
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2016

Independent and combined effects of land-use
stress on macroinvertebrate community condition
at Great Lakes coastal margins
Jasmine Isabel St. Pierre
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
St. Pierre, Jasmine Isabel, "Independent and combined effects of land-use stress on macroinvertebrate community condition at Great
Lakes coastal margins" (2016). Electronic Theses and Dissertations. 5867.
https://scholar.uwindsor.ca/etd/5867

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5867&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5867&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5867&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5867?utm_source=scholar.uwindsor.ca%2Fetd%2F5867&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


Independent and combined effects of land-use stress on 

macroinvertebrate community condition at Great Lakes 

coastal margins 

 

By 

Jasmine St. Pierre 

 

 

 

 

 

A Thesis 

Submitted to the Faculty of Graduate Studies  

through the Department of Biological Sciences 

in Partial Fulfillment of the Requirements for  

the Degree of Master of Science 

at the University of Windsor 

 

 

 

 

Windsor, Ontario, Canada 

2016 

© 2016 Jasmine St. Pierre 

  



Independent and combined effects of land-use stress on macroinvertebrate 
community condition at Great Lakes coastal margins. 

 

by 

 

Jasmine St. Pierre 

 

 

APPROVED BY: 

 

______________________________________________ 

E. Tam 

Department of Civil and Environmental Engineering 

 

______________________________________________ 

K.E. Kovalenko 

NRRI University of Minnesota, Duluth 

 

______________________________________________ 

K. Drouillard 

Department of Biological Sciences 

 

______________________________________________ 

J.J.H. Ciborowski, Advisor 

Department of Biological Sciences 

 

 

 

 

September 14 2016 



iii 
 

Author’s Declaration of Originality 

  

I hereby certify that I am the sole author of this thesis and that no part of this 

thesis has been published or submitted for publication. 

I certify that, to the best of my knowledge, my thesis does not infringe upon 

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques, 

quotations, or any other material from the work of other people included in my thesis, 

published or otherwise, are fully acknowledged in accordance with the standard 

referencing practices. Furthermore, to the extent that I have included copyrighted material 

that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, 

I certify that I have obtained a written permission from the copyright owner(s) to include 

such material(s) in my thesis and have included copies of such copyright clearances to my 

appendix.  

 I declare that this is a true copy of my thesis, including any final revisions, as 

approved by my thesis committee and the Graduate Studies office, and that this thesis has 

not been submitted for a higher degree to any other University or Institution. 

 

 

  



iv 
 

Abstract 

 Coastal ecosystems of the Laurentian Great Lakes provide many of the services upon 

which society most depends and yet they are the most highly threatened by anthropogenic stress. 

Several means of quantifying anthropogenic stress in the Great Lakes have been developed, and 

measures of expected impact exist for watersheds across the entire basin. However, it is still 

unknown whether the biological communities present at coastal margins reflect the environmental 

condition expected from the level of stress in each watershed. Using data previously collected for 

the Great Lakes Environmental Indicators collaboration, the goal of this thesis was to assess both 

independent and combined effects of land-use stress on macroinvertebrate community condition.  

Macroinvertebrate community condition was measured by using multivariate analysis to 

derive a composite Zoobenthic Assemblage Condition Index (ZACI), which employs the 

Reference-Degraded Continuum approach. The variation in ZACI scores was then related to two 

classes of human land use- agriculture and urban development via surrogate environmental 

gradients. The combined effect of land-use was evaluated by three different methods in a proof of 

concept. These methods included 1) comparing predicted single-stress ZACI scores to combined 

stress ZACI scores, 2) response-surface modelling using non-parametric multiplicative regression, 

and 3) mapping of isopleths distinguishing reference from non-reference conditions. A cluster 

analysis of biota at site subjects to minimal stress identified 5 distinct invertebrate assemblages 

which could be classified by environmental attributes (3 in the north, 2 in the south). ZACI 

condition scores showed distinct but varying trends among groups as a function of land-use stress. 

Levels of agricultural land-use were found to continuously constrain biological condition in one 

group, while condition of other groups exhibited potential threshold changes with increasing 

development-associated stress. In combination, both agriculture and development stress were 

observed to have significant negative effects on macroinvertebrate assemblages at Great Lakes 

coastal margins, and development stress is the more severe stressor.  
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Coastal margins, especially wetlands are an ecologically, socially and economically 

important part of the Great Lakes basin. Ecological functions of coastal wetlands include flood 

storage, sediment trapping, water quality filtration, and erosion buffers (deGroote et al. 2012) as 

well as vital habitat for many biological assemblages (e.g. plants, fishes, birds and other wildlife). 

Coastal wetlands are also highly productive and are hot spots of biodiversity (Costanza et al. 

1997a). Wetlands provide $2 billion worth of ecosystem services each year (Sierszen et al. 2012) 

such as storm protection, the transformation, removal and storage of nutrients, fishing, hunting 

and recreation. A high proportion of the Great Lakes fish assemblage depends on coastal wetlands 

for some part of their life cycle (Jude and Papas, 1992). Being small in area, the coastal wetlands 

are thereby disproportionately important to the lakes as a whole. With lake dependent commerce 

in the U.S. alone providing 1.5 million jobs in 2010 (Vaccaro and Read, 2011), the condition of 

coastal wetlands is also of great economic importance.  

The coastal margins of the Great Lakes serve as the land-water interface, (Mitsch and 

Gosselink, 2000), making them especially vulnerable to impact as they can be exposed to both 

watershed and lake based human activity (Bedford, 1992; Wilcox, 1995; Allan et al. 2013). 

However, despite their obvious importance, two thirds or more of the original coastal wetlands 

present prior to European settlement have been lost due to land drainage, commercial and 

industrial land use, dyking and dredging (Whillans, 1982). Great Lakes coastal wetlands are 

threatened by human activities such as land use, climate change, point and non-point source 

pollution, aquatic invasive species, atmospheric deposition and shoreline modifications (Danz et 

al. 2005).  

Quantifying Anthropogenic Stress in the Great Lakes  

The number of studies addressing environmental ‘stress’ and ‘stressors’ is increasing in 

ecological literature, but the use of these terms remains ambiguous (Borics et al. 2013). Often, the 

term ‘stress’ is used interchangeably with ‘disturbance’ and ‘perturbation’,  with definitions 
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depending on the field of study and researcher perspective (see Borics et al. 2013; Rykiel, 1985). 

The term disturbance usually refers to a factor or event that disrupts important ecological factors, 

such as community structure, changes in resource availability, or the physical environment (Paine 

et al. 1998; Pickett et al. 1989). Some authors refer to disturbances as infrequent, destructive 

events but many ecologists now consider disturbances to be normal events that occur within a 

range of natural variability (e.g. Berger and Hodge, 1998; White and Pickett 1985; USEPA, 

2016). Additionally, the terms ‘disturbance’ or ‘stress’ are used by some to refer to the causes of 

ecological change, whereas others allude to the response of the system, with ‘stressor’ referring to 

the cause (Rapport et al. 1985).  Recent frameworks for describing biological condition in aquatic 

ecosystems recognize that disturbances do not necessarily lead to stress unless the disturbances 

exceed the range of natural variability and exert ‘pressure’ (USEPA, 2016; European 

Environmental Agency, 1999). “Pressures” are human-related activities that alter ecosystem 

processes and generate “stressors”, which are the proximate factors that adversely impact 

biological condition (Niemi and MacDonald, 2004). In this thesis, ‘anthropogenic stress’ refers to 

human induced changes to ecosystem processes or environmental factors resulting in the creation 

of “stressors” that cause changes in biological condition (“responses”).  

Quantifying and describing the level of stress applied to an ecosystem comes with many 

technical challenges. A single source of stress can create multiple stressors that can co-occur in 

time and space. Simultaneously-acting stressors have the potential to interact with each other (see 

section on Cumulative Stress) resulting in unpredictable cumulative impacts. In addition, stressors 

can operate at different spatial and temporal scales and their impacts may be expressed at 

different levels of biological organization, e.g. individual, population or community level (Pickett 

et al. 1989; Glasby and Underwood, 1996).    

Despite the challenges of deriving and documenting gradients of stress, several means of 

quantifying anthropogenic stress in the Great Lakes have been developed. Chow Fraser (2006) 
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derived the “Water Quality Index” (WQI) to describe wetland characteristics from principal 

component axis scores that summarized co-variation among 12 water chemistry variables such as 

temperature, pH, Chlorophyll-a, and nutrient concentrations. Other approaches use mapping of 

large scale variables, such as the type and amount of land use within a watershed, to summarize 

the distribution of stress over large regions (Danz et al. 2005; Allan et al. 2013). The Great Lakes 

Environmental Indicators (GLEI) collaboration (Niemi et al. 2007) developed a geographical 

information system (GIS) database with 186 spatially outlined variables that were summarized 

into 5 categories of anthropogenic stress that are prominent in watersheds draining into the basin: 

agriculture, atmospheric deposition, human population, land cover, and point source pollution 

(Danz et al. 2007, Niemi et al. 2007). Subsequently, to quantify the distribution of overall stress in 

the basin, the above main classes of stress were further summarized in terms of two independent 

surrogate measures of anthropogenic stress represented by human land-use - percent agricultural 

land cover and an index of urban development stress called MaxRel (Host et al., 2005, Host et al. 

in review). Such broad-scale composite measures of anthropogenic stress serve as proxies for the 

effects of stressors at finer scales because many local-scale stressors have common causes and 

similar spatial domains (Boughton et al. 1999). Thereby, large-scale measures of human activity 

can be used as summary measures of the overall risk of impact to biological communities.  

Although environmental stress has been quantified in the Great Lakes by the GLEI 

consortium as well as by various other schemes (Allan et al. 2013; Host et al. 2005, US EPA, 

2016, Environment Canada and US EPA, 2014), the degree to which biological communities are 

influenced by the level of stress present in each watershed is still largely unknown. There is 

evidence that biota at coastal margins may be greatly influenced by anthropogenic land use at the 

watershed scale, even from a considerable distance upstream (Peterson et al. 2007; Niemi et al. 

2011). For example, Peterson et al. (2007) reported a direct link between watershed based human 

land use and coastal biota (plankton and macroinvertebrates) was established using δ15N 
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enrichment as an indicator of exposure. The δ15N of plankton and benthos increased linearly with 

an agricultural landscape gradient, with the expression of landscape disturbance being stronger in 

embayment and wetland habitats compared to open nearshore (Peterson et al. 2007). Marked 

changes in community composition of multiple assemblages have also been shown to occur at 

threshold levels of watershed agriculture and urban development in the Great Lakes (Kovalenko 

et al. 2014).    

Land use may indirectly influence biological communities in coastal habitats through 

changes in water quality and sediment characteristics and hydrologic regimes (DeCantanzaro et 

al. 2009, Crosbie and Chow-Fraser 1999; Lee et al. 2006)).  Tributaries receive both agricultural 

and urban runoff carrying nutrients, contaminants, and sediments (Environmental Canada and 

U.S. EPA, 2014), which are deposited at coastal zones. The amount of agricultural land in 

watersheds drained by 22 Ontario marshes was positively correlated with inorganic solids and 

phosphorus content in sediment (Crosbie and Chow-Fraser, 1999).  Road density may influence 

specific conductance, concentration of total suspended solids, and may be positively correlated 

with concentrations of total phosphorus and total nitrate nitrogen (DeCatanzaro et al. 2009). 

Quantifying Community Condition and the Concept of Reference Condition 

Early water quality assessment programs largely involved chemical and physical 

monitoring and reporting (Karr, 1981).  However, this type of assessment is  considered to be 

insufficient to detect the full spectrum of human impacts currently affecting aquatic ecosystems 

(e.g. land use changes, species invasions, etc.) (Karr and Dudley, 1981). Assessment of the 

biological assemblages (”bioassessment”) conducted in conjunction with chemical monitoring is 

argued to capture the full, cumulative impacts of environmental stress (Karr, 1991) . Many 

different types of biota have been used in the assessment of  Great Lakes aquatic ecosystem health 

including birds (e.g. Howe et al. 2007), macrophytes (e.g. Grabas et al. 2012) and most 

commonly, fishes and macroinvertebrates (e.g. Uzarski et al. 2005; Bhagat et al. 2007; Burton et 
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al 1999).  Macroinvertebrate based bioindicators are a valuable and successfully used part of 

many stream and river assessment programs (e.g. Barbour et al. 1999) because benthic organisms 

are ubiquitous, relatively sedentary, easy to sample and are capable of responding to a wide 

variety of stressors at a variety of scales (Johnson et al., 2007). However, when applied to 

bioassessment of wetland systems the use of macroinvertebrate indicators has been more 

challenging, with little consensus surrounding how invertebrates are ecologically controlled in 

wetlands and difficulties developing reference standards (Batzer, 2013; Wilcox et al. 2002). 

However, macroinvertebrate indicators of wetland condition have had some success in limited 

areas of the Great Lakes with the development of indices of biological integrity (IBIs) in 

lacustrine wetlands of Lake Huron (Burton et al. 1999; Uzarski et al. 2004) and Georgian Bay 

(Kostuk, 2006). See further discussion in Chapter 2.  

Fundamental to the use of bioindicators for ecosystem assessment and monitoring is the 

establishment of a ‘regional reference condition’. The reference condition is generally defined as 

the environmental condition of a group of sites that are minimally disturbed (and by inference the 

biological community that occurs under those conditions). The suite of reference sites is grouped 

by some method (e.g. biological, physical or chemical classification) so that the biota at test sites 

can be matched to a group of reference sites expected to be similar in their physical, chemical or 

biological characteristics (Reynoldson et al. 1997; Bailey et al. 2004). It is important that this 

classification places reference sites into groups exhibiting similar habitat and physical 

characteristics because the use of the reference condition in bioassessment relies on the 

assumption that similar site attributes support similar invertebrate communities in the absence of 

disturbance.  

Two approaches for establishing the reference condition are currently employed - 

multimetric and multivariate approaches. Typically, when a multimetric approach is used, 

reference (i.e. minimally disturbed) sites are assigned to groups a priori by the establishment of 
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ecoregions and subecoregions based on professional judgement and geophysical attributes (e.g. 

climate, soil, water chemistry). This approach assumes that reference sites in the same ecoregion 

will have similar invertebrate assemblages. However, there is evidence that invertebrate 

communities may not be homogeneous within a region (Corkum, 1990, 1991; Richards et al. 

1993). Multivariate approaches such as RIVPACS (River Invertebrate Prediction and 

Classification System, Wright 1995) or BEAST (Benthic Assessment of SedimenT, Reynoldson 

et al. 1995) models classify reference sites into groups using clustering methods based on species 

composition, thereby making no a priori assumptions about assemblage similarity based on a 

locale’s environmental or physical attributes. While multimetric methods assume that the 

environmental characteristics of test-sites are congruent with those of groups of reference sites, 

multivariate methods use a predictive model based on the association between reference sites’ 

habitat attributes and community composition to determine the probability that a test site should 

be classed with a group of reference sites.  

A key step in assessing biological condition involves measuring biological attributes and 

combining suites of measurements into a single, composite number (i.e. index). As in establishing 

reference conditions, indices can be created using a priori criteria (multimetric approaches) or 

empirically (multivariate approaches). Multimetric indices (MMIs), such as the IBI (index of 

biological integrity) developed by Karr (1981) are used frequently in streams of the United States 

in programs such as the US EPA’s Rapid Bioassessment Protocols for streams (Barbour et al., 

1999). MMIs involve the definition of an array of measures (or metrics) representing different 

attributes of biological assemblages such as community structure and function that, when 

integrated (summed), are thought to provide an additive measure of overall biological condition. 

Commonly used metrics include those related to richness (e.g. total number of taxa, diversity 

indices), composition (e.g. percentage of a sample made up of   Ephemeroptera, Plecoptera, 

Trichoptera), feeding behaviour (e.g. % filterers), and habit (e.g. % clingers). Traditionally, 



8 
 

metrics are selected from a list of candidates based on expert knowledge of what reflects a 

“healthy” system (Karr, 1981).  However, where systems and their stressors aren’t well-known, 

metrics most sensitive to some measure of human disturbance are selected empirically 

(Schoolmaster et al. 2013). Deriving a multi-metric index empirically is often highly predictive 

because it is highly correlated with human disturbance (Uzarski et al. 2004, Seilheimer and 

Chow-Fraser 2006).The downside is that they are less general than those indices based on causal 

knowledge. In addition, IBI construction is largely based on researcher expectations of changes in 

community attributes (Barbour et al. 1996; Schoolmaster 2013; Whittier et al. 2007; Karr, 1981). 

Only the attributes that seem to match expectation (i.e. those that exhibit monotonic changes with 

respect to a stress measure) are used in developing the indicator model (e.g., Cooper et al. In 

revision). Furthermore, metrics initially chosen for testing are often those deemed important by 

researchers.  

In current multivariate approaches, test sites may be evaluated in two ways: 1) by 

comparing test sites and reference sites in taxa ordination space (e.g. BEAST, Reynoldson et al. 

1995) or 2) by comparing expected probabilities of occurrence of individual taxa (based on their 

prevalence at reference sites) to observed occurrences at test sites (e.g RIVPACs, Wright 1995; 

Hawkins et al. 2000). In the first method, assessment of biological communities at test-sites 

occurs by using a 90% confidence ellipse plotted for reference sites (Bowman and Somers, 2005). 

Test-site assemblages that fall outside the ellipse have diverged from reference (presumably as a 

consequence of environmental disturbance) and are classified as “not equivalent to reference”. 

With the second method, the severity of disturbance at test-sites is evaluated based on how much 

the number of taxa observed at a site deviates from the number expected in that habitat. 

Multivariate methods are cited as being more complex, requiring specialized knowledge with 

results that are difficult to convey to managers and the public. However, the predictive models 

developed from multivariate approaches are more precise and accurate than multimetric indices 
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(Reynoldson et al. 1997) and can be incorporated into computer systems for ease of use, e.g. 

Canadian Aquatic Biomonitoring Information Network (CABIN, Strachan et al. 2014).  

 Cumulative Effects of Stressors 

Often, derived stress-response relationships may be statistically significant but their 

explanatory power is typically low, with test sites exhibiting broad ranges of index scores at any 

one value on the disturbance gradient (e.g. Bhagat et al. 2007; Seilheimer and Chow-Fraser, 2007; 

Buckley, 2015; Buckley et al. In prep.). Many indices may have limited explanatory power 

because the stress-response relationships are assumed to be linear. However, biota are subject to 

multiple classes of stress simultaneously (Allan 2004; Yates et al., 2010) and the cumulative 

effect of multiple stressors may be difficult to discern because of potential interactions among 

stressors. Multiple stressors in combination may have unpredictable effects on biota (i.e. result in 

“ecological surprises”; Paine et al. 1998) that are greater or less than the sum of their individual 

effects (i.e. synergism or antagonism, respectively).  

Although not all stressors may interact, non-additive effects (i.e. synergies or 

antagonisms) may be more common than simple additive effects (Darling and Cote, 2008).  Smith 

et al. (in review) reported that among 65 studies of multiple stressor effects in the Laurentian 

Great Lakes, non-additive effects were more common (49% synergies, 42% antagonisms) than 

additive effects. Therefore, it is reasonable to expect that biological response to anthropogenic 

disturbance is likely non-linear (Davies and Jackson 2006). For example, there is increasing 

evidence that assemblages of organisms may collectively exhibit threshold responses to 

environmental stress due to synchrony in stress tolerance across taxa (King and Baker, 2010; Kail 

et al. 2012). Wang et al. (1997) detected complex relationships between stream fish IBI scores 

and agriculture and urban land use with possible thresholds at 50% agriculture and 10-20% 

urbanization. In Great Lakes coastal wetlands, assemblages of a variety of guilds (fishes, plants, 

invertebrates, birds and amphibians) exhibited marked changes in community composition at two 
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levels of watershed development stress – one at which many sensitive species became reduced in 

abundance or extirpated, and another at which ‘tolerant’ species became increasingly abundant 

(Kovalenko et al. 2014).  

Study Objectives 

In light of the variety of anthropogenic threats to the condition of Great Lakes coastal 

wetlands and their ecological and societal value, it becomes increasingly important to understand 

how multiple human activities interact to influence the biological condition at Great Lakes coastal 

margins. Focused on benthic macroinvertebrates,  this thesis uses a multivariate approach of 

identifying indices of ecological condition by ordinating the relative abundances of assemblages 

of aquatic invertebrates collected from wetland samples against several proxies of anthropogenic 

stress - agricultural stress (percent agriculture in a watershed), urban stress (measures of urban 

development in a watershed), and a composite of the two measures. 

In Chapter 2, I derive a composite, multivariate index of biological condition using 

benthic macroinvertebrate relative abundance data at 141 coastal wetlands in the U.S. portion of 

the Great Lakes basin. I then relate that index to two land-use stressor gradients and a composite 

gradient developed by GLEI (Great Lakes Environmental Indicators) and threshold estimates of 

each land-use stressor at which discontinuities in the index scores occur across a gradient are 

observed. I hypothesized that benthic macroinvertebrate condition exhibits a negative, non-linear 

threshold response to both agriculture and urban development associated land-use stresses.  

In Chapter 3, I use several statistical multivariate procedures to investigate how the 

cumulative joint effects of the two classes of stress influence the composite indices derived in 

Chapter 2. These include 1) evaluation of 2-dimensional scatterplots comparing predicted ZACI 

scores of samples exposed to individual sources of stress, to ZACI scores of samples exposed to 

both types of stress, 2) using an occupancy modeling software program called HyperNiche (MjM 
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Software Group) to fit Nonparametric Multiplicative Regression (NPMR) models of the 

macroinvertebrate ZACI scores as a response to multiple environmental predictors, 

simultaneously (i.e. Agriculture and Development stress gradients), and 3) examining the shape of 

isopleths distinguishing reference from non-reference conditions relative to the two classes of 

stress (isopleth mapping). Using the above three approaches as proofs of concept, I assess the 

evidence for possible interactive effects of agriculture and development stress on 

macroinvertebrate assemblage condition. I hypothesize in this chapter that, agriculture and 

development stress will have a greater effect on macroinvertebrate biological condition in 

combination, than independently. I also expect to find evidence of a synergistic interaction.  

Chapter 4 is a discussion of the findings from the previous two chapters and provides 

recommendations for the development of cumulative stressor indices for biological assessment at 

Great Lakes coastal margins. The results of this research contributes to the understanding of how 

human activity in the watershed influences biological communities in Great Lakes coastal 

wetlands. The ability to detect measurable changes at the assemblage level, including the 

existence of possible thresholds will also aid in setting restoration and mitigation targets for the 

management of Great Lakes coastal ecosystems. 
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Introduction 

Wetlands are highly productive, valuable ecosystems that have experienced great losses 

worldwide (Davidson, 2014). The degradation of wetlands is exacerbated by anthropogenic 

activities that impair ecological function (deGroot et al. 2012). In the Great Lakes region, coastal 

wetlands experience the greatest amount of anthropogenic stress because of the tendency for 

urban centers and agricultural/industrial activity to be focused at coastal margins. Therefore, 

monitoring and assessment of nearshore areas is a current objective of the amended Great Lakes 

Water Quality Agreement 2012 (Governments of Canada and the United States, 2012). 

Assessment and consequent management requires reliable methods of monitoring wetland 

condition and quantifying impacts of increasing anthropogenic activity.  

Historically, chemical and physical attributes of aquatic environments have been 

measured to assess the degree to which ecosystems have been disturbed. However, water and 

sediment quality monitoring alone can fail to detect many impacts of human activity such as 

habitat alteration and hydrologic modification, species invasions, etc.  (Karr and Dudley, 1981). 

Biological assemblages should be monitored in conjunction with chemical monitoring because the 

ultimate, cumulative impacts of environmental stress are only expressed by the biota (Karr, 1991). 

The use of biota as indicators (i.e. “bioindicators”) of aquatic ecosystem condition is now widely 

accepted and used  in programs such as the European Water Framework Directive (Directive 

2000/60/EC, 2000), the State of the Great Lakes Ecosystem Conference (SOLEC; Environment 

Canada and the U.S. EPA, 2014), the Canadian Aquatic Biomonitoring Information Network 

(CABIN; Strachan and Reynoldson, 2014; http://www.ec.gc.ca/rcba-cabin/), and various U.S. 

EPA Biological Assessment programs (US EPA, 2002).   

Fishes and macroinvertebrates are the most commonly used groups in freshwater 

biomonitoring and assessment, especially in streams. Benthic macroinvertebrates are especially 

useful indicators of ecosystem health due to their crucial position in the food web (Batzer and 
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Wissinger, 1996) and their ability to reflect site-specific, cumulative impacts (Fore et al. 1996). 

They are an important food source for many ecologically and economically important taxa higher 

in the food web (e.g. fishes, birds, amphibians), and protocols for their collection are well 

established. 

The use of macroinvertebrate bioindicators is widespread and largely successful in lotic 

systems; but efforts to develop macroinvertebrate-based indices of ecosystem condition in 

wetlands have had limited success. This seems largely due to a lack of consensus on how 

invertebrate assemblages are controlled in wetlands, with studies in the same systems producing 

contrasting or unexpected results (see review by Batzer, 2013). However, in Great Lakes coastal 

wetlands there have been several promising attempts to develop multimetric “indices of biological 

integrity” (IBIs, Barbour et al. 1995; Karr, 1981). Early work by Burton et al. (1999) proposed 

IBIs based on plant zonation in lacustrine wetlands of northern Lake Huron, which were later 

validated by Uzarski et al. (2004) and Gathman and Burton (2011). These studies identified a 

number of promising invertebrate metrics including the proportion of a sample comprised of 

Crustacea, Mollusca, Gastropoda, Odonata, and Simpson indices of diversity and evenness.  

Kashian and Burton (2000) tested invertebrate metrics adapted from stream literature in two 

Northern Lake Huron wetlands. They also identified metrics that were able to distinguish between 

a pristine and an impaired wetland, including the proportion of samples dominated by 

Ephemeroptera + Trichoptera, Isopoda, filterers, and predators. Kostuk (2006) used a multivariate 

cluster analysis approach to group wetlands a priori using a combination of water-quality 

information as well as plant community characteristics. The cluster analysis distinguished the 

most highly degraded (i.e. eutrophic) sites from all others, as well as separated moderately-

degraded (mesotrophic) from most pristine wetlands (oligotrophic). Metrics proposed by Kostuk 

(2006) were consistent with those proposed by Burton et al. (1999) and Kashian and Burton 

(2000). For example, the proportions of Odonata, Ephemeroptera + Trichoptera, and Gastropoda 
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were progressively reduced in wetlands subject to increasing amounts of disturbance in all three 

studies. Also consistent with Kashian and Burton (2000), the proportions of a sample made up of 

Gammaridae and % Chironomini + Orthocladinae were highest in more impacted sites while 

samples most greatly dominated by Hyalellidae and Tanypodinae + Tanytarsini chironomids were 

associated with more pristine sites.  

Wilcox et al. (2002) proposed Great Lakes coastal wetland metrics based on fishes, 

macrophytes and macroinvertebrates, and found some promising invertebrate metrics for barrier-

beach wetlands in Lake Superior (including median # of taxa, # of adult Trichoptera, median 

number of individuals as Crustacea) but suggested a number of limitations of bioindicators for 

Great Lakes wetlands. First, variation in hydrology, exposure, sediment transport and deposition, 

and latitudinal gradients may require even wetlands in the same lake to be evaluated separately, 

limiting the pool of comparable sites for index development and validation. This also limits any 

future use of an IBI to those sites from which it was developed. Wilcox et al. (2002) also argued 

that dramatic changes in lake levels would yield different results year to year, even if human 

disturbance remained the same thereby invalidating metric scores. This question was also 

addressed by Gathman and Burton (2011).  However, Uzarski et al. (2004) argued that 

invertebrate IBIs could be used for a wide range of lake levels if they included metrics calibrated 

individually for deep and shallow-water plant zones.  

Other concerns with invertebrate IBIs previously developed for Great Lakes wetlands 

relate to the small samples sizes (i.e. number of wetlands) and the spatial scales used in their 

development. Wilcox et al. (2002) developed IBIs for individual Great Lakes from only 6 sites in 

each Lake, and the study by Kashian and Burton (2000) compared a single reference wetland to a 

single impacted wetland. Burton et al. (1999) developed IBIs from sites only on Lake Huron with 

all test sites being in the South and all reference sites in the North, introducing a possible 

latitudinal confounding. Another limitation to these studies is that results cannot truly be 
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compared due to different sampling methods. For example, Burton et al. (1999) and  Kashian and 

Burton (2000) used D-Net sweeps to collect sediment and macrophyte associated 

macroinvertebrates, while Kostuk (2006) and Wilcox et al. (2002) used funnel traps to collect 

both micro- and macroinvertebrates. The examples mentioned also do not employ the reference 

condition approach as described in Chapter 1.  

The approach used in this study is an extrapolation of the BEAST model of assessing 

biological communities ordinated across the full range of a stressor gradient (the Reference-

Degraded Continuum approach (Ciborowski et al. 2013)).The BEAST model uses multivariate 

analyses to characterize the range of natural variability of benthic invertebrate abundance and 

community composition in samples collected from sites in the reference condition (Reynoldson et 

al. 1995). Groups of reference sites with similar zoobenthic community composition (identified 

by cluster analysis) are then discriminated on the basis of environmental attributes that distinguish 

the biologically distinct clusters of sites. Consequently, test sites can be matched to the most 

appropriate group of reference sites using independent data (i.e. environmental or habitat data) for 

subsequent bioassessment. Bioassessment using the reference-condition approach (RCA) 

typically results in a binary classification of test sites as either “equivalent to reference” or “Not 

equivalent to reference`` (Reynoldson et al., 1997).  

The Reference-Degraded Continuum (RDC) approach used in this study extends the 

reference condition approach (RCA) by establishing both a “Reference” and a complementary 

“Degraded” biological condition. The degraded condition is characterized by the range of 

variability in biological condition at test sites subject to the highest amount of anthropogenic 

disturbance in the system of interest. In the BEAST model of the RCA, bioassessment is based on 

a comparison of biota at test sites and reference sites in taxa ordination space using 90% 

confidence ellipses. The RDC approach uses a two end-point ordination to delineate the extremes 

of the reference and degraded conditions, i.e. establish a reference-degraded continuum and 
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assesses the position of test site biota along the continuum. With the RDC approach, test sites can 

be classified as “Equivalent to Reference”, “Not Equivalent to Reference”, or “Equivalent to 

Degraded”, allowing managers to set more efficient restoration priorities and even make 

predictions (Ciborowski et al. 2010).  

In this study I derive a Zoobenthic Assemblage Condition Index (ZACI) for Great Lakes 

coastal areas using the Reference-Degraded Continuum approach. I subsequently relate the ZACI 

to two GLEI stressor gradients (i.e. % agriculture and MaxRel Development gradients) to identify 

changes in benthic community composition that accompany increasing levels of independent 

watershed-scale anthropogenic stress. The stress gradients used in this thesis are composite 

measures representing “pressures”, with many associated single stressors. Consequently, there are 

likely many important factors influencing macroinvertebrate community condition that are 

associated with agricultural or urban land use. Therefore, I expect that macroinvertebrate 

assemblage condition will be constrained as a function of agriculture and development stress, 

rather than exhibit simple linear trends (i.e. stress-controlled relationship).  

Methods 

Study Area 

The Great Lakes basin covers more than 760,000 km2 with the coastal region bordering 8 

States in the U.S. and the Province of Ontario, Canada. The basin is comprised of two 

ecoprovinces that differ in climate and physiography - the northern Laurentian Mixed Forest 

(LMF) in and the southern Eastern Broadleaf Forest (EBF) (Omernick 1987). The basin contains 

around 10% of the US population and 30% of the Canadian population (U.S. EPA and 

Environment Canada, 1995), with most human activity occurring in the southern ecoprovince. 

The northern portion is mostly forested. In contrast, much of the landscape of the southern 

province is characterized by agricultural activity and urban development.   
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Sampling Sites 

Sampling units were selected from a GIS-derived delineation of each second-order or 

higher watershed draining into the Great Lakes coastal margins, termed a “segment-shed” (Danz 

et al., 2005; Hollenhorst et al., 2007). Segment-sheds were created by defining the shoreline 

boundaries at the midpoint between the drainage basins of adjacent second order or higher 

streams. Delineating the drainage areas associated with these segments created the segment-sheds. 

A total of 762 segment-sheds were delineated for the U.S. portion of the basin. The Canadian 

coastal margin was not assessed at this time because the research was limited to the US portion of 

the Great Lakes. Coastal sites located within segment-sheds were selected to span the full range of 

anthropogenic stress in the basin (Danz et al. 2005; Brazner et al. 2007). The sampling design also 

took into account the hydrogeomorphic type of each wetland according to the classification 

system of Keough et al. (1999) - high-energy shoreline (HE), embayments (EM), and three 

wetlands types- coastal wetlands (CW), riverine wetlands (RW) and barrier protected wetlands 

(PW).  

Stressor Gradients 

Values of 207 variables relating to six classes of human disturbance (agriculture, 

atmospheric deposition, land cover, point source pollution, human population density, and 

shoreline alteration) were collected at county-level resolution from publicly available web-based 

data sources and were spatially transformed using weighted-averaging to fit the segment-sheds 

(Danz et al. 2005). This study focuses on two major classes of watershed scale anthropogenic 

stress: agriculture and urban development. The agricultural stress category was originally 

comprised of 21 variables characteristic of stressors associated with agricultural activities, 

including measures of nutrient runoff, erosion, and fertilizers. Agricultural land cover per se was 

included in the Land Cover category but was found to be highly correlated to all other agricultural 

stress variables (Danz et al. 2005). Therefore, the percentage of a segment shed occupied by 
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agricultural land cover now serves as a simple proxy for all disturbances related to agriculture 

(Host et al. 2005).  

The urban development stress gradient uses a composite measure of three variables 

associated with human development: population density, road density, and the percentage of a 

segment shed’s area classified as developmental land cover. Although the three components were 

correlated across the whole basin, it was clear that single components dominated in different 

areas. For example, in areas with low population density, the dominant stress consisted of roads 

that influenced the movement of water and biota between a wetland and the open lake (i.e. road 

density). In other areas, developed land along the shoreline was the dominant stressor, whereas 

other watersheds simply had high population densities. Therefore, the composite score was 

developed by assigning the single maximum relative value (dubbed MaxRel) of the above three 

development-associated variables (Host et al., 2005, Johnson et al. 2015). This was done under 

the assumption that the most prevalent development variable within a particular segment-shed 

would exert the greatest effect on biota.  

Both percent agriculture and the MaxRel development gradients are surrogate measures, 

or environmental indicators of the risk of potential human impact influencing wetland biota at the 

mouth of a particular watershed. Arguably, some would refer to % agriculture and MaxRel as 

pressures rather than individual stressors, but in this thesis I operationally define them as stressors 

because they have been constructed as quantitative measures of impact, recognizing that the stress 

exerted takes many forms.  

Values of the two independent stress gradients were combined into a composite gradient 

called “AgDev” representing overall anthropogenic stress in the Great Lakes (Host et al. in 

review; Johnson et al. 2015). AgDev scores `were calculated as the Euclidean distance from the 

(0,0) origin to each site x,y coordinate of scaled % agriculture and MaxRel indices (Figure 2.1). 
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Macroinvertebrate Sampling and Processing 

Benthic macroinvertebrate samples were collected in 2002 and 2003 at 141 coastal 

margin sites allocated across the 762 segment sheds of the U.S. Great Lakes basin using D-framed 

dip nets with 500 µm-mesh (Niemi et al. 2006; Brazner et al. 2007). Samples were collected at 

two depth zones along multiple transects within each site. Two transects were delineated for each 

dominant shoreline type within a site, extending perpendicularly from shore towards open water. 

The depth zones sampled along a transect corresponded to the approximate position of emergent 

vegetation (0.3-0.5 m depth) and submergent vegetation (0.5-1 m depth) expanses. Ten 1-m D-net 

sweeps comprised a single composite sample at the emergent and submergent vegetation depth 

zones, capturing invertebrates from within the water column (including those clinging to 

macrophytes) as well as the benthos.  

In the lab, samples were washed through a stacked series of soil test sieves, separating 

materials into size fractions (4 mm, 1 mm, 0.5 mm, 0.25 mm) to increase the efficiency of sorting. 

Invertebrates were removed from debris beneath a dissecting microscope and identified to the 

lowest possible taxonomic level, typically genus except for Chironomidae and Oligochaeta, which 

were left at the family and class levels, respectively.  

Point-level abundance data were used for index development and subsequent analyses - 

i.e. each composite sample collected at each depth zone along each transect were treated as 

individual units. Samples that contained 20 or fewer invertebrates were deemed too small to be 

included in analyses and were removed (approximately 30% of samples had 20 or fewer 

individuals). Rare taxa (those that occurred in <5% of samples within an ecoprovince) were either 

excluded from analyses or were combined with other related genera and treated as a group 

representing a higher taxonomic level. Relative abundances of each taxon in a sample were 

calculated ([number of individuals in a group]/[total number of individuals in a sample (including 

discarded taxa)]). Values were then transformed using natural logarithms [𝑙𝑜𝑔𝑒(percentage+1)] 
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(Gauch 1982). Further detail on the structure of this data set and the results of matrix formatting 

can be found in Appendix A.  

Environmental Variables 

A suite of environmental variables was also measured concurrently with biological 

sampling at each site. At each point where invertebrate samples were collected, variables such as 

presence and density of dominant vegetation types, dominant vegetation growth forms, dominant 

substrate characteristics and shoreline features were recorded (detailed in Olker et al 2015).  

Theoretical Approach to Index Development: Reference-Degraded Continuum 

Defining Reference Condition:  We defined the reference condition as a set of 

environmental attributes that characterize sites that are minimally affected by human disturbance 

(Stoddard et al. 2006). Operationally, we defined the reference condition as wetlands or shoreline 

areas into which drain watersheds with levels of agriculture and development less than threshold 

values previously identified by Kovalenko et al. (2014). These threshold levels of stress were 

estimated using Threshold Indicator Taxa Analysis, or TITAN (Baker and King, 2010) and 

correspond to levels of each stressor at which there was a marked decrease in the abundance of 

‘sensitive’ invertebrate taxa (reference/non-reference threshold). Although the confidence in 

threshold estimates for macroinvertebrate assemblages was only high along the development 

stress axis in Kovalenko et al. (2014), we decided to use their threshold estimate for agriculture as 

well, for consistency. Reference samples in the northern ecoprovince (LMF) were identified as 

those taken from sites that drained watersheds with <30% agricultural land cover and <0.08 

MaxRel development stress, resulting in 83 reference samples. Reference samples in the southern 

ecoprovince (EBF) were identified as those taken from sites that drained watersheds with <55% 

agricultural land cover and MaxRel development stress scores of < 0.10, resulting in 112 

reference samples.  
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Identifying Biologically Similar Groups of Reference Sites: Variation in macro-

invertebrate community composition among reference samples within each ecoprovince was 

characterized using hierarchical tree cluster analysis in Statistica 7.0 (StatSoft Inc., Tulsa, 

Oklahoma). Each cluster identified represents a group of reference samples with distinct fauna 

characteristic of reference communities (i.e. similar macroinvertebrate assemblages). Samples 

were clustered using Ward’s method of amalgamation and a Euclidean distance measure. The 

species contributing the most to distinguishing the clusters was determined by calculating F-

statistics from the ratio of among-group Mean Squares to within-group Mean Squares for each 

taxon (Green and Vascotto, 1978). Taxa that were most discriminant were those with the largest 

F-ratios.   F-statistics were calculated for cluster groupings at each bifurcation of the dendrogram.  

Identifying Environmental Characteristics of Biologically Distinct Reference Samples: 

Following cluster analysis, forward stepwise discriminant function analysis (DFA) was used to 

determine the habitat and environmental variables that best distinguished the clusters of samples 

representing the unique reference community types (Reynoldson et al. 1997). The 

habitat/environmental variables included in each DFA analysis were a suite of dummy variables 

indicating lake of origin, hydrogeomorphic classification, primary sediment texture, 

presence/absence of aquatic habitat types (e.g. emergent, submergent, open water), aquatic plant 

growth forms, aquatic vegetation types (e.g. floating leaf) and shoreline habitat types (e.g. muddy 

bank, vegetated bank). Forward stepwise DFA analysis was performed in Statistica 7.0. We then 

used the DFA model to assign each non-reference site (i.e. test sites) to one of the reference 

groups based on the values of each test site’s habitat/environmental variables. 

Ordinating Macroinvertebrate Assemblages with Respect to Stress: Once test sites had 

been assigned to a reference type, suites of reference + test sites were ordinated relative to their 

position along a Reference-Degraded Continuum (stress axis) based on their benthic community 

composition (Ciborowski, 2010). If anthropogenic stress has an effect on the macroinvertebrate 
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community, then the most stressed sites within each cluster should support different community 

composition compared to the least stressed sites. Bray-Curtis polar ordination using subjective 

endpoints was used to ordinate test sites with environmental characteristics corresponding to each 

reference cluster (PC-ORD version 6.0 software; McCune and Mefford, 2011). The two 

subjective endpoints created for each ordination were the centroids of macroinvertebrate species 

composition at the 10% of sites exhibiting the lowest stress scores (reference centroid) and the 

10% of sites with the highest stress scores (degraded centroid). An ordination of samples in 

species space was conducted relative to subjective endpoints created using agriculture and 

MaxRel stress scores independently for each cluster of samples (i.e. two ordinations per cluster). 

Further detail on the construction of centroids and ZACI axes is provided in Appendix B.  The 

result of each Bray-Curtis ordination denoted the position of each sample relative to the reference 

and degraded endpoint scores created above based on its biological community composition. The 

ordination scores can therefore be used as a composite index of biological condition (the 

Zoobenthic Assemblage Condition Index (ZACI)). Forward stepwise multiple regression was then 

used to determine the taxa loading most importantly on each ZACI axis. Important and significant 

taxa were used to develop functions of the form:  

ZACI = B0 + B1X1 + B2X2 … BnXn,  

where B0 is the intercept of the multiple regression model, Bi is the regression coefficient of each 

taxon i in the model and Xi is the Ln(i+1) transformed relative abundance of each taxon i in the 

model. The above function can be used to determine ZACI scores for other test-samples.  

The ZACI scores for samples in each cluster were subsequently plotted relative to the 

environmental stress scores of the two disturbance gradients (%Ag and MaxRel Development). 

Least-squares linear regression and quantile regression analysis (Cade and Noon, 2003) at several 

percentiles (0.05, 0.10, 0.20, 0.50, 0.80, 0.90 and 0.95) were used to determine the relationship 

between ZACI and environmental stress for each cluster of sites and for each stress type.   
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Results 

Species Assemblages 

Three groups of sampling points with distinct biological assemblages were identified in 

the northern ecoprovince as a result of the cluster analysis (Figure 2.2). The first bifurcation 

separated Cluster N3 from the other two clusters. Cluster N3 was the largest group of reference 

data (38 samples), having no single dominant taxon. Rather, Cluster N3 samples were comprised 

of on average, 9% more amphipods (5% more Gammarus, 4% more Hyalella), 15% more 

gastropods (7% more Hydrobiidae, 4% more Physella, 4% more Gyraulus) and 2% more of both 

Baetis (mayflies) and Aeshnidae (dragonflies) than Clusters N1 and N2 combined (Table 2.1.). 

Cluster N1 and N2 samples were much less even, with Chironomidae or Oligochaeta dominating 

and very low relative abundance (i.e. ≤ 3%) of all other taxa. Cluster N1 had 21 samples that were 

comprised of on average, 60% Chironomidae (35% more than Cluster N2 and 49% more than 

Cluster 3-N). Cluster N2 had 24 samples that were comprised of on average, 50% Oligochaeta 

(40% more than Cluster N1 samples and 41% more than Cluster N3 samples) (Table 2.2.). 

Two distinct reference assemblages were identified in the Southern Ecoprovince, named 

Cluster S1 (54 samples) and Cluster S2 (58 samples) (Figure 2.3). Cluster S1 reference samples 

were comprised of on average, 19% Hyalella (15% more than Cluster 2-S), 4% Leptoceridae (3% 

more than Cluster S2), and 2% Coenagrionidae and Neoplea (2% and 1% more than Cluster S2, 

respectively). Cluster S2 reference samples were comprised of on average, 48% Oligochaeta 

(36% more than Cluster S2 samples) (Table 2.3.). 

Group membership was effectively predicted by DFA models for samples in both the 

northern and southern ecoprovinces. In the northern ecoprovince the DFA model correctly 

classified 60 of 77 reference samples (Table 2.4), with 66% of samples being classified with ≥ 

60% probability of group membership. Six reference samples could not be included in model 
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development due to missing data related to presence of vegetation growth forms and aquatic 

vegetation types. Variables included in the classification model were those related to 

presence/absence of vegetation types and growth forms, hydrogeomorphology, and the Lake from 

which the samples were taken (Table 2.5). See Table 2.6 for descriptions of variable codes. 

In the southern ecoprovince the DFA model correctly classified 75 of 104 samples, with 

70% of samples being classified with ≥ 60% probability of group membership (Table 2.7). Eight 

samples could not be included in the DFA analysis due to missing habitat data (including 

presence of aquatic habitat types, presence of aquatic vegetation types and shoreline habitat 

variables).  Variables included in the classification model were those related to coastal wetland 

hydrogeomorphology, shoreline habitat and presence of submergent vegetation and sandy 

substrate (Table 2.8). A summary of resulting sample sizes at each preliminary stage of index 

development can be found in Appendix A. 

The classification models generated for the north and south were used to subsequently 

assign the non-reference sampling points to the most appropriate reference clusters. In the 

northern ecoprovince, 35 of the 249 test samples could not be classified into one of the reference 

groups due to missing plant growth form data. In the southern ecoprovince, 36 of the 228 test 

samples could not be classified because of missing shoreline habitat data. Classification functions 

used to classify test sites can be found in Table 2.9.  

Stressor Influences- Agricultural Land Use 

Agriculture ZACI Axis Structure 

The ZACI axes derived for agricultural stress (Ag-ZACI axes) in the northern 

ecoprovince extracted 32%, 21% and 12% of the original distance matrices in Clusters N1, N2 

and N3, respectively. Chironomidae was included in regression models as an indicator taxon in 

samples collected at sites at the reference end of Ag-ZACI axes in Clusters N1 and N2 and 

towards the degraded end of Cluster N3 (Table 2.10). Gammarus was also a significant taxon in 
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all three clusters, being most dominant in samples towards the degraded ends of the Ag-ZACI 

axes. The most important reference indicator taxa (based on highest standardized regression 

coefficients ± 1SE) were Chironomidae in Cluster N1 (ß = 0.52 ± 0.04), Oligochaeta in Cluster 

N2 (ß  = 0.57 ± 0.06) and Hydrobiidae in Cluster N3 (ß = 0.28 ± 0.05). The most important 

degraded indicator taxa were Gammarus in Cluster N1 and N3 (ß  = -0.44 ± 0.04 and  ß = -0.57 ± 

0.05; respectively) and Hydrobiidae in Cluster N2 (ß  = -0.36 ± 0.05).   

The Ag-ZACI axes derived for clusters in the southern ecoprovince extracted 21% of the 

original distance matrices in Cluster S1 and 14 % in Cluster S2. Oligochaeta was the most 

important indicator taxa in samples towards the degraded end of Ag-ZACI axes in both Cluster S1 

and S2 (ß = -0.40 ± 0.04 and ß = -0.59 ± 0.06; respectively). The most important reference 

indicator taxa were Hyalella in Cluster S1 samples (ß  = 0.62 ± 0.05) and Hydrobiidae in Cluster 

S2 samples (ß  = 0.29 ± 0.06; Table 2.10).  

Ag-ZACI vs. Watershed Agricultural Land Use 

Simple least-squares linear regression  relating Ag-ZACI scores to stress from all 

northern clusters identified highly significant, but relatively non-predictive negative relationships 

(Cluster N1: R2 = 0.41, p < 0.00002; Cluster N2: R2 = 0.25, p < 0.0002; Cluster N3: R2 = 0.32, p < 

0.00001). Cluster N1 and N2 Ag-ZACI scores were highly variable at reference levels of % 

agriculture (i.e. < 30%), ranging from 0.04 to 1.0 in Cluster N1 and from 0.30 to 1.0 in Cluster N2 

(Figure 2.4a and 2.5a). However, the upper values of Ag-ZACI reference site scores (those at 

wetlands with <30% agriculture) in Cluster N1 and N2 were all high - above 0.65 in Cluster N1 

and above 0.60 in Cluster N2. LOWESS curves fitted to data in Cluster N1 and N2 show 

discontinuities in the relationship between Ag-ZACI scores and % agriculture in the watershed. 

Quantile regression slopes fitted through a subset of samples in Cluster N1 and N2 exposed to < 

30% agriculture were not significantly different from zero (N1: p > 0.50, N2: p > 0.13) and were 

not different from each other (N1: p = 0.69, N2: p = 0.38). However, there was a lack of samples 
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with agriculture scores above 30% in these clusters so quantile regression-derived trends and 

potential thresholds could not be evaluated at non-reference levels of agriculture.  Cluster N3 Ag-

ZACI scores appeared to exhibit a somewhat wedge-shaped distribution across the % agriculture 

gradient (Figure 2.6a). Quantile regression slopes at upper percentiles (i.e. tau = 0.80, 0.90, 0.95) 

were similar to each other (p = 0.98) and differed significantly from the lower percentile slopes (p 

< 0.001) (Figure 2.7). 

Least squares regression relating Ag-ZACI scores to stress from both southern clusters 

identified highly significant, but non-predictive negative relationships (Cluster S1: R2 = 0.29, p < 

0.00001; Cluster S2: R2 = 0.34, p < 0.00001). Cluster S1 and S2 Ag-ZACI scores were highly 

variable but LOWESS curves fitted to data in each cluster show discontinuities in the relationship 

between Ag-ZACI scores and % agriculture in the watershed (Figure 2.8a, 2.9a). Quantile 

regression slopes fitted through a subset of samples in Cluster S1 exposed to < 55% agriculture 

were positive but not significantly different from zero (Figure 2.10a), and were similar to each 

other (p = 0.85). Above 55% agriculture in Cluster S1, quantile regression slopes became negative 

but again, they were not significantly different from zero, and were similar to each other (p = 

0.30; Figure 2.10b).  In Cluster S2, quantile regression slopes were negative throughout but below 

55% agriculture they were all highly significant (p < 0.001) and not significantly different from 

one another (p = 0.36), whereas above 55% agriculture the slopes were mostly not significantly 

different from zero or from each other (p = 0.18; Figure 2.11a,b). 

Stressor Influences- Development Stress 

Development ZACI Axis Structure 

The ZACI axes derived for development stress (i.e. Dev-ZACI axes) in the northern 

ecoprovince extracted 7.6%, 21%, and 18% of the original distance matrix in Clusters N1, N2 and 

N3 respectively. Chironomidae was included in regression models as the most important indicator 

taxon in samples collected at sites at  the reference end of the Dev-ZACI axes in Cluster N1 (ß = 
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0.50 ± 0.11) and towards the degraded end of both Cluster N2 and N3 (ß = -0.33 ± 0.05 and ß = -

0.45 ± 0.05 respectively; Table 2.11). Oligochaeta also appeared as a significant taxon in Cluster 

N1 being most dominant in samples towards the degraded end of the Dev-ZACI axis and as the 

most important reference taxon in Cluster N2 (ß = 0.74 ± 0.05). Hydrobiidae was a significant 

taxon in samples towards the reference end of the Dev-ZACI axis in Cluster N1 and was the most 

important  taxon in samples at the reference end of the Dev-ZACI axis in Cluster N3 (ß  = 0.50 ± 

0.05). 

The Dev-ZACI axes derived for clusters in the southern ecoprovince extracted 13% of the 

original distance matrix for Cluster S1 and 13% for Cluster S2. Only two taxa were important 

indicators in samples along the Dev-ZACI axis for Cluster S1: Hyalella towards the reference end 

(ß = 0.83 ± 0.05) and Hydrobiidae towards the degraded end (ß  = -0.33 ± 0.05; Table 2.10b). 

Hydrobiidae also appeared as the most important taxon in samples from Cluster S2 towards the 

reference end of the Dev-ZACI axis. Chironomidae was the most important indicator taxon in 

samples towards the degraded end of the Cluster S2 Dev-ZACI axis (Table 2.11).  

Dev-ZACI vs. Watershed Development Stress 

 Least-squares regression indicated significant but non-predictive negative relationships 

between biological condition and the MaxRel development stress gradient in all northern clusters 

(Cluster N1: R2 = 0.13, p < 0.04; Cluster N2: R2 = 0.41, p < 0.00001; Cluster N3: R2 = 0.23, p < 

0.00001). LOWESS curves fitted to plots in all clusters showed that trends were non-linear 

between Dev-ZACI scores and MaxRel stress (Figure 2.4-2.6b). Slopes of the quantile regression 

lines fitted through data in all clusters showed significant negative relationships with development 

stress at most of the percentiles tested. MaxRel stress appeared to limit the biological condition of 

samples in Cluster N3. The scatterplot showed a wedge-shaped relationship, and the slopes of the 

quantile regression lines differed significantly (p < 0.01) between the upper (0.90, 0.95) and lower 

(0.05, 0.10) percentiles (Figure 2.12). Slopes of the upper quantile lines (0.90, 0.95) were not 
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significantly different than the 50th quantile slope (p > 0.10) but the standard errors of the upper 

slopes were high, likely due to the sparsity of data at the upper quantiles. The slope of the quantile 

line through the 80th percentile had a much lower standard error and was found to be significantly 

different than the slope at the 50th percentile (p = 0.037).  

Visual inspection of each ZACI-stress plot suggests that there is a potential 

reference/non-reference threshold along the MaxRel stress gradient in each cluster located around 

the operational reference threshold of 0.08 MaxRel stress (Figures 2.4-2.6b). Above 0.08 MaxRel 

the minimum ZACI score shifts downward towards zero and the maximum ZACI score does not 

extend above 0.80 in any of the clusters. In addition, the scatterplot of Dev-ZACI scores in 

Cluster N2 appeared to show a stair-step pattern, with a second potential change-point around 

0.12-0.15 MaxRel, above which the maximum ZACI score was limited to 0.20 or less (Figure 

2.5b). In the subset of data below 0.12 MaxRel, slopes of quantile regression lines were not 

significantly different from zero, and were similar to each other (p > 0.10; Figure 2.13a). When 

fitted through data above 0.12 MaxRel, quantile regression slopes were still negative but were 

mostly non-significant, specifically the upper and lower quantile slopes). (Figure 2.13b). 

Dev-ZACI scores from both southern clusters were significantly negatively related to the 

MaxRel development stress gradient as indicated by least squares regression (Cluster S1: R2 = 

0.18, p < 0.0034; Cluster S2: R2 = 0.35, p < 0.00003). However, these relationships were non-

predictive and LOWESS curves fitted to both Cluster S1 and S2 showed non-linear trends 

between Dev-ZACI scores and MaxRel stress (Figure 2.8b, 2.9b). Scatterplots did not show 

wedge-shaped patterns and potential thresholds could not be evaluated due to large gaps between 

data points above the reference cut off. However, it should be noted that Dev-ZACI scores 

remained below 0.60 for samples collected from sites where MaxRel stress exceeded 0.20. 
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Stressor Influences- Combined Stress 

AgDev ZACI Axis Structure 

The ZACI index for combined stress was only developed for samples in Cluster N3 in the 

northern ecoprovince. The AgDev ZACI extracted only 9% of the original distance matrix. 

Gammarus accounted for most of the variation in AgDev ZACI scores and was the most 

important contributor to low ZACI scores (ß  = -0.70 ±0.05, p < 0.000). Physella and Hyalella 

both contributed to high ZACI scores, with Physella being the most important (ß  = 0.35 ±0.21, p 

< 0.001).  

AgDev ZACI vs. Combined Stress 

The AgDev ZACI was significantly negatively related to the combined stress gradient (R2 

= 0.41, p < 0.000) but a LOWESS showed that the relationship is actually non-linear below 0.30 

on the AgDev scale before decreasing linearly at higher levels of composite stress (Figure 2.14). 

Quantile regression slopes were all highly significantly different from zero (p < 0.001) but 

quantile lines through the upper and lower quantiles were similar to each other (p > 0.10; Figure 

2.15). The relationship between the independent stress gradients (% agriculture and MaxRel) and 

the composite AgDev ZACI axis was determined using multiple regression. Results showed that 

% agriculture gradient contributed the most to the composite ZACI (ß = -0.56, p < 0.001) and was 

the only stressor significantly correlated with AgDev ZACI. This was due to the shorter 

development stress axis (0.049 – 0.47 MaxRel) compared to the % agriculture stress axis (0 – 

82% agriculture). This resulted in % agriculture being the only stressor contributing to high 

composite AgDev scores.  
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Discussion 

Species Assemblages 

A cluster analysis of reference samples revealed distinct invertebrate assemblages among 

reference samples in both the northern and southern ecoprovinces. For example, in the northern 

ecoprovince samples from Cluster N1 were distinguished by a dominance of midge larvae 

(Chironomidae), which may indicate that these points were unsuitable for other taxa (either 

because of a lack of vegetation cover or unsuitable substrate). However, chironomids are a 

ubiquitous group that includes a variety of functional groups, including case building 

filterers/collectors, grazers, and predators (Merritt et al. 2008) so it is also possible that the 

chironomids in these samples simply outnumber the other taxa, which may be present at typical 

densities. In contrast, samples in Cluster N2 and S2 were dominated by oligochaete worms, which 

are burrowing detritivores. No single taxon dominated samples in Cluster N3 but samples in this 

cluster had a greater relative abundance of several taxa, including amphipods (gatherers)), snails 

(grazers) and mayflies of the genus Baetis (swimming and clinging gatherers).  Gatherers and 

detritivores dominated samples in many of the reference Clusters (e.g. Cluster N2, N3, S1 and S2) 

implying that these sites had a significant amount of vegetation supplying detrital food.  Cluster 

N2 and Cluster S2 samples had few taxa other than Oligochaeta, indicating a predominance of 

depositional habitat and organic substrate.   

Environmental Variables 

Northern Ecoprovince 

The dominant taxa in samples from each reference cluster have functional traits and 

habitat requirements that are dependent on local substrate and vegetation conditions. It was 

therefore expected that measured variables such as dominant substrate characteristics and 

presence of different vegetation types would be more important for distinguishing between 

clusters compared to larger scale variables such as lake or shoreline habitat. In the absence of 

human disturbance, hydrology and sedimentation are two main physical drivers in coastal 
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wetlands (Lee et al. 2006), influencing the types of substrates and plant communities that can 

occur (Keough et al. 1999). Brazner et al. (2007) also found that most of the variation in 

indicators of ecological condition derived from macroinvertebrate assemblages was explained by 

wetland type (as opposed to Great Lake, ecoprovince and human disturbance). So in addition to 

the proximate substrate and vegetation variables, it was expected that hydrogeomorphology may 

also be an important factor distinguishing the reference assemblages.  

The DFA model developed effectively distinguished among the groups of reference 

assemblages on the basis of habitat and environmental variables. Variables included in the 

discriminant model distinguishing reference clusters in the northern ecoprovince were 

hydrogeomorphic and vegetative in nature, as expected. However, dominant substrate 

characteristics were not identified in the DFA model for this ecoprovince. Whether or not broad-

leaf emergent vegetation was present near the sampling point was the most important variable in 

the model for distinguishing among the three unique reference assemblages. Other variables 

important in the DFA model included those related to the absence of aquatic vegetation (e.g. 

presence of open water habitat) as well as those related to the presence of certain plant growth 

forms (e.g. broad-leaf emergent and ribbon-like floating plants). Structural complexity and 

density of macrophytes have a positive influence on macroinvertebrate species richness (Burton et 

al. 2004; St. Pierre and Kovalenko, 2014) and invertebrate communities have been shown to 

differ significantly among types of plant zones (Burton et al. 2002; Uzarski et al. 2004; Gathman 

and Burton 2011).  

The high energy hydrogeomorphic variable was also included and indicates coastal sites 

subject to a high degree of wave exposure, resulting in habitats with relatively little organic 

matter,  and sandy or rocky substrates (e.g. boulder, cobble) (Burton et al. 2002). The macrophyte 

community at these sites is either non-existent (beach or rocky shoreline) or is composed of 

species able to resist wave disturbance (e.g. Typha and Scirpus spp.; Keough et al. 1999). Cluster 
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N1 contained the majority of the high energy sites and was very clearly distinguished from 

Clusters N2 and N3 by this variable. Samples in this cluster were dominated by Chironomidae, 

corroborating previous research stating exposed wetland zones are dominated by filtering-

collectors (Burton et al. 2002).     

Variables specifying lake of samples’ origin were also present in the model, indicating 

that invertebrate assemblages may be indirectly influenced by geography even within an 

ecoprovince. In a study of geographic and geomorphic influences on Great Lakes wetland multi-

assemblage indicators,  Brazner et al. (2007) found that lake had the strongest influence across all 

indicators (compared with wetland type and ecoprovince).  

Southern Ecoprovince 

In the southern ecoprovince, one of the most important variables in the model was the 

open coastal wetland hydrogeomorphic classification. Similarly to high energy shoreline, 

wetlands in this class have a direct, open connection to the lake but are characterized by the 

presence of distinct zones of submergent marsh, emergent marsh and wet meadow vegetation 

zones (Keough et al. 1999). Cluster S2 was composed almost entirely of sites located within open 

coast wetlands, whereas Cluster S1 was comprised of sites situated in barrier protected and 

drowned river-mouth wetlands. This is further evidence for the importance of hydrology and 

geomorphology on shaping wetland invertebrate communities. In contrast to open coast and high 

energy wetlands, wetlands protected from wave exposure accumulate organic matter resulting in 

organic sediments and, potentially, lower dissolved oxygen concentrations. Sandy substrate was a 

significant variable in the DFA model and was associated with Cluster S1 (open coast wetlands), 

supporting the concept that wetlands exposed to greater wave action are less prone to 

accumulating thick layers of organic substrate.  
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The most important variable distinguishing Cluster S1 from S2 was the type of shoreline 

habitat, specifically vegetated bank.  Shoreline type has been suggested to influence nearshore 

substrate composition and stability, thereby potentially having an effect on nearshore 

assemblages. However, Goforth and Carman (2005) found no difference in benthic assemblage 

structure among Great Lakes shoreline types and stated that shoreline type alone may not be 

enough to predict nearshore substrate features. The presence of a vegetated bank was highly 

predictive of sites in Cluster S2 and may be associated with the high number of riverine wetlands 

in this cluster.   

Stressor Influences 

Ag-ZACI Axis Structure 

Each ZACI axis represents a gradient of macroinvertebrate assemblages scored relative to 

two end-point assemblages representing reference and degraded assemblages. Multiple regression 

analysis identified taxa that were the important contributors to the Ag and Dev-ZACI scores for 

samples in each cluster. In all northern clusters, assemblages more similar to “degraded” 

endpoints had a greater abundance of Gammarus relative to other taxa. This was also true along 

the AgDev ZACI axis for Cluster N3. Previous studies have also found the proportion of 

amphipods to be indicative of a disturbed condition (Burton et al. 1999, Uzarski et al. 2004). 

Proportion of the family Gammaridae has been associated with more nutrient rich wetlands while 

proportion of Hyalellidae has been associated with more oligotrophic sites (Kostuk, 2006). 

Towards the reference end of the AgDev axis, Hyalella was a contributor to high ZACI scores, 

along with relative abundance of Physella a gastropod genus sensitive to dissolved oxygen 

concentrations (Brown, 2001). 

Chironomidae and Oligochaeta are often considered to be tolerant of disturbance and are 

often indicators of disturbed or eutrophic conditions. This is in contrast to my results in the 

northern ecoprovince where samples at the reference end of the Ag-ZACI axis had a high relative 
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abundance of Chironomidae in Cluster N1 and Oligochaeta in Cluster N2. However, % 

Tanytarsini and % Tanypodinae have been reported to decrease with eutrophy in some studies 

while % Chironomini and Orthocladinae tended to increase with eutrophic conditions (Kostuk 

2006; Kashian and Burton, 2000). It may be that the dominant chironomid subfamilies in samples 

from Clusters N1 are less tolerant to nutrient loading and this could explain the decrease in 

relative abundance with degraded Ag-ZACI scores. Since Chironomidae were not identified past 

family level in this study we could not formally investigate this hypothesis.  

Similarly, Oligochaeta were the most dominant taxon in reference assemblages in Cluster 

N2, contributing the most to high Ag-ZACI scores; but in the southern ecoprovince (Clusters S1 

and S2) they contributed the most to low Ag-ZACI scores. Oligochaete taxa vary in their 

tolerance to pollution and this concept has been used to develop an oligochaete based index 

(Oligochaete Trophic Index-OTI) which is used by EPA and SOLEC to assess trophic status of 

Great Lakes ecosystems (Millbrink, 1983). Increased eutrophication causes a shift in oligochaete 

communities to greater proportions of organic pollution-tolerant species, reflected in an increase 

in the OTI (Howmiller and Scott, 1977). OTI values calculated for nearshore Lake Erie were 

positively correlated with agricultural activity in the watershed in a recent study (Scharold et al. 

2015). It may be that reference assemblages in Cluster N2 are able to support pollution sensitive 

species while degraded assemblages in the southern ecoprovince are reflecting a shift to pollution-

tolerant assemblages at high levels of agricultural stress.  

Dev-ZACI Axis Structure 

Taxa contributing the most to high Dev-ZACI scores (indicative of reference 

assemblages) were the same as those contributing to high Ag-ZACI scores. This should be 

expected since reference centroids were constructed from samples with minimal levels of both 

agriculture and development stress. However, important indicator taxa in assemblages towards the 

degraded end of Dev-ZACI axes differed from those at the degraded end of the Ag-ZACI axes. 



42 
 

For example, among clusters in the northern ecoprovince, Gammarus and Hydrobiidae were the 

most important contributors to low Ag-ZACI scores but Chironomidae and Nematoda were the 

most important contributors to low  

Ag-ZACI vs. Agriculture Stress 

For each cluster, Bray-Curtis ordination was used to develop a Zoobenthic Assemblage 

Condition Index with which to assess the quality of samples (in terms of macroinvertebrate 

community composition) along two stressor gradients measuring the extent of anthropogenic 

land-use at the watershed scale. No threshold patterns were identified between the Ag-ZACI and 

percent agriculture in the watershed for any clusters in either ecoprovince. This is consistent with 

findings of Kovalenko et al. (2014) who did not find sufficient evidence of a threshold change 

along the agriculture stress axis for macroinvertebrate assemblages in coastal wetlands of the 

Great Lakes. Agricultural land cover in the watershed does not act directly on biological 

communities but rather indirectly through proximate drivers such as sedimentation of substrate, 

nutrient enrichment and reduced water quality (Riseng et al. 2011; Allan 2004). The effect of 

these proximate drivers may be expressed as a more gradual function of increasing agriculture 

than is observed with the effects of urban land use in the watershed, which often includes direct 

habitat destruction, shoreline modification, and an increasing extent of impervious surfaces (Allan 

2004, Lee et al. 2006). For this reason, perhaps community thresholds do not exist for 

macroinvertebrate assemblages along percent agriculture gradients in Great Lakes wetlands. In 

addition, the southern ecoprovince is characterized by longer history of agriculture and 

development compared to the northern ecoprovince (US EPA and Environment Canada,1995), 

which may explain the large variation in Ag-ZACI along the agriculture gradient in those clusters.    

Although no threshold responses were identified, non-linear negative relationships 

between the Ag-ZACI and percent agriculture were detected in the watersheds of both 

ecoprovinces. In the southern ecoprovince, the scatterplot of Cluster S2 samples showed a non-
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linear trend in which Ag-ZACI decreased linearly until about 55% agriculture, after which the 

slope of quantile regression lines decreased. This indicates that assemblages in Cluster S2 change 

steadily (in a linear fashion) at levels of agriculture below 55% land cover in the watershed. 

Above 55%, biological condition continues to decrease but at a slower rate. This implies that most 

of the changes to macroinvertebrate assemblages due to agriculture stress occur when less than 

55% of a watershed contains agricultural land cover, and levels of agriculture above 55% do not 

contribute much additional effect on macroinvertebrate assemblages in this cluster.  

The scatterplot of Cluster N3 samples showed a wedge-shaped pattern in relation to % 

agriculture, and slopes of the quantile regression lines in upper quantiles were significantly 

different from the slope in lower percentiles. This indicates that the upper limit of possible ZACI 

scores decreases as % agriculture in the watershed increases, but at low levels of agriculture it is 

possible to have a wide range of ZACI scores, likely due to other (unmeasured) habitat or stressor 

variables (see Cade et al. 1999).  

Dev-ZACI vs. Urban Development Stress  

Cluster N3 ZACI-Dev scores also exhibited a wedge-shaped pattern in relation to the 

development stress axis. There is previous empirical evidence for wedge-shaped relationships 

between urban land use and invertebrate metrics in streams (Baker and King, 2010; Kail et al., 

2012). For example, Kail et al. (2012) found that ecological status of macroinvertebrate 

assemblages in European rivers was limited by increasing urban land use in the upstream 

catchment.   

In all clusters, changes in community composition were evident at relatively low levels of 

MaxRel stress ( <0.10), with Cluster N2 showing a possible stair-step threshold response 

(Brendan et al., 2008) with ZACI-Dev scores limited to ≤0.20 at levels of development above 

0.15. This is consistent with threshold values reported for other aggregate community variables in 
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the literature, which seem to range from 8-16% urbanization (Stepenuck et al., 2002; Hilderbrand 

et al., 2010; King et al., 2011; Kail et al., 2012). However, taxon-specific threshold analyses 

indicate that many invertebrate taxa begin to decline in abundance at much lower thresholds (i.e. 

0.5%-5% development) in lotic environments (e.g. King et al., 2011; Kail et al., 2012). This 

sensitivity to development seems to hold true for taxa in Great Lakes coastal wetlands as well. 

Kovalenko et al. (2014) used Threshold Indicator Taxon Analysis (TITAN; Baker and King, 

2010) to identify community change points along a gradient of % developed land in the watershed 

and found congruent thresholds among wetland assemblages at 4-6% developed land.   

ZACI-Dev scores in the southern ecoprovince were negatively related to the MaxRel 

stressor gradient in a non-linear fashion in both clusters. All points above 0.20 MaxRel stress in 

Cluster S1, although sparse in number, remained below 0.60 on the ZACI-Dev axis, indicating a 

possible stair-step threshold response pattern similar to Cluster N2. However, whether threshold 

or wedge-shaped relationships exist in either Cluster S1 or S2 could not be determined because of 

a lack of data along the MaxRel gradient, where sites with intermediate stress scores were not 

sampled. 

Although some macroinvertebrate indices for assessing biological condition have been 

developed for Great Lakes coastal wetlands (e.g. Uzarski et al. 2004, Wilcox et al. 2002) they are 

mainly multimetric indices and are applicable to only limited areas. In this study I was able to use 

macroinvertebrate assemblages collected from across the U.S. Great Lakes basin to develop a 

multivariate index (ZACI) that can be theoretically be applied across the entire Great Lakes basin. 

The ZACI was used to assess how macroinvertebrate communities are affected by large-scale 

anthropogenic stress (represented by % agriculture in the watershed and a composite urban 

development stress gradient). Because the indices are based on both biological samples and 

environmental data collected across the full range of stress, they can be applied throughout the 
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Great Lakes basin, and results of this study show that the ZACI is capable of capturing variable 

responses of distinct assemblages to large-scale anthropogenic stress. 

It was expected that biological condition as measured by the ZACI would decrease non-

linearly in relation to increasing land-use stress in both the north and south portions of the basin. 

This prediction was supported in a number of clusters where macroinvertebrate assemblage scores 

exhibited non-linear changes as a function of the amount of both agriculture and development 

sourced anthropogenic stress. Clusters representing distinct types of macroinvertebrate 

assemblages were identified and the responses to each stress gradient varied among clusters. 

Cluster N2 showed the only potential threshold relationship in this study, exhibiting a stair-step 

pattern that indicates a shift to a degraded condition at relatively low levels of development stress. 

This type of result can be especially valuable for management that seeks to prevent degradation at 

vulnerable sites and restoration activities seeking to reverse degradation (Host et al. in review).  

The other notable patterns were wedge-shaped relationships between ZACI and stress in 

Cluster N3 as evidence that watershed land use can act as a limiting factor for macroinvertebrate 

community composition in some wetlands. In addition, despite a long history of agriculture and 

development in the southern ecoprovince, a clear non-linear relationship was found between 

biological condition and % agriculture in one cluster (Cluster S2).   It has been suggested that 

inferring community response aggregate community metrics confounds the synchronous yet 

variable responses of individual taxa (King and Baker, 2010; King et al., 2011), underestimating 

or masking thresholds. However, one could argue that responses derived from aggregate metrics 

and indices could be interpreted as changes in ecosystem function, while taxon-specific changes 

serve as thresholds for species conservation (Kail et al. 2012, Kovalenko et al. 2014).  

In a number of clusters in the northern ecoprovince, evaluation of the stress-ZACI 

relationship was limited by a lack of samples with intermediate and high levels of either stress 

type. The GLEI consortium evaluated land use variables for over 6000 segment-sheds across the 
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Great Lakes basin (Host et al. 2005). When plotted against their agriculture and development 

stress scores, sites do exist in the northern ecoprovince that have intermediate and high stress 

scores (Figure 2.16). Future surveys that propose to use the ZACI in the northern ecoprovince 

may need to focus efforts on including samples from segment-sheds subject to intermediate and 

high levels of agriculture and development stress. In addition, the Euclidean composite stress 

gradient was biased towards agricultural stress in the cluster of samples examined (Cluster N3) 

and the AgDev ZACI was derived using a similar degraded endpoint to the Ag-ZACI. 

Consequently, the AgDev ZACI may not have captured the contributing effect of development 

stress in this cluster. The combined effect of agriculture and development stress on the 

macroinvertebrate assemblages in Cluster N3 is assessed further in Chapter 3.    

Multivariate analysis of samples collected across the reference-degraded continuum was 

able to generate indices that change significantly as a function of anthropogenic stress related to 

agriculture and development. The key indicator taxa were Chironomidae, Oligochaeta, 

Hydrobiidae, and amphipod genera (Gammarus and Hyalella). The novelty of this suite of indices 

is that, unlike previous studies that were geographically restricted, they can be used to assess all 

coastal margins of the U.S. Great Lakes. However, further data are needed at intermediate levels 

of stress. Data recently collected through the Great Lakes Coastal Wetland Monitoring Program 

(Uzarski et al. 2016) cover these levels of stress and may ultimately be able to provide 

confirmatory data.  
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Tables and Figures 

Table 2.1.  Mean relative abundance of significant taxa delineating reference clusters in the 

northern ecoprovince at the first bifurcation of a cluster analysis dendrogram (see Figure 2.2). F-

values were calculated from the ratio of among-group Mean squares to within-group Mean 

squares for each taxon. Column N1+N2: Mean relative abundance of each taxon in samples from 

Clusters N1 and N2 combined. Column N3: Mean relative abundance of each taxon in samples 

from Cluster N3.  

 

    Mean Relative Abundance 

Taxa F-Ratio N1+N2 N3 

Chironomidae 59.48 0.41 0.12 

Oligochaeta 29 0.29 0.087 

Gammarus 12.8 0.010 0.063 

Baetis 10.51 0.0024 0.026 

Physella 10.41 0.0024 0.045 

Hydrobiidae 9.62 0.017 0.084 

Aeshnidae 8.73 3.4E-05 0.016 

Hyalella 7.61 0.0094 0.047 
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Table 2.2. Mean relative abundance of significant taxa delineating reference clusters in the 

Northern Ecoprovince at the second bifurcation of a cluster analysis dendrogram (see Figure 2.2). 

F-values were calculated from the ratio of among-group Mean squares to within-group Mean 

squares for each taxon.  

 

    Mean Relative Abundance 

Taxa F-Ratio N1 N2 

Oligochaeta 132.49 0.095 0.50 

Chironomidae 49.76 0.60 0.26 
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Table 2.3. Mean relative abundance of significant taxa delineating reference clusters in the 

Southern Ecoprovince (see Figure 2.3). F-ratios were calculated from the ratio of among-group 

Mean squares to within-group Mean squares for each taxon.  

 

    Mean Relative Abundance  

Taxa F-Ratio S1 S2 % difference 

Oligochaeta 218.6 0.12 0.48 36 

Hyalella 40.2 0.19 0.03 16 

Coenagrionidae 17.8 0.02 0.00 2 

Leptoceridae 12.98 0.04 0.01 3 

Neoplea 7.2 0.02 0.01 1 
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Table 2.4. Summary of the number of sites from the northern ecoprovince predicted to be in each 

cluster by discriminant function model based on 12 habitat variables (see Table 2.5). 

 

    Observed   

  % Correct Cluster N1 Cluster N2 Cluster N3 Total 

Cluster N1 67 12 3 3 18 

Cluster N2 70 3 16 4 23 

Cluster N3 89 2 2 32 36 

Total 78 17 21 39 77 
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Table 2.5. Habitat variables included in a DFA model for classification of samples from the 

northern ecoprovince into three clusters (N = 76). Significant variables are in bold. All variables 

included in classification models are binary variables representing a presence (value of one) or 

absence (value of zero) of each habitat/environmental feature. For a description of variable 

abbreviations see Table 2.6. 

Variables 

 
Wilks’ 
Lambda 

 
F-ratio Significance 

Level 

gformE-BL 0.49 4.7 p < 0.01 

Michigan 0.46 2.73 p < 0.07 

Superior 0.46 2.64 p < 0.08 

aqvegOP 0.46 2.54 p < 0.09 

gformNONE 0.46 2.32 p < 0.10 

gformFL-R 0.46 2.30 p < 0.11 

habitatEM 0.46 2.25 p < 0.11 

He 0.46 2.10 p < 0.13 

aqvegEM 0.45 1.92 p < 0.16 

aqvegSU 0.44 1.31 p < 0.27 

gformS-CD 0.44 0.91 p <  0.41 

habitatOW 0.44 0.76 p < 0.47 
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Table 2.6. Habitat variable abbreviations and their descriptions. Note: this table does not contain 

every habitat variable measured, it only shows variables that were included in classification 

models. 

Category Abbreviation Description 

Aquatic Habitat 

habitatEM Presence/absence of emergent aquatic habitat. 

habitatOW Presence/absence of open water aquatic habitat. 

habitatMES 
Presence/absence of mixed submergent and emergent aquatic 

habitat. 

habitatFL Presence/absence of floating leaf aquatic habitat. 

gformE-BL 
Presence/absence of broad-leaf emergent vegetation growth 

forms. E.g. Typha 

gformNONE Absence of aquatic vegetation growth forms. 

gformFL-R 
Presence/absence of floating ribbon vegetation growth forms. 

E.g. Valisneria 

gformS-CD 
Presence/absence of canopy-forming, dissected leaf 

submergent growth forms. E.g. Myriophyllum. 

aqvegOP 
Presence/absence of open water within a surrounding 5m 

radius. 

aqvegEM 
Presence/absence of emergent vegetation within a 

surrounding 5m radius. 

aqvegSUB 
Presence/absence of submergent vegetation within a 

surrounding 5m radius. 

Sand Primary sediment characteristic is sand. 

Mud Primary sediment characteristic is mud. 
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Table 2.7. Summary of the number of reference samples from the southern ecoprovince predicted 

to be in each cluster by a discriminant function model based on 4 habitat variables (see Table 2.8).  

 

Observed  

  % Correct Cluster S1 Cluster S2 Total 

Cluster S1 96 51 2 53 

Cluster S2 47 27 24 51 

Total 72 78 26 104 
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Table 2.8. Habitat variables included in a DFA model classifying samples from the southern 

ecoprovince into two clusters (N = 99). Significant variables are in bold. All variables included in 

classification models are binary variables representing a presence (value of one) or absence (value 

of zero) of each habitat/environmental feature. See Table 2.6 for variable descriptions.  

 

Variable 
 

Wilks’ Lambda 
 

F-ratio Significance Level 

slhabVB 0.88 27.1 p < 0.00001 

Cw 0.86 24.2 p < 0.00003 

slhabHUMAN 0.80 16.0 p < 0.0001 

Sand 0.73 5.62 p < 0.02 
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Table 2.9. Classification function coefficients used to classify test sites to a reference assemblage 

cluster on the basis of habitat and environmental variables (See Table 2.6 for variable 

descriptions). To classify new samples, calculate probability of group membership (‘P’) for each 

cluster by plugging values from the table into the following formula: P = C0 + C1X1 +C2X2+ 

...CnXn; where Ci are the coefficients for each variable in the model and Xi is the observed value 

of each variable. Blank cells indicate where each variable was not included in the classification 

model.  

 

 

  Northern Ecoprovince Southern Ecoprovince 

Cluster N1 N2 N3 S1 S2 

Constant -17.5 -19.9 -16.6 -4.4 -7.3 

Superior 11.1 14.3 13.4     

Michigan 10.2 12.5 10.1     

Ontario       2.3 0.7 

He 6.3 19.5 7.9     

Cw       -0.6 -5.4 

habitatOW 9.0 7.7 6.4     

habitatEM 9.1 11.9 11.9     

habitatMES       -0.5 0.7 

habitatFL       0.9 -0.7 

gformE-BL -1.1 -4.1 -4.8     

gformFL-R 4.0 6.0 3.7     

gformNONE 15.3 10.6 12.7     

gformS-CD 3.3 1.9 2.4     

aqvegOP -4.1 0.8 0.6     

aqvegSU 15.7 17.4 15.4 1.4 3.2 

aqvegEM 2.1 -0.4 1.3     

slhabVB       4.6 9.3 

slhabHUMAN       4.7 8.3 

Mud       0.2 1.5 

Sand       3.9 5.7 
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Table 2.10. Raw regression coefficients (± 1 SE) of important taxa loading on ZACI axes for use 

in predicting ZACI scores based on agriculture stress for new datasets. Entries in bold are taxa 

contributing the most to high ZACI scores (i.e. positive coefficients) and low ZACI scores (i.e. 

negative coefficients). Note: Coefficients should be multiplied by the Ln-transformed relative 

abundance of each taxon on the sample. 

 

  
Northern Ecoprovince Southern Ecoprovince 

ZACI-N1 ZACI-N2 ZACI-N3 ZACI- S1 ZACI-S2 

Constant 0.49 ± 0.03 0.40 ± 0.05  0.52 ± 0.03 0.52 ± 0.04 0.69 ± 0.05 

Chironomidae 0.77 ± 0.07 0.44 ± 0.09 -0.70 ± 0.08 -0.32 ±  0.08   

Gammarus -1.0 ± 0.09  -0.87 ± 0.20  -0.80 ± 0.07 -0.42 ± 0.09   

Caecidotea -0.92 ± 0.12        1.24 ± 0.56 

Oligochaeta   0.76 ± 0.08   -0.70 ± 0.08 -0.97 ± 0.11 

Hydrobiidae   -1.0 ± 0.15 0.62 ± 0.11   3.07 ± 0.60 

Hyallela     0.63 ± 0.14 1.11 ± 0.08   

Corixidae     0.37 ± 0.12 -0.46 ± 0.09   

Physella     0.75 ± 0.28     

Aeshnidae     1.61 ± 0.43     

Acari         1.04 ± 0.29 

Leptoceridae         3.40 ± 1.21 

Caenis         -0.57 ± 0.17 

Planorbidae         1.16 ± 0.30 

Neoplea         1.77 ± 0.55 
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Table 2.11. Regression coefficients (± 1 SE) of indicator taxa for use in predicting ZACI scores 

based on development stress for new datasets. Entries in bold are taxa contributing the most to 

high ZACI scores (i.e. positive coefficients) and low ZACI scores (i.e. negative coefficients). 

Note: Coefficients should be multiplied by the Ln-transformed relative abundance of each taxon 

on the sample. 

 

  
Northern Ecoprovince Southern Ecoprovince 

ZACI-N1 ZACI-N2 ZACI-N3 ZACI- S1 ZACI-S2 

Constant 0.39 ± 0.09 0.33 ± 0.04 0.63 ± 0.02 0.23 ± 0.02 0.77 ± 0.04 

Chironomidae 0.74 ± 0.17 -0.54 ± 0.08 -0.44 ± 0.05   -0.94 ± 0.14 

Nematoda -2.15 ± 0.48       -1.53 ± 0.29 

Hydrobiidae 2.11 ± 0.72   0.88 ± 0.09 -1.71 ± 0.29 4.1 ± 0.68 

Oecetis -9.90 ± 2.61         

Oligochaeta -0.31 ± 0.15 1.10 ± 0.07       

Physella   -1.39 ± 0.29 1.22 ± 0.20     

Caenis   0.55 ± 0.23       

Hyallela       1.65 ± 0.11 -1.19 ± 0.27 

Gammarus          -0.69 ± 0.24 

Lymnaeidae         49.8 ± 13.2 

Helobdella         20.4 ± 7.64 
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Figure 2.1. Example of how the composite stress index AgDev is calculated. The AgDev index is 

calculated as the Euclidean distance from the origin to any given point on the x,y plane of % 

agriculture and MaxRel development stress indices. i.e. 𝐴𝑔𝐷𝑒𝑣 =  √𝐴𝑔2 + 𝐷𝑒𝑣2. 
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Figure 2.2. Dendrogram of reference sampling points (n = 83) from Ecoprovince 212 grouped 

according to Ln-transformed relative abundances of invertebrate species using Ward`s method of 

amalgamation and a Euclidean distance measure.  

 

  

0 1 2 3 4 5

Euclidean Distance

828_23S
1497_13S
1497_12S
1497_13E

828_23E
1497_12E
1497_11E

644_22E
11390_23E

828_11S
828_12S
828_24S
828_12E

1035_23E
1035_12S
1034_22S
1035_11S
1035_11E
1035_24E
1034_14E
7057_15E

644_13E
162_35E
162_34E
162_13E
162_11E
644_14S
644_13S
162_22S
951_12E
162_22E

1034_21S
1034_21E
1034_14S

11389_12E
644_14E
828_24E

1034_13S
951_11E

1514_13S
11378_13S

1035_12E
1514_12E
1033_22S
7057_21S

11377_11E
11408_12S

7057_16S
162_26E

7057_15S
7057_14S
7057_16E
1033_22E
7057_21E

162_35S
162_34S
162_26S
951_11S

7057_14E
1033_21S
1035_23S
1033_14S

11390_23S
11390_11E

7057_22E
11389_24E
11389_23E
11379_12E

828_11E
11362_12E

644_21S
644_21E

11389_11S
1497_11S

11408_12E
1034_22E

951_12S
162_11S

11408_11E
1033_14E
1033_13S
1033_21E
1033_13E

Cluster N1

Cluster N3

Cluster N2



60 
 

 

 

 

 

 

Figure 2.3. Dendrogram of reference sampling points from ecoprovince 222 (n = 112) grouped 

according to Ln-transformed relative abundances of invertebrate species using Ward`s method of 

amalgamation and a Euclidean distance measure. 
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Figure 2.4. Scatterplots of samples in Cluster N1 showing the relationship between the agriculture and development Zoobenthic Assemblage 

Condition Index (ZACI) scores and land use stress indices. A) Ag-ZACI in relation to percent agriculture in the watershed for sampling points with 

development stress below 0.10 MaxRel (n= 37). B) Dev-ZACI in relation to MaxRel development stress for sampling points with % agriculture 

below 10% (n= 32). Low ZACI scores indicate a biological assemblage most similar to the assemblage at the ‘degraded’ centroid, where stress is 

greatest. High ZACI scores indicate an assemblage more similar to the ‘reference’ centroid, where percent agriculture is lowest. Vertical dashed 

lines indicate the operational reference cut-offs. Least squares regression functions indicated by solid lines (A: Ag-ZACI = 0.92-1.60*(%Ag); B: 

Dev-ZACI = 0.66-0.61*(Dev)) and LOWESS curves indicated by dotted lines. 
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Figure 2.5. Scatterplots of samples in Cluster N2 showing the relationship between the agriculture and development Zoobenthic Assemblage 

Condition Index (ZACI) scores and land use stress indices. A) Ag-ZACI in relation to percent agriculture in the watershed for sampling points with 

development stress below 0.10 MaxRel (N= 43). B) Dev-ZACI in relation to MaxRel development stress for sampling points with % agriculture 

below 10% (N= 40). Low ZACI scores indicate a biological assemblage most similar to the assemblage at the ‘degraded’ centroid, where stress is 

greatest. High ZACI scores indicate an assemblage more similar to the ‘reference’ centroid, where stress is lowest. Vertical dashed lines indicate 

the operational reference cut-offs. Least squares regression functions indicated by solid lines (A: Ag-ZACI = 0.80-0.77*(%Ag); B: Dev-ZACI = 

0.63-1.37*(Dev)) and LOWESS curves indicated by dotted lines. 
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Figure 2.6. Scatterplots of samples in Cluster N3 showing the relationship between the agriculture and development Zoobenthic Assemblage 

Condition Index (ZACI) scores and land use stress indices. A) Ag-ZACI in relation to percent agriculture in the watershed for sampling points with 

development stress below 0.10 MaxRel (N = 100). B) Dev-ZACI in relation to MaxRel development stress for sampling points with % agriculture 

below 10% (N= 96). Low ZACI scores indicate a biological assemblage most similar to the assemblage at the ‘degraded’ centroid, where stress is 

greatest. High ZACI scores indicate an assemblage more similar to the ‘reference’ centroid, where stress is lowest. Vertical dashed lines indicate 

the operational reference cut-offs. Least squares regression functions indicated by solid lines (A: Ag-ZACI= 0.52-0.78*(%Ag); B: Dev-ZACI = 

0.46-1.0*(Dev)) and LOWESS curves indicated by dotted lines. 
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Figure 2.7. The same Ag-ZACI scores (y) as Figure 2.6A as a function of % agriculture, but the 

lines plotted are (from the bottom) 5th, 10th, 20th, 50th, 80th, 90th and 95th quantile regression 

estimates as well as the least squares regression line. Slopes for regression quantiles (± 1SE) 

range from b(0.05) = - 0.32 ± 0.11 to b(0.95) = -0.100 ± 0.17.  
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Figure 2.8. Scatterplots of samples in Cluster S1 showing the relationship between the agriculture and development Zoobenthic Assemblage 

Condition Index (ZACI) scores and land use stress indices. A) Ag-ZACI in relation to percent agriculture in the watershed for sampling points with 

development stress below 0.10 MaxRel (N= 102). B) Dev-ZACI in relation to MaxRel development stress for sampling points with % agriculture 

below 30% (N= 37). Low ZACI scores indicate a biological assemblage most similar to the assemblage at the ‘degraded’ centroid, where stress is 

greatest. High ZACI scores indicate an assemblage more similar to the ‘reference’ centroid, where percent agriculture is lowest. Vertical dashed 

lines indicate the operational reference cut-offs. Least squares regression functions indicated by solid lines (A: Ag-ZACI = 0.75-0.65*(%Ag); B: 

Dev-ZACI = 0.48-0.53*(Dev)) and LOWESS curves indicated by dotted lines.
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Figure 2.9. Scatterplots of samples in Cluster S2 showing the relationship between the agriculture and development Zoobenthic Assemblage 

Condition Index (ZACI) scores and land use stress indices. A) Ag-ZACI in relation to percent agriculture in the watershed for sampling points with 

development stress below 0.10 MaxRel (N= 68). B) Dev-ZACI in relation to MaxRel development stress for sampling points with % agriculture 

below 30% (N= 51). Low ZACI scores indicate a biological assemblage most similar to the assemblage at the ‘degraded’ centroid, where stress is 

greatest. High ZACI scores indicate an assemblage more similar to the ‘reference’ centroid, where percent agriculture is lowest. Vertical dashed 

lines indicate the operational reference cut-offs. Least squares regression functions indicated by solid lines (A: Ag-ZACI = 0.72-0.57*(%Ag); B: 

Dev-ZACI = 0.72-0.56*(Dev)) and LOWESS curves indicated by dotted lines. 
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Figure 2.10. Relationship between Ag-ZACI and % agriculture for two subsets of the 102 samples from Cluster S1 with % agriculture < 0.55 (A) 

and % agriculture > 55% (B). Lines plotted are quantile regression estimates for the 5th, 10th, 20th, 50th, 80th, 90th, and 95th percentiles of data, as 

well as the least-squares regression line. Slopes of quantile lines (± 1SE) range from A) b(0.05) = 0.99 ± 0.7 to b(0.95) = 0.63 ± 0.34 and B) 

b(0.05) = -0.55 ± 0.26 to b(0.95) = -1.05 ± 0.96. 
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Figure 2.11. Relationship between Ag-ZACI and % agriculture for two subsets of the 68 samples from Cluster S2 with % agriculture < 0.55 (A) 

and % agriculture > 55% (B). Lines plotted are quantile regression estimates for the 5th, 10th, 20th, 50th, 80th, 90th, and 95th percentiles of data, as 

well as the least-squares regression line. Slopes of quantile lines (± 1SE) range from A) b(0.05) = -1.27 ± 0.38 to b(0.95) = -1.07 ± 0.29 and B) 

b(0.05) = -0.05 ± 0.30 to b(0.90)= - 1.01 ± 0.84. 
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Figure 2.12. The same Dev-ZACI scores (y) as Figure 2.6B as a function of the MaxRel stress 

gradient, but the lines plotted are (from the bottom) 5th, 10th, 20th, 50th, 80th, 90th and 95th 

quantile regression estimates as well as the least squares regression line. Slopes for regression 

quantiles (± 1SE) range from b(0.05) = - 0.14 ± 0.08 to b(0.95) = -1.70 ± 0.40. 
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Figure 2.13. Relationship between Dev-ZACI and MaxRel stress for two subsets of the 53 samples from Cluster S2 with MaxRel stress < 0.12 (A) 

and MaxRel > 0.12 (B). Lines plotted are quantile regression estimates for the 5th, 10th, 20th, 50th, 80th, 90th, and 95th percentiles of data, as well as 

the least-squares regression line. Slopes of quantile lines (± 1SE) range from A) b(0.05) = - 5. 26 ± 3.22 to b(0.95) = - 5.03 ± 2.66 and B) b(0.05) = -

0.15 ± 0.37 to b(0.95)= - 0.46 ± 0.21. 
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Figure 2.14. AgDev ZACI in relation to the composite stress index for sampling points in Cluster 

N3 (N = 100). Low ZACI scores indicate a biological assemblage most similar to the assemblage 

at the ‘degraded’ centroid, where stress is greatest. High ZACI scores indicate an assemblage 

more similar to the ‘reference’ centroid, where stress is lowest. Least squares regression function 

is indicated by the solid line (AgDev ZACI = 0.68-0.76*(AgDev)) and LOWESS curve indicated 

by the dotted line. 
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Figure 2.15. The same AgDev ZACI scores (y) as Figure 2.14 as a function of the composite 

AgDev stress gradient, but the lines plotted are (from the bottom) 5th, 10th, 20th, 50th, 80th, 90th and 

95th quantile regression estimates as well as the least squares regression line. Slopes for regression 

quantiles (± 1SE) range from b(0.05) = - 0.64 ± 0.11 to b(0.95) = - 0.81 ± 0.10. 
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Figure 2.16. Development (MaxRel) and % agriculture stress index scores generated by the GLEI 

project (Johnson et al. 2015) for 2423 GLEI segment-sheds in the northern ecoprovince of the 

U.S. Great Lakes basin. Sites with intermediate to high stress scores (denoted with dashed boxes) 

exist along the % agriculture gradient as well as the MaxRel gradient. 
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Introduction 

Coastal ecosystems of the Great Lakes are subject to a variety of stressors (Brazner et al. 

2007, Danz et al. 2005).  In order to effectively manage coastal ecosystems in the face of 

increasing anthropogenic stress, there is a need for the ability to accurately describe and reliably 

predict the effects of multiple stressors on biological condition. This has prompted a shift of focus 

from studies of individual stressors, to those of cumulative impacts of multiple, simultaneous 

stressors with more recent attempts to combine the effects of watershed-based stressors 

(Environment Canada and US EPA, 2014; Brown et al. 2016; Smith et al. 2015). However, our 

current capacity to predict the effects of multiple stressors is limited (Downes, 2010). Assessing 

multiple stressor impact is made difficult by the sheer number of stressors affecting any one 

ecosystem, as well as potential interactions among stressors that result in unexpected effects. In 

the Great Lakes alone, dozens of stressors from different classes of human impact co-occur in the 

basin (Danz et al, 2005; Allan et al. 2013; Smith et al. 2015). This translates to the potential for 

hundreds of two-way or higher level interactions to influence the way that organisms respond to 

these stressors (Christensen et al. 2006). 

The effects of stressor interactions can be classified as synergies or antagonisms. A 

synergy is an interaction where the combined impact of two or more stressors on a response 

variable is more than an expected combined effect calculated from the estimated impacts of the 

individual stressors alone. Synergies are of particular concern to researchers because of the 

potential for this interaction to magnify stressor impacts, accelerating degradation of ecosystems 

(Paine et al. 1998). An interaction is classified as an antagonism when the net effect of multiple 

stressors produces a response that is smaller than the effect estimated from individual sources of 

stress.  

Predicting cumulative impacts and identifying interactions among multiple stressors is 

further complicated by the fact that different null models can be used to calculate the expected 
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cumulative effect. The interpretation of multiple stressor interactions (and the operational 

definitions of synergism and antagonism) depends on which of the null models is assumed. Three 

general models can be used to evaluate interactions among multiple stressors: the additive, 

multiplicative and comparative effects models (Folt et al. 1999).  

Comparative effects model- A comparative effects model predicts that the cumulative 

effect of multiple stressors is equal to the effect of the strongest or dominant stressor (Bruland et 

al. 1991). Leibig’s law of the minimum describes a similar situation for effects of limiting 

nutrients on plant growth (Haefner, 2005). Only the nutrient that is the most limiting affects 

growth at any one time. Similarly, when the strongest stressor is exerting an effect, lesser stressors 

have no additional impact. When assuming the comparative effects model, synergism and 

antagonism occur when the cumulative effect is greater or less than, respectively, the effect of the 

single greatest stressor.  

Additive effects model- This is the most commonly assumed model in studies of multiple 

stressor interactions. If the stressors in a set are independent (i.e. they do not interact) then the 

cumulative effect should be the sum of the individual effects. However, if there are interactions 

among multiple stressors the cumulative effect may be greater than or less than the sum of their 

individual effects (i.e. synergism and antagonism, respectively).  

Multiplicative effects model- This model is applicable when stress from one source can be 

further operated upon by another source. The multiplicative null model predicts that the combined 

effect is approximately equal to the product of the individual effects. Synergism and antagonism 

occur when the combined effect is greater than or less than the product of individual effects, 

respectively. 

The type of interactions identified can vary depending on which of the above models is 

used to calculate the null effect. For example, the impact of multiple stressors predicted by a 



82 
 

comparative effects model tends to be smaller than the predicted impact under an additive model. 

Therefore, the combined effect of two stressors could be labeled as an antagonism under the 

additive model when in reality the combined effect is comparative. This could be an important 

consideration for conservation and management assessments since the response is actually driven 

by a single, important stressor. 

Previous work to assess the influences of multiple stressors includes many factorial 

experiments investigating the combined effect of two or more specific stressors on a variety of 

ecological responses.  Examples include the combined effects of high temperature, toxins and low 

food on zooplankton populations (Folt et al. 1999), effluent concentration and low DO on 

mayflies (Lowell and Culp, 1999), nutrients and organic matter on food web properties 

(O’Gorman et al. 2012) and water quality, thermal regime and invasive species on zooplankton 

communities (Palmer and Yan, 2013) to name just a few.  

Instead of trying to identify and label the outcome of every multiple stressor combination 

(a limitless task), a focus on identifying generalities about ecosystems and stressor responses 

could be more useful for conservation and management. For example, identifying responses to 

stressors that require different management interventions or are relevant to different conservation 

goals (Pearsall et al. 2013) would be a more useful exercise. Clearly, describing the combined 

effect of two specific stressors requires enough knowledge of the system and the mechanisms in 

order to choose an appropriate null model. Misspecification of the null model can lead to 

misinterpretation of stressor interactions. Many researchers assume the additive null model 

without stating support for the decision (Folt et al. 1999), including the examples mentioned 

above. Focusing on a subset of data from Chapter 2, this chapter uses three approaches as a proof 

of concept to assess how sources of watershed land-use stress may combine and interact to 

influence macroinvertebrate community condition. The influence of combined stress on the ZACI 

was visualized using scatterplots in Approach 1 and response surface estimation in Approach 2. 
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The third approach was used to identify whether there is evidence of interaction between the two 

major sources of stress summarized by the Ag and MaxDev indices. I expected the combined 

effects of agriculture and development stress on macroinvertebrate community composition to be 

greater than the effects of each stress type alone; in particular I expected to find evidence of a 

synergistic interaction. If effective, these approaches could be used to diagnose when cumulative 

effects occur and ultimately provide information useful for mitigating the effects of agriculture 

and development on biota at Great Lakes coastal margins. 

Methods of Assessment  

Approach 1: Comparison of ZACI-index scores at sites with single-stress to sites subject to 

combined stress 

This approach involves observing how ZACI scores are influenced when samples 

collected from sites exposed to a single stressor are compared to scores for samples collected 

from locations having both stresses. For example, the Ag-ZACI index developed in Chapter 2 was 

derived from samples collected from locations with agriculture only (low development stress, or 

MaxRel scores < 0.10). The question is, how do Ag-ZACI scores differ for a particular level of 

agriculture if the site is also subject to development stress? To answer this question I used the Ag-

ZACI index coefficients (see Table 2.10) to calculate Ag-ZACI scores for samples collected from 

Cluster N3. I then classified sites as being affected by agriculture only (those with MaxRel stress 

scores <0.10) and sites subject to MaxRel stress > 0.10. The classified sites were then plotted on a 

graph of Ag-ZACI vs. % agriculture. The same procedure was repeated with the Dev-ZACI 

scores to determine how Dev-ZACI scores change when % agriculture is > 10 in the watershed. If 

the ZACI scores of samples from locations having both agriculture and development stress are 

generally lower than the ZACI score for samples with individual stressor types this may indicate 

the presence of possible additive or non-additive (i.e multiplicative) negative cumulative effects. 

If one observes greater ZACI scores at samples with combined stress, this could indicate a 
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possible antagonism. If there are no differences in ZACI scores for sites that occur in locations 

with combined stress, this could also indicate antagonism or a possible comparative effect.  

Approach 1 Results 

There were marked differences in Ag-ZACI scores of samples that have MaxRel scores < 

0.10 and samples that have MaxRel scores > 0.10 (Fig. 3.4). The Ag-ZACI scores vs. % 

agriculture in watershed for samples with MaxRel development stress > 0.10 were lower (i.e. 

more degraded) than were the scores for samples from locations with an equivalent amount of 

agricultural stress but < 0.10 MaxRel stress. Below the agriculture reference threshold the Ag-

ZACI scores for samples with > 0.10 MaxRel remained below 0.60 for all levels of % agriculture. 

However, the converse was not true. When Dev-ZACI scores were plotted on a graph of Dev-

ZACI vs. MaxRel stress, samples with > 10% agriculture remained within the distribution of 

samples with < 10% agriculture (Fig. 3.5). 

Approach 2: ZACI score Surface-response estimation using Non-Parametric Multiplicative 

Regression 

Non-parametric multiplicative regression (NPMR) models were used to estimate 

community response (measured by ZACI scores) to the simultaneous effects of two predictors - 

amount of agriculture (percent) and development in the watershed (MaxRel stress). Non-

parametric multiplicative regression estimates a two-dimensional response surface using a 

multiplicative kernel smoother with a local mean estimator and Gaussian weighting function 

(McCune, 2006).  The goal of this analysis was to determine the extent to which including a 

multiplicative estimator could describe the ZACI response surface and whether changes in ZACI 

scores were gradual or showed evidence of thresholds in 3-dimensional space (Lintz et al. 2011).  

 Individual response surface values are estimated using information borrowed from 

observed response values nearby in the predictor space. The observed values are weighted (using 

a Gaussian weighting function) by their proximity to the target point. Weights for each observed 

value are calculated by taking the product of weights for individual predictors, thereby 
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automatically including interactions. The final estimate of the response at a target point is the 

average of the weighted observed values. The tolerance of a response variable to a continuous 

predictor is a measure of how broadly we need to borrow information from nearby in the predictor 

space. The neighborhood size is the amount of data contributing to each estimate of the response 

variable. A minimum neighborhood size can be set to protect against estimates where there is 

insufficient data.  

NPMR in HyperNiche 

The software HyperNiche (McCune and Mefford, 2009) performs NPMR as an iterative 

search to select predictors and maximize fit. Predictor variables are added in forward stepwise 

fashion and the software does a grid search at each step. Leave-one-out cross validation is always 

included in model fitting and evaluation to reduce overfitting. Other overfitting controls include 

setting a minimum acceptable average neighborhood size, setting an improvement criterion, and 

setting a minimum data:predictor ratio. Larger minimum average neighborhood sizes (producing 

stiffer curves) are needed with small data sets or clumped data distributions.  Improvement 

criterion refers to a percentage improvement in model fit when a new predictor is added and 

setting a minimum data: predictor ratio prevents fitting models with too many predictors 

compared to sample units.  

Model Evaluation 

After a free search of all possible NPMR models, the fit of each model is evaluated by the 

size of the residual sum of squares (RSS) compared to the total sum of squares (TSS) (McCune, 

2006), resulting in a cross-validated R2 (i.e. xR2): 

xR2 = 1- (RSS/TSS) 

The relative importance of each predictor in the chosen model can be evaluated with a 

sensitivity analysis. This involves nudging values of each predictor up or down and measuring the 

resulting change in response variable. The greater the sensitivity (denoted with ‘Q’) the more 
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influence that predictor has in the model. A sensitivity of Q = 1.0 means that on average, nudging 

a predictor results in a change in response of equal magnitude. A sensitivity of Q = 0 means that 

the predictor has no influence on the response variable in the model (McCune, 2006).  

Statistical significance of a selected model is evaluated by randomization tests where the 

response values are shuffled and the same model fitting procedure is applied and the resulting fit 

is calculated. The procedure tests the null hypothesis that the fit of the selected model is no better 

than could be obtained by chance alone, given an equal number of predictors (McCune, 2006). 

The proportion of randomization runs that result in an equal or better fit is used as the p-value for 

the test.  

The response variables used in this analysis were Ag-ZACI and Dev- ZACI scores for 

samples in Cluster N3 from the northern ecoprovince. Each ZACI response variable was modeled 

separately in response to two simultaneous predictors- % agriculture and development (MaxRel) 

stress gradients. 

Approach 2 Results 

Ag-ZACI Response to Multiple Stressors 

A free search for all possible models was conducted using conservative over-fitting 

controls, including a large minimum acceptable average neighborhood size of 28.4 and an 8% 

improvement criterion. The free search resulted in a list of 277 models. The best model fitted 

included both of the stressor predictor variables (%Ag and MaxRel) and had a cross-validated R2 

(xR2 ) of 0.40, which is relatively weak. Tolerance of the % agriculture and MaxRel predictors 

was 0.288 and 0.021, respectively. Results of the sensitivity analysis revealed that on average, 

MaxRel was a more influential predictor (Q = 2.47) than was % agriculture (Q = 0.20). A 

randomization test was performed with 40 runs and none of the randomization runs had a fit equal 

to or better than the observed fit (p = 0.024). 
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A contour plot of the estimated response of Ag-ZACI shows that Ag-ZACI scores decline 

with increasing amounts of both agriculture and MaxRel development stress (Fig. 3.6.). However, 

Ag-ZACI appears to decrease more sharply in response to the MaxRel stress gradient. Slices 

through the data at several levels of % agriculture show that around 0.10 MaxRel the rate of 

decrease actually slows when % agriculture is above 40%. However, as MaxRel increases above 

0.12 the decline in Ag-ZACI is greater with increasing % agriculture (Figure 3.7).   

Dev-ZACI Response to Multiple Stressors  

A free search with minimum acceptable average neighborhood size of 31.20 and an 8% 

improvement criterion resulted in 263 possible models. The best model fitted to both predictors 

had an xR2 of 0.22 and predictor tolerances of 0.37 and 0.021 for % agriculture and MaxRel 

respectively. The sensitivity analysis revealed that on average, % agriculture was much less 

influential in the model compared to MaxRel (Q = 0.091  and Q = 2.53 , respectively). A 40-run 

randomization test revealed that the selected model did not occur by chance alone (p = 0.024). 

Visualized on a contour plot, the model estimates a decrease in Dev-ZACI scores with 

increasing MaxRel development stress (Figure 3.8.). When slices of the model are examined there 

seems to be a potential antagonism at levels of development between 0.08 and 0.15 where 

increasing levels agriculture cause an increase in Dev-ZACI (i.e. an increase in estimated 

biological condition). However, above 0.15 MaxRel there is a sharp decrease in Dev-ZACI, at all 

levels of % agriculture (Figure 3.9).  

Approach 3: Ordination approach to delineating Isopleths distinguishing Reference from 

Nonreference conditions. 

This approach involves two stages of assessment: the first follows the Reference 

Condition Approach (RCA) for evaluating the boundaries of the range of natural variation 

(reference condition) and then determining the degree of deviation of a test site from the 

Reference Condition (Bailey et al. 2004). Taxa relative abundance in samples collected from 
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reference and test locations  corresponding to Cluster N3 were combined into a single data set, 

comprised of  161 sampling points (36 of which were reference sites and 125 of which were test 

sites) and Ln-transformed relative abundances of 48 taxa. A Bray-Curtis polar ordination was 

conducted in species space along two axes. The variance-regression method of endpoint selection 

was used because it tends to exclude outliers. The Sorensen (Bray-Curtis) distance measure was 

used and both axis projection geometry and residual distances were measured in Euclidean 

distances. A scatterplot of the Axis 1 and 2 ordination scores for each sample was created, and an 

80% confidence ellipse was drawn around the reference samples. The choice of an 80% 

confidence ellipse was subjective, but it provided the polygon that best enclosed all reference sites 

while excluding test sites.   If samples fall within the 80% confidence ellipse the assemblage in 

those samples is within the range of assemblages characteristic of the Reference Condition and 

are classified as “equivalent to reference”. Samples situated outside the range of variability in 

reference assemblages (i.e. outside the ellipse) are classified as “not equivalent to reference”. The 

purpose of this part of the approach is to determine which test samples have assemblages that are 

equivalent to and not equivalent to the assemblages in reference samples.  

The samples thus classified were then plotted on an agriculture (X-axis) vs. MaxRel (Y-

axis) stress graph to illustrate the degree to which the two classes of samples (reference/ 

nonreference) are separated or interspersed with respect to the stress gradients. Plotting the 

sample classes on the stress axes allows one to determine if there is a consistent graph-spatial 

distinction between sites that are equivalent-to-reference vs. not-equivalent-to-reference that can 

be explained by levels of anthropogenic stress. If one can identify an isopleth that separates the 

two “states” along the stress axes, one may be able to infer whether there is evidence of 

interactions by the shape of reference-nonreference isopleth. If the isopleth is a straight line 

(Figure 3.1a) it would imply the stressors combine independently to exert their effect. If the 

isopleth function is convex, this implies antagonism since the boundary between ref/non-ref is 
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farther away from the origin than occurs if the stress effects are additive (Figure 3.1b). Similarly, 

a concave line isopleth implies that there is a synergism because it takes less of each stressor for 

communities to become non-reference (Figure 3.1c).  

Approach 3 Results 

The 2-axis polar ordination extracted a total of 33% of the variation in the original 

distance matrix with Axis 1 extracting 22% and Axis 2 accounting for 11% of variation. Axis 1 

represented a gradient of samples ranging in composition from those with high relative abundance 

of Chironomidae or Oligochaeta to samples with high relative abundance of Gammarus. Axis 2 

represented a gradient of samples with high relative abundance of Chironomidae to samples with 

high relative abundance of Hyalella and Corixidae. Of 125 test samples, 54 fell within the 80% 

confidence ellipse encircling the reference samples (Figure 3.2) and thereby were classified as 

“equivalent to reference”.  

When classified samples were plotted on the agriculture-development stress graph, it was 

found that multiple samples collected from within the same site overlapped because stress scores 

are assigned at the site level (i.e. samples from the same site all have the same stress scores). 

Therefore, any separation between samples classified as reference and those classified as non-

reference may be hidden by this overlap. After examining the classifications of samples taken 

from the same sites it was found that the majority (e.g. 2/3, 4/5, etc.) of samples at a site had the 

same classification. Consequently, the predominant classification within each site was illustrated 

in the plot of % agriculture vs. MaxRel (Fig 3.2). 

An isopleth line was drawn by eye to separate the group of sites closest to the origin that 

consisted entirely of “equivalent to reference sites” (Figure 3.3). All sites that were subject to 

agriculture levels less than 30% and had MaxRel score of 0.08 or less were classified as 

equivalent to reference because these sites were the TITAN reference sites designated a priori. 

Above 0.08 MaxRel and 22% agriculture, site classifications are mixed but there were more sites 
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classified as “equivalent to reference” than “non-reference”. Sites located in watersheds subject to 

high levels of stress (above 0.30 MaxRel and 45% agriculture) were all classified as “not 

equivalent to reference”. A second isopleth was drawn to enclose all the reference sites and to 

connect the levels of each stressor at which the state of all sites became “not equivalent to 

reference”. The shape of both hand drawn isopleths tended towards convex (Figure 3.1b), 

implying the effects of combined land use are antagonistic rather than independent. However, 

there were too few sites draining watersheds with a significant combination of both agriculture 

and development to allow a formal statistical test to be performed. 

Discussion 

Approach 1: Combined Stress ZACI Plots  

Samples from watersheds with > 0.10 MaxRel development had lower Ag-ZACI scores 

than samples from watersheds with the same degree of agricultural stress but with < 0.10 MaxRel 

development. This suggests that the existence of significant amounts of development in a 

watershed further reduces zoobenthic community condition above an effect of agriculture alone. 

In contrast, the addition of > 10% agriculture did not lower the Dev-ZACI scores below the range 

of samples with <10% agriculture. Together, these results indicate that agriculture and 

development follow a comparative effects model for assemblages in this cluster, whereby the 

presence of agriculture in a watershed has no additional detrimental effect when significant 

amounts of development are present. This finding has significant implications for managing 

watersheds in which both agriculture and development are present. If a watershed has a 

development score of over 10% it may be most effective to implement management practices that  

mitigates the impacts of development, even if there is a greater amount of agricultural land cover 

in the watershed (Walsh et al. 2005, Withey et al. 2012; Brown et al. 2014). This adds support to 

other studies that have also found urban development to be the more severe stressor compared to 

agricultural land use (Kovalenko et al. 2014; King and Baker, 2011). Development stress can be 
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more severe (especially for coastal zones) because of direct habitat destruction and degradation 

and shoreline modification (Lee et al. 2006).  

Approach 2: Nonparametric Multiplicative Regression 

The NPMR model estimating Ag-ZACI scores in response to both stressors revealed that Ag-

ZACI was broadly tolerant to % agriculture in the watershed (tolerance = 0.288) compared to 

MaxRel (tolerance = 0.021). This, in addition to the sensitivity analysis indicated differences in 

MaxRel scores to have more influence on the Ag-ZACI than % agriculture. This was also true for 

the Dev-ZACI model. These results corroborate the findings of the previous approach and suggest 

that although agriculture by itself has an effect on macroinvertebrate communities, development 

stress has a greater impact when it is present.  

Contour and slice plots indicated that both agriculture and development have an effect on 

ZACI scores only at levels of development below 0.20 MaxRel. Above 0.20 MaxRel stress, 

agriculture had no additional effect on either Ag or Dev ZACI scores. Interestingly, at certain 

levels of MaxRel stress (~ 0.10-0.15) there seems to be a mitigating effect of % agriculture. In 

particular, the Dev-ZACI response model (Figure 3.8) predicted greater values of the Dev-ZACI 

index at greater % agriculture values when MaxRel scores were in the range of 0.10-0.15. 

However, examination of the group of samples likely contributing to the estimate of the response 

at high levels of % agriculture suggests that the positive effect of agriculture on Dev-ZACI 

between 0.10 and 0.15 MaxRel could be an artifact of the different indicator taxa used for 

calculating ZACI scores. Analyses presented in Chapter 2 (Table 2.11), indicate that the taxon 

contributing the most to high Dev-ZACI scores in Cluster N3 was Hydrobiidae, while 

Chironomidae contributed the most to low Dev-ZACI scores. From Table 2.10, the taxon 

contributing the most to low Ag-ZACI scores (i.e. degraded Ag-ZACI scores) was Gammarus. 

The samples with levels of MaxRel between 0.10-0.15 and high levels of agriculture were 

composed of high relative abundances of Gammarus followed by Hydrobiidae, with low relative 
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abundances of Chironomidae. Therefore, these sites may have scored low Ag-ZACI scores 

because of a predominance of Gammarus but the higher Dev-ZACI scores may reflect the 

presence of Hydrobiidae and a low relative abundance of chironomids.  

Approach 3: Reference/Non-Reference Isopleths 

In this approach, I identified two potential cumulative stress thresholds denoted by 

isopleths in Figure 3.2. The isopleth, closest to the origin, separated low-stress locations within 

which all faunal assemblages were equivalent-to-reference sites from higher- stress locations 

(some of which supported equivalent-to-reference assemblages and others of which contained 

fauna characteristic of non-reference locations). The TITAN thresholds for single classes of stress 

used in this study were identified by Kovalenko et al. (2014) as estimated levels of stress at which 

abundance of many sensitive species began to decline. The first isopleth might be representative 

of the sensitive species threshold, beyond which the abundance of sensitive species continues to 

decline but the condition has not yet become fully degraded. As sensitive species continue to be 

replaced by stress tolerant species, the assemblages approach a second threshold (the second 

isopleth), which is the TITAN-identified point at which assemblages become dominated by 

tolerant species (degraded). At levels of stress above 0.30 MaxRel and 45% agriculture, all sites 

were classified as “not equivalent to reference”. Whether these samples are truly degraded is 

unknown because the degree to which assemblages deviated from the reference condition was not 

quantified.  

The limited number of sites that are subject to combined levels of stress also made 

identifying interactions difficult, and the isopleths were drawn arbitrarily. However, identifying 

points at which communities are no longer reference and points at which communities become 

degraded is useful for managing the effect of cumulative stress before specific interactions are 

teased out. The level of combined stress at which declines in abundance of sensitive taxa begin to 

occur would be of use for the conservation of biodiversity or specific taxa (Johnson et al. 2015). 
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In addition, the point at which all communities are no longer reference is an important threshold 

for setting restoration targets and priorities for sites that are in danger of crossing the non-

reference/degraded threshold (Johnson et al. 2015). 

Summary 

This chapter used three approaches for assessing effects of cumulative stress to determine 

how watershed scale agriculture and development combine to influence macroinvertebrate 

communities at Great Lakes coastal margins. Each approach provided a different subset of 

information regarding multiple stressor effects.  The first approach used the ZACI developed for 

individual stressors in Chapter 2 and assessed changes in the ZACI scores when both stress types 

are present. Approach 1 compared the values of ZACI scores from singly-stressed sites with those 

subject to combined stress. This approach was expected to illustrate the combined effects of the 

two stress classes. Findings using this approach indicated that ZACI index score patterns were 

consistent with a comparative effects model, with urban development being the dominant or more 

severe source of stress. If both Ag-ZACI and Dev-ZACI scores had been reduced in samples 

subject to combined stress it would have indicated a greater effect than the individual stressors 

alone. However, the presence of development generally lowered the Ag-ZACI scores, but the 

presence of agriculture did not influence Dev-ZACI scores. When one does not know how 

stressors may act in combination, or which null model to assume, this approach can be used to 

eliminate some of the possibilities and help to develop expectations.  However, this approach can 

only indicate the direction of combined effect, i.e. positive (antagonism) or negative (additive, 

multiplicative, synergy) and could not distinguish additive from synergistic effects, for example. 

The second approach, NPMR, is a promising tool for exploring the effect of multiple 

stressors because it is able to estimate the response to multiple predictors simultaneously, without 

making any a priori assumptions about the shape of the response surface. This is especially 

important when knowledge of the system is limited. A disadvantage of multiplicative kernel 
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smoothers is that results do not include a functional equation of the model but the pattern of the 

resulting NPMR model can aid in determining a suitable parametric model. Furthermore, 

mathematical approaches for quantifying thresholds from n-dimensional response surfaces have 

been developed (e.g. Lintz et al. 2011). However, both the absence of clear thresholds and the 

sparsity of data representing combined manifestations of stress prevented our use of the 

methodology proposed by Lintz et al. (2011). This method was able to portray the relationship 

between macroinvertebrate assemblage condition and land use stress in finer detail than was 

evident in the first approach. Results of this approach confirmed the finding of Approach 1 that 

development stress is a more severe source of stress for assemblages in Cluster N3. Although 

development was the more influential predictor, % agriculture continued to add to the combined 

effect, even interacting antagonistically between 0.10 and 0.20 MaxRel. Once MaxRel stress 

reached 0.20, it became the dominant predictor of both the Ag-ZACI and Dev-ZACI. The relative 

contribution of each type of stress and at which point a stressor becomes dominant was not 

evident from the analysis using Approach 1.  

However, the fit of NPMR models was relatively poor. This may be because sample-level 

ZACI values were used as a response to site-level predictor variables. In other words, more than 

one response value corresponded to a single combination of predictor values. Consequently, the 

response values (ZACI scores) at any one observed point in the predictor space was sometimes 

quite variable and could not be explained well by the stress gradients.  

Approach 3 was able to provide the level of each individual stressor that may result in a 

change of status from “reference” to “not equivalent to reference” or from “not equivalent to 

reference” to “degraded”. These thresholds of condition are valuable for multiple sets of 

conservation goals such as biodiversity conservation or ecological restoration. The pattern of 

isopleths meant to indicate stressor interactions were most consistent with a convex function 

(Figure 3.1B). However there is a need for more data at intermediate levels of both stress types. 
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This approach depends on having a sample size large enough not only to span the range of each 

independent stress axis, but also to include sufficient data points that reflect exposure to both 

stressors simultaneously. This is difficult to achieve in terms of land-use in the Great Lakes 

because the amounts of agriculture and development in a watershed tend to be inversely 

correlated (Kovalenko et al. 2014). For example, watersheds with significant proportions of 

agricultural land cover often have only small amounts of urban development.  

Conclusions 

 Evidence for a dominant stressor effect (following the comparative effects model) was found 

with two out of three approaches employed. This is in contrast to the hypothesized additive effect 

with a possible synergism. Most multiple stressor studies assume that stressors combine 

additively, and define any resulting interactions in relation to an additive null model (Cote et al. 

2016). However, multiple stressor effects can exhibit complex behaviour with varying response 

patterns of biota in different locations in the predictor space (Lintz et al. 2011). This was 

demonstrated in Approach 2 where development stress was found to be more severe than 

agriculture but development isn’t completely dominant until after 0.20 MaxRel. Linear additive 

models may not have detected those changes in response. Overall, each of these three approaches 

appear to have value in assessing the relative importance of independent stressors on the 

zoobenthic composite indices derived for Cluster N3. Consequently, there is value in applying 

these values to other indices, or for data in other Great Lakes regions for which sufficient data 

exist.  
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Tables and Figures 

Figure 3.1.A) Demonstration of isopleth functions of the linear form distinguishing between 

reference and non-reference, as well as between non-reference and degraded thresholds in relation 

to agriculture and development stress. An observed linear isopleth implies that the two sources of 

stress combine independently of one another (Ciborowski, unpublished).  
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Figure 3.1.B) Demonstration of isopleth functions of the convex form distinguishing between 

reference and non-reference, as well as between non-reference and degraded thresholds in relation 

to agriculture and development stress. Convex forms of the isopleths indicate antagonistic effects 

of combined stress (Ciborowski, unpublished).  
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Figure 3.1.C) Demonstration of isopleth functions of the concave form distinguishing between 

reference and non-reference, as well as between non-reference and degraded thresholds in relation 

to agriculture and development stress. Concave forms of the isopleths indicate a possible 

synergistic effect of combined stress (Ciborowski, unpublished).  

 

  



99 
 

 

 

 

Figure 3.2. Bray-Curtis polar ordination of reference samples (filled circles) and test samples 

(open circles) in Cluster 3N along two axes in species space. The dashed line is the 80% 

confidence interval of the reference samples. Test samples falling within the ellipse are classified 

as “equivalent to reference” on the basis of their community composition. Important taxa 

loadings on each axis are labeled. 
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Figure 3.3. Sites plotted according to their levels of watershed agriculture and development and 

classified  as reference or non-reference assessed from a Bray-Curtis polar ordination (see Fig. 

3.1). Isopleths are mapped to demonstrate potential interactions between agriculture and 

development stress. The first isopleth (solid line) is entirely composed of “equivalent to 

reference” sites whereas the second isopleth (dashed line) is the biggest line encompassing the 

reference sites.  
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Figure 3.4. Agriculture based ZACI scores derived from samples in Cluster 3N plotted against 

the % agriculture stress gradient. Black circles (open and closed) represent reference and test 

samples from locations having MaxRel development scores < 0.10. Ag-ZACI scores were 

predicted for samples from locations with > 0.10 MaxRel development stress using the Ag-ZACI 

function for Cluster 3N found in Table 2.10 and are plotted here as stars. The vertical dashed line 

represents the operational reference threshold of 30% agriculture identified by Titan analysis 

(Kovalenko et al. 2014). 
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Figure 3.5. Development-based ZACI scores derived from samples in Cluster 3N plotted against 

the MaxRel development stress gradient. Black circles (open and closed) represent reference and 

test samples from locations having percent agriculture < 10% in the watershed. Dev-ZACI scores 

were predicted for samples from locations with > 10% agriculture using the Dev-ZACI function 

for Cluster 3N found in Table 2.11 and are plotted as open triangles. The vertical dashed line 

represents the operational reference threshold of 0.08 MaxRel identified by Titan analysis 

(Kovalenko et al. 2014). 

 

  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Dev elopment Stress (MaxRel)

0.0

0.2

0.4

0.6

0.8

1.0
D

e
v
-Z

A
C

I

 Ref erence Samples

 Samples with > 10% agriculture

 Non-Ref erence Samples



103 
 

Figure 3.6. Non-parametric multiplicative regression model of Ag-ZACI scores as a function of % Agriculture and MaxRel stress (cross-validated 

R2 = 0.40). Estimates of response were calculated using a local mean estimator with a Gaussian weighting function. Observed Ag-ZACI scores 

from Cluster 3N were used in model development. Countour lines connect points with equal Ag-ZACI scores (indicated with numerals).  Lighter 

shading indicates higher Ag-ZACI scores and therefore, an assemblage more similar to a reference condition. The shading gradient is more 

pronounced, and spacing between isopleths is narrower in the vertical (Development) dimension than the horizontal dimension (Agriculture) 

implying that a unit of development stress has a greater effect on Ag-ZACI scores than a unit of agricultural stress.  
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Figure 3.7. Estimated biological condition (as measured by Ag-ZACI) as a function of the MaxRel development stress gradient at different 10 

different levels of % agriculture in the watershed modeled using non-parametric multiplicative regression.  



105 
 

Figure 3.8. Non-parametric multiplicative regression model of Dev-ZACI scores predicted by % agriculture and MaxRel development (cross-

validated R2 = 0.48). Estimates of response were calculated using a local mean estimator with a Gaussian weighting functions. Observed Dev-

ZACI scores from Cluster 3N were used in model development. Lighter shading indicates higher Dev-ZACI scores and therefore, an assemblage 

more similar to a reference condition. The shading gradient is more pronounced, and spacing between isopleths is narrower in the vertical 

(Development) dimension than the horizontal dimension (Agriculture) implying that a unit of development stress has a greater effect on Ag-ZACI 

scores than a unit of agricultural stress. 
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Figure 3.9. Estimated biological condition (as measured by Dev-ZACI) as a function of the MaxRel development stress gradient at 10 different 

levels of % agriculture in the watershed modeled using non-parametric multiplicative regression. 
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CHAPTER 4 

 

 

GENERAL DISCUSSION 
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The goal of this thesis was to assess the independent and combined effects of watershed land-use 

stress on macroinvertebrate community condition at Great Lakes coastal margins. I derived a new 

composite, multivariate Zoobenthic Assemblage Condition Index with which to relate assemblage 

composition to two classes of land-use- agriculture and urban development.  

Multivariate techniques for the assessment of aquatic communities in streams are well 

established in countries such as the U.K. (RIVPACS, Wright, 1995), Australia (AUSRIVAS, 

Parsons and Norris, 1996; Nichols et al. 2014) and Canada (BEAST, Reynoldson et al. 1995; 

Strachan et al. 2014). These techniques employ the reference condition approach (Karr 1981; 

Bailey et al. 2004) whereby test sites are compared to a suite of sites in the reference condition 

locations representing the range of variability in biological condition at locations subject to the 

least amount of disturbance. Deviation in community composition (or surrogate measures thereof) 

from the reference condition is used as a measure of impact. However, in the absence of a 

complementary degraded condition, these techniques are only able to determine deviation from 

reference, and not proximity to degraded (Ciborowski et al. 2013; Johnson et al. 2015). The 

Reference-Degraded Continuum (RDC) approach applied in this study extends the RCA by 

establishing a complementary “degraded” biological condition defined as the range of variability 

in biological condition at test sites subject to the highest amount of disturbance. The two extremes 

form a continuum along which the position of test site biota can be assessed (Ciborowski et al. 

2013). This approach provides information on the position of each assemblage relative to both the 

reference and degraded endpoints, allowing an ordinal rather than probability-based evaluation of 

biological condition. 

 In this study the use of the RDC approach generated indices that varied significantly as a 

function of watershed agriculture and development related stress. Macroinvertebrate indices 

previously developed for Great Lakes coastal wetlands include multimetric IBIs developed in 

limited geographic ranges and for specific plant zones (Burton et al. 1999; Uzarski et al. 2004; 
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Gathman et al. 2011). Other assessments of macroinvertebrates such as the National Coastal 

Condition Assessment (NCCA, Scharold et al. 2015) pertain to the entire Great Lakes basin but 

relate to benthic communities of nearshore zones rather than wetlands or coastal margins. The 

indices generated in this thesis are unique in that they can theoretically be applied to coastal 

margins across the U.S. Great Lakes and can likely be extrapolated to coastal margins in 

Canadian waters.  It was expected that macroinvertebrate community condition would be 

negatively affected by both agriculture and development stress but that responses would be non-

linear. Many bioassessment studies relate biotic indices and metrics to disturbance using some 

form of linear model (e.g. Lunde and Resh, 2012; Minns et al. 1994; Karr, 1991; Danz et al. 

2007). Findings from Chapter 2 corroborated expectations, with several distinct assemblages 

exhibiting negative, non-linear relationships with both % agriculture and development stress in 

the watershed. These findings have implications for the appropriateness of linear-based models 

for relating community condition to disturbance gradients. 

  Land-use stress was also observed to limit biological condition in one cluster of 

assemblages (Cluster N3) eliciting wedge-shaped patterns of index scores. The land-use stress 

gradients used in this study are surrogates rather than the stressors per se (Danz et al. 2005; 

Brazner et al. 2007; Johnson et al. 2015). Accordingly, other unmeasured variables representing 

proximal sources of stress are likely influencing biological condition, e.g. water quality, wave 

action, water level fluctuation. (Cooper et al. 2014). Limiting factor relationships (those creating 

wedge-shaped stress-effect patterns) are of interest to managers because they imply that large-

scale pressures such as watershed land-use potentially constrain the effects of restoration 

measures (Palmer et al. 2010) rather than directly control them. 

In contrast to expectations, strong threshold relationships were not apparent between 

macroinvertebrate assemblage composition and land-use stress, although one assemblage 

exhibited some evidence of a change-point along the development stress gradient.  There is 
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previous evidence that composite response variables (metrics and indices) are unable to 

distinguish the large, synchronous decline in sensitive taxa from the gradual increase in tolerant 

taxa that occurs along a disturbance gradient (Baker and King, 2010). Evidence for synchronous 

declines in the abundance of sensitive taxa at points on the development stress gradient have been 

reported for assemblages in wetlands of the U.S. Great Lakes, especially in the northern 

ecoprovince (Kovalenko et al. 2014).  The ZACI, being a composite community index may not 

have reflected these taxon-specific changes. 

In Chapter 3 we investigated the utility of three approaches as proofs of concept to assess 

how the combined influences of watershed-based agriculture and urban development may affect 

the macroinvertebrate communities at coastal margins. It was expected that combined stress 

would reduce biological condition more than independent effects of each stressor alone (i.e. 

additive or synergistic effects). Contrary to expectations, two of three approaches displayed 

patterns suggesting that cumulative land-use stress follows a model similar to the comparative 

effects model (Folt et al. 1999) where a dominant, single stress type (development) was 

responsible for most or all of the effect on biological condition. Urban development exerts severe 

impacts on stream communities (Walsh et al. 2005), and negative threshold effects have been 

observed at very low levels of impervious cover and urban land use (King et al. 2011; Kail et al. 

2012). Urban development stress commonly affects coastal wetlands through modification of 

hydrological processes and direct habitat alteration (Lee et al. 2006). Disturbances related to 

urban development can also introduce additional drivers of stress. For example, fragmentation of 

forested wetland habitat not only causes changes in native plant community composition, but also 

creates the opportunity for invasive plant species to become established (Faulkner, 2004). In 

contrast, agriculture exerts impacts through less direct mechanisms (e.g. non-point source 

pollution and sedimentation) that could be mediated if best-management practices are in place.  
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Where there is a greater amount of agriculture compared to urban development in a 

watershed, it is easy to assume that agriculture stress is dominant and therefore should receive 

most of the mitigation efforts. However, our findings in Chapter 3 suggest that the most spatially 

extensive stress type is not necessarily the most severe. Non-parametric multiplicative regression 

models predicted strong effects of development, even when much of the watershed was allocated 

to agriculture in the watershed. This supports our use of the TITAN identified thresholds which 

estimated changes in abundance of sensitive taxa at lower levels of watershed development 

compared to agriculture (Kovalenko et al. 2014). The severity of impact from urban development 

may also be related to the location of the stress in the watershed. Whereas agriculture may occur 

throughout a watershed, urban centers may be more concentrated at river mouths and shorelines 

thereby exerting greater amounts of stress per unit area relative to agriculture.  Therefore, when 

setting management priorities it may be important to consider whether or not the really 

predominant source of stress is in fact the most severe or else risk wasting time and resources.  

This also has implications for the development of cumulative stress indices. Current 

attempts to combine measures of stress in for the Great Lakes include additive indices (e.g. 

Watershed Stress Index, Host et al. 2011), cumulative impact mapping (Allan et al. 2013) and 

other models such as the application of Euclidean distance calculate the AgDev index (Johnson et 

al. 2015). A simple sum of individual stress scores may not accurately reflect the true impact on 

biota if the stresses do not combine additively. If a single stress type is dominant (i.e. comparative 

effects- additional stresses have little to no effect), an additive index would overestimate the 

expected impact on biota. The AgDev composite index developed by the Great Lakes 

Environmental Indicators consortium (GLEI, Johnson et al. 2015) uses Euclidean distance, which 

more closely mimics the comparative effects model by giving greater weight to the stress with the 

higher independent stress score.  Therefore, it may be a more accurate representation of expected 

impact than simple summation when one stress type dominates the effect. However, in cases 
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where both stresses affect biological condition but one is much more severe (as in our NPMR 

models) independent stress indices may need to be weighted according to their relative influence 

when being combined.   

The use of point-level abundance data in this study was a source of added variability in 

ZACI scores that was not explained well by the land-use stress gradients. Assemblages collected 

from the same wetland site (therefore having the same stress scores) often had varying ZACI 

scores, in part reflecting the local habitat differences within the wetland at which they were 

collected. This is further evidence that macroinvertebrate communities are sensitive to within-site 

variation in habitat (e.g. plant zonation, Uzarski et al. 2004; Gathman and Burton, 2011).  

However, the added variability likely contributed significantly to the relatively poor fit of the least 

squares regression functions in Chapter 2 and the NPMR models in Chapter 3. A further 

limitation was an insufficient amount of data available from sites situated at intermediate and high 

levels of stress. This was a problem predominantly in clusters from the northern ecoprovince but 

also for values of the MaxRel development gradient in the southern ecoprovince. Watershed 

agriculture and urban development land-use are two of the main sources of anthropogenic stress 

in the Great Lakes (Danz et al. 2005). However, many fundamentally different types of stress 

exist in the Great Lakes that are not captured by the % agriculture and MaxRel stress gradients, 

such as local effects of invasive species or stress applied from the lake (e.g. wave action). 

Future surveys focusing on the use of the ZACI for bioassessment should emphasize 

sampling of non-reference (intermediate stress) and degraded (high stress) areas. A valuable 

addition to this study would be to collect comparable independent data with which to test the 

ZACI-stress relationships. Cross-validation by leaving out a portion of data was considered for 

this study but it was felt that doing so would leave insufficient data points for model derivation in 

the individual clusters. Validation of the indices and cumulative effect assessments undertaken in 
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this study would greatly benefit from datasets that provided more homogeneous coverage of the 

range of stresses.  

In addition, this study was conducted using existing assemblage and environmental data 

collected during the first phase of the GLEI project (between the years 2001-2003; Niemi et al. 

2006) so there may have been changes in the levels of stress over time. However, data collection 

for the second part of the GLEI project (GLEI-2) during the years 2010 to 2015 was designed to 

determine whether the biota are different at sites subject to changing stress. It was found that the 

changes in stress scores assessed at the watershed scale over the 10-year period between projects 

were very small (Johnson et al. 2015).  

Despite these limitations, the approaches used in this study demonstrate that the 

independent stresses caused by agricultural and development activities in Great Lakes watersheds 

are manifested as differences in the relative abundances of macroinvertebrates at coastal margins.  

The effects appear to be more pronounced in wetlands of the northern ecoprovince than in the 

south, possibly because reference conditions in the north more closely approximate the complete 

absence of anthropogenic stressors than is observed in the southern ecoprovinces.  The indices 

developed provide quantitative measures of zoobenthic assemblage condition that, once validated, 

could be used to assess both status of previously un-sampled locations and trends at sites that are 

repeatedly monitored.  The proof of concept approaches used to assess combined effects of the 

two classes of stress suggest that development exerts stronger effects than agriculture, and that the 

combined effects are less than additive.   
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Appendix A:  

Description of data set and samples used in analyses 

Nine hundred and eighty-one samples were collected from 141 coastal sites on the U.S. 

side of the Great Lakes basin. After removing samples with less than 20 invertebrates, there were 

673 sampling points remaining - 332 in the Northern ecoprovince and 341 in the Southern 

ecoprovince. In the Northern ecoprovince individuals were recorded in 221 taxonomic groups 

with chironomid larvae, oligochaete worms, Acari (mites), and amphipod genera (Hyalella and 

Gammarus) being the most frequent and abundant taxa recorded. In the Southern ecoprovince 

individuals were recorded in 216 taxonomic groups, with Chironomidae, Oligochaeta and Acari 

being the most frequent taxa. The most abundant taxa in the South included Oligochaeta, 

Chironomidae, and Amphipod genera (Hyalella and Gammarus). After removing rare species, 51 

taxa remained in the North and only 32 taxa in the South. Among the rare taxa deleted in the 

North were Bivalvia, representatives of various dipteran families (e.g. Tipulidae, Tabanidae, 

Culicidae) and leeches. In the South, removing rare species mostly involved moving single 

individuals of a species to a higher taxonomic level (e.g. most often family).   
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Figure A-1. Flowchart depicting sample sizes used at each stage of development as follows: 1) 

Removal of samples comprised of < 20 individuals, split by ecoprovince; 2) Reference sample 

selection; 3) Cluster analysis of reference samples; 4) Classification of test samples into reference 

clusters based on habitat variables. 
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Appendix B: 

 Construction of Reference-Degraded Continuum Axes 

Cluster N1 consisted of 69 samples (of which 18 were reference samples). Thirty-seven 

samples with low development stress scores (<0.10 MaxRel) were used to derive the ZACI axis 

for agricultural stress using Bray-Curtis Ordination (including 17 reference samples and 2 

constructed ‘centroid’ samples). Centroid samples were constructed using 3 samples each. Thirty 

two samples with low % Ag scores (≤10% agriculture) were used to derive the ZACI axis for 

development stress (including 13 reference samples and 2 centroid samples). The development 

centroid samples were built using 3 samples each. 

Cluster N2 consisted of 92 samples (of which 23 were reference samples). Fifty samples 

with low development scores (≤0.10 MaxRel) were used to derive the ZACI axis for agricultural 

stress (including 22 reference samples and 2 constructed ‘centroid’ samples). The centroids were 

constructed using 5 samples each. Fifty three samples with low % Ag (≤10) were used to derive 

the ZACI axis for development stress (including 15 reference samples and 2 centroid samples). 

The reference and degraded development centroids were built using 5 and 8 samples respectively.  

Cluster N3 consisted of 161 samples (of which 36 were reference samples). Eighty one 

samples with low development stress (≤0.10 MaxRel) were used to derive the ZACI axis for 

agricultural stress (including 36 reference samples and 2 constructed ‘centroid’ samples). 

Centroids were constructed using 8 samples each. Ninety five samples were used to derive the 

development ZACI axis (22 reference, 2 centroid samples). The development centroid samples 

were built using 9 samples each. 

Cluster S1 consisted of 168 samples (of which 53 were reference points). Ninety seven 

samples with low development stress (≤0.10 MaxRel) were used to derive the agriculture ZACI 
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axis (including 53 reference samples and 2 constructed ‘centroid’ samples). The reference 

centroid sample was constructed using 10 samples while the degraded centroid was constructed 

using 15 samples. Forty five samples were used to derive the development ZACI axis (19 

reference samples and 2 centroid samples). The reference and degraded centroid samples were 

developed using 6 and 5 samples, respectively.  

Cluster S2 consisted of 128 samples, including 51 reference samples. Eighty three 

samples with low development stress (≤0.10 MaxRel) were used to derive the agriculture ZACI 

axis (including 46 reference samples and 2 constructed ‘centroid’ samples). The reference 

centroid was developed using 12 samples, while the degraded centroid was developed using 10 

samples. Forty three samples were used to derive the development ZACI axis (including 12 

reference samples and 2 centroid samples). The development centroid samples were built using 12 

samples each.  

 



124 
 

Vita Auctoris 
 

 

NAME:     Jasmine St. Pierre 

 

PLACE OF BIRTH:   Windsor, ON 

 

YEAR OF BIRTH:   1990 

 

EDUCATION: University of Windsor, B.Sc. (Hons)- Biological 

Sciences, Windsor, ON, 2013 

 

University of Windsor, M.Sc. – Biological Sciences, 

Windsor, ON, 2016 

 

PUBLICATIONS:   St. Pierre, J. I., and K. E. Kovalenko. 2014. Effect of 

habitat complexity attributes on species richness. 

Ecosphere 5(2):22. http://dx.doi.org/10.1890/ES13-

00323.1 


	University of Windsor
	Scholarship at UWindsor
	2016

	Independent and combined effects of land-use stress on macroinvertebrate community condition at Great Lakes coastal margins
	Jasmine Isabel St. Pierre
	Recommended Citation


	Chapter 1 and 2_Sept 25
	4) Chapter 3- Draft Sept 22
	Chapter 4 Draft _Sept 26
	Appendices_Sept 26
	Vita Auctoris (1)

