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ABSTRACT 

Animals living or breeding in highly seasonal temperate and polar 

ecosystems require stored energy (i.e. lipids and protein) in the form of 

somatic reserves to prepare for predictable energetically demanding stages 

within their annual cycle, such as hibernation, migration, reproduction, or 

overwintering. However, the physiological mechanisms underlying fat and 

muscle gain in free-living vertebrates are not fully known. Nonetheless, 

research in mammals and poultry have identified a number of energy-

regulating hormones that mediate metabolic (peripheral) and behavioural 

(central) effects on lipid and protein stores. Here I extensively reviewed the 

mechanistic advances on energy-regulating hormones in birds, and then 

integrate concepts from mammalian studies to design a conceptual 

framework for field-testing in avian systems. To test this, I then used a 

comparative approach to examine the temporal and stage-related variation 

in circulating levels of fat- (baseline corticosterone) and muscle-promoting 

(testosterone and insulin-like growth factor-1 or IGF-1) hormones before 

spring migration in captive male snow buntings (Plectrophenax nivalis) and 

breeding in free-living female common eiders (Somateria mollissima). 

Baseline corticosterone did not appear to signal for fat deposition in pre-

migratory buntings, while slight and rapid elevations in eiders may 

stimulate fattening and may fuel reproduction, respectively. Elevated 

testosterone in buntings may mediate skeletal muscle growth as the 

variation temporally matched muscle scores, where elevations in female 

eiders are potentially more important for breeding behaviours. In both 

species, the down-regulation of IGF-1 may represent a fat-sparing action, 

where the up-regulation may be for visceral organ remodeling. My results 

demonstrate potential for hormone pleiotropy on complex phenotypes, and 

my thesis collectively highlights the value of examining naturally circulating 

hormone levels as foundational information on phenotypic changes across 

a broad range of birds with stages in highly seasonal ecosystems.   
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GLOSSARY OF TERMS 

Although terms and definitions may be used differently in other scientific 

literature, we define terms here specifically for this thesis document: 

 

 

Energetic gain: a broad categorization of energy assimilation and 

conversion into nutrient stores (i.e. carbohydrate, protein, and lipid 

storage), causing an overall positive energy balance in the organism. 

 

Energetic readiness: an ecological-based term of adaptive energetic gain 

that occurs during periods, or life-history (sub)stages, of long-term somatic 

energy storage associated with hyperphagia, fattening, and muscle gain. 

 

Homeostatic mechanisms: short-term, acute regulation of physiological 

processes that maintain energy balance through corrective responses from 

external or internal perturbations, including hormonal responses to energy 

deviation from seasonal levels. 

 

Rheostatic mechanisms: long-term control of homeostasis, such that 

temporal or seasonal shifts in the underlying mechanisms allow organisms 

to reach threshold levels of energetic storage. Rheostasis is therefore the 

physiological processes that regulate energetic readiness. 

 

Energy-regulating hormones: used synonymously with “metabolic 

hormones”; circulating hormones that regulate the increase or decrease of 

energy through both genomic and non-genomic pathways. 

 

Lipogenesis: the development of lipid accumulation (hypertrophy in 

mature adipocytes), in addition to the growth and division (proliferation) and 

conversion of pre-adipocytes into mature adipocytes (differentiation) in 

white adipose tissue. 

 

De novo lipogenesis: conversion of non-lipid macromolecules (i.e. 

carbohydrates and amino acids) into fatty acids within the liver.  

 

Myogenesis: a combination of myofiber (muscle cell) hypertrophy from 

protein synthesis and myosatellite cells’ proliferation and differentiation in 

adult skeletal muscle. 

 

Hypertrophy: increase in cell size, in the case of energetic stores referring 

to lipid (adipose) and protein (skeletal muscle) stores allows for greater 

intracellular storage of oxidative fuels. 
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Hyperplasia: increase in cell number; typically from the conversion 

(differentiation) of precursor cells to active/mature storage cells	
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CHAPTER 1 – GENERAL INTRODUCTION 

	
	
ENVIRONMENTAL SIGNALS OF SEASONAL CHANGES IN PHENOTYPES  

Many organisms living in highly seasonal temperate and polar ecosystems 

exhibit adaptive phenotypic changes within the annual life cycle (Wingfield 2005; 

Piersma & van Gils 2011). From a proximate point of view, the phenology of 

these phenotypic changes are thought to be regulated by an endogenous clock 

that controls circannual rhythms (i.e. annual patterns of phenotypic change; 

Gwinner 2003; Visser et al. 2010; Gwinner 2012). The central elements of this 

endogenous clock (i.e. circadian clock genes located in the suprachiasmatic 

nucleus of the hypothalamus; Kumar et al. 2010) are entrained by the temporal 

changes in environmental information, including photoperiod as the primary 

predictive cue (or daylength; Dawson et al. 2001; Helm et al. 2013) and other 

secondary modifiers, such as temperature, weather, food availability, and social 

status (Wikelski et al. 2008). Furthermore, unpredictable perturbations in 

environmental conditions (i.e. weather) can be stressful in that it may lead to 

direct disruption of life-history stages and cause facultative responses in 

individuals beyond those predictable changes (Wingfield & Ramenofsky 2011). 

Nonetheless, photosensitive organisms rely on photic information to synchronize 

the appropriate timing of circannual rhythms, despite being considered “free-

running” in constant photoperiod conditions (Gwinner 2012). In free-living 

animals, photoperiod and circannual rhythms together orchestrate changes in the 

physiology and behaviours that regulate phenotypic responses, such as 

colouration for camouflage (Ducrest et al. 2008), social behaviours for 

reproduction (Soares et al. 2010), thermoregulatory capacity for cold winters 

(Swanson 2010), and fat storage for migration (Ramenofsky 1990). These 

seasonal phenotypic responses have been broadly categorized into distinct life-

history stages to more easily examine the underlying intra- and inter-individual 

variation in physiological and behavioural traits within stage- and species-specific 

contexts (Piersma & van Gils 2011; Williams 2012).  



	

2	
	

From an ultimate point of view, phenotypic changes in response to 

environmental variation prepare organisms for demands of upcoming life-history 

stages, with many corresponding to energetic demands across a sequence of 

consecutively ordered or even overlapping stages within the life cycle (Wingfield 

2008). To meet the requirements of these energetically demanding stages such 

as migration (Ramenofsky & Wingfield 2007), hibernation or estivation (Geiser & 

England 2010), reproduction (Stephens et al. 2009), and overwintering 

(Giacomini & Shuter 2013), many organisms rely on energetic storage as an 

adaptive strategy to draw on nutrient (fuel) reserves. Further, individuals of many 

species must budget their total energy content by allocating food resources 

towards flexible adjustments in body composition (Guglielmo & Williams 2003; 

Hurst & Conover 2003; Arnold et al. 2006). Not surprisingly then, seasonal 

changes in food intake and rate of energy assimilation causes increases in body 

weight (Bairlein & Gwinner 1994; Loudon 1994). Taken together, the precise 

timing and execution for acquiring and storing energy is predicted to have 

important implications on performance traits during periods of expected high 

energy expenditure (Mrosovsky & Powley 1977; Moghadam et al. 2015).   

 

ENERGETIC READINESS: AN ECOLOGICAL PERSPECTIVE OF SEASONAL 

ENERGY STORAGE 

Across vertebrates, at the cellular level, the universal metabolic currency 

molecule is adenosine triphosphate (ATP) produced from all three major 

oxidative fuel sources (carbohydrates, lipids, and protein), with the majority of 

long-term energy production from stored lipids (Weber 2001). Expanding to the 

whole-organism scale, excess accumulation of these fuel sources in peripheral 

tissue (i.e. white adipose tissue, skeletal muscle, and liver) can be readily 

hydrolyzed and mobilized to provide energy to functionally active tissue (Jenni et 

al. 1998; Humphries et al. 2003). Previous studies often categorize the gain in 

stored energy into only specific stages (i.e. migratory fattening; Cornelius et al. 

2013). To encompass both molecular and whole-organism scales, I have 

developed the term energetic readiness for this thesis, which describes a 
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preparative period of long-term, somatic energy storage acquired specifically to 

fuel metabolic processes during energetically demanding periods.  

In using this term, I emphasize the articulation of long-term energy 

storage, as some species regulate within-day changes in body composition in 

response to local environmental conditions. For instance, a manipulative study 

on European starlings (Sturnus vulgaris) given an unpredictable food supply and 

high wind exposure had significantly higher fat mass at dusk than individuals with 

a predictable food supply and low wind conditions (Cuthill et al. 2000). 

Additionally, since glycogen (carbohydrate) stores in the liver and skeletal muscle 

do not provide a long-lasting energy source (Weber & Haman 2004), lipid stores 

in white adipose tissue is typically the primary source of long-term energy, 

followed by protein sources from skeletal muscle tissue and visceral organs that 

can act as reserve fuel when stored lipids are depleted past a critical threshold 

(Guglielmo 2010; McCue 2010). Another implicit component of the term energetic 

readiness within an ecological and evolutionary framework is the adaptive value 

of seasonal energetic storage to optimize organismal performance during a 

period of high energy demand rather than acting solely as a survival strategy 

(Rogers 2015; Higginson et al. 2016). Altogether, energetic readiness captures 

the ecological context of energetic storage within a life-history stage framework, 

and I frequently revisit and employ this term throughout this thesis.  

 Vertebrates living in seasonal environments demonstrate energetic 

readiness across a wide variety of life-history stages. For example, some teleost 

fish acquire pre-winter lipid stores to endure adverse overwintering conditions in 

temperate and polar regions (Atlantic silverside, Menidia menidia; Schultz & 

Conover 1997; Atlantic salmon, Salmo salar; Berg et al. 2009; brown trout, 

Salmo trutta Berg et al. 2011). In addition, both short- and long-lived 

domesticated (i.e. Siberian hamsters, Phodopus sungorus; Bartness & Wade 

1985; Soay sheep, Ovis aries; Lincoln et al. 2001) and free-living mammals (i.e. 

ungulates, Parker et al. 2009; rodents, Nunes et al. 2006; Li & Wang 2005) 

increase body mass and adiposity to prepare for energetic costs during breeding 

or wintering. More dramatic examples which involve the rapid accumulation of 
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stored lipids, such as transoceanic migrations of New World warblers (i.e. 

Blackpoll warbler, Dendroica striata; Davis 2001; Connecticut warbler, Oporornis 

agilis; McKinnon et al. 2017), the winter sleep of brown bears (Ursus arctos 

arctos; Hissa et al. 1998), and the upstream migration of anadromous Atlantic 

salmon (Salmo salar; Jonsson et al. 1997), strongly support a widespread role for 

energetic readiness. Unfortunately, knowledge of the underlying physiological 

and molecular mechanisms that regulate these anabolic processes in 

ecologically relevant species still remains incomplete, especially in non-

mammalian species. Nonetheless, integrating molecular, physiological, and 

ecological techniques has the potential to better define the linkages between 

endogenous control systems and changes in whole-organismal energetic state 

(Hahn et al. 2015). 

 

HORMONES AS PHYSIOLOGICAL REGULATORS OF SEASONAL 

PHENOTYPES 

Environmental endocrinologists have identified hormones as an important 

endogenous link between seasonal changes in environment and adaptive 

phenotypic change at various life-history stages (Dawson 2008). Moreover, 

hormones have been extensively studied for their downstream effects via 

activation of various signaling pathways that affect seasonal phenotypes (Israel 

2009). For instance, species breeding at mid to high latitudes often experience 

gonadal maturation from increasing photoperiod associated with increases in 

central-acting gonadotropin releasing-hormone and circulating levels of 

luteinizing hormone, which are both important hormones in the hypothalamic-

pituitary-gonadal axis for initiating reproductive activities (Hahn et al. 2004; 

Dawson 2015). Glucocorticoids are another well-studied hormone shown to 

exhibit seasonal fluctuations at baseline levels that differ according to the degree 

of energetic demand, typically with the highest levels during breeding in 

vertebrates (Romero 2002; Romero et al. 2017). Additionally, thyroid hormones 

have been recently implicated in the central regulation of seasonal timekeeping 



	

5	
	

mechanisms that may further initiate a cascade of peripheral signals leading to 

stage-related phenotypes (Wood & Loudon 2014).  

While less often appreciated in realm of ecology and evolution, hormones 

can also act as potent agents of energy balance and metabolism at both the 

central and peripheral levels (Murphy & Bloom 2006; Scanes & Braun 2013; 

Chapter 2). These proximate mechanisms of endocrine responses suggest that 

seasonal regulation of hormone-mediated responses may play a pivotal role in 

promoting lipid deposition and protein anabolism for energetic readiness (Hahn & 

Denlinger 2007; Ramenofsky 2011). Despite the increasing application of 

environmental endocrinology to assess responses of individuals (Williams 2008) 

and populations in their environments (Bradshaw 2007), it still remains unknown 

whether energy-regulating hormones are robust regulators of energetic readiness 

in free-living vertebrates.  

 

STUDY SYSTEMS 

To investigate some of these candidate energy-regulating hormones, I chose two 

Arctic breeding birds, snow bunting (Plectrophenax nivalis) and common eider 

(Somateria mollissima), with their annual life cycles being in highly seasonal 

environments. Importantly, these species act as models of energetic readiness in 

which both birds require large accumulation of fat stores and skeletal muscle 

growth to fuel spring migration in snow buntings (Vincent & Bedard 1976; 

Ramenofsky 2011) and reproduction in common eiders (Sénéchal et al. 2011; 

Hennin et al. 2015). Despite the reasons for energetic storage in each species 

being different, I examined potentially common physiological mechanisms 

underlying energetic readiness at two different stages in species with different 

life-histories (i.e. lifespan and organization of annual life cycle). Furthermore, in 

designing my research hypotheses, I predicted the rudimentary physiological 

mechanisms should be conserved across birds, and depending on results that 

support either common or divergent mechanisms between species, it would 

provide insight into the importance of ecological contexts (i.e. species- and 

stage-related differences) on hormone levels.  
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Snow buntings. Snow buntings are medium-sized (~31-46 g) cold-adapted 

songbirds that winter in temperate-circumpolar regions and breed across the 

circumpolar Arctic (Montgomerie & Lyon 2011). In the wild, these birds are 

granivorous, ground-level foragers, and feed on mainly seeds (i.e. weeds, 

grasses, sedges, and grains) during the majority of the annual cycle, shifting to 

invertebrates (i.e. beetles and fly larvae) during breeding (Montgomerie & Lyon 

2011). Snow buntings overwinter throughout northern United States and 

southern Canada (Macdonald et al. 2012). Similar to other Arctic-breeding 

passerines, males (mean mass = 40 g; mean wind chord = 110 mm) are larger 

bodied than females (mean mass = 37 g; mean wing chord = 104 mm; 

Montgomerie & Lyon 2011). This sexual dimorphism is thought to influence 

latitudinal differences in non-breeding sites between sexes, as current 

information in snow buntings supports the body size hypothesis that states larger 

body sizes correspond to a greater thermoregulatory capacity, which allows 

males to spend the winter in colder, more northern wintering sites relative to 

females (Macdonald et al. 2016; Laplante 2017).  

The wintering population from which the male birds in this study originated 

spend the winter along the St. Lawrence-Southwestern Ontario corridor 

(Macdonald et al. 2012; Laplante 2017). During the early spring (April-May), free-

living buntings in this population migrate up the St. Lawrence seaway to make a 

minimum 700-1000 km single flight across the Labrador sea from northern 

Newfoundland or Labrador to the southern tip of Greenland (Macdonald et al. 

2012). This migratory feat makes our study species a strong model for examining 

the mechanisms underlying changes in energetic storage since prior to crossing 

this large ecological barrier birds must gain between 15-25 g of body fat and 

flight muscle growth (i.e. males are between 45-60 g in body mass; O. Love, 

unpubl. data). These rapid, large scale changes in body composition are seen in 

other migratory birds flying across physical barriers (i.e. ocean or deserts), such 

as garden warblers (Sylvia borin; Bauchinger et al. 2005), red knots (Calidris 
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canutus; Vézina et al. 2011), and American redstarts (Setophaga ruticilla; Smith 

& Moore 2003).  

After arrival on breeding grounds in Western Greenland (May-June), it is 

presumed that males establish territories and actively defend them in an 

environment with cold and unpredictable conditions. Contrary to previous findings 

that males arrive on breeding ground much earlier than females (Meltofte 1983), 

McKinnon et al. (2016) used modern tracking techniques to determine that only 

early and older males appear to arrive approximately one week before females, 

indicating differences in spring arrival dates between sexes are closer temporally 

than previously thought. However, these birds are from the East Bay breeding 

population, and modern tracking techniques have not been applied to free-living 

individuals in the Greenland breeding population. Nonetheless, once females 

arrive and breeding pairs are formed, snow buntings continue to be socially 

monogamous throughout the breeding season (June-July), with males assisting 

in mate provisioning during female incubation and nest building, as well as bi-

parental care during chick rearing (Lyon & Montgomerie 1985; Lyon et al. 1987). 

 

Common eiders. Common eiders (Somateria mollissima) are long-lived (~10 

years on average; Coulson 1984) seaducks that form large colonial aggregates 

in circumpolar marine environments throughout their annual life cycle (Goudie et 

al. 2000). These birds dive for benthic food items in open marine habitats to 

obtain benthic invertebrate prey bivalves (Hiatella arctica and Serripes species), 

amphipods (Gammarus species), and gasteropods (Acmea testudinalis; Heath et 

al. 2007; Sénéchal et al. 2011). Before sea ice fully develops, the northern 

population of eiders in the Canadian Arctic (S. mollissima borealis) forage in 

polynyas, open water surrounded by sea ice, along the coasts of southwestern 

Greenland (Boertmann et al. 2004) and northern Newfoundland and Labrador 

during the non-breeding period (Mosbech et al. 2006). During spring migration, 

eiders travel as winter-established pairs or form breeding pairs during the trip to 

breeding grounds in eastern Canada and western Greenland. Females are 

reproductively mature around 2-3 years old (Milne 1974), and demonstrate a high 
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degree of natal philopatry (Reed 1975; Mosbech et al. 2006). Common eiders 

are sexually dimorphic in colouration, and important to this research, in energetic 

state throughout the breeding season.  

 Common eiders are known to be mixed strategy (capital-income) breeders 

that rely on endogenous fat stores and muscle hypertrophy (capital breeding) 

along with accrued resources from foraging on Arctic breeding grounds (income 

breeding; Sénéchal et al. 2011). Capital breeding birds mainly invest in fat stores 

and skeletal muscle hypertrophy on wintering grounds, during migration, or on 

breeding grounds to later mobilize lipids and proteins from fuel depots and 

endogenous tissue to maximize the chance of reproductive success (Klaassen 

2003; Sandberg & Moore 1996). On the other hand, income breeding birds 

acquire energy on the breeding grounds and directly shuttle these nutrients 

towards egg formation and self-maintenance during reproductive stages 

(Klaassen et al. 2006). To meet the energetic demands of reproduction, pre-

breeding females spend a greater amount of time diving for food and increased 

feeding intensity relative to the annual average (Christensen 2000; Guillemette 

2001). Moreover, females rapidly gain lipid stores after arriving on the breeding 

grounds for both (i) egg development and growth, and (ii) long (~25-27 days) 

fasting period during egg incubation (Bottitta et al. 2003; Korschgen 1977; Rigou 

& Guillemette 2010). During incubation, females only leave the nest infrequently 

and for very short periods of time to drink because egg predation is common in 

this species and nest vigilance can reduce the risk of predation (Korschgen 1977; 

Criscuolo et al. 2000), supporting the need for body reserves for reproduction 

(Bolduc & Guillemette 2003). In addition, the rate of fattening on the breeding 

grounds depends on female body condition at arrival and affects the delay before 

laying (pre-laying period between arrival date and first lay date; Hennin et al. 

2016), ultimately affecting the timing of reproduction (Descamps et al. 2011; Love 

et al. 2010) and fecundity (Hennin et al. 2017, under review). Nevertheless, all 

females that are committed to breeding must experience some degree of lipid 

deposition and muscle growth to fuel reproduction, making this a strong model 

for studying the mechanisms of energetic readiness (Sénéchal et al. 2011). 
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THESIS OBJECTIVES 

My thesis research aims to develop a mechanistic framework to examine the 

phenology of endocrine responses as potential mediators of energetic readiness 

during key life-history stages in birds. The overall goals of my exploratory 

research are to (1) provide a review of the current avian literature with regards to 

the most likely hormonal regulators of energetic storage based upon what is 

currently known from birds and mammals, and (2) examine the coarse- and fine-

scale temporal relationships between candidate hormones and changes in 

energetic readiness within two representative species. Specifically, in Chapter 2, 

I use a comprehensive review of domesticated, captive, and free-living birds to 

assess the role that hormones play in regulating fat storage and skeletal muscle 

growth in birds, supplementing unknown mechanistic information with biomedical 

and agricultural research in mammals. In Chapter 3, I then assess a number of 

these pathways by examining the temporal variation in plasma energy-regulating 

hormones in two Arctic-breeding birds (snow bunting and common eider) that 

each require significant stores of lipids and protein for two different life-history 

stages: migration and breeding, respectively. Where possible, I augment these 

temporal patterns with correlational analyses between hormones and the 

energetic phenotypes of fat and muscle gain. Finally, in Chapter 4, I summarize 

and discuss the major findings and implication of this thesis, and importantly 

highlight some gaps of knowledge in endocrine regulation of energetic readiness 

in birds. Overall, my thesis collectively offers foundational information on likely 

endogenous control mechanisms not only in these two Arctic-breeding species, 

but potentially across a broad range of birds that require energetic readiness in 

highly seasonal ecosystems.  
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CHAPTER 2 – HORMONAL CONTROL MECHANISMS OF 

ENERGETIC STORES ACROSS AVIAN LIFE-HISTORY STAGES: 

LESSONS FROM MAMMALIAN AND POULTRY SYSTEMS 

 

 
GENERAL OVERVIEW 

All organisms living in seasonal environments must organize their physiological, 

behavioural, and morphological activities into various life-history stages to 

maximize survival and reproductive success (Visser et al. 2010). For vertebrate 

species in highly seasonal ecosystems (i.e. temperate or polar; Wingfield et al. 

2004; Ebling & Barrett 2008), the temporal separation of discrete stages reflects 

varying degrees of energetic demand, prompting adaptive changes in 

physiological state across the annual cycle (Hazlerigg & Loudon 2008). 

Physiological responses to these demands often involve some form of stage-

related energetic gain (i.e. lipid and protein stores), to prepare for energetically 

demanding periods such as reproduction (birds: Dawson et al. 2001; Houston et 

al. 2007; fishes: Chemineau et al. 2007; Mcbride et al. 2015; mammals: Lincoln 

et al. 2006, Barrett et al. 2007), long-distance migration (birds: Jenni et al. 1998; 

Ramenofsky & Wingfield 2007; fish: van Ginneken 2005; mammals: Owen et al. 

2017), or prolonged hibernation or estivation (mammals: Geiser & England 2010; 

Florant & Healy 2012; Williams et al. 2014; anurans: Secor 2005; Mantle et al. 

2009).  

Although nearly all vertebrate taxa rely on energy stores to fuel 

metabolically demanding stages, endothermic mammals and birds that 

reproduce and over-winter at temperate/polar latitudes are prime models for 

examining the mechanisms underlying seasonal change in body composition, 

primarily due to their fixed (predictable) periodicities of pronounced changes in 

energy stores (Lindstedt & Boyce 1985; Boonstra 2004; Ebling 2015) and high 

degree of phenotypic flexibility in energetic traits (Piersma & van Gils 2011). In 
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addition, the ecological literature on mammalian and avian systems offers the 

most evidence-based research on energetic readiness, long-term somatic energy 

storage prior to an energetically demanding life-history stage, through studies 

that incorporate a combination of life-history variation, energetic physiology, and 

endocrine regulation (Reeder & Kramer 2005; Williams 2012). Furthermore, 

mammals and birds share similar anabolic effects of fat deposition (Odum & 

Perkinson 1951; King & Farner 1965; Bartness & Wade 1985; Bartness et al. 

2002) and skeletal muscle growth (Bauchinger & Biebach 2001; Bauchinger & 

Biebach 2005a; Glass 2005), as a direct result of the ingestion and storage of 

excess nutrients into peripheral somatic tissue. From a broad mechanistic point 

of view, regulatory systems of energy balance are mediated through (1) 

homeostatic mechanisms (i.e. maintaining positive energy balance; Cone 1999; 

Boswell 2010) and (2) rheostatic mechanisms (i.e. a set-point system to obtain 

threshold levels of energy; Mrosovsky & Powley 1977; Mrosovsky 1990). Current 

empirical evidence primarily focuses on the homeostatic mechanisms for short-

term increases in food intake and energy stores, whereas the rheostatic 

mechanisms driving energetic readiness are relatively unknown, but remain an 

important topic of physiological research in ecology (discussed in Cornelius et al. 

2013). 

  Neuroendocrine and endocrine signals are strong candidate mechanisms 

underlying energetic readiness, as hormones coordinate rapid transitions 

between life-history stages (Wingfield 2008) and translate environmental 

information processed in the central nervous system (CNS) to peripheral organs 

and other somatic tissue that regulate energy balance (Murphy & Bloom 2006). 

Endocrine secretions also demonstrate (i) circannual rhythms that are 

synchronized by photoperiodic timekeeping mechanisms in the CNS (Gwinner 

1996; Wikelski et al. 2008), (ii) anabolic effects that promote lipid and protein 

storage as the most common long-term energy reserves in free-living vertebrates 

(Weber 2001), and (iii) co-evolution of tightly linked endocrine signals to induce 

complex life-history phenotypes (Ketterson & Nolan 1999; Higginson et al. 2016). 

Currently, mammalian studies predominate the field of energetic endocrinology 
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with extensive research on the human obesity epidemic (Guyenet & Schwartz 

2012), despite the known importance of the predictable acquisition of energy 

stores for energetically demanding life-history stages in birds, primarily for 

migration (Jenni et al. 1998; Guglielmo 2010) and reproduction (Drent et al. 

2007; Varpe et al. 2009). For these reasons, it is important to assess (1) our 

current knowledge of the role of energy-regulating hormones (hormones with 

central and/or peripheral effects on metabolism), as mediators of energetic 

balance in avian systems, and (2) whether novel information from mammalian 

studies can be integrated and tested within avian systems.  

Here we review endocrine traits known or assumed to play a mechanistic 

role in driving energetic readiness in avian systems by building on a conceptual 

framework from mammalian systems, with the aim of encouraging future 

research on energy-regulating mechanisms in both captive and free-living birds. 

First, we broadly review the anabolic mechanisms of lipid and protein synthesis, 

the two primary forms of energetic storage for migration and breeding in avian 

species. We then outline the avian-based studies that directly and indirectly 

measure endocrine responses as signals of energetic storage. Finally, we 

discuss potential future opportunities and constraints associated with trait-based 

approaches in examining complex endogenous pathways. The main goal of this 

review is to provide avian ecophysiologists with a tangible roadmap for field-

testing hormonal mechanisms of energetic readiness within free-living systems. 

 

ENERGETIC STORAGE IN BIRDS  

A. Why Fat and Muscle? An Avian Life Cycle Perspective 

Birds vary in their energetic demands across life-history stages, and species with 

more stages (i.e. migratory vs. non-migratory species) often show a greater 

degree of phenotypic flexibility in energy acquisition and storage across seasons 

(Piersma & Drent 2003; Wingfield 2008). Similar to mammals, birds make use of 

the three types of biomolecules (carbohydrates, protein, and lipids) that can be 

oxidized for energy (Jenni et al. 1998). However, relative to similar sized 

mammals, birds rely little on stored carbohydrates (i.e., glycogen in the liver and 
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skeletal muscle) due to their exceedingly high blood glucose levels 

(hyperglycemia; Braun & Sweazea 2008). Instead, birds living in seasonal 

environments rely on stored lipids and protein, and show designated periods of 

fattening and muscular growth associated with increasing daylength before 

migration and reproduction (Ramenofsky 2011). Indeed, many migratory 

passerines and shorebirds have seasonally controlled periods of hyperphagia to 

deposit large lipid stores (King & Farner 1965; Ramenofsky 1990; Ramenofsky et 

al. 1999) and flight muscle growth (Piersma 1990; Lindström & Piersma 1993) 

before migration from wintering to breeding grounds. Similarly, some breeding 

birds are reliant in part on capital stores of lipid and protein accumulation for 

investment in reproductive stages such as egg production or incubation (Drent et 

al. 2007; Varpe et al. 2009). As such, we first examine the physiological 

mechanisms of lipid and protein storage in birds, using principles from 

mammalian systems where information is currently lacking in the avian literature.  

 

B. Lipid Anabolism: From Food to Fat Storage  

Fat storage is a highly conserved survival strategy in almost all organisms given 

the biochemical advantage of using lipid molecules to generate energy compared 

to either carbohydrates or protein (~8 to 10 times more energy per gram of wet 

mass), providing clear thermodynamic benefits for the high metabolic activities of 

birds (Jenni et al. 1998). Triglycerides (TRIGs or triacylglycerols) are the most 

abundant lipid molecules and the main component of fat storage in all 

vertebrates (Coleman & Lee 2004). TRIGs are produced when food items are 

ingested, digested, and then absorbed in the small intestines as hydrolyzed free 

fatty acids (FFAs; the energy-yielding component of TRIG) and glycerol 

(backbone of TRIG that produces some minor energy) that are then shuttled to 

the liver via lipoprotein transporters (protomicrons) in the hepatic portal system 

(reviewed in Williams & Buck 2010). Once in the liver, lipogenesis, the assembly 

of neutral lipids for energy storage, occurs through (1) dietary (exogenous) intake 

of lipids and (2) de novo (endogenous) synthesis from carbohydrate-derivatives 

(i.e. acetyl coenzyme-A) converted into lipid molecules (Hermier 1997; Klasing 
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1998). After assembly, hepatic TRIG molecules are packaged with lipoproteins to 

create very low-density lipoproteins (VLDLs) that are released into circulation 

until enzymatically degraded into FFAs and glycerol by membrane-bound 

lipoprotein lipase at white adipocytes, and then re-assembled inside the cell 

(Chong et al. 2007; purple box in Figure 2.2). In adipocytes, previous studies 

have identified that TRIG molecules are sequestered in subcellular 

compartments called lipid droplets (Holm 2003; Ducharme & Bickel 2008).  

 There are two ways in which lipogenic signals directed at lipid storage can 

alter adipocytes: hyperplasia (an increase in cell number) and hypertrophy (an 

increase in cell size; Jo et al. 2009). In adult vertebrates, including birds, 

hyperplasia is the cellular response of adipogenesis in which pre-adipocyte 

(progenitor) cells are recruited and differentiated into immature adipocytes until 

the signal for maturation occurs when TRIGs begin to fill the lipid droplets, while 

hypertrophy concurrently expands the storage capacity of lipid droplets in 

adipocytes (Hausman et al. 2001; Buyse & Decuypere 2015). Eventually, the 

nutritional status of lipid content increases with over-eating until mature 

adipocytes reach a genetically determined threshold level of TRIG storage that 

signals the proliferation of precursor cells and differentiation of pre-adipocytes 

(Rosen & Spiegelman 2014). Further, free-living birds and mammals in seasonal 

environments purposely overeat (hyperphagia) and switch to lipid (i.e. grains) 

and carbohydrate (i.e. fruits) rich diets to build excessive adipose stores (Pond 

1992; Bairlein 2002; McWilliams et al. 2004; Pierce & McWilliams 2005), despite 

the signaling mechanisms for seasonal hyperphagia and subsequent fattening 

are still not fully known. Overall, ecologists have sought to underpin the 

underlying physiological signals that promote adaptive fat accumulation for 

periods of high energy demand (see next section). 

 

C. Protein Anabolism: From Food to Skeletal Muscle Growth 

Adult skeletal muscles are highly flexible tissues with a cellular capacity for 

dynamic re-modelling via muscular hypertrophy and atrophy (Hood et al. 2006). 

The anabolic growth of skeletal muscle occurs from (1) intracellular protein 
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synthesis and (2) proliferation and differentiation of myosatellite cells (i.e. 

precursors to skeletal muscle cells). Protein synthesis in skeletal muscle cells is 

the result of the downstream signaling cascade of the phosphoinositide-3-kinase 

(PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/ribosomal 

protein S6 kinase beta-1 (S6K1) pathway (the multi-protein transcriptional 

regulators of cell growth) from receptor-mediated signals at the cell membrane 

(Glass 2003; Schiaffino & Mammucari 2011). This up-regulation of protein 

synthesis increases muscle cell size (hypertrophy), resulting in greater contractile 

force and muscle mass (Sandri 2008). Proliferation and differentiation of 

myosatellite cells occur through adult myogenesis, where a local population of 

quiescent myosatellite cells act as pool of progenitors when growth factors (i.e. 

IGF-1) signal for new formation of mature muscle cells (Le Grand & Rudnicki 

2007; Smith et al. 2013). Additionally, muscle hypertrophy can also be induced 

by external inputs such as exercise or nutrition (i.e. increases in amino acid 

uptake), as shown in studies of exercise physiology in birds (Vézina et al. 2007; 

Swanson et al. 2010) and mammals (Glass 2005; purple box in Figure 2.2).   

 Unlike lipid storage, skeletal muscle size is largely related to the functional 

demand of muscle use rather than long-term energy storage (Li et al. 2014). 

However, in wild birds, protein sources in skeletal muscle cells can be broken 

down in extreme cases of long-term fasting or nutritional depletion (“Phase III” 

fasting; Cherel et al. 1988; Jenni et al. 2000). For example, during costly 

incubation or migratory periods when lipid stores are insufficient or nearly 

exhausted, plasma uric acid concentrations, a metabolic marker of protein 

catabolism, are elevated during Phase III fasting, indicating that nitrogen-based 

amino acids (i.e. protein-based stores) are utilized to produce last-resort energy 

(Cherel et al. 1988; Battley et al. 2001; Schwilch et al. 2002). Although protein is 

not stored in inert fuel depots, dissection of breast muscle proteins and mass in 

long-distance migrants demonstrate significant decreases in skeletal muscle in 

post-flight individuals (Piersma et al. 1999; Bauchinger & Biebach 2001, 2005a; 

Bauchinger et al. 2005b). Moreover, in many penguin species, protein accounts 

for 20 to 40% of energy utilization when fasting during breeding, with minimal 
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contribution from glycogen stores (Groscolas 1990; Groscolas & Robin 2001). In 

summary, catabolism of skeletal muscle tissue seems to provide an important 

“reserve” of alternative energy after the depletion of fat store in birds.  

 

ENERGY-REGULATING HORMONES IN BIRDS  

A. Hormonal Regulation of Fat Storage  

Baseline Glucocorticoids  

Glucocorticoids (i.e. cortisol: mammals and fish; corticosterone: birds, reptiles, 

and amphibians), are steroid hormones that are secreted from the adrenal cortex 

in the hypothalamic-pituitary-adrenal/interrenal (HPA/I) axis in vertebrates 

(Sapolsky et al. 2000; Wingfield et al. 2001). Specifically, environmental stimuli 

induces the hypothalamus to release corticotropin releasing factor, which then 

stimulates the pituitary to secrete adrenocorticotropic hormone (ACTH), in turn 

stimulating the secretion of glucocorticoids from either the adrenal or inter-renal 

glands. Glucocorticoid secretion is traditionally thought to occur at two distinct 

levels, either at baseline levels to manage daily and seasonal energy balance 

(Romero 2002), or at stress-induced (challenging) levels to trigger responses to 

external perturbations from an acute stressor (McEwen & Wingfield 2003). More 

recently, Williams (2012) argues that glucocorticoid levels should be considered 

a continuous, phenotypic trait to evaluate its regulation of metabolic processes. 

Nonetheless, glucocorticoid-mediated effects are executed through cytosolic 

steroid-binding receptors: (i) high-affinity mineralocorticoid receptors that 

regulates baseline levels and (ii) low-affinity glucocorticoid receptors that are only 

bound at saturated, stress-induced levels (Nieuwenhuizen & Rutters 2008). In 

birds, circulating glucocorticoids bind to the carrier protein, corticosteroid-binding 

globulin (CBG, known as transcortin in mammals), increasing the half-life of the 

hormone (Malisch et al. 2008), until dissociation at peripheral effector tissues (i.e. 

metabolic tissues: hepatocytes, adipocytes, skeletal muscle cells) with a direct 

effect on the regulation of carbohydrate metabolism (Landys et al. 2006).  

In addition to effects on internal energetic stores, components of the HPA/I 

axis can also have effects on food intake. For example, in response to an 
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environmental stressor, the hypothalamus produces corticotropin releasing factor 

(CRF), inhibiting neuropeptide Y neurons, resulting in the reduction of appetite 

and foraging behaviours (Nieuwenhuizen & Rutters 2008). However, once the 

CRF has initiated the HPA hormone cascade and glucocorticoids are released, 

NPY neurons are then stimulated to promote foraging behaviours (Cahill et al. 

2013). The relationship between circulating glucocorticoids and food intake has 

been demonstrated in both correlative and causal studies. Correlative work has 

shown that the diel cycle of avian baseline glucocorticoid concentrations that 

peak before beginning daytime activities (Breuner et al. 1999), lending to the 

assumption that naturally higher levels induces locomotion and potentially drives 

foraging behaviours (Astheimer et al. 1992; Holberton et al. 2008). Recent 

research has further corroborated this correlation by linking corticosterone levels 

and migratory restlessness in birds at stopover sites during spring migration 

(Eikenaar et al. 2014; Eikenaar 2017). Building on this, manipulative studies 

using receptor antagonists or adrenalectomy-based experiments indicate that 

relationship between glucocorticoids and increased food intake is mediated 

through glucocorticoid receptors (Dallman et al. 1993; Landys et al. 2004). 

Further experimental studies examining the appetite control systems are needed 

to distinguish which receptor for glucocorticoids, if any, regulates hyperphagia, or 

whether it merely has a permissive action on food intake in birds.  

Independent of its influence on appetitive and foraging behaviour, 

elevations of baseline glucocorticoids have been shown to mediate lipid 

deposition in numerous captive and free-living avian species (Table 1). In birds, 

seasonal elevations of baseline glucocorticoids correspond to energetic 

readiness and fattening (Holberton et al. 1996), and may be comparable to the 

excess adipose tissue and hyperlipidemia seen in mammals with chronic 

elevations of baseline glucocorticoids (i.e. Cushing’s syndrome; Peeke & 

Chrousos 1995). For example, in domestic poultry species, hepatic lipogenesis is 

amplified when individuals are administered dexamethasone, a glucocorticoid 

receptor agonist, and lipid uptake is also increased via enhanced lipoprotein 

lipase expression in white adipose tissue when corticosterone treatments are 
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combined with up-regulated enzymes (i.e. malic enzyme, fatty acid synthase; 

reviewed in Scanes 2008). Likewise, in biomedical mammalian models, chronic 

glucocorticoid elevations antagonize the liberation of lipids to promote 

lipogenesis and lipid accumulation (Peckett et al. 2011). Further, dexamethasone 

has been shown to up-regulate NPY proteins and receptors, increasing 

abdominal adipogenesis of cultured mammalian adipocytes (Kuo et al. 2007). 

Although the molecular mechanisms of glucocorticoid-induced lipogenesis is still 

not well understood, research on wild birds show a consistent, positive link 

between chronically elevated baseline glucocorticoids and increased adiposity 

(Landys et al. 2006; orange and purple boxes in Figure 2.2). Emerging ecological 

studies using a life-history stage framework suggest that elevated baseline 

glucocorticoids can induce fattening in both pre-migratory (i.e. Holberton 1999; 

Holberton et al. 2007) and pre-breeding birds (i.e. Hennin et al. 2015; Lamarre et 

al. 2017). Overall, appreciating the contexts of the relative levels of elevation and 

a species’ life-history will be key in determining the effects of elevated baseline 

glucocorticoids in regulating of fat metabolism, and should be considered in 

greater detail the future studies of free-living birds (Crespi et al. 2013).  

 

Insulin  

In mammals, insulin is a peptide hormone secreted from pancreatic β-cells that is 

released after food intake to mediate glucose uptake via GLUT4 transporters into 

various tissues, including adipose tissue (Woods et al. 1998), and simultaneously 

increase glycogenesis (i.e. glycogen storage) and lipogenesis in the liver (Pessin 

& Saltiel 2000). In contrast, avian insulin is present in lower circulating levels 

during a hyperglycemic state (Braun & Sweazea 2008), and appears relatively 

insensitive to insulin receptors and downstream targets of the lipogenic signaling 

cascade in adipose tissue, raising the question of whether birds are in a 

perpetual insulin-resistant state (Dupont et al. 2012). Rather than acting alone, it 

is possible that low insulin levels in birds must be modulated by glucocorticoids to 

promote adiposity. For instance, in domestic chickens, chronic dexamethasone 

treatment induces increased plasma insulin (Yuan et al. 2008) and together 
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these hormones promote hepatic lipogenesis via up-regulation of lipogenic 

enzymes (Cai et al. 2011). Furthermore, both insulin and glucocorticoids have 

been shown to amplify lipoprotein lipase activity and TRIG storage through the 

Akt intracellular growth pathway in adipocytes (Tomlinson et al. 2010; Geer et al. 

2015), indicating that it may play an important role in active fattening (orange and 

purple boxes in Figure 2.2). Although the temporal patterns of plasma insulin are 

poorly studied in birds, studies in golden-mantled squirrels (Spermophilus 

lateralis) indicate that simultaneous increases in insulin and baseline 

glucocorticoids result in a concomitant increase in body mass before the onset of 

hibernation (Boswell et al. 1994). Nonetheless, regardless of taxa we still know 

very little about the temporal variation of plasma insulin across life-history stages, 

and future studies are particularly warranted to validate the interactive role that 

insulin and glucocorticoids may play in energetic storage in free-living animals.  

 

Ghrelin 

Mammalian ghrelin is a peptide hormone produced in the gastrointestinal tract 

and released in the fasted state (i.e. hunger signal) with well known metabolic 

roles in the central regulation of appetite and energy balance (Müller et al. 2015). 

Avian ghrelin, a 26-amino acid polypeptide mainly secreted from X/A-like cells in 

the mucosal layer of proventriculus (located between the crop and gizzard in 

most birds), has been poorly studied to date. In vertebrates ghrelin exists in two 

forms: (i) acylated ghrelin and (ii) des-acyl ghrelin (Kojima et al. 2001, 2005). 

Acylated ghrelin most commonly contains an n-octanoyl (acyl) side chain on the 

serine-3 residue that is added by membrane-bound ghrelin O-acyltransferase at 

target cells (Gahete et al. 2010) and binds to growth hormone secretagogue 

receptor on various tissues (Asakawa 2005). Des-acyl ghrelin, originally labelled 

as an inactive prohormone, is circulated in higher levels and has numerous 

antagonistic effects on the acylated form, including central inhibition of orexigenic 

(hunger-inducing) effects (Delhanty et al. 2015). Currently, most molecular 

research in vertebrates focuses on acylated ghrelin as the only known gut-
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derived hormone to drive hunger responses in the fasted state in vertebrates 

(Kaiya et al. 2008). 

 In mammals, injections of acylated ghrelin activates receptors located in 

the arcuate nucleus (ARC) of the hypothalamus to co-express orexigenic 

neuropeptides (i.e. NPY and AgRP), resulting in the activation of other hunger-

controlling regions of the hypothalamus (Nakazato et al. 2001; López et al. 2008) 

to increase food intake and adiposity (Tschöp et al. 2000). At a molecular scale, 

peripheral acylated ghrelin promotes carbohydrate metabolism and reduces fat 

oxidation via AMP-activated protein kinase (AMPK) signaling pathway in 

hepatocytes and adipocytes (Meier & Gressner 2004; Ueno et al. 2005; Xue & 

Kahn 2006), as well as stimulates TRIG synthesis through up-regulation of fatty 

acid synthase and malic enzyme (Perez-Tilve et al. 2011). Moreover, many 

studies on the broad temporal and stage-related patterns of acylated ghrelin in 

seasonal mammals suggest that circulating levels are elevated prior to entering 

energetically challenging life-history stages such as periods of food shortage 

over winter (Nieminen et al. 2002; Fuglei et al. 2004; Mustonen et al. 2005) and 

hibernation (Healy et al. 2010, 2011). Importantly, peripheral injection of 

physiologically relevant acylated ghrelin increases food intake and body weight, 

regardless of season (Florant & Healy 2012). 

In contrast, acylated ghrelin seems to be an anorexigenic (hunger-

suppressing) hormone in birds (Kaiya et al. 2013a; Table 1). Initially documented 

by Furuse and colleagues (2001) as decreasing food intake in neonatal chicks 

(Gallus gallus domesticus), exogenous administration of ghrelin in domestic 

juvenile chicks now provides support for both anorexigenic and lipolytic roles in 

birds (Kaiya et al. 2013a). Saito et al. (2005) hypothesized that ghrelin-induced 

suppression of food intake is likely mediated by corticotropin releasing factor 

(CRF) family peptides, which inhibit NPY and AgRP (orexigenic) neurons in the 

brain, and may therefore interact with the HPA axis. Importantly, Shousha and 

colleagues (2005, 2015) reported that peripheral injections of acylated ghrelin in 

adult Japanese quail (Coturnix coturnix japonica) show dose-dependent effects, 

with low to intermediate doses (0.5 and 1 nmol/200 µL) increasing food intake, 
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and high doses (3 nmol/200 µL) decreasing food intake and respiratory quotient. 

Indeed, Aghdam Shahryar and Lotfi (2016) found that a ghrelin antagonist ([D-

Lys
3
]-GHRP-6) decreased food intake in broiler chicks in a dose-dependent 

manner and decreased plasma glucose concentrations with no changes in 

plasma TRIG, similar to effects of lipid conservation found in mammals (Asakawa 

et al. 2003). It is important to note, however, that these dosages are alarmingly 

high, at a magnitude of ~100,000 times the circulating concentration under even 

fasted conditions, despite still being one of the lowest administrative doses 

(calculations see “Further Considerations” section). Presently, we know of only 

one study in broiler chicks that directly tested the effect of acylated ghrelin on 

lipid metabolism, with single (1 nmol/100 µL), intravenous administration resulting 

in the down-regulation of fatty acid synthase and up-regulation of lipogenic 

transcription factors (PPARγ and SREBP-1) mRNA levels in the liver (Buyse et 

al. 2009). Further, in free-living garden warblers (Sylvia borin) during migratory 

stopover, individuals with remaining lipid reserves were shown to have 

significantly higher plasma acylated ghrelin levels compared to those with 

depleted stores (Goymann et al. 2017), suggesting similar results as ghrelin-

induced lipolysis previously shown in young chicks (Geelissen et al. 2006). In 

congruance with mammals, plasma acylated ghrelin is elevated in fasting 

conditions, demonstrating its conserved role as a hunger signal in birds (Kaiya et 

al. 2013b). Taken together, the metabolic function of avian acylated ghrelin does 

not have unanimous support, and although mammalian ecophysiological studies 

have identified ghrelin as a modulator of adipose stores, the intriguing anti-

lipogenic effects of avian acylated ghrelin should be investigated (orange, blue, 

and purple boxes in Figure 2.2), ideally beginning with examining ghrelin profiles 

across life-history stages.  

 

Triiodothyronine  

In birds, thyroid hormones (L-thyroxine (T4) and triiodo-L-thyronine (T3)) regulate 

many important physiological processes such as pre-natal development and 

juvenile growth (McNabb 2006), reproductive processes (Chastel et al. 2003), 
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thermogenesis (Vézina et al. 2009), and metabolism (Hulbert 2000). The 

hypothalamic-pituitary-thyroidal axis begins with thyrotropin-releasing hormone 

(TRH) being released from the hypothalamus which stimulates the release of 

thyrotropin-stimulating hormone (TSH) from the anterior pituitary gland, which 

then activates hormone secretion into systemic circulation from the thyroid gland 

(reviewed in Zoeller et al. 2007). Specialized enzymes, deiodinases type I (D1) 

and II (D2), are responsible for extra-thyroidal conversion of T4 to T3 in circulation 

and tissue through the removal of an iodine molecule from the outer ring 

structure of thyroid hormones (Zoeller et al. 2007). Binding proteins, such as 

transthyretin and albumin in birds, carry the thyroid hormones to target cells until 

bound to intracellular nuclear receptors (α- and β-isoforms; McNabb 2007). 

Importantly, T3 has a greater binding affinity than T4 to receptors, and is therefore 

the primary regulator of basal metabolic rate in birds (Kim 2008; Elliott et al. 

2013; Welcker et al. 2013).   

 There is still little currently known, however, on the role of thyroid 

hormones with regards to metabolic effects on stored energy in birds. Studies of 

laboratory rats have revealed that T3 has direct metabolic effects on adipose 

tissue (Oppenheimer et al. 1991), as thyroid-inhibited and dose-dependent T3 

replacement led to greater use of fat stores (oxidation) in “hyperthyroid” 

compared to greater fatty acid uptake and lipoprotein lipase activity (fat 

deposition) in “hypothyroid” individuals (Klieverik et al. 2009). Conversely, in 

mammalian hepatocytes, low levels of T3 can trigger lipogenesis through the 

cross-talk between thyroid receptors and liver X receptor (an upstream protein 

linked to the transcriptional up-regulation of key lipogenic enzymes such as malic 

enzyme and fatty acid synthase; Sinha et al. 2014), and similar broad lipogenic 

effects have been found with short-term elevations of administered T3 in birds 

(Goodridge et al. 1989; McNabb 2007). However, chronically elevated levels of 

T3, whether endogenous or exogenous, causes lipolysis after prolonged 

exposure in humans and rodents (reviewed in Mullur et al. 2014). Recent 

mammalian research has identified a T3-mediated lipolytic mechanism of TRIG in 

adipose tissue through lipophagy, an intracellular process where TRIG-filled lipid 
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droplets are trafficked to lysosomes for degradation in which the FFAs can be 

released into the blood or efficiently used for energy via β-oxidation in nearby 

mitochondria (Sinha et al. 2012; Liu & Czaja 2013). Previous avian studies 

further support this hypothesis in that (i) prolonged elevations of T3 result in 

lipolysis in white adipose tissue (Rosebrough & McMurtry 2000, 2003), and (ii) 

genetically lean lineages of chickens have higher circulating levels of T3 than fat 

lineages (Leclercq et al. 1988). However, the underlying mechanisms of T3-

mediated switches between lipogenic (anabolic) and lipolytic (catabolic) states is 

currently unclear in vertebrates (Sinha et al. 2014). For instance, administering 

supplemental T3 to hypothyroidal birds restores the lipogenic capacity, where, as 

individual with normal functioning thyroids, T3 administration decreased plasma 

TRIG, demonstrating a dose-dependent effect of T3 on lipid metabolism 

(Rosebrough et al. 2006). Future experimental studies that compare natural and 

manipulated hormone levels with different fat phenotypes may help to explain the 

differences in HPT axis regulation on lipid metabolism. Similar to baseline 

glucocorticoids, if seasonally elevated levels of plasma T3 are considered to be 

equivalent to chronic HPT function, then it is likely that low levels of T3 suppress 

lipolysis for energetic readiness (orange and purple boxes in Figure 2.2). Indeed, 

Wilsterman and colleagues (2015) found that circulating T3 levels are below the 

annual average during a period of intense fattening before winter hibernation in 

free-living Arctic ground squirrels (Urocitellus parryii). 

In contrast to mammalian work, numerous studies have suggested that 

avian species display relatively higher levels of T3 during periods of energetic 

preparation. For intance, T3 has been shown to increase prior to spring migration 

(Canada goose, Branta canadensis; John & George 1978; rosy pastor, Sturnus 

roseus; Pathak & Chandola 1984), and individuals with either thyroidectomy or 

receptor blocking demonstrated reduced pre-migratory fattening and migratory 

restlessness (Pathak & Chandola 1982a; Pant & Chandola-Saklani 1993). 

Furthermore, administering either T3 or T4 to thryoid-blocked individuals 

temporally restored fat and muscle profiles of wild-caught, captive white-crowned 

sparrows, with T4 exhibiting a greater recovery of energetic profiles (Pérez et al. 
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2016). Cumulatively, these results suggest that extrathyroidal conversion of T4 to 

T3 during a rapid transition to a longer photoperiod may promote lipogenesis in 

migratory birds. Much less, unfortunately, is known about T3 regulating lipid 

metabolism in pre-breeding birds, despite fat gain in capital and mix-strategy 

breeders. 

 

B. Hormonal Regulation of Skeletal Muscle Growth 

Growth Hormone and Insulin-like Growth Factor-1 

Across vertebrate taxa, growth hormone (GH) and insulin-like growth factor-1 

(IGF-1) are both anabolic peptide hormones produced by the somatotrophic axis 

that regulate fundamental processes such as pre- and post-natal somatic growth 

(i.e. bone growth, skeletal muscle growth, organ development, skin formation; 

Giustina et al. 2008; Liu & LeRoith 1999), aging and longevity (Bartke 2005), and 

systemic metabolism (Renaville et al. 2002). Beginning with input in the 

hypothalamus, growth hormone-releasing hormone (GHRH) is released from the 

hypothalamus to reach somatotrophs (specialized cells in the anterior pituitary) 

that secrete GH into circulation, acting via (i) GH receptors on peripheral tissues 

such as skeletal muscle, white adipose tissue, bone, and lymphatic tissue, or (ii) 

receptors in liver cells to secrete IGF-1 into systemic circulation (Bartke et al. 

2013). Notably, liver-derived IGF-1 in the plasma is dependent on GH levels, 

while tissue-specific IGF-1 is thought to be secreted independently of GH action 

(LeRoith et al. 2001; Lupu et al. 2001). In mammals, GH and IGF-1 are well 

known for their metabolic effects on adult skeletal muscle tissue, and their 

regulation of muscle size and mass through the membrane-bound IGF-1 receptor 

(Breier 1999; Velloso 2008). Moreover, IGF-1 receptors activate the 

PI3K/Akt/mTOR/S6K1 (see section 1B on “Protein Anabolism”) and MAPK 

second messenger pathways that increases the rate of protein synthesis, new 

myonuclei formation, and differentiation of myosatellite cells (Otto & Patel 2010). 

Currently, very little recent GH research has been conducted in birds, and 

the research that has been conducted has often reported opposite effects on 

skeletal muscle compared to other vertebrates (i.e. mammals, LeRoith et al. 
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2001; fishes, Fuentes et al. 2013). In fact, most studies in which GH has been 

exogenously administrated report either no change or a decrease in skeletal 

(breast) muscle in broiler chicks (Table 1). For instance, in cultured myosatellite 

cells from chickens, exogenous GH was shown to result in an up-regulation of 

GH receptor mRNA expression, thereby inhibiting cell differentiation into mature 

skeletal muscle cells (Halevy et al. 1996). Additionally, Vasilatos-Younken et al. 

(2000) found an indirect effect of GH administration on increased production of 

T3 through the down-regulation of T3-degrading deiodinase type III, generating a 

net protein loss and therefore decrease in breast muscle mass in chickens. 

These complex interactions between somatotrophic and HPT axes on whole-

organismal metabolism may explain the decrease in skeletal muscle in chickens 

with supplementary GH (orange and purple boxes in Figure 2.3).  

Research on avian IGF-1, primarily from studies on neonatal chicks and 

cultured cells, indicates its role as a key signal for muscle growth through 

hypertrophy and myosatellite cell proliferation and differentiation in birds (Table 

1; orange and purple boxes in Figure 2.3). Moreover, these pro-proliferative 

effects of IGF-1 are attenuated with PI3K and Akt inhibitors, identifying a 

conserved intracellular mechanism of IGF-1 signaling in skeletal muscle cells in 

avian species (Yu et al. 2015). Moreover, exogenous administration of IGF-1 in 

avian species has been shown to increase the rate of protein synthesis (Conlon 

& Kita 2002), inhibit protein catabolism in skeletal muscle cells (Tomas et al. 

1998), and induce differentiation in muscle progenitor cells (Duclos et al. 1991; 

Buyse & Decuypere 1999). Although both liver- and muscle-produced IGF-1 

interact with muscle cell receptors, the relative contribution of each towards 

muscle growth remains unknown (Velloso 2008).  

 Even less is currently known about the seasonal regulation of plasma IGF-

1 in birds, especially in terms of IGF-1 as an anabolic driver of skeletal muscle 

growth. Price and colleagues (2011) found that flight muscle IGF-1 mRNA 

expression in white-throated sparrows (Zonotrichia albicollis) was significantly 

higher in spring migrants compared to wintering, indicating that production of 

local IGF-1 may be important for protein synthesis in skeletal muscle tissue. In 
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polar environments with highly constrained breeding seasons, Adélie penguins 

chicks (Pygoscelis adeliae) expressed high IGF-1 mRNA in pectoral muscle 

during a rapid growth period, indicating that it plays an important role in the 

development of an enhanced muscle phenotype (Degletagne et al. 2013). 

Finally, Lodjak et al. (2014, 2016) recently showed a causal link between plasma 

IGF-1 elevation and increased growth rates in nestlings of free-living great tits 

(Parus major) and pied flycatchers (Ficedula hypoleuca). Overall, there is an 

underwhelming amount of avian-based information on circulating IGF-1 levels 

across life-history stages, which opens avenues for investigation of IGF-1 effects 

on skeletal muscle growth and fitness-related traits such as growth rate, brood 

size, and lifespan (Dantzer & Swanson 2012). 

 

Testosterone  

Testosterone, the primary mediator of male traits in vertebrates (Hau 2007; but 

see Ketterson et al. 2005 for testosterone's role in female traits), is an anabolic 

androgen that regulates primary (gonad production and spermatogenesis; 

Garamszegi et al. 2005) and secondary sexual characteristics such as sexual 

and aggressive behaviours (i.e. courtship, singing, and territorial defense), brain 

development, suppression of immune system, and anabolic effects on bone and 

skeletal muscle tissue (Wingfield et al. 1990; Hau 2007). The hypothalamic-

pituitary-gonadal (HPG) axis starts with external stimuli activating the 

hypothalamus to release gonadotropin releasing hormone, which in turn 

stimulates the secretion of luteinizing hormone (LH) and follicle-stimulating 

hormone (FSH) from the anterior pituitary, where LH then binds to receptors on 

(i) Leydig cells in the testes in males and (ii) granulosa cells in the ovaries in 

females to secrete testosterone, along with some extra-genital production in the 

adrenal cortex (Handa & Weiser 2014). Metabolic literature on anabolic 

androgenic steroids have been well studied in sports medicine for performance 

enhancing effects of lean muscle growth and decreased adipose mass in 

humans (Evans 2004). Androgen-mediated anabolic effects on skeletal muscle 

growth occur through androgen receptors in the nuclei of adult skeletal muscle 
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cells, myosatellite cells, and motor neurons (Dubois et al. 2012) to produce 

regulatory growth factors (i.e. IGF-1, PI3K and Akt kinases) that synthesize 

contractile proteins (Kim et al. 2009). In addition, mammalian testosterone has 

been shown to induce proliferation of myosatellite cells to increase the number of 

progenitor cells recruited for muscular growth (Sinha-Hikim et al. 2004, 2006).  

 Surprisingly, despite these strong links between testosterone and muscle 

growth in mammals, very few empirical studies directly examine levels of 

testosterone on skeletal muscle tissue in avian species (Table 2.1). Nonetheless, 

breed-specific differences in mean plasma testosterone revealed higher levels in 

broiler chickens artificially selected for higher meat production and larger breast 

muscles compared to layer chickens selected for egg production (Ho et al. 2011). 

Likewise, administration of mesterolone, a commonly administered anabolic 

androgenic steroid, increased the number of myosatellite cells in chicken breast 

muscle (Allouh & Aldirawi 2012). Similarly, elevated yolk testosterone increased 

musculus complexus size in hatchling red-winged blackbirds (Agelaius 

phoeniceus), a dorsal neck muscle for hatching and begging behaviours, and 

injections of testosterone antagonist (flutamide) caused a significant decrease in 

musculus complexus mass (Lipar & Ketterson 2000). Altogether, these studies 

suggest that testosterone may act as a potent muscle-promoting signal to induce 

skeletal muscle growth in birds (orange and purple boxes in Figure 2.3). 

 Seasonally elevated levels of circulating testosterone have generally been 

linked to breeding phenology in birds (Wingfield et al. 1990). Previous research 

has shown that testosterone secretion increases in migratory males to advance 

development of testes and energetic condition in anticipation of pre-breeding 

competition for territories and mates after arrival on breeding grounds (Wingfield 

1984; Morton et al. 1990; Holberton & Dufty 2005). Indeed, the effect of 

exogenous testosterone administration on migratory and breeding preparation in 

male dark-eyed juncos (Junco hyemalis), has demonstrated that testosterone-

treated individuals reach peak migratory condition four days before control 

individuals (Tonra et al. 2011a), and early arrival males had higher plasma 

testosterone compared to later arriving male American redstarts (Setophaga 
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ruticilla, Tonra et al. 2011b; supporting results shown in gray catbirds, Dumetella 

carolinensis; Owen et al. 2014). Further, male redstarts with experimentally 

elevated testosterone departed earlier for breeding grounds, supporting the 

hypothesis that testosterone initiates migratory readiness (Tonra et al. 2013). 

Likewise, Ramenofsky and Németh (2014) found that testosterone implants led 

to a temporary increase of muscle growth in a captive population of wild-caught 

white-crowned sparrows during the two-week implant period. Altogether, 

testosterone appears to be an important modulator of both spring migration and 

breeding phenotypes in which the two life-history stages are not mutually 

exclusive and presumably both require testosterone for skeletal muscle growth 

(Table 1). Although testosterone in females has shown to be important for 

breeding behaviours and offspring phenotype (Groothuis & Schwabl 2008), we 

currently do not know whether elevated levels in females serve an alternative 

biological function to increase skeletal muscle tissue for reproductive stages.  

 

C. Additional Candidates as Energy-Regulating Hormones  

Prolactin 

Prolactin, a peptide hormone secreted from the anterior pituitary when activated 

by vasoactive intestinal polypeptide from the hypothalamus, is important for 

generating and maintaining parental care in birds, as elevations occur during the 

onset of laying and continue after the parental phase (reviewed in Angelier & 

Chastel 2009a). Earlier avian studies suggested that prolactin might play a role in 

increasing food intake (Hnasko & Buntin 1993) and fattening (Goodridge & Ball 

1967; Meier et al. 1971; Bartov et al. 1980). However, long-term manipulative 

studies now appear to indicate that peak prolactin levels do not temporally 

coincide with pre-migratory period of fattening in dark-eyed juncos and white-

crowned sparrows (Schwabl et al. 1988; Holberton et al. 2008). The temporal lag 

of elevations in prolactin after pre-migratory hyperphagia and energetic 

preparation may be due to known increases in prolactin during laying, incubation, 

and chick rearing (Angelier & Chastel 2009a). Furthermore, more recent interest 

in the mechanistic interaction between glucocorticoids and prolactin in parents 
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has suggested these hormones balance the competing demands of offspring 

care, future reproductive investment, and self-maintenance (Angelier et al. 

2009b; Miller et al. 2009; Spée et al. 2010; Ouyang et al. 2013). Taken together, 

these confirmed actions during reproductive stages based on work from both 

domestic and wild birds supports prolactin’s primary role as a “parental 

hormone”. Thus, it seems unlikely that prolactin, along with vasoactive intestinal 

polypeptide, carries any major importance in building fat stores during pre-

migration or pre-breeding considering that circulating prolactin levels reach peak 

concentrations after the conclusion of the pre-laying interval in various species 

(Williams & Sharp 1993; Angelier et al. 2016; Riou et al. 2010).  

 

Leptin 

With the upswing of biomedical research focused on the obesity epidemic in 

humans, leptin, an adipose-derived hormone that signals satiety (or fullness) in 

the hypothalamus to decrease food intake, has been perhaps the most well 

studied hormone on energy balance and metabolism in mammals (reviewed in 

Friedman & Halaas 1998). In mammals, leptin is a potent suppressor of feeding 

through up-regulating POMC and down-regulating NPY/AgRP gene expression 

(Friedman 2009). In birds, on the other hand, progression on leptin biology has 

been slow since the controversial characterization of the leptin gene about 20 

years ago, which was initially difficult to clone with only ~30% conserved amino 

acid sequence and a high degree of GC base pairing in the coding region 

(outlined in Boswell & Dunn 2015). Additionally, in contrast to mammalian leptin, 

many differences in avian leptin-like proteins have been identified: (a) 

low/undetectable circulating levels in the plasma (Hen et al. 2008); (b) a 

widespread tissue expression with low levels in white adipose tissue (Huang et 

al. 2014; Friedman-Einat et al. 2014); (c) the possibility of loss of leptin gene in 

poultry genomes from domestication (Friedman-Einat & Seroussi 2014); and (d) 

may play a role that is independent from energy regulation (Millar 2014). Even 

with these discrepancies and considering the isolation of an avian leptin receptor 

(Horev et al. 2000), a number of studies have administered exogenous 
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mammalian leptin to examine changes in food intake and energetic state in birds 

(Denbow et al. 2000; Alonso-Alvarez et al. 2007; Cersale et al. 2011; Zajac et al. 

2011). However, the uncertainty behind the isolation and biological function of 

leptin-like protein remains controversial, prompting many more questions about 

its potential role in energy balance in birds (Boswell & Dunn 2015).  

 

Cholecystokinin  

Cholecystokinin (CCK) is a gastrointestinal peptide hormone secreted from the 

small intestines in birds (Jonson et al. 2000), and similar to other vertebrates, 

both exogenous peripheral and central administration of CCK decreases food 

intake in domestic chickens (Denbow & Myers 1982; Furuse et al. 2000; 

Tachibana et al. 2012). Avian CCK receptors are located in the vagal afferent 

neurons to produce sensations of satiety, along with simultaneous suppression of 

gastric emptying and digestive enzyme secretion from the pancreas and liver 

(Covasa & Forbes 1994). Interestingly, Dunn and colleagues (2013) propose that 

animal domestication in high-growth selected strains of poultry are resistant to a 

single intraperitoneal injection of CCK (10 µg/kg of body weight) through lowered 

expression of CCK receptor in the brain and intestines in growing domestic 

chicks. Considering the hormonal effects in wild-caught, captive birds, white-

crowned sparrows also ingest less food in CCK-treated birds in a dose-

dependent fashion (Richardson et al. 1993). However, there is little to no 

ecological information on the temporal patterns and possible circannual control of 

CCK in relation to life-history stages or seasonal events, making it an intriguing 

candidate for an expected down-regulation during energetic readiness.  

 

Peptide YY 

Conlon and O’Harte (1992) were the first to isolate and sequence chicken 

peptide YY (PYY), a brain-gut hormone that has been strongly linked to the 

inhibition of food intake via Y2 receptors on NPY neurons in the arcuate nucleus 

of the hypothalamus in mammals (Batterham et al. 2002; Chelikani et al. 2006; 

McGowan & Bloom 2004). In addition, PYY acts as key satiety signal in rodents 
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and humans via elevated plasma circulating levels after feeding (Stadlbauer et al. 

2013). Despite earlier isolation and characterization of chicken PYY, there is 

limited available research on any potential effects of avian PYY on energy 

balance in birds, particularly wild species (Honda et al. 2017). Recent research 

has identified that elevated mRNA expression in the small intestines, specifically 

in the jejunum, and intravenous infusion of chicken PYY suppresses food intake 

in male broiler chicks (Aoki et al. 2017). Further investigative studies need to be 

conducted to augment these findings before implementing this potential satiety 

signal in energetic balance within a life-history context.  

 

Glucagon-like Peptides 

Glucagon-like peptide 1 and 2 (GLP1 and GLP2, respectively) are intestinal 

hormones that regulate nutritional homeostasis, as well as stimulate the 

proliferation of pancreatic β-cells and serves as an anti-apoptotic intracellular 

signal of intestinal epithelium in mammals (Brubaker & Drucker 2004). In 

mammals, GLP1 is released in response to the ingestion of nutrients, and it plays 

a primary role in promoting insulin secretion and inhibiting glucagon release by 

the pancreas, suppressing gastrointestinal motility, and reducing food intake 

(reviewed by Holst 2007). In chickens, intraperitoneal administration of GLP1 has 

been shown to inhibit food intake in Japanese quail (Shousha et al. 2007), where 

the anorexigenic effect may be mediated through the CRF system in the 

hypothalamus (Tachibana et al. 2006). With regards to energetics, GLP1 

receptor mRNA expression is highest in abdominal adipose tissue, proposing a 

role in lipid metabolism of chickens, despite fasting and re-feeding did not 

change the plasma GLP1 levels (Richards & McMurtry 2008).  

 GLP2, derived from the same precursor peptide as GLP1, is important for 

normal growth and physiological function of the muscosal layer of the small 

intestines in mammals (Janssen et al. 2013). Furthermore, GLP2 mRNA 

expression is highest in the brain and gut of chickens, where it has been 

proposed to function as a nutrient-sensing hormone (Honda 2016). Further, 

administration of GLP2 significantly decreased food intake in broiler chicks by 
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crossing the blood brain barrier or median eminence in the arcuate nucleus of the 

hypothalamus, similar to other centrally acting hormones (Honda et al. 2015a; 

Honda et al. 2015b). Overall, more studies are needed to determine a possible 

physiological role of GLPs on energy balance in free-living avian systems.  

 

D. Predicting Patterns of Energy-Regulating Hormones: An Ecological 

Context 

Based on our empirical summary of hormones promoting fat deposition or 

skeletal muscle growth in birds (Table 2.1), we can, at the very least, make basic 

predictions about expected up- or down-regulation of these hormones during 

energetic preparation for migration or breeding (summarized in Table 2.2). 

Further, we present a simple conceptual diagram that depicts the expected 

temporal patterns of candidate energy-regulating hormones with regards to four 

generic stages: (i) reference (i.e. wintering); (ii) energetic gain (i.e. pre-migration 

or pre-breeding); (iii) energetic use/expenditure (i.e. migration or breeding); and 

(iv) reference (i.e. post-breeding; Figure 2.1). More specifically, in consideration 

of the candidate energy-regulating hormones mentioned in sub-sections A and B, 

we would predict that birds will exhibit elevated levels of baseline corticosterone, 

insulin, and T3, and suppressed levels of acylated ghrelin for fattening, and we 

also expect that there would be suppressed levels of GH and elevated levels of 

testosterone and IGF-1 for muscle hypertrophy (Figure 2.1). In addition, it is 

critical that we holistically integrate the currently known endogenous pathways to 

better visualize and interpret how seasonal changes in physiology (i.e. endocrine, 

neural, metabolic) lead to whole-organism phenotypes of fat deposition (Figure 

2.2) and skeletal muscle growth in birds (Figure 2.3). An underlying assumption 

of these predictions is that all birds living in seasonal environments require the 

same endogenous hardware for periods of fattening and/or muscle growth, and if 

true, then population-level variation in hormone regulation is most likely context 

(i.e. stage and species) dependent. Nonetheless, we urge ecologists to embark 

on correlative and experimental studies using this conceptual framework to test 
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the causal links between candidate energy-regulating hormones and energetic 

storage in free-living seasonal birds.  

 

MISSING INFORMATION AND FUTURE DIRECTIONS 

A. Complexities Arising from Hormone Manipulations: Case Example with 

Acylated Ghrelin 

Hormone manipulation experiments are instrumental for determining causal 

relationships between hormone-mediated traits (i.e. behaviour and physiology) 

and phenotypic changes (i.e. energetic state; referred to as “phenotypic 

engineering” by Ketterson & Nolan 1992; Ketterson & Nolan 1999). Research on 

avian energy-regulating hormones have readily harnessed this powerful 

technique to identify key mediators of energy balance in poultry (Scanes 2008) 

and in some wild species (Table 1). Although there has always been a clear 

advantage to using a manipulative approach to studying the evolutionary role of 

hormones (Ketterson & Nolan 1999), we discuss some of the drawbacks and 

limitations associated with hormone manipulation. Here, we use acylated ghrelin 

as a case example because of its recently appreciated influence on avian 

energetic state (Goymann et al. 2017), with hopes of future consideration for 

experimental designs. 

 First, dose of the hormone is an important consideration, especially to 

ensure that the elevations of the hormone are within a biologically relevant range. 

In vivo synthetic hormone administration rapidly elevates circulating levels in the 

plasma, and doses beyond the natural, physiologically relevant range are termed 

“pharmacological” (mentioned in Zera 2007b). For example, despite acylated 

ghrelin being classified as a potent anorexigenic hormone in chickens (see Table 

1), most hormone manipulation experiments use pharmacological doses that are 

significantly higher in concentration than detected naturally in the plasma, even 

under fasting conditions when concentrations are predicated to be the highest 

(Kaiya et al. 2013a). As previously mentioned, Shousha et al. (2005) injected one 

of the lowest known concentrations of acylated ghrelin (7.8 µg/mL; calculated 

using molecular weight from Phoenix Pharmaceuticals Inc.), and even this 
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concentration is much higher than physiological natural plasma levels under 

fasted conditions (~50 pg/mL), indicating a high degree of receptor sensitivity. 

Moreover, alternative (non-directed) effects resulting from extremely high levels 

can make the results of in vivo experimental manipulations difficult to interpret 

(Zera et al. 2007b). Although speculative, in the case of pharmacological doses 

of ghrelin, it may be possible that the anorexigenic effect in birds is caused by the 

instability and rapid conversion of plasma acylated ghrelin into des-acyl ghrelin, a 

proposed antagonist through an ghrelin-independent receptor that decreases 

food intake in mammals and birds (Delhanty et al. 2012, 2014; Goymann et al. 

2017). Altogether, we recommend that physiologically relevant doses of 

hormones should be carefully used to acquire an accurate interpretation on the 

effects of low or high levels on phenotypic expression.  

Further, the choice of administering single, multiple (i.e. chronic), or 

pulsatile (i.e. small bursts over a period) doses of exogenous hormones are an 

important, yet rarely accounted for, consideration since the duration of 

administration can affect negative feedback loops in vertebrates and can 

potentially induce down-regulation of endogenous hormones or a period of 

hormonal resistance (Fusani 2008; Dantzer et al. 2016). For instance, most 

poultry studies have used single dose administration of acylated ghrelin (Kaiya et 

al. 2013b), despite evidence for diel patterns of pulsatile secretion in fasted 

human subjects (Natalucci et al. 2005); however, the circadian rhythm of ghrelin 

has not been investigated in birds. Similarly, careful consideration must be given 

to the mode of delivery in live animals (i.e. silastic tubes, pellets, peripheral and 

central injections, osmotic mini-pumps, and food/water) that can cause variability 

in the degree of disruption in hormone profiles within the natural circadian rhythm 

(Dantzer et al. 2016; Sopinka et al. 2015). Future research on the daily rhythm of 

acylated ghrelin may be helpful to identify the best method of administration for 

manipulation experiments in free-living birds. 

 Arguably, the most difficult issue to control with hormone manipulations is 

the pleiotropic nature of hormonal pathways in coordinating complex life-history 

phenotypes (Zera 2007a). As a result, it is challenging to discern whether it is the 
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manipulated hormone, another hormone indirectly affected from manipulation, or 

perhaps an interaction of both that regulate the phenotype (Mcglothlin & 

Ketterson 2008). For example, Ocłoń & Pietras (2011) found that ghrelin-elicited 

reduction of food intake was attenuated with astressin, a CRF antagonist, and 

enhanced with RU486, a glucocorticoid antagonist, suggesting that peripheral 

acylated ghrelin mediates changes in HPA axis activity that, together, affect 

feeding. To examine the effect of individual variation in hormones on metabolic 

phenotypes of free-living birds, a potential solution is to include correlative data 

or life-history stage variation in natural hormone levels or cite relevant studies 

that present these data (Williams 2012). Should little or no empirical evidence be 

available for a given hormone, we argue that correlative temporal studies should 

be conducted to provide foundational information on non-manipulated circulating 

levels and phenotype of interest before executing manipulation experiments.  

 

B. Implications for Comparing Domestic and Free-Living Birds 

Within birds, domestic poultry are often considered the model organisms 

frequently used to examine the hormonal regulation of energy balance since the 

aim of the field is to examine mechanisms that regulate the quality of protein 

production (Scanes 2008). For many reasons, current research on the influence 

of energy-regulating hormones on energy metabolism have largely been 

restricted to domestic poultry (see Table 1). Domesticated species offer many 

inherent logistical advantages for hormone analyses and experiments, such as 

the ability to collect large plasma volumes (analysing multiple hormonal traits 

from a single sample), repeated sampling of an individual, measure of variables 

before and after manipulation in an individual, and a controlled environment 

(Cheng 2010). Not surprisingly, there are problems associated with translating 

and scaling the relevance of findings in selected domestic stocks up to free-living 

populations of birds. 

 Artificial selection, the human intervention of genetic improvement for 

traits that maximize high-quality food in livestock and crops, is the evolutionary 

principle that has driven poultry breeding (Yamasaki et al. 2007). Although 
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desired traits of meat and egg yield are molded through artificial selection, 

genetic modification impinges on the natural behavioural, physiological, and 

morphological characteristics of free-living birds (Andersson 2001; Cheng 2010). 

For example, wild red jungle fowl produce an average of 4 to 6 eggs per year 

compared to layer (domestic) hens that produce on average 300 eggs per year 

(described in Cheng 2010). Moreover, poultry domestication through thousands 

of generations have selected for very different energetic demands and hormonal 

secretion patterns, especially considering domestic stocks have access to ad 

libitum food and water and constant environmental (i.e. lighting) regimes in 

captivity (Cheng 2010; Kaiya et al. 2013a). Importantly, traditional poultry studies 

that examine hormones are primarily interested in growth-related metrics 

associated with different strains in postnatal chicks (Scanes 2008). However, 

there are well-documented differences between the circulating levels of 

hormones during postnatal development in young birds compared to adult birds 

(i.e. GH levels; Harvey 2013), despite most poultry studies examining the energy-

regulating hormones in developing chicks (see Table 1). Although it is appealing 

to suggest that all birds require the same mechanistic hardware to facilitate 

systematic energy balance (Richards & Proszkowiec-Weglarz 2007), we should 

be weary to equate hormonal mechanisms between domestic and free-living 

birds, as well as between young and adult birds. Instead, as mammalian systems 

have provided a mechanistic basis for poultry studies (Richards 2003), domestic 

birds may be viable predictive models, rather than being surrogates, for field-

testing of hormonal regulation on energetic phenotypes in wild birds. 

 

C. Transcriptomics in Avian Endocrinology and Metabolism  

Transcriptomics, the use of high-throughput, genome-wide tools (i.e. DNA 

microarrays and RNA sequencing) to analyze mRNA levels as a functional 

measure of gene expression (discussed in Porter 2015) is a rapidly emerging 

field in avian physiology and endocrinology. Recently, Mello & Lovell (2017) 

reviewed how avian genomics, particularly comparative analyses of endocrine 

and metabolic transcriptional profiles, can scan thousands of genes 
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simultaneously to assess expression of endocrine-related genes. For example, 

corticosterone treatment on embryonic pituitary cells in chickens induced 

hundreds of genes compared to control cells, displaying the large-scale capability 

for mapping mRNA networks from cDNA-based microarrays (Jenkins et al. 

2013). A recent study focusing on divergent growth patterns of skeletal muscle 

tissue in chicken strains discovered that genes with higher mRNA levels were 

linked to myosatellite cell proliferation in chicks raised for meat production 

(broiler) compared to those raised for egg-laying (layer; Zheng et al. 2009).  

Gene expression results from avian breast muscle has pinpointed key 

enzymes in lipid and protein metabolism, leading to the identification of genetic 

markers involved in muscle hypertrophy in domestic chickens (Cui et al. 2012; 

Sibut et al. 2011) and king penguins (Teulier et al. 2012). Moreover, in an 

attempt to unravel the underlying mechanisms of excess fat in broiler chickens, 

Wang and colleagues (2007) discovered that enhanced mRNA expression of 

lipoprotein lipase, fatty acid binding protein, thyroid-hormone responsive protein, 

and leptin receptor in high-fat selected lines. Additionally, next-generation RNA 

sequencing is a progressively feasible and affordable technique to identify 

candidate genes without genomic resources selected a priori (see Ozsolak & 

Milos 2011 for a thorough review of RNA sequencing). Researchers now have 

access to the full transcriptomes of model avian species (i.e. chicken, Hubbard et 

al. 2005; zebra finch; Balakrishnan et al. 2012), and researchers are now 

generating transcriptomes of free-living, temperate/polar species as well (dark-

eyed junco; Peterson et al. 2012) to test gene regulation within an ecological 

context. Transcriptomics is a powerful tool to assess how gene regulation 

integrates the cellular expression of numerous endocrine, metabolic, and neural 

traits in free-living birds, which may provide important insight into the regulation 

of traits and genes critical in mediating energetic readiness.  

 

D. Long-Term Endocrine Studies as Powerful, but Rarely Applied Tools 

Using a seasonal or life-history stage approach to assess organismal traits, 

environmental endocrinologists can measure the seasonal rhythms of hormone 
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concentrations, receptor densities, and endocrine-regulatory proteins to 

quantitatively assess the degree of energetic challenge (Jacobs & Wingfield 

2000; Romero et al. 2017). However, long-term endocrine studies are considered 

rare, despite possessing strong scientific value to produce new or support pre-

existing evolutionary theories in ecology (Mills et al. 2015).  

In avian systems, “long-term endocrine studies” on captive or wild-caught 

birds involve the collection of blood samples for hormone analyses spanning 

from every week (fine scale) to every month (coarse scale) in at least one year. 

Unfortunately, whether on captive or wild-caught birds, long-term endocrine 

studies in birds require: (i) objectives that are both broad and detailed enough to 

justify the significant investment in time and effort; (ii) a model study system that 

can withstand repeated sampling of multiple individuals over time, yet be 

applicable to a diversity of species; (iii) consistent funding to span multiple goals 

that make up the larger project objective, (iv) a breadth and depth of researcher 

expertise for the analysis and interpretation of multiple metrics, and (v) a 

consistent and repeatable experimental design.  

First, employing research objectives and questions provides a starting 

point for experimental design and proper selection of long-term study system 

(Lindenmayer & Likens 2009). Among some of the most frequently studied 

captive systems are highly seasonal, temperate and Arctic songbirds because 

they are: (a) able to survive in outdoor aviaries at northern latitudes year-round, 

(b) small-bodied birds, allowing for a greater sample size per aviary, (c) species 

with pronounced hormonal rhythms across seasons, and (d) conveniently caught 

and held in close proximity to an university or research facilities, such as the 

dark-eyed junco (i.e. Ho et al. 2017; Ramenofsky et al. 1999), white-crowned 

sparrow (i.e. Breuner et al. 1999; Schwabl & Farner 1989), white-throated 

sparrow (i.e. Spinney et al. 2006), and European starling (i.e. Romero & 

Remage-Healey 2000). Moreover, long-term studies require substantially more 

funding compared to short-term studies and also require sustainable research 

facilities and logistical support, high-quality and long-lasting equipment, as well 

as extensive training from the principal investigator. We advise that one sampler 
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commits to population monitoring and data collection (i.e. avoid sampler bias), 

unless logistically impossible to do so without assistance. Not surprisingly, long-

term, endocrine-based studies are necessary to both examine and identify 

hormone variation across life-history stages, while controlling for additional 

environmental contexts. However, they demand a tremendous amount of 

logistical organization, financial costs, and team effort, and as such, the temporal 

patterns of many energy-regulating hormones (i.e. IGF, ghrelin, T3) are still 

unknown.  

 

CONCLUDING REMARKS  

Endocrine responses regulate short-term energy balance through homeostatic 

mechanisms and seasonal energetic state through rheostatic mechanisms in 

mammals and birds. In this review, the focus has been on identifying the most 

likely regulators of muscle hypertrophy and fat accumulation during periods of 

energetic preparation, principally before migration and breeding, in free-living 

birds. Biomedical and poultry studies have provided a useful framework for 

identifying hormonal regulators of energy storage in order to test these 

presumably adaptive traits within the annual life cycle of free-living birds. Moving 

forward, continued application of integration of various sub-disciplines, including 

genetics, behavioural ecology, ecophysiology, and neuroendocrinology, has the 

potential to provide a more complete understanding of the endogenous 

mechanisms that govern energetic phenotypes. With the emerging tools of 

modern transcriptomics combined with the manipulation of environmental 

variables during long-term endocrine studies, ecologists can begin to causally 

determine how and why the molecular mechanisms central to seasonal energy 

storage impact organismal performance and ultimately fitness.  
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TABLES 
	

Table 2.1: Summary of studies on experimentally administered and naturally circulating levels of energy-regulating 
hormones with anabolic effects of fattening or muscle growth in avian species. This table includes studies that detect 
plasma hormones or gene regulation of hormone mRNA transcripts. Study design (SD), indicated as D = domestic 
captivity, C = wild-caught captivity, or W = wild/free-living; sex is abbreviated as NS = not stated, F = females, or M = 
males; stage or sub-stage = tested life-history stage or "-" = experimental manipulation with no specific stage tested; 
relative level (RL) with arrows indicating (i) up- or down-regulation of hormones for stage-related studies, and (ii) 
increase/decrease of energetic variable for manipulative studies. 

Hormone Species  SD Sex, 
Age  

Stage or 
Substage(s) 

RL Energetic 
Variable 

Support 
Fat or 

Muscle
Gain? 

Notes Reference 

Baseline 
Corticosterone 

(CORT) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Broiler chicks  
Gallus gallus domesticus  

D NS, 
chick 

- ↑ Abdominal 
Fat Pad, 
Liver Fat 

Yes 6 daily injections of 
CORT induced fat mass 
gain 

Bartov (1982) 

Broiler chicks  
Gallus gallus domesticus 

D F, 
adult 

- ↑ Abdominal 
Fat Pad, 

Body Mass 

Yes Two injections of CORT 
increases abdominal 
fatness 

Buyse et al. 
(1987) 

Dark-eyed junco  
Junco hyemalis 

C M, 
adult 

- ↑ Body mass, 
fat score 

Yes Increase in fat score, but 
no change in lipoprotein 
lipase after 4 days  

Gray et al. 
(1990) 

Gray catbird   
Dumetella carolinensis 

W Both, 
adult 

Pre-migration 
Spring 

migration 

↓ 
↑ 

Fat score  Yes Small sample size Holberton et 
al. (1996) 

White-crowned sparrows  
Zonotrichia leucophrys 
gambelii  

C B, 
adult 

Spring 
migration 
Breeding  
Autumn 

Migration  
Winter 

↓ 
 
↑ 
↓ 
 
↓ 

Body mass, 
fat score 

Yes Temporal correlation 
categorized into stages 

Romero et al. 
(1997) 
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Baseline 
CORT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Yellow-rumped warbler  
Dendroica coronata 

C B, 
adult 

Pre-migration 
(spring) 

↑ 
 

Body mass, 
fat score 

Yes Strong temporal 
correlation 

Holberton 
(1999) 

Red knot   
Calidris canutus 

C B, 
adult 

Pre-migration 
Spring 

migration 

↓ 
↑ 

Body mass Yes 
 

Strong temporal 
correlation 

Piersma et 
al. (2000) 

Semipalmated sandpiper 
Calidris pusilla 

W B, 
adult 

Spring 
migration 

- Fat scores No Weak, non-significant 
correlation between fat 
and baseline CORT 

Mizrahi et al. 
(2001) 

Bar-tailed godwits  Limosa 
lapponica 

W M, 
adult 

Start of 
refueling 
End of 

refueling  

↓ 
 
↑ 

Body mass Yes Sampled at stopover 
sites and breeding 
grounds 

Landys-
Ciannelli et 
al. (2002) 

Hermit thrush   
Catharus guttatus 

W ND, 
adult 

Autumn 
migration 

↑ Energetic 
condition 

Yes Low energetic condition 
= high levels 

Long & 
Holberton 

(2004) 
Broiler chicks  
Gallus gallus domesticus 

D NS, 
chick 

- ↑ Abdominal 
fat  

Yes  Large dose (30 mg 
CORT/kg of diet) of 
corticosterone increases 
abdominal fat stores 

Lin et al. 
(2006) 

Dark-eyed junco  
Junco hyemalis 

C B, 
adult 

- ↑ Body mass, 
fat score 

Yes Manipulation with 
dexamethasone; no 
specific stage 

Holberton et 
al. (2007) 

Dark-eyed junco  
Junco hyemalis 

C B, 
adult 

Spring 
migration  

↑ Body mass, 
fat score 

Yes Altered photoperiod to 
mimic short to long days 

Holberton et 
al. (2008) 

Broiler chicks  
Gallus gallus domesticus 

D M, 
chick 

-  ↑ Abdominal 
fat pad, 

liver weight, 
TRIG 

Yes Exogenous CORT (dose 
30 mg/kg diet) increased 
body fat; TRIG also 
increased  

Jiang et al. 
(2008) 

Broiler chicks  
Gallus gallus domesticus 

D M, 
chick 

-  ↑ Abdominal 
and sub- 

cutaneous 
fat, TRIG, 
VLDL, LPL 

Yes CORT (30 mg/kg diet) 
increases insulin and 
multiple lipid metabolites 
and body fat stores 

Yuan et al. 
(2008) 

Broiler chicks  
Gallus gallus domesticus 

D M, 
chick 

-  ↑ Abdominal, 
cervical, 

Yes Various metabolites and 
body fat stores were 

Cai et al. 
(2009) 
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Baseline 
CORT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and thigh 
fat, VLDL, 

TRIG, FAS, 
ME, ACC 

increased with 
dexamethasone (1 
mg/mL, daily for 7 days) 

Northern wheatears 
Oenanthe oenanthe and O. 
leucorhoa   

W B, 
adult 

Spring 
migration 

↑ Body mass, 
fat score 

Yes Fuel load (i.e. fat score) 
was negatively 
correlated with baseline 
CORT 

Eikenaar et 
al. (2013) 

Common yellowthroat 
Geothlypis trichas 

C B, 
adult 

Autumn 
migration 

No 
cha
nge 

- No No seasonal change 
detected in baseline 
levels 

Wagner et al. 
(2014) 

Broiler chicks 
Gallus gallus domesticus 

D ND, 
chick 

- ↑ Fat storage Yes Experimental activation 
of AMPK-NPY pathway 
via dexamethasone 

Liu et al. 
(2014) 

Red knot   
Calidris canutus 

C B, 
adult 

Arrival  
Breeding  

↑ 
↓ 

Body mass No 
No 

Patterns in months of 
June, July, August 

Reneerkens 
et al. (2015) 

Common eider  
Somateria mollissima  

W F, 
adult 

Pre-breeding  ↑ Body mass  Yes Pre-breeding energetics 
in relation to baseline 
levels 

Hennin et al. 
(2015) 

Common blackbird 
Turdus merula  

W B, 
adult 

Spring 
migration  
Autumn 

migration 

↓ 
 
↑ 

Fat score  No 
 
 

Compared migrants to 
residents  

Eikenaar et 
al. (2015) 

Dark-eyed junco 
Junco hyemalis 

W B, 
adult 

Spring 
migration 

↓ Fat score  Yes Compared migrants to 
residents 

Bauer et al. 
(2015) 

Common eider 
Somateria mollissima  

W F, 
adult 

Pre-breeding 
 

↑ Body mass, 
VLDL 

Yes VLDL increased with 
increases in baseline 
CORT 

Hennin et al. 
(2015) 

White-winged scoter  
Melanitta fusca deglandi 

C B, 
adult 

- ↑ Body mass  Yes Manipulation 
experiment; no specific 
stage 

Hennin et al. 
(2016) 

 
Peregrine falcon 
Falco peregrinus tundrius 

W F, 
adult 

Pre-breeding 
 

↑ Triglyceride
s, scaled 

mass 

Yes Increased baseline 
CORT levels from arrival 
to end of follicle growth  

Lamarre et 
al. (2017) 
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Baseline 
CORT 

Northern wheatears 
Oenanthe oenanthe and O. 
leucorhoa   

D B, 
adult 

- No 
cha
nge 

Fuel load No Blood samples at 7 mins 
were taken as baseline 
CORT levels  

Eikenaar 
(2017) 

 

Insulin Domestic chicken 
Gallus gallus domesticus 

D B, 
adult 

- ↓ FFAs Yes Glucose administration 
(fed state) leads to a 
decrease in FFAs 

Langslow et 
al. (1970) 

Domestic chicks 
Gallus gallus domesticus 

D B, 
chick 

-  ↑ Fatty Acid 
Synthase 

Expression 

Yes Large amount of insulin 
needed to simulate 
increases in enzyme  

Goodridge 
(1973) 

Domestic goose 
Anser domesticus 

D B, 
adult  

- ↑ FFAs No Intravenous injection of 
bovine insulin causes 
increase in plasma 
FFAs 

Nir & Levy 
(1973) 

Domestic chicken 
Gallus gallus domesticus 

D NS, 
adult 

- ↑ Lipoprotein 
Lipase 

Yes In vitro addition of 
insulin increase liver 
lipogenic enzyme 
activity   

Borron et al. 
(1979) 

Domestic duck 
Anus platyrhynchos 
domesticus 

D NS, 
adult 

- ↓ FFAs Yes  Low-dose insulin 
stimulates FFA uptake 
by liver 

Gross & 
Mialhe 
(1984) 

European Starlings 
Sturnus vulgaris 

C NS, 
adult 

- No 
cha
nge 

TRIG  No Insulin failed to increase 
plasma TRIG  

Remage-
Healey & 
Romero 
(2001) 

Broiler chicks 
Gallus gallus domesticus 

D M, 
chick 

- ↑ Malic 
enzyme 
and FAS 

Yes De novo lipogenesis 
with dexamethasone 
and insulin 

Cai et al. 
(2011) 

Acylated 
Ghrelin 

 
 
 
 
 

Broiler chicks 
Gallus gallus domesticus 

D M, 
chick 

- ↓ 
 

Food intake No ICV administration of 
ghrelin significantly 
decreased food intake 

Furuse et al. 
(2001) 

Japanese quail  
Coturnix coturnix japonica 

D M, 
adult 

- ↑ Food intake  Yes Peripheral injection 
increased food intake, 
but decreased with ICV  

Shousha et 
al. (2005) 
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Acylated 
Ghrelin 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Broiler chicks 
Gallus gallus domesticus 

D M, 
chick 

- ↓ 
 

Food intake No Peripheral injection 
decreased short-term 
(~1 hour) food intake 

Geelissen et 
al. (2006) 

Layer chicks 
Gallus gallus domesticus 

D M, 
chick 

- ↓ 
 

Food intake No Ghrelin increases with 
fasting (hunger signal), 
but not food intake 

Kaiya et al. 
(2007) 

 

Broiler chicks 
Gallus gallus domesticus 

D M, 
chick 

- ↓ 
 

Fatty acid 
synthase  

expression 

No Lowered mRNA levels in 
liver suggesting 
decreased lipogenesis  

Buyse et al. 
(2009) 

6 domestic duck  
Anus platyrhynchos 
domesticus 
9 domestic chicken  
Gallus gallus domesticus 

D B, 
chick 

- ↑ Fat 
reserves 

Yes High mRNA for ghrelin 
and ghrelin receptor 
genes in subcutaneous 
fat of higher-fat breeds 
with peripheral inject. 

Nie et al. 
(2009) 

Broiler chick 
Gallus gallus domesticus 

D NS, 
chick 

- ↓ 
 

Food intake No Peripheral ghrelin 
injection suppresses 
food intake 

Ocłoń & 
Pietras 
(2011) 

Domestic geese  
Anser anser domesticus 

D NS, 
chick 

- - Breast 
muscle 

No Peripheral ghrelin did 
not increase food intake, 
but high dose increased 
breast muscle  

Aghdam 
Shahryar & 
Lotfi (2015) 

 
 

Japanese quail  
Coturnix coturnix japonica 

D M, 
adult 

- ↓ 
 

Respiratory 
quotient   

No Peripheral ghrelin 
injection switches to fat 
or protein oxidation  

Shousha et 
al. (2015) 

Broiler chicks 
Gallus gallus domesticus 

D M, 
chick 

- ↑  TRIG Yes Ghrelin antagonist 
decreases plasma TRIG 

Aghdam 
Shahryar & 
Lotfi (2016) 

Garden warbler  
Sylvia borin  

W B, 
adult 

Spring 
migration 

↑ Fat score No  Birds with fat score > 0 
had elevated ghrelin  

Goymann et 
al. (2017) 
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Acylated  
Ghrelin 

Wild turkey  
Meleagridis gallopova 
 

D NS, 
chick 

-  ↑ TRIG No Ghrelin injection 
decreased plasma 
TRIG; may be dose-
dependent 

Aghdam 
Shahryar & 
Lotfi (2017) 

 
Triiodo-

thyronine 
(T3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Canada goose  
Branta canadensis  

W B, 
adult 

Pre-migration 
Spring 

migration  
Breeding  

↑ 
↓ 
 
↓ 

 None Yes T4 to T3 conversion from 
longer photoperiod 
prepare for reproduction 

John & 
George 
(1978) 

Domestic chicks 
Gallus gallus domesticus 

D B, 
chick 

- ↓ 
 

Abdominal 
fat 

No T3 administration causes 
a decrease in abdominal 
fat stores; lean line had 
greater plasma T3 than 
fat line 

Leclercq et 
al. (1988) 

Domestic chicks 
Gallus gallus domesticus 

D M, 
chick 

-  ↑ 
 

De novo 
lipogenesis 

Yes T3 stimulates hepatic 
lipogenesis through the 
up-regulation of malic 
enzyme 

Goodridge et 
al. (1989) 

Redheaded bunting 
Emberiza bruniceps  

C M, 
adult 

Wintering 
Pre-migration  

Spring 
migration 
Breeding 

↓ 
↑ 
↓ 
↓ 

Body mass Yes Increase in T3/T4 ratio 
during pre-migration 

Pathak & 
Chandola 
(1982a) 

 
 

Redheaded bunting 
Emberiza bruniceps 

C M, 
adult 

Wintering 
Pre-migration  

Spring 
migration  

↓ 
↑ 
↓ 

None Yes High T4 to T3 conversion 
during pre-migration; 
inhibition of conversion 
prevented fattening 

Pathak & 
Chandola 
(1982b) 

 
Rosy pastor  
Sturnus roeus  

C M, 
adult 

Wintering  
Pre-migration 

Migration  
Breeding 

↓ 
↑ 
↓ 
↓ 

Body mass Yes Small sample size (n = 
8); T3 and body weight 
both increase at pre-
migration in the spring 

Pathak & 
Chandola 

(1984) 
 
 

Broiler chicks 
Gallus gallus domesticus 

D M, 
chick

s 

-  ↑ Free fatty 
acids, TRIG 

Yes Dietary T3 increases 
plasma lipid content 

Rosebrough 
et al. (1992) 
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T3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Redheaded bunting 
Emberiza bruniceps 

D M, 
adult 

Spring 
migration 

↑ Fat scores  Yes Thyroidectomized birds 
(no fat) with peripheral 
T4 restores fat stores; 
inhibition of T4 to T3 
conversion decreases 
fat  

Pant & 
Chandola-

Saklani 
(1993) 

 
 

Spotted munia  
Lonchura punctulata  

D F, 
adult 

Spring moult 
Breeding  
Wintering 

↓ 
↑ 
↓ 

Fat score Yes T3 and fat scores 
concomitantly increase 
throughout breeding; T4 
profile is lowest in 
breeding  

Pant & 
Chandola-

Saklani 
(1995) 

Broiler chicks 
Gallus gallus domesticus 

D M, 
chick

s 

- ↓ In vitro 
lipogenesis
and TRIG 

No No change from basal 
with dietary T3 on in vitro 
lipogenesis, but 
decreased plasma TRIG 

Rosebrough 
& McMurtry 

(2000) 
 
 

Northern cardinal 
Cardinalis cardinalis 

W NS, 
adult 

Wintering  - Dry lipid 
mass 

No No correlation between 
thyroid hormones and 
fat 

Burger & 
Denver 
(2002) 

House sparrow 
Passer domesticus 

W B, 
adult 

Pre-breeding  
Breeding  

↓ 
↑ 

Body mass  No T3 is positively 
correlated to BMR, but 
is not correlated with 
body mass 

Chastel et al. 
(2003) 

 

Broiler chicks 
Gallus gallus domesticus 

D M, 
chick 

- ↑ In vitro 
lipogenesis, 

ME 

Yes T3 diet restored in vitro 
lipogenesis and ME 
expression, but 
prolonged treatment 
decrease lipogenesis  

Rosebrough 
& McMurtry 

(2003) 

Broiler chicks 
Gallus gallus domesticus 

D M, 
chick 

- ↓ 
 

In vitro 
lipogenesis, 

ME 

No Methimazole decreases 
lipogenesis and ME in a 
dose-dependent manner 

Rosebrough 
et al. (2006) 

Northern shovelers  
Anas clypeata  

C B, 
adult 

Wintering 
Pre-alternate 

Moult 
Spring 

migration 

↓ 
↓ 
 
 
↑ 

Fat score  Yes Significant increase in 
T3 during pre-migratory 
fattening before spring 
migration  

Elarabany et 
al. (2012) 
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T3 Post-
migration 

 
↓ 

White-crowned sparrow 
Zonotrichia leucophrys 
gambelii 

C M, 
adult 

Pre-migration  
(Spring) 

↑ Fat score, 
body mass 

Yes Chemical thyroid 
inhibition dropped fat 
score, while T3 
replacement only 
partially restored fat 
profile 

Pérez et al. 
(2016) 

 
 

Growth 
Hormone (GH) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Broiler chicks 
Gallus gallus domesticus 

M F, 
chick 

- No 
Ch
ang

e 

Breast 
muscle 

No Subcutaneous injection 
for two weeks (two 
doses) did not 
significantly alter muscle 

Buonomo & 
Baile (1988) 

Broiler chicks 
Gallus gallus domesticus 

M F, 
chick 

- No 
Ch
ang

e 

Breast 
muscle 

No Protein % in body 
muscle was not 
significantly altered with 
pulsatile infusions of GH 

Vasilatos-
Younken et 
al. (1988) 

Broiler chicks 
Gallus gallus domesticus 

D M, 
chick 

- ↓ 
 

Breast 
muscle 

No Daily, single dose 
injections of GH for 14 
days decreased total 
body protein 

Cogburn et 
al. (1989) 

Domestic chicken 
Gallus gallus domesticus 

D M, 
adult  

- No 
Ch
ang

e 

Breast 
muscle 

No Protein % in body 
muscle was not 
significantly altered with 
pulsatile infusions of GH 

Scanes et al. 
(1990) 

Broiler chicks 
Gallus gallus domesticus 

D M, 
chick 

- ↓ 
 

Breast 
muscle 

No Pulsatile infusions for 21 
days led to slightly 
decreased body protein 

Moellers & 
Cogburn 
(1995) 

Domestic chicken 
Gallus gallus domesticus 

D M, 
adult 

- ↓ 
 

Satellite 
cells 

No GH inhibited progenitor 
cell differentiation in 
vitro via muscle-specific 
genes 

Halevy et al. 
(1996) 
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GH Domestic chicken  
Gallus gallus domesticus 

D M, 
adult 

- No 
Ch
ang

e 

Breast 
muscle 

No Chicken GH had no 
affect on breast muscle  

Radecki et al. 
(1997) 

Broiler chicks 
Gallus gallus domesticus 

D F, 
chick 

- ↑ Breast 
muscle 

No Intravenous GH 
implants did not 
increase IGF-1 and  
decreased skeletal 
muscle growth; T3-
influenced   

Vasilatos-
Younken et 
al. (2000) 

 

Insulin-like 
Growth Factor-

1 (IGF-1)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Domestic chicken 
Gallus gallus domesticus 

D M, 
adult 

- ↑ Satellite 
cell 

proliferation 

Yes Satellite cell proliferation 
occurred through IGF-1 
receptor in cultured cells 

Duclos et al. 
(1991) 

Domestic chicken 
Gallus gallus domesticus 

D M, 
adult 

- ↑ Amino acid 
uptake and 

protein 
synthesis 

Yes Cultured satellite cells 
exposed to IGF-1 had 
quicker amino acid 
transport in vitro 

Duclos et al. 
(1993) 

Domestic chicken 
Gallus gallus domesticus 

D M, 
egg 

- ↑ Satellite 
and 

myoblast 
proliferation
/differentia- 

tion 

Yes IGF-1 promotes satellite 
and myoblast cell 
proliferation and 
differentiation in 
embryonic stage 

McFarland et 
al. (1993) 

Domestic chicken 
Gallus gallus domesticus 

D M, 
adult  

- ↓ 
 

Muscle 
protein 

breakdown 

Yes N-methylhistidine, 
protein metabolite, 
excretion was 
decreased in IGF-1-
treated birds 

Tomas et al. 
(1998) 

Broiler chicks 
Gallus gallus domesticus 

D M, 
chick 

- ↑ 3-methyl-
histidine  

No IGF-1 infusion causes 
increase in 3-
methylhistidine 
indicating protein 
breakdown  

Czerwinski et 
al. (1998) 
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IGF-1 Broiler chicks 
Gallus gallus domesticus 

D M, 
chick 

-  ↑ Body 
weight  

Yes Circulating IGF-1 is 
greater in high-growth 
rate relative to low-
growth rate birds 

Beccavin et 
al. (2001) 

 

Broiler chicks  
Gallus gallus domesticus 

D M, 
chick 

-  ↑ Protein 
synthesis in 

breast 
muscle 

Yes Protein synthesis rate is 
increased with IGF-1  

Conlon & 
Kita (2002) 

Broiler chicks 
Gallus gallus domesticus 

D M, 
chick 

-  ↑ Muscle 
IGF-1 
mRNA 

Yes Muscle IGF-1 mRNA is 
up-regulated during 
post-hatch growth  

Guernec et 
al. (2003) 

Broiler chicks 
Gallus gallus domesticus 

D M, 
chick 

-  ↑ Breast 
muscle  

Yes IGF-1 gene 
polymorphism increased 
plasma IGF-1 and 
breast muscle weight  

Zhou et al. 
(2005) 

White-throated sparrows  
Zonotrichia albicollis 

W B, 
adult 

Short day 
Long day 

↓ 
↑ 

Dry breast 
muscle 

Yes IGF-1 mRNA expression 
higher in long 
photoperiod 

Price et al. 
(2011) 

 
Domestic duck 
Anas platyrhynchos 
domestica 

D NS, 
egg 
& 

chick 

- ↑ Breast and 
leg muscles 

Yes IGF-1 treated eggs had 
greater muscle mass in 
breast and legs post-
hatch 

Liu et al. 
(2012) 

 
 

Adélie penguins 
Pygoscelis adeliae 

W B, 
chick 

Breeding ↑ Muscle 
IGF-1 
mRNA 

Yes Muscle IGF-1 mRNA is 
elevated during post-
hatch growth 

Degletagne 
et al. (2013) 

Broiler chicken  
Gallus gallus domesticus 

D B, 
chick 

- ↑ Myofibers 
size and 
number 

Yes Exogenous IGF-1 
induces myogenesis 
from myoblasts in vivo 

Yu et al. 
(2015) 

Broiler chicken  
Gallus gallus domesticus 

D M, 
chick 

- ↑ Muscle 
IGF-1 
mRNA 

Yes Skeletal muscle IGF-1 
mRNA is down-
regulated  as chicks 
grow older 

Saneyasu et 
al. (2016) 

Testosterone 
 
 

Red-winged blackbird 
Agelaius phoeniceus 

W B, 
chick 

Breeding ↑ Musculus 
complexus 

Yes Testosterone injected 
into egg yolk increased 
complexus mass  

Lipar & 
Ketterson 

(2000) 
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Testosterone Broiler chickens 
Gallus gallus domesticus 

D M, 
chick 

- ↓ 
 

Breast 
muscle 

No Castrated birds 
significantly gained 
breast muscle mass and 
weight gain over time 

Chen et al. 
(2010) 

Dark-eyed junco 
Junco hyemalis  

C B, 
adult 

Pre-migration  
(Spring) 

↑ Body mass 
and fat  

Yes Peripheral 
administration of 
testosterone advances 
body and fat mass gain 

Tonra et al. 
(2011) 

 

American redstarts 
Setophaga ruticilla 

C M, 
adult 

Pre-migration 
(Spring) 

↑ Muscle 
score 

Yes Testosterone implants 
increases breast 
muscle; advance in 
departure date 

Tonra et al. 
(2013) 

 

Broiler chickens 
Gallus gallus domesticus 

D F, 
chick 

-  ↑ Satellite 
cell number 

Yes Mesterolone 
(testosterone agonist) 
increases satellite cell 
and myonuclei number 
in breast muscle    

Allouh & 
Aldirawi 
(2012) 

White-crowned sparrow  
Zonotrichia leucophrys 
gambelii 
 

C M, 
adult 

Pre-migration 
(Spring) 

↑  Muscle  
score 

Yes Testosterone implants 
increase pectoralis 
muscle 

Ramenofsky 
& Németh 

(2014) 

Eurasian Skylark  
Alauda arvensis 
Asian Short-toed Lark 
Calandrella cheleensis 

C B, 
adult 

Spring 
migration 
Breeding  

↓ 
 
↑ 

Body mass Yes Plasma testosterone 
levels increases during 
migration with highest 
levels during the onset 
of breeding 

Zhao et al. 
(2017) 
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Table 2.2: General summary of the expected effects of energy-regulating hormones on peripheral tissue during periods of 
energetic storage in birds breeding in seasonal environments based on the synthesis of studies in Table 1. Direction of 
arrows indicate up- (↑) or down- (↓) regulation during energetic readiness (i.e. pre-migration or pre-breeding), and 
horizontal dash (⎯) represents no effect. Asterisks indicate hormones that have multiple (or more than a few) studies on 
temporal patterns across life-history stage in ecology.   

Hormones Effector Tissue Effect with Slight 
Elevation 

Effect with High or 
Prolonged Elevation  

Levels during Energetic 
Storage 

Baseline 
Corticosterone* 

White adipose 
tissue  

Anabolic Catabolic ↑ 

Insulin White adipose 
tissue 

Unknown  Anabolic ↑↑ 

Acylated Ghrelin White adipose 
tissue 

Unknown Catabolic ↓ 

T3* White adipose 
tissue 

Anabolic Catabolic ↓ 

GH Skeletal muscle Unknown Catabolic/No Effect ↓ or ⎯ 

IGF-1 Skeletal muscle Anabolic Anabolic ↑↑ 

Testosterone* Skeletal muscle Anabolic Anabolic ↑↑ 
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FIGURES 
 

	

Figure 2.1: General predictive model outlining the expected temporal variation in 
candidate anabolic energy-regulating hormones during periods of energetic 
storage (fat accumulation and skeletal muscle growth; shaded in grey) before a 
period of predictable, high energy expenditure (migration or breeding) in avian 
systems. Areas outside of the dotted boxes are only used for reference.  
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Figure 2.2: Conceptual illustration of anabolic mechanisms that integrate neural, 
endocrine, metabolic, and ecological pathways within a holistic framework of 
seasonal fattening in avian systems. Molecular pathways in the hypothalamus 
(neural) are initiated by changes in photoperiods (ecological), regulating the 
expression of clock genes and proteins (i.e. increase in CLOCK/BMAL1 
heterodimers) in the SCN involved in central control of neuroendocrine axes. 
Releasing hormones from the hypothalamus activates the pituitary gland to 
secrete intermediate hormones, which leads to secretion of various energy-
regulating hormones (endocrine). Baseline glucocorticoids, ghrelin, insulin, and 
T3 act through three interrelated bodily pathways: (1) Neural pathway: hormones 
reach ARC and stimulate orexigenic neurons, NPY and AgRP, that synapse at 
the LH to drive hunger signaling and increase food intake, (2) Metabolic pathway: 
ingested food rich in lipid- and carbohydrate-based macronutrients are delivered 
to the liver, where TRIG and other lipids are shuttled in VLDL to adipose tissue. 
Circulating energy-regulating hormones can directly activate lipogenesis at the 
liver or directly bind to adipocytes, increasing fat reserves in subcutaneous and 
visceral adipose tissue. (3) Ecological pathway: stage-dependent fattening is 
driven by proposed endocrine mechanisms to meet energetic challenges 
associated with costly stages (i.e. migration and breeding). *Green arrows 
represent anabolic pathways, dotted-red arrows indicate catabolic pathways 
(down-regulated), grey arrows are used generically, question mark indicates 
unknown role in birds, and red star depicts starting point. [Abbrevs: DBPR = 
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deep brain photoreceptors, SCN = suprachiasmatic nucleus, ARC = arcuate 
nucleus, PVN = paraventricular nucleus, LH = lateral hypothalamus, CORT = 
corticosterone, VLDL = very low-density lipoproteins, NPY = neuropeptide Y, 
AgRP= agouti-related protein, POMC = pro-opiomelanocortin, Cart = cocaine- 
and amphetamine-regulated transcript, CRF = corticotropin releasing factor, T4 = 
thyroxine, T3 = Triiodothyronine]. Google photos retrieved with the tools option 
“labeled for reuse with modification”. Based on figures from a variety of 
mammalian and avian sources (Woods et al. 1998; Boswell 2005; Murphy & 
Bloom 2006; Chong et al. 2007; Williams & Buck 2010).  
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Figure 2.3: Conceptual illustration of anabolic mechanisms that integrate neural, 
endocrine, metabolic, and ecological pathways within a holistic framework of 
seasonal skeletal muscle growth in avian systems. Similar to fattening, 
molecular pathways in the hypothalamus (neural) are initiated by changes in 
photoperiod (ecological), regulating the expression of clock genes and proteins 
(i.e. increase in CLOCK/BMAL1 heterodimers) in the SCN involved in central 
control of neuroendocrine axes. Releasing hormones from the hypothalamus 
activate the pituitary gland to secrete intermediate hormones, which lead to 
secretion of various energy-regulating hormones (endocrine). GH, IGF-1 and 
testosterone act in two pathways: (1) Metabolic pathway: ingested amino acids 
are delivered to the skeletal muscle tissue along with increased amino acid 
transporter expression on muscle cells. Circulating energy-regulating hormones 
can directly activate satellite cell differentiation and protein synthesis. In addition, 
high levels of GH causes the production and release of FFAs from white adipose 
tissue that can be used for energy in muscle tissue via β-oxidation. (2) Ecological 
pathway: stage-dependent muscle hypertrophy is driven by proposed endocrine 
mechanisms to meet energetic challenges associated with costly stages (i.e. 
migration and breeding). *Green arrows represent anabolic pathways, dotted-red 
arrows indicate catabolic pathways (down-regulated), grey arrows are used 
generically, question marks indicate unknown roles in birds, and red star 
depicts starting point. [Abbrevs: DBPR = deep brain photoreceptors, SCN = 
suprachiasmatic nucleus, ARC = arcuate nucleus, PVN = paraventricular 
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nucleus, LH = lateral hypothalamus, CRF = corticotropin-releasing factor, FFAs = 
free fatty acids, NPY = neuropeptide Y, AgRP= agouti-related protein, POMC = 
pro-opiomelanocortin, Cart = cocaine- and amphetamine-regulated transcript, GH 
= growth hormone, IGF-1 = insulin-like growth factor 1]. Google photos retrieved 
with the tools option “labeled for reuse with modification”. Based on figures from 
a variety of mammalian and avian sources (Buyse & Ducuypere 1999; Herbst & 
Bhasin 2004; Velloso 2008).  
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CHAPTER 3 – TEMPORAL INVESTIGATION OF HORMONES 
REGULATING FAT AND MUSCLE GAIN PRIOR TO 

ENERGETICALLY DEMANDING STAGES IN TWO ARCTIC BIRDS 
 
 
INTRODUCTION 

Seasonal organisms demonstrate remarkable phenotypic flexibility in 

morphology, physiology, and behaviour across various stages in their life cycle to 

maximize fitness and/or performance (Piersma & Drent 2003). Individuals living 

in highly seasonal environments must be adapted to interpret environmental cues 

from the change in seasons, translate this external information to adjust 

phenotypes, and organize these responses into distinct stages (Paul et al. 2008; 

Wingfield 2008; Visser et al. 2010). Often in these seasonal environments (i.e. 

temperate or circumpolar), the change in photoperiod is a powerful 

environmental cue that induces seasonal change in energetic and metabolic 

physiology (Hazlerigg & Wagner 2006; Lincoln et al. 2006; Wikelski et al. 2008), 

and results in changes in body composition which reflects predictable shifts in 

energy demand within the annual schedule (Piersma & Gils 2011). Energetic 

readiness, a period of resource accrual and nutrient deposition (i.e. fat and 

protein stores) to prepare for an energetically demanding life-history stage, is an 

adaptive strategy to provide reliable fuels before costly periods of prolonged food 

shortage, such as migration (McWilliams et al. 2004), hibernation (Humphries et 

al. 2003), or breeding (Varpe et al. 2009).  

 Birds living in highly seasonal environments have long been considered 

relevant models for examining energetic readiness, given that they exhibit 

extreme phenotypes of internally stored lipids and protein in white adipose tissue, 

skeletal muscle, and visceral organs (Lindström & Piersma 1993; Bauchinger & 

McWilliams 2010), in preparation for reproduction (Meijer & Drent 1999) and  

 
 

*This chapter is the result of joint research with F. Vézina, A. Le Pogam, C. Harris, H.L. Hennin, 

and O.P. Love. 
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migration (Jenni et al. 1998). In particular, the flexible remodeling of adipose 

tissue and skeletal muscle at these life-history stages indicate a marked 

physiological shift in lipid and protein metabolism (Jenni-Eiermann & Jenni 1991; 

Dietz et al. 1999; Bauchinger & Biebach 2005a). Birds accumulate excess 

energy stores by converting dietary carbohydrates, protein, and lipids into fat and 

muscle through various physiological and behavioural processes such as 

hyperphagia (i.e. rapid increase in food intake), increase in assimilation 

efficiency, and shifts in diet selection (Bairlein 1987; Bairlein 2002; Davies & 

Deviche 2014). Although the physiology and behaviours of lipid and protein 

storage across avian life-history stages have been well-characterized 

(McWilliams et al. 2004), the endogenous signaling mechanisms that translate 

the seasonal cues into predictable phenotypic responses of fat deposition and 

skeletal muscle growth remain incomplete (Ramenofsky 2011). Nonetheless, 

energy-regulating hormones were originally identified as candidate signaling 

molecules in mammals (Cahill et al. 2013), providing a strong framework for 

studies in avian systems (see Table 2.1 in Chapter 2 for full details).  

Energy-regulating hormones are proposed regulators of seasonal changes 

in energetic state for a few reasons, including (i) fat and protein metabolism that 

affect somatic energy stores (Scanes 2008), (ii) daily and seasonal variation in 

circulating (endocrine) and local (tissue) levels (Jacobs & Wingfield 2000), and 

(iii) interactions with neural and metabolic pathways involved in energy balance 

(Boswell 2005; Richards & Proszkowiec-Weglarz 2007). Candidate energy-

regulating hormones, such as baseline glucocorticoids, acylated ghrelin, insulin, 

and triiodo-L-thyronine, have both central and peripheral effects to regulate food 

intake and fat metabolism in poultry (outlined in Scanes 2008 and Boswell & 

Dunn 2017). Glucocorticoids, such as corticosterone (the primary avian 

glucocorticoid) and cortisol, are the most studied hormones on daily and 

seasonal energetic processes in birds, as baseline corticosterone is often 

elevated during life-history stages of high energy demand (Romero 2002; Landys 

et al. 2006; Crespi et al. 2013; Romero et al. 2017). More specifically, increases 

in circulating levels of baseline corticosterone have shown to induce foraging 
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behaviours (Astheimer et al. 1992; Angelier et al. 2007; Angelier et al. 2008; 

Kitaysky et al. 2010; Crossin et al. 2012), food intake (Dallman et al. 1993; 

Landys et al. 2006), and fat deposition (Holberton 1999; Long & Holberton 2004; 

Holberton et al. 2007, 2008; Hennin et al. 2015, 2016; Lamarre et al. 2017).  

 Considering the importance of selection for rapid growth and development 

of meat in the poultry industry, two prospective muscle-promoting hormones 

worth investigating with regards to changes in muscle mass are testosterone and 

insulin-like growth factor-1 (IGF-1; Scanes 2009; Fuxjager et al. 2012). 

Testosterone, classically known for reproductive and behavioural functions in 

birds (Hau 2007), has also experimentally been shown to be a potent anabolic 

steroid that increases breast muscle mass in migratory passerines (Tonra et al. 

2011b, 2013; Ramenofsky & Németh 2014). Likewise, IGF-1 is the downstream 

hormone of the somatotropic (growth hormone/IGF-1) axis secreted from the liver 

which increases cellular growth through protein synthesis via the PI3K/Akt 

signaling pathway in various tissue (i.e. reproductive, digestive, bone, and 

muscle tissues; McMurtry et al. 1997), including its proliferative effects on 

somatic tissue development in juvenile birds (Lodjak et al. 2014; Lodjak et al. 

2016) and on skeletal muscle hypertrophy in adults (Buyse & Decuypere 1999; 

Velloso 2008). Despite the roles that these two anabolic agents might play in 

energetic readiness, few empirical studies have examined these hormonal 

mechanisms in free-living systems, and even fewer are temporally represented 

over a relevant period of expected responses.  

 Here, we examine temporal patterns of candidate endocrine markers, 

measured before, during, and after periods of energetic readiness for 

energetically demanding life-history stages in two Arctic-breeding species, male 

snow bunting (Plectrophenax nivalis) and female common eider (Somateria 

mollissima). Energetic preparation is important to fuel stages centred around a 

short, constrained polar breeding season in Arctic environments (Love et al. 

2010). Snow buntings gain body mass during pre-migratory preparation for a 

long, direct migration in the spring (Vincent & Bedard 1976), presumably from 

accumulation of fat depots and enlarged flight muscles (Piersma et al. 1999; 
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Bauchinger et al. 2005a; Hua et al. 2013). Female common eiders must also 

rapidly store enough fat and protein during the pre-breeding period to initiate egg 

production (Hennin et al. 2015) and fuel a long fast during the incubation period 

(Groscolas & Robin 2001). To identify signaling mechanisms of physiological 

responses for energetic storage, we focused on the hormonal profile of (i) the fat-

promoting hormone, baseline corticosterone, and (ii) the muscle-promoting 

hormones, testosterone and IGF-1. Interestingly, to the best of our knowledge, 

this the first study to explore the temporal patterns of circulating IGF-1 levels in 

any adult bird (although see Price et al. (2011) for IGF-1 mRNA levels during 

short and long days). During periods of energetic preparation in both species, we 

expected to see an elevation in baseline corticosterone to mediate lipid 

deposition in white adipose tissue and elevations in testosterone and IGF-1 to 

mediate protein synthesis in skeletal muscle. 

 

METHODS 

A. Study Systems and Stages of Energetic Preparation 

Snow buntings. Wild, male adult snow buntings (n = 25) were captured locally 

from a wintering population at Rimouski, Québec, Canada (48°26’N, 68°31’W) 

using walk-in ground traps that were baited with crushed corn in November 2013 

and October 2014. Each bird was given a numbered metal band and a unique, 

four-colour combination of plastic bands for individual identification (Banding 

Permit #: 10704). All birds were transported to Université du Québec à Rimouski 

(UQAR) in small temporary cages and were held in outdoor aviaries (6.1 x 4.6 

m). Captive individuals were exposed to natural ambient environmental 

conditions (i.e. sunlight and wind), but were partially sheltered from heavy 

precipitation. Birds were given fresh, ad libitum food and water each day (i.e. 

commercial mixed-seed diet: white millet, cracked corn, black oil sunflower 

seeds).  

 Previous migratory research suggests that this wintering population of 

buntings breeds in western Greenland (Macdonald et al. 2012). During pre-

migratory preparation on wintering grounds in the late winter, excess fat and 
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muscle tissues are thought to be developed for a few reasons: (i) direct, non-stop 

flapping flight over the Labrador Sea to breeding grounds in western Greenland 

during the early spring (Macdonald et al. 2012); (ii) arrival in cold, unpredictable 

Arctic climate in the spring may require energy reserve and muscular capacity for 

shivering heat production (Montgomerie & Lyons 2011; Vézina et al. 2012); and 

(iii) remaining lipid and protein may fuel carry-over effects from migration into 

breeding activities (Sandberg 1996). Males were chosen, in particular, because 

they are expected to experience the harshest environmental conditions 

associated with earlier arrival than females on the breeding grounds to establish 

and defend territories (McKinnon et al. 2016). 

 Data on energetic metrics and hormones were temporally represented 

across weeks, and then further grouped into “stages” (wintering, pre-migration, 

migration, and post-migration) for analyses using the annual cycle outlined in 

Montgomerie & Lyon (2011). Standard morphometric measurements (body 

mass, wing chord, tarsus length, head-and-bill length) were collected after 

original capture, and body mass, blood samples, and energetic metrics were 

recorded bi-weekly for all individuals from January to October 2015. Although we 

present data for multiple life-history stages (i.e. wintering, pre-migration, spring 

migration, breeding, pre-basic moult, fall migration) for reference, the primary 

focus was on the dynamics of energy-regulating hormones and energetic 

responses during the pre-migration stage.  

 

Common eiders. Data on free-living, adult female common eiders (n = 1,264) 

were collected from Mitivik Island (64°02’N, 81°47’W) in the East Bay Bird 

Sanctuary, Nunavut, Canada from 2006 to 2016. This population represents the 

densest breeding colony (~9,000 pairs on 800 x 400 m island) of common eiders 

in northern Canada (Hennin et al. 2015). Females were caught following 

migration from wintering grounds (coasts of Newfoundland and Greenland; 

Mosbech et al. 2006) using large flight nets from mid-June to early-July (range: 

June 10 to July 8 across ten years), where capture date was used as a reliable 

proxy of arrival date for this particular colony (Descamps et al. 2011). After 
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capture, blood samples were collected within 3 minutes from the tarsal vein to 

obtain baseline physiological measures (see “Blood Sampling”), and then body 

mass (in grams, g) and tarsus length (in millimeters, mm) were measured. Each 

female received an alpha-numeric darvic metal band and an UV-degradable 

monofilament for individual identification (Banding Permit #10650). Released 

hens were monitored with spotting scopes from a concealed location to assess 

nest location, lay date, clutch size, and hatchling success. When uncertain, or if 

undiscernible, of a female’s lay date, nest visits (2 to 3 per season) were 

conducted to discover the clutch size and the number of days into incubation 

using the egg candling technique.  

Captured females that were not detected nesting on the island, and were 

less than 2000 g in mass (the threshold mass at which females often initiate 

laying; Sénéchal et al. 2011) were considered "non-breeding" females. We 

assigned females to breeding stages based on the number of days from when 

she was caught and sampled to when she began laying. Hens that were caught 

prior to laying were considered pre-breeding birds, and were further divided into 

three categories centred around initiation of follicle recruitment: "arrival", "pre-

recruiting", and "rapid follicular growth" (RFG). We considered a female to be an 

"arrival" bird if she was at further than 15 days away from laying at the time of 

capture, "pre-recruiting" (i.e. not yet recruiting follicles) if she was captured 8 to 

15 days prior to laying, and "RFG" (i.e. quickly growing follicles) if she was 

captured 7 to 1 day before the first egg. These stages were determined based on 

(1) previously published estimates of the RFG period for common eiders (6 days 

plus an additional 28 hours for shell formation and laying; Watson et al. 1993; 

Robertson 1995a; Robertson 1995b), (2) the known shifts in female reproductive 

physiology (i.e. production of yolk-targeted lipoproteins in RFG; Salvante et al. 

2007), and (3) trends of physiological traits in response to changing energetic 

demands (Hennin et al. 2015). Females that were caught while laying (either 

seen laying in the colony or at candling nest contained a fresh egg) were 

considered "laying" hens, and those caught while incubating (at candling nest 

that was aged 4 days or older and contains no fresh eggs) were considered to be 
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"incubating". Arrival, laying, incubation, and non-breeding stages were provided 

as important references to the pre-breeding period (pre-recruiting and RFG) in 

which females are preparing for reproductive investment.  

 

B. Energetic Metrics 

Snow buntings. We obtained pectoralis (flight) muscle score (scale of 0 to 3: 0 = 

emaciated, sternum sharp and 3 = fully rounded; following Bairlein 1995) and 

body mass (in grams, g) from sampled individuals following blood sampling (see 

below). Muscle size was scored prior to body mass to prevent size-related bias 

associated with an observation. Total fat content (in g) was quantified using 

quantitative magnetic resonance (QMR; EchoMRITM Body Composition Scanner). 

QMR is a non-invasive, fast, and accurate method for repeated measures, and 

this technique has been validated in numerous small flying animals, mostly 

passerines and bats, with very high accuracy (Guglielmo et al. 2011; McWilliams 

& Whitman 2013).  

 

Common eiders. We measured body mass (in grams, g) using a spring scale 

following blood sampling. In this particular colony, uncorrected body mass 

performs similarly (<1% difference in variation) to size-corrected body mass 

(Descamps et al. 2010), and body mass of pre-breeding females is highly 

correlated with abdominal fat mass (Descamps et al. 2011). Moreover, very low-

density lipoprotein levels (VLDL), a lipoprotein carrier with attached lipid 

molecules including triglycerides (TRIG) for fat deposition to adipose tissues, are 

low and high in lighter and heavier females, respectively (Hennin et al. 2015). We 

therefore used body mass as a proxy of fat mass during pre-breeding in female 

eiders. Although we were not able to obtain data on pre-breeding muscle mass, 

Parker & Holm (1990) found pre-laying pectoral muscle mass was significantly 

greater than post-laying in a Svalbard population of common eiders. Additionally, 

we present energetic data collected from 2002 to 2004, showing that breast 

muscle mass significantly decreases from RFG through incubation in the East 

Bay population (J. Bêty, unpubl. data used with permission; Figure 3.2). Finally, 
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Jamieson and colleagues (2006) analyzed carcasses of non-breeding eiders in 

Greenland and showed that winter breast muscle mass (157.2 ± 2.1 g) is much 

lower than pre-breeding levels found by Parker & Holm (1990) and Sénéchal et 

al. (2011). Collectively, these studies are conducive evidence of muscle gain 

from winter to pre-breeding that may be important for fueling reproductive 

investment in female eiders. Additionally, we analyzed changes in corrected (i.e. 

removal of food items) digestive tract mass and total (i.e. all reproductive tissues: 

ovaries, oviduct, follicles) reproductive tract mass across breeding stages. 

 

C. Blood Sampling 

In snow buntings, blood samples were collected in heparinized 75 !L 

microcapillary tubes (less than 1% of total blood volume) using a sterile 26 G 

hypodermic needle for venipuncture at the brachial (wing) vein. We only included 

individuals for analyses that were blood sampled within 4 minutes of capture for 

baseline corticosterone (average time ± SEM: 3.39 minutes ± 0.052; Romero & 

Reed 2005; Wingfield 1982) and within 8 minutes for testosterone (3.85 minutes 

± 0.087) and IGF-1 (3.83 minutes ± 0.088; Lodjak et al. 2014). Duration of blood 

collection and sample order (i.e. the order of blood sample collected in a given 

day) were assumed to have no influence on models because hormone 

concentrations did not significantly correlate with duration of blood collection 

(baseline corticosterone: R2 = 0.0007, n = 152, p = 0.74; testosterone: R2 = 

0.015, n = 131, p = 0.15; IGF-1: R2 = 0.008, n = 127, p = 0.33) nor with sample 

order (baseline corticosterone: R2 = 0.001, n = 121, p = 0.60; IGF-1: R2 = 0.016, 

n = 127, p = 0.15), except for testosterone (R2 = 0.043, n = 131, p = 0.0178). To 

control for a potential effect of time of day for testosterone, sample order was 

therefore included in models as a random effect. Plasma samples were collected 

between 8:30 and 11:30 a.m. to control for diel rhythm in hormone variation (i.e. 

Romero & Healey 2000). All manipulations on birds were approved by the Animal 

Care Committees of UQAR and Environment and Climate Change Canada – 

Canadian Wildlife Service (CPA-54-13-130). 
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Blood samples were collected in female eiders from the tarsal (leg) vein 

using a heparinized 23 G needle attached to a 1 mL syringe. Blood was collected 

within 3 minutes of capture to acquire baseline corticosterone levels (Romero & 

Reed 2005). Blood samples were collected throughout the day, however, 

previous research at this colony indicates that there is no diel variation in 

physiological traits, making all samples comparable and useable (Steenwag et al. 

2015). In both species, whole blood was stored at 4°C until centrifuged at 10,000 

rpm for 10 minutes to separate plasma and hematocrit, and then was stored 

separately at -80°C until further analyses. To analyze all three hormones in an 

individual sample, only samples with plasma volume of > 50 !L were selected. 

All techniques used on eiders followed the regulations and received permission 

from the Animal Care Committees of Environment and Climate Change Canada 

(EC-PN-15-026) and University of Windsor (AUPP 11-06).  

 

D. Hormone Extractions and Assays 

Plasma was extracted for the steroid hormones (corticosterone in buntings and 

testosterone in both species) using a liquid-liquid extraction technique with 

dichloromethane (CH2Cl2, Sigma-Aldrich Canada, Oakville, Ontario, Canada) to 

partition the steroid of interest in plasma (20 and 10 !L for baseline 

corticosterone and testosterone, respectively) into the organic phase, excluding 

other polar molecules (i.e. peptide hormones, carrier proteins, immunoglobulins; 

modified from Wingfield & Farner 1975). Extracted steroid samples were 

reconstituted in 1.5% of kit-supplied steroid displacement buffer for assays 

(Guindre-Parker et al. 2013; Baldo et al. 2015). For the peptide hormone (IGF-1), 

plasma samples (25 !L) were subjected to an acid extraction with 25 !L of 0.2 M 

HCl to dissociate IGF-1 from binding proteins (modified from Lodjak et al. 2014).  

 Plasma baseline corticosterone levels were analyzed using a 

commercially available enzyme-linked immunosorbent assay (ELISA; Enzo Life 

Sciences Inc., Farmingdale, NY, USA; ADI-901-097) based on a competitive 

binding principle and previously validated for birds run in triplicate at a dilution of 

1:20 (Hennin et al. 2015; Hennin et al. 2016). Each assay plate was run with kit-
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provided standard curve through serial dilutions (200,000 pg/mL corticosterone 

standard), and an internal control. The plate was read using a spectrophotometer 

at 405 nm (Biotek Synergy H1 Hybrid Microplate Reader, Winooski, VT, USA). 

The mean intra- and inter-assay coefficient of variation for plates with bunting 

samples were 6.46% and 6.73%, respectively, and the intra- and inter-assay 

coefficients of variation for plates with eider samples were 9.17% and 9.23%, 

respectively.  

 Plasma testosterone levels were quantified using an ELISA (Cayman 

Chemical Company, Ann Arbor, MI, USA; #582701) that was previously validated 

and optimized for snow buntings at a dilution of 1:10 (Guindre-Parker et al. 2013; 

Baldo et al. 2015), using the same dilution for eiders. Each plate was run with a 

kit-provided, serially diluted standard curve (5,000 pg/mL), and an internal 

control. Standards were run in duplicate, and samples and controls were run in 

triplicate, and read at 412 nm (Biotek Synergy, VT, USA). Mean intra- and inter-

assay coefficient of variation across plates were 7.62% and 6.26%, respectively.  

 Lastly, kit-supplied neutralization buffer was added to the extracted 

plasma IGF-1 samples and then vortexed before loading to a multi-species 

ELISA (Eagle BioSciences, Nashua, NH, USA; IGF31-K01). Dilution solution for 

the standard curve was prepared with kit-provided 0.01 M HCl, separately 

purchased 1 mg/mL bovine serum albumin, and 1:20 dilution with ultrapure 

water. Standards were created through serial dilution of separately purchased 

chicken IGF-1 standard peptide (20,000 pg/mL; GroPep Chicken IGF-1 Peptide, 

HU020), and laying chicken plasma (Sigma-Aldrich, Oakville, Ontario, Canada) 

mixed with diluted standard was used as a control. Standards, samples, and 

controls were all run in duplicate, and read at 450 nm (Biotek Synergy, VT, USA). 

Mean intra- and inter-assay coefficients of variation for all plates were 3.40% and 

4.13%, respectively.  

 

E. Statistical Analyses  
To explore the temporal and stage-specific differences in energetic metrics and 

hormones, we categorized data into specific life-history stages across time in 
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both species. We first examined gross differences in energetic variables in each 

species before and after energetic preparation using paired t-tests (buntings) and 

a two-sample t-test (eiders). We then used linear mixed effects models (LMMs) 

with a standard least squares approach to examine hormonal changes across 

life-history stages within each species. For snow buntings, body mass was 

included as a fixed effect to control for size-related differences in hormone 

secretion. We included individual (to control for repeated sampling of birds 

across stages) and sample order (for testosterone only, see explanation in 

“Blood Sampling”) as random effects. Daylength was not included as a fixed 

effect in these models in order to prevent a potential confounding effect on stage-

related differences. In common eiders, body mass and relative arrival date (i.e. 

arrival date of individual relative to the intra-annual mean date of arrival; Hennin 

et al. 2015) were included as fixed effects in all models, again to control for 

arrival body size and timing of arrival on hormone secretion. Year was added in 

all models as a random effect. We used Tukey-Kramer HSD post-hoc tests of 

multiple, pairwise comparisons to determine which stages were significantly 

different for both species.  

In addition, we used general linear models (GLMs) with simple linear 

regressions to identify potential correlations between change in energetic metrics 

and change in hormone concentrations during pre-migratory energetic gain in 

buntings. Further, time interval (i.e. number of days between high and low 

calculated values) was included to account for time period effects. To meet the 

assumption of normality in all of the above models, hormone data were 

transformed (snow bunting: log10 transformation for baseline corticosterone and 

testosterone, and reciprocal root transformation for IGF-1; common eider: all 

log10 transformations). Back-transformations were performed and presented for 

easier visual interpretation (McDonald 2014). 

Finally, GLMs with standard least squares and Tukey-Kramer HSD post-

hoc tests were used to assess the changes in endogenous tissue across 

breeding stages using previous dissection data on somatic tissue in East Bay 

breeding females. Date of collected sample was included as a covariate to 
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control for time-related effects. All data met the assumptions of normality 

(Shapiro-Wilk tests) and homogeneity of variances (Levene’s tests), and all 

values are presented as mean ± SEM unless stated otherwise. We reported 

interaction terms as significant if alpha < 0.05. All analyses were performed in 

JMP version 13.0.0 statistical software (SAS Institute Inc., Cary, NC, USA).  

 
RESULTS 

A. Energetic Metrics across Life-History Stages 

Snow Buntings. Total fat mass was significantly greater at the end of the pre-

migratory preparation compared to the late winter (paired t-test: n = 16, t(15) = 

26.0, p < 0.0001; Table 3.1 & Figure 3.1A). Muscle scores increased significantly 

from late winter to the beginning of breeding (paired t-test: n = 11, t(10) = 7.02, p < 

0.0001; Table 3.1 & Figure 3.1B), as well as from late winter (Week 22: 1.25 ± 

0.13) to the end of pre-migratory period (Week 28: 2.25 ± 0.13; paired t-test: n = 

16, t(15) = 7.74, p < 0.0001).  

 

Common eiders. Body mass increased significantly between arrival and mid-

stage rapid follicular growth (RFG; two-sample t-test: n = 34, t(58.2) = 4.63, p < 

0.0001; Table 3.1 & Figure 3.1C). Further, RFG females have significantly 

greater abdominal fat mass (49.5 ± 2.87 g) compared to incubating hens (20.0 ± 

1.73 g; F(3,99) = 25.3, p < 0.0001; Figure 3.2A), and laying individuals have 

significantly greater breast muscle mass (349.4 ± 9.13 g) than those in incubation 

(312.0 ± 5.32 g; F(3,100) = 6.05, p = 0.0002; date: p = 0.013; Figure 3.2B). 

Additionally, laying hens showed a significantly greater total reproductive tract 

mass relative to both the RFG stage and the incubation stage (F(4,98) = 8.60, p < 

0.0001; Figure 3.2C). Laying females demonstrated significantly greater 

corrected digestive tract masses than the incubation stage, yet RFG hens did not 

differ significantly from the laying stage (F(4,98) = 40.0, p < 0.0001; date: p = 

0.028; Figure 3.2D). 
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B. Change in the Fat-Promoting Hormone across Life-History Stages  
Snow buntings. Coarse-scale patterns suggest that baseline corticosterone has 

only a weak positive relationship with pre-migratory fattening (Figure 3.3B). 

Baseline corticosterone levels varied significantly between life-history stages 

(F(3,137.7) = 3.10, p = 0.023, n = 25; Table 3.2); however, post-hoc comparisons 

revealed no differences between groups (Table 3.2). 

 

Common eiders. Fine-scale temporal patterns showed a rapid increase in 

baseline corticosterone with the onset of follicle recruitment and growth (Figure 

3.3D; Hennin et al. 2015). Baseline corticosterone during the RFG stage was 

significantly higher than in the pre-recruiting and arrival stages (F(18,1216) = 2.90, p 

< 0.0001, n = 1,238; relative arrival date and body mass: p < 0.0001; Table 3.3). 

 

C. Changes in Muscle-Promoting Hormones across Life-History Stages 

Snow buntings. Migration levels of testosterone were significantly higher than the 

wintering and pre-migration stages (F(3,118.1) = 8.84, p < 0.0001, n = 25; Table 

3.2), with the lowest levels in the winter (week 20: 9.20 ± 1.12 pg/mL, n = 16) that 

elevate and reach peak levels at the beginning of breeding (week 35: 87.4 ± 27.7 

pg/mL, n = 10; Figure 3.4B). Likewise, pre-migratory levels of IGF-1 were 

significantly lower than spring migration (F(3,108.3) = 10.9, p < 0.0001, n = 25; 

Table 3.2), as plasma IGF-1 levels in pre-migration (week 26: 30.1 ± 1.92 ng/mL, 

n = 8) elevate until the highest levels are obtained at the beginning of breeding 

(week 37: 274.6 ± 107.9 ng/mL, n = 11; Figure 3.4C).  

 

Common eiders. The patterns for testosterone and IGF-1 appeared to show fine-

scale temporal changes throughout the pre-breeding period (Figure 3.4E & F). 

Testosterone levels decrease from arrival (95.7 ± 22.5 pg/mL, n = 7) into pre-

recruiting (i.e. 13 days before laying: 80.7 ± 15.1 pg/mL, n = 6) and then rapidly 

increases in RFG (i.e. 5 days before laying: 131.2 ± 35.0 pg/mL, n = 6; Figure 

3.4E). Similarly, IGF-1 levels are highest from arrival (52.0 ± 4.38 ng/mL, n = 7) 

into early pre-recruiting (i.e. 13 days before laying: 52.0 ± 5.01 ng/mL, n = 6) until 
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a drop 11 days before laying (38.5 ± 2.41 ng/mL, n = 6) and then increases in 

RFG (i.e. 7 days before laying: 47.4 ± 5.63 ng/mL, n = 6; Figure 3.4F). 

Nonetheless, testosterone levels did not differ significantly across breeding 

stages (F(5,58) = 1.11, p = 0.365, n = 69; Table 3.3). Likewise, IGF-1 levels did not 

differ significantly across stages (F(5, 58.2) = 1.22, p = 0.310, n = 69; Table 3.3).  	

 

D. Changes in Hormones Predicting Changes in Energetic Metrics in Snow 
Buntings 

Within-individual changes in baseline corticosterone between the beginning and 

end of energetic gain showed a significant negative correlation with the change in 

total fat mass across the same period (R2 = 0.378, F(2,12) = 3.94, p = 0.046, n = 

16; Figure 3.5A). However, the trend between the change in hormones and 

change in muscle score was non-significant for testosterone (R2 = 0.376, F(2,10) = 

3.02, p = 0.095; Figure 3.5B) and for IGF-1 (R2 = 0.434, F(2,10) = 3.83, p = 0.058; 

Figure 3.5C). 

 

DISCUSSION 

Given the logistical difficulty in obtaining long-term physiological data in migratory 

bird populations, research investigating the links between hormones and energy 

storage have largely been restricted to experiments on model species (i.e. 

domestic poultry; Scanes 2008), or observational data within a single life-history 

stage (Ramenofsky 2011), making temporal data very rare and valuable to 

investigate the mechanisms underlying seasonal adjustments in somatic energy 

stores. As such, our goal was to examine the seasonal change in candidate 

energy-regulating hormones that may mediate fattening and skeletal muscle 

growth to fuel spring migration and reproduction in captive male snow buntings 

and free-living female common eiders, respectively. In our temporal assessment 

of the long-term (buntings) and within-season (eiders) changes in multiple 

physiological traits, we found that both Arctic-breeding birds showed a large 

degree of stage- and species-related variation in baseline corticosterone (fat-

promoting hormone), and testosterone and IGF-1 (muscle-promoting hormones). 
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More precisely, pre-migratory snow buntings showed only small increases in 

baseline levels of corticosterone, while pre-breeding common eiders initially 

showed a small increase in corticosterone during the pre-recruiting stage, 

followed by a rapid increase in corticosterone with the onset of the rapid follicular 

growth (RFG) stage. As predicted, snow buntings displayed increases in plasma 

testosterone, but unexpectedly not in IGF-1 levels during pre-migration, and both 

exhibited significantly higher levels during the migration stage. Conversely, 

female eider testosterone and IGF-1 levels appear high at arrival on the breeding 

grounds following spring migration, only to drop slightly during pre-recruiting, and 

then show an apparent elevation during the RFG stage.  

 
A. Temporal Patterns of Fat Accumulation and Skeletal Muscle Gain 

Snow bunting. As expected, captive male buntings carried little fat in the late 

winter (3.40 ± 0.48 g) and then showed a period of pronounced fattening over 

approximately 5 weeks (Figure 3.1A), peaking prior to spring migration (15.9 ± 

0.48 g; Table 3.1) in general accordance with data from other migrant songbirds 

(i.e. white-throated sparrow Zonotrichia albicollis, Odum & Perkinson Jr. 1951; 

white-crowned sparrow Zonotrichia leucophrys, King & Farner 1959; red crossbill 

Loxia curvirostra, Cornelius & Hahn 2012; dark-eyed junco Junco hyemalis, Ho 

et al. 2017). Throughout what would have been migration, birds showed a 

plateau in fat mass that persisted into the first few weeks of the breeding period. 

This plateau could be explained by the spring condition hypothesis that states 

migrants will conserve energy for arrival on breeding grounds with unpredictable 

conditions in weather, food availability, and habitat quality (Morrison et al. 2007; 

Anteau & Afton 2009), which is supported empirically by recent migratory 

tracking studies on both male and female snow buntings arriving on breeding 

grounds with some remaining fat reserves (Macdonald et al. 2012; McKinnon et 

al. 2016). Alternatively, some of the stored fat could be an artefact of captivity 

through the lack of endurance flight to catabolize fat stores (see discussions of 

Vincent & Bedard 1976; Aubin et al. 1986). Following the migration stage, male 

buntings lost fat stores (Figure 3.1A), likely timed to match a period of 
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accelerated lipid breakdown that occurs during breeding when males are highly 

active, defending mates and breeding territories (Guindre-Parker et al. 2013; F. 

Vézina, unpubl. data).  

 Similar to the rapid gain in fat mass over pre-migration, we found a strong 

increase in muscle score from late winter (1.25 ± 0.13) to the end of pre-

migration (2.25 ± 0.13) in male buntings (Figure 3.1B). Muscular hypertrophy of 

breast muscle continued until reaching peak values during what would be early 

breeding, likely due to sustained use of flight muscles for pre-breeding activities 

such as territory establishment and defense, as well as thermoregulation in the 

cold, stochastic environment (Montgomerie & Lyon 2011; Swanson & Vézina 

2015). Interestingly, decreases in muscle score occurred at the end of the 

breeding stage, indicating a phase of negative energy balance (Jenni & Jenni-

Eiermann 1996; Bauchinger & Biebach 1998). Even in captivity, this evidence for 

decreasing muscle size is presumably from endogenous (circannual) rhythms 

controlling these phenotypic changes that correspond to shifts in the annual life 

cycle, as seasonal patterns still persist with constant photoperiod in red knots 

(Calidris canutus; Piersma et al. 2008; Vézina et al. 2011). However, unlike the 

lipid catabolism seen when entering pre-alternate moult and fall migration, 

muscle scores remained higher than those observed during the winter, which is 

assumed to preserve flight muscles for fall migration back to wintering grounds.  

 

Common eiders. Pre-breeding hens showed expected increases in body mass 

from arrival (2103.5 ± 33.5 g) up to the rapid follicular growth (RFG) stage (5 

days before laying: 2291.2 ± 22.8 g), as birds fattened to fuel both egg 

production and an incubation stage dominated by fasting (Hennin et al. 2015; 

Table 3.1). The small decrease in mass in the later portion of RFG, possibly due 

to the energetic demand of follicle development (Vézina et al. 2002; Hennin et al. 

2015), was followed by a sharp and predictable decline through egg laying and 

incubation (Figure 3.1C). Indeed, in breeding females, there was a significant 

drop in abdominal fat mass from the RFG stage to the incubation stage, 

presumably from the oxidation of lipid stores (Figure 3.2A; Sénéchal et al. 2011), 
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following which female eiders must catabolize muscle protein as a last-resort 

energy source to extreme fasting during incubation (Criscuolo et al. 2000; Bolduc 

& Guillemette 2003). Finally, non-breeding females were lighter (2,071.4 ± 8.52 

g, n = 782; ~1,700 g reported in Sénéchal et al. 2011), as it has been found that 

females in poor body condition after arrival may forgo reproduction for that year 

(Legagneux et al. 2016).  

Although we expected to see larger breast muscles after arriving to the 

breeding grounds to help support the energetic costs of heavy wing loading 

during migratory flight (Guillemette & Ouellet 2005; Ouellet et al. 2008), an 

analysis of data collected from the East Bay breeding colony indicated that 

breast muscle mass peaked during laying and was then degraded by the 

incubation stage (Figure 3.2B). These results suggest that some of the 

incubating hens may have entered phase III fasting, which is characterized by an 

increased rate of protein catabolism for ‘emergency’ energy via gluconeogenesis 

(Cherel et al. 1988). Therefore, female eiders could have increased their protein 

reserves before and during laying in anticipation of the loss of skeletal muscle 

tissue during incubation (Cherel et al. 1988).  

 
B. Temporal and Stage-Related Changes in Baseline Corticosterone 

Snow buntings. We predicted an elevation in baseline corticosterone would be 

associated with increases in stored lipids during pre-migration based on previous 

results in other temperate songbirds (i.e. yellow-rumped warbler Setophaga 

coronata, Holberton 1999; hermit thrush Catharus guttatus, Long & Holberton 

2004; dark-eyed junco, Holberton et al. 2007), given the reported links between 

baseline corticosterone and locomotory related to foraging behaviour (Astheimer 

et al. 1992; Lõhmus et al. 2006; Angelier et al. 2007; Kitaysky et al. 2010). In 

snow buntings, despite the highest levels of baseline corticosterone being seen 

during migration, we did not detect significant increases from wintering to either 

pre-migration nor spring migration stages (Table 3.2 & Figure 3.3B). Moreover, 

while we found that individual changes in baseline corticosterone were correlated 
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with changes in fat mass during a period of energetic gain, this relationship was 

surprisingly negative (Figure 3.5A).  

To offer an evolutionary explanation for elevated baseline corticosterone 

levels during spring migration and breeding, the preparative hypothesis posits 

that seasonal elevation of baseline secretion may prime individuals for periods of 

predictable energetic demand (Love et al. 2014), or frequent exposure to multiple 

stressors (Romero et al. 2017). Previous studies support these findings where 

elevated levels of baseline corticosterone are positively correlated with abundant 

fat stores or replenished loads after refueling at stopover sites (Piersma et al. 

2000; Landys-Ciannelli et al. 2002; Lõhmus et al. 2003; Falsone et al. 2009; 

Beck et al. 2016). At a mechanistic level, increases in either baseline or stress-

induced corticosterone have shown to activate low-affinity glucocorticoid 

receptors on white adipose tissue to mobilize lipids for strenuous bouts of flight 

(Landys et al. 2004a, 2006). Accordingly, Eikenaar et al. (2013, 2014a) found 

that fuel deposition rate and food intake were negatively correlated with baseline 

corticosterone in northern wheatears (Oenanthe oenanthe), inferring that birds 

with a slower rate of lipid deposition had already greater fat stores and thus were 

ready to depart on migration. Our results are consistent with these findings in that 

we found individuals with greater change in fat mass had less of a change in 

baseline corticosterone, indicating that individuals with decreasing levels of 

baseline corticosterone during a period of energetic gain deposited more fat 

(Figure 3.5A), instead of enhancing lipogenesis with elevated levels as predicted 

(i.e. Holberton et al. 2007). Moreover, Ramenofsky & Wingfield (2016) outline the 

importance elevated levels of baseline corticosterone to induce migratory 

restlessness (a measure of migratory hyperactivity) during spring migration, and 

in fact, higher levels of baseline corticosterone in migratory individuals was a 

strong predictor of migratory restlessness (Landys et al. 2004b; Eikenaar et al. 

2014b, 2017). Altogether, baseline corticosterone may therefore act permissively 

to activate other endogenous signals to promote fattening (see "Hormonal 

Regulation of Fat Storage in Birds" in Chapter 2).  



	

105	
	 	

 A potential methodological issue inherently associated with our snow 

bunting system may be an artefact of captivity that dampens the seasonal rhythm 

of baseline corticosterone levels, and thereby does not accurately reflect natural 

variation of hypothalamic-pituitary-adrenal (HPA) activity within the annual cycle 

(discussed in Romero et al. 2017). For example, Romero & Wingfield (1999) 

compared baseline corticosterone levels between wild and captive populations of 

white-crowned sparrows across various life-history stages, finding that captive 

individuals had identical concentrations throughout the year with markedly 

suppressed levels during spring migration and breeding relative to free-living 

birds. Conversely, in European starlings (Sturnus vulgaris), activity of the HPA 

axis in individuals held under semi-natural outdoor housing conditions mimicked 

those of free-living birds relative to altered physiology of birds in enriched indoor 

conditions (Dickens & Bentley 2014). Although our population of snow buntings 

are wild-caught and adult birds were exposed to outdoor ambient conditions, 

long-term captivity (~1-2 years) may impact the physiological and behavioural 

responses via confinement-induced stressors, such as social abnormalities, 

reduced movement, and altered feeding strategies (Morgan & Tromborg 2007). 

Nevertheless, if elevated levels of baseline corticosterone played a pivotal role in 

fat gain, then snow buntings with dampened levels of baseline corticosterone 

would not be expected to undergo seasonal fattening, yet these birds clearly both 

accumulated and depleted large fat stores in captivity (Figure 3.1A). In summary, 

our results do not strongly support a role for lipogenesis, and suggest only a 

weak pattern of elevated circulating baseline corticosterone for energetic 

readiness during pre-migration in snow buntings. 

 

Common eiders. Free-living female eiders exhibited consistent, fine-scale 

temporal (days) fluctuations in natural baseline corticosterone concentrations 

across the breeding season over multiple years (Figure 3.3D). Hennin and 

colleagues (2015) originally reported a positive correlation between baseline 

corticosterone levels and body mass in pre-breeding females, and later affirmed 

the causal effects of baseline corticosterone on increases in body mass through 
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a physiologically relevant corticosterone-pellet manipulation in white-winged 

scoters (Melanitta deglandi; Hennin et al. 2016). Recently, Hennin and 

colleagues also found that experimentally elevated baseline corticosterone in 

female eiders resulted in earlier laying dates, presumably through an increase in 

the rate of fattening during the pre-recruiting stage (Hennin et al. unpubl. data). 

After including three additional years of data collection (2006 to 2016), we 

confirm previous patterns of elevated baseline corticosterone (Hennin et al. 

2015). We also found that pre-breeding levels of baseline corticosterone 

increased from arrival (5.04 ± 1.02 ng/mL, n = 41) to the pre-recruiting stage 

(6.94 ± 0.55 ng/mL, n = 175) and peaked during the RFG stage (17.09 ± 2.42 

ng/mL, n = 200) immediately prior to laying, presumably to achieve optimal levels 

for reproductive investment (Love et al. 2014; Ouyang et al. 2013). 

Importantly, although the increase in baseline corticosterone from arrival 

to pre-recruiting is small (~1.9 ng/mL), we argue that it may be biologically 

relevant for a few reasons. First, as glucocorticoids are highly potent steroid 

hormones, endocrine tissues are designed to secrete the minimum concentration 

to elicit the hormone-mediated response to avoid potential costs associated with 

hormone pleiotropy (Sapolsky et al. 2000). Second, tissue-specific responses of 

glucocorticoids may be amplified with temporal or stage-related changes in 

receptor densities (Landys et al. 2006), corticosteroid binding globulins (Malisch 

& Breuner 2010), 11β-hydroxysteroid dehydrogenases (i.e. conversion of inactive 

11-keto steroids to active glucocorticoids; Seckl et al. 2004), and transcriptional 

cofactors at the corticosterone-receptor complex (Crespi et al. 2013). Moreover, 

although previous studies suggest that only glucocorticoid receptors (GRs) 

mediate downstream effects on white adipose tissue (see Landys et al. 2006), a 

more recent review highlighted the activation of high-affinity mineralocorticoid 

receptors (MRs) with baseline corticosterone levels causing adipocyte 

differentiation and up-regulation of lipogenic enzymes (i.e. lipoprotein lipase, 

peroxisome proliferator-activated receptor γ) in mammals (Marzolla et al. 2012). 

As such, even only slight elevations in baseline corticosterone may be triggering 

lipogenic pathways through MRs without reaching levels to activate GRs. Finally, 
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phylogenetic differences in HPA responsiveness axis exist in part to regulate 

species- and stage-specific energetic processes dependent on the “allostatic 

load” concept (i.e. total energy demands from unpredictable and predictable 

environmental changes; McEwen & Wingfield 2003, 2010), where glucocorticoids 

are therefore considered putative regulators of energy homeostasis during 

predictable life-history transitions associated with higher allostatic load (Crespi et 

al. 2013; Schultner et al. 2013). Under this framework, a seemingly minor 

increase in baseline corticosterone levels may be enough to support allostatic 

load through lipid stores. Overall, and in support of the findings in Hennin et al. 

(2015, 2016), elevated baseline corticosterone appears to play a role in 

lipogenesis in pre-breeding female eiders, and further experimentation needs to 

explore whether this effect is direct, permissive (indirect), or both in this species. 

 

C. Temporal and Stage-Related Changes in Testosterone  
Snow buntings. Given the anabolic role of androgens in vertebrates (Wingfield et 

al. 2001), we predicted that snow buntings would show elevations of circulating 

testosterone to build skeletal muscles for spring migration. Indeed, previous 

experimental manipulation studies showed increases in breast muscle score 

during energetic preparation before spring migration in both American redstarts 

(Setophaga ruticilla; Tonra et al. 2013) and white-crowned sparrows 

(Ramenofsky & Németh 2014). Patterns of plasma testosterone in our captive 

male buntings loosely matched their mean muscle scores with an initial, gradual 

increase from late winter to early breeding, followed by a significant elevation 

comparing winter levels to migration (Figure 3.4B; Table 3.2). Further, although 

non-significant, testosterone levels are almost doubled from winter (9.33 ± 0.74 

pg/mL) to pre-migration (18.45 ± 3.37 pg/mL), indicating a whole-magnitude 

elevation in testosterone secretion may induce muscle hypertrophy. It is 

important to note that dramatic increases in testosterone secretion during 

migration and early breeding is assumed to be caused by testes growth for 

breeding behaviours and reproduction (Wingfield et al. 2001; Bauchinger et al. 

2007; Vézina et al. 2010). In addition, we also found a non-significant, positive 
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correlation between changes in breast muscle score and testosterone levels from 

late winter to the end of the migration stage into early breeding (Figure 3.5B).  

There are a few reasons that may explain why snow buntings show dose- 

and stage-dependent elevations in testosterone. First, similar to corticosterone, 

testosterone is a potent steroid hormone with multiple (i.e., pleiotropic) 

physiological and ecological costs associated with elevated levels (i.e. 

suppressed immunity, susceptible to injury and predation, decreased parental 

care; reviewed in Wingfield et al. 2001). Thus, testosterone is presumably under 

tight regulation to avoid the costs of prolonged elevated levels, except during the 

breeding season with obvious benefits for reproductive functions and behaviours 

(Hau 2007). Second, captivity has consistently been shown to have a 

suppressive effect on absolute androgen secretion relative to free-living birds, 

despite overall seasonal patterns of circulating testosterone generally remaining 

intact (Calisi & Bentley 2009; and references therein). Additionally, seasonal 

regulation of testosterone regulatory proteins, such as androgen receptors, 

downstream intracellular signals (i.e. parvalbumin and IGF-1; Fuxjager et al. 

2012), and corticosteroid-binding globulin (i.e. transporter of steroid hormones in 

birds; Breuner & Orchinik 2002), all likely play important roles in the physiological 

flexibility of skeletal muscle. Finally, by only marginally elevating levels of 

testosterone, pre-migratory birds that are simultaneously building fat and muscle 

may avoid androgen-induced lipolytic effects on adipocytes such as decreased 

lipid uptake, down-regulation of lipoprotein lipase, and increased lipolytic β-

adrenergic receptors (De Pergola 2000). Considering these biological 

implications on testosterone levels, we argue that even a small increase in 

circulating testosterone may be sufficient to induce rapid muscle growth.  

 Following pre-migration, individuals sampled during the migration stage 

exhibit dramatically higher levels of testosterone (59.17 ± 13.5 pg/mL), which is 

assumed to be the photoperiod-induced gonadal recrudescence in the spring (i.e. 

annual testes growth; Morton et al. 1990; Wingfield & Kenagy 1991). The 

seasonal testes growth of male songbirds is associated with significant increases 

in the secretion of testosterone that prompts migratory readiness to transition into 
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breeding phenology (Tonra et al. 2011a, 2011b). Testosterone in male buntings 

reached peak levels (87.42 ± 27.7 ng/mL) during the first week of the breeding 

stage which paralleled with peak muscle scores, and includes a pre-breeding 

period with aggressive behaviours and territorial defense (Balthazart 1983; 

Wingfield et al. 1990; Wingfield & Hahn 1994). Testosterone levels dropped 

substantially by the end of the breeding stage (6.36 ± 1.23 ng/mL), which 

corresponds to significantly lower levels during post-hatch parental care in this 

species (Romero et al. 1998) and a simultaneous decrease in muscle score 

(Weeks 37-40; Figure 3.1B). Beyond the well-characterized elevation in 

testosterone levels during breeding, our results indicate a correlative link 

between breast muscle score and plasma testosterone levels during the pre-

migration and migration stages, however, manipulative experiments could 

determine whether a causal relationship exists between testosterone and avian 

skeletal muscle phenotypes. 

 

Common eiders. Fine-scale temporal patterns of testosterone levels in female 

eiders depicted day-to-day changes with a high degree of variation in pre-

breeding females (Figure 3.4E). Females arriving at East Bay immediately after 

migration had lower testosterone levels (95.7 ± 22.5 pg/mL, n = 7) than the mean 

levels throughout all pre-breeding (109.3 ± 9.52 pg/mL, n = 54), and then rapidly 

increased testosterone levels approximately 15 days before laying (146.7 ± 37.9 

pg/mL, n = 5). Although our sample size is low, this surge in plasma testosterone 

may be important socially for females even before energetic preparation takes 

place to perhaps display intra-specific aggression toward other conspecifics in 

order to quickly establish a nesting site or defend foraging patches (Christensen 

2000; Sandell 2007). Indeed, a meta-analysis across 56 species and ten avian 

orders reported that colonial-nesting females have higher testosterone levels 

than solitary nesters (Møller et al. 2005), and in this population, pre-breeding 

females engage in territorial (nest-guarding) disputes on the densely aggregated 

breeding ground (H. Hennin & O. Love, pers. comm.).  
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Unexpectedly, we found a drop in testosterone levels during the pre-

recruiting stage (13 and 11 days before laying: 80.7 ± 15.1 pg/mL, n = 6 and 81.6 

± 19.2 pg/mL, n = 6), before levels remained consistently high during the RFG 

stage. A possible reason for the reduction in plasma testosterone levels may aid 

in fat conservation, via inhibition of lipolysis, to engage in a period of hyperphagia 

and lipid accumulation (De Pergola 2000). However, it is presently difficult to 

speculate whether this slight reduction is in any way significant for promoting fat 

deposition for a few reasons: (i) our results, to our knowledge, represent the first 

study to measure testosterone in female common eiders; (ii) there is a lack of 

“reference” testosterone levels in the winter and post-breeding stage; and (iii) 

caution should be taken in comparing absolute levels of hormones across studies 

due to practical differences in detection techniques (i.e. Romero 2002). 

Nonetheless, with the knowledge that maximal abdominal fat stores at the RFG 

stage precede maximal breast muscle mass at laying (Figure 3.2A & B), muscle 

growth would appear to temporally overlap with fat accumulation, though it may 

be that majority of muscle growth occurs when testosterone levels are elevated 

during the RFG stage. Although it would be very hard to obtain without invasive 

measures, future information on daily changes in breast muscle would be highly 

valuable to propose a direct, albeit correlational, relationship with the pre-

breeding testosterone profile, ideally followed by manipulation experiments. 

 During the RFG stage, elevation in female testosterone may stimulate 

aggressive, nest-guarding behaviours in anticipation of laying (see argument 

above). After the completion of follicle development and ovulation, testosterone 

levels decreased rapidly into the laying stage (56.7 ± 11.9 pg/mL, n = 6) and 

dropped to their lowest values during incubation (26.7 ± 3.36, n = 3; Figure 3.4E). 

Suppressed levels of testosterone should theoretically serve two mechanistic 

functions during an energetically costly incubation: (1) fat-sparing through 

decreased lipid catabolism (De Pergola 2000); and (2) reduce aggressive 

behaviours (Sandell 2007). Taken together, energetic conservation of fat and 

protein stores is essential during a long (~25-27 days) incubation period with no 

recess opportunities for feeding (Criscuolo et al. 2000; Bottitta et al. 2003). 
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Overall, we found that breeding testosterone levels are notably lower than pre-

breeding levels, and whether this is evolutionarily driven by the social instability 

of colonial breeding (Langmore et al. 2002), the physiological energy demands of 

reproduction (Sénéchal et al. 2011), or both, androgen-induced muscle 

hypertrophy is a plausible mechanism that deserves further research in female 

eiders. Finally, testosterone levels did not differ significantly between breeding 

stages (Table 3.3), though we suspect the lack of stage-related change in 

hormone levels is likely attributed to broadly grouping together traits that exhibit 

day-to-day fluctuations (Figure 3.4E; see general discussion).  

 

D. Temporal and Stage-Related Changes in IGF-1 

Snow buntings. To the best of our knowledge, our results are the first to examine 

the temporal patterns of circulating IGF-1 levels across life-history stages in any 

adult bird. We predicted that circulating IGF-1 would increase during pre-

migration, serving as an anabolic hormone to induce muscle hypertrophy. 

Contrary to our predictions, we did not find strong support for a concomitant 

increase in IGF-1 levels and mean muscle scores during pre-migration, primarily 

because (1) there was an overall temporal lag with IGF-1 levels rising slightly at 

the end of pre-migration after the completion of an appreciable portion of muscle 

hypertrophy (Figure 3.4A & C), as well as (2) significantly lower levels of IGF-1 in 

the pre-migration stage compared to the migration and breeding stages (Table 

3.2). Interestingly, IGF-1 levels decrease from the wintering stage (week 20: 79.1 

± 17.2 ng/mL, n = 16) to mid pre-migration (week 26: 30.1 ± 1.9 ng/mL, n = 8), 

reaching unexpectedly low levels during a period of increasing muscle scores 

(Figure 3.4A & C). We propose an alternative function for the relatively lower 

levels of IGF-1 during the pre-migration stage: the suppression of IGF-1-

mediated fat catabolism. First, although the mechanism remains to be confirmed 

in birds (Scanes 2009), the mammalian GH/IGF-1 pathway plays a role in lipid 

mobilization through the activation of hormone-sensitive lipase in mature 

adipocytes to degrade TRIG into free fatty acids, possibly through stimulation of 

growth hormone and IGF-1 receptors that cross-talk with proximally located β-
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adrenergic receptors (reviewed in Vijayakumar et al. 2010). Furthermore, Hansen 

et al. (2013) discussed how long-lived mutants (longer lifespan) in Drosophila 

had a greater degree of fat storage (decreased lipolysis), which may be regulated 

by lower circulating levels of IGF-1. Despite the underlying molecular 

mechanisms of IGF-1 on fat metabolism remaining enigmatic, and especially so 

in birds, we propose that low plasma IGF-1 levels, or perhaps down-regulated 

IGF-1 signaling, during pre-migration may contribute to seasonal fat phenotype in 

snow buntings. Given that circulating IGF-1 has anabolic effects on various 

peripheral tissues (LeRoith 1997; Chapter 2), it appears that our observed stage-

related differences in IGF-1 levels likely causes pleiotropic effects. Nonetheless, 

lowered levels of IGF-1 may provide only a maintenance (anti-atrophic) role to 

preserve muscle during the pre-migration stage (Figure 3.4F). In this view, it 

could be that local (autocrine/paracrine) IGF-1 actually drives skeletal muscle 

growth from other hormones or growth signaling molecules rather than liver-

derived IGF-1 in circulation (Price et al. 2011).   

 We did not see an increase in IGF-1 levels until half-way through the 

migration stage, with consistent hormone secretion through the first few weeks of 

the breeding stage (Figure 3.4C). Previous experimental research in both 

mammals and birds have shown that the IGF-1 signaling pathway influences the 

physiology of the mammalian male reproductive system by increasing the rate of 

steroidogenesis, initiating spermatogenesis in Sertoli cells, and promoting 

mitogenic growth of Leydig cells in testes (Onagbesan & Peddie 1995; Baker et 

al. 1996; Weinzimer & Cohen 1999; Colón et al. 2007). Additionally, though 

poorly studied, some emerging evidence suggests that elevated levels of IGF-1 

across vertebrates has indirect effects on reproductive investment, embryonic 

development and postnatal growth (i.e. reptiles: Sparkman et al. 2009; fishes: 

Reinecke 2010; mammals: Swanson et al. 2014; birds: Lodjak et al. 2016). 

Another potential reason for heightened levels of IGF-1 during the migration and 

early breeding stages may be for the dynamic re-building of visceral organs 

before free-living snow buntings from the same population as our captive birds 

must endure a long (700-1000 km), single flight across the Labrador sea 
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(Macdonald et al. 2012). Previous studies found that post-flight dissection data 

showed reduced tissue masses (i.e. digestive tract organs, liver, kidneys, skeletal 

muscles) relative to pre-flight data when crossing large ecological barriers in 

migratory songbirds and shorebirds (Battley et al. 2000; Schwilch et al. 2002; 

Bauchinger & McWilliams 2010). Consequently, increasing levels of IGF-1 may 

represent a strong proliferative signal for reproductive tissue during the migration 

stage and visceral organs after arrival on breeding grounds in male buntings, and 

future studies on the effects of IGF-1 treatment on migratory buntings may 

provide some insight on whether this is a candidate signal for post-migratory 

tissue remodeling. Finally, we found elevated levels of IGF-1 during fall migration 

(Figure 3.4C), which may compensate for the suppressed testosterone levels 

from gonadal regression to maintain (i.e. avoid protein-wasting) flight 

musculature for departure to the wintering ground, as suppressed IGF-1 

signaling has shown to result in muscle atrophy in rodents and humans 

(reviewed by Perrini et al. 2010).  

 

Common eiders. Similar to the IGF-1 secretion patterns in buntings, we predicted 

that IGF-1 levels would be elevated throughout the pre-breeding period in female 

common eiders. Like testosterone, we found that pre-breeding female displayed 

fine-scale temporal changes (days) in plasma IGF-1 levels (Figure 3.4F). 

Interestingly, circulating levels of IGF-1 were elevated at the post-migration 

arrival stage and remained so approximately 4 days into the pre-recruiting stage 

(Figure 3.4F). Considering that individuals reduce the masses of digestive organs 

during spring migration (Biebach 1996; Piersma & Gill Jr. 1998; Piersma et al. 

1999; Battley et al. 2000; Bauchinger et al. 2005b), pre-breeding females may 

have to rapidly re-build their digestive tract before a period of high nutritional 

demand associated with hyperphagia (Guillemette 2001) and energy (fat and 

protein) storage (Sénéchal et al. 2011). Moreover, mammalian studies have 

shown that IGF-1 stimulates the growth of the intestinal mucosal layer, 

gastrointestinal organs (i.e. stomach, small and large intestine), and smooth 

muscle of the digestive tract (Burrin et al. 1996; Kuemmerle et al. 2004; Steeb et 
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al. 1994; Wang et al. 1997). Despite the vast empirical evidence that 

demonstrates the phenotypic flexibility of digestive tissues in migratory birds 

(reviewed in McWilliams & Karasov 2001), the underlying mechanisms regulating 

large-scale turnover of digestive organs in birds is unknown, and thus, IGF-1 

deserves further attention as a prospective hormonal signal to increase the 

digestive tract after migration.  

 After this phase, mean IGF-1 levels dropped from 13 (52.0 ± 5.01 ng/mL, 

n = 6) to 11 (38.5 ± 2.41 ng/mL, n = 6) days before laying, which may indicate a 

4-day phase of functionally down-regulated IGF-1 prior to the onset of the RFG 

stage (Figure 3.4F). Since the primary fuel source for females are stored TRIG in 

adipose tissue, low IGF-1 levels may reduce the lipolytic action similar to that in 

pre-migratory buntings, thereby allowing for increased fat accumulation. 

Transitioning into the RFG stage, individuals exhibited elevations of plasma IGF-

1 levels corresponding to a period of anabolism of female reproductive 

machinery. For example, Vézina & Williams (2003) reported that almost two-

thirds of oviduct growth occurs within a short 3-day window prior to egg laying, 

while degradation happens just as quickly before release of the final egg in 

European starlings, as the production and maintenance of the avian oviduct has 

shown to have high metabolic costs (Chappell et al. 1999; Vézina & Williams 

2003; Williams & Ames 2004).  

Indeed, plasma IGF-1 has been directly linked to increases in the rate of 

estradiol secretion (Demeestere et al. 2004), follicular development in the ovaries 

(Velazquez et al. 2008), and the central activation of gonadotropin-releasing 

hormone neurons through tissue-specific IGF-1 receptors in mammals (Daftary & 

Gore 2005). Recently, exogenous growth hormone has been implicated as an 

anti-apoptotic signal through reduced expression of capase-3 enzyme (a signal 

of programmed cell death) in the layer chicken oviduct (Hrabia et al. 2013, 2014), 

further reinforcing the importance of GH/IGF-1 axis on the growth of female 

reproductive organs. Furthermore, in knowing that estradiol induces hypertrophy 

of ovaries and oviduct in female birds (Farner & Wingfield 1980), future studies 

should examine how the seasonal regulation of plasma IGF-1 levels may 
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influence estradiol secretion on the development of reproductive organs, 

especially as this would be advantageous for female eiders with a temporally and 

energetically constrained breeding season in the Arctic (Love et al. 2010).   

Finally, we discovered very low levels of plasma IGF-1 during laying and 

incubation (Figure 3.4F), which matches the atrophy of the total reproductive 

tract mass during the laying stage (Figure 3.2C). Similar to testosterone, 

although we did not find compelling evidence for a correlative linkage between 

IGF-1 and muscle growth during the pre-recruiting stage, it may be that skeletal 

muscle growth happens during the RFG stage when circulating IGF-1 is 

elevated, similar to testosterone. Given the reported tight relationship between 

these two hormonal pathways in mammals (reviewed by Bartke et al. 2013), it 

may not be surprising if both testosterone and IGF-1 increase skeletal muscle 

growth closer to reproduction. It should be noted that we did not detect significant 

differences between breeding stages (Table 3.3), which is possibly due to 

binning data into broad groups (similar to testosterone; see general discussion). 

On a final note, future studies should aim to investigate the potential anabolic 

effect of elevated IGF-1 levels on visceral organs (i.e. digestive tract) and 

reproductive tissue during breeding stages.  

 
CONCLUSIONS 

Our comparative approach assessed temporal and stage-related changes of 

energy-regulating hormone with regards to their anabolic regulation of energy 

(i.e. fat and muscle) storage prior to spring migration in male snow buntings and 

breeding in female common eiders. We observed inter-specific differences in the 

temporal variation of both fat- (baseline corticosterone) and muscle-promoting 

(testosterone and IGF-1) hormones. However, qualitative temporal patterns of all 

hormones in both species showed lower concentrations during periods of 

energetic preparation relative to migration (buntings) or breeding stages (eiders), 

possibly suggesting optimal hormone levels to promote fat storage via reduced 

lipolysis. We found that baseline corticosterone did not appear to be an important 

signal for fat deposition in buntings, where contrastingly in eiders, slight elevation 
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may mediate pre-breeding fattening followed by a rapid elevation for priming 

reproductive investment. Male buntings may be sensitive to testosterone-induced 

muscle growth, yet interpretation of testosterone levels in female eiders appears 

to be more convoluted. Plasma IGF-1 in both buntings and eiders may be an 

important modulator of reproductive tissue and visceral organs rather than stage-

dependent muscle growth. Future experimental research should tease apart 

these relationships between energy-regulating hormones and life-history 

phenotypes to advance the underlying mechanisms that control the performance 

traits of fat and muscle stores.   
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TABLES 

	
Table 3.1: Changes in energetic metrics at their lowest and highest points with 
statistical summaries in birds for captive snow buntings (SNBU) and free-living 
common eiders (COEI). 
 

Energetic 
Metric 

 

Species  
 

Lowest 
 

Highest 
 

Statistical Summary 

 
Total Fat 
Mass (g) 

 
SNBU 

 
3.40±0.48 

 
15.9±0.48 

 
n = 16, t(15) = 26.0,  
p < 0.0001 

Week  22 28  
     
Muscle 
Score 

SNBU 1.45±0.20 2.91±0.20 n = 11, t(10) = 7.02,  
p < 0.0001 

Week  22 37  
     
Body Mass 
(g) 

COEI 2103.5±33.5 2291.2±22.8 t(58.2) = 4.63, p < 0.0001 

n  34 34  
P-L Interval  16+ 5  
     
*t statistic subscript indicates the degrees of freedom of the model. Reported 
results are considered significant at p < 0.05. Abbrev.: P-L Interval = pre-laying 
interval.  
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Table 3.2: Statistical summary of linear mixed models of hormonal variation across various life-history stages in captive 
male snow buntings in 2015. 
 

Hormone  
 

Wintering 
 

Pre-migration 
 

Migration 
 

Post-migration 
 

Statistical Summary 
 
log Base CORT 

 
0.81±0.04a 

 
0.91±0.05a 

 
0.94±0.05a 

 
0.80±0.05a 

 
F(3,137.7) = 3.10, p = 0.023 

 49 36 31 34  
      
log T 0.92±0.08a 1.11±0.08ab 1.50±0.07c 1.29±0.07bc F(3,118.1) = 8.84, p < 0.0001 
 26 30 35 40  
      
Recip. Rt IGF-1 -0.020±0.002ab -0.024±0.002a -0.016±0.002bc -0.013±0.002c F(3, 108.3) = 10.8, p < 0.0001 
 26 30 34 38  
      
*F statistic subscripts represent degrees of freedom of the model (former) and degrees of freedom of the error (latter). 
Values are presented as means ± standard error, and italicized numbers indicate the sample size. Different superscript, 
lower-case letters between groups represent significance (p < 0.05). Abbrevs.: Base CORT = baseline corticosterone, T = 
testosterone, IGF-1 = insulin-like growth factor-1, Recip. Rt = reciprocal root transformation (-1/√x, where x = value).  
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Table 3.3: Statistical summary of linear mixed models of hormonal variation across breeding stages in free-living female 
common eiders from 2006-2016 (baseline corticosterone; 2010-2016 for testosterone and insulin-like growth factor-1). 
 

Hormone  
 

Arrival  
 

PR 
 

RFG 
 

Laying  
 

Incubation 
 

NB 
 

Statistical Summary 
 
log Base 
CORT 

 
0.43±0.08a 

41 

 
0.61±0.04a 

174 

 
0.93±0.04b 

200 

 
0.94±0.07ab 

48 

 
0.86±0.18ab 

8 

 
0.74±0.02a 

769 

 
F(5, 1229) = 7.66,  
p < 0.0001 

        
        
log T 1.88±0.10 

7 
1.97±0.06 
23 

1.96±0.06 
24 

1.70±0.11 
6 

1.41±0.12 
3 

1.64±0.12 
6 

F(5, 58.0) = 1.11,  
p = 0.365 

        
log IGF-1 1.71±0.05 

7 
1.64±0.03 
23 

1.65±0.03 
24 

1.55±0.05 
6 

1.51±0.06 
3 

1.62±0.05 
6 

F(5, 58.2) = 1.22,  
p = 0.310 

        
*F statistic subscripts represent degrees of freedom of the model (former) and degrees of freedom of the error (latter). 
Values are presented as means ± standard error, and italicized numbers indicate the sample size. Different superscript, 
lower-case letters between groups represent significance (p < 0.05). Abbrevs.: Base CORT = baseline corticosterone, T = 
testosterone, IGF-1 = insulin-like growth factor-1, PR = pre-recruiting, RFG = rapid follicular growth, NB = non-breeding. 
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FIGURES 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: Temporal patterns of energetic metrics for (A) total fat mass, (B) 
muscle score across the year (2015) in male snow buntings (n = 25), and (C) body 
mass across the breeding seasons (2006 to 2016) in female common eiders (n = 
1,264). Dots represent the means ± SEM, values indicate sample sizes, and dotted 
grey lines separate life-history stages.   
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Figure 3.2: Tissue and organ dynamics of breeding female common eiders from 
the East Bay colony from 2002 to 2004 (J. Bêty, unpubl. data used with 
permission). Middle lines indicate median tissue masses, "+" depicts the mean, 
the boxes represent interquartile ranges between the first and third quartiles, and 
the whiskers extend to the minimum and maximum values. Abbrev.: RFG = rapid 
follicular growth, LAY = laying, INC = incubation, and NB = non-breeding. 
Numbers indicate sample size, and different letters represent significant 
differences between groups (p < 0.05).  
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Figure 3.3: Temporal patterns of (A) total fat mass in a subset of male snow 
buntings across the year in 2015 (n = 25), and (C) body mass in all female common 
eiders across breading seasons from 2006 to 2016 (n = 1,264) with the lipogenic 
hormone, baseline corticosterone (buntings: n = 25; eiders: n = 1,238; B and D). 
Dots represent the means ± SEM, values indicate sample sizes, and dotted grey 
lines separate life-history stages.   
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Figure 3.4: Temporal patterns of (A) total fat mass in a subset of male snow 
buntings across the year in 2015 (n = 25), and (D) body mass in a subset of 
female common eiders across breading seasons from 2010 to 2016 (n = 69) with 
the  muscle-promoting hormones, testosterone (B and E) and IGF-1 (C and F). 
Dots represent the means ± SEM, values indicate sample sizes, and dotted grey 
lines separate life-history stages.   
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Figure 3.5: Linear regressions that shows the relationship between (A) changes 
in fat mass and baseline corticosterone (n = 16), and between changes in muscle 
score and changes in (B) testosterone (n = 13) and (C) IGF-1 (n = 13) during a 
period of energetic gain. Each point represents an individual, and line indicates a 
significant trend (p < 0.05). 
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CHAPTER 4 – GENERAL DISCUSSION AND CONCLUSIONS 

 
 
SUMMARY OF FINDINGS 

Circulating hormones that regulate energetic processes in vertebrates have 

traditionally been investigated in biomedical (Murphy & Bloom 2006), agriculture 

(Hocquette et al. 1998), aquaculture (MacKenzie et al. 1998), and poultry 

research (Scanes 2009). Within the past two decades, environmental 

physiologists have begun to adopt and integrate principles from these studies to 

explore the hormonal (molecular) control of energy metabolism (Boswell 2005), 

and hence, the temporal variation in these hormone (Wingfield 2008). However, 

there is still a lack of ecological research that examines energy-regulating 

hormones within a life-history stage framework in free-living birds (Williams 

2012a).  

To address these issues, I highlighted the mechanistic advances on the 

hormonal regulation of energetic phenotypes in avian ecology, and used 

mammalian studies to further illustrate key mechanisms in unstudied or poorly 

studied areas in birds (Chapter 2). Taking a descriptive and correlative approach 

to examine some of these candidate hormones, I explored the temporal variation 

of fat- (baseline corticosterone) and muscle-promoting (testosterone and IGF-1) 

hormones in snow buntings (Plectrophenax nivalis) and common eiders 

(Somateria mollissima), two Arctic-breeding birds that are excellent models of 

extreme energetic readiness across two different life-history stages. My results 

indicate that plasma energy-regulating hormone levels reflect stage- and 

species-dependent patterns in both captive and wild birds. More specifically, I 

found that plasma baseline corticosterone levels did not appear to be a strong 

lipogenic signal for fattening in male snow buntings, while in female eiders, 

baseline corticosterone showed stage-related elevations, reinforcing its proposed 

anabolic role on pre-breeding fattening (Hennin et al. 2015, 2016; Chapter 3). 

Temporal and stage-related changes in testosterone levels appeared to match 

the changes in muscle score in buntings, where eiders, on the other hand, 

exhibited daily fluctuations in circulating testosterone that may be more important 
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for regulating breeding behaviours than muscle hypertrophy, though there were 

no significant increases over the breeding stages (Chapter 3). Finally, I suggest 

that elevated levels of IGF-1 during the migration (buntings) and breeding 

(eiders) stages may be an important proliferative signal for testes growth and 

organ remodeling during and after spring migration, respectively. Similarly, fine-

scale changes in IGF-1 levels may stimulate post-flight digestive tract 

recrudescence and growth of female reproductive tissue in eiders, despite a lack 

of large scale changes in IGF-1 levels across breeding stages (Chapter 3).  

 

DISCUSSION OF FINDINGS 

Using concepts from evolutionary genetics, the fact that multiple hormones can 

act simultaneously on different tissues is not surprising given that hormones 

display (1) hormonal pleiotropy, with multiple effects from hormone-specific 

receptors distributed in various tissues (Finch & Rose 1995), and (2) phenotypic 

integration, where co-expression of hormones and hormonal pathways may be 

tightly linked to regulate complex phenotypes (Cox et al. 2016). Here, I employ 

these concepts to guide our interpretation of hormone-mediated effects in this 

study. First, hormonal pleiotropic effects can occur via tissue-specific detection 

thresholds (i.e. sensitivity) from the elevation in hormone secretions (i.e. strength 

of signal; Ketterson & Nolan 1999). Seasonal variation of energy-regulating 

hormones may therefore mediate concentration-dependent effects on different 

target tissues. For example, natural and experimental elevations in testosterone 

levels of both sexes in the northern-temperate dark-eyed junco (Junco hyemalis) 

generated changes in multiple phenotypic traits (i.e. immune function, 

aggression, stress response, ornamentation), providing evidence of dose-

response effects across a diversity of internal systems (Ketterson et al. 2009).  

Applying these concepts to our study, slight elevations in testosterone 

levels may be enough to reach a minimum threshold for hypertrophy of skeletal 

muscle tissue in male buntings, and then further elevation during the migration 

and breeding stages may elicit a physiological “switch” for other testosterone-

mediated effects such as the growth of reproductive tissue and the central 
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stimulation of breeding behaviours (Ball & Balthazart 2008). Along the path from 

hormone secretion to receptor binding, many intermediate molecules could 

regulate seasonal differences in tissue sensitivity, and thus, mediate changes in 

genomic effects, such as receptor density (Wacker et al. 2010), hormone binding 

proteins (i.e. free vs. total hormone; Malisch & Breuner 2010), enzymatic activity 

(i.e. aromatase in the brain; Rosvall et al. 2012), and transcriptional coactivators 

(i.e. cAMP response element binding protein-binding protein; Auger et al. 2002). 

Likewise, seasonal effects could be related to differences in upstream 

intermediate hormones in the hormonal signaling cascade or axis (i.e. LH 

receptors on testes effect on steroid production; Bartke 1987).  

We found similar temporal patterns between testosterone and IGF-1 

during energetic preparation and energetically demanding stages in both species 

(Chapter 3). Given the interaction of somatotropic (GH/IGF-1) signaling on the 

hypothalamic-pituitary-gonadal (HPG) axis in mammals (reviewed in 

Chandrashekar et al. 2004), it is perhaps not surprising to detect synchronized, 

concomitant increases in testosterone and IGF-1 that potentially co-evolved in 

preparation for reproductive investment, given that IGF-1 has only recently been 

shown to regulate performance-related traits in birds (i.e. clutch size and egg 

weight; Lodjak et al. 2017). Nonetheless, there is still a lack of empirical evidence 

supporting these hormonal effects on reproductive phenotypes in free-living, 

adult birds. 

Importantly, while a qualitative assessment of temporal patterns 

suggested fine-scale, daily fluctuations in testosterone and IGF-1 levels in 

common eiders, quantitative analyses indicated no significant differences across 

breeding stages, unlike in snow buntings (Chapter 3). However, the current 

experimental approach of categorizing data into broad stages may reduce the 

potential of detecting finer scale changes in hormone concentrations over time. 

For instance, in eiders, both testosterone and IGF-1 displayed high levels 

followed by a distinct drop in circulating levels within the pre-recruiting stage 

(Figure 3.4E &F), likely generating a substantial amount of variation around the 

mean and reducing our ability to detect differences from other life-history stages 
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(Table 3.3). On the other hand, while breaking data into two-day groups does 

increase the temporal detail during the pre-breeding period, each category had 

small sample sizes reducing statistical power (although small standard errors of 

the means suggest accurate results given the high degree of individual variation 

in hormone levels during the breeding season; Williams 2012b). Therefore, I 

would argue that, the qualitative assessment of the temporal patterns provide 

valuable information on potential endocrine regulation of seasonal phenotypes 

both within and across life-history stages. Nevertheless, more robust statistical 

techniques, such as using approaches that can harness the power of temporal 

autocorrelation of multiple variables on repeated-measures data (i.e. Generalized 

Additive Mixed Models (GAMMs); Woods 2006) may provide a stronger and 

more relevant means of examining changes of hormone levels across stages. 

 

DIFFICULTIES ASSOCIATED WITH MEASURING T3 AND ACYLATED 

GHRELIN 

My thesis originally proposed to measure the hormonal profiles of both the 

thyroid hormone, triiodothyronine (T3), and acylated ghrelin; however, despite a 

great deal of effort, there were several logistical difficulties associated with the 

quantification of these candidate lipogenic hormones. In assessing T3 status in 

circulation, most avian studies evaluate both the total and free (unbound) plasma 

portion of T3 using radioimmunoassays (RIAs) either developed in-house (i.e. 

Chastel et al. 2003; Duriez et al. 2004; Vézina et al. 2009), or commercially 

available kits coated with goat-mouse IgG antibodies designed for humans or 

small rodent models (i.e. MP Biomedicals kit, Elliott et al. 2013; Welcker et al. 

2013). Alternatively, T3-specific enzyme immunoassays (EIAs) have been 

designed, however, these detection methods have not been as extensively 

validated in birds (McNabb 2007; except see Elarabany et al. 2012). 

To test EIA detection of T3 in birds, I attempted to measure circulating 

levels of total T3 with both methanol-extracted (i.e. Reyns et al. 2002) and non-

extracted pooled chicken plasma (Sigma Aldrich, Oakville, ON, CAN, #P3266; 

same steps for buntings and eider plasma) at multiple volumes (10 µL, 20 µL, 50 
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µL, and 100 µL) using three different commercial EIA kits (MP Biomedicals, 

Solon, OH, USA, #07BC-1005; Labor Diagnostika Nord, Nordhorn, Germany, 

#TFE-2300; Diagnostics Biochem Canada Inc., London, ON, CAN, #T3-4220). 

Our dose-response curve showed a non-parallel displacement with the plate’s 

standard curve, indicating an inconsistent immunoactivity in detecting avian T3. 

Furthermore, the lack of hormone detection could be attributed to (i) an 

incompatibility to bind to mammalian-derived antibodies (Brown et al. 2004), (ii) 

interference from binding proteins (i.e. albumin and transthyretin) or other plasma 

proteins (Selby 1999), or (iii) potentially low levels of T3 in commercially 

purchased chicken plasma (Leclercq et al. 1988). Although RIAs are typically 

more sensitive (i.e. lower minimum detection limits) than EIAs, they nonetheless 

use potentially dangerous radioisotope labels (I125, in the case of T3 assays), 

which we currently do not have the facilities to safely handle. A potential solution 

may be to use high-performance liquid chromatography (HPLC) for high 

recoveries of plasma T3 to increase the probability of antibody detection (Gika et 

al. 2005). However, we presently do not own the proper and expensive 

laboratory equipment (i.e. sample pumps and signal detector) to isolate thyroid 

hormones using this technique (Gika et al. 2005). Nonetheless, we found that 

three readily available T3-based EIA kits were unable to appropriately measure 

plasma levels in avian plasma, and we caution the use of enzyme-

immunoassays without proper validation from tests of both parallelism and 

relative binding affinity. 

 Acylated ghrelin has been a very difficult hormone to measure in this 

thesis for a number of reasons. First, plasma acylated ghrelin is highly 

susceptible to degradation from circulating esterases that hydrolyze the acyl-

ester linkage and rapidly (within a few minutes) converts it into des-acyl ghrelin 

(De Vriese et al. 2004). After collection of a blood sample, protective reagents 

such as hydrochloric acid and broad-spectrum esterase inhibitors must be 

immediately added to the sample to, at a minimum, conserve the acyl attachment 

on ghrelin (Delhanty et al. 2012; see RAPID method as a more conservative 

approach, Stengel et al. 2009). Unfortunately, our samples were collected prior to 
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beginning this particular research project, and we therefore did not protect 

samples a priori at sample collection. I therefore assumed that most, if not all, 

acylated ghrelin was likely converted to des-acyl ghrelin in our plasma samples 

from both species (Hosoda et al. 2004). Presently, there are two different RIAs 

designed to detect acylated ghrelin at the N-terminus, considered the most 

conserved portion of the mature peptide across vertebrates, and des-acyl ghrelin 

at the C-terminus (Kaiya et al. 2007a, 2008). However, there are no current 

detection methods for des-acyl ghrelin in birds (mentioned in Goymann et al. 

2017), as the C-terminus amino acid sequences of human and poultry (i.e. 

chicken, quail, turkey) are divergent, meaning that mammalian antibodies do not 

bind to avian des-acyl ghrelin (Kaiya et al. 2007a). These challenges prevented 

the quantifiction of both acylated (degraded) and des-acyl ghrelin (lack of 

biological importance to my study and indectectable methods). Despite all these 

potential issues, I still tried to quantify total ghrelin using a commercially available 

kit designed for rat/mouse species (EMD Millipore, Etobicoke, ON, CAN; 

#EZRGRT-91K), but due to the reasons above, it unsurprisingly failed to detect 

hormone concentrations.  

Another issue with measuring acylated ghrelin is the extremely low plasma 

concentrations due to its enormous orexigenic potency (~<100 pg/mL), which by 

default as stated above, requires an RIA for high sensitivity (Kaiya et al. 2007b). 

Additionally, previous studies on acylated ghrelin in domestic chicks have used 

very large plasma volumes from sacrificed individuals to increase hormone 

analyte in samples (Kaiya et al. 2008, and references therein), which is simply 

not possible nor practical when using non-lethal blood collection techniques in 

smaller-bodied birds (i.e. songbirds). In this thesis, with amount of plasma being 

a constraint from assessment of multiple hormones from the same samples in 

small birds (i.e snow buntings) or used in other research (i.e. common eiders), 

we would not have been able to allocate similar amounts of plasma (>50 µL) as 

has been accomplished in domestic avian species. Altogether, we recommend 

that appropriate detection of acylated ghrelin in birds needs protection reagents, 

storage at -80°C, highly sensitive assays, and large plasma (sample) volumes.  
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FUTURE DIRECTIONS 
A. From Observational Studies to Manipulative Experiments 

With advances in ecological research on energetic physiology, both 

observational and manipulative studies can provide valuable mechanistic 

information about the regulation of energy-regulating hormones on energetic 

phenotypes in birds. Ramenofsky (2011) highlights how the difficulty in tracking 

migratory populations throughout the life cycle has led to most studies on 

migratory birds having been explored in a single species at only a single life-

history stage. Long-term observational data in wild-caught birds can address this 

problem by providing an accurate depiction of natural hormone titers across the 

year, and then comparative analyses can then be used to examine similar 

energetic traits in closely related species (i.e., phylogenetic signal; Zheng et al. 

2009), or in species sharing similar environmental conditions (i.e., convergent 

evolution; Losos 2011). In this case, my thesis implicitly assesses whether 

patterns of endocrine responses in two Arctic-breeding species are driven by 

similar environmental pressures (Chapter 3). 

There is value to collecting endocrine profiles from observational (i.e. 

correlative) studies since they can reveal the biological relevance of natural 

endogenous hormone levels, which can then form the basis for manipulative 

hormone experiments aimed at confirming causal relationships of physiological 

phenomena within a life-history context (Eikenaar et al. 2011; Eikenaar et al. 

2013; Ketterson et al. 1996). While I had originally aimed to conduct hormone 

(corticosterone) manipulations in the snow bunting population outlined in Chapter 

3, unfortunately many birds were lethally infected with an avipoxvirus (Poxviridae 

family) in winter 2016, reducing sample sizes to the point that the planned 

experiments were impossible to conduct. Future manipulative experiments in 

snow buntings, particularly those using exogenous administration of IGF-1, may 

be particularly interesting and novel, as they would determine for the first time in 

wild adult birds whether this hormone causally induces growth in skeletal muscle 

and other somatic tissues in preparation for migration. Regardless, my thesis 
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suggests that any manipulations of avian energy-regulating hormones in free-

living or captive populations should consider the natural life-history stage 

variation and ecological context (see considerations in Chapter 2), along with 

previously identified experimental designs such as dose concentration and the 

mode of hormone delivery (Crossin et al. 2016).  

 

B. Integrative Tools to Identify Underlying Mechanisms  

Endocrine regulation of peripheral energy stores is tightly integrated with other 

systemic signaling pathways, such as neural circuitry and metabolic processes 

(Figures 2.2 & 2.3; Chapter 2). Given the complexity of these interconnected 

relationships, it is critical that ecological researchers employ a variety of tools to 

identify the endogenous mechanisms of avian energy balance. First, with the 

rapid expansion in the number of avian species with sequenced genomes, 

transcriptomic profiling is rapidly allowing the field of evolutionary endocrinology 

to detect multiple, tissue-specific endocrine and metabolic markers involved in 

lipid and protein metabolism (Mello & Lovell 2017; Chapter 2). Besides the 

benefit of using genome-wide screening for differential expression of previously 

unknown molecules, these techniques can also measure mRNA expression of 

known proteins during life-history stages involving fat deposition and skeletal 

muscle growth, such as mRNA transcripts for hormone receptors, hormone and 

metabolite (i.e. fatty acids) binding proteins, hormone-converting enzymes, and 

cell membrane transporter proteins (Cox et al. 2016). From an ecological 

perspective, one issue with this approach is the animal sacrifice required to 

dissect target tissues, which may be arguably too invasive to assess seasonal 

patterns across the annual life cycle, or when studying a focal species within 

declining wild populations. Despite this, researchers can focus on comparisons 

between two stages with high and nil degrees of energetic storage to reveal 

hormonal effects on metabolic intermediates that generate fat and muscle 

phenotypes. Overall, the application and integration of plasma hormone levels 

and tissue-specific gene expression can connect endocrine function with 
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complex gene networks with the goal of completing these evolutionary 

mechanisms (Cox et al. 2016; Mello & Lovell 2017; Zera et al. 2007). 

In addition to the use of these investigative tools on endogenous 

hardware, ecologists can examine how seasonal changes in hormone levels 

generate behavioural responses that proximately influence variation in motivation 

(i.e. food intake, nutrient preference) and performance (i.e. foraging trips, 

migratory restlessness) to ultimately affect energy stores (Bairlein 2002; Garland 

et al. 2016). For example, given that many behaviours are consistent within- and 

between-individuals in a population (Sih et al. 2012), future studies could 

examine the regulation of naturally circulating acylated ghrelin on feeding rates, 

as it would be expected that individuals with higher acylated ghrelin suppress 

appetite (i.e. decrease food intake) to a greater degree relative to individuals with 

lower levels (Kaiya et al. 2013). Testing these correlative relationships has the 

potential to bridge the gap between seasonal variation in energy-regulating 

hormones and the behaviours they control, providing a predictive utility for the 

hormone-behaviour regulation of nutritional intake and energetic storage.  

 

C. Thyroidal Control of Seasonal Cyclicity in the Brain 

The longstanding belief in vertebrates is that changes in thyroid hormones are 

essential for signaling the appropriate timing of circannual rhythms, with 

pioneering discoveries that showed thyroidectomy inhibits the photoperiod-

induced responses in birds and mammals (Hazlerigg & Loudon 2008). Recently, 

Ebling (2014, 2015) reviewed the central control mechanisms of seasonal weight 

gain in mammals, suggesting that transition to long days stimulates the pars 

tuberalis of the pituitary gland to secrete thyroid stimulating hormone β-subunit 

(TSHβ) that binds to TSHβ receptors on tanycytes (i.e. glial cells) of the arcuate 

nucleus in the hypothalamus and up-regulates the production of deiodinase 

enzymes II (DIO2; converts T4 to T3) and III (DIO3; converts T4 to inactive forms, 

reverse T3 and T2). Importantly, the high intracellular ratio of T3:T4 is thought to 

promote increases in food intake and body mass (Dardente et al. 2014); 
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however, the exact intermediate steps between increases in T3 and these 

peripheral (anabolic) effects are currently unknown.  

Nonetheless, it has been proposed that T3 may be the master regulator of 

seasonal neuroplasticity in the mediobasal region of the adult hypothalamus that 

controls key metabolic functions (Ebling 2014; Migaud et al. 2015). Furthermore, 

hypothalamic neurogenesis in mammals gaining fat stores seasonally leads to 

concurrent expression of neuropeptides (i.e. POMC, Cart, NPY, AgRP) and 

responsiveness to hormones involved in energy balance, which indicates the 

importance of neural reorganization to modulate effects from peripheral signals 

(reviewed in Langlet 2014). Additionally, despite the anatomical differences of 

daylight transmission between mammals and birds (i.e. deep brain 

photoreception in birds rather than photoreceptors in the eyes of mammals; 

Nakane et al. 2010), both similarly activate T3 conversion in the hypothalamus 

and in birds this conversion has been linked to priming of reproduction through 

stimulation of gonadotropin releasing-hormone neurons in Japanese quail 

(Coturnix japonica; Nakane & Yoshimura 2010; Nakao et al. 2008). Since the 

central mechanism of thyroid hormones on seasonal changes in physiology 

appears highly conserved in photosensitive vertebrates (Ebling 2015), we 

propose that future research in birds living and breeding in seasonal 

environments should focus on: (1) the intermediate steps of T3 regulation on 

increases in food intake and weight gain; (2) whether these neural networks 

stimulate release of plasma energy-regulating hormones from peripheral tissues; 

and (3) the effect of photoperiod-induced neuroplasticity on appetite-stimulating 

(i.e. NPY and AgRP) neuropeptide expression.  

 

D. Implications of IGF-1 for Life-History Variation 

Using our comparative approach across species, we found that plasma IGF-1 

levels were much higher in short-lived snow buntings (~up to 5.5-fold magnitude) 

than long-lived common eiders. Interestingly, Kenyon (2005, 2011) and 

collaborators’ ground-breaking research found that mutations in the dauer 

formation (daf-2) gene, encoding IGF-1 receptors in C. elegans, extends lifespan, 



	

147	
	 	

with supporting results for receptor mutations in mammalian models (Bartke 

2008). This inverse relationship between IGF-1 signaling and longevity may 

justify the differences in lifespan between snow buntings and common eiders. 

Although hormonal analysis on ageing was not a targeted objective of this study, 

our study design comparatively supports this relationship between circulating 

IGF-1 levels and lifespan, and this provides insight into promising avenues on 

life-history trade-offs between growth and longevity in a understudied ecological 

context in free-living vertebrates, including birds (Dantzer & Swanson 2012). 

 

E. Comparing Energetic Gain Across Stages and Taxa: Importance of 

Context 

To unravel the underlying mechanisms driving energy gain, an important 

contextual question arises: do all stages of energetic storage in vertebrates 

utilize the same hormones? Ultimately, although I would argue that the 

endogenous ‘hardware’ (i.e. common homeostatic mechanisms) should be 

theoretically conserved across stages, different ecological contexts should 

certainly be considered, including: (i) environment (Cornelius et al. 2013), (ii) life-

history (Crossin et al. 2016), (iii) annual cycle (Wingfield 2008a), (iv) sex and age 

(Crespi et al. 2013), and (v) sociality (Hofmann et al. 2014). In my thesis, I 

provide context-dependent reasons for changes in hormone levels across life 

history stages (Chapter 3), while simultaneously controlling for many of these 

contexts (i.e. stage and sex); however, these other ecological contexts should be 

accounted for in future studies. First, although both species in this thesis 

naturally breed in the Arctic, unpredictable local (i.e. weather) conditions may 

differentially influence the physiology of free-living eiders in East Bay (Arctic) that 

are at a much higher latitude (~1,700 km) than captive buntings residing in 

Rimouski (sub-Arctic; Wingfield 2008b). Second, eiders are a longer-lived 

species with more total breeding opportunities compared to shorter-lived 

buntings, and therefore their life-history stages within the annual life cycle differ 

(Legagneux et al. 2016; Montgomerie & Lyon 2011), possibly affecting the 

seasonal differences in hormone titers. Sex is clearly important in eider 
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physiology, where only hens engage in pre-breeding energetic storage from 

female-biased parental investment in reproduction, while both male and female 

buntings require energy stores for spring migration (Chapter 1). Additionally, age 

may affect important stage-related strategies, such as foraging behaviour and 

rates of energetic gain (Descamps et al. 2011). Finally, hormone-behaviour 

interactions may affect the temporal and spatial differences in social groups of 

colonial-breeding eiders and migratory flocks of buntings (Hofmann et al. 2014). 

Taken together, these ecological contexts should be carefully considered when 

making predictions and interpretations about endocrine responses, despite using 

a common hormonal framework from other birds or even other vertebrates. 

 

CONCLUSIONS 

My thesis provides observational (correlative) information on the temporal 

patterns of hormone responses during stages of energetic gain in fat and skeletal 

muscle, showing evidence for changes in baseline corticosterone, testosterone, 

and IGF-1 across life-history stages in two Arctic species models. Here, I 

identified several issues with quantifying T3 and acylated ghrelin, and provided 

some potential solutions for future work on these hormones. Future 

experimentation using hormone manipulations will identify cause-and-effect 

relationships with hormone-mediated traits. Transcriptomics, detection of tissue-

wide mRNA expression levels, may be a useful genetic technique to seek new 

and confirm existing proteins in the hormone-metabolic interface. Behavioural 

assessment of food intake may provide another hormone-mediated response to 

complete the picture of these effects on seasonal energetic phenotypes. Further 

consideration should be given to the central regulation of thyroid hormones on 

seasonal neuroplasticity in key appetite-regulating centres in the brain. Although I 

aimed to control for different ecological contexts in both our study systems, I 

outline areas of consideration for future correlative and manipulative studies. 

Ultimately, my research contributes to the growing, yet incomplete literature on 

endocrine mechanisms that regulate fat accumulation and skeletal muscle 
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growth in birds breeding in highly seasonal environments, with implications on 

organismal performance and potentially indirect effects on fitness traits.   
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