS mutation status, ratio of 

full length HMGCR to alternately spliced HMGCR v1 variant, over expression of multiple 

drug resistance associated proteins such as P-glycoproteins, breast cancer resistance 

protein (BCRP/ABCG2) or elevated PCSK9 levels [66]. High expression of mevalonate 

pathway associated genes has also been associated with statin resistance in cancer cell lines 

and clinical biopsies[67]. Cancer cells, owing to their increased requirement of cholesterol, 

upregulate expression of several enzymes of cholesterol biosynthesis pathway, including 

HMGCR, the rate limiting enzyme. Loss of sterol mediated negative feedback regulation 

of HMGCR is one of the several mechanisms through which cancer cells increase 

endogenous cholesterol synthesis. This is achieved through alteration of LDLR gene 

expression, loss of ABCA1/ABCG1, LXR mutation, loss of function mutation in ER 

membrane associated E3 ligase gp78 and upregulated growth factor or steroid hormone 

receptor through hyperactive PI3K/AKT or ERK1/2 signaling [68-70]. Recently it was 

reported that mutant p53 upregulates mevalonate pathway in breast cancer cells by 

associating with sterol gene promoters through SREBPs [71]. Collectively, these evidence 

emphasize the significance of cholesterol biosynthesis and its regulation in initiation and 

growth of cancer. LDLR mediated cholesterol uptake pathway on the other hand, has not 

attracted much of an attention for its role in tumourigenesis. In several cancers mainly 

prostate cancer, colorectal cancer and ovarian cancer aberrant expression of LDLR and loss 

of its sterol mediated feedback regulation has been reported [13, 15, 72]. In a recent study 

it was shown that statins reduce cell proliferation in androgen independent prostate cancer 

cells PC-3 which show a loss of LDLR feedback regulation [73]. In accordance with 

previous studies, we observed elevated expression of HMGCR, SREBP1, SREBP2 and 

PCSK9 in azoxymethane induced colonic tumour rat model indicating a deregulation of 

lipogenic and cholesterol metabolism (chapter 2). Furthermore, we observed significantly 

low expression of LDLR protein in colonic tumour compared to normal mucosa. Based on 

our in vivo observations, we hypothesized that low LDLR protein expression is associated 

with increased tumour growth and survival. To test our hypothesis, we established a cell 

culture based model system consisting of three human colorectal cancer cell lines , HCT 

116, HT 29 and DLD 1 cells broadly representing the genetic landscape of human CRC 
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(Chapter 3). All three colorectal cancer cell lines showed significantly low expression of 

LDLR protein compared to untransformed colonic mucosa cells along with high expression 

of HMGCR, SREBPs and PCSK9. Interestingly, DLD 1 cells with the least expression of 

LDLR had the highest cell viability and proliferation rate. Lovastatin treatment was unable 

to induce LDLR mRNA and protein expression in DLD 1 cells unlike HCT 116 and HT 

29 cells. Additionally, they showed resistance to lovastatin mediated reduction of cell 

viability in comparison to HCT 116 and HT 29 cells. We made similar observations with 

RO 48-8071, another cholesterol reducing drug that targets oxidosqualene cyclase (OSC), 

the downstream enzyme of mevalonate pathway. These findings supported the idea that 

LDLR protein expression in colorectal cancer cells is correlated with their growth and 

proliferation as well as their response to cholesterol reducing drugs like statins and RO 48-

8071. To fully understand the role of LDLR in cancer progression and drug response and 

to explore the molecular pathways through which it mediates it anti-proliferative effects, 

we ectopically overexpressed LDLR in the cancer cells using a CMV driven expression 

vector. The first observation we made was a significant reduction of cell viability in 

colorectal cancer cells with LDLR overexpression. This was contrary to what one would 

expect because of the role LDLR is known to play in a cell which is uptake of cholesterol. 

However, our results indicate that LDLR could be interacting with cell survival and 

proliferation pathways to negatively regulate cancer cell growth. A plausible scenario is 

that in these cells, LDLR is primarily involved in regulation of cancer cell growth instead 

of cholesterol uptake which makes the mevalonate pathway indispensable as well as a 

target for therapeutic intervention. In order to explore the role of LDLR in cancer 

progression, we assessed cancer cell motility and migration rate in LDLR overexpressing 

colorectal cancer cells and compared that to control cells transfected with empty vector by 

performing time course wound healing scratch assay. Our results showed that ectopic 

overexpression of LDLR significantly reduced migration of cells from the wounded edges 

to cell free scratched area compared to control cells. HT 29 had the slowest migration rate 

amongst the three cancer cells in both control and LDLR overexpressing group. High cell 

motility and migration ability is a phenotype acquired by cancer cells to support invasion 

and metastasis. This requires cytoskeletal rearrangement involving altered expression and 

activity of several genes associated with actin polymerization and its regulation including 
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Rho GTPase, Rac, PI3K/AKT [74, 75]. Our results suggest that ectopically expressed 

LDLR could be interacting with some of these pathways to negatively regulate the 

expression of pro-migratory actins resulting in reduction of cancer cell motility and 

migration rate. Since wound healing scratch assay is a semi quantitative assay this result 

could be complimented by trans-well cell migration assay for further validation. In order 

to elucidate the underlying signaling pathways through which LDLR exerts it putative 

tumour suppressor functions, we studied the MAPK signaling pathway. In a genome wide 

association study, MAPK signaling pathway was identified as one of the most strongly 

associated genetic markers for colorectal cancer [26, 76]. This pathway relays extracellular 

cues such as growth hormones, cytokines, inflammation or stress to the intracellular 

transcriptional machinery which responds by altering gene expression resulting in altered 

cellular growth, proliferation, differentiation, apoptosis etc. The three main downstream 

effector kinases of the MAPK signaling cascade, are the extra cellular response kinases 

(ERK1/2), c-Jun N-terminal kinases or stress activated protein kinases1 (JNK or SAPK1) 

and stress activated protein kinases 2 (SAPK 2 or p38) [28]. While ERK1/2 is generally 

associated with mitogenic responses, SAPK1 (JNK) and SAPK2 (p38) are associated with 

cellular stress and inflammatory responses. Early genetic alterations in CRC such as KRAS 

and BRAF mutations i, result in constitutive activation of ERK1/2 signaling which 

increases proliferation of tumour cells. ERK1/2 signaling has also been implicated in later 

stages of CRC tumourigenesis such as invasion and metastasis [77, 78]. Downregulation 

of p38α and inhibition of p38 MAPK activity is associated with increased colonic tumour 

and lung metastasis [34, 36]. Recent studies in colorectal cancer cells have shown that 

selenite induces apoptosis in colon cancer cells and xenograft tumours by activating p38 

MAPK mediated inhibition of cyclic adenosine monophosphate (cAMP) response element 

binding protein (CREB) and Bcl2 pro-survival pathways [36]. Another stress activated 

kinase, c-Jun N-terminal kinase (SAPK) is known to have a context dependent function 

depending on the cell type, external or internal cues and growth phase. There are studies 

that have showed that SAPK exerts its anti-tumourigenic effects by inducing apoptotic 

response through inhibition of NF-Kβ signaling [79].  SAPK or the JNK signaling pathway 

has also been shown to regulate the multi drug resistance (MDR) mechanism of ABCG2 

transporter protein in colon cancer cells such that the inhibition of JNK activity reverses 
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the MDR effect of ABCG1 [80]. For the purpose of our study, we serum starved control 

cells and LDLR over expressing cells for 4 hours followed by serum replenishment for 30 

minutes and 60 minutes to analyze the effect of LDLR over expression on induction of 

MAPK signaling pathways. Phosphorylated MAPK protein was normalized with total 

protein to show the induction of the protein. Our results showed that LDLR overexpression 

significantly reduced the induction of ERK signaling after serum replenishment in HCT 

116 and HT 29 cells overexpressing LDLR compared to control cells. LDLR 

overexpressing DLD 1 cells had an overall low induction of ERK signaling at all time 

points in comparison with control cells. This suggests that in these colorectal cancer cells 

LDLR could be interacting with ERK signaling to reduce cancer cell growth and 

proliferation. In case of p38 signaling which has shown to have an anti-tumourigenic effect 

on the growth of several cancer cells, we observed that LDLR overexpression significantly 

induced p38 signaling after 4 hours of serum starvation in HCT 116 with ectopic LDLR 

overexpression compared to control cells though we did not observe the same trend after 

30 and 60 minutes of serum replenishment. HT 29 and DLD 1 cells showed a higher 

induction of p38 at all time points in LDLR overexpressing cells compared to control cells. 

Given the role p38 as a tumour suppressor as discussed earlier, our results suggest that 

LDLR could be functioning in association with p38 MAPK signaling to inhibit tumour cell 

growth and proliferation. Analysis of the effect of LDLR overexpression on SAPK 

signaling could be interpreted in more than one way since it showed differential regulation 

in the three colorectal cancer cell lines. LDLR overexpression reduced induction of SAPK 

Jun signaling after serum replenishment in HCT 116 cells. In HT 29 and DLD 1 cell, we 

saw an opposite trend where LDLR overexpressing cells showed a higher induction of 

SAPK signaling at basal levels as well as after of serum replenishment for 30 and 60 

minutes compared to control cells. Our results suggest that SAPK or JNK pathway is 

differentially regulated by LDLR in colorectal cancer cells, however the physiological 

relevance of this pathway and interaction with LDLR in modulation of cancer cell growth 

in unclear. The other possibility could be that LDLR exerts its anti-tumourigenic effect 

independent of SAPK Jun signaling pathway. Taken together, we established that LDLR 

interacts with the components of MAPK signaling pathway to regulate the growth and 

survival of colorectal cancer. The other growth signaling pathway, which was of interest 
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to us, was the AKT pathway that is one of the most frequently altered signaling pathways 

in cancer. We also analyzed the effect of LDLR overexpression on PTEN induction, which 

is the negative regulator of AKT signaling. AKT is downstream of PI3K and is activated 

by phosphorylation. In order to determine the level of AKT induction, we normalized 

phospho-AKT with total AKT. In case of PTEN, which is inactivated by phosphorylation, 

we normalized total PTEN with phospho-PTEN to analyze its induction. Our results 

showed that all three colorectal cancer cells over expressing LDLR had high basal 

induction of PTEN after serum replenishment compared to control cells. This was 

complimented by inhibition of AKT signaling as indicated by low p-AKT/t-AKT 

expression suggesting that LDLR overexpression decreases in AKT signal induction in 

HCT 116, HT 29 and DLD 1. Overall, our results showed that LDLR over expression 

suppresses AKT signal induction through PTEN activation in colorectal cancer cells, 

implying that LDLR modulate tumour growth by regulating PTEN-AKT signaling. 

                In conclusion, our results confirmed that ectopic over expression of LDLR in 

colon cancer cell lines negatively regulates cancer cell viability and motility, underlining 

its anti-tumourigenic properties and putative tumour suppressor role in cancer. 

Overexpression of LDLR was also shown to enhance the anti-proliferative and growth 

inhibitory effect of lovastatin resulting in greater reduction of cell viability. We further 

established that overexpressed LDLR negatively regulates the growth and survival of these 

cancer cells by modulating the MAPK, AKT and PTEN signaling. These results suggest 

that upregulating LDLR expression can retard tumour growth and motility in a subset of 

colonic tumours, which are exclusively dependent on mevalonate pathway for their 

survival and growth. It appears that these colonic tumours, which do not seem to require 

LDL cholesterol for their growth represent an aggressive phenotype that is selected and 

clonally expanded with increasing downregulation of LDLR and a concordant elevation of 

cholesterol biosynthesis owing to constitutive high expression of HMGCR and SREBP2. 

Besides imparting a growth and survival advantage to the colonic tumours, low LDLR 

expression is also correlated with resistance to cholesterol reducing drug treatment, as seen 

in case of DLD 1. Based on the current findings, we propose that upregulation of LDLR 

using PCSK9 inhibitors in conjunction with statins could give promising results in 

retarding growth and proliferation of cancer cells in a subset of CRC tumours.  
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               Altered lipid and cholesterol biosynthesis has increasingly been recognized as a 

signature of several cancers types. A growing body of evidence from clinical and 

epidemiological studies has alluded to the possibility that accumulation of cholesteryl 

esters is associated with a more aggressive tumour phenotype [1, 2]. In pre-clinical models, 

the cholesterol biosynthesis pathway inhibitors such as statins have shown promising 

results in reducing tumour growth and cancer cell proliferation, underlining the 

significance of cholesterol biosynthesis in tumourigenesis [3-7]. In a study conducted by 

Clouston et.al it was shown that dietary lipid modulate the tumour growth inhibitory 

effectors of lovastatin [20]. In the same study it was shown that all tumours regardless of 

dietary lipid or lovastatin treatment, exhibit high expression of HMGCR protein and low 

level of LDLR protein compared to normal mucosa from tumour bearing rats. Besides few 

isolated reports on deregulation of LDLR expression in cancer, mainly in prostate and 

colorectal cancer cells, the correlation of LDLR with cancer has not been explored in great 

detail [8-10]. Based on the observations made by Cloustan and some of the earlier studies 

reporting downregulation of LDLR in colonic tumour, we hypothesized that low LDLR 

expression represents an aggressive CRC phenotype with enhanced growth and survival. 

To test our hypothesis, we first assessed the expression of key proteins of cholesterol 

homeostasis pathway in experimentally induced colonic tumour rat model. Our results 

showed that colonic tumours exhibited high protein expression of HMGCR, SREBP1, 

SREBP2 and PCSK9 along with a significant downregulation of LDLR protein (refer to 

Chapter 2) in comparison to normal appearing mucosa from tumour bearing rats. The 

increase in HMGCR, SREBP1 and SREBP2 protein expression implied that tumours 

preferred to upregulate the lipid and cholesterol biosynthesis pathway for their growth. 

Furthermore, low expression of LDLR protein along with elevated protein levels of PCSK9 

in colonic tumour suggested that downregulation of LDLR possibly was mediated through 

the PCSK9 lysosomal degradation pathway, a phenotype preferred for sustaining growth. 

The question of whether or not the low LDLR expression in colonic tumours was correlated 

with a more aggressive phenotype characterized by enhanced growth, cell proliferation or 

the resistance to chemotherapeutic interventions, particularly cholesterol reducing drugs, 

were important questions that were addressed in the present study.  
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In order to examine the role of LDLR in colon carcinogenesis and its relevance to 

human carcinogenic process, it was important to determine if one or more CRC cell lines  

also exhibit low LDLR status and hence could serve as preclinical models. We selected 

three colorectal cancer cell lines that allowed us to study the role of LDLR in CRC 

tumourigenesis and the underlying mechanisms, from a human disease perspective. The 

three human colorectal cancer cell lines we selected for our study (HCT 116, HT 29 and 

DLD 1) broadly represented the main molecular subtypes and key mutations found in CRC.  

Our results indicated that all three colorectal cancer cell lines displayed differential 

expression of LDLR protein and mRNA at a level significantly lower than untransformed 

colonic mucosa cells (Discussed in chapter 3). Interestingly, HMGCR, SREBP1, SREBP2 

and PCSK9 expression at both mRNA and protein levels, were elevated in all colorectal 

cancer cell lines. Thus our cell line data corroborated our in vivo data from experimentally 

induced colonic tumour supporting a model in which human colorectal cancer cells exhibit 

a tumour phenotype with low LDLR expression and an elevated cholesterol biosynthesis 

pathway. In the same study, we also found that DLD 1 cells had the lowest LDLR 

expression accompanied by the highest cell viability and proliferation rate amongst the 

three cancer cell lines. This lends further supports to our hypothesis that low LDLR 

expression gives a growth and survival advantage to colonic tumours.  We also observed 

that unlike HCT 116 and HT 29 cells which upregulated LDLR expression in response to 

the cholesterol reducing drugs lovastatin and RO 48-8071, DLD 1 cells did not upregulate 

their LDLR expression. Furthermore the viability of DLD 1 cells is minimally affected by 

lovastatin or RO 48-8071 treatment, whereas both HCT 116 and HT 29 respond to these 

treatments with cell viability significantly reduced.     

Taken together, these results suggested that the lowering of LDLR protein 

expression during colorectal cancer progression is not only associated with a more 

aggressive tumour phenotype characterized by enhanced growth but that it also may 

contribute to the resistance to cholesterol reducing therapeutic interventions. Thus it 

appears that during colorectal cancer progression, a group of hyper-proliferative 

transformed cells with low LDLR and heightened cholesterol biosynthesis (indicated by 

high HMGCR/SREBP2 expression) are selected and clonally expanded to form aggressive 

tumours that may or may not be sensitive to pharmacological inhibitors targeting 
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cholesterol biosynthesis pathway. Based on the responsiveness of three cancer cell lines to 

cholesterol lowering drugs and the levels of various cholesterol homeostasis associated 

proteins, we concluded that all three cell lines could serve as pre-clinical models to 

determine whether or not LDLR plays a role in colon carcinogenesis.  We reasoned that all 

three cell lines representing tumour phenotypes with varying degree of deregulated 

cholesterol biosynthetic pathway could serve as ideal tools to study the role of LDLR in 

1.) Regulating the growth of colon cancer cells 2.) Modulating the response of cancer cells 

to inhibitors of cholesterol biosynthesis pathway such as statins. 

              To get a better insight into the potential tumour suppressor role of LDLR in CRC 

and the underlying signaling pathways through which it exerts its anti-tumourigenic effect, 

we ectopically overexpressed LDLR in all three CRC cell lines using a CMV driven 

overexpression vector. After confirming the overexpression of LDLR through Western blot 

analysis, we assayed for the effect of LDLR overexpression on CRC cell viability. (refer 

to chapter 3, figure 3.1). Our results showed that ectopically overexpressed LDLR 

significantly reduced cell viability in all three colorectal cancer cells including DLD 1 cells. 

Additionally, overexpressed LDLR enhanced the growth inhibitory effect of lovastatin in 

all cancer cell lines (Figure 4.7). The negative effect of elevated LDLR protein expression 

on cancer cell viability suggests that LDLR primarily plays the role of a potential growth 

inhibitor or tumour suppressor and not just a receptor for cholesterol uptake in these cancer 

cells. Hence, one would expect that these cancer cells would be more dependent on the 

mevalonate pathway for their growth and survival making them vulnerable to therapeutic 

drugs that target cholesterol biosynthesis, as is the case we noted for HCT 116 and HT 29 

cells. DLD 1 was an exception since despite being dependent on cholesterol biosynthesis 

for its growth; it was resistant to cholesterol biosynthesis inhibitors. Overall this result 

implies that a combination therapy targeting the cholesterol biosynthetic pathway along 

with LDLR upregulation through inhibiting PCSK9 inhibition and hence LDLR 

upregulation could be more effective.  For example, in the case a tumour phenotype similar 

whose expression pattern in terms of PCSK9 and LDLR levels is similar to DLD 1 this 

may be an effective therapy in reducing tumour growth.  

            To explore the role of LDLR in CRC development, we assessed the cell motility 

and migration rate of colorectal cancer cells overexpressing LDLR and comparing that with 
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empty vector transfected control We observed that cancer cells with overexpressed LDLR 

had significantly reduced motility and migration rates as indicated by the distance travelled 

by the cancer cells from the wounded edges to the cell free scratched area over a period of 

24 hours (Figure 4.2). Increased cell motility and migration ability is a phenotype acquired 

by cancer cells as they become more invasive. It is partially achieved by cytoskeletal 

remodeling through deregulation of actin polymerization which involves several signaling 

pathways such as PKB/AKT, Rho GTPase and Rac mediated pathways[11]. There is 

published evidence that supports a role for LDLR related proteins-1 (LRP-1) in promoting 

cancer invasiveness through modulation of the the ERK and JNK pathways [12, 13] but 

there is no evidence linking LDLR with cancer cell motility or invasiveness. This is the 

first study to report a correlation between LDLR and cancer cell motility. The exact 

mechanism through which LDLR could be regulating cell motility and migration in cancer 

needs to be investigated in future studies. 

           In order to investigate the molecular mechanisms through which LDLR could 

potentially modulate the growth and survival of cancer cells, we studied the two main 

growth signaling pathways that are deregulated in the majority of cancers including 

colorectal cancer, one is the MAPK signaling and the other is the AKT/PTEN signaling. 

We analyzed the induction of the three main effector kinase families of MAPK signaling 

pathway –ERK, p38 and SAPK in CRC cells with an ectopic overexpression of LDLR 

growing for 4 hours in serum depleted media followed by serum replenishment for 30 and 

60 minutes. Similar treatment conditions were used to analyze the induction of AKT and 

PTEN signaling. Overall, our results established that LDLR overexpression decreases 

induction of pro-growth and proliferation signaling through lowering of the ERK and AKT 

induction. Ectopically overexpressed LDLR also activates anti-tumourigenic signaling 

through the induction of the p38 and PTEN signalling. Even though we observed 

differential regulation of SAPK in cancer cells with overexpressed LDLR, at this point in 

time it is not clear as to how and what role the LDLR- SAPK pathway interaction could 

play in tumourigenesis. Taken together, we demonstrated that ectopically overexpressed 

LDLR negatively regulates the growth and survival of colonic tumours by inducing p38 

and PTEN signaling and reducing the induction of ERK MAPK/AKT signaling. 
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                 Through our work, we established that a subset of potentially aggressive colonic 

tumours exhibit low LDLR protein expression complimented with elevated expression of 

HMGCR and SREBP2. Heightened PCSK9 expression in colonic tumours alludes to the 

possibility of its involvement in high LDLR turn over in these cancer cells, though we 

cannot rule out another post-translational regulator of LDLR known as the Inducible 

Degrader of LDLR (IDOL). Since we observed significantly lower expression of LDLR 

mRNA in colorectal cancer cells compared to untransformed mucosa cells, it would be 

interesting to analyze the expression of micro-RNAs, such as the recently validated micro-

RNA 185 that targets LDLR mRNA for degradation [14]. The role of inflammation in 

cancer is well appreciated as tumour cells and their microenvironment are known to secrete 

pro-inflammatory cytokines and chemokines such as tumour necrosis factor-α (TNF-α), 

interleukins and interferons [15]. Recently, it was reported that inflammatory stress 

induced by interleukin-1 β (IL-1β), TNF-α, IL- 6 and lipopolysaccharides (LPS) resulted 

in statin resistance in human mesangial cells [16]. In the same study, it was shown that 

inflammatory stress increased HMGCR expression and enzymatic activity through 

upregulation of SCAP-SREBP2 pathway. Colonic tumours have been shown to express 

high levels of TNF-α, IL-1β, IL-6 which are secreted in an autocrine fashion to maintain a 

state of low grade chronic inflammation that supports their growth [17]. Therefore, it is 

possible that inflammation could play a role in loss of sterol mediated negative feedback 

regulation of HMGCR resulting in upregulation of cholesterol biosynthesis pathway as 

well as statin resistance. Inflammation has also been reported to induce PCSK9 expression 

that results in accelerated degradation of LDLR and increased serum cholesterol levels 

[18]. Thus inflammation can have pleiotropic effects on cholesterol homeostasis primarily 

resulting in increased HMGCR expression, statin resistance and increased PCSK9 

mediated degradation of LDLR.  An increase in HMGCR expression and enzymatic 

activity could be the reason for further downregulation of LDLR to avoid cellular toxicity 

due to accumulation of free cholesterol. Upregulation of Acyl CoA cholesterol acyl 

transferase (ACAT) expression in cancer and altered compartmentalization, trafficking and 

storage of LDL cholesterol and endogenously derived cholesterol in cancer are other 

factors that could contribute to increased cholesterol biosynthesis and low LDL cholesterol 

uptake [9, 19]. 
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To summarize, we show that LDLR plays the role of a potential tumour suppressor 

in colorectal cancer cells. It appears that during cancer progression, transformed cells with 

low LDLR expression and elevated cholesterol biosynthesis pathway are selected and 

clonally expanded to acquire a more aggressive tumour phenotype characterized with 

enhanced cell viability, motility and resistance to therapeutic drugs targeting the 

cholesterol biosynthesis pathway. In a clinical setting this means that low LDLR expression 

in CRC patients could serve as a prognostic marker for administration of a combination 

therapy that includes targeting of both cholesterol biosynthesis pathway through statins and 

LDLR through PCSK9 inhibitors. Additionally, a prolonged use of statins and PCSK9 

inhibitors could reduce the risk of re-occurrence of adenomas in the colon after 

colonoscopy by targeting the seemingly dormant but potentially aggressive transformed 

colon cells that somehow escaped the treatment.  
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Figure 5.1 Overall perspective of the role of LDLR in CRC development 

Schematic diagram showing transformed colonic cells acquiring low LDLR protein 

expression phenotype as they accumulate mutations, which triggers their clonal selection 

and expansion within the population of tumour cells. These cells expressing high HMGCR 

and low LDLR protein rapidly proliferate and are resistant to chemotherapeutic 

intervention by statins. The combined effect of LDLR upregulation through PCSK9 

inhibitions and statins reduces the cell viability, growth and migration of these cancer 

cells. This growth inhibitory effect of upregulated LDLR is due to suppression of AKT/ERK 

and induction of p38/PTEN signaling. 
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Significance of the study and future directions  

In this dissertation, a series of experiments were carried out to test the hypothesis 

that LDLR plays an important role in CRC development and whether upregulation of 

LDLR will retard the growth of CRC. We demonstrated that LDLR overexpression 

negatively regulates CRC cell growth and motility by modulating the MAPK and 

AKT/PTEN pathway. Our work has expanded the information on the expression of key 

molecules of the cholesterol homeostasis pathway in both an experimentally induced 

colonic tumour rat model as well as a cell culture model. More importantly, this study has 

given us insight into the potential role of LDLR in CRC development as well as in the 

response to therapeutic interventions that target the cholesterol biosynthetic pathway. This 

study has also raised additional questions about the role of cholesterol biosynthetic 

pathway and LDLR in particular in CRC pathogenesis. It will therefore be of interest to 

investigate the stage of CRC development in which lowering of LDLR expression is critical 

for tumour growth. Another area of interest raised is in regard to the role that systemic 

inflammation plays in the development of CRC.  It has been suggested that tumours which 

develop under a pro-inflammatory environment have a different genotype than those that 

are sporadic in nature.  Future studies should focus on determining LDLR expression in 

these cells and furthermore whether they respond to cholesterol lowering drugs.  Whereas 

the results presented in this dissertation can be considered quite convincing from a 

mechanistic point of view, they also raise a number of questions which should be pursued 

in the future. The importance of in vitro findings should be tested in vivo. To further explore 

the importance of a deregulated cholesterol biosynthetic pathway and LDLR, it will be 

important to carry out some of the studies in an in vivo models. The conditional 

overexpression or knockout of LDLR in colonic cells may help address questions about 

the role of LDLR in various stages of CRC development including metastasis. It will be 

important to determine as to when deregulation of the cholesterol biosynthetic pathway is 

important during the multistep process of colon carcinogenesis. Pre-clinical models should 

be used to understand the factors which lead to lowering of LDLR in tumours. There is 

limited or negligible information pertaining to the role of SREBPs and PCSK9 in the 

development of colonic tumours.  CRC is a heterogeneous disease in which the genesis and 

biology of tumours appearing in the right side of the colon differ from those emerging in 
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left side of the colon. Therefore it is critical to determine whether or not there is a difference 

among these tumour types with respect to deregulation of  the cholesterol biosynthetic 

pathway and sensitivity to HMGCR inhibitors. Furthermore, it will be important to target 

not just HMGCR but other molecules such as PCSK9 and SREBPs to determine their 

importance in CRC development.  

            The findings of the present dissertation present a novel avenue of investigation that 

is worth pursuing in human based clinical studies. An understanding of the biological 

heterogeneity in human CRCs depending on their location along the colonic axis, mutations 

spectra and their metabolic phenotypes must be considered, to advocate the role of 

personalized medicine in CRC prevention. There is a strong association between obesity, 

metabolic syndrome and diabetes with CRC as well as cardiovascular diseases.  Therefore, 

it is important that oncologists assess the role of cholesterol lowering drugs in the 

prevention of cardiovascular disease as well as cancer. 

The findings of the present study have significant translational value in actualizing 

the concept that many chronic diseases have common etiology and they share aberrant 

metabolic pathways. In this context, the lipogenic biosynthetic pathway and LDLR may 

play a central role in carcinogenesis and cardiovascular diseases. 
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Appendix 1. Pjp1520 Retroviral expression vector (DNASU) 
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Appendix 2. p3XFlAG-CMV-7 expression vector (Sigma) 
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