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ABSTRACT 

Environmental change is occurring at an unprecedented rate, making traditional 

demographic monitoring techniques less practical and giving rise to more proactive 

monitoring methods. Although many ‘biomarkers’ such as physiology and behaviour are 

used in field research, testing their effectiveness as indicators of environmental change 

across multiple biological scales is key to using these tools confidently. In Chapter 2, I 

use a phylogenetically-controlled meta-analysis across seabird species to demonstrate the 

strength of the relationship between baseline corticosterone and common fitness-related 

traits. I found food availability and reproductive success to have strong negative 

relationships with corticosterone. In Chapter 3, I use an integrative approach (physiology, 

foraging behaviour, energetic expenditure) across multiple biological scales within a 

natural environmental ‘experiment’ to determine the relative sensitivity of key traits to 

sea ice changes in an Arctic seabird, the thick-billed murre (Uria lomvia). I found 

corticosterone and non-esterified fatty acids were higher and foraging strategy consisted 

of more frequent, short foraging trips during the low ice year. However, average daily 

foraging distance, estimated daily energetic expenditure, triglycerides, and beta-

hydroxybutyrate remained constant across years. In the face of environmental change the 

birds appear to be working harder, but maintaining energy intake and energetic 

expenditure. Overall, my thesis serves as a model for biomarker validation and answers 

questions about physiological and behavioural environmental responses and fitness 

outcomes across seabirds. 
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CHAPTER 1  

General Introduction 

Monitoring a changing world 

Rapid, human-induced environmental change is causing shifts in temperature and 

weather patterns across the planet, with extremes seen at the poles (Mauritsen 2016; 

Navarro et al. 2016). These rapid environmental changes are already affecting 

biodiversity in a number of diverse ways (e.g., decreased productivity, regime shifts, 

genetic variation, population declines; Bellard et al. 2012, Mantyka-Pringle et al. 2012, 

Pauls et al. 2013) and range shifts are expected to continue at individual to large 

environmental scales (Parmesan 2006; Bellard et al. 2012). To date a fairly large degree 

of the detailed mechanistic focus on the impacts of climatic change on wildlife has been 

focused on terrestrial habitats (Walther et al. 2002; Parmesan 2006; Duarte 2014), given 

that oceanic ecosystems may be harder to study given the vast size of the overall marine 

environment making the determination of unifying mechanisms more difficult (Duarte 

2014; Hussey et al. 2015). Nonetheless, it is well-appreciated that oceans are changing 

dramatically as they absorb much of the heat and carbon dioxide from anthropogenic 

factors (Hoegh-Guldberg and Bruno 2010). Indeed, these temperature and acidity shifts 

are driving dramatic changes in weather patterns, ocean currents and ice dynamics, all of 

which can influence marine species distribution and abundance. Nowhere are these 

changes in sea temperature and ice extent changing more intensely than in the Arctic 

(Hansen et al. 2006; Bindoff et al. 2007). Many Arctic species rely on sea ice for 

reproduction, foraging, and movement as sea ice and ice edges represent hot spots for 

primary productivity in the Arctic, and thus support much of the trophic system (Darnis 
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et al. 2012; Post et al. 2013). Declines in ice extent have resulted in decreased distribution 

of low trophic species (clams Doney et al. 2012; Arctic Cod Gaston et al. 2005) and 

changes in condition and abundance of top-level predators (polar bears, Iversen et al. 

2013; seals and walruses, Doney et al. 2012). Unfortunately, predictions of sea ice extent 

indicate the possibility of no summer sea ice within the next 30 years (Wang and 

Overland 2012) which is expected to have major multi-dimensional impacts on polar 

wildlife across the globe (Post et al. 2013).  

 Recognizing the impacts of these large scale environmental changes on wildlife 

health has traditionally relied on long-term demographic studies that track population 

changes in relation to environmental variation (Paleczny et al. 2015). While long-term 

monitoring of populations or species can provide strong historical data on how trends 

may be correlated with environmental change, by design they do not provide the 

underlying mechanisms necessary for the results to be predictive to further increases in 

variation or change (Satterthwaite et al. 2012). Also, because environmental change is 

now happening more rapidly than scientists can monitor population demography, the 

study-longevity required to collect enough data to show statistically significant trends 

often makes these approaches too slow to detect changes before species management is 

possible (Ewers and Didham 2006). An increase in the use of integrative, individual 

based techniques such as physiological and behavioural traits promises the possibility for 

rapid, predictive methods for examining the success of individuals and therefore 

populations in relation to environmental variation (Cooke et al. 2004; Wikelski and 

Cooke 2006; Hussey et al. 2015). While measuring physiology and behaviour in wildlife 

is not a new field, determining whether these traits respond to environmental variation 
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and in turn are predictive of fitness metrics still remains poorly studied, especially in at-

risk species (Madliger et al. 2016). As such, the use of these potential biomarkers of 

environmental change requires validation both within and across species, as well as 

across environmental gradients to confirm their effectiveness at relating environmental 

change to potential population changes (Madliger and Love 2015). 

The Use of Biomarkers to Assess Environmental Change  

Individual metrics that represent fitness of an individual, or success within a population, 

are broadly considered biomarkers by conservationists and ecological biologists (Cooke 

and O’Connor 2010; Madliger and Love 2015). For biomarkers to be most informative, 

they ideally need to also translate the link between environmental variation and 

individual performance or success so that biomarker information at the level of the 

individual can be scaled up to appreciate how environmental change ultimately impacts 

population demography (Madliger and Love 2014). From a practical standpoint, the 

proposed power of biomarkers is therefore that they can capture complex environmental 

impacts on populations with relatively few, ideally simple, measurements or metrics, 

ultimately saving time and money for managers and researchers. Ecologists have long 

used absolute measures or changes in body mass or measures of body condition as 

biomarkers to monitor responses to environmental variation (Toïgo et al. 2006). More 

complex biomarkers have had a long history within the field of toxicological research for 

monitoring the direct human impact of contaminants on individuals, populations and 

ecosystems (e.g. Braune et al. 2014). In more recent decades isotopic tracers have been 

used extensively to track and monitor trophic structure and changes in trophic 

assemblages across taxa (Hussey et al. 2014). Integrative ecologists are now employing 
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multiple physiological, genetic and behavioural metrics in an attempt to monitor larger-

scale environmental quality (e.g., Seaman et al. 2006, Piatt and Harding 2007, 

Slabbekoorn and Ripmeester 2008, Aylagas et al. 2014), although there is a still a general 

lack of appreciation or ability to ultimately link these measures to individual performance 

or fitness (Madliger and Love 2015; Madliger et al. 2016).   

Energetic Physiology as a Biomarker 

Physiological metrics in general are thought to be especially useful biomarkers of 

environmental variation and change because physiology links the individual to its 

environment (Cooke et al. 2013; Madliger and Love 2015). Since a source of energy 

should be a key limiting resource for any population (Hairston et al. 1960), and we expect 

rapid environmental change to be altering not only the quantity but the quality of 

resources available to organisms (Fernandes et al. 2013; Morrison et al. 2014), many 

ecological physiologists have recently turned to measures of energetics in an attempt to 

capture an individual’s response to changes in resource bases (Seaman et al. 2006; 

Benowitz-Fredericks et al. 2008). The hope then is that information on energetic 

management at the individual level can be linked to fitness outcomes and therefore more 

immediate predictions about population health and demographic responses before they 

occur (Angelier et al. 2010). Energetic physiology encompasses a suite of individual 

metrics regulating or enabling energetic stores in individuals including daily energetic 

expenditure (Elliott et al. 2013a; Elliott et al. 2013c), energetic metabolites (Guglielmo et 

al. 2002), stress hormones as measures of energetic stress (Angelier et al. 2009) and 

thyroid hormones as measures of resource limitation (Wasser et al. 2010; Ayres et al. 
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2012). In my thesis I am focusing on four physiological metrics that are all commonly 

used in the literature to measure the current state of an individual.  

Baseline Glucocorticoids: Glucocorticoids (often referred to as ‘stress hormones’ for 

their transitory role in responding to acute environmental stressors; Romero and Wikelski 

2001) such as corticosterone (birds, reptiles, amphibians) and cortisol (humans, fish) are 

an increasingly popular group of hormones being employed to examine responses to 

environmental variation (Cooke et al. 2014; Madliger et al. 2016). Although 

glucocorticoids serve an important role in the stress response, baseline levels serve a 

highly important role in regulating daily energetic balance or homeostasis, both via 

regulating plasma glucose levels (Dallman et al. 1993) and via providing the cues to 

flexibly modify important behaviours like activity and foraging (Astheimer et al. 1992; 

Breuner et al. 1998; Crossin et al. 2012). Importantly, baseline glucocorticoid levels 

respond to environmental variation such as food availability (Lanctot et al. 2003; 

Kitaysky et al. 2007; Barrett et al. 2015) and to changes in energetic demands across life-

history stages (Michael Romero 2002; Williams et al. 2008). Overall therefore they act to 

maintain the individual in allostasis - the process of achieving homeostasis through 

change (McEwen and Wingfield 2003). Since baseline glucocorticoids work to maintain 

allostasis, changes in energetic demand that are not met with increases in energetic intake 

result in increases in glucocorticoid levels to facilitate changes in foraging behaviour and 

physiology such as increased glucose mobilization (McEwen and Wingfield 2003; Busch 

and Hayward 2009). As such, elevated GC levels indicate or should be interpreted as high 

energy use or lack of sufficient calorie resources.  
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Plasma Triglycerides: Energetic metabolites have been employed recently either as a 

measure of the energetic condition of an individual (i.e. increasing fat stores or burning 

internal resources; Stutchbury et al. 2011) or more globally as a metric of habitat (i.e., 

resource) quality (Williams et al. 2007). Since they are the storage form of fatty acids, 

plasma triglyceride levels have been used as strong indicators of fat deposition in a 

number of species of birds (Guglielmo et al. 2005; Anteau and Afton 2008; Dietz et al. 

2009). Higher plasma levels generally indicate an individual in a positive energetic state, 

or one that is gaining in condition (Cerasale and Guglielmo 2006). In many studies of 

migratory avian species, triglyceride (TRIG) levels have been used as an indicator of 

stopover site (location for birds to refuel) quality (Jenni and Jenni-Eiermann 1998; 

Guglielmo et al. 2002). Plasma TRIG levels are assayed with a colourimetric kit that 

works by converting triglycerides to glycerol and measuring total and free glycerol. The 

assay only requires 8 uL of plasma and TRIG levels are not impacted by short periods of 

capture and handling stress.   

Plasma Beta-hydroxybutyrate: Beta-hydroxybutyrate (BOH) forms from the biochemical 

conversion acetyl CoA in the liver following energetic expenditure. Measures of plasma 

BOH generally indicate the opposite of plasma TRIG (Anteau and Afton 2008), where 

high levels correspond with fasting and body mass (i.e., lipid) loss, and lower energetic 

condition (Cherel et al. 1988; Guglielmo et al. 2002; Seaman et al. 2006). During these 

periods of fasting or mass loss, BOH is synthesized from free fatty acids as a primary fuel 

for some tissues (Williams et al. 1999) and is thus a marker for lipid catabolism (Lamarre 

et al. 2016). Measurements of BOH are assayed with a colourimetric kit, require small 

amounts of plasma (11 uL) and are unaffected by sampling time.  
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Non-esterified Fatty Acids: Detailed fatty acid signatures from lipid stores have been 

used to infer diet of marine mammals and seabirds (Iverson et al. 2004; Iverson et al. 

2007). Due to the diversity of fatty acids (FAs), analysis of fatty tissues can reveal broad 

differences in diet, or reveal specific diet choices by comparing signatures to the FA 

signature of prey (Iverson et al. 2007). While these detailed analyses from fat tissues 

reveal diet choices, non-specific measures of free fatty acids in the blood can indicate 

energy balance (Williams and Buck 2010). Free fatty acids, or non-esterified fatty acids 

(NEFA), are formed as a result of the hydrolysis of triacylglycerol and adipose tissues 

during periods of higher energetic demand than intake (Jenni and Jenni-Eiermann 1996; 

Price 2010; Williams and Buck 2010). As such, plasma NEFA levels in both birds and 

mammals rise as the individual increases exercise (Basu et al. 1960; Mcwilliams et al. 

2004; Jeanniard du Dot et al. 2009). Measurements of plasma NEFA levels require small 

volumes (5 uL) of blood and indicate energy balance, making them practical indicators of 

energetic state. Taken together, because both BOH and NEFA levels rise in response to 

fasting (negative energy balance) and in response to exercise (Beaulieu et al. 2010; 

Williams and Buck 2010), they can be used to assess the level of energetic demand 

individuals are experiencing beyond their energetic intake.  

Foraging and Movement Behaviour as a Biomarker 

Behaviour is a traditional field of study, but relating behaviour to environmental variation 

(Harding et al. 2007) or fitness metrics (Stillman 2003) increases its relevance as a viable 

biomarker of environmental change. Traditionally, tracking wildlife movement has been 

undertaken with telemetry technologies (Cooke et al. 2004). However, recent and 

dramatic advances in technologies has increased our ability to not only track both 
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terrestrial and aquatic organisms, but also to link these behaviours with environmental 

variation and fitness (Franke et al. 2004; Paredes et al. 2014; Hussey et al. 2015). Over 

the past decade, the number of studies tracking the spatial movement of vertebrates has 

particularly increased, with units ranging from small sub-gram geolocation devices for 

tracking small mammals and songbirds (DeLuca et al. 2015), to larger satellite units for 

tracking larger species over greater distances and time periods (Weimerskirch et al. 

2014). Recently, the use of miniaturized Global Positioning System (GPS) units in 

particular has increased since this technology has allowed the accurate assessment of 

fine-scale behaviours in fairly small species over large spatial scales (Wakefield et al. 

2009). A range of GPS tracking devices are currently available and range from very 

inexpensive models that must be recovered to obtain the data, to more expensive units 

which can remotely download data via telemetry, and even to solar-powered units which 

can collect data year-round (Meyburg et al. 2004). Tracking fine scale behaviours beyond 

direct observation is possible by setting small intervals between GPS points, allowing 

behaviours to be recorded at nesting sites and across the large foraging areas or migratory 

routes (Wakefield et al. 2009). For example, behaviours related to energetic use such as 

distance travelled, flight time, and foraging trip length and patterns can be measured. In 

my thesis we use two types of GPS devices that provide highly accurate data, small size, 

and withstand the extreme pressures associated with deep diving.  

Seabirds as At-Risk Models 

Although large-scale environmental change is difficult to monitor, especially in large, 

complex systems such as oceans (Hoegh-Guldberg and Bruno 2010), studying key 

‘model’ species that can essentially monitor the environment and therefore indicate 
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patterns and problems across that broad environment can help scientists more effectively 

monitor large areas. Despite these complexities of documenting and interpreting all of the 

effects of large-scale environmental change, studying marine top predators (e.g., whales, 

pinnipeds, sharks, tuna) can provide important information about overall marine health 

and changes in lower trophic levels (Frederiksen et al. 2007; Benowitz-Fredericks et al. 

2008; Hussey et al. 2014). Seabirds provide an opportunity to assess environmental 

changes over the wide area that individuals forage and travel over during breeding and 

migration, and seabird population trends have been related to environmental factors in 

many studies (e.g., Jenouvrier et al. 2005; van de Pol et al. 2010; Gaston et al. 2012; 

Descamps et al. 2013; Robertson et al. 2014; Paleczny et al. 2015). Many seabird 

populations are also in global decline at higher rates than any other avian group (BirdLife 

International 2012; Croxall et al. 2012), and yet we know fairly little about the 

mechanisms underlying these changes. Nonetheless, since there is significant variation in 

seabird life history with different species responding to and indicating different changes 

in marine systems (Parsons et al. 2008), there may be important context-specific 

indicators of environmental conditions that are being overlooked. In addition, seabirds 

also represent a very practical group of species for monitoring. Most seabird species 

breed colonially, meaning they can be accessed readily during the breeding season. 

Individuals also forage widely from their colony, meaning that physiology and condition 

measures as well as tracking unit deployments at the colony represent the environment 

experienced over a wide area. Seabirds are also long-lived species and robust enough to 

handle repeated sampling, tracking unit deployment, and occasional colony disturbance. 

Because of the large sampling scale, sensitivity to the environment, global decline, and 
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practicality of study, seabirds are used commonly as indicators of changes in the marine 

environment (Frederiksen et al. 2007; Parsons et al. 2008). 

 Individual performance or fitness is commonly measured or estimated in seabird 

research. There are limits to measuring actual fitness in wild study species, so a number 

of metrics are used as proxies within seabird literature. Research is often carried out 

within a particular study year, so reproductive success within a year is often considered 

‘fitness’, and this is based on measures such as hatching success, clutch size, chick 

weight, or fledging success. Ideally, the later in the breeding season reproductive success 

is measured, the more accurately it will reflect the outcome of the breeding attempt, and 

it will be a stronger estimate of fitness. However, data collection constraints mean many 

measures of fitness are used will be discussed as fitness in this thesis.  

Study Species 

Thick-billed murres (Uria lomvia) are a sturdy, medium-sized diving seabird found 

throughout the circumpolar region (Figure 1.1). Adults of both sexes are monomorphic in 

coloration, sport entirely black and white patterning (Figure 1.2), weigh between 800-

1000 grams during the breeding season (Gaston and Hipfner 2000) and live 

approximately 20 years (maximum 29 years, Gaston and Hipfner 2000). The sexes are 

also similar in all relevant morphological dimensions although male bill depth is larger 

(Gaston and Hipfner 2000). Thick-billed murres are a colonial-nesting species that breed 

on ledges on cliffs along the ocean and pairs are socially monogamous and invest in a 

single egg and offspring per year. Birds begin breeding at 5 years, and return to the same 

location on a given ledge with the same partner year after year (Gaston and Hipfner 

2000). The timing of breeding varies throughout their range, but in the Eastern Canadian 
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Arctic (e.g., the Digges Island colony that is the focus of this research – see below) egg-

laying begins between June 28 and July 3 on average (Gaston and Hipfner 2000). The 

single egg is then incubated for 32 +/- 1.4 days (Gaston et al. 1985). Thick-billed murre 

parents equally alternate incubation and chick-rearing duties with long foraging bouts. 

Just prior to fledgling, male parents take over the majority of the duties and remain with 

the chick through fledging and the first month on the open ocean.  

Thick-billed murres represent an extreme of the Family Alcidae as they are one of 

the deepest diving seabirds still able to fly, resulting in extremely high wing-loading in 

flight (Elliott et al. 2013b). These traits make the energetic demands of travelling to and 

from foraging grounds from the breeding colony very energetically costly. Thick-billed 

murres are known as “ice-dependent” in that they primarily forage on fish species found 

commonly along sea ice edges in their North American range (Arctic cod, sandlance, 

capelin) as well as some crustaceans, benthic fishes, and some deep-water fishes 

(Springer et al. 1986; Gaston and Hipfner 1998; Gaston and Hipfner 2000). Populations 

across the globe have generally been declining (Gaston et al. 2000; Gaston et al. 2012; 

Descamps et al. 2013; Merkel et al. 2014) and studies in the Canadian Arctic suggest ice 

extent and the timing of ice break-up as well as the spatial distribution and availability of 

food resources are primary drivers of these declines (Gaston et al. 2005, 2009a,b).  

Study Site 

My thesis focuses on field work at a breeding colony located within Digges Sound, 

Quebec where long-term demographic data has been collected since 1980 (Gaston et al. 

2000). Digges Island (62° 33’ 11.1 N, 77° 43’ 56.1 W) is located just north of Quebec in 

Nunavut in the Hudson Strait while Cape Wolstenholme (62° 32’ 51.9 N, 77° 32’ 19.9 
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W) is located on the northern border of Quebec in Nunavik (Figure 1.3). The colonies at 

Digges Island (300,000 birds) and Cape Wolstenholme (700,000 birds) face each other 

across the 7 kilometer wide Digges Sound (Figure 1.4). Birds are captured at one site on 

Cape Wolstenholme and four separate sites on Digges Island spread across the 2 

kilometer long section of cliff with nesting birds on it. Due to the constraints of working 

on a cliff environment, these sites have been selected based on their access to sufficient 

numbers of breeding pairs and safe descent to the colony (Figure 1.5). Working with 

thick-billed murres in these environments requires careful rappelling descent to “working 

ledges”, relatively flat areas from which to capture, handle and process birds (Figure 1.6). 

Individual murres are selected based on proximity to the ledge, ability to recapture, and 

status as breeding adult and are captured using noose-poles. Within 3 minutes of capture, 

individual murres are blood sampled (up to 1mL) from the brachial vein, then banded 

with a numbered aluminum band, weighed, morphological measurements are taken, and a 

GPS device is attached to their back (Figure 1.7). As described in Chapter 3, GPS units 

collect positions every 5 minutes to a resolution of 0.75m and data is collected remotely 

via ultra-high frequency link or by recapture of the bird upon the birds return to the 

colony. Units represent on average 1.5% of their body weight (i.e., under the 3% 

requirement outlined for birds; Phillips et al. 2003) and units are retrieved upon return if 

possible, at which time a second blood sample and body mass measurement is taken (to 

determine the change in these metrics across the foraging trip). If GPS units cannot be 

retrieved, they fall off within 10-15 days of deployment. 
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Thesis Goals 

My thesis aims to test the effectiveness of individual metrics (i.e., biomarkers) as 

representatives of environmental change and fitness using both systematically reviewed 

literature data and multi-year field data. In my first data chapter, I focus on a widely-used 

and assumed individual-based metric of internal/external environmental variation, 

baseline corticosterone, which is commonly assumed (but rarely tested) to be a relevant 

biomarker of variation in both fitness and environmental change (Kitaysky et al. 2007; 

Satterthwaite et al. 2012). To quantitatively assess the strength of corticosterone-fitness 

relationships in seabirds, I present a phylogenetically controlled effect size meta-analysis 

relating corticosterone to environmental- and fitness-related traits across seabird species. 

My second data chapter focuses on and provides insights into the physiological and 

behavioural responses of one seabird species (thick-billed murre) to varying 

environmental conditions. In this data chapter, I use data from a two-year natural 

“climate experiment”, where the two years differed dramatically in ice conditions, to 

determine how individual physiological and behavioural metrics respond to 

environmental change and relate to each other. By combining these two approaches, I 

hope to demonstrate which potential biomarkers show strong correlations with 

environmental variation and fitness, thereby providing insight into the use of these 

biomarkers for future work in predicting how species and populations with respond to 

further environmental change.   
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Figures 

 

Figure 1.1 - Range map of thick-billed murre (Uria lomvia) from Whatbird.com. 
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Figure 1.2 - Thick-billed murre (Uria lomvia) adults, one with chick and one with egg at 

Digges Island, Nunavut. Photo by G. Sorenson. 
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Figure 1.3 - Location of Digges Island, and main locations in Digges Sound. Images from 

Google Maps and Google Earth.  
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Figure 1.4 - View of Cape Wolstenholme and east end of Digges Island from top of 

Digges Island cliffs. Photo by G. Sorenson. 
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Figure 1.5 - Location of a thick-billed murre (Uria lomvia) capture site within the Digges 

Island colony; researchers and rope leading to access point (top photo), researchers 

among murre colony (bottom photo). Photos by G. Sorenson. 



 

27 

 

 

Figure 1.6 - Accessing thick-billed murres (Uria lomvia) from a cliff ledge at Digges 

Island. Clockwise from top left: Rappelling to capture site, working on cliff ledge, view 

of “working ledge” in relation to cliff, view of murres from ledge. Photos by G. 

Sorenson. 
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Figure 1.7 - Handling of thick-billed murres (Uria lomvia) on a cliff ledge at Digges 

Island. Clockwise from top left: Blood sampling, leg banding, tarsus measurement, 

weighing, bill measurement, Ecotone Ltd. GPS device deployment. Photos by W. Black, 

G. Sorenson, and T. Lazarus. 
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CHAPTER 2  

Effectiveness of baseline corticosterone as a monitoring tool for fitness: a meta-analysis 

in seabirds 

 

Chapter Summary 

Many ecosystems have experienced anthropogenically-induced changes in biodiversity, 

yet predicting these patterns has been difficult. Recently, individual behavioural and 

physiological measures have been proposed as more rapid links between environmental 

variation and fitness compared to demographics. Glucocorticoid hormones have received 

much attention given that they mediate energetic demands, metabolism, and foraging 

behaviour. However, it is currently unclear whether glucocorticoids can reliably predict 

environmental and fitness-related traits and whether they may be useful in specific groups 

of taxa. In particular, seabirds are a well-studied avian group often employed as 

biomonitoring tools for environmental change given their wide distribution and reliance 

on large oceanic patterns. Despite the increase in studies attempting to link variation in 

baseline corticosterone (the primary glucocorticoid in birds) to variation in fitness-related 

traits in seabirds, there has been no comprehensive review of the relationship in this taxa. 

We present a phylogenetically-controlled systematic review and meta-analysis of 

correlative and experimental studies examining baseline corticosterone as a predictor of 

fitness-related traits relevant to predicting seabird population health. Our results suggest 

that, while variation in baseline corticosterone may be a useful predictor of larger-scale 

environmental traits such as overall food availability and fitness-related traits such as 

reproductive success, this hormone may not be sensitive enough to detect variation in 
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body condition, foraging effort, and breeding effort. Overall, our results support recent 

work suggesting that the use of baseline glucocorticoids as conservation biomarkers is 

complex and highly context-dependent, and we suggest caution in their use and 

interpretation as simplified, direct biomarkers of fitness. 

 

Introduction 

Ocean ecosystems have experienced extensive changes in biodiversity and species 

abundance as a result of anthropogenic impacts (Hoegh-Guldberg and Bruno 2010). 

Unfortunately, isolating the precise mechanisms underlying these changes has not always 

been straightforward (Halpern et al. 2008). Increasingly, wide-ranging marine vertebrates 

are being employed as useful and biologically-relevant bio-monitoring species of both 

fine- and large-scale variation in oceanic conditions (Hussey et al. 2015). Seabirds 

(penguins – Sphenisciformes, tubenoses - Procellariiformes, gannets and cormorants - 

Pelecaniformes, and gulls and auks - Charadriiformes; Fig. 2.1) represent an increasingly 

well-studied and diverse sub-group of predators, and are often considered prime 

biomonitoring tools given their wide distribution and reliance on oceanographic patterns 

across large spatial areas (Piatt and Sydeman 2007). Specifically, because oceanic 

environments are changing rapidly, yet are so large and complex to study, seabirds have 

the potential to act as very practical and sensitive biomarkers to changes in oceanic 

patterns, food supply and location, and temperature regime shifts for a number of reasons 

(Frederiksen et al. 2007; Parsons et al. 2008). First, seabirds range over very large areas 

of temperate, tropical and polar oceans during different stages of their life-history (e.g., 

breeding, migration and wintering; Weimerskirch et al. 2014). Second, because many 
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seabird species are central place foragers, a result of colonial breeding (Orians and 

Pearson 1979), researchers also often have the capacity to monitor individuals and 

populations to determine causal links between large-scale oceanographic change and 

individual fitness and/or population health (Satterthwaite et al. 2012; Descamps et al. 

2013). Third, seabirds are experiencing significant population declines with 28% of 

species listed as globally threatened and 10% near threatened (BirdLife International, 

Croxall et al. 2012). Finally, many of these declines are thought to be both directly and 

indirectly related to anthropogenically-induced changes (e.g., Bodey et al. 2014). As 

such, it is important to ensure biomonitoring tools reflect the impacts of environmental 

variation on factors important to population demographics. 

Traditionally, examining how environmental variation impacts the health of 

colonially breeding species has been accomplished via the long-term monitoring of 

population demography (Gaston et al. 2012; Descamps et al. 2013). Indeed, demographic 

studies have been important for inferring broad-scale linkages between oceanic changes 

and seabird colony trends (Paleczny et al. 2015). However, given that trends often show 

long temporal lags between environmental variation and population responses (Ewers and 

Didham 2006), they can be less effective for predictive, proactive or rapid-response 

management endeavours (Satterthwaite et al. 2012). In response to this information gap, 

integrative ecology has seen a surge in the use of field analytical techniques aimed at 

connecting finer-scale, individual-level mechanisms (e.g., behaviour, stable isotopes, 

immune system metrics, energetic physiology) as biomarkers of larger-scale 

environmental change with the hope of ultimately predicting population responses before 

they occur (Ozgul et al. 2010; Moody et al. 2012; Cooke et al. 2013; Ramos et al. 2014; 
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Hussey et al. 2015). By focusing on specific traits that can reveal how environmental 

variation is impacting individuals, it is hypothesized that researchers can extrapolate 

these mechanisms to the population level and proactively determine how and why a given 

population may be changing (Madliger and Love 2016). For example, Harding et al. 

(2007) studied behaviour in relation to food availability in Common Murres (Uria algae) 

and demonstrated that time budgets could indicate large-scale food availability within 

certain spatial ranges. The authors suggest that by establishing the link between prey 

species and murre foraging, seabird behaviour can ultimately be used as a tool for 

estimating aspects of ocean productivity. In addition, physiological traits have recently 

been employed to examine a diversity of responses to the environment across taxa 

(Cooke and O’Connor 2010; Chown and Gaston 2015), and conservation physiologists 

have increasingly focused their efforts on traits associated with energetic management 

(Madliger and Love 2015).  

Glucocorticoids (often referred to as ‘stress hormones’ for their role in the acute 

stress response; Benowitz-Fredericks et al. 2008), such as corticosterone (CORT) in 

birds, play an important regulatory role at baseline levels. Importantly, they provide a 

central function in allostasis by mediating variation in energetic demand, glucose 

management and foraging/feeding behaviour (Astheimer et al. 1992; Ricklefs and 

WIlkelski 2002; Landys et al. 2006; Angelier et al. 2008). Given that baseline 

glucocorticoids (GCs) should be sensitive to changes in the environment that impact 

allostatic management (McEwen and Wingfield 2010; Madliger and Love 2014; 

Madliger and Love 2015), it is not surprising that they are a recently popular trait 

measured in seabirds (Appendix 1), and across avian species and other taxa (Bonier et al. 
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2009; Busch and Hayward 2009). For example, Kitaysky and colleagues (Kitaysky et al. 

1999; Kitaysky et al. 2007; Kitaysky et al. 2010; Satterthwaite et al. 2012) have 

demonstrated that metrics of CORT from Common Murres have the capacity to reflect 

current and past food abundance, as well as predict both a decrease in reproductive 

performance and the disappearance of individuals from a declining colony. Links 

between CORT and individual condition (Angelier et al. 2010) and reproductive success 

(Kitaysky et al. 2010) have also been reported in some seabird species, and while there is 

a general, but often complicated, assumption that variation in baseline GC levels should 

correlate with fitness (Bonier et al. 2009), empirical and meta-analytic studies have begun 

to indicate the often complex and context-dependent nature of the use of baseline GCs as 

direct links between environmental change and fitness (Lanctot et al. 2003; Hayward et 

al. 2011; Strasser and Heath 2013; Dantzer et al. 2014; Riechert et al. 2014; Madliger and 

Love 2016). As such, further work is needed to determine whether direct and predictive 

relationships exist between baseline GCs, fitness-related traits and environmental 

variation (Madliger and Love 2014; Thierry et al. 2014; Madliger and Love 2015). 

Crucially, while the frequent use of baseline CORT across seabird studies has resulted in 

a large body of research, we currently lack a quantitative assessment of how well these 

results predict key fitness-related traits that ultimately result in population-level changes.  

The goal of the current paper was to evaluate whether variation in baseline plasma 

CORT can predict variation in metrics of fitness and the environment across seabird 

species. Such a study is both timely and useful for conservation and seabird biologists 

alike given that a large body of published research relating CORT levels to various 

metrics of fitness and environmental variation in seabirds exists with no general summary 
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or consensus. We compiled all papers linking seabird baseline CORT to regularly 

measured traits related to seabird fitness: body condition, effort at foraging or nesting, 

and reproductive success, or to a key metric of environmental quality: food availability. 

Given that all of these traits are assumed to relate to individual success (Ponchon et al. 

2014) and are used in seabird literature to represent “success”, we consider these metrics 

‘fitness-related traits’. Thus, to quantitatively assess the viability of using baseline CORT 

as a physiological biomarker, we used a phylogenetically-controlled meta-analysis to 

analyze general trends between CORT and fitness-related traits using effect sizes. Given 

that it has commonly been assumed that elevated GCs have a negative association with 

fitness (although see Bonier et al. 2009) and low environmental quality (Kitaysky et al. 

2010; Satterthwaite et al. 2012), we predicted a negative association between elevated 

baseline CORT and most fitness-related measures (e.g., body condition, food availability, 

reproductive success). However, given that baseline GCs are responsible for managing 

daily energetics (Angelier et al. 2007a), we also predicted a positive relationship with 

measures of individual effort in foraging and nesting.  

 

Methods 

We performed a systematic review and meta-analysis in which we collected data on the 

relationship between CORT and fitness-related traits from the literature and tested 

whether this relationship was influenced by the type of trait examined, study 

methodology, and the phase of breeding. We used Bayesian meta-regression techniques 

similar to Horvathova et al. (2011) and Prokop et al. (2012). We chose five fitness-related 

traits for the analysis based on their prevalence in the literature and the ease of obtaining 
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similar data for both seabird and conservation managers: body condition, foraging effort, 

nesting effort, food availability, and reproductive success (Table 2.1). We began with a 

Google Scholar and Web of Science search for the terms “corticosterone” and “seabird” 

(including papers available by June of 2015) across both correlative and manipulative 

studies that focused on links between baseline CORT and our chosen fitness-related traits 

(Fig. 2.2). We used only these general search terms to avoid missing papers that did not 

subscribe to the same terminology for the fitness-related traits that we chose. 

Manipulative studies included those, for example, where researchers either manipulated 

CORT levels directly (via implants or other supplementation), or manipulated the 

foraging ability or condition of individuals (via feather clipping or weight handicaps) and 

then examined impacts on CORT (e.g., Angelier et al. 2007, Leclaire et al. 2011). Our 

searches were limited to studies of adult seabirds (Orders Sphenisciformes (penguins), 

Procellariiformes (tubenoses), Pelecaniformes (gannets, cormorants, etc.), and the 

Charadriiformes (gulls and auks) during the breeding period (incubation, chick-rearing, 

or across both stages). Only studies of breeding adults were included due to prevalence in 

the literature (few studies of chick CORT and fitness) and due to the challenges of 

monitoring most seabirds outside of breeding. Of the 2,129 papers returned from the 

initial search, the majority (2,050) were rejected because they did not meet the basic 

criteria of pertaining to seabirds, CORT and fitness (Fig. 2.2). We retained 79 relevant 

papers for more thorough analysis by including all seabird papers studying CORT and 

traits that could be related to fitness. We then removed an additional 48 unusable studies 

from this group for one of more of the following reasons: i) contained no direct 

examination of a relationship between CORT and a fitness-related trait; ii) had unusable 
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statistics or no statistics presented (i.e., only presented figures and/or estimates of p-

value); iii) examined stress-induced as opposed to baseline CORT levels; or iv) did not 

measure adults. Our final dataset contained 31 published papers (Appendix 2) and one 

unpublished dataset (K. Elliott, G. Anderson & T. Gaston, unpublished data from 

collaborators) representing 16 species with between one and 13 studies published on each 

species (Appendix 3).  

We examined all relevant papers and recorded each statistic, p-value, and sample 

size presented for a reported relationship between CORT and a given fitness-related trait. 

Correlation coefficients (r) were used when available as they already represent effect 

sizes. In the absence of correlation coefficients, we used F-values, t-statistics, and Chi-

square values. Several studies presented none of this information, and as such p-values 

were then used. We classified each effect size by: i) type of study (correlational or 

experimental); ii) reproductive stage (incubation, chick-rearing or across both stages); 

and iii) fitness-related trait (adult condition, effort foraging, effort nesting, food 

availability or reproductive success, Table 2.1). These broad categories were used to 

determine whether certain fitness-related traits more strongly correlated with baseline 

CORT than others. 

All analyses were performed in the R environment (3.1.2) using RStudio 

(0.99.879) as the working interface. Using the R package compute.es, we first calculated 

effect sizes as correlation coefficients (r) with a 95% confidence interval for every 

relationship found (Cooper et al. 2009). However, because r values are bounded at -1 and 

1, and therefore do not meet the assumptions of parametric analyses, we transformed the 

values to Fisher’s Z and calculated the appropriate sampling variance and standard error 
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of variance according to standard methods (Boncoraglio and Saino 2007). The Fisher’s Z 

values and corresponding sampling variance were used for further analysis. 

Although all species in the current analysis are seabirds, and thus represent an 

already narrowed phylogenetic group, controlling for phylogenetic effects remains 

important (Adams 2008) as phylogenetic relationships could explain some variance in the 

relationship between CORT and fitness. To account for phylogenetic relationships in our 

analysis, we created a phylogenetic tree including all species in our dataset. First, we 

sampled 1000 trees based on our species list from birdtree.org, using the Hackett tree 

backbone (Hackett et al. 2008; Jetz et al. 2012). Then, we calculated the maximum clade 

credibility tree using TreeAnnotater from the BEAST software, using the default settings 

(burnin = 0, node heights = median, output = maximum clade credibility tree) 

(Drummond et al. 2012). 

The meta-analysis was conducted using the R package MCMCglmm version 2.22 

(Hadfield 2010). We first created univariate models without intercepts with fitness-

related trait, study method, and breeding stage independently as the fixed effect in each 

model, with phylogenetic and non-phylogenetic versions of each. These models are 

useful for comparing different levels of each variable to 0, but do not control for any 

covariates. We then created a series of eight multivariate models incorporating our three 

fixed effects and used the deviance information criteria (DIC) to choose the best models. 

A phylogenetic and non-phylogenetic version of each model was run, and species and 

individual study were included as random factors in all analyses. Our series of models 

(see descriptions in Table 2.2) tested first for an overall relationship between CORT and 

fitness (M1 and M2, non-phylogenetic and phylogenetic respectively), then for a 
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relationship within each fitness-related trait (M3 and M4), then for fitness-related trait 

relationships by study method (M5 and M6), and finally also including breeding stage as 

a fixed effect (M7 and M8).  

For all models, we used the random effect prior of V = 1, nu = 0.02, which 

specifies an inverse Gamma distribution with a degree of belief of 0.02, widely used in 

the statistical literature (Gelman and Hill 2007). Each MCMC chain was run for 1.1 

million iterations, with a burn-in of 100,000, and a thinning interval of 1,000, to produce 

a sample size (posterior distribution) of 10,000 samples. We checked convergence of 

model parameters using the potential scale reduction statistic (PSR; Gelman and Rubin 

1992) and the multivariate potential scale reduction statistic (mvPSR; Brooks and 

Gelman 1998), calculated using the coda package (Plummer et al. 2006). To perform 

these tests, we ran 2 additional MCMC chains for each model (M1-M8), to produce a 

total of 3 chains per model (these additional chains were only used for convergence 

testing; all reported results are based on the first chain only). The potential scale 

reduction statistics compare among-chain and within-chain variance, and should be less 

than 1.1 if chains are converging well (Gelman and Rubin 1992). In all our models, the 

PSR values were less than 1.01 for all parameters, and the mvPSR values were less than 

1.02. Additionally, we visually checked chain mixing and autocorrelation using trace and 

density plots produced in coda. In all cases, chains appeared to be mixing well and had 

low autocorrelation. 

Meta-analytical results can be influenced by a publication bias towards studies 

with large effect sizes. To test for signs of publication bias in our dataset, we conducted a 

visual and statistical analysis based on the inspection of funnel plots and running Egger’s 
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regression (Egger and Smith 1997), respectively. To account for phylogenetic 

relationships when assessing publication bias, we followed the modified approach to 

Egger’s regression outlined in Nakagawa and Santos (2012), which uses the residuals 

from meta-regression models as the input variable in the Egger’s regression in order to 

account for heterogeneity due to phylogeny and the random effect structure when 

assessing publication bias. We used our best fit model (Model 3) to conduct the Egger’s 

regression analysis. When the intercept of the Egger’s regression is significantly different 

from 0, the analysis can be interpreted as showing evidence of publication bias. In our 

case, 0 = -0.04, 95% CI [-0.19, 0.11], p = 0.57.  Additionally, we visually assessed 

funnel plots for evidence of asymmetry and outliers (Appendix 4). 

 

Results 

In both the phylogenetic and non-phylogenetic univariate models, there were significant 

negative mean effect sizes for food availability (Fig. 2.3; non-phylogenetic meta-analytic 

mean Zr = -0.56, 95% CI [-0.96, -0.14]) and reproductive success (Fig. 2.3; non-

phylogenetic meta-analytic mean Zr = -0.31, 95% CI [-0.50, -0.11]), but no strong 

correlation for any other fitness-related trait. There was no difference in correlation 

strength or direction between study method and breeding stage in the phylogenetic or 

non-phylogenetic models (Fig. 2.3). Overall, results indicate that baseline corticosterone 

was able to predict overall food availability and reproductive success, but not body 

condition, foraging effort or breeding effort (Fig. 2.3). 
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After comparing deviance information criterion (DIC) values between our eight 

models, M3-M6 were all within 2 DIC values and therefore were considered to be 

competitive models (Table 2.2). These four models all showed similar significant effects 

for food availability (Appendix 5; Zr around -0.5) and reproductive success (Appendix 5; 

Zr around -0.25). Models 5 and 6 both showed similar non-significant effects for the 

estimate of study method (Appendix 5; experimental around 0.19). While no individual 

model could be classified as the strongest, the set of top models all suggested similar 

results.  

 

Discussion 

To proactively monitor the health of wildlife, researchers and conservation managers are 

increasingly looking towards sensitive individual-level metrics (e.g., physiology, 

behaviour, movement) in lieu of slower-responding demographic measures (Berger-Tal et 

al. 2011; Cooke et al. 2013; Cooke et al. 2014; Madliger and Love 2015). Amongst the 

suite of physiological parameters proposed as biomarkers, GCs are often assumed to be 

reliable indicators of environmental impacts because they are closely tied to energetic 

management (Angelier et al. 2010) and food resources (Kitaysky et al. 2007), and 

therefore presumably to broader-scale environmental quality (Landys et al. 2006; 

Madliger et al. 2015). However, recent work has cautioned against the widespread use of 

GCs as biomarkers without first testing how well they relate to environmental variability 

and measures of fitness (Madliger and Love 2014; Madliger and Love 2016). We 

performed a systematic review and meta-analysis to examine the correlation between 

baseline CORT levels and fitness-related traits in seabirds (recognized as important 



 

41 

 

sentinel species due to their high trophic position and worldwide distribution; Piatt et al. 

2007b). The strength of relationships between baseline CORT and fitness varied by 

fitness trait. As predicted, food availability and reproductive success showed significant 

negative trends; however, body condition and effort at foraging and nesting showed no 

relationship. Moreover, our models including fitness trait as a fixed effect were much 

better supported than the null model, indicating that our fitness proxies were rooted in 

biological relevance and are therefore a practical means of grouping relationships 

between GCs and fitness in this taxonomic group.  

Strength and Biological Relevance of CORT-Fitness Relationships 

Body condition, which included measures such as body mass index, mass gain and fat 

level, did not generally correlate with baseline CORT. While individual studies did report 

significant results in these relationships (Appendix 3), trends were generally weak. 

Although body condition can relate strongly to environmental conditions and to 

reproductive success (Wendeln and Becker 1999; Balbontín et al. 2012), individuals may 

be able to sacrifice individual condition to benefit offspring to varying degrees (Jacobs et 

al. 2013). Moreover, some Alcid species with extreme wing-loading even exhibit 

adaptive mass loss (as a means to increase energetic efficiency) between the incubation 

and chick-rearing stages (Croll et al. 1991), potentially making relationships between 

body condition and fitness difficult to interpret. Variation in seabird life-history may also 

confound this relationship as seabird parents’ ability to maintain their own condition 

during breeding may depend on the manner in which they carry food to offspring (whole 

or semi-digested prey) and the ability of offspring to survive extended periods alone in 

the nest (i.e., need for constant feeding, predation risk, nest site dangers).  
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Neither effort during foraging, nor effort during nesting, correlated with baseline CORT, 

though both traits showed weak positive trends. Foraging effort included at-sea 

behaviours such as trip duration, amount of time diving for prey, and overall energy 

expenditure (i.e., daily energy expenditure – DEE). While these traits are predicted to 

relate to how well parents can care for their offspring and thus overall fitness (e.g., 

Weimerskirch et al. 2000), individual physiological management may obscure observable 

mean relationships with baseline CORT (Angelier et al. 2007b; Angelier et al. 2007c; 

Angelier et al. 2009; Love et al. 2014). More specifically, it may be necessary to measure 

baseline CORT levels both before and after a foraging trip to fully appreciate how 

physiology may predict foraging or nesting success (Madliger and Love 2014; Love et al. 

2014). This is likely true for nesting effort traits as well given that time spent on the nest 

and chick feeding rate should relate to nesting success and fitness (e.g., Bukacinska et al. 

2016).  

In contrast to body condition and effort metrics, food availability showed a 

significant negative relationship with baseline CORT. Indeed, this was expected given 

baseline CORT's metabolic role and the fact that this pattern has been documented in 

other non-seabird avian species (e.g., barn swallow (Hirundo rustica): Jenni-Eiermann et 

al. 2008; white ibis (Eudocimus albus): Herring et al. 2011; zebra finch (Taeniopygia 

guttata): Lynn et al. 2010). Importantly, food availability has been proposed as one of the 

major drivers of changes in seabird populations (Kitaysky et al. 2007). Despite this, we 

were only able to include six studies of food availability in our analysis indicating that 

this is a potentially important area of research to expand upon in terms of pairing this data 

with the monitoring of circulating CORT levels (see below).  
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The strong relationship between baseline CORT and reproductive success could 

be similarly very important for proactively monitoring seabird populations and 

demographic trends. A review of the relationship between baseline GCs and reproductive 

success across multiple taxa (Bonier et al. 2009) reported mixed results (positive, 

negative and neutral), indicating that verification of the GC-fitness relationship is likely 

necessary in specific study systems (Bonier et al. 2009; Madliger and Love 2014). For 

example, one key consideration when testing relationships between GCs and fitness is 

life history (Crossin et al. 2016a). Patterns in baseline GCs differ between life-history 

strategies, stages and even within reproductive stages and favor different aspects of trade-

offs (e.g., Love et al. 2004, Williams et al. 2008). Our quantitative analysis of 

relationships between baseline CORT and reproductive success revealed that this trend is 

strongly negative across seabirds (a long-lived group of species) and across breeding 

stages. It is possible that because many long-lived seabird species are able to forgo 

reproductive attempts during harsher years to instead favour investment in future 

offspring, baseline CORT levels may more strongly correlate to reproductive outcomes, 

and may be more likely to show a negative relationship (Hau et al. 2010). For example, 

such species may be less likely to possess mechanisms to resist social and environmental 

stressors in favour of successful breeding, leading to correlations between high GC levels 

and reproductive abandonment (Wingfield and Sapolsky 2003). In general, in longer-

lived seabird species, there is great potential for GCs to relate food availability to 

reproductive success, making them a strong biomarker if deployed within the appropriate 

system (e.g., Piatt and Harding 2007).   
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  We were careful to recognize potential biases in the current literature. First, our 

meta-analysis as a whole showed no publication bias from unpublished significant studies 

or overly strong results in certain studies (based on Egger’s regression). Second, we 

found no significant effect of study method (experimental or correlational), though 

certain fitness traits are not represented evenly between methods. Most studies examining 

measures of foraging or nesting effort employed experimental methods to either increase 

the effort individuals faced (i.e., indirectly increase baseline CORT) or to increase 

baseline CORT directly. The lack of relationship with these effort-based traits and 

CORT, despite largely experimental methods, increases our confidence that CORT is not 

strong indicator of these traits overall. The opposite was true for the methodologies used 

in studies examining adult condition, food availability, and reproductive success where 

correlational methods characterized the majority of studies. Moving forward, additional 

studies employing experimental manipulations of CORT in the context of body condition, 

food resources, and reproductive outcomes will help to refine our appreciation of how 

baseline CORT may interact with the intrinsic and extrinsic environment to influence 

fitness in seabirds. Finally, we found no significant difference in mean effect size 

between correlational and experimental methods. Overall, we have confidence that the 

patterns we observed are not confounded by publication bias, or by a lack of 

consideration of methodological context.    

Additional Recommendations for Using GCs as Seabird Biomarkers  

It is clear from this meta-analysis and recent reviews (e.g., Bonier et al. 2009) that 

measurements of baseline GCs are not a perfect indicator for all fitness-related traits. 

Baseline GC levels are highly context-dependent because they can respond to both 
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external  environmental conditions and to internal changes in state; thus, fitness-related 

traits like condition and effort are likely to vary based on an individual’s regulation of its 

physiology and its efficiency at gaining and using energetic resources (Busch and 

Hayward 2009; Madliger and Love 2015; Hennin et al. 2016). None of the studies 

completed in seabirds investigated how changes in baseline GCs over time (i.e., 

flexibility) related to fitness-related traits. However, there is growing evidence that the 

management of GCs over time may provide predictive capacity for fitness outcomes 

(Bonier et al. 2011; Ouyang et al. 2011; Ouyang et al. 2013; Love et al. 2014; Arlettaz et 

al. 2015). This may be particularly important to consider in seabird species that make 

extended foraging trips, requiring careful management of somatic resources while also 

tending to offspring. We urge future studies to consider how changes in CORT, rather 

than simply static measures, may provide information on foraging success and ultimately 

reproductive outcomes.  

 The large amount of CORT research in diverse seabird taxa is testament to the 

desire of researchers and managers for a simple, holistic monitoring technique for this at-

risk group of birds. The five fitness traits investigated in this meta-analysis showed 

varying relationships with baseline CORT, indicating that some traits may be more 

sensitive or more easily monitored with baseline GCs, while other traits may require 

more in-depth study to adequately assess their potential connection with baseline GCs. 

Indeed, seabird biologists have not sampled all fitness-related traits equally. For example, 

harder-to-measure traits such as food availability were measured in only four of the 

studies in our analysis, while body condition and reproductive success were measured in 

16 and 17 studies, respectively. Focusing on certain environmental and fitness-related 
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traits such as food availability and reproductive success is important, not simply because 

these relationships showed significance in our meta-analysis, but because these traits can 

best link GCs to environmental (food) changes and population demography. Studies 

measuring reproductive success in this meta-analysis looked at laying, hatching, and 

fledging. While some of these early fitness traits (e.g., clutch size) may be strongly linked 

to reproductive output in certain seabird species, focusing on fitness during chick-rearing 

should take precedence in order to best predict chick survival and recruitment to assess 

population changes.  

One of the primary studies linking food availability to baseline CORT in black-

legged kittiwakes (Rissa tridactyla) employed multiple methods of prey-species sampling 

as well as experimental methods to rigorously test the relationship between average 

(population-level) CORT levels and food availability in the local ocean environment 

(Kitaysky et al. 2010). Although time consuming and often expensive, further testing of 

this relationship should ideally follow these types of broad prey sampling methods and 

work towards increasing experimental methods to further examine causal links between 

food availability and changing GC levels. Furthermore, recent evidence suggests that 

unpredictable food availability (as opposed to simply the total amount of food available) 

may influence baseline GCs, indicating the importance of not only quantifying total 

energetic constraints, but also temporal and spatial fluctuations in availability to fully 

understand how individuals may respond to changing resource levels (Fokidis et al. 

2012). If the relationship remains strong between CORT and food availability across 

additional studies/species, CORT levels in seabirds may indeed emerge as a very 

effective tool for sampling large areas of ocean productivity. 
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The next step to explicitly testing the usefulness of baseline CORT as a relevant 

biomarker in seabirds is to scale up individual-level relationships to relate hormone levels 

to demographic patterns (adult/chick survival, breeding recruitment, population changes). 

If CORT predicts current year reproductive success, it will be worth testing how well it 

can predict future year success, though it will be important to appreciate possible time 

lags between baseline CORT and population changes, since baseline CORT levels in one 

year will likely relate to future population changes. Importantly, evidence is 

accumulating that elevated CORT levels may lead to carry-over effects, influencing 

patterns of migration, overwintering, and subsequent breeding. For example, Schultner et 

al. (2014) found that female black-legged kittiwakes exposed to a 3-day elevation of 

CORT during breeding left the breeding grounds earlier and spent a longer time at the 

wintering grounds than control females and CORT-treated males. In addition, Crossin et 

al. (2013, 2016b) found that feather CORT levels could successfully predict whether 

giant petrels (Macronectes sp.) and black-browed albatrosses (Thalassarche 

melanophris) would breed or defer breeding in the subsequent year. Paired with the 

experimental and correlational evidence in other avian and non-avian species indicating 

that GC measures can mediate carry-over effects (O’Connor et al. 2010; Mark and 

Rubenstein 2013; Sanderson et al. 2014), these patterns illustrate the potential for using 

GC measures to predict variation in future investment and success. Particularly in 

seabirds, which are comparatively long-lived, it will be important to determine whether 

CORT measures taken at different times may be able to forecast multi-year reproductive 

success across species (e.g. Angelier et al. 2010).  
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 While GCs do play an important role in connecting an individual’s environment 

to its energetic demands, they are not the only mechanism that relate these states. 

Importantly, other metrics can be easier to collect (e.g., ease of field collection, avoiding 

stress-induced samples) and less expensive to measure analytically. For example, 

energetic metabolites (triglycerides , beta-hydroxybutyrate, and non-esterified fatty acids; 

Guglielmo et al. 2013) and measures of thyroid hormone can reflect the energetic state of 

individuals (Guglielmo et al. 2002; Elliott et al. 2013) and may additionally provide key 

information on foraging success and energetic constraints. Importantly, physiological 

panels that combine multiple energetic metrics may provide the best indication of overall 

current state and therefore future reproduction or survival potential, and are one way in 

which physiological measures are currently contributing to tangible conservation success 

(Madliger et al. 2016). Finally, behaviour is increasingly studied in seabirds due to the 

continued development of small GPS units that can accurately collect behaviour in flight 

and on the water (Gaston et al. 2013; Ponchon et al. 2014; Weimerskirch et al. 2014). By 

pairing physiological metrics with behaviour, researchers can examine how changes in 

physiology may manifest as alterations in reproductive behaviour (Cooke et al. 2014; 

Madliger and Love 2015), thereby better understanding the mechanisms by which 

environmental change may influence seabird populations. Overall, pairing multiple 

metrics of physiology, behaviour and environmental quality (e.g., food availability) will 

be paramount to assessing baseline GC levels as monitoring tools for seabird fitness and, 

ultimately, population demographics. 
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Tables 

Table 2.1 - Descriptions and biological relevance of fitness-related traits used for 

grouping of effect sizes in meta-analysis examining relationships between CORT and 

fitness in seabirds. 

Fitness-related 

trait 

 

Specific traits compared to 

CORT 

Biological relevance 

Condition body mass, body condition 

index, age 

individual condition can be 

related to performance and 

fitness 

 

Foraging effort number of foraging trips or 

dives, time at sea, effect of 

handicap 

 

altricial chicks and adult 

condition depend on parental 

foraging 

Nesting effort Attendance (time), chick 

feeding rate 

 

altricial chicks depend on 

parental foraging 

Food availability 

 

sampled food abundance, fed 

vs. control individuals 

 

environmental trait, parents and 

chicks rely on food sources 

Reproductive 

success 

number or percent of chicks 

hatched or fledged, clutch size, 

chick mass 

metrics of reproductive output 

should relate to population level 

changes and individual fitness 
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Table 2.2 - DIC values and variance components (study, species, and phylogeny) for 

eight models compared to determine whether fitness-related traits relate to baseline 

corticosterone in seabirds. All models included random effects for study and species and 

were run with and without phylogenetic control. 

   Variance Components 

Model Fixed effects DIC Study Species Phylogeny 

M3 Fitness-related trait 150.022 0.176 0.166 --  

M5 Fitness-related trait and study method 150.458 0.168 0.179 -- 

M4 Fitness-related trait 151.655 0.156 0.155 0.185 

M6 Fitness-related trait and study method 152.007 0.144 0.164 0.205 

M7 Fitness-related trait, study method, 

and breeding stage 

155.339 0.167 0.161 -- 

M8 Fitness-related trait, study method, 

and breeding stage 

156.709 0.148 0.153 0.199 

M1 intercept 157.758 0.238 0.166 -- 

M2 intercept 159.452 0.217 0.150 0.174 
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Figure 2.1 - Diversity of seabird species studied worldwide. a) black-

legged kittiwake (Rissa tridactyla), S. Descamps b) african penguin 

(Spheniscus demersus), K. Hick c) thick-billed murre (Uria lomvia), G. 

Sorenson d) northern fulmar (Fulmarus glacialis), M. Mallory e) antarctic 

petrel (Thalassoica Antarctica), S. Descamps f) tufted puffin (Fratercula 

cirrhata), K. Elliott. 
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Figure 2.2 - Flow chart showing process of finding, selecting, and removing studies in 

meta-analysis. 
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Figure 2.3 - Mean effect sizes from four models run with fixed effects for trait, stage, 

method, and intercept only. Both non-phylogenetic (A) and phylogenetic models (B) are 

presented.  
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CHAPTER 3  

Integrating foraging behaviour and energetic physiology reveals impacts of low ice 

conditions on an Arctic seabird 

 

Chapter Summary 

Due to broad-scale environmental change, polar species may be at significant risk of 

decline in some of the most rapidly changing ecosystems. Traditional methods of 

monitoring population health and/or condition (i.e., through demographics) may not be 

responsive enough and have the capacity to predict population declines before they can 

be mitigated. An integrative, mechanistic (i.e., physiological, behavioural) approach 

linking environmental patterns to population change at multiple scales may provide a 

more rapid and predictive solution. Using emerging technologies and techniques we 

measured behavioural, physiological, and energetic responses of individuals to a natural 

“climate experiment” to assess how a sensitive, ice-dependent, declining Arctic-breeding 

seabird (thick-billed murre, Uria lomvia) responds phenotypically in the face of rapid 

environmental change. We evaluated these relationships across multiple biological scales 

(population, across individuals, within-individuals) to determine how best to assess these 

responses and inform future predictive models. Using the second largest Canadian 

breeding colony of this species at Digges Island, Nunavik, we combined the deployment 

of miniature GPS units, measures of baseline energetic physiology (corticosterone 

(CORT), triglycerides (TRIG), beta-hydroxybutyrate (BOH), non-esterified fatty acids 

(NEFA)), body mass changes and estimated daily energetic expenditure (eDEE) to 

compare murre responses across two years of dramatically different ice conditions. 

Behavioural results initially suggest that birds faced fewer foraging costs in the low ice 
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year with shorter maximum foraging distances and shorter mean trip distances and 

durations. However, birds also undertook more frequent foraging trips in low ice 

conditions resulting in the same average daily foraging distance and eDEE across years. 

Moreover, pairing these results with physiological metrics revealed apparent foraging 

costs within the low ice year (2014): chick-rearing birds had higher baseline CORT and 

NEFA levels and lost significantly more body mass during foraging. However, the lack 

of year differences for TRIG and BOH levels indicated that murres appeared to still be 

able to maintain resource intake in the face of changes in ice conditions. Our inter-

individual analyses further indicated that changes in foraging strategy during the low ice 

year had mixed results on the energetic condition of individuals, though increased 

foraging effort related to better energetic condition. Overall our results provide strong 

mechanistic support for the prediction that Arctic-breeding seabirds, especially those at 

the southern edge of their range, may be negatively impacted by the direct effects of 

climate change and warming oceans. Our results confirm that combining physiology, 

especially sensitive (labile) traits such as CORT and NEFA, and measures of foraging 

behaviour provides key underlying information on how environmental variation 

influences population- and individual-level energetic stress in species of concern. 

 

Introduction 

While it is difficult to find an ecosystem not impacted to some degree by global 

environmental change (Parmesan 2006; Bellard et al. 2012), effects are occurring most 

rapidly in polar regions and especially in the Arctic (Mauritsen 2016; Navarro et al. 

2016). Specifically, global climate change is driving increases in Arctic ocean 
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temperatures (Timmermans and Proshutinsky 2015) and causing dramatic shifts in ice 

dynamics both within and across years (Perovich et al. 2015). Many Arctic species have 

evolved to be highly dependent on temporally- and spatially-stable ice conditions to 

optimize foraging patterns in order to maximize breeding success (Moore and Huntington 

2008; Mallory et al. 2010). As a result, these species are expected to be at significant risk 

of decline due to rapid changes in climatic and hence ice patterns (Post et al. 2009).  

Demographic techniques are commonly used to connect population patterns to 

surrounding environmental variation across diverse taxa (Parr et al. 2003; Magurran et al. 

2010) and have been used to assess whether climate patterns are imposing negative 

consequences on populations of interest (Croxall et al. 2002; Van de Pol et al. 2010; 

Baylis et al. 2012; Descamps et al. 2013; Merkel et al. 2014). However, while long-term 

demographic studies provide strong correlative trends that can be projected into the future 

(Dommasnes 2010; Trathan et al. 2012; Frederiksen et al. 2013), they nonetheless can 

have several disadvantages within the perspective of a rapidly changing environment. 

First, population data often show a delayed response to sudden changes in environmental 

factors (Ewers and Didham 2006), especially in long-lived species with a slow pace of 

life (i.e., low annual fecundity rates, delayed adult maturation, low annual reproductive 

success; Forcada et al. 2008). Second, to monitor changes within a given population, 

demographic studies require long-term population monitoring and fairly significant and 

consistent changes in size to statistically recognize trends (Crick 2004; Forcada et al. 

2008; Descamps et al. 2013). These two major drawbacks can make demographic studies 

challenging for aiding immediate conservation efforts, especially in species where 
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historical data on the relationship between environmental variation and population 

changes are unavailable.  

In an attempt to increase the efficiency, accuracy and timeliness of detecting 

environmental challenges facing populations, there has been a recent focus on individual-

based studies within environmental ecology (e.g., Janin et al. 2011). By narrowing the 

scale from population-level demography to mechanisms and fitness at the level of the 

individual it may be possible to both assess and predict how well certain populations will 

respond to rapid environmental change. Importantly, traits such as body condition, 

behaviour and energetic physiology all have the ability to react to environmental change 

on a short time scale (Cockrem et al. 2006; Toïgo et al. 2006; Harding et al. 2007; 

Angelier et al. 2011) and therefore provide key information on the relative success or 

status of the individual (Shoji et al., 2013). For example, body condition (e.g, body mass, 

fat level) is a simple and widely-used measure to gauge the general health of an 

individual (Harding et al. 2011) and environmental challenges directly impact the 

condition of an individual (Toïgo et al. 2006). Moreover, state-related metrics are often 

correlated with reproductive success (Balbontín et al. 2012) making them potentially 

useful metrics for predicting how environmental challenges may translate into population 

change. Nonetheless, it is increasingly appreciated that to reveal the underlying (causal) 

mechanisms linking individuals and populations to their environment studies must be 

highly integrative (Madliger and Love 2015). As such, they should ideally span multiple 

techniques (i.e., physiology, behaviour, genetics), biological scales (i.e., within- and 

across-individual variation) and methodological approaches (i.e., correlative vs. 

experimental) (Collins and Storfer 2003; Bolger et al. 2008; Madliger and Love 2015). 
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Behaviour responds rapidly to environmental change at many scales (Westhus et 

al. 2013) and individual variation in behavioural metrics (e.g., foraging behaviours) can 

indicate energetic demands, investment and the ability to cope with change (Ropert-

Coudert et al. 2009; Houston and McNamara 2014). Furthermore, behavioural responses 

to environmental variation can be used to project population trends (Dolman and 

Sutherland 1995) and flexibility in foraging behaviour can help predict seabird resilience 

(Ponchon et al. 2014). Likewise, measures of energetic physiology encompass multiple 

traits that are increasingly thought of as valuable indicators of individual health with 

direct correlations to environmental variability and ensuing resource availability (e.g., 

glucocorticoids: Kitaysky et al. 1999; Angelier et al. 2008; Hennin et al. 2015, energetic 

metabolites: Seaman et al. 2006, Williams et al. 2007, fatty acids: Iverson et al. 2004, 

2007, daily energetic expenditure: Welcker et al. 2009b, Elliott et al. 2013a). These 

metrics can provide clear insights into the dietary and energetic demands of an individual 

(Anteau and Afton 2008; Hennin et al. 2016), and can indicate differences in the quality 

of foraging locations or available resources (Seaman et al. 2006; Kitaysky et al. 2007). 

For example, glucocorticoids (corticosterone and cortisol) are responsible for managing 

and inducing feeding behaviour, and can be used as proxies of an individual’s need for 

energetic refueling (Angelier and Wingfield 2012) and food availability (Kitaysky et al. 

2007; Benowitz-Fredericks et al. 2008). In addition, energetic metabolites (triglycerides, 

beta-hydroxybutyrate, and non-esterified fatty acids) can indicate an individual’s current 

use of or addition to fat stores (Guglielmo et al. 2005), and a single time point measure 

can provide the same information as repeated measures of body mass change (Jenni-

Eiermannm and Jenni 1994; Williams et al. 1999; Anteau and Afton 2008).  
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Here we take an integrative approach that combines physiology, behaviour and 

estimated energetic expenditure across multiple biological scales (population, among-

individual, within-individual) to assess the impacts of rapid environmental change on an 

ice-dependent Arctic-breeding seabird, the thick-billed murre (Uria lomvia). Our overall 

goal was to assess which of these phenotypic metrics (i.e., biomarkers) were most 

sensitive to variation in ice conditions or foraging effort at multiple scales to provide 

researchers with biologically-relevant metrics with which to assess environmental 

change. We were fortunate to take advantage of a ‘natural experiment’ by collecting data 

across two years with highly contrasting ice conditions (2014 low concentrations and 

2015 high concentrations, Figure 3.1). Our two-year study encompasses ice extent similar 

to historic norms and more recent record lows in the Hudson Bay region (Gaston et al. 

2005, Figure 3.2). We carefully chose a series of individual response metrics known for 

their sensitivity to environmental change and commonly used to assess the foraging 

success of seabirds: baseline corticosterone, energetic metabolites (triglycerides, beta-

hydroxybutyrate, and non-esterified fatty acids), body mass, estimated daily energetic 

expenditure and metrics of foraging behaviour using GPS technology. We began by 

examining the relative sensitivity of the individual response metrics and behavioural 

predictors to year-differences in ice conditions to detect the best metrics for assessing 

population-level sensitivity to a change in environmental quality. Since this species’ 

foraging behaviour should be significantly impacted by varying ice conditions (Gaston 

and Hipfner 1998; Gaston et al. 2005; Gaston et al. 2009), we then assessed whether 

physiological metrics alone (both single-time point and changes within an individual 

across a foraging bout) could be used to predict variation in foraging behaviour in 
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response to environmental variability for the purpose of examining whether physiology 

can simultaneously inform on broad environmental differences and the behaviour 

exhibited. We predict murres would exhibit exaggerated behavioural and physiological 

metrics indicative of elevated energy use or a lack of resources during the low ice year 

since this species has evolved to be ice-dependent during early breeding.  

 

Methods 

Study System and Sites 

Primary fieldwork was conducted at Digges Island, Nunavut, Canada (62° North) from 

early July to mid-August of 2014/2015. The thick-billed murre colony surrounding 

Digges Sound is the second largest murre colony in the Canadian Arctic (300,000 birds 

on Digges Island, 700,000 birds on Cape Wolstenholme). Thick-billed murres breed once 

per year on rocky cliffs where both parents care for a single offspring by alternating 

incubation periods and foraging bouts for the chick (Gaston and Hipfner 2000). Thick-

billed murres are an extreme of the family Alcidae due to their extremely high wing-

loading in flight (Elliott et al. 2013b). They are considered an ice-dependent species 

making long foraging trips in their North American range to capture Arctic cod, 

sandlance, capelin, and as well as some crustaceans and deep water fish (Springer et al. 

1986; Gaston and Hipfner 1998). Research in Digges Sound by Environment Canada has 

been conducted since 1980 to monitor population changes (Gaston et al. 2000). Selected 

sites (one on Cape Wolstenhome and four on Digges Island) were chosen for accessibility 

to adequate numbers of murres. We sampled 97 murres in 2014 and 120 murres in 2015 
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over four sites. All work was conducted under a University of Windsor Animal Use Care 

permit (15-04) and Environment Canada collection and Animal Care permits (NUN-SCI-

14-11, EC-PN-14-017, EC-PN-15-017), respectively. 

Ice Data 

We used daily AMSR2 sea ice maps from the University of Bremen to compare the 

variation in sea-ice extent between the two study years. Specifically, we measured the 

percent cover of sea ice within a 300-kilometer radius of Digges Island (the approximate 

furthest straight-line foraging trip of murres on Digges Island) on each day from June 15 

to August 15 in both years. We chose June 15 as it is just before the first eggs are laid on 

Digges Island, and as such represents the conditions during which murres begin breeding. 

By August 15, sea ice in the Hudson Straight and Hudson Bay is largely gone, meaning 

that ice differences between the years are negligible by this point.  

Individual Metrics and GPS Deployment 

Breeding thick-billed murres were targeted for capture during both incubation and chick-

rearing periods. Only breeding individuals were selected for behavioural measures to 

ensure the individual would be returning to the same nest ledge. Targeted individuals 

were spaced out on the ledges so as not to overly disturb the sites or allow predators 

(gulls and ravens) an opportunity to take eggs or young. Birds were captured using a 

noose pole. 

Upon capture, blood samples were taken within 3-5 minutes to ensure that 

baseline corticosterone levels could be measured (Romero and Reed 2008). 

Approximately 1.0-2.0 mL of whole blood was taken from the brachial vein using 26-
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gauge needles and heparinized capillary tubes. Blood was kept on ice for up to 8 hours 

and then centrifuged at 10,000 rpm for 10 minutes. Plasma was separated using a 

micropipette, and both the plasma and red-blood cells were stored in a cryo-shipper (-

75˚C) for the duration of the field season. Upon return to the lab, samples were stored in 

a -80˚C freezer. Following blood sampling, each bird was banded on its right leg with a 

numbered Fish and Wildlife Service aluminum band. Wing, tarsus and bill measurements 

were taken (nearest mm) and body mass was recorded (nearest g). Individuals were then 

fitted with a GPS tracking device (either CatTracks, 10 g, 1.1% of body mass or Ecotone 

Ltd., 14 g, 1.5% of body mass). GPS devices were deployed using Tesa tape to attach the 

devices to the feathers on the lower back (Paredes et al. 2005). The GPS units were 

programmed to collect location data every 5 minutes and to turn off when at the colony 

(near an Ecotone base station). Birds were then marked on their chests with colored 

permanent marker to increase the ease of recapture. After 2-9 days from the initial 

deployment, returning birds were recaptured, blood sampled within 3-5 minutes, and GPS 

devices were removed and body mass was re-measured. 

Laboratory Assays 

For the measurement of baseline corticosterone (CORT), plasma samples were extracted 

prior to assay (Guindre-Parker et al. 2012). Tubes containing 20 uL of plasma, 1 mL of 

distilled water and 5 mL of dichloromethane were vortexed and then left to separate for 

two hours. The dichloromethane phase was removed into scintillation vials and left in a 

fume hood to evaporate. Samples were rehydrated with assay buffer and vortexed for 30 

seconds to reconstitute the sample. Samples were assayed in triplicate at a dilution of 

1:40 using a previously optimized protocol for seabirds (see Hennin et al. 2015) using a 
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commercial EIA kit (Assay Designs Inc.). All samples were run with a control to obtain 

coefficients of variation for intra- and inter-assay (plate) variation (2015: intra = 4.99%, 

inter = 8.52%, 2014: intra = 5.16%, inter 3.88%). Triglycerides (TRIG) and free glycerol 

were measured in duplicate with a commercially available kit (TRIG; #TR0100-1KT; 

Sigma Aldrich, USA; Williams et al. 2007). Each plate was run with a laying hen control 

plasma (Sigma-Aldrich, USA) and a standard curve of the kit-provided glycerol standard 

(Hennin et al. 2015) where the difference in total and free glycerol provides the total 

TRIG concentration (mmol L-1). All samples were run with a control to later obtain 

coefficients of variation for intra- and inter-assay (plate) variation (2015: intra = 2.94%, 

inter = 2.48%, 2014: intra = 3.27%, inter 3.30%). Beta-hydroxybutyrate (BOH) was 

measured by kinetic assay (SIGMA, Guglielmo et al. 2013). Samples were run in 

triplicate by reacting eleven microliters of standard or plasma sample with two 

microliters of BOH-butyrate dehydrogenase reagent and reagent buffer. The absorbance 

was then monitored by spectrophotometer. Coefficients of variation for intra- and inter-

assay (plate) variation were 2015: intra = 4.96%, inter = 5.12% and 2014: intra = 4.06%, 

inter 3.50%. Non-esterified fatty acids (NEFA) were measured using a commercial assay 

kit (Wako NEFA-HR(2)) (Smith et al. 2007; Jeanniard du Dot et al. 2009). Samples were 

run in duplicate by reacting five microliters of plasma with acyl-CoA synthetase along 

with adenosine triphosphate and CoA to form acyl-CoA. This product is then oxidized 

and condensed to form a purple end product with maximum absorbance at 550 nm. 

Absorbance of the final solution is measured at 550 nm by spectrophotometer to obtain 

NEFA concentration. Coefficients of variation for intra- and inter-assay (plate) variation 

were 2015: intra = 3.34%, inter = 3.88% and 2014: intra = 2.97%, inter 4.13%).  
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Data Analysis 

Spatial analysis of GPS tracking data provided the metrics of foraging distance and effort 

used for analyses. Tracking data from each device was analyzed in R v4.1.2 to extract 

variables for the foraging period (maximum distance from the colony, daily average 

distance, total distance, average trip distance, number of trips, and the percent time 

flying, on water and at the colony). Any trip greater than one kilometer from the colony 

was considered an individual foraging trip. All distances were calculated using 

the Haversine formula (WGS-84 ellipsoid) from the R package "geosphere" and the 

distHaversine function. Activity budgets of birds (percent time flying, on water or at 

the colony) were calculated based on flight speed and presence of GPS at the colony. 

Birds travelling at over 4 m/s (14.4 km/h) were considered flying, while birds away from 

the colony moving under this speed were considered on the water (diving or drifting on 

the surface). GPS data were quality checked by removing all sets of tracks that did not 

include data from at least 50% of the duration the GPS unit was deployed (4 of 63 tracks 

removed from 2014). Each GPS deployment included one or more individual foraging 

trips, and changes in body mass or physiology over a foraging trip were calculated as the 

pre-deployment sample subtracted from the post-deployment sample (i.e., a positive 

change in a trait indicates the level of that trait increased from the first to the second 

measurement). 

Daily energetic expenditure was calculated from the activity budgets using values 

calculated in Elliott et al. (2013a). These values (energetic expenditure in flight = 533 

kJ/hr, on water = 99 kJ/hr, at nest = 32 kJ/hr) are calculated based on energetic 

measurements using doubly-labelled water and miniature accelerometers attached to 
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thick-billed murres (Elliott et al. 2013a). Percent time activity budgets can be converted 

to daily energetic expenditure for the duration of GPS deployment based on these values 

(Gaston et al. 2013).  

Principle component analysis was conducted on foraging behaviour data to 

condense multiple variables into more concise, biologically meaningful variables. 

Foraging behaviour data (maximum trip distance, average daily distance, trips per day, 

mean trip distance, and mean trip duration) were normalized via log-transformation prior 

to the principal component analysis. The analysis resulted in two eigenvalues over 1.0 

and to simplify interpretation, we conducted a factor analysis using a Varimax rotation 

for two principle factors (Table 3.1, Abdi 2003). The number of trips per day (negative 

loading) and the mean distance per trip (positive loading) both load heavily onto Factor 1 

and maximum foraging distance and mean trip duration also positively loaded on Factor 

1. Average daily foraging distance (positive loading), but also maximum foraging 

distance (positive loading, slightly stronger than in factor 1) loaded onto Factor 2. Based 

on these loadings, we considered factor 1 to represent foraging strategy with larger values 

corresponding to trips of longer distance and duration, with lower frequency. For the 

remainder of our analyses, PC factor 1 was used in place of trips per day, mean trip 

distance, mean trip duration and maximum trip distance, and is hereafter termed 

“foraging strategy PC”. Since PC factor 2 was dominated by average daily foraging 

distance, we used average daily foraging distance independently to represent overall 

foraging effort.  

We began our analyses at a broad population level to first examine impacts of 

between-year ice conditions on biomarker metrics, and then focused in at the individual 
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and within-individual level to determine the relevance of using individual-based metrics 

to predict variation in foraging behaviour/effort. To compare the two climactic years, we 

ran comparisons of foraging behaviour and baseline physiology values across the years 

within each breeding stage (incubation or chick-rearing). We took this approach because 

murres are known to behave differently across these two breeding stages (Croll et al. 

1991; Gaston and Hipfner 2006) and therefore it was important to assess whether our 

chosen biomarkers were more sensitive to changes in ice conditions within a given stage. 

All analyses were completed on raw data, except those for baseline CORT, TRIG, BOH, 

and NEFA in both stages, and foraging strategy PC during chick-rearing performed on 

log-transformed data. We used t-tests except for comparisons of NEFA and average daily 

distance during incubation, which were Wilcoxon/ Kruskal-Wallis tests for non-

parametric data. We controlled for false discovery rate (Benjamini and Hochberg 1995) 

using the classical one-stage method (Pike 2011) for the series of analyses on multiple 

traits. We used a maximum false discovery rate (d) of 0.05 on our p-values, and separated 

these false discovery rate calculations by our two breeding stages (e.g., Madliger and 

Love 2016). We calculated FDR-adjusted p-values (q-values) as per Pike (2011) 

(Benjamini and Hochberg 1995; Benjamini and Hochberg 2000; Benjamini et al. 2006). 

All population level analyses and the principal component analysis were completed in 

JMP 12. 

To assess which physiological metric(s) best predicted foraging behaviour and 

effort at the individual level, we examined the relationship between foraging behaviour 

and physiological traits from both the post-foraging sample as well as the change in a 

given trait across the foraging trip. Growing evidence indicates that changes in 
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physiology over key time periods may better predict fitness and behavioural outcomes 

compared to single-point measures and it was therefore important to assess which type of 

metric may be most useful at reflecting broad-scale environmental differences. 

Specifically, we ran a series of linear mixed effects models in R to examine relationships 

between our two foraging metrics (foraging strategy PC and average daily distance) and 

our four physiological metrics (CORT, TRIG, BOH, NEFA). As outlined previously, we 

separated our analyses by breeding stage to take into account the specific physiological 

challenges expected to be associated with the energetic demand of each life-history stage. 

Year was included in all models as a random effect and each model was estimated using 

maximum likelihood (Zuur et al. 2009). We compared models within breeding stages and 

foraging metrics using AICc (Akaike's Information Criterion adjusted for small sample 

size) obtained from the R package AICcmodavg. We also calculated the weight of each 

model to compare their relative strength (Burnham et al. 2011). All models within 2 AIC 

units of the top model were considered competitive (Burnham and Anderson 2010; 

Girard et al. 2014).  

 

Results 

Inter-Annual Differences in Sea Ice 

The extent of sea ice in a 300-kilometer span of our study site was significantly less in 

2014 compared to 2015 (means: 2014: 11.47%, 2015: 26.00%; paired t-test: t-ratio = 

9.12, p < 0.0001, Figure 3.3). Historically (e.g., 1971-1985) ice extent in the Hudson Bay 

region during the murre breeding period remained fairly consistent at approximately 25% 
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(Gaston et al. 2005, Figure 3.2). However, Gaston et al. (2005) demonstrate the ice 

decline over the two decades following this period (e.g., 1986-2003) and this decrease 

has continued (Figure 3.2) to recently hit historic lows (Post et al. 2013; National Snow 

& Ice Data Center 2016). Therefore, our two study years essentially spanned from the 

contemporary norm of climate-change induced ice-cover (11.47% in 2014) to the 

historical norm of ice cover (26.00% in 2015). 

Sensitivity of Biomarkers to Inter-Annual Variation in Ice Conditions 

Foraging strategy PC was lower in the low ice year (2014) during incubation, but not 

chick-rearing (Table 3.2), indicating that birds undertook more short-distance trips during 

incubation in the low ice year (2014). Interestingly however, the average daily distance 

travelled (i.e., average effort) did not differ between ice conditions (Table 3.2). Estimated 

daily energetic expenditure (eDEE) also did not differ between years and breeding stages 

(Table 3.2). Average daily distance travelled and the estimated daily energetic 

expenditure were strongly correlated (R2= 0.72) due to the fact that total distance 

travelled during GPS deployment should be strongly related to the percent of time spent 

flying (the behaviour that most greatly influences eDEE). Baseline CORT levels were 

higher in the low ice year (2014) across both breeding stages (Table 3.2), while NEFA 

levels were higher in the low ice year (2014) during incubation (Table 3.2). However, 

plasma TRIG and BOH levels did not differ between ice conditions in either stage (Table 

3.2). Effects on body mass were complex, where mass before the foraging trip during 

incubation (but not chick-rearing) was significantly higher in the low ice year (2015) 

(Table 3.2), although birds lost more body mass during chick-rearing in the low ice year 

(2014) (Table 3.2).  
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Predicting Foraging Behaviour with Physiology 

Three models were identified as plausible in explaining variation in foraging strategy PC 

during the chick-rearing stage: plasma TRIG, change in NEFA and change in body mass 

(Table 3.3). Essentially, during chick-rearing, lower levels of plasma TRIG, higher 

NEFA and greater body mass loss were associated with fewer foraging trips per day and 

greater mean trip distances, mean trip durations, and maximum trip distances (TRIG: β=-

0.65, SE=0.32; NEFA : β=0.50, SE=0.25; change in body mass: β=0.0039, SE=0.0028). 

Two models were effective at explaining variation in average daily distance during chick-

rearing: change in CORT (w = 0.32) and NEFA (w = 0.27), with greater decreases in 

baseline CORT over the foraging trip and lower NEFA levels at the end of the foraging 

trip being associated with higher average foraging distances (change in baseline CORT: 

β=-1.99, SE=1.35; NEFA: β=-33.12, SE=14.39). However, no metrics were predictive of 

foraging behaviour during incubation, with the best supported model being the null 

model for both foraging metrics (foraging strategy PC and average daily distance, Table 

3.3). 

 

Discussion 

We took advantage of an ideal ‘natural experiment’ in ice-cover variation to assess the 

relative sensitivity of multiple energetically-related behavioural and physiological 

biomarkers in an ice-dependent, Arctic-breeding species, the thick-billed murre. Our two 

study years spanned from the historical norm of ice cover (26.00% in 2015) to the current 

norm of climate-change induced ice-cover (11.47% in 2014). We found that birds altered 

both behavioural and physiological traits in response to the observed variation in ice 
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conditions. On the surface, behavioural results initially suggest that birds faced fewer 

foraging costs in the low ice year: they had shorter maximum foraging distances, shorter 

mean trip distances and shorter mean trip durations. However, birds also undertook more 

foraging trips per day in low ice conditions resulting in the same average daily foraging 

distance across years and the same eDEE, both strong measures of mean foraging effort. 

Moreover, pairing these results with physiological metrics revealed apparent foraging 

costs within the low ice year (2014) compared to a historically normal ice year (2015): 

chick-rearing birds had higher baseline CORT and NEFA levels and lost significantly 

more body mass during foraging in the low ice year, all of which are considered robust 

indicators of higher energy usage during foraging (see Introduction). Despite these 

apparent short-term costs, birds appeared to be able to maintain resource intake given that 

we did not detect any year differences in either plasma TRIG or BOH. Our results further 

indicated that changes in foraging strategy during the low ice year had mixed effects on 

the energetic condition of individuals, though increased foraging effort related to better 

energetic condition. Taken together our work suggests that, compared to ‘normal’ 

historical ice conditions (as seen in 2015) thick-billed murres have presumably evolved in 

conjunction with, this species shows evidence of physiological costs in response to low-

ice conditions despite individuals attempting to maintain a consistent daily energy 

expenditure and resource intake across very different environmental conditions. 

Relevance of Biomarker Variation in Relation to Ice Conditions 

The large difference we observed in ice conditions were reflected in a number of 

physiological traits. First, baseline CORT was higher in the low ice year (2014) across 

both breeding stages which we interpret as greater energetic demand in the year with 
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lower ice concentration (Angelier et al. 2008). Elevated baseline corticosterone levels 

have been directly related to lower food availability and quality (Kitaysky et al. 1999; 

Kitaysky et al. 2001; Kitaysky et al. 2007) and used as a proxy for food availability in 

thick-billed murres and other related auk species (Benowitz-Fredericks et al. 2008). 

Elevated levels are also found in individuals working harder during reproduction to 

maintain overall effort or performance in the face of environmental change (Love et al. 

2014; Madliger et al. 2015; Rivers et al. 2016). Therefore, elevated baseline CORT in 

murres is expected to indicate lower food availability or greater overall energetic demand 

in the year with lower ice concentration. Indeed, Gaston and Hipfner (1998) found both 

Arctic cod (Arctogadus glacialis) and capelin (Mallotus villosus) in the diet of murre 

chicks to be positively related to ice extent, providing further evidence that food 

availability was lower in the low ice year. Earlier sea ice breakup over the last several 

decades has changed fish communities (Gaston et al. 2003; Gaston et al. 2005), and our 

results indicate these shifts are possibly negative for murres during warmer, more ice-free 

years. In support of our interpretation for baseline CORT, we also observed higher mean 

NEFA levels during chick-rearing in the year with low ice concentration. Elevated NEFA 

in the blood indicates a negative energy balance (Williams and Buck 2010), suggesting 

the higher NEFA levels observed in the low ice year are indicative that murres were 

working harder energetically, or not feeding enough for a given behaviour level. Murres 

also lost more mass over foraging trips during chick-rearing in the low ice year, though 

mean mass was greater during this period, possibly because the long foraging trips in the 

high ice year are less with reducing wing-loading (Croll et al. 1991).  
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 Plasma TRIG and BOH did not differ across years in response to variation in ice 

conditions suggesting that murres were able to meet their resource demands during 

foraging. However, combined with the other physiological traits these results indicate 

that while murres were able to find similar quality food resources across ice conditions 

(i.e., similar TRIG/BOH levels between 2014/2015, Seaman et al. 2006), birds were 

working harder to find those resources (i.e., higher CORT/NEFA levels and greater mass 

loss) in the low ice year. As such, combining information on energy intake (i.e., TRIG 

and BOH) with energy use (i.e., CORT and NEFA) provides a much more accurate and 

global picture of how ice extent impacts this species. These integrated results underscore 

the importance of combining multiple, carefully-chosen physiological parameters when 

evaluating the influence of environmental change (Madliger and Love 2015). Similarly, 

ice-related changes in behaviour are also difficult to interpret in isolation. Shifts during 

the low ice year to a foraging strategy of frequent, shorter trips does not necessarily 

reveal costs or challenges that individuals or species may be facing (Paredes et al. 2014), 

and lack of difference in average daily foraging and eDEE appear to indicate that birds 

are maintaining their overall energy use in the face of ice variation although potentially 

paying an underlying physiological costs (elevated CORT and NEFA) to do so. 

Ultimately, working harder but maintaining energy intake appears to have resulted in a 

greater mass loss during foraging attempts in the low ice year. A greater mass loss, while 

not always considered negative (adaptive mass loss hypothesis) is nonetheless consistent 

with lowered success and poorer fitness outcomes in seabirds (Wendeln and Becker 

1999; Chapter 2).  
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Foraging Flexibility Involves Physiological Costs 

Models relating physiological traits with foraging behaviour are important for helping to 

interpret whether the year differences in foraging behaviour patterns we observed 

indicate whether birds were working harder under low ice conditions. During chick-

rearing, individuals making longer foraging trips had lower TRIG levels after foraging, 

and more positive increases in NEFA and body mass across the  foraging trip, indicating 

a complicated relationship between variation in foraging strategy (i.e., short vs. long 

trips) and associated energetic payoffs. Plasma TRIG and NEFA levels could relate to 

differences in the energetic demand that each strategy requires - long trips require more 

energy, while less mass loss with longer trips may relate to birds spending more time 

feeding for their own self-maintenance (Weimerskirch 1998). Average daily distance 

(foraging effort) was negatively related to both the change in CORT and NEFA (i.e., 

greater distances equated to a larger reduction in both CORT and NEFA) indicating that 

birds putting more effort into their daily foraging appeared to gain a benefit (i.e., they 

were in a better energetic state).  

Our behavioural work suggests that the foraging strategy of thick-billed murres 

appears to be highly flexible in response to changing ice conditions and that this 

flexibility may have evolved to maintain the overall effort individuals are investing in 

foraging (i.e., mean daily trip distance and eDEE did not differ across years). Across ice 

conditions, birds altered the frequency, distance and duration of individual foraging trips, 

as well as the maximum foraging distance. Common murre (Uria algae) foraging 

behaviour has also been shown to be flexible in response to food availability, with the 

apparent ‘goal’ of maintaining chick-feeding rates (Harding et al. 2007). In fact, 
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flexibility in trip length (alternate long and short foraging trips) is well known in several 

Procellariiform species (tubenose seabirds) when foraging areas near the colony are 

depleted (Chaurand and Weimerskirch 1994; Weimerskirch et al. 1994; Welcker et al. 

2009a). Other northern ocean seabird species have been shown to respond to altered food 

conditions surrounding the colony by changing their foraging behaviour (common murre; 

Burke and Montevecchi 2009, northern gannet (Sula bassana); Montevecchi et al. 2009), 

using alternating foraging strategies in response to challenging conditions (little auk (Alle 

alle); Welcker et al. 2009a), or varying their foraging strategies based on local 

environmental cues (razorbills (Alca torca); Shoji et al. 2014). Marine prey sources are 

constantly fluctuating spatially and temporally, which has given rise to a diversity of 

foraging strategies between and within species (Weimerskirch 2007). However, despite 

the well-documented flexibility in the foraging strategies of seabirds to this 

environmental heterogeneity, few studies have been able to focus on measuring potential 

costs associated with different behaviours. Our results indicate that variation in the 

foraging strategy has mixed energetic or state-dependent costs that are not apparent from 

examining measures of behaviour alone. Our estimated daily energetic expenditure 

metric also showed no differences between years at either breeding stage, indicating that 

thick-billed murres appear to regulate their overall level of effort, despite variation in 

conditions they face during breeding. Food availability and DEE relate oppositely in two 

studies on kittiwakes (Kitaysky et al. 2000; Jodice et al. 2006), and Welcker et al. 

(2009b) explain two hypotheses for these mixed results: low food availability forces 

higher energetic expenditure due to increased foraging effort, or high food availability 

enables increased energy towards breeding, self-maintenance, or foraging. The high 
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levels of CORT and NEFA in our low ice year potentially indicate low food supply, yet 

the consistent eDEE levels between years indicates both hypotheses may apply within the 

same species.   

 While physiology and state-dependent variables such as body condition can 

indicate some of the costs of differing foraging strategies and environmental variation, 

the ultimate measure of these potential costs is fitness at the individual level, which 

eventually impacts population size and productivity. CORT has received the most 

attention in seabirds, and studies have connected behaviour, CORT levels, and measures 

of fitness (for review see Chapter 2). Nonetheless, more work is needed in connecting 

physiology, behaviour and fitness, especially in relation to environmental variation.  

Relevance of Findings to Future Work 

While physiology and state-dependent variables such as body condition can indicate 

some of the costs of differing foraging strategies and environmental variation, the 

ultimate measure of these potential costs is fitness at the individual level, which 

eventually impacts population size and productivity. Baseline CORT and NEFA both 

varied at the population level in response to environmental variation and also at the 

individual level in response to foraging effort and behaviour. A strong biomarker should 

relate to environmental quality (Madliger et al. 2015), and to success of individuals and 

the population (Cooke and O’Connor 2010). CORT has received the most attention in 

seabirds, and studies have connected behaviour, CORT levels, and measures of fitness 

(for review see Chapter 2). Nonetheless, more work is needed in connecting physiology, 

behaviour and fitness, especially in relation to environmental variation. Further work to 
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relate NEFA levels to reproductive success at the individual or population level would 

increase its strength as a physiological biomarker.  

 The results also indicate that the change in a physiological trait over time is 

needed to predict some of the foraging relationships. Collecting this data is more 

challenging because it requires capturing the animal twice, which has implications for the 

ease of collecting this sort of data. However, our results suggest the strengths of repeated 

measures compared to single time point measures. For example, CORT has been shown 

to change predictably with foraging behaviour (Angelier et al. 2008), showing the 

potential for the change in a physiological trait to provide more information about the 

foraging trip or the environment experienced (Dingemanse et al. 2010). Scaling this 

information on the flexibility of traits up to the population level is also important towards 

recognizing how a population will fair under environmental change (Madliger and Love 

2014).  

 We found stage-specific trends in our data, both when comparing between year 

differences and in foraging behaviour and physiology relationships. Stage specific 

differences have been observed previously in physiological data (e.g., Lanctot et al. 

2003), and are very important to consider when using physiology as a biomarker 

(Madliger and Love 2014). CORT differed consistently between years in both breeding 

stages, while foraging strategy PC only differed during incubation and NEFA, mass, and 

mass change only differed during chick-rearing. We are unable to draw conclusions about 

relationships between physiology and foraging behaviour during incubation because our 

null model was the strongest. Further work to test if relationships are tighter during 
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chick-rearing will help establish the importance of timing in measuring certain 

biomarkers.  

 The relative strength of biomarkers is most important when considering use, 

however the ease of use and cost of different biomarkers is also important to consider. 

Measuring baseline CORT for example can be challenging in some species due to the 

rapid increase in stress-induced levels after 3 minutes of capture (Romero and Reed 

2005). Other physiological measures are less sensitive to the bleed time, making them 

potentially better suited for hard-to-capture study species. Assay or device cost is also 

necessary to consider to effectively use research resources, for example physiological 

assays range in cost per sample (CORT $17.50 CAD, TRIG $3.75, BOH $1.68, NEFA 

$3.26) which may be important in choosing a practical biomarker. Finally, as our results 

demonstrated, integrating techniques and multiple biomarkers is necessary to capture the 

entirety of responses to the environment.  

Conclusions 

Our results demonstrate the impacts warming and changing Arctic temperatures can have 

on polar-breeding species. Negative effects of environmental warming and ice loss are 

not new discoveries in the Arctic, however, the mechanisms we use to document these 

effects are important for future work. While behaviour alone has appeal to researchers as 

a simple metric to relate environmental variation to the success of individuals, our study 

demonstrates that behaviour may not reveal all the costs experienced by changing 

environments. Sensitive physiological traits (CORT, NEFA, mass change) provide 

information on the costs of different behavioural decisions, and reveal challenges from 



 

86 

 

large-scale environmental variation furthering support for these traits as strong 

environmental biomarkers. 
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Tables 

Table 3.1 - Rotated factor loading from foraging behaviour principal component analysis. 

 Factor 1 Factor 2 

Log10 Maximum Distance 0.605 0.648 

Log10 Average Daily 

Distance 

0.025 0.986 

Log10 Trips/ Day -0.980 0.125 

Log10 Mean Distance/ Trip 0.822 0.528 

Log10 Mean Trip Duration 0.575 0.387 
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Table 3.2 - Trait means (+/- SE) and sample size (N) for each year and test statistics (t/Z, q-value, DF) between years for both 

breeding stages (incubation and chick-rearing). All statistics based on raw data, except statistics for CORT, TRIG, BOH, and NEFA in 

both stages, and foraging strategy PC during chick-rearing performed on log-transformed data. NEFA and average daily distance 

during incubation are from Kruskal-Wallis test. Q-values represent false discovery rate-adjusted p-values. 

Stage Incubation 

Year 2014 2015 Stats 

Value Mean +/- SE N Mean +/- SE N T/ Z 
q-

value DF 

CORT (ng/mL)* 9.57+/-1.05 28 5.62+/-0.64 44 -3.241 0.013 57.463 

CORT change  (ng/mL) 0.05+/-1.48 18 2.9+/-1.36 26 1.414 0.239 39.022 

TRIG (mmol/L) 0.74+/-0.06 27 0.88+/-0.05 48 1.900 0.165 46.587 

Trig change (mmol/L) -0.19+/-0.09 18 -0.13+/-0.08 26 0.533 0.777 35.819 

BOH (mmol/L) 1.09+/-0.08 26 1.17+/-0.09 46 0.233 0.885 59.136 

BOH change (mmol/L) 0.18+/-0.13 18 0.66+/-0.17 26 2.240 0.119 41.628 

NEFA (mmol/L) 0.72+/-0.07 27 0.56+/-0.04 45 1.681 0.201 
 NEFA change (mmol/L) -0.02+/-0.1 17 0.2+/-0.09 25 1.637 0.201 37.267 

Mass (g) 1003.53+/-9.8 34 977.55+/-7.23 53 -2.134 0.119 66.225 

Mass change (g) -43.5+/-17.4 20 -42.1+/-9.93 31 0.070 0.945 31.282 
Average Daily Distance 
(km) 150.29+/-12.78 21 142.75+/-8.46 22 0.316 0.885 

 DEE (kJ/day) 2480.8+/-103.29 21 2692.37+/-86.22 22 1.572 0.201 39.376 

ForagingStrat PC1* 0.34+/-0.13 21 1.13+/-0.18 22 3.537 0.013 37.056 
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Stage Chick-rearing 

Year 2014 2015 Stats 

Value Mean +/- SE N Mean +/- SE N T-test 
q-

value DF 

CORT (ng/mL)* 10.31+/-0.93 55 5.67+/-0.71 69 -5.150 0.0013 121.400 

CORT change  (ng/mL) 5.3+/-1.84 18 1.67+/-0.9 39 -1.770 0.192 25.519 

TRIG (mmol/L) 0.94+/-0.06 54 1.02+/-0.05 68 1.442 0.282 106.922 

Trig change (mmol/L) -0.12+/-0.19 15 -0.31+/-0.08 39 -0.894 0.497 19.106 

BOH (mmol/L) 1.52+/-0.1 55 1.65+/-0.1 67 1.370 0.282 101.985 

BOH change (mmol/L) 0.01+/-0.27 16 0.13+/-0.18 36 0.357 0.724 29.122 

NEFA (mmol/L)* 0.74+/-0.04 55 0.57+/-0.04 57 -3.062 0.012 108.633 

NEFA change (mmol/L) 0.28+/-0.14 17 0.16+/-0.08 35 -0.783 0.521 26.292 

Mass (g)* 975.64+/-8.92 55 942.3+/-7.88 74 -2.801 0.020 117.991 

Mass change (g)* -86.11+/-7.79 18 -45.75+/-9.51 40 3.284 0.012 53.554 
Average Daily Distance 
(km) 154.57+/-7.51 37 150.7+/-7.29 47 -0.370 0.724 80.118 

DEE (kJ/day) 2613.04+/-87.36 37 2760.75+/-75.63 47 1.278 0.296 76.538 

ForagingStrat PC1 -0.59+/-0.1 37 -0.21+/-0.15 47 2.122 0.096 77.031 
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Table 3.3 - Results of multiple AICc analyses of models relating physiological measures 

to foraging behaviour. Each null model had one parameter, regular models had 2. Values 

presented are the AICc, the difference in AICc, model weight (w), evidence ratios (ER), 

and conditional R2 values. 

Group Model AICc ΔAICc w ER R2 (cond.) 

       Incubation 

      Foraging Strategy null (1|Year) 50.54 0.00 0.29 1.00 0.20 

 

chNEFA 52.29 1.75 0.12 2.40 0.25 

 

chTRIG 52.52 1.98 0.11 2.69 0.21 

       Average Daily Distance null (1|Year) 226.31 0.00 0.27 1.00 0.00 

 

NEFA 227.24 0.93 0.17 1.59 0.11 

 

CORT 228.19 1.88 0.10 2.56 0.07 

Chick-rearing 

      Foraging Strategy TRIG 87.00 0.00 0.27 1.00 0.11 

 

chNEFA 87.23 0.23 0.24 0.89 0.11 

 

chMass 88.98 1.98 0.10 0.37 0.06 

       Average Daily Distance chCORT 350.02 0.00 0.32 1.00 0.15 

 NEFA 350.40 0.38 0.27 1.21 0.14 
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Figures 

 

Figure 3.1 - Inter-annual variation in ice conditions during the height of incubation at the 

murre colony at Digges Island, Nunavik, Canada (2014 - July 15; 2015 - July 13). 
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Figure 3.2 - Ice cover variation in Hudson Bay, Canada on July 16 from 1971-2016. Data 

from Canadian Ice Service, partially based on figure from Gaston et al. (2005). Current 

study years of 2014 (red) and 2015 (blue) are shown specifically. 
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Figure 3.3 - Significant inter-annual differences in ice conditions during the early 

breeding period (i.e., incubation) of thick-billed murres breeding at Digges Island, 

Nunavik, Canada (2014: red; 2015: blue). 
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CHAPTER 4  

General Discussion 

In our rapidly changing world, strong biomarkers that indicate population fitness and 

reflect environmental change are increasingly sought-after, making verification of the 

effectiveness of these biomarkers an important area of study. In this thesis, my overall 

goal was to assess the effectiveness of several potential physiological and behavioural 

biomarkers across multiple biological scales. To do so, I first investigated whether a 

commonly-used individual metric (baseline levels of the glucocorticoid, corticosterone - 

CORT) correlates with fitness-related traits by reviewing current literature across 

seabirds that attempts to link CORT to fitness and environmental variation. I then used a 

model seabird study system – the thick-billed murre (Uria lomvia) – to assess several 

individual metrics for their relative strength as biomarkers across environmental variation 

and biological scales (population, between individual, and within individual). Combined, 

the results of these two chapters provide strong evidence of the relative effectiveness of 

several individual physiological metrics proposed as biomarkers. Importantly, these 

results were consistent across environmental contexts, fitness metrics, and species. While 

previous studies have supported the use of CORT as a biomarker in marine systems 

(Kitaysky et al. 2007) and have demonstrated the use of seabirds as environmental 

indicators (Piatt et al. 2007a), my thesis specifically tests these ideas by: 1) validating the 

use of a CORT as a biomarker of fitness and broad environmental quality across seabird 

species, and 2) integrating multiple physiological traits and behaviour to determine the 

most effective metrics of environmental change in a model study system. 
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Baseline Corticosterone as a Biomarker for Fitness Variation in Seabirds 

Baseline corticosterone is widely used in seabird research as a means to estimate 

environmental variation and attempt to predict fitness outcomes. While one review has 

examined these links in vertebrates in general (Bonier et al. 2009), no review in this field 

has been conducted to test the validity of these assumptions in long-lived, declining 

seabirds. Seabirds rely on relatively large areas of ocean, and thus in a time of rapid 

climate change, are very useful bio-indicator species of entire marine environments 

(Frederiksen et al. 2007; Piatt et al. 2007b), making the validation of CORT as a 

biomarker timely in this avian group. My systematic review and meta-analysis of the 

seabird literature revealed that CORT levels do not predict foraging effort, nesting effort 

or body condition. However, strong relationships existed between baseline CORT and 

both food availability and reproductive success, indicating the potential for CORT to 

serve as a robust biomarker of environmental quality and fitness for seabirds. An 

important future step towards conservation efforts is being able to scale individual CORT 

levels up to the population by using longer-term studies relating population baseline 

CORT to predict one or multi-year changes in demography (e.g., survival, reproductive 

output, population growth/decline). Although the data necessary to examine this 

relationship requires a full year of demography and physiology data to produce a single 

data point, accounting for delays between elevated baseline CORT and population 

changes may require at least several years of collected data per data point. Nonetheless, 

continuing long-term studies that both measure CORT and estimate population 

demography will enable conservation physiologists to examine these relationships for 

seabirds, and perhaps even within other at-risk taxonomic groups. Seabird colonies will 
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likely remain as research priorities as they are perfect systems for the study of broad-

scale climate change, meaning these investigations are likely to continue into the future.  

Behavioural and Physiological Biomarkers of Environmental Variation in Murres 

Thick-billed murre populations are in decline globally (Gaston et al. 2012; Descamps et 

al. 2013; Merkel et al. 2014) as a result of changing oceanic patterns and ice 

concentration (Descamps et al. 2013). However, we are in need of tools to more rapidly 

assess the disturbance level and health of birds and colonies in cases where population 

demography is too slow to respond. To examine these issues, my second data chapter 

took advantage of a natural climate experiment to examine environmental impacts on the 

physiological and behavioural phenotype of ice-dependent thick-billed murres breeding 

within Digges Sound, Nunavut/Nunavik. Comparison across two years with differing sea 

ice conditions and across biological scales served two purposes: i) to measure the effects 

of changing ocean patterns on a widespread Arctic species, and ii) to test the relative 

effectiveness of multiple individual physiological and behavioural metrics as biomarkers 

of change or challenging environments. It is not uncommon for studies to link single 

metrics to environmental variation, but the strength of my study lies in the comparison of 

a range of important traits within the same individuals, population and study years. 

In terms of ice coverage during the breeding period, the two study years ranged 

from the historic norm (20-25% seen in 2015) to very low (5-10% seen in 2014), which is 

now becoming more and more common for these populations. The low ice year was 

characterized by foraging strategies involving shorter and more frequent foraging trips, 

yet average daily foraging distance and daily energetic expenditure were maintained 

across ice conditions. Plasma baseline CORT and non-esterified fatty acids (NEFA) were 
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both higher in the low ice year, indicating higher energetic demand (CORT) and 

increased exercise level or fasting (NEFA), but this apparent cost came at the benefit of 

maintaining resource intake (year-consistent values of both plasma TRIG and BOH). 

Combined, the results of my second chapter indicate that low ice years likely represent 

more challenging conditions and suggest that foraging behaviour, CORT and NEFA are 

all sensitive enough biomarkers at the population level to highlight mechanistic impacts 

of environmental variation.  

Relevance of these Results for Seabird Conservation  

Taken together, my thesis highlights the strength of using energetic physiology (e.g., 

baseline CORT, NEFA, TRIG and BOH) as biomarkers of environmental and possibly 

fitness-related variation. Combining the information from the meta-analysis that baseline 

CORT can represent a biomarker of food availability and reproductive success with the 

between year differences in CORT seen in my single species chapter may indicate that 

significant reductions in food availability and reproductive success occur in low ice 

years. Overall, my thesis supports the premise that baseline CORT measures can connect 

large-scale environmental variation to fitness-related traits. Measures of CORT from a 

few years in a population may therefore be able to indicate which years or conditions 

were more challenging for birds, and suggest population health. NEFA shows similar 

potential to be a strong biomarker of environmental variation, though investigations 

assessing its ability to predict fitness metrics are yet to be completed. Nonetheless, this 

would be an important avenue to follow given that in my study on murres NEFA 

predicted between-year variation in the environment and related strongly to foraging 

behaviour and effort. This thesis indicates possible challenges of using behaviour alone 
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as a relevant biomarker of environmental change due to the fact that it does not 

necessarily convey the costs an individual is experiencing. Ultimately fitness is the most 

important cost with which a biomarker should correlate in order to predict demography, 

yet measuring fitness and relating biomarkers to demography relies on long-term datasets 

that need at least several years to provide data.    

Future directions 

While baseline CORT has strong support in both my thesis and the literature as a 

biomarker of environmental change and fitness in seabirds, the additional energetic 

physiology (NEFA, TRIG, BOH, body condition) metrics and behavioural (foraging) 

metrics I have measured suggest that individuals may be adjusting in complex ways in 

the face of environmental change in an attempt to maintain performance. Importantly, 

while many behavioural and physiological traits have been related to environmental 

variation (Seaman et al. 2006; Harding et al. 2007b), relationships with fitness have 

rarely been investigated (Hennin et al. 2016) and the current murre chapter is no 

exception (see discussion below). Examining these relationships will be an important 

next step, especially in metrics that already show complex responses to environmental 

variation such as NEFA, TRIG/BOH, and foraging behaviour. While further testing of 

the relationships between single-point physiological or behavioural metrics and fitness 

relationships is important, flexibility in traits should also be considered given that 

flexibility at the individual or population level may be important for examining how well 

species respond to environmental change. This idea of within individual flexibility in 

foraging strategy, hormone regulation, or effort may provide greater insights into why 

certain individuals or populations are more successful under environmental challenges 
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(Williams 2008). Certain responses will have differing effects on fitness, and individuals 

that can respond appropriately may have greater fitness and populations with more of 

these individuals may have increased productivity (Williams 2012). Within my study 

years, foraging strategy varied while foraging effort remained constant, demonstrating 

flexibility in foraging behaviour at the population level (Chapter 3, Table 2). Foraging 

flexibility has been demonstrated among other seabirds (e.g., Welcker et al. 2009), but 

researchers have not yet demonstrated repeatable behaviours that relate to environmental 

variation or ultimately link to variation in fitness. Although trait flexibility among 

individuals can reduce the ability to recognize mean fitness outcomes within a population 

(Dingemanse et al. 2010; Madliger and Love 2014), if the degree of individual flexibility 

predicts fitness outcomes it has the potential to relate to population-level success (Reed et 

al. 2009). Although examining individual flexibility in phenotypic traits in response to 

environmental variability is considered a key step in determining how and why certain 

individuals contribute to population changes (Forsman 2014), and while capturing 

flexibility in phenotypic markers in the same individuals across years was an initial 

central goal of my thesis, my field-work demonstrated the challenges of collecting this 

data. For example, of the several hundred birds captured across my two years of field-

work, only 20 individuals were caught in both years, and only 10 of these had both GPS 

and physiology data. Nonetheless, preliminary data from my murre work suggests that 

both energetic physiology (Figure 4.1) and foraging behaviour (Figure 4.2) has the 

potential to show flexibility at the individual level. While population averages of 

physiology and foraging behaviour either changed or remained constant across years in 

my study, determining whether all individuals changed similarly, or varied in their 
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response across the years, would demonstrate whether i) flexibility within populations 

will enable populations to respond to environmental change (Figure 4.3a), or whether ii) 

certain individuals within the population are expected to succeed over others in the face 

of rapid environmental change (Figure 4.3b).  

Recognizing and testing the expected links between environmental variation, 

biomarkers and fitness across a diversity of taxa with varying life-histories is also 

important as life-history can strongly influence species’ responses to environmental 

change (Catry et al. 2013). For example, both a recent review of the strength of baseline 

CORT-fitness relationships across diverse taxa (Bonier et al. 2009) and my review of 

CORT as a predictor of fitness-related traits in seabirds in Chapter 2 showed mixed 

results, although food availability and reproductive success showed strong relationships 

in my meta-analysis. We would predict that most of the currently-used individual-level 

biomarkers are likely to vary across taxa at the absolute levels of the biomarkers. Even 

more importantly, the relationships with fitness may vary due to differing tolerance for 

change between species (Beaulieu and Costantini 2014), making verification of 

relationships important, especially when studying new families or orders of species. 

Although our original plan for my study of thick-billed murres included quantification of 

fitness metrics (e.g., hatching/fledging success), constraints in the field made this goal 

impossible. Nonetheless, testing the ability of biomarkers to respond to environmental 

variation and then relating the strength of this relationship to variation in fitness is 

necessary to truly validate environmental biomarkers, and drawing conclusions without 

fitness correlates should be done with caution (Madliger and Love 2016).  
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 Seabirds are an important group of species for their role as top marine predators, 

their global distribution, their sensitivity to environmental change, and their widespread 

decline in population numbers. These factors have all contributed to the high rate of study 

of this group, as have the practical aspects of studying seabirds; most are colony breeders 

making them accessible in large numbers and being generally larger birds they are able to 

tolerate handling, sampling, and GPS deployment. While several biomarkers have been 

used individually in seabird species (Harding et al. 2007a; Kitaysky et al. 2007; 

Satterthwaite et al. 2012), my field-work has shown that combining multiple biomarkers 

may make predictions and relationships much stronger. In my work and the recent work 

of others, behaviour appears to relate strongly to environmental variation (Harding et al. 

2007b; Burke and Montevecchi 2009), while physiology may relate to both fitness and 

environmental variation (Satterthwaite et al. 2012). 

 While examining these relationships using correlational approaches is important 

to test the responsiveness of biomarkers to actual environmental variation, experimental 

methods are also needed to confirm causal relationships. Correlational methods may 

provide baseline information on which biomarkers are more sensitive to minor 

environmental changes or predictive of short-term fitness variation. However, 

experimental techniques involving large-scale alteration of the environment an individual 

is experiencing will provide clearer, causal indications of how environmental variation 

ultimately influences biomarkers (i.e., increase hormone level, alter foraging behaviour/ 

effort) and fitness. We were fortunate during my thesis to experience a natural 

environmental experiment enabling us to test biomarkers across contrasting 

environmental conditions. However, these large-scale dichotomous events are of course 



 

111 

 

rare, unpredictable, and hard to capture over short periods of time such as that associated 

with a thesis. An alternative would be to experimentally alter the individual metric used 

as a biomarker and then measure individual fitness to examine the relative strength of a 

given biomarker for linking environmental variation and fitness (i.e., increase CORT 

level and follow an individual’s changes in foraging behaviour and reproduction).  

Conclusions 

My thesis provides a strong framework for validating the use of CORT as a biomarker of 

environmental variation and fitness in seabirds, and provides a thorough foundation for 

validating the power of integrating multiple physiological and behavioural metrics within 

a natural climate experiment. As conservation relies more on rapidly recognizing changes 

in population health, comparative studies employing multiple biomarkers are important to 

verifying sensitive biomarkers that are also practical and cost-effective. Ultimately, our 

long-term goal is to scale individual-level phenotypic responses and resultant variation in 

fitness up to the population level as a predictive tool for estimating the expected 

responses of different species to global change.  
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Figures 

 

Figure 4.1 - Individual flexibility in baseline CORT levels between years for 9 individual 

thick-billed murres (Uria lomvia) during incubation and chick-rearing from Digges 

Sound, Nunavik/Nunavut. 
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Figure 4.2 - Individual average daily distance travelled change between years for 9 

individual thick-billed murres (Uria lomvia) during incubation and chick-rearing from 

Digges Sound, Nunavik/Nunavut. 
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Figure 4.3 - Figures adapted from Madliger and Love (2014) showing (A) 

similar response of all individuals (i.e., population flexibility) to 

environmental change and (B) varied responses of individuals (i.e., individual 

flexibility) to environmental change. 
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APPENDICES 

Appendix 1 - Publishing history (1999-2015) of papers relating baseline CORT to fitness-

related traits in adult seabirds. 
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Appendix 2 - Complete list of references accumulated to generate effect size data for 

meta-analysis on relationship between seabird corticosterone level and fitness-related 

traits. 
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Appendix 3 - Studies and effect size data included in meta-analysis examining whether baseline corticosterone predicts fitness-related 

traits in seabirds from a systematic review of literature. Method: C = correlational; E = experimental. Breeding stage: B = both stages 

together; C = chick-rearing; I = incubation. RES: calculated or extracted correlation coefficient (r) effect sizes. 

Species Trait Description of Trait Method Stage N RES Study 

Black-legged Kittiwake 

(Rissa tridactyla) 

Condition Body condition C B 9 -0.316 (Angelier et al. 2007a) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Reproductive 

success 

Fledged vs lost broods 

(males) 

C B 11 -0.613 (Angelier et al. 2007a) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Reproductive 

success 

Fledged vs lost brood 

(females) 

C B 15 -0.046 (Angelier et al. 2007a) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Condition Mass gain between 

treatments 

E C 32 0.38 (Angelier et al. 2007b) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Effort - 

Foraging 

Time spent flying E C 21 0.186 (Angelier et al. 2007b) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Effort - 

Nesting 

Time spent on nest E C 21 -0.1 (Angelier et al. 2007b) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Reproductive 

success 

Probability of losing 

chick 

E C 41 -0.24 (Angelier et al. 2007b) 

Black-browed Albatross 

(Thalassarche 

melanophrys) 

Condition Individual quality C B 24 0.318 (Angelier et al. 2007c) 
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Black-browed Albatross 

(Thalassarche 

melanophrys) 

Condition Breeding experience C B 36 0.383 (Angelier et al. 2007c) 

Black-browed Albatross 

(Thalassarche 

melanophrys) 

Reproductive 

success 

Fledging success C B 59 -0.34 (Angelier et al. 2007c) 

King Penguin 

(Aptenodytes patagonicus) 

Condition Body condition C C 58 -0.013 (Angelier et al. 2009a) 

King Penguin 

(Aptenodytes patagonicus) 

Effort - 

Foraging 

Handicap experiment E C 58 -0.084 (Angelier et al. 2009a) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Effort - 

Nesting 

Experimental CORT 

increase to nest 

attendance 

E I 36 0.149 (Angelier et al. 2009b) 

Black-browed Albatross 

(Thalassarche 

melanophrys) 

Condition Individual quality 

(males) 

C B 35 -0.545 (Angelier et al. 2010) 

Black-browed Albatross 

(Thalassarche 

melanophrys) 

Condition Individual quality 

(females) 

C B 29 -0.049 (Angelier et al. 2010) 

Common Murre (Uria 

aalge) 

Food 

Availability 

Mean mass of larvae 

(mg)  

C C 110 -0.421 (Barrett et al. 2015) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Condition Body condition index C B 184 -

0.0633 

(Buck et al. 2007) 

Black-legged Kittiwake Reproductive Number of fledglings/ C B 184 - (Buck et al. 2007) 
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(Rissa tridactyla) success nesting attempt 0.8775 

Black-legged Kittiwake 

(Rissa tridactyla) 

Effort - 

Nesting 

Chick-rearing parent 

vs failed parent 

C C 28 0.455 (Chastel et al. 2005) 

Macaroni Penguin 

(Eudyptes chrysolophus) 

Condition Experimental CORT 

increase to mass gain 

E B 15 0.6245 (Crossin et al. 2012) 

Macaroni Penguin 

(Eudyptes chrysolophus) 

Effort - 

Foraging 

Experimental CORT 

increase to total dives 

E B 15 0.5656

85 

(Crossin et al. 2012) 

Macaroni Penguin 

(Eudyptes chrysolophus) 

Effort - 

Foraging 

Experimental CORT 

increase to dive depth 

E B 15 0.5656

85 

(Crossin et al. 2012) 

Macaroni Penguin 

(Eudyptes chrysolophus) 

Effort - 

Foraging 

Experimental CORT 

increase to dive 

duration 

E B 15 0.6 (Crossin et al. 2012) 

Macaroni Penguin 

(Eudyptes chrysolophus) 

Effort - 

Foraging 

Experimental CORT 

increase to prey 

wiggles 

E B 17 0.336 (Crossin et al. 2012) 

Macaroni Penguin 

(Eudyptes chrysolophus) 

Reproductive 

success 

Experimental CORT 

increase to chick mass  

E B 15 0.6557

44 

(Crossin et al. 2012) 

Southern Giant Petrel 

(Macronectes giganteus) 

Reproductive 

success 

Failed vs still chick-

rearing birds 

C B 23 0.123 (Crossin et al. 2013) 

Southern Giant Petrel 

(Macronectes giganteus) 

Reproductive 

success 

Failed vs still chick-

rearing birds 

C B 19 -0.012 (Crossin et al. 2013) 

Northern Giant Petrel 

(Macronectes halli) 

Reproductive 

success 

Failed vs still chick-

rearing birds 

C B 17 -0.308 (Crossin et al. 2013) 
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Northern Giant Petrel 

(Macronectes halli) 

Reproductive 

success 

Failed vs still chick-

rearing birds 

C B 23 -0.056 (Crossin et al. 2013) 

Common Murre (Uria 

aalge) 

Condition Between year mass 

change 

C C 12 -0.63 (Doody et al. 2008) 

Common Murre (Uria 

aalge) 

Effort - 

Nesting 

Chick feeding rate 

(prey mismatch) 

C C 23 0.288 (Doody et al. 2008) 

Common Murre (Uria 

aalge) 

Effort - 

Nesting 

Chick feeding rate 

(prey mismatch) 

C C 25 0.023 (Doody et al. 2008) 

Common Murre (Uria 

aalge) 

Effort - 

Nesting 

Chick feeding rate 

(prey match) 

C C 22 0.4 (Doody et al. 2008) 

Yellow-eyed Penguin 

(Megadyptes antipodes) 

Reproductive 

success 

Fledging chick weight 

(tourists) 

C C 5 -0.906 (Ellenberg et al. 2007) 

Yellow-eyed Penguin 

(Megadyptes antipodes) 

Reproductive 

success 

Fledging chick weight  C C 6 -0.828 (Ellenberg et al. 2007) 

Yellow-eyed Penguin 

(Megadyptes antipodes) 

Reproductive 

success 

Month-old chick 

weight 

C C 6 -0.233 (Ellenberg et al. 2007) 

Yellow-eyed Penguin 

(Megadyptes antipodes) 

Reproductive 

success 

Month-old chick 

weight (tourists) 

C C 5 0.355 (Ellenberg et al. 2007) 

Thick-billed Murre (Uria 

lomvia) 

Condition Adult mass C B 7 -0.737 (Elliott et al. 2015) 

Thick-billed Murre (Uria 

lomvia) 

Effort - 

Foraging 

Daily energy 

expenditure (kJ/d) 

C B 7 0.667 (Elliott et al. 2015) 
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Thick-billed Murre (Uria 

lomvia) 

Effort - 

Foraging 

Diving (min/d) C B 7 0.58 (Elliott et al. 2015) 

Thick-billed Murre (Uria 

lomvia) 

Reproductive 

success 

Chick mass at 14 days C B 6 -0.851 (Elliott et al. 2015) 

Thick-billed Murre (Uria 

lomvia) 

Reproductive 

success 

Fledging C B 7 0.128 (Elliott et al. 2015) 

Snow Petrel (Pagodroma 

nivea) 

Condition Pre-laying condition C I 56 -0.01 (Goutte et al. 2010) 

Snow Petrel (Pagodroma 

nivea) 

Reproductive 

success 

Hatching success C I 40 -0.475 (Goutte et al. 2010) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Reproductive 

success 

Clutch size (female) E I 21 0.041 (Goutte et al. 2011) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Reproductive 

success 

Clutch size (male) E I 22 0.06 (Goutte et al. 2011) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Reproductive 

success 

Lost eggs (female) E I 21 0.437 (Goutte et al. 2011) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Reproductive 

success 

Lost eggs (male) E I 22 -0.447 (Goutte et al. 2011) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Reproductive 

success 

Number chicks 

reached 12 days old 

(female) 

E C 21 -0.592 (Goutte et al. 2011) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Reproductive 

success 

Number chicks 

reached 12 days old 

E C 22 0.369 (Goutte et al. 2011) 
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(male) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Condition Body condition C B 48 -0.387 (Kitaysky et al. 1999) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Effort - 

Foraging 

Experimental CORT 

increase to number of 

trips  

E B 12 0.712 (Kitaysky et al. 2001) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Effort - 

Foraging 

Experimental CORT 

increase birds to 

number trips  

E B 12 0.905 (Kitaysky et al. 2001) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Effort - 

Nesting 

Experimental CORT 

increase to 

provisioning level   

E C 12 0.1 (Kitaysky et al. 2001) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Effort - 

Nesting 

Experimental CORT 

increase to attendance 

level  

E B 24 -0.623 (Kitaysky et al. 2001) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Effort - 

Nesting 

Experimental CORT 

increase  to nest 

guarding amount 

E C 12 -0.731 (Kitaysky et al. 2001) 

Common Murre (Uria 

aalge) 

Food 

Availability 

Current 2 week food 

level 

C B 23 -0.748 (Kitaysky et al. 2007) 

Common Murre (Uria 

aalge) 

Reproductive 

success 

Egg-laying CORT 

level and hatching 

success 

C I 8 -0.73 (Kitaysky et al. 2007) 

Common Murre (Uria Reproductive Egg-laying CORT C I 8 -0.87 (Kitaysky et al. 2007) 
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aalge) success level and Fledging 

success 

Common Murre (Uria 

aalge) 

Reproductive 

success 

Egg-laying CORT 

level and productivity 

C I 9 -0.76 (Kitaysky et al. 2007) 

Common Murre (Uria 

aalge) 

Reproductive 

success 

Incubation CORT 

level and hatching 

success 

C I 9 -0.82 (Kitaysky et al. 2007) 

Common Murre (Uria 

aalge) 

Reproductive 

success 

Incubation CORT 

level and Fledging 

success 

C I 9 -0.8 (Kitaysky et al. 2007) 

Common Murre (Uria 

aalge) 

Reproductive 

success 

Incubation CORT 

level and productivity 

C I 10 -0.8 (Kitaysky et al. 2007) 

Common Murre (Uria 

aalge) 

Reproductive 

success 

Early chick-rearing 

CORT level and 

hatching success 

C C 9 -0.79 (Kitaysky et al. 2007) 

Common Murre (Uria 

aalge) 

Reproductive 

success 

Early chick-rearing 

CORT level and 

Fledging success 

C C 9 -0.82 (Kitaysky et al. 2007) 

Common Murre (Uria 

aalge) 

Reproductive 

success 

Early chick-rearing 

CORT level and 

productivity 

C C 10 -0.79 (Kitaysky et al. 2007) 

Common Murre (Uria 

aalge) 

Reproductive 

success 

Late chick-rearing 

CORT level and 

hatching success 

C C 8 -0.34 (Kitaysky et al. 2007) 
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Common Murre (Uria 

aalge) 

Reproductive 

success 

Late chick-rearing 

CORT level and 

Fledging success 

C C 8 -0.45 (Kitaysky et al. 2007) 

Common Murre (Uria 

aalge) 

Reproductive 

success 

Late chick-rearing 

CORT level and 

productivity 

C C 9 -0.37 (Kitaysky et al. 2007) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Food 

Availability 

Fed vs control 

baseline CORT level 

E I 32 -0.518 (Kitaysky et al. 2010) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Food 

Availability 

Beach seine food level C I 16 -0.728 (Kitaysky et al. 2010) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Food 

Availability 

Mid-water trawl to 

food 

C I 6 -0.98 (Kitaysky et al. 2010) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Reproductive 

success 

Fledging success C C 5 -0.94 (Kitaysky et al. 2010) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Reproductive 

success 

Laying success C I 9 -0.75 (Kitaysky et al. 2010) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Reproductive 

success 

Clutch size C I 9 -0.51 (Kitaysky et al. 2010) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Reproductive 

success 

Hatching success C I 9 -0.42 (Kitaysky et al. 2010) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Reproductive 

success 

Delayed egg-laying C I 9 0.87 (Kitaysky et al. 2010) 

Black-legged Kittiwake Condition Hindered vs control E C 53 -0.113 (Leclaire et al. 2011) 
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(Rissa tridactyla) birds  

Red-footed Booby (Sula 

sula) 

Condition Body condition - 

males 

C B 51 -0.22 (Lormée et al. 2003) 

Red-footed Booby (Sula 

sula) 

Condition Body condition - 

females 

C B 52 -0.04 (Lormée et al. 2003) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Reproductive 

success 

Experimental CORT 

increase to fledging 

success 

E B 38 -0.318 (Nelson et al. 2015) 

Wilson's Storm-petrel 

(Oceanites oceanicus) 

Reproductive 

success 

Failed vs successful 

adults 

C C 42 -0.057 (Quillfeldt and Möstl 

2003) 

Atlantic Puffin 

(Fratercula arctica) 

Condition Body mass  C B 230 -0.14 (Rector et al. 2012) 

Atlantic Puffin 

(Fratercula arctica) 

Food 

Availability 

High and low food 

availability years 

C B 121 -0.049 (Rector et al. 2012) 

Common Tern (Sterna 

hirundo) 

Reproductive 

success 

Mean hatching success C I 7 0.472 (Riechert et al. 2014) 

Common Tern (Sterna 

hirundo) 

Reproductive 

success 

Mean fledging success C I 7 -0.8 (Riechert et al. 2014) 

Common Tern (Sterna 

hirundo) 

Reproductive 

success 

Mean breeding 

success 

C I 7 -0.781 (Riechert et al. 2014) 

Common Tern (Sterna 

hirundo) 

Reproductive 

success 

Fledging success - 

males in one year 

C I 64 0.253 (Riechert et al. 2014) 
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Common Tern (Sterna 

hirundo) 

Reproductive 

success 

Breeding success - 

males in one year 

C I 64 0.25 (Riechert et al. 2014) 

Black-legged Kittiwake 

(Rissa tridactyla) 

Reproductive 

success 

Number of chicks 

fledged  

C B 32 -0.316 (Satterthwaite et al. 

2012) 

Adelie Penguin 

(Pygoscelis adeliae) 

Condition Experimental CORT 

increase to body mass 

E C 14 0.034 (Thierry et al. 2013) 

Adelie Penguin 

(Pygoscelis adeliae) 

Effort - 

Foraging 

Experimental CORT 

increase to time spent 

at sea - male 

E C 14 -0.024 (Thierry et al. 2013) 

Adelie Penguin 

(Pygoscelis adeliae) 

Effort - 

Nesting 

Experimental CORT 

increase to nesting 

bouts - male 

E C 14 0.582 (Thierry et al. 2013) 

Adelie Penguin 

(Pygoscelis adeliae) 

Reproductive 

success 

Experimental CORT 

increase to chicks per 

nest - male 

E C 14 -0.807 (Thierry et al. 2013) 

Adelie Penguin 

(Pygoscelis adeliae) 

Reproductive 

success 

Experimental CORT 

increase to brood mass 

E C 14 -0.536 (Thierry et al. 2013) 

Adelie Penguin 

(Pygoscelis adeliae) 

Reproductive 

success 

Experimental CORT 

increase to chick mass 

after 21 days 

E C 14 0.012 (Thierry et al. 2013) 

Adelie Penguin 

(Pygoscelis adeliae) 

Reproductive 

success 

Experimental CORT 

increase to brood mass 

after 39 days  

E C 14 -0.355 (Thierry et al. 2013) 

Adelie Penguin Reproductive Experimental CORT E C 14 0.315 (Thierry et al. 2013) 
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(Pygoscelis adeliae) success increase to chick mass 

after 39 days 

Adelie Penguin 

(Pygoscelis adeliae) 

Condition Experimental CORT 

increase to body mass 

at 9 days  

E C 18 -0.246 (Thierry et al. 2014) 

Adelie Penguin 

(Pygoscelis adeliae) 

Condition Experimental CORT 

increase to body mass 

at 17 days 

E C 12 -0.114 (Thierry et al. 2014) 

Adelie Penguin 

(Pygoscelis adeliae) 

Effort - 

Foraging 

Experimental CORT 

increase to time at sea 

E C 20 -0.555 (Thierry et al. 2014) 

Adelie Penguin 

(Pygoscelis adeliae) 

Effort - 

Foraging 

Experimental CORT 

increase  to trip 

duration - males 

E C 20 -0.48 (Thierry et al. 2014) 

Adelie Penguin 

(Pygoscelis adeliae) 

Effort - 

Nesting 

Experimental CORT 

increase to time on 

nest 

E C 20 0.499 (Thierry et al. 2014) 

Adelie Penguin 

(Pygoscelis adeliae) 

Effort - 

Nesting 

Experimental CORT 

increase to nest 

duration - males 

E C 20 0.374 (Thierry et al. 2014) 

Adelie Penguin 

(Pygoscelis adeliae) 

Effort - 

Nesting 

Experimental CORT 

increase to nest 

duration - females 

E C 20 -0.428 (Thierry et al. 2014) 

Adelie Penguin 

(Pygoscelis adeliae) 

Reproductive 

success 

Experimental CORT 

increase to chicks per 

E C 20 -0.515 (Thierry et al. 2014) 
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nest - male 

Adelie Penguin 

(Pygoscelis adeliae) 

Reproductive 

success 

Experimental CORT 

increase to chick mass 

E C 17 -0.282 (Thierry et al. 2014) 

Adelie Penguin 

(Pygoscelis adeliae) 

Reproductive 

success 

Experimental CORT 

increase to brood mass 

E C 17 -0.002 (Thierry et al. 2014) 

Adelie Penguin 

(Pygoscelis adeliae) 

Reproductive 

success 

Experimental CORT 

increase to chick mass 

at 17 days 

E C 20 -0.368 (Thierry et al. 2014) 

Adelie Penguin 

(Pygoscelis adeliae) 

Reproductive 

success 

Experimental CORT 

increase to brood mass 

at 17 days 

E C 20 -0.24 (Thierry et al. 2014) 

Tufted Puffin (Fratercula 

cirrhata) 

Condition Body condition index C B 96 -0.184 (Williams et al. 2008) 

Thick-billed Murre (Uria 

lomvia) 

Condition Body condition (St 

Paul) 

C C 33 -0.36 (Young 2014) 

Thick-billed Murre (Uria 

lomvia) 

Condition Body condition (St 

George) 

C C 36 0.357 (Young 2014) 

Thick-billed Murre (Uria 

lomvia) 

Condition Body condition 

(Bogoslov) 

C C 20 -0.119 (Young 2014) 
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Appendix 4 - Funnel plot (effect size plotted against precision) of the original data 

points used in the meta-analysis (top) along with the meta-analytic mean (dashed 

line), and the model residuals from M3 (the model with the lowest DIC; bottom). 

Plots show no apparent asymmetry around the mean values and therefore do not 

indicate systemic publication bias. 
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Appendix 5 - Parameter estimates for fixed effects, 95% confidence intervals, and p-

values of each meta-analytic Bayesian Mixed Model (M1-M8 - see main document, 

Table 2). Response variables are Fisher’s Zr for the relationship between corticosterone 

and fitness-related trait. Reference level for Trait is [Body Condition], for Method is 

[Correlational], and for Stage is [Both]. 

Model 

 

Fixed Effect Estimate Low CI Upper 

CI 

pMCMC 

M1 Intercept -0.145 -0.311 0.036 0.105 

      

M2 Intercept -0.133 -0.405 0.140 0.293 

      

M3 Intercept -0.059 -0.273 0.170 0.591 

 Trait [Effort – Foraging] 0.318 -0.030 0.673 0.073 

 Trait [Effort – Nesting] 0.201 -0.138 0.549 0.252 

 Trait [Food Availability] -0.497 -0.942 -0.066 0.025 

 Trait [Reproductive 

Success] 

-0.251 -0.500 -0.005 0.045 

      

M4 Intercept -0.046 -0.339 0.266 0.737 

 Trait [Effort – Foraging] 0.309 -0.043 0.662 0.085 

 Trait [Effort – Nesting] 0.210 -0.134 0.552 0.223 

 Trait [Food Availability] -0.486 -0.932 -0.051 0.031 

 Trait [Reproductive 

Success] 

-0.254 -0.499 -0.003 0.044 

      

M5 Intercept -0.095 -0.319 0.142 0.417 

 Trait [Effort – Foraging] 0.241 -0.130 0.607 0.201 

 Trait [Effort – Nesting] 0.156 -0.172 0.527 0.378 

 Trait [Food Availability] -0.505 -0.957 -0.078 0.026 

 Trait [Reproductive 

Success] 

-0.264 -0.503 -0.002 0.040 

 Method [Experimental] 0.181 -0.095 0.460 0.196 

      

M6 Intercept -0.079 -0.380 0.239 0.577 

 Trait [Effort – Foraging] 0.234 -0.122 0.608 0.203 

 Trait [Effort – Nesting] 0.164 -0.183 0.519 0.346 

 Trait [Food Availability] -0.489 -0.941 -0.053 0.029 

 Trait [Reproductive 

Success] 

-0.268 -0.525 -0.031 0.033 
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 Method [Experimental] 0.197 -0.092 0.503 0.184 

      

M7 Intercept -0.033 -0.276 0.229 0.789 

 Trait [Effort – Foraging] 0.222 -0.146 0.593 0.233 

 Trait [Effort – Nesting] 0.188 -0.171 0.543 0.306 

 Trait [Food Availability] -0.512 -0.950 -0.050 0.028 

 Trait [Reproductive 

Success] 

-0.251 -0.498 0.010 0.058 

 Method [Experimental] 0.225 -0.070 0.510 0.125 

 Stage [Chick-Rearing] -0.157 -0.434 0.136 0.280 

 Stage [Incubation] -0.117 -0.448 0.201 0.477 

      

M8 Intercept -0.032 -0.367 0.290 0.845 

 Trait [Effort – Foraging] 0.216 -0.162 0.585 0.259 

 Trait [Effort – Nesting] 0.193 -0.175 0.551 0.290 

 Trait [Food Availability] -0.500 -0.958 -0.038 0.032 

 Trait [Reproductive 

Success] 

-0.254 -0.519 0.000 0.057 

 Method [Experimental] 0.235 -0.065 0.561 0.133 

 Stage [Chick-Rearing] -0.141 -0.444 0.154 0.339 

 Stage [Incubation] -0.114 -0.446 0.220 0.496 
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